This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
segment_acmp96.85 11
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31798.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20798.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19499.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19498.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21398.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
TEST999.31 7098.50 2997.92 22798.73 10792.63 23197.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22798.73 10792.98 22097.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_899.29 7898.44 3197.89 23398.72 10992.98 22097.70 11498.66 12496.20 2399.80 79
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24098.72 10993.16 21497.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24199.00 10989.54 30997.43 26398.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 22999.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24198.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24196.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 22998.67 12892.57 23598.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 25992.30 27999.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35295.90 4099.89 3597.85 4499.74 4199.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
ZD-MVS99.46 5198.70 1998.79 9193.21 21198.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18598.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
ETV-MVS97.96 5897.81 5998.40 10398.42 15197.27 9098.73 11798.55 15196.84 5198.38 7597.44 23495.39 5599.35 15897.62 6198.89 11898.58 184
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21797.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17798.89 4692.62 23298.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18898.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21097.81 10798.97 8795.18 6899.83 5593.84 20199.46 9399.50 91
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28598.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23599.34 10299.43 106
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22699.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
EIA-MVS97.75 7097.58 6798.27 10998.38 15396.44 12699.01 6098.60 13995.88 8797.26 13097.53 22894.97 7499.33 16097.38 7699.20 10799.05 149
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24598.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20898.76 9892.41 24196.39 17298.31 16294.92 7699.78 9594.06 19698.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20198.68 12090.14 29998.01 9498.97 8794.80 7999.87 4493.36 21599.46 9399.61 75
Test By Simon94.64 80
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17798.68 12093.18 21298.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
新几何199.16 5099.34 6298.01 6298.69 11790.06 30098.13 8298.95 9594.60 8299.89 3591.97 25599.47 9099.59 80
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 24994.59 8399.39 15597.62 6199.10 11198.70 172
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 32810.50 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35894.51 850.00 3580.00 3560.00 3560.00 354
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 30995.08 18699.16 3498.50 16695.87 8893.84 24098.34 15994.51 8598.61 23596.88 9893.45 24397.06 225
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27298.51 16197.29 2898.66 6097.88 19594.51 8599.90 3397.87 4299.17 10997.39 216
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19399.49 8897.37 218
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 11199.20 9795.36 17498.68 12091.89 25798.60 6499.10 6994.44 9099.82 6394.27 18899.44 9599.58 82
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26198.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 214
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27098.57 14793.33 20696.67 15697.57 22594.30 9299.56 13691.05 27098.59 13399.47 98
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20398.87 12199.52 85
test22299.23 9397.17 9797.40 26498.66 13188.68 31498.05 8698.96 9394.14 9499.53 8599.61 75
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19797.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21896.17 17798.58 13294.01 9699.81 7093.95 19898.90 11799.14 140
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17798.64 13686.62 32196.29 17498.61 12794.00 9799.29 16280.00 33699.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19798.81 7691.63 26598.44 7298.85 10493.98 9899.82 6394.11 19499.69 5299.64 70
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24598.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18395.98 14298.20 19798.33 19393.67 19496.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 11296.79 10697.70 14798.06 18295.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24695.33 15597.81 16199.29 122
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21598.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18799.31 10499.02 151
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18898.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24398.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33297.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19199.26 894.28 16097.94 10097.46 23192.74 10999.81 7096.88 9893.32 24696.20 309
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27799.26 893.13 21597.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
MVS_Test97.28 10097.00 9798.13 12098.33 16095.97 14798.74 11398.07 24194.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
miper_enhance_ethall95.10 19494.75 18796.12 24997.53 21993.73 23996.61 31698.08 23992.20 25193.89 23696.65 29392.44 11298.30 27794.21 19091.16 27196.34 303
MVSFormer97.57 8397.49 7597.84 13598.07 18095.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18095.76 16097.68 25097.76 26194.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25595.78 32899.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23792.26 11699.49 14598.28 2796.28 20299.08 147
IterMVS-LS95.46 16995.21 16796.22 24498.12 17793.72 24098.32 18298.13 22993.71 18794.26 21997.31 24192.24 11798.10 29194.63 17290.12 28296.84 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14895.83 14196.36 23697.93 18993.70 24198.12 21198.27 20593.70 18995.07 18999.02 8092.23 11898.54 24494.68 17193.46 24196.84 248
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18398.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
Effi-MVS+97.12 10996.69 11398.39 10498.19 17196.72 11397.37 26898.43 17893.71 18797.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20598.10 23492.92 22394.84 19598.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22895.99 18199.37 2292.12 12299.87 4493.67 20799.57 7598.97 156
nrg03096.28 13995.72 14397.96 13196.90 26398.15 5699.39 598.31 19695.47 10594.42 21298.35 15592.09 12398.69 22897.50 7289.05 29897.04 226
mvs_anonymous96.70 12396.53 12197.18 17498.19 17193.78 23498.31 18398.19 21594.01 17094.47 20698.27 16792.08 12498.46 25197.39 7597.91 15799.31 117
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25897.27 9099.36 899.23 1295.83 8993.93 23498.37 15392.00 12598.32 27396.02 13192.72 25497.00 228
FIs96.51 13096.12 13397.67 15097.13 24997.54 8199.36 899.22 1495.89 8694.03 23298.35 15591.98 12698.44 25496.40 11992.76 25397.01 227
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19398.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
miper_ehance_all_eth95.01 19894.69 19095.97 25397.70 20393.31 25497.02 29298.07 24192.23 24893.51 25296.96 27591.85 12898.15 28793.68 20591.16 27196.44 300
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30894.52 20499.35 2891.85 12899.85 4992.89 23198.88 11999.68 57
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24798.07 24192.10 25294.79 19997.29 24291.75 13099.56 13694.17 19196.50 19399.58 82
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26696.97 10298.74 11399.24 1095.16 12393.88 23797.72 21191.68 13198.31 27595.81 13787.25 31996.92 233
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25797.47 8398.79 10899.18 1695.60 9993.92 23597.04 26691.68 13198.48 24895.80 13987.66 31396.79 252
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15097.00 10198.14 20898.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24297.07 13897.96 18891.54 13799.75 10493.68 20598.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
cl_fuxian94.79 21194.43 20595.89 25897.75 19893.12 26197.16 28698.03 24892.23 24893.46 25597.05 26591.39 13998.01 29993.58 21089.21 29696.53 287
EPNet97.28 10096.87 10398.51 9294.98 32596.14 13998.90 7897.02 30498.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 7697.44 7998.25 11298.35 15596.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
131496.25 14195.73 14297.79 13897.13 24995.55 16898.19 20198.59 14193.47 20192.03 29597.82 20491.33 14299.49 14594.62 17498.44 14198.32 194
diffmvs97.58 8297.40 8198.13 12098.32 16295.81 15998.06 21698.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
PAPM94.95 20494.00 22797.78 13997.04 25495.65 16296.03 32498.25 21091.23 28194.19 22497.80 20691.27 14498.86 21682.61 33197.61 16998.84 165
casdiffmvs97.63 7797.41 8098.28 10898.33 16096.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
jason97.32 9997.08 9398.06 12597.45 22795.59 16397.87 23597.91 25694.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25195.39 10997.23 13198.99 8691.11 14798.93 20594.60 17598.59 13399.47 98
PMMVS96.60 12596.33 12697.41 16497.90 19193.93 23097.35 27198.41 18092.84 22797.76 10997.45 23391.10 14899.20 17096.26 12297.91 15799.11 143
MVS94.67 21993.54 25598.08 12396.88 26496.56 12198.19 20198.50 16678.05 34292.69 27898.02 18391.07 14999.63 12890.09 28198.36 14698.04 199
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16495.97 14798.58 14398.25 21091.74 26095.29 18897.23 24691.03 15099.15 17692.90 22997.96 15698.97 156
Effi-MVS+-dtu96.29 13796.56 11895.51 26997.89 19290.22 30298.80 10498.10 23496.57 6296.45 17196.66 29190.81 15198.91 20795.72 14297.99 15597.40 215
mvs-test196.60 12596.68 11596.37 23597.89 19291.81 27598.56 14998.10 23496.57 6296.52 16797.94 19090.81 15199.45 15295.72 14298.01 15497.86 204
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24596.74 5598.00 9697.65 21790.80 15399.48 14998.37 2396.56 19099.19 132
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22198.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
cdsmvs_eth3d_5k23.98 32431.98 3260.00 3400.00 3610.00 3620.00 35298.59 1410.00 3570.00 35898.61 12790.60 1570.00 3580.00 3560.00 3560.00 354
eth_miper_zixun_eth94.68 21694.41 20695.47 27197.64 20691.71 28096.73 31398.07 24192.71 23093.64 24597.21 24890.54 15898.17 28693.38 21389.76 28696.54 285
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 19794.46 20196.81 19796.86 26595.82 15899.24 2099.24 1093.87 17892.53 28396.84 28590.37 16098.24 28393.24 21887.93 31096.38 302
EPNet_dtu95.21 18894.95 18095.99 25196.17 29690.45 30098.16 20797.27 29396.77 5393.14 26698.33 16090.34 16198.42 25785.57 32298.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 30998.37 18791.32 27694.43 21198.73 11890.27 16399.60 13190.05 28498.82 12498.52 185
LCM-MVSNet-Re95.22 18795.32 16394.91 28798.18 17387.85 33098.75 11095.66 32995.11 12788.96 31996.85 28490.26 16497.65 31595.65 14798.44 14199.22 128
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24093.67 20798.60 13299.46 102
miper_lstm_enhance94.33 23994.07 22295.11 28297.75 19890.97 29197.22 28098.03 24891.67 26492.76 27596.97 27390.03 16697.78 31392.51 24289.64 28896.56 282
baseline195.84 15495.12 17198.01 12798.49 14995.98 14298.73 11797.03 30295.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
MDTV_nov1_ep13_2view84.26 33896.89 30490.97 28797.90 10489.89 16893.91 19999.18 136
our_test_393.65 26693.30 26294.69 29595.45 32089.68 30896.91 29997.65 26691.97 25591.66 29996.88 28189.67 16997.93 30688.02 30891.49 26696.48 297
tpmrst95.63 16495.69 14895.44 27397.54 21788.54 32396.97 29497.56 27093.50 20097.52 12796.93 27989.49 17099.16 17395.25 16096.42 19598.64 180
D2MVS95.18 19095.08 17395.48 27097.10 25192.07 27198.30 18599.13 1994.02 16992.90 27196.73 28889.48 17198.73 22794.48 18193.60 24095.65 321
sam_mvs189.45 17299.20 129
patchmatchnet-post95.10 32689.42 17398.89 211
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19598.52 2799.37 798.71 11397.09 4592.99 27099.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
NR-MVSNet94.98 20294.16 21797.44 16296.53 28197.22 9598.74 11398.95 3494.96 13589.25 31897.69 21389.32 17598.18 28594.59 17787.40 31696.92 233
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26699.65 292.34 24397.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19797.64 7699.35 1099.06 2297.02 4793.75 24499.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
PatchmatchNetpermissive95.71 16095.52 15296.29 24297.58 21190.72 29696.84 30897.52 27694.06 16697.08 13696.96 27589.24 17898.90 21092.03 25398.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 15497.48 22188.34 32596.85 30797.29 29193.74 18497.48 12897.26 24389.18 17999.05 18991.92 25697.43 173
test_djsdf96.00 14795.69 14896.93 19195.72 31195.49 17099.47 298.40 18294.98 13394.58 20297.86 19789.16 18098.41 26496.91 9294.12 22796.88 242
cl-mvsnet194.52 22994.03 22395.99 25197.57 21593.38 25297.05 29097.94 25491.74 26092.81 27397.10 25389.12 18198.07 29592.60 23590.30 28096.53 287
QAPM96.29 13795.40 15498.96 6797.85 19497.60 7999.23 2198.93 3789.76 30393.11 26799.02 8089.11 18299.93 1591.99 25499.62 6699.34 111
pmmvs494.69 21493.99 22996.81 19795.74 31095.94 15097.40 26497.67 26590.42 29493.37 25797.59 22389.08 18398.20 28492.97 22791.67 26496.30 307
cl-mvsnet_94.51 23094.01 22696.02 25097.58 21193.40 25197.05 29097.96 25391.73 26292.76 27597.08 25989.06 18498.13 28992.61 23490.29 28196.52 290
sam_mvs88.99 185
Patchmatch-test94.42 23593.68 25096.63 20997.60 20991.76 27794.83 33697.49 28089.45 30894.14 22697.10 25388.99 18598.83 21985.37 32598.13 15299.29 122
Patchmatch-RL test91.49 29190.85 29293.41 31191.37 34184.40 33792.81 34295.93 32791.87 25887.25 32594.87 32788.99 18596.53 33592.54 24182.00 33599.30 120
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25697.74 20191.74 27998.69 12898.15 22695.56 10194.92 19397.68 21688.98 18898.79 22393.19 22097.78 16397.20 222
BH-untuned95.95 14995.72 14396.65 20698.55 14692.26 26898.23 19297.79 26093.73 18594.62 20198.01 18588.97 18999.00 19693.04 22598.51 13798.68 175
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26098.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 210
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27296.08 32198.68 12093.69 19097.75 11097.80 20688.86 19199.69 11994.26 18999.01 11399.15 138
test_post31.83 35588.83 19298.91 207
v894.47 23393.77 24396.57 21796.36 28994.83 19999.05 5298.19 21591.92 25693.16 26396.97 27388.82 19398.48 24891.69 26187.79 31196.39 301
BH-w/o95.38 17695.08 17396.26 24398.34 15991.79 27697.70 24897.43 28592.87 22694.24 22197.22 24788.66 19498.84 21791.55 26397.70 16798.16 197
tpmvs94.60 22294.36 20895.33 27697.46 22388.60 32296.88 30597.68 26491.29 27893.80 24296.42 30288.58 19599.24 16691.06 26896.04 21098.17 196
DU-MVS95.42 17394.76 18697.40 16696.53 28196.97 10298.66 13598.99 2995.43 10793.88 23797.69 21388.57 19698.31 27595.81 13787.25 31996.92 233
Baseline_NR-MVSNet94.35 23893.81 23995.96 25496.20 29494.05 22898.61 14096.67 32091.44 27093.85 23997.60 22288.57 19698.14 28894.39 18386.93 32295.68 320
PCF-MVS93.45 1194.68 21693.43 25998.42 10198.62 14196.77 11195.48 33098.20 21484.63 33393.34 25898.32 16188.55 19899.81 7084.80 32798.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 24293.76 24595.91 25696.10 29992.93 26398.58 14397.97 25192.59 23493.47 25496.95 27788.53 19998.32 27392.56 23987.06 32196.49 296
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 22999.06 2293.72 18696.92 14698.06 18188.50 20099.65 12391.77 25999.00 11498.66 178
V4294.78 21294.14 21996.70 20396.33 29195.22 18098.97 6898.09 23792.32 24594.31 21797.06 26388.39 20198.55 24392.90 22988.87 30296.34 303
v7n94.19 24893.43 25996.47 22795.90 30694.38 21999.26 1898.34 19291.99 25492.76 27597.13 25288.31 20298.52 24689.48 29687.70 31296.52 290
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28696.36 13099.03 5699.03 2595.04 13193.58 24797.93 19188.27 20398.03 29894.13 19286.90 32496.95 232
MVSTER96.06 14495.72 14397.08 18198.23 16695.93 15398.73 11798.27 20594.86 13995.07 18998.09 17988.21 20498.54 24496.59 11193.46 24196.79 252
RRT_MVS96.04 14595.53 15197.56 15897.07 25397.32 8798.57 14898.09 23795.15 12495.02 19198.44 14488.20 20598.58 24296.17 12593.09 25096.79 252
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21799.71 193.57 19897.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
CR-MVSNet94.76 21394.15 21896.59 21497.00 25593.43 24894.96 33297.56 27092.46 23696.93 14496.24 30588.15 20797.88 31187.38 31196.65 18798.46 187
Patchmtry93.22 27492.35 27895.84 26096.77 26893.09 26294.66 33797.56 27087.37 31992.90 27196.24 30588.15 20797.90 30787.37 31290.10 28396.53 287
v1094.29 24293.55 25496.51 22496.39 28894.80 20198.99 6498.19 21591.35 27493.02 26996.99 27188.09 20998.41 26490.50 27788.41 30696.33 305
ppachtmachnet_test93.22 27492.63 27494.97 28695.45 32090.84 29296.88 30597.88 25790.60 29092.08 29497.26 24388.08 21097.86 31285.12 32690.33 27996.22 308
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 22493.92 23296.60 21396.21 29394.78 20398.59 14198.14 22891.86 25994.21 22397.02 26887.97 21298.41 26491.72 26089.57 28996.61 275
PatchT93.06 27891.97 28396.35 23796.69 27492.67 26594.48 33897.08 29886.62 32197.08 13692.23 33887.94 21397.90 30778.89 34096.69 18598.49 186
ADS-MVSNet294.58 22594.40 20795.11 28298.00 18488.74 32096.04 32297.30 29090.15 29796.47 16996.64 29487.89 21497.56 31990.08 28297.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 20998.00 18491.91 27496.04 32297.74 26390.15 29796.47 16996.64 29487.89 21498.96 20090.08 28297.06 17799.02 151
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24398.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 207
test_post196.68 31430.43 35687.85 21798.69 22892.59 237
test-LLR95.10 19494.87 18395.80 26196.77 26889.70 30696.91 29995.21 33195.11 12794.83 19795.72 31987.71 21898.97 19793.06 22398.50 13898.72 170
test0.0.03 194.08 25793.51 25695.80 26195.53 31792.89 26497.38 26695.97 32595.11 12792.51 28596.66 29187.71 21896.94 32887.03 31393.67 23697.57 212
JIA-IIPM93.35 26992.49 27695.92 25596.48 28590.65 29795.01 33196.96 30685.93 32796.08 17887.33 34387.70 22098.78 22491.35 26595.58 21498.34 192
v2v48294.69 21494.03 22396.65 20696.17 29694.79 20298.67 13298.08 23992.72 22994.00 23397.16 25187.69 22198.45 25292.91 22888.87 30296.72 261
CVMVSNet95.43 17296.04 13593.57 31097.93 18983.62 33998.12 21198.59 14195.68 9596.56 16199.02 8087.51 22297.51 32193.56 21197.44 17299.60 78
WR-MVS95.15 19194.46 20197.22 17196.67 27696.45 12598.21 19498.81 7694.15 16393.16 26397.69 21387.51 22298.30 27795.29 15888.62 30496.90 240
anonymousdsp95.42 17394.91 18196.94 19095.10 32495.90 15699.14 3698.41 18093.75 18293.16 26397.46 23187.50 22498.41 26495.63 14894.03 22996.50 295
v14419294.39 23793.70 24896.48 22696.06 30194.35 22098.58 14398.16 22591.45 26994.33 21697.02 26887.50 22498.45 25291.08 26789.11 29796.63 273
baseline295.11 19394.52 19796.87 19496.65 27793.56 24398.27 19094.10 34593.45 20292.02 29697.43 23587.45 22699.19 17193.88 20097.41 17497.87 203
EU-MVSNet93.66 26494.14 21992.25 31995.96 30583.38 34098.52 15398.12 23094.69 14592.61 28098.13 17787.36 22796.39 33791.82 25790.00 28496.98 229
CP-MVSNet94.94 20694.30 21096.83 19696.72 27395.56 16699.11 4298.95 3493.89 17692.42 28897.90 19387.19 22898.12 29094.32 18688.21 30796.82 251
HQP_MVS96.14 14295.90 13996.85 19597.42 22894.60 21198.80 10498.56 14997.28 2995.34 18598.28 16487.09 22999.03 19396.07 12694.27 21996.92 233
plane_prior697.35 23394.61 20987.09 229
RPSCF94.87 20895.40 15493.26 31498.89 11782.06 34498.33 17798.06 24590.30 29696.56 16199.26 4287.09 22999.49 14593.82 20296.32 19898.24 195
RPMNet92.81 28191.34 28997.24 17097.00 25593.43 24894.96 33298.80 8682.27 33796.93 14492.12 33986.98 23299.82 6376.32 34496.65 18798.46 187
v119294.32 24093.58 25396.53 22296.10 29994.45 21598.50 15898.17 22391.54 26794.19 22497.06 26386.95 23398.43 25690.14 28089.57 28996.70 265
CANet_DTU96.96 11496.55 11998.21 11498.17 17596.07 14197.98 22498.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
HQP2-MVS86.75 235
HQP-MVS95.72 15995.40 15496.69 20497.20 24294.25 22498.05 21798.46 17196.43 6794.45 20797.73 20986.75 23598.96 20095.30 15694.18 22396.86 246
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24697.32 8799.21 2898.97 3089.96 30191.14 30399.05 7986.64 23799.92 2193.38 21399.47 9097.73 208
cl-mvsnet294.68 21694.19 21496.13 24898.11 17893.60 24296.94 29698.31 19692.43 24093.32 25996.87 28386.51 23898.28 28194.10 19591.16 27196.51 293
ET-MVSNet_ETH3D94.13 25292.98 26797.58 15698.22 16796.20 13697.31 27595.37 33094.53 15279.56 34097.63 22186.51 23897.53 32096.91 9290.74 27699.02 151
YYNet190.70 29989.39 30294.62 29894.79 32990.65 29797.20 28197.46 28187.54 31872.54 34595.74 31686.51 23896.66 33386.00 31986.76 32696.54 285
MDA-MVSNet_test_wron90.71 29889.38 30394.68 29694.83 32890.78 29597.19 28297.46 28187.60 31772.41 34695.72 31986.51 23896.71 33285.92 32086.80 32596.56 282
v192192094.20 24793.47 25896.40 23495.98 30494.08 22798.52 15398.15 22691.33 27594.25 22097.20 24986.41 24298.42 25790.04 28589.39 29496.69 270
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20199.29 7893.24 25798.58 14398.11 23289.92 30293.57 24899.10 6986.37 24399.79 9190.78 27398.10 15397.09 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 24493.92 23295.35 27594.95 32692.60 26697.97 22597.65 26691.61 26690.68 30997.09 25786.32 24498.42 25789.70 29199.34 10295.02 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 16595.34 16096.46 23097.52 22093.75 23797.27 27898.46 17195.53 10294.42 21298.00 18686.21 24598.97 19796.25 12394.37 21796.66 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 26892.80 27095.07 28497.58 21187.97 32896.76 31197.86 25882.17 33893.53 24996.04 31386.13 24699.13 17889.24 29995.87 21198.10 198
PEN-MVS94.42 23593.73 24796.49 22596.28 29294.84 19799.17 3399.00 2793.51 19992.23 29197.83 20386.10 24797.90 30792.55 24086.92 32396.74 258
v124094.06 25993.29 26396.34 23896.03 30393.90 23198.44 16598.17 22391.18 28494.13 22797.01 27086.05 24898.42 25789.13 30189.50 29296.70 265
CostFormer94.95 20494.73 18895.60 26897.28 23689.06 31697.53 25996.89 31289.66 30596.82 15196.72 28986.05 24898.95 20495.53 15096.13 20898.79 167
ACMM93.85 995.69 16295.38 15896.61 21197.61 20893.84 23398.91 7798.44 17595.25 11994.28 21898.47 14286.04 25099.12 17995.50 15193.95 23296.87 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet93.98 26193.26 26496.14 24796.06 30194.39 21899.20 2998.86 6193.06 21691.78 29797.81 20585.87 25197.58 31890.53 27686.17 32896.46 299
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23897.27 9098.94 7499.23 1295.13 12595.51 18497.32 24085.73 25298.91 20797.33 7889.55 29196.89 241
EPMVS94.99 20094.48 19996.52 22397.22 24091.75 27897.23 27991.66 34994.11 16497.28 12996.81 28685.70 25398.84 21793.04 22597.28 17598.97 156
TransMVSNet (Re)92.67 28391.51 28896.15 24696.58 27994.65 20498.90 7896.73 31690.86 28889.46 31797.86 19785.62 25498.09 29386.45 31681.12 33895.71 319
dp94.15 25193.90 23494.90 28897.31 23586.82 33596.97 29497.19 29691.22 28296.02 18096.61 29685.51 25599.02 19590.00 28694.30 21898.85 163
LPG-MVS_test95.62 16595.34 16096.47 22797.46 22393.54 24498.99 6498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
LGP-MVS_train96.47 22797.46 22393.54 24498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
PS-CasMVS94.67 21993.99 22996.71 20196.68 27595.26 17999.13 3999.03 2593.68 19292.33 28997.95 18985.35 25898.10 29193.59 20988.16 30996.79 252
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23498.74 10293.84 17996.54 16598.18 17485.34 25999.75 10495.93 13396.35 19699.15 138
N_pmnet87.12 31187.77 31085.17 32895.46 31961.92 35397.37 26870.66 35885.83 32888.73 32196.04 31385.33 26097.76 31480.02 33590.48 27895.84 317
OPM-MVS95.69 16295.33 16296.76 19996.16 29894.63 20698.43 16798.39 18496.64 5995.02 19198.78 11285.15 26199.05 18995.21 16294.20 22296.60 276
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16294.64 20598.19 20197.45 28394.56 15196.03 17998.61 12785.02 26299.12 17990.68 27599.06 11299.30 120
DSMNet-mixed92.52 28592.58 27592.33 31894.15 33382.65 34298.30 18594.26 34289.08 31292.65 27995.73 31785.01 26395.76 33886.24 31797.76 16498.59 182
tfpnnormal93.66 26492.70 27396.55 22196.94 25995.94 15098.97 6899.19 1591.04 28691.38 30197.34 23884.94 26498.61 23585.45 32489.02 30095.11 325
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20597.41 23194.42 21698.52 15398.59 14191.69 26391.21 30298.35 15584.87 26599.04 19291.06 26893.44 24496.60 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 18994.45 20397.46 16196.75 27196.56 12198.86 8998.65 13593.30 20993.27 26098.27 16784.85 26698.87 21494.82 16991.26 27096.96 230
thisisatest051595.61 16794.89 18297.76 14198.15 17695.15 18396.77 31094.41 33992.95 22297.18 13397.43 23584.78 26799.45 15294.63 17297.73 16698.68 175
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25898.59 14198.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
TestCases96.99 18499.25 8693.21 25898.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19797.11 29795.24 12196.54 16596.22 30984.58 27099.53 14287.93 30996.50 19397.39 216
pm-mvs193.94 26293.06 26696.59 21496.49 28495.16 18198.95 7298.03 24892.32 24591.08 30497.84 20084.54 27198.41 26492.16 24786.13 33096.19 310
ACMP93.49 1095.34 18194.98 17896.43 23297.67 20493.48 24798.73 11798.44 17594.94 13892.53 28398.53 13684.50 27299.14 17795.48 15294.00 23096.66 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31095.38 11096.61 15996.88 28184.29 27399.56 13688.11 30596.29 19997.76 205
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31095.38 11096.63 15896.90 28084.29 27399.59 13288.65 30496.33 19798.40 189
FMVSNet394.97 20394.26 21197.11 17998.18 17396.62 11598.56 14998.26 20993.67 19494.09 22897.10 25384.25 27598.01 29992.08 24992.14 25796.70 265
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19997.76 205
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19998.40 189
cascas94.63 22193.86 23796.93 19196.91 26294.27 22296.00 32598.51 16185.55 33094.54 20396.23 30784.20 27898.87 21495.80 13996.98 18097.66 211
tpm94.13 25293.80 24095.12 28196.50 28387.91 32997.44 26195.89 32892.62 23296.37 17396.30 30484.13 27998.30 27793.24 21891.66 26599.14 140
tttt051796.07 14395.51 15397.78 13998.41 15294.84 19799.28 1694.33 34194.26 16297.64 12098.64 12684.05 28099.47 15095.34 15497.60 17099.03 150
IterMVS94.09 25693.85 23894.80 29397.99 18690.35 30197.18 28398.12 23093.68 19292.46 28797.34 23884.05 28097.41 32292.51 24291.33 26796.62 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25493.87 23694.85 29097.98 18890.56 29997.18 28398.11 23293.75 18292.58 28197.48 23083.97 28297.41 32292.48 24491.30 26896.58 278
SCA95.46 16995.13 17096.46 23097.67 20491.29 28797.33 27397.60 26894.68 14696.92 14697.10 25383.97 28298.89 21192.59 23798.32 14899.20 129
TR-MVS94.94 20694.20 21397.17 17597.75 19894.14 22697.59 25697.02 30492.28 24795.75 18397.64 21983.88 28498.96 20089.77 28896.15 20798.40 189
jajsoiax95.45 17195.03 17596.73 20095.42 32294.63 20699.14 3698.52 15895.74 9293.22 26198.36 15483.87 28598.65 23396.95 9194.04 22896.91 238
Anonymous2023120691.66 29091.10 29093.33 31294.02 33587.35 33298.58 14397.26 29490.48 29190.16 31196.31 30383.83 28696.53 33579.36 33889.90 28596.12 311
thisisatest053096.01 14695.36 15997.97 12998.38 15395.52 16998.88 8594.19 34394.04 16797.64 12098.31 16283.82 28799.46 15195.29 15897.70 16798.93 160
tpm294.19 24893.76 24595.46 27297.23 23989.04 31797.31 27596.85 31587.08 32096.21 17696.79 28783.75 28898.74 22692.43 24596.23 20598.59 182
mvs_tets95.41 17595.00 17696.65 20695.58 31594.42 21699.00 6298.55 15195.73 9393.21 26298.38 15283.45 28998.63 23497.09 8494.00 23096.91 238
OurMVSNet-221017-094.21 24694.00 22794.85 29095.60 31489.22 31498.89 8297.43 28595.29 11692.18 29298.52 13982.86 29098.59 24093.46 21291.76 26396.74 258
UGNet96.78 12196.30 12798.19 11798.24 16595.89 15798.88 8598.93 3797.39 2396.81 15297.84 20082.60 29199.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 26692.97 26895.68 26595.49 31892.37 26798.20 19797.28 29289.66 30592.58 28197.26 24382.14 29298.09 29393.18 22190.95 27596.58 278
DWT-MVSNet_test94.82 20994.36 20896.20 24597.35 23390.79 29498.34 17696.57 32292.91 22495.33 18796.44 30182.00 29399.12 17994.52 17995.78 21398.70 172
ACMH92.88 1694.55 22793.95 23196.34 23897.63 20793.26 25698.81 10398.49 17093.43 20389.74 31498.53 13681.91 29499.08 18793.69 20493.30 24796.70 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 27397.42 22891.32 28697.50 27895.09 13093.59 24698.35 15581.70 29598.88 21389.71 29093.39 24596.12 311
Anonymous2023121194.10 25593.26 26496.61 21199.11 10494.28 22199.01 6098.88 4986.43 32392.81 27397.57 22581.66 29698.68 23194.83 16889.02 30096.88 242
GBi-Net94.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
test194.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
FMVSNet294.47 23393.61 25297.04 18298.21 16896.43 12798.79 10898.27 20592.46 23693.50 25397.09 25781.16 29798.00 30191.09 26691.93 26196.70 265
GA-MVS94.81 21094.03 22397.14 17697.15 24893.86 23296.76 31197.58 26994.00 17194.76 20097.04 26680.91 30098.48 24891.79 25896.25 20499.09 144
SixPastTwentyTwo93.34 27092.86 26994.75 29495.67 31289.41 31298.75 11096.67 32093.89 17690.15 31298.25 16980.87 30198.27 28290.90 27190.64 27796.57 280
ACMH+92.99 1494.30 24193.77 24395.88 25997.81 19692.04 27398.71 12298.37 18793.99 17290.60 31098.47 14280.86 30299.05 18992.75 23392.40 25696.55 284
gg-mvs-nofinetune92.21 28790.58 29497.13 17796.75 27195.09 18595.85 32689.40 35285.43 33194.50 20581.98 34680.80 30398.40 27092.16 24798.33 14797.88 202
test20.0390.89 29790.38 29592.43 31793.48 33688.14 32798.33 17797.56 27093.40 20487.96 32396.71 29080.69 30494.13 34479.15 33986.17 32895.01 329
VPNet94.99 20094.19 21497.40 16697.16 24796.57 12098.71 12298.97 3095.67 9694.84 19598.24 17080.36 30598.67 23296.46 11587.32 31796.96 230
GG-mvs-BLEND96.59 21496.34 29094.98 19196.51 31988.58 35393.10 26894.34 33080.34 30698.05 29789.53 29496.99 17996.74 258
PVSNet_088.72 1991.28 29390.03 29895.00 28597.99 18687.29 33394.84 33598.50 16692.06 25389.86 31395.19 32479.81 30799.39 15592.27 24669.79 34698.33 193
MS-PatchMatch93.84 26393.63 25194.46 30296.18 29589.45 31097.76 24498.27 20592.23 24892.13 29397.49 22979.50 30898.69 22889.75 28999.38 10095.25 323
MVS-HIRNet89.46 30688.40 30792.64 31697.58 21182.15 34394.16 34193.05 34875.73 34490.90 30582.52 34579.42 30998.33 27283.53 32998.68 12797.43 213
MDA-MVSNet-bldmvs89.97 30388.35 30894.83 29295.21 32391.34 28397.64 25397.51 27788.36 31571.17 34796.13 31179.22 31096.63 33483.65 32886.27 32796.52 290
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26496.55 28091.65 28198.11 21398.44 17594.96 13594.22 22297.90 19379.18 31199.11 18294.05 19793.85 23496.48 297
RRT_test8_iter0594.56 22694.19 21495.67 26697.60 20991.34 28398.93 7598.42 17994.75 14293.39 25697.87 19679.00 31298.61 23596.78 10790.99 27497.07 224
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 32996.64 15798.97 8778.73 31399.85 4996.27 12194.89 21699.12 142
TESTMET0.1,194.18 25093.69 24995.63 26796.92 26089.12 31596.91 29994.78 33693.17 21394.88 19496.45 30078.52 31498.92 20693.09 22298.50 13898.85 163
pmmvs-eth3d90.36 30189.05 30494.32 30491.10 34292.12 26997.63 25596.95 30788.86 31384.91 33593.13 33378.32 31596.74 32988.70 30381.81 33794.09 335
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30190.66 28996.49 16898.80 11078.13 31699.83 5596.21 12495.36 21599.44 105
IB-MVS91.98 1793.27 27291.97 28397.19 17397.47 22293.41 25097.09 28995.99 32493.32 20792.47 28695.73 31778.06 31799.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 27792.79 27194.20 30595.88 30788.67 32197.66 25297.07 29993.81 18191.71 29897.65 21777.96 31898.81 22191.47 26491.92 26295.12 324
test-mter94.08 25793.51 25695.80 26196.77 26889.70 30696.91 29995.21 33192.89 22594.83 19795.72 31977.69 31998.97 19793.06 22398.50 13898.72 170
USDC93.33 27192.71 27295.21 27896.83 26790.83 29396.91 29997.50 27893.84 17990.72 30898.14 17677.69 31998.82 22089.51 29593.21 24995.97 315
test_040291.32 29290.27 29694.48 30096.60 27891.12 28998.50 15897.22 29586.10 32688.30 32296.98 27277.65 32197.99 30278.13 34292.94 25294.34 331
K. test v392.55 28491.91 28594.48 30095.64 31389.24 31399.07 5094.88 33594.04 16786.78 32797.59 22377.64 32297.64 31692.08 24989.43 29396.57 280
TDRefinement91.06 29589.68 30095.21 27885.35 34891.49 28298.51 15797.07 29991.47 26888.83 32097.84 20077.31 32399.09 18692.79 23277.98 34195.04 327
new_pmnet90.06 30289.00 30593.22 31594.18 33288.32 32696.42 32096.89 31286.19 32485.67 33393.62 33177.18 32497.10 32681.61 33389.29 29594.23 332
test_part192.87 28091.72 28696.32 24097.55 21693.50 24699.04 5398.74 10283.31 33590.81 30797.70 21276.61 32598.60 23994.43 18287.30 31896.85 247
new-patchmatchnet88.50 30887.45 31191.67 32190.31 34485.89 33697.16 28697.33 28989.47 30783.63 33792.77 33476.38 32695.06 34282.70 33077.29 34294.06 336
lessismore_v094.45 30394.93 32788.44 32491.03 35086.77 32897.64 21976.23 32798.42 25790.31 27985.64 33196.51 293
TinyColmap92.31 28691.53 28794.65 29796.92 26089.75 30596.92 29796.68 31990.45 29389.62 31597.85 19976.06 32898.81 22186.74 31492.51 25595.41 322
pmmvs691.77 28990.63 29395.17 28094.69 33191.24 28898.67 13297.92 25586.14 32589.62 31597.56 22775.79 32998.34 27190.75 27484.56 33295.94 316
MIMVSNet93.26 27392.21 28096.41 23397.73 20293.13 26095.65 32997.03 30291.27 28094.04 23196.06 31275.33 33097.19 32586.56 31596.23 20598.92 161
UnsupCasMVSNet_eth90.99 29689.92 29994.19 30694.08 33489.83 30497.13 28898.67 12893.69 19085.83 33296.19 31075.15 33196.74 32989.14 30079.41 34096.00 314
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32393.40 20498.62 6299.20 5274.99 33299.63 12897.72 5297.20 17699.46 102
CMPMVSbinary66.06 2189.70 30489.67 30189.78 32393.19 33776.56 34697.00 29398.35 19080.97 33981.57 33997.75 20874.75 33398.61 23589.85 28793.63 23894.17 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 28890.92 29194.49 29997.21 24192.09 27098.00 22397.55 27489.31 31090.86 30695.61 32374.48 33495.32 34085.57 32289.70 28796.07 313
testgi93.06 27892.45 27794.88 28996.43 28789.90 30398.75 11097.54 27595.60 9991.63 30097.91 19274.46 33597.02 32786.10 31893.67 23697.72 209
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28795.02 13297.95 9899.34 3174.37 33699.78 9598.64 396.80 18299.08 147
FMVSNet193.19 27692.07 28196.56 21897.54 21795.00 18898.82 9798.18 21890.38 29592.27 29097.07 26073.68 33797.95 30389.36 29891.30 26896.72 261
VDDNet95.36 17994.53 19697.86 13498.10 17995.13 18498.85 9097.75 26290.46 29298.36 7699.39 1473.27 33899.64 12597.98 3696.58 18998.81 166
UniMVSNet_ETH3D94.24 24593.33 26196.97 18797.19 24593.38 25298.74 11398.57 14791.21 28393.81 24198.58 13272.85 33998.77 22595.05 16493.93 23398.77 169
DeepMVS_CXcopyleft86.78 32597.09 25272.30 34995.17 33475.92 34384.34 33695.19 32470.58 34095.35 33979.98 33789.04 29992.68 341
OpenMVS_ROBcopyleft86.42 2089.00 30787.43 31293.69 30993.08 33889.42 31197.91 22996.89 31278.58 34185.86 33194.69 32869.48 34198.29 28077.13 34393.29 24893.36 340
EG-PatchMatch MVS91.13 29490.12 29794.17 30794.73 33089.00 31898.13 21097.81 25989.22 31185.32 33496.46 29967.71 34298.42 25787.89 31093.82 23595.08 326
MIMVSNet189.67 30588.28 30993.82 30892.81 33991.08 29098.01 22197.45 28387.95 31687.90 32495.87 31567.63 34394.56 34378.73 34188.18 30895.83 318
pmmvs386.67 31284.86 31592.11 32088.16 34687.19 33496.63 31594.75 33779.88 34087.22 32692.75 33566.56 34495.20 34181.24 33476.56 34393.96 337
MVS_030492.81 28192.01 28295.23 27797.46 22391.33 28598.17 20698.81 7691.13 28593.80 24295.68 32266.08 34598.06 29690.79 27296.13 20896.32 306
tmp_tt68.90 31866.97 32074.68 33350.78 35859.95 35587.13 34783.47 35638.80 35362.21 34996.23 30764.70 34676.91 35488.91 30230.49 35287.19 344
UnsupCasMVSNet_bld87.17 31085.12 31493.31 31391.94 34088.77 31994.92 33498.30 20284.30 33482.30 33890.04 34063.96 34797.25 32485.85 32174.47 34593.93 338
testing_290.61 30088.50 30696.95 18990.08 34595.57 16597.69 24998.06 24593.02 21876.55 34192.48 33761.18 34898.44 25495.45 15391.98 26096.84 248
PM-MVS87.77 30986.55 31391.40 32291.03 34383.36 34196.92 29795.18 33391.28 27986.48 33093.42 33253.27 34996.74 32989.43 29781.97 33694.11 334
ambc89.49 32486.66 34775.78 34792.66 34396.72 31786.55 32992.50 33646.01 35097.90 30790.32 27882.09 33494.80 330
Gipumacopyleft78.40 31476.75 31783.38 32995.54 31680.43 34579.42 35097.40 28764.67 34773.46 34480.82 34745.65 35193.14 34566.32 34787.43 31576.56 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 32163.26 32466.53 33681.73 35158.81 35791.85 34484.75 35551.93 35259.09 35175.13 35043.32 35279.09 35342.03 35239.47 35061.69 349
E-PMN64.94 32064.25 32267.02 33582.28 35059.36 35691.83 34585.63 35452.69 35060.22 35077.28 34941.06 35380.12 35246.15 35141.14 34961.57 350
FPMVS77.62 31677.14 31679.05 33179.25 35260.97 35495.79 32795.94 32665.96 34667.93 34894.40 32937.73 35488.88 34968.83 34688.46 30587.29 343
PMMVS277.95 31575.44 31985.46 32782.54 34974.95 34894.23 34093.08 34772.80 34574.68 34387.38 34236.36 35591.56 34773.95 34563.94 34789.87 342
LCM-MVSNet78.70 31376.24 31886.08 32677.26 35471.99 35094.34 33996.72 31761.62 34876.53 34289.33 34133.91 35692.78 34681.85 33274.60 34493.46 339
ANet_high69.08 31765.37 32180.22 33065.99 35671.96 35190.91 34690.09 35182.62 33649.93 35378.39 34829.36 35781.75 35062.49 34838.52 35186.95 345
PMVScopyleft61.03 2365.95 31963.57 32373.09 33457.90 35751.22 35885.05 34993.93 34654.45 34944.32 35483.57 34413.22 35889.15 34858.68 34981.00 33978.91 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 32623.72 32912.64 33813.54 3608.19 36096.55 3186.13 3617.48 35616.74 35637.98 35412.97 3596.05 35616.69 3545.43 35523.68 351
wuyk23d30.17 32330.18 32730.16 33778.61 35343.29 35966.79 35114.21 35917.31 35414.82 35711.93 35711.55 36041.43 35537.08 35319.30 3535.76 353
MVEpermissive62.14 2263.28 32259.38 32574.99 33274.33 35565.47 35285.55 34880.50 35752.02 35151.10 35275.00 35110.91 36180.50 35151.60 35053.40 34878.99 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 32524.95 32811.09 33914.89 3596.47 36196.56 3179.87 3607.55 35517.93 35539.02 3539.43 3625.90 35716.56 35512.72 35420.91 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.20 32710.94 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35898.43 1450.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
save fliter99.46 5198.38 3598.21 19498.71 11397.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
MTGPAbinary98.74 102
MTMP98.89 8294.14 344
gm-plane-assit95.88 30787.47 33189.74 30496.94 27899.19 17193.32 217
test9_res96.39 12099.57 7599.69 51
agg_prior295.87 13699.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 236
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
旧先验297.57 25891.30 27798.67 5899.80 7995.70 146
新几何297.64 253
无先验97.58 25798.72 10991.38 27199.87 4493.36 21599.60 78
原ACMM297.67 251
testdata299.89 3591.65 262
testdata197.32 27496.34 71
plane_prior797.42 22894.63 206
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 233
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 185
plane_prior298.80 10497.28 29
plane_prior197.37 232
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 362
nn0.00 362
door-mid94.37 340
test1198.66 131
door94.64 338
HQP5-MVS94.25 224
HQP-NCC97.20 24298.05 21796.43 6794.45 207
ACMP_Plane97.20 24298.05 21796.43 6794.45 207
BP-MVS95.30 156
HQP4-MVS94.45 20798.96 20096.87 244
HQP3-MVS98.46 17194.18 223
NP-MVS97.28 23694.51 21497.73 209
ACMMP++_ref92.97 251
ACMMP++93.61 239