test_0728_THIRD | | | | | | | | | | 97.32 27 | 99.45 9 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 15 | 99.86 1 | 99.85 2 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 92 | 99.05 10 | 99.02 58 | | | | 99.16 61 | 97.81 2 | 99.37 157 | 97.24 79 | 99.73 43 | 99.70 48 |
|
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 21 | 99.22 94 | 98.43 33 | 99.10 45 | 98.87 55 | 97.38 24 | 99.35 14 | 99.40 13 | 97.78 3 | 99.87 44 | 97.77 49 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 58 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 4 | 99.94 3 | 98.43 18 | 99.81 10 | 99.70 48 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 4 | 99.74 106 | | | |
|
DVP-MVS | | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 68 | 98.58 146 | 97.62 11 | 99.45 9 | 99.46 9 | 97.42 6 | 99.94 3 | 98.47 15 | 99.81 10 | 99.69 51 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 51 | 98.88 49 | 97.62 11 | 99.56 5 | 99.50 4 | 97.42 6 | | | | |
|
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 8 | 99.48 6 | 97.34 8 | 99.94 3 | 98.43 18 | 99.80 17 | 99.83 5 |
|
DPE-MVS | | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 169 | 98.91 43 | 97.58 14 | 99.54 7 | 99.46 9 | 97.10 9 | 99.94 3 | 97.64 60 | 99.84 8 | 99.83 5 |
|
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 14 | 99.32 68 | 98.87 15 | 98.47 161 | 98.81 76 | 97.72 6 | 98.76 52 | 99.16 61 | 97.05 10 | 99.78 95 | 98.06 33 | 99.66 57 | 99.69 51 |
|
segment_acmp | | | | | | | | | | | | | 96.85 11 | | | | |
|
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 10 | 99.60 31 | 98.87 15 | 98.41 170 | 98.68 120 | 97.04 46 | 98.52 67 | 98.80 110 | 96.78 12 | 99.83 55 | 97.93 37 | 99.61 67 | 99.74 33 |
|
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 6 | 99.57 33 | 98.96 12 | 99.39 5 | 98.93 37 | 97.38 24 | 99.41 11 | 99.54 1 | 96.66 13 | 99.84 52 | 98.86 1 | 99.85 3 | 99.87 1 |
|
NCCC | | | 98.61 17 | 98.35 24 | 99.38 17 | 99.28 82 | 98.61 24 | 98.45 162 | 98.76 98 | 97.82 5 | 98.45 71 | 98.93 97 | 96.65 14 | 99.83 55 | 97.38 76 | 99.41 97 | 99.71 44 |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 91 | 99.33 65 | 98.36 42 | 98.90 78 | 98.85 64 | 97.28 29 | 99.72 3 | 99.39 14 | 96.63 15 | 97.60 317 | 98.17 28 | 99.85 3 | 99.64 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PHI-MVS | | | 98.34 48 | 98.06 49 | 99.18 47 | 99.15 101 | 98.12 58 | 99.04 53 | 99.09 20 | 93.32 207 | 98.83 48 | 99.10 69 | 96.54 16 | 99.83 55 | 97.70 57 | 99.76 32 | 99.59 80 |
|
SMA-MVS | | | 98.58 23 | 98.25 38 | 99.56 5 | 99.51 39 | 99.04 11 | 98.95 72 | 98.80 86 | 93.67 194 | 99.37 13 | 99.52 3 | 96.52 17 | 99.89 35 | 98.06 33 | 99.81 10 | 99.76 26 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 87 | 99.26 85 | 96.80 109 | 98.71 122 | 99.05 24 | 97.28 29 | 98.84 46 | 99.28 40 | 96.47 18 | 99.40 154 | 98.52 13 | 99.70 51 | 99.47 98 |
|
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 40 | 99.69 25 | 98.28 48 | 99.14 36 | 98.66 131 | 96.84 51 | 99.56 5 | 99.31 35 | 96.34 19 | 99.70 114 | 98.32 25 | 99.73 43 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 30 | 99.46 51 | 98.38 35 | 98.21 194 | 98.52 158 | 97.95 3 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 52 | 97.72 52 | 99.73 43 | 99.67 61 |
|
SF-MVS | | | 98.59 20 | 98.32 33 | 99.41 16 | 99.54 35 | 98.71 18 | 99.04 53 | 98.81 76 | 95.12 126 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 52 | 97.72 52 | 99.73 43 | 99.67 61 |
|
TSAR-MVS + GP. | | | 98.38 43 | 98.24 41 | 98.81 74 | 99.22 94 | 97.25 94 | 98.11 213 | 98.29 204 | 97.19 38 | 98.99 38 | 99.02 80 | 96.22 20 | 99.67 121 | 98.52 13 | 98.56 135 | 99.51 89 |
|
TEST9 | | | | | | 99.31 70 | 98.50 29 | 97.92 227 | 98.73 107 | 92.63 231 | 97.74 111 | 98.68 121 | 96.20 23 | 99.80 79 | | | |
|
train_agg | | | 97.97 57 | 97.52 72 | 99.33 27 | 99.31 70 | 98.50 29 | 97.92 227 | 98.73 107 | 92.98 220 | 97.74 111 | 98.68 121 | 96.20 23 | 99.80 79 | 96.59 111 | 99.57 75 | 99.68 57 |
|
test_8 | | | | | | 99.29 78 | 98.44 31 | 97.89 233 | 98.72 109 | 92.98 220 | 97.70 114 | 98.66 124 | 96.20 23 | 99.80 79 | | | |
|
agg_prior1 | | | 97.95 61 | 97.51 74 | 99.28 35 | 99.30 75 | 98.38 35 | 97.81 240 | 98.72 109 | 93.16 214 | 97.57 125 | 98.66 124 | 96.14 26 | 99.81 70 | 96.63 110 | 99.56 80 | 99.66 65 |
|
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 43 | 99.35 60 | 98.01 62 | 98.37 173 | 98.81 76 | 97.48 18 | 99.21 21 | 99.21 48 | 96.13 27 | 99.80 79 | 98.40 22 | 99.73 43 | 99.75 28 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 63 | 98.48 17 | 96.30 241 | 99.00 109 | 89.54 309 | 97.43 263 | 98.87 55 | 98.16 2 | 99.26 18 | 99.38 21 | 96.12 28 | 99.64 125 | 98.30 26 | 99.77 26 | 99.72 40 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 57 | 99.35 60 | 97.81 73 | 98.37 173 | 98.76 98 | 97.49 17 | 99.20 22 | 99.21 48 | 96.08 29 | 99.79 91 | 98.42 20 | 99.73 43 | 99.75 28 |
|
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 28 | 99.72 12 | 98.29 46 | 99.23 21 | 98.96 32 | 96.10 82 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.62 61 | 99.78 23 | 99.75 28 |
|
#test# | | | 98.54 32 | 98.27 36 | 99.32 28 | 99.72 12 | 98.29 46 | 98.98 67 | 98.96 32 | 95.65 98 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.21 81 | 99.78 23 | 99.75 28 |
|
9.14 | | | | 98.06 49 | | 99.47 48 | | 98.71 122 | 98.82 70 | 94.36 159 | 99.16 26 | 99.29 39 | 96.05 32 | 99.81 70 | 97.00 86 | 99.71 50 | |
|
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 43 | 99.66 27 | 97.86 68 | 99.34 11 | 98.87 55 | 95.96 85 | 98.60 64 | 99.13 64 | 96.05 32 | 99.94 3 | 97.77 49 | 99.86 1 | 99.77 20 |
|
MSP-MVS | | | 98.74 8 | 98.55 10 | 99.29 31 | 99.75 3 | 98.23 49 | 99.26 18 | 98.88 49 | 97.52 15 | 99.41 11 | 98.78 112 | 96.00 34 | 99.79 91 | 97.79 48 | 99.59 71 | 99.85 2 |
|
MVS_111021_HR | | | 98.47 38 | 98.34 28 | 98.88 72 | 99.22 94 | 97.32 87 | 97.91 229 | 99.58 3 | 97.20 37 | 98.33 78 | 99.00 85 | 95.99 35 | 99.64 125 | 98.05 35 | 99.76 32 | 99.69 51 |
|
test_prior3 | | | 98.22 55 | 97.90 58 | 99.19 43 | 99.31 70 | 98.22 50 | 97.80 241 | 98.84 65 | 96.12 80 | 97.89 105 | 98.69 119 | 95.96 36 | 99.70 114 | 96.89 95 | 99.60 68 | 99.65 67 |
|
test_prior2 | | | | | | | | 97.80 241 | | 96.12 80 | 97.89 105 | 98.69 119 | 95.96 36 | | 96.89 95 | 99.60 68 | |
|
CDPH-MVS | | | 97.94 62 | 97.49 75 | 99.28 35 | 99.47 48 | 98.44 31 | 97.91 229 | 98.67 128 | 92.57 235 | 98.77 51 | 98.85 104 | 95.93 38 | 99.72 108 | 95.56 149 | 99.69 52 | 99.68 57 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 31 | 99.74 7 | 98.16 55 | 99.23 21 | 98.93 37 | 96.15 77 | 98.94 39 | 99.17 56 | 95.91 39 | 99.94 3 | 97.55 69 | 99.79 19 | 99.78 13 |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 14 | 98.88 49 | 97.40 21 | 98.46 68 | 99.20 52 | 95.90 40 | 99.89 35 | 97.85 44 | 99.74 41 | 99.78 13 |
|
X-MVStestdata | | | 94.06 259 | 92.30 279 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 14 | 98.88 49 | 97.40 21 | 98.46 68 | 43.50 352 | 95.90 40 | 99.89 35 | 97.85 44 | 99.74 41 | 99.78 13 |
|
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 63 | 99.43 57 | 97.37 86 | 98.40 171 | 98.79 91 | 97.46 19 | 99.09 30 | 99.31 35 | 95.86 42 | 99.80 79 | 98.64 3 | 99.76 32 | 99.79 10 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 73 | 99.43 57 | 97.05 100 | 98.40 171 | 98.68 120 | 97.43 20 | 99.06 31 | 99.31 35 | 95.80 43 | 99.77 100 | 98.62 5 | 99.76 32 | 99.78 13 |
|
ZD-MVS | | | | | | 99.46 51 | 98.70 19 | | 98.79 91 | 93.21 211 | 98.67 58 | 98.97 87 | 95.70 44 | 99.83 55 | 96.07 126 | 99.58 74 | |
|
HPM-MVS++ | | | 98.58 23 | 98.25 38 | 99.55 6 | 99.50 41 | 99.08 9 | 98.72 121 | 98.66 131 | 97.51 16 | 98.15 81 | 98.83 107 | 95.70 44 | 99.92 21 | 97.53 71 | 99.67 54 | 99.66 65 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 31 | 99.74 7 | 98.15 56 | 99.23 21 | 98.95 34 | 96.10 82 | 98.93 43 | 99.19 55 | 95.70 44 | 99.94 3 | 97.62 61 | 99.79 19 | 99.78 13 |
|
旧先验1 | | | | | | 99.29 78 | 97.48 82 | | 98.70 116 | | | 99.09 74 | 95.56 47 | | | 99.47 90 | 99.61 75 |
|
PGM-MVS | | | 98.49 36 | 98.23 42 | 99.27 38 | 99.72 12 | 98.08 59 | 98.99 64 | 99.49 5 | 95.43 107 | 99.03 33 | 99.32 33 | 95.56 47 | 99.94 3 | 96.80 105 | 99.77 26 | 99.78 13 |
|
APD-MVS | | | 98.35 46 | 98.00 53 | 99.42 15 | 99.51 39 | 98.72 17 | 98.80 104 | 98.82 70 | 94.52 154 | 99.23 20 | 99.25 43 | 95.54 49 | 99.80 79 | 96.52 114 | 99.77 26 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
testtj | | | 98.33 50 | 97.95 55 | 99.47 11 | 99.49 45 | 98.70 19 | 98.83 94 | 98.86 61 | 95.48 104 | 98.91 45 | 99.17 56 | 95.48 50 | 99.93 15 | 95.80 139 | 99.53 85 | 99.76 26 |
|
ZNCC-MVS | | | 98.49 36 | 98.20 44 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 31 | 98.86 61 | 95.77 91 | 98.31 80 | 99.10 69 | 95.46 51 | 99.93 15 | 97.57 68 | 99.81 10 | 99.74 33 |
|
ETH3D-3000-0.1 | | | 98.35 46 | 98.00 53 | 99.38 17 | 99.47 48 | 98.68 21 | 98.67 132 | 98.84 65 | 94.66 149 | 99.11 28 | 99.25 43 | 95.46 51 | 99.81 70 | 96.80 105 | 99.73 43 | 99.63 73 |
|
mPP-MVS | | | 98.51 35 | 98.26 37 | 99.25 39 | 99.75 3 | 98.04 60 | 99.28 16 | 98.81 76 | 96.24 73 | 98.35 77 | 99.23 45 | 95.46 51 | 99.94 3 | 97.42 74 | 99.81 10 | 99.77 20 |
|
EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 19 | 98.69 78 | 99.46 51 | 96.49 124 | 98.30 185 | 98.69 117 | 97.21 36 | 98.84 46 | 99.36 26 | 95.41 54 | 99.78 95 | 98.62 5 | 99.65 58 | 99.80 9 |
|
ETV-MVS | | | 97.96 58 | 97.81 59 | 98.40 103 | 98.42 151 | 97.27 90 | 98.73 117 | 98.55 151 | 96.84 51 | 98.38 75 | 97.44 234 | 95.39 55 | 99.35 158 | 97.62 61 | 98.89 118 | 98.58 184 |
|
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 40 | 99.53 36 | 98.18 53 | 99.09 46 | 98.82 70 | 96.58 61 | 99.10 29 | 99.32 33 | 95.39 55 | 99.82 63 | 97.70 57 | 99.63 64 | 99.72 40 |
|
ACMMP_NAP | | | 98.61 17 | 98.30 34 | 99.55 6 | 99.62 30 | 98.95 13 | 98.82 97 | 98.81 76 | 95.80 90 | 99.16 26 | 99.47 8 | 95.37 57 | 99.92 21 | 97.89 41 | 99.75 38 | 99.79 10 |
|
CSCG | | | 97.85 66 | 97.74 62 | 98.20 115 | 99.67 26 | 95.16 181 | 99.22 25 | 99.32 7 | 93.04 217 | 97.02 141 | 98.92 99 | 95.36 58 | 99.91 30 | 97.43 73 | 99.64 62 | 99.52 85 |
|
test1172 | | | 98.56 28 | 98.35 24 | 99.16 50 | 99.53 36 | 97.94 66 | 99.09 46 | 98.83 68 | 96.52 64 | 99.05 32 | 99.34 31 | 95.34 59 | 99.82 63 | 97.86 43 | 99.64 62 | 99.73 36 |
|
SR-MVS-dyc-post | | | 98.54 32 | 98.35 24 | 99.13 54 | 99.49 45 | 97.86 68 | 99.11 42 | 98.80 86 | 96.49 65 | 99.17 24 | 99.35 28 | 95.34 59 | 99.82 63 | 97.72 52 | 99.65 58 | 99.71 44 |
|
DP-MVS Recon | | | 97.86 65 | 97.46 77 | 99.06 61 | 99.53 36 | 98.35 43 | 98.33 177 | 98.89 46 | 92.62 232 | 98.05 86 | 98.94 96 | 95.34 59 | 99.65 123 | 96.04 130 | 99.42 96 | 99.19 132 |
|
APD-MVS_3200maxsize | | | 98.53 34 | 98.33 32 | 99.15 53 | 99.50 41 | 97.92 67 | 99.15 35 | 98.81 76 | 96.24 73 | 99.20 22 | 99.37 22 | 95.30 62 | 99.80 79 | 97.73 51 | 99.67 54 | 99.72 40 |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 68 | 99.11 42 | 98.80 86 | 96.49 65 | 99.17 24 | 99.35 28 | 95.29 63 | | 97.72 52 | 99.65 58 | 99.71 44 |
|
GST-MVS | | | 98.43 40 | 98.12 47 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 46 | 98.82 70 | 95.71 94 | 98.73 55 | 99.06 78 | 95.27 64 | 99.93 15 | 97.07 85 | 99.63 64 | 99.72 40 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 28 | 99.18 47 | 99.25 86 | 98.04 60 | 98.50 158 | 98.78 94 | 97.72 6 | 98.92 44 | 99.28 40 | 95.27 64 | 99.82 63 | 97.55 69 | 99.77 26 | 99.69 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS-pluss | | | 98.31 52 | 97.92 57 | 99.49 9 | 99.72 12 | 98.88 14 | 98.43 167 | 98.78 94 | 94.10 165 | 97.69 115 | 99.42 12 | 95.25 66 | 99.92 21 | 98.09 32 | 99.80 17 | 99.67 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EI-MVSNet-UG-set | | | 98.41 41 | 98.34 28 | 98.61 83 | 99.45 55 | 96.32 132 | 98.28 188 | 98.68 120 | 97.17 39 | 98.74 53 | 99.37 22 | 95.25 66 | 99.79 91 | 98.57 7 | 99.54 84 | 99.73 36 |
|
原ACMM1 | | | | | 98.65 81 | 99.32 68 | 96.62 115 | | 98.67 128 | 93.27 210 | 97.81 107 | 98.97 87 | 95.18 68 | 99.83 55 | 93.84 201 | 99.46 93 | 99.50 91 |
|
HPM-MVS_fast | | | 98.38 43 | 98.13 46 | 99.12 57 | 99.75 3 | 97.86 68 | 99.44 4 | 98.82 70 | 94.46 157 | 98.94 39 | 99.20 52 | 95.16 69 | 99.74 106 | 97.58 65 | 99.85 3 | 99.77 20 |
|
test12 | | | | | 99.18 47 | 99.16 99 | 98.19 52 | | 98.53 156 | | 98.07 85 | | 95.13 70 | 99.72 108 | | 99.56 80 | 99.63 73 |
|
HPM-MVS | | | 98.36 45 | 98.10 48 | 99.13 54 | 99.74 7 | 97.82 72 | 99.53 1 | 98.80 86 | 94.63 150 | 98.61 63 | 98.97 87 | 95.13 70 | 99.77 100 | 97.65 59 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DPM-MVS | | | 97.55 85 | 96.99 98 | 99.23 42 | 99.04 107 | 98.55 26 | 97.17 285 | 98.35 190 | 94.85 140 | 97.93 102 | 98.58 132 | 95.07 72 | 99.71 113 | 92.60 235 | 99.34 102 | 99.43 106 |
|
MVS_111021_LR | | | 98.34 48 | 98.23 42 | 98.67 80 | 99.27 83 | 96.90 106 | 97.95 226 | 99.58 3 | 97.14 41 | 98.44 72 | 99.01 84 | 95.03 73 | 99.62 130 | 97.91 38 | 99.75 38 | 99.50 91 |
|
EIA-MVS | | | 97.75 70 | 97.58 67 | 98.27 109 | 98.38 153 | 96.44 126 | 99.01 60 | 98.60 139 | 95.88 87 | 97.26 130 | 97.53 228 | 94.97 74 | 99.33 160 | 97.38 76 | 99.20 107 | 99.05 149 |
|
DELS-MVS | | | 98.40 42 | 98.20 44 | 98.99 63 | 99.00 109 | 97.66 75 | 97.75 245 | 98.89 46 | 97.71 8 | 98.33 78 | 98.97 87 | 94.97 74 | 99.88 43 | 98.42 20 | 99.76 32 | 99.42 107 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PLC | | 95.07 4 | 97.20 105 | 96.78 107 | 98.44 98 | 99.29 78 | 96.31 134 | 98.14 208 | 98.76 98 | 92.41 241 | 96.39 172 | 98.31 162 | 94.92 76 | 99.78 95 | 94.06 196 | 98.77 126 | 99.23 127 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
zzz-MVS | | | 98.55 30 | 98.25 38 | 99.46 12 | 99.76 1 | 98.64 22 | 98.55 151 | 98.74 102 | 97.27 33 | 98.02 90 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 38 | 99.79 19 | 99.77 20 |
|
MTAPA | | | 98.58 23 | 98.29 35 | 99.46 12 | 99.76 1 | 98.64 22 | 98.90 78 | 98.74 102 | 97.27 33 | 98.02 90 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 38 | 99.79 19 | 99.77 20 |
|
1121 | | | 97.37 97 | 96.77 111 | 99.16 50 | 99.34 62 | 97.99 65 | 98.19 201 | 98.68 120 | 90.14 299 | 98.01 94 | 98.97 87 | 94.80 79 | 99.87 44 | 93.36 215 | 99.46 93 | 99.61 75 |
|
Test By Simon | | | | | | | | | | | | | 94.64 80 | | | | |
|
ETH3D cwj APD-0.16 | | | 97.96 58 | 97.52 72 | 99.29 31 | 99.05 105 | 98.52 27 | 98.33 177 | 98.68 120 | 93.18 212 | 98.68 57 | 99.13 64 | 94.62 81 | 99.83 55 | 96.45 116 | 99.55 83 | 99.52 85 |
|
新几何1 | | | | | 99.16 50 | 99.34 62 | 98.01 62 | | 98.69 117 | 90.06 300 | 98.13 82 | 98.95 95 | 94.60 82 | 99.89 35 | 91.97 255 | 99.47 90 | 99.59 80 |
|
CS-MVS | | | 97.81 67 | 97.61 65 | 98.41 102 | 98.52 148 | 97.15 98 | 99.09 46 | 98.55 151 | 96.18 76 | 97.61 122 | 97.20 249 | 94.59 83 | 99.39 155 | 97.62 61 | 99.10 111 | 98.70 172 |
|
MP-MVS | | | 98.33 50 | 98.01 52 | 99.28 35 | 99.75 3 | 98.18 53 | 99.22 25 | 98.79 91 | 96.13 79 | 97.92 103 | 99.23 45 | 94.54 84 | 99.94 3 | 96.74 109 | 99.78 23 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pcd_1.5k_mvsjas | | | 7.88 328 | 10.50 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 94.51 85 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
PS-MVSNAJss | | | 96.43 132 | 96.26 129 | 96.92 193 | 95.84 309 | 95.08 186 | 99.16 34 | 98.50 166 | 95.87 88 | 93.84 240 | 98.34 159 | 94.51 85 | 98.61 235 | 96.88 98 | 93.45 243 | 97.06 225 |
|
PS-MVSNAJ | | | 97.73 71 | 97.77 60 | 97.62 154 | 98.68 136 | 95.58 164 | 97.34 272 | 98.51 161 | 97.29 28 | 98.66 60 | 97.88 195 | 94.51 85 | 99.90 33 | 97.87 42 | 99.17 109 | 97.39 216 |
|
API-MVS | | | 97.41 94 | 97.25 86 | 97.91 132 | 98.70 133 | 96.80 109 | 98.82 97 | 98.69 117 | 94.53 152 | 98.11 83 | 98.28 164 | 94.50 88 | 99.57 134 | 94.12 193 | 99.49 88 | 97.37 218 |
|
ACMMP | | | 98.23 54 | 97.95 55 | 99.09 59 | 99.74 7 | 97.62 78 | 99.03 56 | 99.41 6 | 95.98 84 | 97.60 124 | 99.36 26 | 94.45 89 | 99.93 15 | 97.14 82 | 98.85 122 | 99.70 48 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
testdata | | | | | 98.26 111 | 99.20 97 | 95.36 174 | | 98.68 120 | 91.89 257 | 98.60 64 | 99.10 69 | 94.44 90 | 99.82 63 | 94.27 188 | 99.44 95 | 99.58 82 |
|
xiu_mvs_v2_base | | | 97.66 75 | 97.70 63 | 97.56 158 | 98.61 142 | 95.46 171 | 97.44 261 | 98.46 171 | 97.15 40 | 98.65 61 | 98.15 175 | 94.33 91 | 99.80 79 | 97.84 46 | 98.66 131 | 97.41 214 |
|
PAPR | | | 96.84 119 | 96.24 130 | 98.65 81 | 98.72 132 | 96.92 105 | 97.36 270 | 98.57 147 | 93.33 206 | 96.67 156 | 97.57 225 | 94.30 92 | 99.56 136 | 91.05 270 | 98.59 133 | 99.47 98 |
|
PAPM_NR | | | 97.46 87 | 97.11 91 | 98.50 93 | 99.50 41 | 96.41 128 | 98.63 137 | 98.60 139 | 95.18 122 | 97.06 139 | 98.06 181 | 94.26 93 | 99.57 134 | 93.80 203 | 98.87 121 | 99.52 85 |
|
test222 | | | | | | 99.23 93 | 97.17 97 | 97.40 264 | 98.66 131 | 88.68 314 | 98.05 86 | 98.96 93 | 94.14 94 | | | 99.53 85 | 99.61 75 |
|
EPP-MVSNet | | | 97.46 87 | 97.28 85 | 97.99 128 | 98.64 139 | 95.38 173 | 99.33 13 | 98.31 196 | 93.61 197 | 97.19 132 | 99.07 77 | 94.05 95 | 99.23 167 | 96.89 95 | 98.43 143 | 99.37 110 |
|
F-COLMAP | | | 97.09 111 | 96.80 104 | 97.97 129 | 99.45 55 | 94.95 194 | 98.55 151 | 98.62 138 | 93.02 218 | 96.17 177 | 98.58 132 | 94.01 96 | 99.81 70 | 93.95 198 | 98.90 117 | 99.14 140 |
|
TAPA-MVS | | 93.98 7 | 95.35 180 | 94.56 195 | 97.74 143 | 99.13 102 | 94.83 199 | 98.33 177 | 98.64 136 | 86.62 321 | 96.29 174 | 98.61 127 | 94.00 97 | 99.29 162 | 80.00 336 | 99.41 97 | 99.09 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETH3 D test6400 | | | 97.59 81 | 97.01 96 | 99.34 23 | 99.40 59 | 98.56 25 | 98.20 197 | 98.81 76 | 91.63 265 | 98.44 72 | 98.85 104 | 93.98 98 | 99.82 63 | 94.11 194 | 99.69 52 | 99.64 70 |
|
MG-MVS | | | 97.81 67 | 97.60 66 | 98.44 98 | 99.12 103 | 95.97 147 | 97.75 245 | 98.78 94 | 96.89 50 | 98.46 68 | 99.22 47 | 93.90 99 | 99.68 120 | 94.81 170 | 99.52 87 | 99.67 61 |
|
CDS-MVSNet | | | 96.99 113 | 96.69 113 | 97.90 133 | 98.05 183 | 95.98 142 | 98.20 197 | 98.33 193 | 93.67 194 | 96.95 142 | 98.49 140 | 93.54 100 | 98.42 257 | 95.24 161 | 97.74 165 | 99.31 117 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 97.02 112 | 96.79 106 | 97.70 147 | 98.06 182 | 95.31 178 | 98.52 153 | 98.31 196 | 93.95 174 | 97.05 140 | 98.61 127 | 93.49 101 | 98.52 246 | 95.33 155 | 97.81 161 | 99.29 122 |
|
abl_6 | | | 98.30 53 | 98.03 51 | 99.13 54 | 99.56 34 | 97.76 74 | 99.13 39 | 98.82 70 | 96.14 78 | 99.26 18 | 99.37 22 | 93.33 102 | 99.93 15 | 96.96 90 | 99.67 54 | 99.69 51 |
|
CNLPA | | | 97.45 90 | 97.03 95 | 98.73 76 | 99.05 105 | 97.44 85 | 98.07 215 | 98.53 156 | 95.32 115 | 96.80 153 | 98.53 136 | 93.32 103 | 99.72 108 | 94.31 187 | 99.31 104 | 99.02 151 |
|
OMC-MVS | | | 97.55 85 | 97.34 83 | 98.20 115 | 99.33 65 | 95.92 154 | 98.28 188 | 98.59 141 | 95.52 103 | 97.97 97 | 99.10 69 | 93.28 104 | 99.49 145 | 95.09 163 | 98.88 119 | 99.19 132 |
|
UA-Net | | | 97.96 58 | 97.62 64 | 98.98 65 | 98.86 120 | 97.47 83 | 98.89 82 | 99.08 21 | 96.67 58 | 98.72 56 | 99.54 1 | 93.15 105 | 99.81 70 | 94.87 166 | 98.83 123 | 99.65 67 |
|
CPTT-MVS | | | 97.72 72 | 97.32 84 | 98.92 69 | 99.64 28 | 97.10 99 | 99.12 41 | 98.81 76 | 92.34 243 | 98.09 84 | 99.08 76 | 93.01 106 | 99.92 21 | 96.06 129 | 99.77 26 | 99.75 28 |
|
114514_t | | | 96.93 115 | 96.27 128 | 98.92 69 | 99.50 41 | 97.63 77 | 98.85 90 | 98.90 44 | 84.80 332 | 97.77 108 | 99.11 67 | 92.84 107 | 99.66 122 | 94.85 167 | 99.77 26 | 99.47 98 |
|
PVSNet_Blended_VisFu | | | 97.70 73 | 97.46 77 | 98.44 98 | 99.27 83 | 95.91 155 | 98.63 137 | 99.16 17 | 94.48 156 | 97.67 116 | 98.88 102 | 92.80 108 | 99.91 30 | 97.11 83 | 99.12 110 | 99.50 91 |
|
PVSNet_BlendedMVS | | | 96.73 122 | 96.60 117 | 97.12 178 | 99.25 86 | 95.35 176 | 98.26 191 | 99.26 8 | 94.28 160 | 97.94 100 | 97.46 231 | 92.74 109 | 99.81 70 | 96.88 98 | 93.32 246 | 96.20 309 |
|
PVSNet_Blended | | | 97.38 96 | 97.12 90 | 98.14 118 | 99.25 86 | 95.35 176 | 97.28 277 | 99.26 8 | 93.13 215 | 97.94 100 | 98.21 171 | 92.74 109 | 99.81 70 | 96.88 98 | 99.40 99 | 99.27 124 |
|
MVS_Test | | | 97.28 100 | 97.00 97 | 98.13 120 | 98.33 160 | 95.97 147 | 98.74 113 | 98.07 241 | 94.27 161 | 98.44 72 | 98.07 180 | 92.48 111 | 99.26 163 | 96.43 118 | 98.19 150 | 99.16 137 |
|
miper_enhance_ethall | | | 95.10 194 | 94.75 187 | 96.12 249 | 97.53 219 | 93.73 239 | 96.61 316 | 98.08 239 | 92.20 251 | 93.89 236 | 96.65 293 | 92.44 112 | 98.30 277 | 94.21 190 | 91.16 271 | 96.34 303 |
|
MVSFormer | | | 97.57 83 | 97.49 75 | 97.84 135 | 98.07 180 | 95.76 160 | 99.47 2 | 98.40 182 | 94.98 133 | 98.79 49 | 98.83 107 | 92.34 113 | 98.41 264 | 96.91 92 | 99.59 71 | 99.34 111 |
|
lupinMVS | | | 97.44 91 | 97.22 88 | 98.12 122 | 98.07 180 | 95.76 160 | 97.68 250 | 97.76 261 | 94.50 155 | 98.79 49 | 98.61 127 | 92.34 113 | 99.30 161 | 97.58 65 | 99.59 71 | 99.31 117 |
|
CHOSEN 280x420 | | | 97.18 106 | 97.18 89 | 97.20 172 | 98.81 124 | 93.27 255 | 95.78 328 | 99.15 18 | 95.25 119 | 96.79 154 | 98.11 178 | 92.29 115 | 99.07 188 | 98.56 8 | 99.85 3 | 99.25 126 |
|
canonicalmvs | | | 97.67 74 | 97.23 87 | 98.98 65 | 98.70 133 | 98.38 35 | 99.34 11 | 98.39 184 | 96.76 54 | 97.67 116 | 97.40 237 | 92.26 116 | 99.49 145 | 98.28 27 | 96.28 202 | 99.08 147 |
|
IterMVS-LS | | | 95.46 169 | 95.21 167 | 96.22 244 | 98.12 177 | 93.72 240 | 98.32 182 | 98.13 229 | 93.71 187 | 94.26 219 | 97.31 241 | 92.24 117 | 98.10 291 | 94.63 172 | 90.12 282 | 96.84 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 95.96 148 | 95.83 141 | 96.36 236 | 97.93 189 | 93.70 241 | 98.12 211 | 98.27 205 | 93.70 189 | 95.07 189 | 99.02 80 | 92.23 118 | 98.54 244 | 94.68 171 | 93.46 241 | 96.84 248 |
|
WTY-MVS | | | 97.37 97 | 96.92 101 | 98.72 77 | 98.86 120 | 96.89 108 | 98.31 183 | 98.71 113 | 95.26 118 | 97.67 116 | 98.56 135 | 92.21 119 | 99.78 95 | 95.89 134 | 96.85 181 | 99.48 96 |
|
Effi-MVS+ | | | 97.12 109 | 96.69 113 | 98.39 104 | 98.19 171 | 96.72 113 | 97.37 268 | 98.43 178 | 93.71 187 | 97.65 119 | 98.02 183 | 92.20 120 | 99.25 164 | 96.87 101 | 97.79 162 | 99.19 132 |
|
1112_ss | | | 96.63 124 | 96.00 137 | 98.50 93 | 98.56 144 | 96.37 129 | 98.18 205 | 98.10 234 | 92.92 223 | 94.84 195 | 98.43 145 | 92.14 121 | 99.58 133 | 94.35 185 | 96.51 192 | 99.56 84 |
|
LS3D | | | 97.16 107 | 96.66 116 | 98.68 79 | 98.53 147 | 97.19 96 | 98.93 75 | 98.90 44 | 92.83 228 | 95.99 181 | 99.37 22 | 92.12 122 | 99.87 44 | 93.67 207 | 99.57 75 | 98.97 156 |
|
nrg030 | | | 96.28 139 | 95.72 143 | 97.96 131 | 96.90 263 | 98.15 56 | 99.39 5 | 98.31 196 | 95.47 105 | 94.42 212 | 98.35 155 | 92.09 123 | 98.69 228 | 97.50 72 | 89.05 298 | 97.04 226 |
|
mvs_anonymous | | | 96.70 123 | 96.53 121 | 97.18 174 | 98.19 171 | 93.78 234 | 98.31 183 | 98.19 215 | 94.01 170 | 94.47 206 | 98.27 167 | 92.08 124 | 98.46 251 | 97.39 75 | 97.91 157 | 99.31 117 |
|
FC-MVSNet-test | | | 96.42 133 | 96.05 134 | 97.53 160 | 96.95 258 | 97.27 90 | 99.36 8 | 99.23 12 | 95.83 89 | 93.93 234 | 98.37 153 | 92.00 125 | 98.32 273 | 96.02 131 | 92.72 254 | 97.00 228 |
|
FIs | | | 96.51 130 | 96.12 133 | 97.67 150 | 97.13 249 | 97.54 81 | 99.36 8 | 99.22 14 | 95.89 86 | 94.03 232 | 98.35 155 | 91.98 126 | 98.44 254 | 96.40 119 | 92.76 253 | 97.01 227 |
|
sss | | | 97.39 95 | 96.98 99 | 98.61 83 | 98.60 143 | 96.61 117 | 98.22 193 | 98.93 37 | 93.97 173 | 98.01 94 | 98.48 141 | 91.98 126 | 99.85 49 | 96.45 116 | 98.15 151 | 99.39 108 |
|
miper_ehance_all_eth | | | 95.01 198 | 94.69 190 | 95.97 253 | 97.70 203 | 93.31 254 | 97.02 292 | 98.07 241 | 92.23 248 | 93.51 252 | 96.96 275 | 91.85 128 | 98.15 287 | 93.68 205 | 91.16 271 | 96.44 300 |
|
DP-MVS | | | 96.59 127 | 95.93 138 | 98.57 85 | 99.34 62 | 96.19 138 | 98.70 126 | 98.39 184 | 89.45 308 | 94.52 204 | 99.35 28 | 91.85 128 | 99.85 49 | 92.89 231 | 98.88 119 | 99.68 57 |
|
Test_1112_low_res | | | 96.34 136 | 95.66 150 | 98.36 105 | 98.56 144 | 95.94 150 | 97.71 247 | 98.07 241 | 92.10 252 | 94.79 199 | 97.29 242 | 91.75 130 | 99.56 136 | 94.17 191 | 96.50 193 | 99.58 82 |
|
UniMVSNet_NR-MVSNet | | | 95.71 160 | 95.15 169 | 97.40 166 | 96.84 266 | 96.97 102 | 98.74 113 | 99.24 10 | 95.16 123 | 93.88 237 | 97.72 211 | 91.68 131 | 98.31 275 | 95.81 137 | 87.25 319 | 96.92 233 |
|
UniMVSNet (Re) | | | 95.78 157 | 95.19 168 | 97.58 156 | 96.99 257 | 97.47 83 | 98.79 108 | 99.18 16 | 95.60 99 | 93.92 235 | 97.04 266 | 91.68 131 | 98.48 248 | 95.80 139 | 87.66 313 | 96.79 252 |
|
HY-MVS | | 93.96 8 | 96.82 120 | 96.23 131 | 98.57 85 | 98.46 150 | 97.00 101 | 98.14 208 | 98.21 212 | 93.95 174 | 96.72 155 | 97.99 187 | 91.58 133 | 99.76 102 | 94.51 180 | 96.54 191 | 98.95 159 |
|
xiu_mvs_v1_base_debu | | | 97.60 78 | 97.56 69 | 97.72 144 | 98.35 155 | 95.98 142 | 97.86 236 | 98.51 161 | 97.13 42 | 99.01 35 | 98.40 149 | 91.56 134 | 99.80 79 | 98.53 9 | 98.68 127 | 97.37 218 |
|
xiu_mvs_v1_base | | | 97.60 78 | 97.56 69 | 97.72 144 | 98.35 155 | 95.98 142 | 97.86 236 | 98.51 161 | 97.13 42 | 99.01 35 | 98.40 149 | 91.56 134 | 99.80 79 | 98.53 9 | 98.68 127 | 97.37 218 |
|
xiu_mvs_v1_base_debi | | | 97.60 78 | 97.56 69 | 97.72 144 | 98.35 155 | 95.98 142 | 97.86 236 | 98.51 161 | 97.13 42 | 99.01 35 | 98.40 149 | 91.56 134 | 99.80 79 | 98.53 9 | 98.68 127 | 97.37 218 |
|
MAR-MVS | | | 96.91 116 | 96.40 124 | 98.45 97 | 98.69 135 | 96.90 106 | 98.66 135 | 98.68 120 | 92.40 242 | 97.07 138 | 97.96 188 | 91.54 137 | 99.75 104 | 93.68 205 | 98.92 116 | 98.69 174 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CANet | | | 98.05 56 | 97.76 61 | 98.90 71 | 98.73 128 | 97.27 90 | 98.35 175 | 98.78 94 | 97.37 26 | 97.72 113 | 98.96 93 | 91.53 138 | 99.92 21 | 98.79 2 | 99.65 58 | 99.51 89 |
|
cl_fuxian | | | 94.79 211 | 94.43 205 | 95.89 258 | 97.75 198 | 93.12 261 | 97.16 286 | 98.03 248 | 92.23 248 | 93.46 255 | 97.05 265 | 91.39 139 | 98.01 299 | 93.58 210 | 89.21 296 | 96.53 287 |
|
EPNet | | | 97.28 100 | 96.87 103 | 98.51 92 | 94.98 325 | 96.14 139 | 98.90 78 | 97.02 304 | 98.28 1 | 95.99 181 | 99.11 67 | 91.36 140 | 99.89 35 | 96.98 87 | 99.19 108 | 99.50 91 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline | | | 97.64 76 | 97.44 79 | 98.25 112 | 98.35 155 | 96.20 136 | 99.00 62 | 98.32 194 | 96.33 72 | 98.03 89 | 99.17 56 | 91.35 141 | 99.16 173 | 98.10 31 | 98.29 149 | 99.39 108 |
|
1314 | | | 96.25 141 | 95.73 142 | 97.79 138 | 97.13 249 | 95.55 168 | 98.19 201 | 98.59 141 | 93.47 201 | 92.03 295 | 97.82 204 | 91.33 142 | 99.49 145 | 94.62 174 | 98.44 141 | 98.32 194 |
|
diffmvs | | | 97.58 82 | 97.40 81 | 98.13 120 | 98.32 162 | 95.81 159 | 98.06 216 | 98.37 187 | 96.20 75 | 98.74 53 | 98.89 101 | 91.31 143 | 99.25 164 | 98.16 29 | 98.52 136 | 99.34 111 |
|
PAPM | | | 94.95 204 | 94.00 227 | 97.78 139 | 97.04 254 | 95.65 162 | 96.03 324 | 98.25 210 | 91.23 281 | 94.19 224 | 97.80 206 | 91.27 144 | 98.86 216 | 82.61 331 | 97.61 169 | 98.84 165 |
|
casdiffmvs | | | 97.63 77 | 97.41 80 | 98.28 108 | 98.33 160 | 96.14 139 | 98.82 97 | 98.32 194 | 96.38 70 | 97.95 98 | 99.21 48 | 91.23 145 | 99.23 167 | 98.12 30 | 98.37 144 | 99.48 96 |
|
jason | | | 97.32 99 | 97.08 93 | 98.06 125 | 97.45 227 | 95.59 163 | 97.87 235 | 97.91 256 | 94.79 141 | 98.55 66 | 98.83 107 | 91.12 146 | 99.23 167 | 97.58 65 | 99.60 68 | 99.34 111 |
jason: jason. |
IS-MVSNet | | | 97.22 102 | 96.88 102 | 98.25 112 | 98.85 122 | 96.36 130 | 99.19 31 | 97.97 251 | 95.39 109 | 97.23 131 | 98.99 86 | 91.11 147 | 98.93 205 | 94.60 175 | 98.59 133 | 99.47 98 |
|
PMMVS | | | 96.60 125 | 96.33 126 | 97.41 164 | 97.90 191 | 93.93 230 | 97.35 271 | 98.41 180 | 92.84 227 | 97.76 109 | 97.45 233 | 91.10 148 | 99.20 170 | 96.26 122 | 97.91 157 | 99.11 143 |
|
MVS | | | 94.67 219 | 93.54 255 | 98.08 123 | 96.88 264 | 96.56 121 | 98.19 201 | 98.50 166 | 78.05 342 | 92.69 278 | 98.02 183 | 91.07 149 | 99.63 128 | 90.09 281 | 98.36 146 | 98.04 199 |
|
Fast-Effi-MVS+ | | | 96.28 139 | 95.70 147 | 98.03 126 | 98.29 164 | 95.97 147 | 98.58 143 | 98.25 210 | 91.74 260 | 95.29 188 | 97.23 246 | 91.03 150 | 99.15 176 | 92.90 229 | 97.96 156 | 98.97 156 |
|
Effi-MVS+-dtu | | | 96.29 137 | 96.56 118 | 95.51 269 | 97.89 192 | 90.22 302 | 98.80 104 | 98.10 234 | 96.57 62 | 96.45 171 | 96.66 291 | 90.81 151 | 98.91 207 | 95.72 142 | 97.99 155 | 97.40 215 |
|
mvs-test1 | | | 96.60 125 | 96.68 115 | 96.37 235 | 97.89 192 | 91.81 275 | 98.56 149 | 98.10 234 | 96.57 62 | 96.52 167 | 97.94 190 | 90.81 151 | 99.45 152 | 95.72 142 | 98.01 154 | 97.86 204 |
|
test_yl | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 128 | 96.60 118 | 98.45 162 | 98.31 196 | 94.70 143 | 98.02 90 | 98.42 147 | 90.80 153 | 99.70 114 | 96.81 103 | 96.79 183 | 99.34 111 |
|
DCV-MVSNet | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 128 | 96.60 118 | 98.45 162 | 98.31 196 | 94.70 143 | 98.02 90 | 98.42 147 | 90.80 153 | 99.70 114 | 96.81 103 | 96.79 183 | 99.34 111 |
|
alignmvs | | | 97.56 84 | 97.07 94 | 99.01 62 | 98.66 137 | 98.37 41 | 98.83 94 | 98.06 245 | 96.74 55 | 98.00 96 | 97.65 217 | 90.80 153 | 99.48 149 | 98.37 23 | 96.56 190 | 99.19 132 |
|
AdaColmap | | | 97.15 108 | 96.70 112 | 98.48 95 | 99.16 99 | 96.69 114 | 98.01 221 | 98.89 46 | 94.44 158 | 96.83 149 | 98.68 121 | 90.69 156 | 99.76 102 | 94.36 184 | 99.29 105 | 98.98 155 |
|
cdsmvs_eth3d_5k | | | 23.98 324 | 31.98 326 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 98.59 141 | 0.00 357 | 0.00 358 | 98.61 127 | 90.60 157 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
eth_miper_zixun_eth | | | 94.68 216 | 94.41 206 | 95.47 271 | 97.64 206 | 91.71 280 | 96.73 313 | 98.07 241 | 92.71 230 | 93.64 245 | 97.21 248 | 90.54 158 | 98.17 286 | 93.38 213 | 89.76 286 | 96.54 285 |
|
DeepC-MVS | | 95.98 3 | 97.88 64 | 97.58 67 | 98.77 75 | 99.25 86 | 96.93 104 | 98.83 94 | 98.75 101 | 96.96 49 | 96.89 148 | 99.50 4 | 90.46 159 | 99.87 44 | 97.84 46 | 99.76 32 | 99.52 85 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
WR-MVS_H | | | 95.05 197 | 94.46 201 | 96.81 197 | 96.86 265 | 95.82 158 | 99.24 20 | 99.24 10 | 93.87 178 | 92.53 283 | 96.84 285 | 90.37 160 | 98.24 283 | 93.24 218 | 87.93 310 | 96.38 302 |
|
EPNet_dtu | | | 95.21 188 | 94.95 180 | 95.99 251 | 96.17 296 | 90.45 300 | 98.16 207 | 97.27 293 | 96.77 53 | 93.14 266 | 98.33 160 | 90.34 161 | 98.42 257 | 85.57 322 | 98.81 125 | 99.09 144 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
VNet | | | 97.79 69 | 97.40 81 | 98.96 67 | 98.88 118 | 97.55 80 | 98.63 137 | 98.93 37 | 96.74 55 | 99.02 34 | 98.84 106 | 90.33 162 | 99.83 55 | 98.53 9 | 96.66 186 | 99.50 91 |
|
MSDG | | | 95.93 150 | 95.30 165 | 97.83 136 | 98.90 116 | 95.36 174 | 96.83 309 | 98.37 187 | 91.32 276 | 94.43 211 | 98.73 118 | 90.27 163 | 99.60 131 | 90.05 284 | 98.82 124 | 98.52 185 |
|
LCM-MVSNet-Re | | | 95.22 187 | 95.32 163 | 94.91 287 | 98.18 173 | 87.85 330 | 98.75 110 | 95.66 329 | 95.11 127 | 88.96 319 | 96.85 284 | 90.26 164 | 97.65 315 | 95.65 147 | 98.44 141 | 99.22 128 |
|
Vis-MVSNet (Re-imp) | | | 96.87 118 | 96.55 119 | 97.83 136 | 98.73 128 | 95.46 171 | 99.20 29 | 98.30 202 | 94.96 135 | 96.60 160 | 98.87 103 | 90.05 165 | 98.59 240 | 93.67 207 | 98.60 132 | 99.46 102 |
|
miper_lstm_enhance | | | 94.33 239 | 94.07 222 | 95.11 282 | 97.75 198 | 90.97 291 | 97.22 280 | 98.03 248 | 91.67 264 | 92.76 275 | 96.97 273 | 90.03 166 | 97.78 313 | 92.51 242 | 89.64 288 | 96.56 282 |
|
baseline1 | | | 95.84 154 | 95.12 171 | 98.01 127 | 98.49 149 | 95.98 142 | 98.73 117 | 97.03 302 | 95.37 112 | 96.22 175 | 98.19 173 | 89.96 167 | 99.16 173 | 94.60 175 | 87.48 314 | 98.90 162 |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 338 | 96.89 304 | | 90.97 287 | 97.90 104 | | 89.89 168 | | 93.91 199 | | 99.18 136 |
|
our_test_3 | | | 93.65 266 | 93.30 262 | 94.69 295 | 95.45 320 | 89.68 308 | 96.91 299 | 97.65 266 | 91.97 255 | 91.66 299 | 96.88 281 | 89.67 169 | 97.93 306 | 88.02 308 | 91.49 266 | 96.48 297 |
|
tpmrst | | | 95.63 164 | 95.69 148 | 95.44 273 | 97.54 217 | 88.54 323 | 96.97 294 | 97.56 270 | 93.50 200 | 97.52 127 | 96.93 279 | 89.49 170 | 99.16 173 | 95.25 160 | 96.42 195 | 98.64 180 |
|
D2MVS | | | 95.18 190 | 95.08 173 | 95.48 270 | 97.10 251 | 92.07 271 | 98.30 185 | 99.13 19 | 94.02 169 | 92.90 271 | 96.73 288 | 89.48 171 | 98.73 227 | 94.48 181 | 93.60 240 | 95.65 321 |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 172 | | | | 99.20 129 |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 326 | 89.42 173 | 98.89 211 | | | |
|
3Dnovator+ | | 94.38 6 | 97.43 92 | 96.78 107 | 99.38 17 | 97.83 195 | 98.52 27 | 99.37 7 | 98.71 113 | 97.09 45 | 92.99 270 | 99.13 64 | 89.36 174 | 99.89 35 | 96.97 88 | 99.57 75 | 99.71 44 |
|
NR-MVSNet | | | 94.98 202 | 94.16 217 | 97.44 162 | 96.53 281 | 97.22 95 | 98.74 113 | 98.95 34 | 94.96 135 | 89.25 318 | 97.69 213 | 89.32 175 | 98.18 285 | 94.59 177 | 87.40 316 | 96.92 233 |
|
HyFIR lowres test | | | 96.90 117 | 96.49 122 | 98.14 118 | 99.33 65 | 95.56 166 | 97.38 266 | 99.65 2 | 92.34 243 | 97.61 122 | 98.20 172 | 89.29 176 | 99.10 185 | 96.97 88 | 97.60 170 | 99.77 20 |
|
3Dnovator | | 94.51 5 | 97.46 87 | 96.93 100 | 99.07 60 | 97.78 197 | 97.64 76 | 99.35 10 | 99.06 22 | 97.02 47 | 93.75 244 | 99.16 61 | 89.25 177 | 99.92 21 | 97.22 80 | 99.75 38 | 99.64 70 |
|
PatchmatchNet | | | 95.71 160 | 95.52 152 | 96.29 242 | 97.58 211 | 90.72 296 | 96.84 308 | 97.52 276 | 94.06 166 | 97.08 136 | 96.96 275 | 89.24 178 | 98.90 210 | 92.03 253 | 98.37 144 | 99.26 125 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | | 95.40 154 | | 97.48 221 | 88.34 325 | 96.85 307 | 97.29 291 | 93.74 184 | 97.48 128 | 97.26 243 | 89.18 179 | 99.05 189 | 91.92 256 | 97.43 173 | |
|
test_djsdf | | | 96.00 147 | 95.69 148 | 96.93 191 | 95.72 311 | 95.49 170 | 99.47 2 | 98.40 182 | 94.98 133 | 94.58 202 | 97.86 197 | 89.16 180 | 98.41 264 | 96.91 92 | 94.12 227 | 96.88 242 |
|
cl-mvsnet1 | | | 94.52 229 | 94.03 223 | 95.99 251 | 97.57 215 | 93.38 252 | 97.05 290 | 97.94 254 | 91.74 260 | 92.81 273 | 97.10 253 | 89.12 181 | 98.07 295 | 92.60 235 | 90.30 280 | 96.53 287 |
|
QAPM | | | 96.29 137 | 95.40 154 | 98.96 67 | 97.85 194 | 97.60 79 | 99.23 21 | 98.93 37 | 89.76 303 | 93.11 267 | 99.02 80 | 89.11 182 | 99.93 15 | 91.99 254 | 99.62 66 | 99.34 111 |
|
pmmvs4 | | | 94.69 214 | 93.99 229 | 96.81 197 | 95.74 310 | 95.94 150 | 97.40 264 | 97.67 265 | 90.42 294 | 93.37 257 | 97.59 223 | 89.08 183 | 98.20 284 | 92.97 227 | 91.67 264 | 96.30 307 |
|
cl-mvsnet_ | | | 94.51 230 | 94.01 226 | 96.02 250 | 97.58 211 | 93.40 251 | 97.05 290 | 97.96 253 | 91.73 262 | 92.76 275 | 97.08 259 | 89.06 184 | 98.13 289 | 92.61 234 | 90.29 281 | 96.52 290 |
|
sam_mvs | | | | | | | | | | | | | 88.99 185 | | | | |
|
Patchmatch-test | | | 94.42 235 | 93.68 250 | 96.63 209 | 97.60 209 | 91.76 277 | 94.83 336 | 97.49 280 | 89.45 308 | 94.14 226 | 97.10 253 | 88.99 185 | 98.83 219 | 85.37 325 | 98.13 152 | 99.29 122 |
|
Patchmatch-RL test | | | 91.49 291 | 90.85 292 | 93.41 311 | 91.37 341 | 84.40 337 | 92.81 342 | 95.93 327 | 91.87 258 | 87.25 325 | 94.87 327 | 88.99 185 | 96.53 335 | 92.54 241 | 82.00 335 | 99.30 120 |
|
Fast-Effi-MVS+-dtu | | | 95.87 152 | 95.85 140 | 95.91 256 | 97.74 201 | 91.74 279 | 98.69 128 | 98.15 226 | 95.56 101 | 94.92 193 | 97.68 216 | 88.98 188 | 98.79 223 | 93.19 220 | 97.78 163 | 97.20 222 |
|
BH-untuned | | | 95.95 149 | 95.72 143 | 96.65 206 | 98.55 146 | 92.26 268 | 98.23 192 | 97.79 260 | 93.73 185 | 94.62 201 | 98.01 185 | 88.97 189 | 99.00 196 | 93.04 225 | 98.51 137 | 98.68 175 |
|
XVG-OURS | | | 96.55 129 | 96.41 123 | 96.99 184 | 98.75 127 | 93.76 235 | 97.50 260 | 98.52 158 | 95.67 96 | 96.83 149 | 99.30 38 | 88.95 190 | 99.53 142 | 95.88 135 | 96.26 203 | 97.69 210 |
|
PVSNet | | 91.96 18 | 96.35 135 | 96.15 132 | 96.96 188 | 99.17 98 | 92.05 272 | 96.08 321 | 98.68 120 | 93.69 190 | 97.75 110 | 97.80 206 | 88.86 191 | 99.69 119 | 94.26 189 | 99.01 113 | 99.15 138 |
|
test_post | | | | | | | | | | | | 31.83 355 | 88.83 192 | 98.91 207 | | | |
|
v8 | | | 94.47 233 | 93.77 243 | 96.57 217 | 96.36 289 | 94.83 199 | 99.05 52 | 98.19 215 | 91.92 256 | 93.16 263 | 96.97 273 | 88.82 193 | 98.48 248 | 91.69 261 | 87.79 311 | 96.39 301 |
|
BH-w/o | | | 95.38 176 | 95.08 173 | 96.26 243 | 98.34 159 | 91.79 276 | 97.70 248 | 97.43 285 | 92.87 226 | 94.24 221 | 97.22 247 | 88.66 194 | 98.84 217 | 91.55 263 | 97.70 167 | 98.16 197 |
|
tpmvs | | | 94.60 222 | 94.36 208 | 95.33 276 | 97.46 223 | 88.60 322 | 96.88 305 | 97.68 264 | 91.29 278 | 93.80 242 | 96.42 302 | 88.58 195 | 99.24 166 | 91.06 268 | 96.04 210 | 98.17 196 |
|
DU-MVS | | | 95.42 173 | 94.76 186 | 97.40 166 | 96.53 281 | 96.97 102 | 98.66 135 | 98.99 29 | 95.43 107 | 93.88 237 | 97.69 213 | 88.57 196 | 98.31 275 | 95.81 137 | 87.25 319 | 96.92 233 |
|
Baseline_NR-MVSNet | | | 94.35 238 | 93.81 239 | 95.96 254 | 96.20 294 | 94.05 228 | 98.61 140 | 96.67 320 | 91.44 270 | 93.85 239 | 97.60 222 | 88.57 196 | 98.14 288 | 94.39 183 | 86.93 322 | 95.68 320 |
|
PCF-MVS | | 93.45 11 | 94.68 216 | 93.43 259 | 98.42 101 | 98.62 141 | 96.77 111 | 95.48 330 | 98.20 214 | 84.63 333 | 93.34 258 | 98.32 161 | 88.55 198 | 99.81 70 | 84.80 327 | 98.96 115 | 98.68 175 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v148 | | | 94.29 242 | 93.76 245 | 95.91 256 | 96.10 299 | 92.93 263 | 98.58 143 | 97.97 251 | 92.59 234 | 93.47 254 | 96.95 277 | 88.53 199 | 98.32 273 | 92.56 239 | 87.06 321 | 96.49 296 |
|
PatchMatch-RL | | | 96.59 127 | 96.03 136 | 98.27 109 | 99.31 70 | 96.51 123 | 97.91 229 | 99.06 22 | 93.72 186 | 96.92 146 | 98.06 181 | 88.50 200 | 99.65 123 | 91.77 259 | 99.00 114 | 98.66 178 |
|
V42 | | | 94.78 212 | 94.14 219 | 96.70 203 | 96.33 291 | 95.22 180 | 98.97 68 | 98.09 237 | 92.32 245 | 94.31 217 | 97.06 263 | 88.39 201 | 98.55 243 | 92.90 229 | 88.87 302 | 96.34 303 |
|
v7n | | | 94.19 248 | 93.43 259 | 96.47 227 | 95.90 306 | 94.38 219 | 99.26 18 | 98.34 192 | 91.99 254 | 92.76 275 | 97.13 252 | 88.31 202 | 98.52 246 | 89.48 296 | 87.70 312 | 96.52 290 |
|
TranMVSNet+NR-MVSNet | | | 95.14 192 | 94.48 199 | 97.11 179 | 96.45 286 | 96.36 130 | 99.03 56 | 99.03 25 | 95.04 131 | 93.58 247 | 97.93 191 | 88.27 203 | 98.03 298 | 94.13 192 | 86.90 324 | 96.95 232 |
|
MVSTER | | | 96.06 144 | 95.72 143 | 97.08 181 | 98.23 166 | 95.93 153 | 98.73 117 | 98.27 205 | 94.86 139 | 95.07 189 | 98.09 179 | 88.21 204 | 98.54 244 | 96.59 111 | 93.46 241 | 96.79 252 |
|
RRT_MVS | | | 96.04 145 | 95.53 151 | 97.56 158 | 97.07 253 | 97.32 87 | 98.57 148 | 98.09 237 | 95.15 124 | 95.02 191 | 98.44 144 | 88.20 205 | 98.58 242 | 96.17 125 | 93.09 250 | 96.79 252 |
|
CHOSEN 1792x2688 | | | 97.12 109 | 96.80 104 | 98.08 123 | 99.30 75 | 94.56 213 | 98.05 217 | 99.71 1 | 93.57 198 | 97.09 135 | 98.91 100 | 88.17 206 | 99.89 35 | 96.87 101 | 99.56 80 | 99.81 8 |
|
CR-MVSNet | | | 94.76 213 | 94.15 218 | 96.59 214 | 97.00 255 | 93.43 248 | 94.96 332 | 97.56 270 | 92.46 236 | 96.93 144 | 96.24 305 | 88.15 207 | 97.88 311 | 87.38 311 | 96.65 187 | 98.46 187 |
|
Patchmtry | | | 93.22 274 | 92.35 278 | 95.84 260 | 96.77 268 | 93.09 262 | 94.66 337 | 97.56 270 | 87.37 319 | 92.90 271 | 96.24 305 | 88.15 207 | 97.90 307 | 87.37 312 | 90.10 283 | 96.53 287 |
|
v10 | | | 94.29 242 | 93.55 254 | 96.51 224 | 96.39 288 | 94.80 201 | 98.99 64 | 98.19 215 | 91.35 274 | 93.02 269 | 96.99 271 | 88.09 209 | 98.41 264 | 90.50 277 | 88.41 306 | 96.33 305 |
|
ppachtmachnet_test | | | 93.22 274 | 92.63 274 | 94.97 286 | 95.45 320 | 90.84 292 | 96.88 305 | 97.88 257 | 90.60 290 | 92.08 294 | 97.26 243 | 88.08 210 | 97.86 312 | 85.12 326 | 90.33 279 | 96.22 308 |
|
Vis-MVSNet | | | 97.42 93 | 97.11 91 | 98.34 106 | 98.66 137 | 96.23 135 | 99.22 25 | 99.00 27 | 96.63 60 | 98.04 88 | 99.21 48 | 88.05 211 | 99.35 158 | 96.01 132 | 99.21 106 | 99.45 104 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v1144 | | | 94.59 224 | 93.92 232 | 96.60 213 | 96.21 293 | 94.78 203 | 98.59 141 | 98.14 228 | 91.86 259 | 94.21 223 | 97.02 268 | 87.97 212 | 98.41 264 | 91.72 260 | 89.57 289 | 96.61 275 |
|
PatchT | | | 93.06 278 | 91.97 283 | 96.35 237 | 96.69 274 | 92.67 265 | 94.48 338 | 97.08 298 | 86.62 321 | 97.08 136 | 92.23 338 | 87.94 213 | 97.90 307 | 78.89 340 | 96.69 185 | 98.49 186 |
|
ADS-MVSNet2 | | | 94.58 225 | 94.40 207 | 95.11 282 | 98.00 184 | 88.74 320 | 96.04 322 | 97.30 290 | 90.15 297 | 96.47 169 | 96.64 294 | 87.89 214 | 97.56 319 | 90.08 282 | 97.06 177 | 99.02 151 |
|
ADS-MVSNet | | | 95.00 199 | 94.45 203 | 96.63 209 | 98.00 184 | 91.91 274 | 96.04 322 | 97.74 263 | 90.15 297 | 96.47 169 | 96.64 294 | 87.89 214 | 98.96 200 | 90.08 282 | 97.06 177 | 99.02 151 |
|
XVG-OURS-SEG-HR | | | 96.51 130 | 96.34 125 | 97.02 183 | 98.77 126 | 93.76 235 | 97.79 243 | 98.50 166 | 95.45 106 | 96.94 143 | 99.09 74 | 87.87 216 | 99.55 141 | 96.76 108 | 95.83 212 | 97.74 207 |
|
test_post1 | | | | | | | | 96.68 314 | | | | 30.43 356 | 87.85 217 | 98.69 228 | 92.59 237 | | |
|
test-LLR | | | 95.10 194 | 94.87 183 | 95.80 261 | 96.77 268 | 89.70 306 | 96.91 299 | 95.21 331 | 95.11 127 | 94.83 197 | 95.72 319 | 87.71 218 | 98.97 197 | 93.06 223 | 98.50 138 | 98.72 170 |
|
test0.0.03 1 | | | 94.08 257 | 93.51 256 | 95.80 261 | 95.53 317 | 92.89 264 | 97.38 266 | 95.97 325 | 95.11 127 | 92.51 285 | 96.66 291 | 87.71 218 | 96.94 328 | 87.03 313 | 93.67 236 | 97.57 212 |
|
JIA-IIPM | | | 93.35 269 | 92.49 276 | 95.92 255 | 96.48 285 | 90.65 297 | 95.01 331 | 96.96 306 | 85.93 327 | 96.08 178 | 87.33 343 | 87.70 220 | 98.78 224 | 91.35 265 | 95.58 214 | 98.34 192 |
|
v2v482 | | | 94.69 214 | 94.03 223 | 96.65 206 | 96.17 296 | 94.79 202 | 98.67 132 | 98.08 239 | 92.72 229 | 94.00 233 | 97.16 251 | 87.69 221 | 98.45 252 | 92.91 228 | 88.87 302 | 96.72 261 |
|
CVMVSNet | | | 95.43 172 | 96.04 135 | 93.57 310 | 97.93 189 | 83.62 339 | 98.12 211 | 98.59 141 | 95.68 95 | 96.56 161 | 99.02 80 | 87.51 222 | 97.51 321 | 93.56 211 | 97.44 172 | 99.60 78 |
|
WR-MVS | | | 95.15 191 | 94.46 201 | 97.22 171 | 96.67 276 | 96.45 125 | 98.21 194 | 98.81 76 | 94.15 163 | 93.16 263 | 97.69 213 | 87.51 222 | 98.30 277 | 95.29 158 | 88.62 304 | 96.90 240 |
|
anonymousdsp | | | 95.42 173 | 94.91 181 | 96.94 190 | 95.10 324 | 95.90 156 | 99.14 36 | 98.41 180 | 93.75 182 | 93.16 263 | 97.46 231 | 87.50 224 | 98.41 264 | 95.63 148 | 94.03 229 | 96.50 295 |
|
v144192 | | | 94.39 237 | 93.70 248 | 96.48 226 | 96.06 301 | 94.35 220 | 98.58 143 | 98.16 225 | 91.45 269 | 94.33 216 | 97.02 268 | 87.50 224 | 98.45 252 | 91.08 267 | 89.11 297 | 96.63 273 |
|
baseline2 | | | 95.11 193 | 94.52 197 | 96.87 194 | 96.65 277 | 93.56 243 | 98.27 190 | 94.10 345 | 93.45 202 | 92.02 296 | 97.43 235 | 87.45 226 | 99.19 171 | 93.88 200 | 97.41 174 | 97.87 203 |
|
EU-MVSNet | | | 93.66 264 | 94.14 219 | 92.25 319 | 95.96 305 | 83.38 340 | 98.52 153 | 98.12 230 | 94.69 145 | 92.61 280 | 98.13 177 | 87.36 227 | 96.39 337 | 91.82 257 | 90.00 284 | 96.98 229 |
|
CP-MVSNet | | | 94.94 206 | 94.30 210 | 96.83 196 | 96.72 273 | 95.56 166 | 99.11 42 | 98.95 34 | 93.89 176 | 92.42 288 | 97.90 193 | 87.19 228 | 98.12 290 | 94.32 186 | 88.21 307 | 96.82 251 |
|
HQP_MVS | | | 96.14 142 | 95.90 139 | 96.85 195 | 97.42 228 | 94.60 211 | 98.80 104 | 98.56 149 | 97.28 29 | 95.34 185 | 98.28 164 | 87.09 229 | 99.03 193 | 96.07 126 | 94.27 219 | 96.92 233 |
|
plane_prior6 | | | | | | 97.35 233 | 94.61 209 | | | | | | 87.09 229 | | | | |
|
RPSCF | | | 94.87 208 | 95.40 154 | 93.26 314 | 98.89 117 | 82.06 344 | 98.33 177 | 98.06 245 | 90.30 296 | 96.56 161 | 99.26 42 | 87.09 229 | 99.49 145 | 93.82 202 | 96.32 198 | 98.24 195 |
|
RPMNet | | | 92.81 281 | 91.34 289 | 97.24 170 | 97.00 255 | 93.43 248 | 94.96 332 | 98.80 86 | 82.27 337 | 96.93 144 | 92.12 339 | 86.98 232 | 99.82 63 | 76.32 344 | 96.65 187 | 98.46 187 |
|
v1192 | | | 94.32 240 | 93.58 253 | 96.53 222 | 96.10 299 | 94.45 215 | 98.50 158 | 98.17 223 | 91.54 267 | 94.19 224 | 97.06 263 | 86.95 233 | 98.43 256 | 90.14 280 | 89.57 289 | 96.70 265 |
|
CANet_DTU | | | 96.96 114 | 96.55 119 | 98.21 114 | 98.17 175 | 96.07 141 | 97.98 224 | 98.21 212 | 97.24 35 | 97.13 134 | 98.93 97 | 86.88 234 | 99.91 30 | 95.00 165 | 99.37 101 | 98.66 178 |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 235 | | | | |
|
HQP-MVS | | | 95.72 159 | 95.40 154 | 96.69 204 | 97.20 242 | 94.25 224 | 98.05 217 | 98.46 171 | 96.43 67 | 94.45 207 | 97.73 209 | 86.75 235 | 98.96 200 | 95.30 156 | 94.18 223 | 96.86 246 |
|
OpenMVS | | 93.04 13 | 95.83 155 | 95.00 176 | 98.32 107 | 97.18 246 | 97.32 87 | 99.21 28 | 98.97 30 | 89.96 301 | 91.14 303 | 99.05 79 | 86.64 237 | 99.92 21 | 93.38 213 | 99.47 90 | 97.73 208 |
|
cl-mvsnet2 | | | 94.68 216 | 94.19 214 | 96.13 248 | 98.11 178 | 93.60 242 | 96.94 296 | 98.31 196 | 92.43 240 | 93.32 259 | 96.87 283 | 86.51 238 | 98.28 281 | 94.10 195 | 91.16 271 | 96.51 293 |
|
ET-MVSNet_ETH3D | | | 94.13 252 | 92.98 267 | 97.58 156 | 98.22 167 | 96.20 136 | 97.31 275 | 95.37 330 | 94.53 152 | 79.56 340 | 97.63 221 | 86.51 238 | 97.53 320 | 96.91 92 | 90.74 276 | 99.02 151 |
|
YYNet1 | | | 90.70 299 | 89.39 302 | 94.62 298 | 94.79 329 | 90.65 297 | 97.20 281 | 97.46 281 | 87.54 318 | 72.54 345 | 95.74 316 | 86.51 238 | 96.66 333 | 86.00 319 | 86.76 326 | 96.54 285 |
|
MDA-MVSNet_test_wron | | | 90.71 298 | 89.38 303 | 94.68 296 | 94.83 328 | 90.78 295 | 97.19 282 | 97.46 281 | 87.60 317 | 72.41 346 | 95.72 319 | 86.51 238 | 96.71 332 | 85.92 320 | 86.80 325 | 96.56 282 |
|
v1921920 | | | 94.20 247 | 93.47 258 | 96.40 234 | 95.98 304 | 94.08 227 | 98.52 153 | 98.15 226 | 91.33 275 | 94.25 220 | 97.20 249 | 86.41 242 | 98.42 257 | 90.04 285 | 89.39 294 | 96.69 270 |
|
COLMAP_ROB | | 93.27 12 | 95.33 182 | 94.87 183 | 96.71 201 | 99.29 78 | 93.24 257 | 98.58 143 | 98.11 232 | 89.92 302 | 93.57 248 | 99.10 69 | 86.37 243 | 99.79 91 | 90.78 273 | 98.10 153 | 97.09 223 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MVP-Stereo | | | 94.28 244 | 93.92 232 | 95.35 275 | 94.95 326 | 92.60 266 | 97.97 225 | 97.65 266 | 91.61 266 | 90.68 309 | 97.09 257 | 86.32 244 | 98.42 257 | 89.70 291 | 99.34 102 | 95.02 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CLD-MVS | | | 95.62 165 | 95.34 160 | 96.46 230 | 97.52 220 | 93.75 237 | 97.27 278 | 98.46 171 | 95.53 102 | 94.42 212 | 98.00 186 | 86.21 245 | 98.97 197 | 96.25 123 | 94.37 217 | 96.66 271 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
tpm cat1 | | | 93.36 268 | 92.80 270 | 95.07 284 | 97.58 211 | 87.97 328 | 96.76 311 | 97.86 258 | 82.17 338 | 93.53 249 | 96.04 313 | 86.13 246 | 99.13 178 | 89.24 299 | 95.87 211 | 98.10 198 |
|
PEN-MVS | | | 94.42 235 | 93.73 247 | 96.49 225 | 96.28 292 | 94.84 197 | 99.17 33 | 99.00 27 | 93.51 199 | 92.23 291 | 97.83 203 | 86.10 247 | 97.90 307 | 92.55 240 | 86.92 323 | 96.74 258 |
|
v1240 | | | 94.06 259 | 93.29 263 | 96.34 238 | 96.03 303 | 93.90 231 | 98.44 165 | 98.17 223 | 91.18 284 | 94.13 227 | 97.01 270 | 86.05 248 | 98.42 257 | 89.13 301 | 89.50 292 | 96.70 265 |
|
CostFormer | | | 94.95 204 | 94.73 188 | 95.60 268 | 97.28 236 | 89.06 316 | 97.53 259 | 96.89 312 | 89.66 305 | 96.82 151 | 96.72 289 | 86.05 248 | 98.95 204 | 95.53 150 | 96.13 208 | 98.79 167 |
|
ACMM | | 93.85 9 | 95.69 162 | 95.38 158 | 96.61 211 | 97.61 208 | 93.84 233 | 98.91 77 | 98.44 175 | 95.25 119 | 94.28 218 | 98.47 142 | 86.04 250 | 99.12 179 | 95.50 151 | 93.95 232 | 96.87 244 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DTE-MVSNet | | | 93.98 261 | 93.26 264 | 96.14 247 | 96.06 301 | 94.39 218 | 99.20 29 | 98.86 61 | 93.06 216 | 91.78 297 | 97.81 205 | 85.87 251 | 97.58 318 | 90.53 276 | 86.17 328 | 96.46 299 |
|
VPA-MVSNet | | | 95.75 158 | 95.11 172 | 97.69 148 | 97.24 238 | 97.27 90 | 98.94 74 | 99.23 12 | 95.13 125 | 95.51 184 | 97.32 240 | 85.73 252 | 98.91 207 | 97.33 78 | 89.55 291 | 96.89 241 |
|
EPMVS | | | 94.99 200 | 94.48 199 | 96.52 223 | 97.22 240 | 91.75 278 | 97.23 279 | 91.66 349 | 94.11 164 | 97.28 129 | 96.81 286 | 85.70 253 | 98.84 217 | 93.04 225 | 97.28 175 | 98.97 156 |
|
TransMVSNet (Re) | | | 92.67 283 | 91.51 288 | 96.15 246 | 96.58 279 | 94.65 204 | 98.90 78 | 96.73 316 | 90.86 288 | 89.46 317 | 97.86 197 | 85.62 254 | 98.09 293 | 86.45 316 | 81.12 338 | 95.71 319 |
|
dp | | | 94.15 251 | 93.90 234 | 94.90 288 | 97.31 235 | 86.82 335 | 96.97 294 | 97.19 296 | 91.22 282 | 96.02 180 | 96.61 296 | 85.51 255 | 99.02 195 | 90.00 286 | 94.30 218 | 98.85 163 |
|
LPG-MVS_test | | | 95.62 165 | 95.34 160 | 96.47 227 | 97.46 223 | 93.54 244 | 98.99 64 | 98.54 154 | 94.67 147 | 94.36 214 | 98.77 114 | 85.39 256 | 99.11 182 | 95.71 144 | 94.15 225 | 96.76 256 |
|
LGP-MVS_train | | | | | 96.47 227 | 97.46 223 | 93.54 244 | | 98.54 154 | 94.67 147 | 94.36 214 | 98.77 114 | 85.39 256 | 99.11 182 | 95.71 144 | 94.15 225 | 96.76 256 |
|
PS-CasMVS | | | 94.67 219 | 93.99 229 | 96.71 201 | 96.68 275 | 95.26 179 | 99.13 39 | 99.03 25 | 93.68 192 | 92.33 289 | 97.95 189 | 85.35 258 | 98.10 291 | 93.59 209 | 88.16 309 | 96.79 252 |
|
ab-mvs | | | 96.42 133 | 95.71 146 | 98.55 87 | 98.63 140 | 96.75 112 | 97.88 234 | 98.74 102 | 93.84 179 | 96.54 165 | 98.18 174 | 85.34 259 | 99.75 104 | 95.93 133 | 96.35 196 | 99.15 138 |
|
N_pmnet | | | 87.12 311 | 87.77 310 | 85.17 328 | 95.46 319 | 61.92 353 | 97.37 268 | 70.66 358 | 85.83 328 | 88.73 321 | 96.04 313 | 85.33 260 | 97.76 314 | 80.02 335 | 90.48 278 | 95.84 317 |
|
OPM-MVS | | | 95.69 162 | 95.33 162 | 96.76 199 | 96.16 298 | 94.63 206 | 98.43 167 | 98.39 184 | 96.64 59 | 95.02 191 | 98.78 112 | 85.15 261 | 99.05 189 | 95.21 162 | 94.20 222 | 96.60 276 |
|
BH-RMVSNet | | | 95.92 151 | 95.32 163 | 97.69 148 | 98.32 162 | 94.64 205 | 98.19 201 | 97.45 283 | 94.56 151 | 96.03 179 | 98.61 127 | 85.02 262 | 99.12 179 | 90.68 275 | 99.06 112 | 99.30 120 |
|
DSMNet-mixed | | | 92.52 285 | 92.58 275 | 92.33 318 | 94.15 333 | 82.65 342 | 98.30 185 | 94.26 342 | 89.08 312 | 92.65 279 | 95.73 317 | 85.01 263 | 95.76 338 | 86.24 317 | 97.76 164 | 98.59 182 |
|
tfpnnormal | | | 93.66 264 | 92.70 273 | 96.55 221 | 96.94 259 | 95.94 150 | 98.97 68 | 99.19 15 | 91.04 286 | 91.38 301 | 97.34 238 | 84.94 264 | 98.61 235 | 85.45 324 | 89.02 300 | 95.11 325 |
|
LTVRE_ROB | | 92.95 15 | 94.60 222 | 93.90 234 | 96.68 205 | 97.41 231 | 94.42 216 | 98.52 153 | 98.59 141 | 91.69 263 | 91.21 302 | 98.35 155 | 84.87 265 | 99.04 192 | 91.06 268 | 93.44 244 | 96.60 276 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
XXY-MVS | | | 95.20 189 | 94.45 203 | 97.46 161 | 96.75 271 | 96.56 121 | 98.86 89 | 98.65 135 | 93.30 209 | 93.27 260 | 98.27 167 | 84.85 266 | 98.87 214 | 94.82 169 | 91.26 270 | 96.96 230 |
|
thisisatest0515 | | | 95.61 167 | 94.89 182 | 97.76 141 | 98.15 176 | 95.15 183 | 96.77 310 | 94.41 339 | 92.95 222 | 97.18 133 | 97.43 235 | 84.78 267 | 99.45 152 | 94.63 172 | 97.73 166 | 98.68 175 |
|
AllTest | | | 95.24 186 | 94.65 191 | 96.99 184 | 99.25 86 | 93.21 258 | 98.59 141 | 98.18 218 | 91.36 272 | 93.52 250 | 98.77 114 | 84.67 268 | 99.72 108 | 89.70 291 | 97.87 159 | 98.02 200 |
|
TestCases | | | | | 96.99 184 | 99.25 86 | 93.21 258 | | 98.18 218 | 91.36 272 | 93.52 250 | 98.77 114 | 84.67 268 | 99.72 108 | 89.70 291 | 97.87 159 | 98.02 200 |
|
thres200 | | | 95.25 185 | 94.57 194 | 97.28 169 | 98.81 124 | 94.92 195 | 98.20 197 | 97.11 297 | 95.24 121 | 96.54 165 | 96.22 309 | 84.58 270 | 99.53 142 | 87.93 309 | 96.50 193 | 97.39 216 |
|
pm-mvs1 | | | 93.94 262 | 93.06 266 | 96.59 214 | 96.49 284 | 95.16 181 | 98.95 72 | 98.03 248 | 92.32 245 | 91.08 304 | 97.84 200 | 84.54 271 | 98.41 264 | 92.16 247 | 86.13 330 | 96.19 310 |
|
ACMP | | 93.49 10 | 95.34 181 | 94.98 178 | 96.43 232 | 97.67 204 | 93.48 247 | 98.73 117 | 98.44 175 | 94.94 138 | 92.53 283 | 98.53 136 | 84.50 272 | 99.14 177 | 95.48 152 | 94.00 230 | 96.66 271 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres100view900 | | | 95.38 176 | 94.70 189 | 97.41 164 | 98.98 112 | 94.92 195 | 98.87 87 | 96.90 310 | 95.38 110 | 96.61 159 | 96.88 281 | 84.29 273 | 99.56 136 | 88.11 305 | 96.29 199 | 97.76 205 |
|
thres600view7 | | | 95.49 168 | 94.77 185 | 97.67 150 | 98.98 112 | 95.02 187 | 98.85 90 | 96.90 310 | 95.38 110 | 96.63 158 | 96.90 280 | 84.29 273 | 99.59 132 | 88.65 304 | 96.33 197 | 98.40 189 |
|
FMVSNet3 | | | 94.97 203 | 94.26 211 | 97.11 179 | 98.18 173 | 96.62 115 | 98.56 149 | 98.26 209 | 93.67 194 | 94.09 228 | 97.10 253 | 84.25 275 | 98.01 299 | 92.08 249 | 92.14 257 | 96.70 265 |
|
tfpn200view9 | | | 95.32 183 | 94.62 192 | 97.43 163 | 98.94 114 | 94.98 191 | 98.68 129 | 96.93 308 | 95.33 113 | 96.55 163 | 96.53 297 | 84.23 276 | 99.56 136 | 88.11 305 | 96.29 199 | 97.76 205 |
|
thres400 | | | 95.38 176 | 94.62 192 | 97.65 153 | 98.94 114 | 94.98 191 | 98.68 129 | 96.93 308 | 95.33 113 | 96.55 163 | 96.53 297 | 84.23 276 | 99.56 136 | 88.11 305 | 96.29 199 | 98.40 189 |
|
cascas | | | 94.63 221 | 93.86 237 | 96.93 191 | 96.91 262 | 94.27 222 | 96.00 325 | 98.51 161 | 85.55 330 | 94.54 203 | 96.23 307 | 84.20 278 | 98.87 214 | 95.80 139 | 96.98 180 | 97.66 211 |
|
tpm | | | 94.13 252 | 93.80 240 | 95.12 281 | 96.50 283 | 87.91 329 | 97.44 261 | 95.89 328 | 92.62 232 | 96.37 173 | 96.30 304 | 84.13 279 | 98.30 277 | 93.24 218 | 91.66 265 | 99.14 140 |
|
tttt0517 | | | 96.07 143 | 95.51 153 | 97.78 139 | 98.41 152 | 94.84 197 | 99.28 16 | 94.33 341 | 94.26 162 | 97.64 120 | 98.64 126 | 84.05 280 | 99.47 150 | 95.34 154 | 97.60 170 | 99.03 150 |
|
IterMVS | | | 94.09 256 | 93.85 238 | 94.80 293 | 97.99 186 | 90.35 301 | 97.18 283 | 98.12 230 | 93.68 192 | 92.46 287 | 97.34 238 | 84.05 280 | 97.41 322 | 92.51 242 | 91.33 267 | 96.62 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 94.11 254 | 93.87 236 | 94.85 290 | 97.98 188 | 90.56 299 | 97.18 283 | 98.11 232 | 93.75 182 | 92.58 281 | 97.48 230 | 83.97 282 | 97.41 322 | 92.48 244 | 91.30 268 | 96.58 278 |
|
SCA | | | 95.46 169 | 95.13 170 | 96.46 230 | 97.67 204 | 91.29 287 | 97.33 273 | 97.60 268 | 94.68 146 | 96.92 146 | 97.10 253 | 83.97 282 | 98.89 211 | 92.59 237 | 98.32 148 | 99.20 129 |
|
TR-MVS | | | 94.94 206 | 94.20 213 | 97.17 175 | 97.75 198 | 94.14 226 | 97.59 256 | 97.02 304 | 92.28 247 | 95.75 183 | 97.64 219 | 83.88 284 | 98.96 200 | 89.77 288 | 96.15 207 | 98.40 189 |
|
jajsoiax | | | 95.45 171 | 95.03 175 | 96.73 200 | 95.42 322 | 94.63 206 | 99.14 36 | 98.52 158 | 95.74 92 | 93.22 261 | 98.36 154 | 83.87 285 | 98.65 233 | 96.95 91 | 94.04 228 | 96.91 238 |
|
Anonymous20231206 | | | 91.66 290 | 91.10 290 | 93.33 312 | 94.02 335 | 87.35 332 | 98.58 143 | 97.26 294 | 90.48 291 | 90.16 311 | 96.31 303 | 83.83 286 | 96.53 335 | 79.36 338 | 89.90 285 | 96.12 311 |
|
thisisatest0530 | | | 96.01 146 | 95.36 159 | 97.97 129 | 98.38 153 | 95.52 169 | 98.88 85 | 94.19 343 | 94.04 167 | 97.64 120 | 98.31 162 | 83.82 287 | 99.46 151 | 95.29 158 | 97.70 167 | 98.93 160 |
|
tpm2 | | | 94.19 248 | 93.76 245 | 95.46 272 | 97.23 239 | 89.04 317 | 97.31 275 | 96.85 315 | 87.08 320 | 96.21 176 | 96.79 287 | 83.75 288 | 98.74 226 | 92.43 245 | 96.23 205 | 98.59 182 |
|
mvs_tets | | | 95.41 175 | 95.00 176 | 96.65 206 | 95.58 315 | 94.42 216 | 99.00 62 | 98.55 151 | 95.73 93 | 93.21 262 | 98.38 152 | 83.45 289 | 98.63 234 | 97.09 84 | 94.00 230 | 96.91 238 |
|
OurMVSNet-221017-0 | | | 94.21 246 | 94.00 227 | 94.85 290 | 95.60 314 | 89.22 314 | 98.89 82 | 97.43 285 | 95.29 116 | 92.18 292 | 98.52 139 | 82.86 290 | 98.59 240 | 93.46 212 | 91.76 263 | 96.74 258 |
|
UGNet | | | 96.78 121 | 96.30 127 | 98.19 117 | 98.24 165 | 95.89 157 | 98.88 85 | 98.93 37 | 97.39 23 | 96.81 152 | 97.84 200 | 82.60 291 | 99.90 33 | 96.53 113 | 99.49 88 | 98.79 167 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
pmmvs5 | | | 93.65 266 | 92.97 268 | 95.68 265 | 95.49 318 | 92.37 267 | 98.20 197 | 97.28 292 | 89.66 305 | 92.58 281 | 97.26 243 | 82.14 292 | 98.09 293 | 93.18 221 | 90.95 275 | 96.58 278 |
|
DWT-MVSNet_test | | | 94.82 209 | 94.36 208 | 96.20 245 | 97.35 233 | 90.79 294 | 98.34 176 | 96.57 322 | 92.91 224 | 95.33 187 | 96.44 301 | 82.00 293 | 99.12 179 | 94.52 179 | 95.78 213 | 98.70 172 |
|
ACMH | | 92.88 16 | 94.55 227 | 93.95 231 | 96.34 238 | 97.63 207 | 93.26 256 | 98.81 103 | 98.49 170 | 93.43 203 | 89.74 314 | 98.53 136 | 81.91 294 | 99.08 187 | 93.69 204 | 93.30 247 | 96.70 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ITE_SJBPF | | | | | 95.44 273 | 97.42 228 | 91.32 286 | | 97.50 278 | 95.09 130 | 93.59 246 | 98.35 155 | 81.70 295 | 98.88 213 | 89.71 290 | 93.39 245 | 96.12 311 |
|
Anonymous20231211 | | | 94.10 255 | 93.26 264 | 96.61 211 | 99.11 104 | 94.28 221 | 99.01 60 | 98.88 49 | 86.43 323 | 92.81 273 | 97.57 225 | 81.66 296 | 98.68 231 | 94.83 168 | 89.02 300 | 96.88 242 |
|
GBi-Net | | | 94.49 231 | 93.80 240 | 96.56 218 | 98.21 168 | 95.00 188 | 98.82 97 | 98.18 218 | 92.46 236 | 94.09 228 | 97.07 260 | 81.16 297 | 97.95 303 | 92.08 249 | 92.14 257 | 96.72 261 |
|
test1 | | | 94.49 231 | 93.80 240 | 96.56 218 | 98.21 168 | 95.00 188 | 98.82 97 | 98.18 218 | 92.46 236 | 94.09 228 | 97.07 260 | 81.16 297 | 97.95 303 | 92.08 249 | 92.14 257 | 96.72 261 |
|
FMVSNet2 | | | 94.47 233 | 93.61 252 | 97.04 182 | 98.21 168 | 96.43 127 | 98.79 108 | 98.27 205 | 92.46 236 | 93.50 253 | 97.09 257 | 81.16 297 | 98.00 301 | 91.09 266 | 91.93 261 | 96.70 265 |
|
GA-MVS | | | 94.81 210 | 94.03 223 | 97.14 176 | 97.15 248 | 93.86 232 | 96.76 311 | 97.58 269 | 94.00 171 | 94.76 200 | 97.04 266 | 80.91 300 | 98.48 248 | 91.79 258 | 96.25 204 | 99.09 144 |
|
SixPastTwentyTwo | | | 93.34 270 | 92.86 269 | 94.75 294 | 95.67 312 | 89.41 312 | 98.75 110 | 96.67 320 | 93.89 176 | 90.15 312 | 98.25 169 | 80.87 301 | 98.27 282 | 90.90 271 | 90.64 277 | 96.57 280 |
|
ACMH+ | | 92.99 14 | 94.30 241 | 93.77 243 | 95.88 259 | 97.81 196 | 92.04 273 | 98.71 122 | 98.37 187 | 93.99 172 | 90.60 310 | 98.47 142 | 80.86 302 | 99.05 189 | 92.75 233 | 92.40 256 | 96.55 284 |
|
gg-mvs-nofinetune | | | 92.21 287 | 90.58 294 | 97.13 177 | 96.75 271 | 95.09 185 | 95.85 326 | 89.40 352 | 85.43 331 | 94.50 205 | 81.98 346 | 80.80 303 | 98.40 270 | 92.16 247 | 98.33 147 | 97.88 202 |
|
test20.03 | | | 90.89 297 | 90.38 295 | 92.43 317 | 93.48 336 | 88.14 327 | 98.33 177 | 97.56 270 | 93.40 204 | 87.96 323 | 96.71 290 | 80.69 304 | 94.13 344 | 79.15 339 | 86.17 328 | 95.01 329 |
|
VPNet | | | 94.99 200 | 94.19 214 | 97.40 166 | 97.16 247 | 96.57 120 | 98.71 122 | 98.97 30 | 95.67 96 | 94.84 195 | 98.24 170 | 80.36 305 | 98.67 232 | 96.46 115 | 87.32 317 | 96.96 230 |
|
GG-mvs-BLEND | | | | | 96.59 214 | 96.34 290 | 94.98 191 | 96.51 319 | 88.58 353 | | 93.10 268 | 94.34 330 | 80.34 306 | 98.05 297 | 89.53 294 | 96.99 179 | 96.74 258 |
|
PVSNet_0 | | 88.72 19 | 91.28 293 | 90.03 298 | 95.00 285 | 97.99 186 | 87.29 333 | 94.84 335 | 98.50 166 | 92.06 253 | 89.86 313 | 95.19 324 | 79.81 307 | 99.39 155 | 92.27 246 | 69.79 346 | 98.33 193 |
|
MS-PatchMatch | | | 93.84 263 | 93.63 251 | 94.46 302 | 96.18 295 | 89.45 310 | 97.76 244 | 98.27 205 | 92.23 248 | 92.13 293 | 97.49 229 | 79.50 308 | 98.69 228 | 89.75 289 | 99.38 100 | 95.25 323 |
|
MVS-HIRNet | | | 89.46 306 | 88.40 307 | 92.64 316 | 97.58 211 | 82.15 343 | 94.16 341 | 93.05 348 | 75.73 344 | 90.90 305 | 82.52 345 | 79.42 309 | 98.33 272 | 83.53 329 | 98.68 127 | 97.43 213 |
|
MDA-MVSNet-bldmvs | | | 89.97 303 | 88.35 308 | 94.83 292 | 95.21 323 | 91.34 283 | 97.64 253 | 97.51 277 | 88.36 315 | 71.17 347 | 96.13 311 | 79.22 310 | 96.63 334 | 83.65 328 | 86.27 327 | 96.52 290 |
|
XVG-ACMP-BASELINE | | | 94.54 228 | 94.14 219 | 95.75 264 | 96.55 280 | 91.65 281 | 98.11 213 | 98.44 175 | 94.96 135 | 94.22 222 | 97.90 193 | 79.18 311 | 99.11 182 | 94.05 197 | 93.85 234 | 96.48 297 |
|
RRT_test8_iter05 | | | 94.56 226 | 94.19 214 | 95.67 266 | 97.60 209 | 91.34 283 | 98.93 75 | 98.42 179 | 94.75 142 | 93.39 256 | 97.87 196 | 79.00 312 | 98.61 235 | 96.78 107 | 90.99 274 | 97.07 224 |
|
Anonymous20240529 | | | 95.10 194 | 94.22 212 | 97.75 142 | 99.01 108 | 94.26 223 | 98.87 87 | 98.83 68 | 85.79 329 | 96.64 157 | 98.97 87 | 78.73 313 | 99.85 49 | 96.27 121 | 94.89 216 | 99.12 142 |
|
TESTMET0.1,1 | | | 94.18 250 | 93.69 249 | 95.63 267 | 96.92 260 | 89.12 315 | 96.91 299 | 94.78 336 | 93.17 213 | 94.88 194 | 96.45 300 | 78.52 314 | 98.92 206 | 93.09 222 | 98.50 138 | 98.85 163 |
|
pmmvs-eth3d | | | 90.36 301 | 89.05 304 | 94.32 304 | 91.10 342 | 92.12 269 | 97.63 255 | 96.95 307 | 88.86 313 | 84.91 335 | 93.13 333 | 78.32 315 | 96.74 329 | 88.70 303 | 81.81 337 | 94.09 335 |
|
Anonymous202405211 | | | 95.28 184 | 94.49 198 | 97.67 150 | 99.00 109 | 93.75 237 | 98.70 126 | 97.04 301 | 90.66 289 | 96.49 168 | 98.80 110 | 78.13 316 | 99.83 55 | 96.21 124 | 95.36 215 | 99.44 105 |
|
IB-MVS | | 91.98 17 | 93.27 272 | 91.97 283 | 97.19 173 | 97.47 222 | 93.41 250 | 97.09 289 | 95.99 324 | 93.32 207 | 92.47 286 | 95.73 317 | 78.06 317 | 99.53 142 | 94.59 177 | 82.98 333 | 98.62 181 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LF4IMVS | | | 93.14 277 | 92.79 271 | 94.20 305 | 95.88 307 | 88.67 321 | 97.66 252 | 97.07 299 | 93.81 181 | 91.71 298 | 97.65 217 | 77.96 318 | 98.81 221 | 91.47 264 | 91.92 262 | 95.12 324 |
|
test-mter | | | 94.08 257 | 93.51 256 | 95.80 261 | 96.77 268 | 89.70 306 | 96.91 299 | 95.21 331 | 92.89 225 | 94.83 197 | 95.72 319 | 77.69 319 | 98.97 197 | 93.06 223 | 98.50 138 | 98.72 170 |
|
USDC | | | 93.33 271 | 92.71 272 | 95.21 278 | 96.83 267 | 90.83 293 | 96.91 299 | 97.50 278 | 93.84 179 | 90.72 308 | 98.14 176 | 77.69 319 | 98.82 220 | 89.51 295 | 93.21 249 | 95.97 315 |
|
test_0402 | | | 91.32 292 | 90.27 296 | 94.48 300 | 96.60 278 | 91.12 289 | 98.50 158 | 97.22 295 | 86.10 326 | 88.30 322 | 96.98 272 | 77.65 321 | 97.99 302 | 78.13 342 | 92.94 252 | 94.34 331 |
|
K. test v3 | | | 92.55 284 | 91.91 285 | 94.48 300 | 95.64 313 | 89.24 313 | 99.07 50 | 94.88 335 | 94.04 167 | 86.78 327 | 97.59 223 | 77.64 322 | 97.64 316 | 92.08 249 | 89.43 293 | 96.57 280 |
|
TDRefinement | | | 91.06 295 | 89.68 300 | 95.21 278 | 85.35 348 | 91.49 282 | 98.51 157 | 97.07 299 | 91.47 268 | 88.83 320 | 97.84 200 | 77.31 323 | 99.09 186 | 92.79 232 | 77.98 341 | 95.04 327 |
|
new_pmnet | | | 90.06 302 | 89.00 305 | 93.22 315 | 94.18 332 | 88.32 326 | 96.42 320 | 96.89 312 | 86.19 324 | 85.67 333 | 93.62 331 | 77.18 324 | 97.10 326 | 81.61 333 | 89.29 295 | 94.23 332 |
|
test_part1 | | | 92.87 280 | 91.72 286 | 96.32 240 | 97.55 216 | 93.50 246 | 99.04 53 | 98.74 102 | 83.31 335 | 90.81 307 | 97.70 212 | 76.61 325 | 98.60 239 | 94.43 182 | 87.30 318 | 96.85 247 |
|
new-patchmatchnet | | | 88.50 308 | 87.45 311 | 91.67 321 | 90.31 344 | 85.89 336 | 97.16 286 | 97.33 289 | 89.47 307 | 83.63 337 | 92.77 334 | 76.38 326 | 95.06 342 | 82.70 330 | 77.29 342 | 94.06 336 |
|
lessismore_v0 | | | | | 94.45 303 | 94.93 327 | 88.44 324 | | 91.03 350 | | 86.77 328 | 97.64 219 | 76.23 327 | 98.42 257 | 90.31 279 | 85.64 331 | 96.51 293 |
|
TinyColmap | | | 92.31 286 | 91.53 287 | 94.65 297 | 96.92 260 | 89.75 305 | 96.92 297 | 96.68 319 | 90.45 293 | 89.62 315 | 97.85 199 | 76.06 328 | 98.81 221 | 86.74 314 | 92.51 255 | 95.41 322 |
|
pmmvs6 | | | 91.77 289 | 90.63 293 | 95.17 280 | 94.69 331 | 91.24 288 | 98.67 132 | 97.92 255 | 86.14 325 | 89.62 315 | 97.56 227 | 75.79 329 | 98.34 271 | 90.75 274 | 84.56 332 | 95.94 316 |
|
MIMVSNet | | | 93.26 273 | 92.21 280 | 96.41 233 | 97.73 202 | 93.13 260 | 95.65 329 | 97.03 302 | 91.27 280 | 94.04 231 | 96.06 312 | 75.33 330 | 97.19 325 | 86.56 315 | 96.23 205 | 98.92 161 |
|
UnsupCasMVSNet_eth | | | 90.99 296 | 89.92 299 | 94.19 306 | 94.08 334 | 89.83 304 | 97.13 288 | 98.67 128 | 93.69 190 | 85.83 332 | 96.19 310 | 75.15 331 | 96.74 329 | 89.14 300 | 79.41 340 | 96.00 314 |
|
LFMVS | | | 95.86 153 | 94.98 178 | 98.47 96 | 98.87 119 | 96.32 132 | 98.84 93 | 96.02 323 | 93.40 204 | 98.62 62 | 99.20 52 | 74.99 332 | 99.63 128 | 97.72 52 | 97.20 176 | 99.46 102 |
|
CMPMVS | | 66.06 21 | 89.70 304 | 89.67 301 | 89.78 323 | 93.19 337 | 76.56 346 | 97.00 293 | 98.35 190 | 80.97 339 | 81.57 339 | 97.75 208 | 74.75 333 | 98.61 235 | 89.85 287 | 93.63 238 | 94.17 333 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet5 | | | 91.81 288 | 90.92 291 | 94.49 299 | 97.21 241 | 92.09 270 | 98.00 223 | 97.55 274 | 89.31 310 | 90.86 306 | 95.61 323 | 74.48 334 | 95.32 340 | 85.57 322 | 89.70 287 | 96.07 313 |
|
testgi | | | 93.06 278 | 92.45 277 | 94.88 289 | 96.43 287 | 89.90 303 | 98.75 110 | 97.54 275 | 95.60 99 | 91.63 300 | 97.91 192 | 74.46 335 | 97.02 327 | 86.10 318 | 93.67 236 | 97.72 209 |
|
VDD-MVS | | | 95.82 156 | 95.23 166 | 97.61 155 | 98.84 123 | 93.98 229 | 98.68 129 | 97.40 287 | 95.02 132 | 97.95 98 | 99.34 31 | 74.37 336 | 99.78 95 | 98.64 3 | 96.80 182 | 99.08 147 |
|
FMVSNet1 | | | 93.19 276 | 92.07 281 | 96.56 218 | 97.54 217 | 95.00 188 | 98.82 97 | 98.18 218 | 90.38 295 | 92.27 290 | 97.07 260 | 73.68 337 | 97.95 303 | 89.36 298 | 91.30 268 | 96.72 261 |
|
VDDNet | | | 95.36 179 | 94.53 196 | 97.86 134 | 98.10 179 | 95.13 184 | 98.85 90 | 97.75 262 | 90.46 292 | 98.36 76 | 99.39 14 | 73.27 338 | 99.64 125 | 97.98 36 | 96.58 189 | 98.81 166 |
|
UniMVSNet_ETH3D | | | 94.24 245 | 93.33 261 | 96.97 187 | 97.19 245 | 93.38 252 | 98.74 113 | 98.57 147 | 91.21 283 | 93.81 241 | 98.58 132 | 72.85 339 | 98.77 225 | 95.05 164 | 93.93 233 | 98.77 169 |
|
DeepMVS_CX | | | | | 86.78 325 | 97.09 252 | 72.30 349 | | 95.17 334 | 75.92 343 | 84.34 336 | 95.19 324 | 70.58 340 | 95.35 339 | 79.98 337 | 89.04 299 | 92.68 341 |
|
OpenMVS_ROB | | 86.42 20 | 89.00 307 | 87.43 312 | 93.69 309 | 93.08 338 | 89.42 311 | 97.91 229 | 96.89 312 | 78.58 341 | 85.86 331 | 94.69 328 | 69.48 341 | 98.29 280 | 77.13 343 | 93.29 248 | 93.36 340 |
|
EG-PatchMatch MVS | | | 91.13 294 | 90.12 297 | 94.17 307 | 94.73 330 | 89.00 318 | 98.13 210 | 97.81 259 | 89.22 311 | 85.32 334 | 96.46 299 | 67.71 342 | 98.42 257 | 87.89 310 | 93.82 235 | 95.08 326 |
|
MIMVSNet1 | | | 89.67 305 | 88.28 309 | 93.82 308 | 92.81 339 | 91.08 290 | 98.01 221 | 97.45 283 | 87.95 316 | 87.90 324 | 95.87 315 | 67.63 343 | 94.56 343 | 78.73 341 | 88.18 308 | 95.83 318 |
|
pmmvs3 | | | 86.67 312 | 84.86 315 | 92.11 320 | 88.16 346 | 87.19 334 | 96.63 315 | 94.75 337 | 79.88 340 | 87.22 326 | 92.75 335 | 66.56 344 | 95.20 341 | 81.24 334 | 76.56 343 | 93.96 337 |
|
MVS_0304 | | | 92.81 281 | 92.01 282 | 95.23 277 | 97.46 223 | 91.33 285 | 98.17 206 | 98.81 76 | 91.13 285 | 93.80 242 | 95.68 322 | 66.08 345 | 98.06 296 | 90.79 272 | 96.13 208 | 96.32 306 |
|
tmp_tt | | | 68.90 318 | 66.97 320 | 74.68 333 | 50.78 358 | 59.95 355 | 87.13 347 | 83.47 356 | 38.80 353 | 62.21 349 | 96.23 307 | 64.70 346 | 76.91 354 | 88.91 302 | 30.49 352 | 87.19 344 |
|
UnsupCasMVSNet_bld | | | 87.17 310 | 85.12 314 | 93.31 313 | 91.94 340 | 88.77 319 | 94.92 334 | 98.30 202 | 84.30 334 | 82.30 338 | 90.04 340 | 63.96 347 | 97.25 324 | 85.85 321 | 74.47 345 | 93.93 338 |
|
testing_2 | | | 90.61 300 | 88.50 306 | 96.95 189 | 90.08 345 | 95.57 165 | 97.69 249 | 98.06 245 | 93.02 218 | 76.55 341 | 92.48 337 | 61.18 348 | 98.44 254 | 95.45 153 | 91.98 260 | 96.84 248 |
|
PM-MVS | | | 87.77 309 | 86.55 313 | 91.40 322 | 91.03 343 | 83.36 341 | 96.92 297 | 95.18 333 | 91.28 279 | 86.48 330 | 93.42 332 | 53.27 349 | 96.74 329 | 89.43 297 | 81.97 336 | 94.11 334 |
|
ambc | | | | | 89.49 324 | 86.66 347 | 75.78 347 | 92.66 343 | 96.72 317 | | 86.55 329 | 92.50 336 | 46.01 350 | 97.90 307 | 90.32 278 | 82.09 334 | 94.80 330 |
|
Gipuma | | | 78.40 314 | 76.75 317 | 83.38 329 | 95.54 316 | 80.43 345 | 79.42 350 | 97.40 287 | 64.67 347 | 73.46 344 | 80.82 347 | 45.65 351 | 93.14 345 | 66.32 347 | 87.43 315 | 76.56 348 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 64.07 321 | 63.26 324 | 66.53 336 | 81.73 351 | 58.81 357 | 91.85 344 | 84.75 355 | 51.93 352 | 59.09 351 | 75.13 350 | 43.32 352 | 79.09 353 | 42.03 352 | 39.47 350 | 61.69 349 |
|
E-PMN | | | 64.94 320 | 64.25 322 | 67.02 335 | 82.28 350 | 59.36 356 | 91.83 345 | 85.63 354 | 52.69 350 | 60.22 350 | 77.28 349 | 41.06 353 | 80.12 352 | 46.15 351 | 41.14 349 | 61.57 350 |
|
FPMVS | | | 77.62 316 | 77.14 316 | 79.05 331 | 79.25 352 | 60.97 354 | 95.79 327 | 95.94 326 | 65.96 346 | 67.93 348 | 94.40 329 | 37.73 354 | 88.88 349 | 68.83 346 | 88.46 305 | 87.29 343 |
|
PMMVS2 | | | 77.95 315 | 75.44 319 | 85.46 327 | 82.54 349 | 74.95 348 | 94.23 340 | 93.08 347 | 72.80 345 | 74.68 343 | 87.38 342 | 36.36 355 | 91.56 347 | 73.95 345 | 63.94 347 | 89.87 342 |
|
LCM-MVSNet | | | 78.70 313 | 76.24 318 | 86.08 326 | 77.26 354 | 71.99 350 | 94.34 339 | 96.72 317 | 61.62 348 | 76.53 342 | 89.33 341 | 33.91 356 | 92.78 346 | 81.85 332 | 74.60 344 | 93.46 339 |
|
ANet_high | | | 69.08 317 | 65.37 321 | 80.22 330 | 65.99 356 | 71.96 351 | 90.91 346 | 90.09 351 | 82.62 336 | 49.93 353 | 78.39 348 | 29.36 357 | 81.75 350 | 62.49 348 | 38.52 351 | 86.95 345 |
|
PMVS | | 61.03 23 | 65.95 319 | 63.57 323 | 73.09 334 | 57.90 357 | 51.22 358 | 85.05 349 | 93.93 346 | 54.45 349 | 44.32 354 | 83.57 344 | 13.22 358 | 89.15 348 | 58.68 349 | 81.00 339 | 78.91 347 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test123 | | | 20.95 326 | 23.72 329 | 12.64 338 | 13.54 360 | 8.19 360 | 96.55 318 | 6.13 361 | 7.48 356 | 16.74 356 | 37.98 354 | 12.97 359 | 6.05 356 | 16.69 354 | 5.43 355 | 23.68 351 |
|
wuyk23d | | | 30.17 323 | 30.18 327 | 30.16 337 | 78.61 353 | 43.29 359 | 66.79 351 | 14.21 359 | 17.31 354 | 14.82 357 | 11.93 357 | 11.55 360 | 41.43 355 | 37.08 353 | 19.30 353 | 5.76 353 |
|
MVE | | 62.14 22 | 63.28 322 | 59.38 325 | 74.99 332 | 74.33 355 | 65.47 352 | 85.55 348 | 80.50 357 | 52.02 351 | 51.10 352 | 75.00 351 | 10.91 361 | 80.50 351 | 51.60 350 | 53.40 348 | 78.99 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.48 325 | 24.95 328 | 11.09 339 | 14.89 359 | 6.47 361 | 96.56 317 | 9.87 360 | 7.55 355 | 17.93 355 | 39.02 353 | 9.43 362 | 5.90 357 | 16.56 355 | 12.72 354 | 20.91 352 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 8.20 327 | 10.94 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 98.43 145 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 136 | 95.28 117 | 99.63 4 | | | | 98.35 24 | 99.81 10 | 99.83 5 |
|
save fliter | | | | | | 99.46 51 | 98.38 35 | 98.21 194 | 98.71 113 | 97.95 3 | | | | | | | |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 68 | 98.88 49 | | | | | 99.94 3 | 98.47 15 | 99.81 10 | 99.84 4 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 129 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 17 | | | | | | |
|
MTGPA | | | | | | | | | 98.74 102 | | | | | | | | |
|
MTMP | | | | | | | | 98.89 82 | 94.14 344 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 307 | 87.47 331 | | | 89.74 304 | | 96.94 278 | | 99.19 171 | 93.32 217 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 120 | 99.57 75 | 99.69 51 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 136 | 99.57 75 | 99.68 57 |
|
agg_prior | | | | | | 99.30 75 | 98.38 35 | | 98.72 109 | | 97.57 125 | | | 99.81 70 | | | |
|
test_prior4 | | | | | | | 98.01 62 | 97.86 236 | | | | | | | | | |
|
test_prior | | | | | 99.19 43 | 99.31 70 | 98.22 50 | | 98.84 65 | | | | | 99.70 114 | | | 99.65 67 |
|
旧先验2 | | | | | | | | 97.57 258 | | 91.30 277 | 98.67 58 | | | 99.80 79 | 95.70 146 | | |
|
新几何2 | | | | | | | | 97.64 253 | | | | | | | | | |
|
无先验 | | | | | | | | 97.58 257 | 98.72 109 | 91.38 271 | | | | 99.87 44 | 93.36 215 | | 99.60 78 |
|
原ACMM2 | | | | | | | | 97.67 251 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 35 | 91.65 262 | | |
|
testdata1 | | | | | | | | 97.32 274 | | 96.34 71 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 228 | 94.63 206 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 98.56 149 | | | | | 99.03 193 | 96.07 126 | 94.27 219 | 96.92 233 |
|
plane_prior4 | | | | | | | | | | | | 98.28 164 | | | | | |
|
plane_prior3 | | | | | | | 94.61 209 | | | 97.02 47 | 95.34 185 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 104 | | 97.28 29 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 232 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 211 | 98.44 165 | | 96.74 55 | | | | | | 94.22 221 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 340 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 131 | | | | | | | | |
|
door | | | | | | | | | 94.64 338 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 224 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 242 | | 98.05 217 | | 96.43 67 | 94.45 207 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 242 | | 98.05 217 | | 96.43 67 | 94.45 207 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 156 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 207 | | | 98.96 200 | | | 96.87 244 |
|
HQP3-MVS | | | | | | | | | 98.46 171 | | | | | | | 94.18 223 | |
|
NP-MVS | | | | | | 97.28 236 | 94.51 214 | | | | | 97.73 209 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 251 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 239 | |
|