This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 3299.45 1199.46 1297.88 199.94 498.47 2199.86 199.85 4
PC_three_145295.08 14399.60 599.16 6797.86 298.47 26497.52 8099.72 5399.74 36
DVP-MVS++99.08 298.89 299.64 399.17 10199.23 799.69 198.88 5197.32 3299.53 999.47 997.81 399.94 498.47 2199.72 5399.74 36
OPU-MVS99.37 2399.24 9599.05 1499.02 6699.16 6797.81 399.37 16497.24 8899.73 4699.70 53
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9798.43 3899.10 5198.87 5897.38 2999.35 1799.40 1697.78 599.87 4897.77 5899.85 499.78 16
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2599.47 997.57 6
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5897.65 1099.73 199.48 797.53 799.94 498.43 2599.81 1199.70 53
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1797.53 799.74 111
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 7698.58 15397.62 1299.45 1199.46 1297.42 999.94 498.47 2199.81 1199.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1399.25 299.06 5698.88 5197.62 1299.56 699.50 597.42 9
test_241102_TWO98.87 5897.65 1099.53 999.48 797.34 1199.94 498.43 2599.80 1899.83 7
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18098.91 4597.58 1599.54 899.46 1297.10 1299.94 497.64 6999.84 999.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.78 798.56 1199.45 1799.32 7198.87 1998.47 17298.81 8097.72 798.76 6099.16 6797.05 1399.78 10098.06 4099.66 6299.69 56
segment_acmp96.85 14
patch_mono-298.36 4798.87 396.82 20699.53 3890.68 31198.64 14699.29 897.88 599.19 2899.52 396.80 1599.97 199.11 199.86 199.82 10
MCST-MVS98.65 1498.37 2499.48 1399.60 3398.87 1998.41 18198.68 12597.04 5498.52 7798.80 12096.78 1699.83 6097.93 4699.61 7299.74 36
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 998.93 3997.38 2999.41 1399.54 196.66 1799.84 5798.86 399.85 499.87 1
NCCC98.61 1898.35 2799.38 2099.28 8598.61 2998.45 17398.76 10397.82 698.45 8198.93 10596.65 1899.83 6097.38 8599.41 10599.71 49
SD-MVS98.64 1598.68 798.53 9499.33 6898.36 4798.90 8798.85 6897.28 3599.72 399.39 1796.63 1997.60 33198.17 3599.85 499.64 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 5198.06 5499.18 5099.15 10798.12 6399.04 5999.09 2193.32 22198.83 5699.10 7696.54 2099.83 6097.70 6699.76 3599.59 86
SMA-MVScopyleft98.58 2498.25 4199.56 899.51 4299.04 1598.95 8098.80 9193.67 20899.37 1699.52 396.52 2199.89 3998.06 4099.81 1199.76 29
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2998.57 1098.55 9099.26 8896.80 11598.71 13199.05 2597.28 3598.84 5499.28 4396.47 2299.40 16298.52 1999.70 5699.47 106
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4298.66 13696.84 6299.56 699.31 3896.34 2399.70 11998.32 3299.73 4699.73 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj98.70 1098.50 1699.30 3399.46 5498.38 4098.21 20798.52 16497.95 399.32 1899.39 1796.22 2499.84 5797.72 6199.73 4699.67 66
SF-MVS98.59 2198.32 3699.41 1999.54 3798.71 2299.04 5998.81 8095.12 13899.32 1899.39 1796.22 2499.84 5797.72 6199.73 4699.67 66
TSAR-MVS + GP.98.38 4598.24 4498.81 7799.22 9797.25 10198.11 22698.29 21397.19 4498.99 4399.02 8896.22 2499.67 12698.52 1998.56 14599.51 97
TEST999.31 7398.50 3497.92 24198.73 11292.63 24597.74 12498.68 13296.20 2799.80 84
train_agg97.97 6297.52 7699.33 3099.31 7398.50 3497.92 24198.73 11292.98 23497.74 12498.68 13296.20 2799.80 8496.59 12399.57 8099.68 62
test_899.29 8198.44 3697.89 24798.72 11492.98 23497.70 12798.66 13596.20 2799.80 84
agg_prior197.95 6697.51 7899.28 3899.30 7898.38 4097.81 25498.72 11493.16 22897.57 13798.66 13596.14 3099.81 7596.63 12299.56 8599.66 70
Regformer-298.69 1298.52 1499.19 4699.35 6398.01 6798.37 18498.81 8097.48 2099.21 2499.21 5496.13 3199.80 8498.40 2999.73 4699.75 31
DeepPCF-MVS96.37 297.93 6898.48 2096.30 25399.00 12089.54 32697.43 27798.87 5898.16 299.26 2199.38 2496.12 3299.64 13098.30 3399.77 2999.72 45
Regformer-198.66 1398.51 1599.12 6099.35 6397.81 7998.37 18498.76 10397.49 1999.20 2599.21 5496.08 3399.79 9698.42 2799.73 4699.75 31
HFP-MVS98.63 1798.40 2199.32 3199.72 1398.29 5199.23 2798.96 3396.10 9398.94 4499.17 6296.06 3499.92 2597.62 7099.78 2699.75 31
#test#98.54 3398.27 3999.32 3199.72 1398.29 5198.98 7598.96 3395.65 10998.94 4499.17 6296.06 3499.92 2597.21 9099.78 2699.75 31
9.1498.06 5499.47 5198.71 13198.82 7494.36 17299.16 3199.29 4296.05 3699.81 7597.00 9599.71 55
CP-MVS98.57 2798.36 2599.19 4699.66 2897.86 7399.34 1698.87 5895.96 9698.60 7499.13 7196.05 3699.94 497.77 5899.86 199.77 23
MSP-MVS98.74 998.55 1299.29 3499.75 498.23 5499.26 2498.88 5197.52 1799.41 1398.78 12296.00 3899.79 9697.79 5799.59 7699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_111021_HR98.47 3998.34 3198.88 7599.22 9797.32 9397.91 24399.58 397.20 4398.33 8999.00 9395.99 3999.64 13098.05 4299.76 3599.69 56
test_prior398.22 5897.90 6399.19 4699.31 7398.22 5597.80 25598.84 6996.12 9197.89 11898.69 13095.96 4099.70 11996.89 10599.60 7399.65 72
test_prior297.80 25596.12 9197.89 11898.69 13095.96 4096.89 10599.60 73
CDPH-MVS97.94 6797.49 7999.28 3899.47 5198.44 3697.91 24398.67 13392.57 24998.77 5998.85 11395.93 4299.72 11395.56 16299.69 5799.68 62
region2R98.61 1898.38 2399.29 3499.74 898.16 6099.23 2798.93 3996.15 8898.94 4499.17 6295.91 4399.94 497.55 7799.79 2299.78 16
XVS98.70 1098.49 1899.34 2699.70 2498.35 4899.29 2098.88 5197.40 2698.46 7899.20 5895.90 4499.89 3997.85 5399.74 4499.78 16
X-MVStestdata94.06 27292.30 29299.34 2699.70 2498.35 4899.29 2098.88 5197.40 2698.46 7843.50 37295.90 4499.89 3997.85 5399.74 4499.78 16
Regformer-498.64 1598.53 1398.99 6699.43 6097.37 9298.40 18298.79 9697.46 2399.09 3599.31 3895.86 4699.80 8498.64 799.76 3599.79 13
Regformer-398.59 2198.50 1698.86 7699.43 6097.05 10698.40 18298.68 12597.43 2599.06 3699.31 3895.80 4799.77 10598.62 999.76 3599.78 16
CS-MVS98.41 4298.49 1898.18 12299.08 11296.33 13999.67 398.49 17697.17 4598.93 4899.10 7695.79 4899.12 18698.67 699.48 9699.10 155
ZD-MVS99.46 5498.70 2398.79 9693.21 22598.67 6698.97 9595.70 4999.83 6096.07 13999.58 79
HPM-MVS++copyleft98.58 2498.25 4199.55 999.50 4499.08 1198.72 13098.66 13697.51 1898.15 9298.83 11795.70 4999.92 2597.53 7999.67 5999.66 70
ACMMPR98.59 2198.36 2599.29 3499.74 898.15 6199.23 2798.95 3596.10 9398.93 4899.19 6195.70 4999.94 497.62 7099.79 2299.78 16
旧先验199.29 8197.48 8898.70 12199.09 8295.56 5299.47 9899.61 81
PGM-MVS98.49 3798.23 4599.27 4199.72 1398.08 6498.99 7299.49 595.43 11999.03 3899.32 3695.56 5299.94 496.80 11699.77 2999.78 16
APD-MVScopyleft98.35 4998.00 5899.42 1899.51 4298.72 2198.80 11398.82 7494.52 16799.23 2399.25 4995.54 5499.80 8496.52 12799.77 2999.74 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5397.95 6099.47 1499.49 4898.70 2398.83 10398.86 6495.48 11698.91 5299.17 6295.48 5599.93 1995.80 15299.53 9099.76 29
ZNCC-MVS98.49 3798.20 4799.35 2599.73 1298.39 3999.19 3798.86 6495.77 10298.31 9199.10 7695.46 5699.93 1997.57 7699.81 1199.74 36
ETH3D-3000-0.198.35 4998.00 5899.38 2099.47 5198.68 2598.67 14198.84 6994.66 16299.11 3399.25 4995.46 5699.81 7596.80 11699.73 4699.63 78
mPP-MVS98.51 3698.26 4099.25 4299.75 498.04 6599.28 2298.81 8096.24 8598.35 8899.23 5195.46 5699.94 497.42 8399.81 1199.77 23
EI-MVSNet-Vis-set98.47 3998.39 2298.69 8199.46 5496.49 13098.30 19898.69 12297.21 4298.84 5499.36 2995.41 5999.78 10098.62 999.65 6399.80 12
ETV-MVS97.96 6397.81 6498.40 10698.42 16597.27 9698.73 12698.55 15896.84 6298.38 8597.44 24995.39 6099.35 16597.62 7098.89 12898.58 196
SR-MVS98.57 2798.35 2799.24 4399.53 3898.18 5899.09 5298.82 7496.58 7399.10 3499.32 3695.39 6099.82 6897.70 6699.63 6999.72 45
ACMMP_NAP98.61 1898.30 3799.55 999.62 3298.95 1798.82 10698.81 8095.80 10199.16 3199.47 995.37 6299.92 2597.89 5099.75 4199.79 13
CSCG97.85 7197.74 6798.20 11899.67 2795.16 18999.22 3199.32 793.04 23297.02 15398.92 10795.36 6399.91 3497.43 8299.64 6799.52 93
test117298.56 2998.35 2799.16 5399.53 3897.94 7199.09 5298.83 7296.52 7699.05 3799.34 3495.34 6499.82 6897.86 5299.64 6799.73 41
SR-MVS-dyc-post98.54 3398.35 2799.13 5799.49 4897.86 7399.11 4898.80 9196.49 7799.17 2999.35 3195.34 6499.82 6897.72 6199.65 6399.71 49
DP-MVS Recon97.86 7097.46 8199.06 6499.53 3898.35 4898.33 19098.89 4892.62 24698.05 9898.94 10495.34 6499.65 12896.04 14399.42 10499.19 141
APD-MVS_3200maxsize98.53 3598.33 3599.15 5699.50 4497.92 7299.15 4198.81 8096.24 8599.20 2599.37 2595.30 6799.80 8497.73 6099.67 5999.72 45
RE-MVS-def98.34 3199.49 4897.86 7399.11 4898.80 9196.49 7799.17 2999.35 3195.29 6897.72 6199.65 6399.71 49
GST-MVS98.43 4198.12 5199.34 2699.72 1398.38 4099.09 5298.82 7495.71 10598.73 6399.06 8695.27 6999.93 1997.07 9499.63 6999.72 45
DeepC-MVS_fast96.70 198.55 3198.34 3199.18 5099.25 8998.04 6598.50 16998.78 9997.72 798.92 5199.28 4395.27 6999.82 6897.55 7799.77 2999.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 5597.92 6299.49 1299.72 1398.88 1898.43 17898.78 9994.10 17897.69 12899.42 1595.25 7199.92 2598.09 3999.80 1899.67 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.41 4298.34 3198.61 8699.45 5896.32 14098.28 20198.68 12597.17 4598.74 6199.37 2595.25 7199.79 9698.57 1199.54 8999.73 41
原ACMM198.65 8499.32 7196.62 12198.67 13393.27 22497.81 12098.97 9595.18 7399.83 6093.84 21499.46 10199.50 99
HPM-MVS_fast98.38 4598.13 5099.12 6099.75 497.86 7399.44 898.82 7494.46 17098.94 4499.20 5895.16 7499.74 11197.58 7399.85 499.77 23
test1299.18 5099.16 10598.19 5798.53 16298.07 9795.13 7599.72 11399.56 8599.63 78
HPM-MVScopyleft98.36 4798.10 5399.13 5799.74 897.82 7799.53 598.80 9194.63 16398.61 7398.97 9595.13 7599.77 10597.65 6899.83 1099.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 8996.99 10299.23 4599.04 11598.55 3197.17 29998.35 19994.85 15397.93 11598.58 14395.07 7799.71 11892.60 24999.34 11099.43 114
MVS_111021_LR98.34 5198.23 4598.67 8399.27 8696.90 11297.95 23999.58 397.14 4998.44 8299.01 9295.03 7899.62 13597.91 4799.75 4199.50 99
EIA-MVS97.75 7497.58 7198.27 11298.38 16796.44 13299.01 6898.60 14695.88 9897.26 14297.53 24294.97 7999.33 16797.38 8599.20 11599.05 162
DELS-MVS98.40 4498.20 4798.99 6699.00 12097.66 8197.75 25998.89 4897.71 998.33 8998.97 9594.97 7999.88 4798.42 2799.76 3599.42 116
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 10996.78 11198.44 10299.29 8196.31 14298.14 22198.76 10392.41 25596.39 18498.31 17394.92 8199.78 10094.06 20998.77 13699.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.55 3198.25 4199.46 1599.76 298.64 2798.55 16298.74 10897.27 3998.02 10399.39 1794.81 8299.96 297.91 4799.79 2299.77 23
MTAPA98.58 2498.29 3899.46 1599.76 298.64 2798.90 8798.74 10897.27 3998.02 10399.39 1794.81 8299.96 297.91 4799.79 2299.77 23
112197.37 10196.77 11599.16 5399.34 6597.99 7098.19 21498.68 12590.14 31698.01 10798.97 9594.80 8499.87 4893.36 22899.46 10199.61 81
Test By Simon94.64 85
ETH3D cwj APD-0.1697.96 6397.52 7699.29 3499.05 11398.52 3298.33 19098.68 12593.18 22698.68 6599.13 7194.62 8699.83 6096.45 12999.55 8899.52 93
新几何199.16 5399.34 6598.01 6798.69 12290.06 31798.13 9398.95 10394.60 8799.89 3991.97 26999.47 9899.59 86
MP-MVScopyleft98.33 5398.01 5799.28 3899.75 498.18 5899.22 3198.79 9696.13 9097.92 11699.23 5194.54 8899.94 496.74 12199.78 2699.73 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 34610.50 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37894.51 890.00 3790.00 3770.00 3770.00 375
PS-MVSNAJss96.43 13796.26 13396.92 20195.84 32495.08 19599.16 4098.50 17295.87 9993.84 25598.34 17094.51 8998.61 24996.88 10893.45 25497.06 239
PS-MVSNAJ97.73 7597.77 6597.62 16298.68 14995.58 17397.34 28698.51 16797.29 3498.66 7097.88 21094.51 8999.90 3797.87 5199.17 11797.39 230
API-MVS97.41 9897.25 9097.91 13898.70 14696.80 11598.82 10698.69 12294.53 16598.11 9498.28 17694.50 9299.57 13994.12 20699.49 9497.37 232
ACMMPcopyleft98.23 5797.95 6099.09 6299.74 897.62 8499.03 6299.41 695.98 9597.60 13699.36 2994.45 9399.93 1997.14 9198.85 13299.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 11499.20 10095.36 18298.68 12591.89 27298.60 7499.10 7694.44 9499.82 6894.27 20199.44 10399.58 90
CS-MVS-test98.20 6098.20 4798.19 12099.09 11196.34 13899.35 1498.40 19097.17 4598.93 4898.31 17394.42 9599.12 18698.68 599.48 9699.10 155
xiu_mvs_v2_base97.66 7997.70 6897.56 16698.61 15595.46 17997.44 27598.46 17897.15 4898.65 7198.15 18794.33 9699.80 8497.84 5598.66 14197.41 228
PAPR96.84 12396.24 13498.65 8498.72 14596.92 11197.36 28498.57 15493.33 22096.67 16897.57 23994.30 9799.56 14191.05 28498.59 14399.47 106
PAPM_NR97.46 9197.11 9598.50 9699.50 4496.41 13498.63 14898.60 14695.18 13497.06 15198.06 19394.26 9899.57 13993.80 21698.87 13199.52 93
test22299.23 9697.17 10497.40 27898.66 13688.68 33398.05 9898.96 10194.14 9999.53 9099.61 81
EPP-MVSNet97.46 9197.28 8997.99 13498.64 15295.38 18199.33 1998.31 20593.61 21197.19 14499.07 8594.05 10099.23 17496.89 10598.43 15399.37 119
F-COLMAP97.09 11596.80 10897.97 13599.45 5894.95 20398.55 16298.62 14593.02 23396.17 18998.58 14394.01 10199.81 7593.95 21198.90 12799.14 150
TAPA-MVS93.98 795.35 18994.56 20497.74 15199.13 10894.83 20898.33 19098.64 14186.62 34196.29 18698.61 13894.00 10299.29 16980.00 35699.41 10599.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640097.59 8597.01 10099.34 2699.40 6298.56 3098.20 21098.81 8091.63 28098.44 8298.85 11393.98 10399.82 6894.11 20799.69 5799.64 75
MG-MVS97.81 7297.60 7098.44 10299.12 10995.97 15597.75 25998.78 9996.89 6198.46 7899.22 5393.90 10499.68 12594.81 18299.52 9299.67 66
DROMVSNet98.21 5998.11 5298.49 9898.34 17497.26 10099.61 498.43 18596.78 6498.87 5398.84 11593.72 10599.01 20798.91 299.50 9399.19 141
CDS-MVSNet96.99 11796.69 11797.90 13998.05 19995.98 15098.20 21098.33 20293.67 20896.95 15498.49 15193.54 10698.42 27095.24 17397.74 17699.31 126
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 11696.79 11097.70 15598.06 19895.31 18698.52 16498.31 20593.95 18797.05 15298.61 13893.49 10798.52 25995.33 16797.81 17299.29 131
abl_698.30 5698.03 5699.13 5799.56 3697.76 8099.13 4598.82 7496.14 8999.26 2199.37 2593.33 10899.93 1996.96 9999.67 5999.69 56
CNLPA97.45 9497.03 9998.73 7999.05 11397.44 9198.07 22898.53 16295.32 12796.80 16598.53 14793.32 10999.72 11394.31 20099.31 11299.02 164
OMC-MVS97.55 8997.34 8798.20 11899.33 6895.92 16298.28 20198.59 14895.52 11597.97 11099.10 7693.28 11099.49 15295.09 17598.88 12999.19 141
UA-Net97.96 6397.62 6998.98 6898.86 13297.47 8998.89 9199.08 2296.67 7098.72 6499.54 193.15 11199.81 7594.87 17898.83 13399.65 72
CPTT-MVS97.72 7697.32 8898.92 7299.64 3097.10 10599.12 4798.81 8092.34 25798.09 9699.08 8493.01 11299.92 2596.06 14299.77 2999.75 31
114514_t96.93 11996.27 13298.92 7299.50 4497.63 8398.85 9998.90 4684.80 35297.77 12199.11 7492.84 11399.66 12794.85 17999.77 2999.47 106
PVSNet_Blended_VisFu97.70 7797.46 8198.44 10299.27 8695.91 16398.63 14899.16 1894.48 16997.67 12998.88 11092.80 11499.91 3497.11 9299.12 11899.50 99
PVSNet_BlendedMVS96.73 12696.60 12197.12 18699.25 8995.35 18498.26 20499.26 994.28 17397.94 11397.46 24692.74 11599.81 7596.88 10893.32 25796.20 323
PVSNet_Blended97.38 10097.12 9498.14 12399.25 8995.35 18497.28 29199.26 993.13 22997.94 11398.21 18392.74 11599.81 7596.88 10899.40 10799.27 133
MVS_Test97.28 10497.00 10198.13 12598.33 17695.97 15598.74 12298.07 25394.27 17498.44 8298.07 19292.48 11799.26 17096.43 13198.19 16099.16 147
miper_enhance_ethall95.10 20394.75 19696.12 26197.53 23493.73 24996.61 33098.08 25192.20 26693.89 25196.65 30792.44 11898.30 29094.21 20391.16 28396.34 317
MVSFormer97.57 8797.49 7997.84 14198.07 19695.76 16999.47 698.40 19094.98 14698.79 5798.83 11792.34 11998.41 27796.91 10199.59 7699.34 120
lupinMVS97.44 9597.22 9298.12 12798.07 19695.76 16997.68 26397.76 27494.50 16898.79 5798.61 13892.34 11999.30 16897.58 7399.59 7699.31 126
CHOSEN 280x42097.18 11097.18 9397.20 18098.81 13793.27 26695.78 34399.15 1995.25 13196.79 16698.11 19092.29 12199.07 19798.56 1299.85 499.25 135
canonicalmvs97.67 7897.23 9198.98 6898.70 14698.38 4099.34 1698.39 19396.76 6697.67 12997.40 25292.26 12299.49 15298.28 3496.28 21399.08 160
IterMVS-LS95.46 17895.21 17696.22 25698.12 19393.72 25098.32 19598.13 23893.71 20194.26 23497.31 25692.24 12398.10 30594.63 18590.12 29496.84 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15495.83 14696.36 24997.93 20593.70 25198.12 22498.27 21493.70 20395.07 20399.02 8892.23 12498.54 25794.68 18493.46 25296.84 262
WTY-MVS97.37 10196.92 10598.72 8098.86 13296.89 11498.31 19698.71 11895.26 13097.67 12998.56 14692.21 12599.78 10095.89 14796.85 19299.48 104
Effi-MVS+97.12 11396.69 11798.39 10798.19 18796.72 11997.37 28298.43 18593.71 20197.65 13298.02 19592.20 12699.25 17196.87 11197.79 17399.19 141
1112_ss96.63 12896.00 14298.50 9698.56 15796.37 13598.18 21898.10 24492.92 23794.84 20998.43 15692.14 12799.58 13894.35 19796.51 20399.56 92
LS3D97.16 11196.66 12098.68 8298.53 16097.19 10398.93 8498.90 4692.83 24295.99 19499.37 2592.12 12899.87 4893.67 22099.57 8098.97 169
nrg03096.28 14495.72 14997.96 13796.90 27898.15 6199.39 998.31 20595.47 11794.42 22798.35 16692.09 12998.69 24197.50 8189.05 31197.04 240
mvs_anonymous96.70 12796.53 12597.18 18298.19 18793.78 24498.31 19698.19 22494.01 18394.47 22198.27 17992.08 13098.46 26597.39 8497.91 16899.31 126
FC-MVSNet-test96.42 13896.05 13997.53 16896.95 27397.27 9699.36 1299.23 1395.83 10093.93 24998.37 16492.00 13198.32 28696.02 14492.72 26597.00 242
FIs96.51 13596.12 13797.67 15897.13 26497.54 8799.36 1299.22 1595.89 9794.03 24798.35 16691.98 13298.44 26896.40 13292.76 26497.01 241
sss97.39 9996.98 10398.61 8698.60 15696.61 12398.22 20698.93 3993.97 18698.01 10798.48 15291.98 13299.85 5496.45 12998.15 16199.39 117
miper_ehance_all_eth95.01 20794.69 19995.97 26697.70 21993.31 26597.02 30698.07 25392.23 26393.51 26796.96 28991.85 13498.15 30193.68 21891.16 28396.44 314
DP-MVS96.59 13195.93 14398.57 8899.34 6596.19 14698.70 13598.39 19389.45 32794.52 21999.35 3191.85 13499.85 5492.89 24598.88 12999.68 62
Test_1112_low_res96.34 14195.66 15798.36 10898.56 15795.94 15897.71 26198.07 25392.10 26794.79 21397.29 25791.75 13699.56 14194.17 20496.50 20499.58 90
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 17496.84 28196.97 10898.74 12299.24 1195.16 13593.88 25297.72 22691.68 13798.31 28895.81 15087.25 33296.92 248
UniMVSNet (Re)95.78 16595.19 17797.58 16496.99 27297.47 8998.79 11799.18 1795.60 11093.92 25097.04 28091.68 13798.48 26195.80 15287.66 32796.79 266
HY-MVS93.96 896.82 12496.23 13598.57 8898.46 16497.00 10798.14 22198.21 22193.95 18796.72 16797.99 19991.58 13999.76 10794.51 19396.54 20298.95 172
xiu_mvs_v1_base_debu97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
xiu_mvs_v1_base97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
xiu_mvs_v1_base_debi97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
MAR-MVS96.91 12096.40 12898.45 10198.69 14896.90 11298.66 14498.68 12592.40 25697.07 15097.96 20291.54 14399.75 10993.68 21898.92 12698.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 6197.76 6698.90 7498.73 14197.27 9698.35 18798.78 9997.37 3197.72 12698.96 10191.53 14499.92 2598.79 499.65 6399.51 97
c3_l94.79 22294.43 21495.89 27197.75 21493.12 27297.16 30098.03 26092.23 26393.46 27097.05 27991.39 14598.01 31393.58 22389.21 30996.53 301
EPNet97.28 10496.87 10798.51 9594.98 34096.14 14798.90 8797.02 32098.28 195.99 19499.11 7491.36 14699.89 3996.98 9699.19 11699.50 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 8097.44 8398.25 11598.35 16996.20 14499.00 7098.32 20396.33 8498.03 10199.17 6291.35 14799.16 18098.10 3898.29 15999.39 117
131496.25 14695.73 14897.79 14697.13 26495.55 17698.19 21498.59 14893.47 21592.03 31197.82 21991.33 14899.49 15294.62 18798.44 15198.32 206
diffmvs97.58 8697.40 8598.13 12598.32 17895.81 16898.06 22998.37 19696.20 8798.74 6198.89 10991.31 14999.25 17198.16 3698.52 14699.34 120
PAPM94.95 21394.00 23797.78 14797.04 26995.65 17196.03 33998.25 21991.23 29694.19 23997.80 22191.27 15098.86 22982.61 35097.61 18098.84 178
casdiffmvs97.63 8197.41 8498.28 11198.33 17696.14 14798.82 10698.32 20396.38 8297.95 11199.21 5491.23 15199.23 17498.12 3798.37 15499.48 104
jason97.32 10397.08 9798.06 13197.45 24295.59 17297.87 24997.91 26994.79 15498.55 7698.83 11791.12 15299.23 17497.58 7399.60 7399.34 120
jason: jason.
IS-MVSNet97.22 10696.88 10698.25 11598.85 13496.36 13699.19 3797.97 26395.39 12197.23 14398.99 9491.11 15398.93 21894.60 18898.59 14399.47 106
PMMVS96.60 12996.33 13097.41 17297.90 20793.93 24097.35 28598.41 18892.84 24197.76 12297.45 24891.10 15499.20 17796.26 13597.91 16899.11 153
MVS94.67 23093.54 26898.08 12996.88 27996.56 12798.19 21498.50 17278.05 36192.69 29398.02 19591.07 15599.63 13390.09 29598.36 15698.04 213
Fast-Effi-MVS+96.28 14495.70 15498.03 13298.29 18095.97 15598.58 15498.25 21991.74 27595.29 20297.23 26191.03 15699.15 18392.90 24397.96 16798.97 169
Effi-MVS+-dtu96.29 14296.56 12295.51 28297.89 20890.22 31798.80 11398.10 24496.57 7496.45 18396.66 30590.81 15798.91 22095.72 15597.99 16697.40 229
mvs-test196.60 12996.68 11996.37 24897.89 20891.81 28698.56 16098.10 24496.57 7496.52 17997.94 20490.81 15799.45 16095.72 15598.01 16597.86 218
test_yl97.22 10696.78 11198.54 9298.73 14196.60 12498.45 17398.31 20594.70 15698.02 10398.42 15890.80 15999.70 11996.81 11496.79 19499.34 120
DCV-MVSNet97.22 10696.78 11198.54 9298.73 14196.60 12498.45 17398.31 20594.70 15698.02 10398.42 15890.80 15999.70 11996.81 11496.79 19499.34 120
alignmvs97.56 8897.07 9899.01 6598.66 15098.37 4698.83 10398.06 25896.74 6798.00 10997.65 23190.80 15999.48 15698.37 3096.56 20199.19 141
AdaColmapbinary97.15 11296.70 11698.48 9999.16 10596.69 12098.01 23498.89 4894.44 17196.83 16198.68 13290.69 16299.76 10794.36 19699.29 11398.98 168
cdsmvs_eth3d_5k23.98 34231.98 3440.00 3600.00 3830.00 3840.00 37198.59 1480.00 3780.00 37998.61 13890.60 1630.00 3790.00 3770.00 3770.00 375
eth_miper_zixun_eth94.68 22794.41 21595.47 28497.64 22291.71 29196.73 32798.07 25392.71 24493.64 26097.21 26390.54 16498.17 30093.38 22689.76 29896.54 299
DeepC-MVS95.98 397.88 6997.58 7198.77 7899.25 8996.93 11098.83 10398.75 10696.96 5896.89 16099.50 590.46 16599.87 4897.84 5599.76 3599.52 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 20694.46 21096.81 20796.86 28095.82 16799.24 2699.24 1193.87 19192.53 29896.84 29990.37 16698.24 29793.24 23187.93 32496.38 316
EPNet_dtu95.21 19794.95 18995.99 26496.17 31190.45 31598.16 22097.27 30996.77 6593.14 28198.33 17190.34 16798.42 27085.57 33698.81 13599.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 7397.40 8598.96 7098.88 13097.55 8698.63 14898.93 3996.74 6799.02 3998.84 11590.33 16899.83 6098.53 1396.66 19799.50 99
MSDG95.93 15895.30 17397.83 14298.90 12895.36 18296.83 32398.37 19691.32 29194.43 22698.73 12890.27 16999.60 13690.05 29898.82 13498.52 197
LCM-MVSNet-Re95.22 19695.32 17194.91 30098.18 18987.85 35198.75 11995.66 34795.11 13988.96 33796.85 29890.26 17097.65 32995.65 16098.44 15199.22 137
Vis-MVSNet (Re-imp)96.87 12296.55 12397.83 14298.73 14195.46 17999.20 3598.30 21194.96 14896.60 17298.87 11190.05 17198.59 25393.67 22098.60 14299.46 110
miper_lstm_enhance94.33 25294.07 23295.11 29597.75 21490.97 30497.22 29498.03 26091.67 27992.76 29096.97 28790.03 17297.78 32792.51 25689.64 30096.56 296
baseline195.84 16295.12 18098.01 13398.49 16395.98 15098.73 12697.03 31895.37 12496.22 18798.19 18589.96 17399.16 18094.60 18887.48 32898.90 175
MDTV_nov1_ep13_2view84.26 35996.89 31890.97 30297.90 11789.89 17493.91 21299.18 146
h-mvs3396.17 14795.62 15897.81 14599.03 11694.45 22498.64 14698.75 10697.48 2098.67 6698.72 12989.76 17599.86 5397.95 4481.59 35199.11 153
hse-mvs295.71 16895.30 17396.93 19898.50 16193.53 25698.36 18698.10 24497.48 2098.67 6697.99 19989.76 17599.02 20597.95 4480.91 35598.22 208
GeoE96.58 13396.07 13898.10 12898.35 16995.89 16599.34 1698.12 23993.12 23096.09 19098.87 11189.71 17798.97 20992.95 24198.08 16499.43 114
our_test_393.65 27993.30 27594.69 30895.45 33589.68 32496.91 31397.65 27991.97 27091.66 31596.88 29589.67 17897.93 32088.02 32291.49 27796.48 311
tpmrst95.63 17395.69 15595.44 28697.54 23288.54 34296.97 30897.56 28593.50 21497.52 13996.93 29389.49 17999.16 18095.25 17296.42 20698.64 192
D2MVS95.18 19995.08 18295.48 28397.10 26692.07 28298.30 19899.13 2094.02 18292.90 28696.73 30289.48 18098.73 24094.48 19493.60 25195.65 336
sam_mvs189.45 18199.20 138
patchmatchnet-post95.10 34289.42 18298.89 224
3Dnovator+94.38 697.43 9696.78 11199.38 2097.83 21198.52 3299.37 1198.71 11897.09 5392.99 28599.13 7189.36 18399.89 3996.97 9799.57 8099.71 49
NR-MVSNet94.98 21194.16 22797.44 17096.53 29697.22 10298.74 12298.95 3594.96 14889.25 33697.69 22789.32 18498.18 29994.59 19087.40 33096.92 248
HyFIR lowres test96.90 12196.49 12698.14 12399.33 6895.56 17497.38 28099.65 292.34 25797.61 13598.20 18489.29 18599.10 19496.97 9797.60 18199.77 23
3Dnovator94.51 597.46 9196.93 10499.07 6397.78 21397.64 8299.35 1499.06 2397.02 5593.75 25999.16 6789.25 18699.92 2597.22 8999.75 4199.64 75
PatchmatchNetpermissive95.71 16895.52 16096.29 25497.58 22790.72 31096.84 32297.52 29294.06 17997.08 14896.96 28989.24 18798.90 22392.03 26798.37 15499.26 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 16297.48 23688.34 34596.85 32197.29 30793.74 19897.48 14097.26 25889.18 18899.05 19891.92 27097.43 184
test_djsdf96.00 15395.69 15596.93 19895.72 32695.49 17899.47 698.40 19094.98 14694.58 21797.86 21289.16 18998.41 27796.91 10194.12 23896.88 257
DIV-MVS_self_test94.52 24194.03 23395.99 26497.57 23193.38 26397.05 30497.94 26691.74 27592.81 28897.10 26789.12 19098.07 30992.60 24990.30 29296.53 301
QAPM96.29 14295.40 16298.96 7097.85 21097.60 8599.23 2798.93 3989.76 32293.11 28299.02 8889.11 19199.93 1991.99 26899.62 7199.34 120
pmmvs494.69 22593.99 23996.81 20795.74 32595.94 15897.40 27897.67 27890.42 31093.37 27297.59 23789.08 19298.20 29892.97 24091.67 27596.30 321
cl____94.51 24294.01 23696.02 26397.58 22793.40 26297.05 30497.96 26591.73 27792.76 29097.08 27389.06 19398.13 30392.61 24890.29 29396.52 304
sam_mvs88.99 194
Patchmatch-test94.42 24893.68 26396.63 22197.60 22591.76 28894.83 35497.49 29689.45 32794.14 24197.10 26788.99 19498.83 23285.37 33998.13 16299.29 131
Patchmatch-RL test91.49 30390.85 30493.41 32791.37 36384.40 35892.81 36095.93 34591.87 27387.25 34594.87 34488.99 19496.53 35292.54 25582.00 34899.30 129
Fast-Effi-MVS+-dtu95.87 16095.85 14595.91 26997.74 21791.74 29098.69 13798.15 23595.56 11294.92 20797.68 23088.98 19798.79 23693.19 23397.78 17497.20 236
BH-untuned95.95 15595.72 14996.65 21798.55 15992.26 27998.23 20597.79 27393.73 19994.62 21698.01 19788.97 19899.00 20893.04 23898.51 14798.68 187
XVG-OURS96.55 13496.41 12796.99 19298.75 14093.76 24597.50 27498.52 16495.67 10796.83 16199.30 4188.95 19999.53 14795.88 14896.26 21497.69 224
PVSNet91.96 1896.35 14096.15 13696.96 19699.17 10192.05 28396.08 33698.68 12593.69 20497.75 12397.80 22188.86 20099.69 12494.26 20299.01 12399.15 148
test_post31.83 37588.83 20198.91 220
v894.47 24593.77 25596.57 22996.36 30494.83 20899.05 5898.19 22491.92 27193.16 27896.97 28788.82 20298.48 26191.69 27587.79 32596.39 315
BH-w/o95.38 18595.08 18296.26 25598.34 17491.79 28797.70 26297.43 30192.87 24094.24 23697.22 26288.66 20398.84 23091.55 27797.70 17898.16 211
tpmvs94.60 23394.36 21795.33 28997.46 23888.60 34196.88 31997.68 27791.29 29393.80 25796.42 31688.58 20499.24 17391.06 28296.04 22198.17 210
DU-MVS95.42 18294.76 19597.40 17496.53 29696.97 10898.66 14498.99 3095.43 11993.88 25297.69 22788.57 20598.31 28895.81 15087.25 33296.92 248
Baseline_NR-MVSNet94.35 25193.81 25195.96 26796.20 30994.05 23898.61 15196.67 33791.44 28593.85 25497.60 23688.57 20598.14 30294.39 19586.93 33595.68 335
PCF-MVS93.45 1194.68 22793.43 27298.42 10598.62 15496.77 11795.48 34898.20 22384.63 35393.34 27398.32 17288.55 20799.81 7584.80 34398.96 12598.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 25593.76 25795.91 26996.10 31492.93 27498.58 15497.97 26392.59 24893.47 26996.95 29188.53 20898.32 28692.56 25387.06 33496.49 310
PatchMatch-RL96.59 13196.03 14198.27 11299.31 7396.51 12997.91 24399.06 2393.72 20096.92 15898.06 19388.50 20999.65 12891.77 27399.00 12498.66 190
V4294.78 22394.14 22996.70 21496.33 30695.22 18898.97 7698.09 24992.32 25994.31 23297.06 27788.39 21098.55 25692.90 24388.87 31596.34 317
v7n94.19 26193.43 27296.47 23995.90 32194.38 22999.26 2498.34 20191.99 26992.76 29097.13 26688.31 21198.52 25989.48 31087.70 32696.52 304
TranMVSNet+NR-MVSNet95.14 20194.48 20897.11 18796.45 30196.36 13699.03 6299.03 2695.04 14493.58 26297.93 20588.27 21298.03 31294.13 20586.90 33796.95 247
MVSTER96.06 15095.72 14997.08 18998.23 18295.93 16198.73 12698.27 21494.86 15295.07 20398.09 19188.21 21398.54 25796.59 12393.46 25296.79 266
RRT_MVS96.04 15195.53 15997.56 16697.07 26897.32 9398.57 15998.09 24995.15 13695.02 20598.44 15588.20 21498.58 25596.17 13893.09 26196.79 266
CHOSEN 1792x268897.12 11396.80 10898.08 12999.30 7894.56 22298.05 23099.71 193.57 21297.09 14798.91 10888.17 21599.89 3996.87 11199.56 8599.81 11
CR-MVSNet94.76 22494.15 22896.59 22697.00 27093.43 25994.96 35097.56 28592.46 25096.93 15696.24 31988.15 21697.88 32587.38 32596.65 19898.46 199
Patchmtry93.22 28792.35 29195.84 27396.77 28393.09 27394.66 35597.56 28587.37 33992.90 28696.24 31988.15 21697.90 32187.37 32690.10 29596.53 301
v1094.29 25593.55 26796.51 23696.39 30394.80 21098.99 7298.19 22491.35 28993.02 28496.99 28588.09 21898.41 27790.50 29188.41 31996.33 319
ppachtmachnet_test93.22 28792.63 28794.97 29995.45 33590.84 30696.88 31997.88 27090.60 30592.08 31097.26 25888.08 21997.86 32685.12 34090.33 29196.22 322
Vis-MVSNetpermissive97.42 9797.11 9598.34 10998.66 15096.23 14399.22 3199.00 2896.63 7298.04 10099.21 5488.05 22099.35 16596.01 14599.21 11499.45 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 23593.92 24296.60 22596.21 30894.78 21298.59 15298.14 23791.86 27494.21 23897.02 28287.97 22198.41 27791.72 27489.57 30196.61 289
PatchT93.06 29191.97 29696.35 25096.69 28992.67 27694.48 35697.08 31486.62 34197.08 14892.23 35887.94 22297.90 32178.89 36096.69 19698.49 198
ADS-MVSNet294.58 23694.40 21695.11 29598.00 20088.74 33996.04 33797.30 30690.15 31496.47 18196.64 30887.89 22397.56 33390.08 29697.06 18899.02 164
ADS-MVSNet95.00 20894.45 21296.63 22198.00 20091.91 28596.04 33797.74 27690.15 31496.47 18196.64 30887.89 22398.96 21390.08 29697.06 18899.02 164
XVG-OURS-SEG-HR96.51 13596.34 12997.02 19198.77 13993.76 24597.79 25798.50 17295.45 11896.94 15599.09 8287.87 22599.55 14696.76 12095.83 22397.74 221
test_post196.68 32830.43 37687.85 22698.69 24192.59 251
test-LLR95.10 20394.87 19295.80 27496.77 28389.70 32296.91 31395.21 35095.11 13994.83 21195.72 33487.71 22798.97 20993.06 23698.50 14898.72 183
test0.0.03 194.08 27093.51 26995.80 27495.53 33292.89 27597.38 28095.97 34395.11 13992.51 30096.66 30587.71 22796.94 34387.03 32793.67 24797.57 226
JIA-IIPM93.35 28292.49 28995.92 26896.48 30090.65 31295.01 34996.96 32285.93 34796.08 19187.33 36387.70 22998.78 23791.35 27995.58 22598.34 204
v2v48294.69 22594.03 23396.65 21796.17 31194.79 21198.67 14198.08 25192.72 24394.00 24897.16 26587.69 23098.45 26692.91 24288.87 31596.72 275
CVMVSNet95.43 18196.04 14093.57 32597.93 20583.62 36098.12 22498.59 14895.68 10696.56 17399.02 8887.51 23197.51 33593.56 22497.44 18399.60 84
WR-MVS95.15 20094.46 21097.22 17996.67 29196.45 13198.21 20798.81 8094.15 17693.16 27897.69 22787.51 23198.30 29095.29 17088.62 31796.90 255
anonymousdsp95.42 18294.91 19096.94 19795.10 33995.90 16499.14 4298.41 18893.75 19693.16 27897.46 24687.50 23398.41 27795.63 16194.03 24096.50 309
v14419294.39 25093.70 26196.48 23896.06 31694.35 23098.58 15498.16 23491.45 28494.33 23197.02 28287.50 23398.45 26691.08 28189.11 31096.63 287
baseline295.11 20294.52 20696.87 20396.65 29293.56 25398.27 20394.10 36493.45 21692.02 31297.43 25087.45 23599.19 17893.88 21397.41 18597.87 217
EU-MVSNet93.66 27794.14 22992.25 33895.96 32083.38 36198.52 16498.12 23994.69 15892.61 29598.13 18987.36 23696.39 35491.82 27190.00 29696.98 243
CP-MVSNet94.94 21594.30 21996.83 20596.72 28895.56 17499.11 4898.95 3593.89 18992.42 30497.90 20787.19 23798.12 30494.32 19988.21 32196.82 265
bset_n11_16_dypcd94.89 21794.27 22096.76 20994.41 34895.15 19195.67 34495.64 34895.53 11394.65 21597.52 24387.10 23898.29 29396.58 12591.35 27896.83 264
HQP_MVS96.14 14895.90 14496.85 20497.42 24394.60 22098.80 11398.56 15697.28 3595.34 19998.28 17687.09 23999.03 20296.07 13994.27 23096.92 248
plane_prior697.35 24894.61 21887.09 239
RPSCF94.87 21895.40 16293.26 33198.89 12982.06 36598.33 19098.06 25890.30 31396.56 17399.26 4687.09 23999.49 15293.82 21596.32 20998.24 207
RPMNet92.81 29391.34 30197.24 17897.00 27093.43 25994.96 35098.80 9182.27 35696.93 15692.12 35986.98 24299.82 6876.32 36496.65 19898.46 199
v119294.32 25393.58 26696.53 23496.10 31494.45 22498.50 16998.17 23291.54 28294.19 23997.06 27786.95 24398.43 26990.14 29489.57 30196.70 279
CANet_DTU96.96 11896.55 12398.21 11798.17 19196.07 14997.98 23798.21 22197.24 4197.13 14698.93 10586.88 24499.91 3495.00 17799.37 10998.66 190
HQP2-MVS86.75 245
HQP-MVS95.72 16795.40 16296.69 21597.20 25794.25 23498.05 23098.46 17896.43 7994.45 22297.73 22486.75 24598.96 21395.30 16894.18 23496.86 261
OpenMVScopyleft93.04 1395.83 16395.00 18598.32 11097.18 26197.32 9399.21 3498.97 3189.96 31891.14 31999.05 8786.64 24799.92 2593.38 22699.47 9897.73 222
cl2294.68 22794.19 22496.13 26098.11 19493.60 25296.94 31098.31 20592.43 25493.32 27496.87 29786.51 24898.28 29594.10 20891.16 28396.51 307
ET-MVSNet_ETH3D94.13 26592.98 28097.58 16498.22 18396.20 14497.31 28995.37 34994.53 16579.56 36197.63 23586.51 24897.53 33496.91 10190.74 28899.02 164
YYNet190.70 31289.39 31594.62 31194.79 34590.65 31297.20 29597.46 29787.54 33872.54 36595.74 33086.51 24896.66 35086.00 33386.76 33996.54 299
MDA-MVSNet_test_wron90.71 31189.38 31694.68 30994.83 34390.78 30997.19 29697.46 29787.60 33772.41 36695.72 33486.51 24896.71 34985.92 33486.80 33896.56 296
v192192094.20 26093.47 27196.40 24795.98 31994.08 23798.52 16498.15 23591.33 29094.25 23597.20 26486.41 25298.42 27090.04 29989.39 30796.69 284
COLMAP_ROBcopyleft93.27 1295.33 19194.87 19296.71 21299.29 8193.24 26898.58 15498.11 24289.92 31993.57 26399.10 7686.37 25399.79 9690.78 28798.10 16397.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 25793.92 24295.35 28894.95 34192.60 27797.97 23897.65 27991.61 28190.68 32497.09 27186.32 25498.42 27089.70 30599.34 11095.02 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 17495.34 16896.46 24297.52 23593.75 24797.27 29298.46 17895.53 11394.42 22798.00 19886.21 25598.97 20996.25 13694.37 22896.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 28192.80 28395.07 29797.58 22787.97 34996.76 32597.86 27182.17 35793.53 26496.04 32786.13 25699.13 18589.24 31395.87 22298.10 212
PEN-MVS94.42 24893.73 25996.49 23796.28 30794.84 20699.17 3999.00 2893.51 21392.23 30797.83 21886.10 25797.90 32192.55 25486.92 33696.74 272
v124094.06 27293.29 27696.34 25196.03 31893.90 24198.44 17698.17 23291.18 29994.13 24297.01 28486.05 25898.42 27089.13 31589.50 30596.70 279
CostFormer94.95 21394.73 19795.60 28197.28 25189.06 33397.53 27396.89 32889.66 32496.82 16396.72 30386.05 25898.95 21795.53 16396.13 21998.79 180
ACMM93.85 995.69 17195.38 16696.61 22397.61 22493.84 24398.91 8698.44 18295.25 13194.28 23398.47 15386.04 26099.12 18695.50 16493.95 24396.87 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet93.98 27493.26 27796.14 25996.06 31694.39 22899.20 3598.86 6493.06 23191.78 31397.81 22085.87 26197.58 33290.53 29086.17 34196.46 313
VPA-MVSNet95.75 16695.11 18197.69 15697.24 25397.27 9698.94 8299.23 1395.13 13795.51 19897.32 25585.73 26298.91 22097.33 8789.55 30396.89 256
EPMVS94.99 20994.48 20896.52 23597.22 25591.75 28997.23 29391.66 37094.11 17797.28 14196.81 30085.70 26398.84 23093.04 23897.28 18698.97 169
TransMVSNet (Re)92.67 29591.51 30096.15 25896.58 29494.65 21398.90 8796.73 33390.86 30389.46 33597.86 21285.62 26498.09 30786.45 33081.12 35295.71 334
AUN-MVS94.53 24093.73 25996.92 20198.50 16193.52 25798.34 18898.10 24493.83 19495.94 19697.98 20185.59 26599.03 20294.35 19780.94 35498.22 208
dp94.15 26493.90 24594.90 30197.31 25086.82 35696.97 30897.19 31291.22 29796.02 19396.61 31085.51 26699.02 20590.00 30094.30 22998.85 176
LPG-MVS_test95.62 17495.34 16896.47 23997.46 23893.54 25498.99 7298.54 16094.67 16094.36 22998.77 12485.39 26799.11 19195.71 15794.15 23696.76 270
LGP-MVS_train96.47 23997.46 23893.54 25498.54 16094.67 16094.36 22998.77 12485.39 26799.11 19195.71 15794.15 23696.76 270
PS-CasMVS94.67 23093.99 23996.71 21296.68 29095.26 18799.13 4599.03 2693.68 20692.33 30597.95 20385.35 26998.10 30593.59 22288.16 32396.79 266
ab-mvs96.42 13895.71 15298.55 9098.63 15396.75 11897.88 24898.74 10893.84 19296.54 17798.18 18685.34 27099.75 10995.93 14696.35 20799.15 148
N_pmnet87.12 32787.77 32685.17 34795.46 33461.92 37497.37 28270.66 38085.83 34888.73 34196.04 32785.33 27197.76 32880.02 35590.48 29095.84 331
OPM-MVS95.69 17195.33 17096.76 20996.16 31394.63 21598.43 17898.39 19396.64 7195.02 20598.78 12285.15 27299.05 19895.21 17494.20 23396.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet95.92 15995.32 17197.69 15698.32 17894.64 21498.19 21497.45 29994.56 16496.03 19298.61 13885.02 27399.12 18690.68 28999.06 11999.30 129
DSMNet-mixed92.52 29792.58 28892.33 33694.15 35082.65 36398.30 19894.26 36189.08 33192.65 29495.73 33285.01 27495.76 35786.24 33197.76 17598.59 194
tfpnnormal93.66 27792.70 28696.55 23396.94 27495.94 15898.97 7699.19 1691.04 30191.38 31797.34 25384.94 27598.61 24985.45 33889.02 31395.11 344
LTVRE_ROB92.95 1594.60 23393.90 24596.68 21697.41 24694.42 22698.52 16498.59 14891.69 27891.21 31898.35 16684.87 27699.04 20191.06 28293.44 25596.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 19894.45 21297.46 16996.75 28696.56 12798.86 9898.65 14093.30 22393.27 27598.27 17984.85 27798.87 22794.82 18191.26 28296.96 245
thisisatest051595.61 17694.89 19197.76 14998.15 19295.15 19196.77 32494.41 35892.95 23697.18 14597.43 25084.78 27899.45 16094.63 18597.73 17798.68 187
CL-MVSNet_self_test90.11 31589.14 31893.02 33391.86 36288.23 34796.51 33398.07 25390.49 30690.49 32694.41 34684.75 27995.34 35980.79 35474.95 36295.50 337
AllTest95.24 19594.65 20096.99 19299.25 8993.21 26998.59 15298.18 22791.36 28793.52 26598.77 12484.67 28099.72 11389.70 30597.87 17098.02 214
TestCases96.99 19299.25 8993.21 26998.18 22791.36 28793.52 26598.77 12484.67 28099.72 11389.70 30597.87 17098.02 214
thres20095.25 19494.57 20397.28 17798.81 13794.92 20498.20 21097.11 31395.24 13396.54 17796.22 32384.58 28299.53 14787.93 32396.50 20497.39 230
pm-mvs193.94 27593.06 27996.59 22696.49 29995.16 18998.95 8098.03 26092.32 25991.08 32097.84 21584.54 28398.41 27792.16 26186.13 34396.19 324
ACMP93.49 1095.34 19094.98 18796.43 24497.67 22093.48 25898.73 12698.44 18294.94 15192.53 29898.53 14784.50 28499.14 18495.48 16594.00 24196.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 18594.70 19897.41 17298.98 12494.92 20498.87 9696.90 32695.38 12296.61 17196.88 29584.29 28599.56 14188.11 31996.29 21097.76 219
thres600view795.49 17794.77 19497.67 15898.98 12495.02 19698.85 9996.90 32695.38 12296.63 17096.90 29484.29 28599.59 13788.65 31896.33 20898.40 201
FMVSNet394.97 21294.26 22197.11 18798.18 18996.62 12198.56 16098.26 21893.67 20894.09 24397.10 26784.25 28798.01 31392.08 26392.14 26896.70 279
tfpn200view995.32 19294.62 20197.43 17198.94 12694.98 20098.68 13896.93 32495.33 12596.55 17596.53 31184.23 28899.56 14188.11 31996.29 21097.76 219
thres40095.38 18594.62 20197.65 16198.94 12694.98 20098.68 13896.93 32495.33 12596.55 17596.53 31184.23 28899.56 14188.11 31996.29 21098.40 201
cascas94.63 23293.86 24896.93 19896.91 27794.27 23296.00 34098.51 16785.55 35094.54 21896.23 32184.20 29098.87 22795.80 15296.98 19197.66 225
tpm94.13 26593.80 25295.12 29496.50 29887.91 35097.44 27595.89 34692.62 24696.37 18596.30 31884.13 29198.30 29093.24 23191.66 27699.14 150
tttt051796.07 14995.51 16197.78 14798.41 16694.84 20699.28 2294.33 36094.26 17597.64 13398.64 13784.05 29299.47 15895.34 16697.60 18199.03 163
IterMVS94.09 26993.85 24994.80 30697.99 20290.35 31697.18 29798.12 23993.68 20692.46 30397.34 25384.05 29297.41 33692.51 25691.33 27996.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26793.87 24794.85 30397.98 20490.56 31497.18 29798.11 24293.75 19692.58 29697.48 24583.97 29497.41 33692.48 25891.30 28096.58 292
SCA95.46 17895.13 17996.46 24297.67 22091.29 30097.33 28797.60 28394.68 15996.92 15897.10 26783.97 29498.89 22492.59 25198.32 15899.20 138
TR-MVS94.94 21594.20 22397.17 18397.75 21494.14 23697.59 27097.02 32092.28 26295.75 19797.64 23383.88 29698.96 21389.77 30296.15 21898.40 201
jajsoiax95.45 18095.03 18496.73 21195.42 33794.63 21599.14 4298.52 16495.74 10393.22 27698.36 16583.87 29798.65 24796.95 10094.04 23996.91 253
Anonymous2023120691.66 30291.10 30293.33 32994.02 35487.35 35398.58 15497.26 31090.48 30790.16 32896.31 31783.83 29896.53 35279.36 35889.90 29796.12 325
thisisatest053096.01 15295.36 16797.97 13598.38 16795.52 17798.88 9494.19 36294.04 18097.64 13398.31 17383.82 29999.46 15995.29 17097.70 17898.93 173
tpm294.19 26193.76 25795.46 28597.23 25489.04 33497.31 28996.85 33287.08 34096.21 18896.79 30183.75 30098.74 23992.43 25996.23 21698.59 194
mvs_tets95.41 18495.00 18596.65 21795.58 33094.42 22699.00 7098.55 15895.73 10493.21 27798.38 16383.45 30198.63 24897.09 9394.00 24196.91 253
OurMVSNet-221017-094.21 25994.00 23794.85 30395.60 32989.22 33198.89 9197.43 30195.29 12892.18 30898.52 15082.86 30298.59 25393.46 22591.76 27396.74 272
UGNet96.78 12596.30 13198.19 12098.24 18195.89 16598.88 9498.93 3997.39 2896.81 16497.84 21582.60 30399.90 3796.53 12699.49 9498.79 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 27992.97 28195.68 27895.49 33392.37 27898.20 21097.28 30889.66 32492.58 29697.26 25882.14 30498.09 30793.18 23490.95 28796.58 292
DWT-MVSNet_test94.82 21994.36 21796.20 25797.35 24890.79 30898.34 18896.57 33992.91 23895.33 20196.44 31582.00 30599.12 18694.52 19295.78 22498.70 185
test_part194.82 21993.82 25097.82 14498.84 13597.82 7799.03 6298.81 8092.31 26192.51 30097.89 20981.96 30698.67 24594.80 18388.24 32096.98 243
ACMH92.88 1694.55 23893.95 24196.34 25197.63 22393.26 26798.81 11298.49 17693.43 21789.74 33198.53 14781.91 30799.08 19693.69 21793.30 25896.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 28697.42 24391.32 29997.50 29495.09 14293.59 26198.35 16681.70 30898.88 22689.71 30493.39 25696.12 325
Anonymous2023121194.10 26893.26 27796.61 22399.11 11094.28 23199.01 6898.88 5186.43 34392.81 28897.57 23981.66 30998.68 24494.83 18089.02 31396.88 257
test111195.94 15795.78 14796.41 24598.99 12390.12 31899.04 5992.45 36896.99 5798.03 10199.27 4581.40 31099.48 15696.87 11199.04 12099.63 78
ECVR-MVScopyleft95.95 15595.71 15296.65 21799.02 11790.86 30599.03 6291.80 36996.96 5898.10 9599.26 4681.31 31199.51 15196.90 10499.04 12099.59 86
GBi-Net94.49 24393.80 25296.56 23098.21 18495.00 19798.82 10698.18 22792.46 25094.09 24397.07 27481.16 31297.95 31792.08 26392.14 26896.72 275
test194.49 24393.80 25296.56 23098.21 18495.00 19798.82 10698.18 22792.46 25094.09 24397.07 27481.16 31297.95 31792.08 26392.14 26896.72 275
FMVSNet294.47 24593.61 26597.04 19098.21 18496.43 13398.79 11798.27 21492.46 25093.50 26897.09 27181.16 31298.00 31591.09 28091.93 27196.70 279
GA-MVS94.81 22194.03 23397.14 18497.15 26393.86 24296.76 32597.58 28494.00 18494.76 21497.04 28080.91 31598.48 26191.79 27296.25 21599.09 157
SixPastTwentyTwo93.34 28392.86 28294.75 30795.67 32789.41 32998.75 11996.67 33793.89 18990.15 32998.25 18180.87 31698.27 29690.90 28590.64 28996.57 294
ACMH+92.99 1494.30 25493.77 25595.88 27297.81 21292.04 28498.71 13198.37 19693.99 18590.60 32598.47 15380.86 31799.05 19892.75 24792.40 26796.55 298
gg-mvs-nofinetune92.21 29990.58 30697.13 18596.75 28695.09 19495.85 34189.40 37385.43 35194.50 22081.98 36680.80 31898.40 28392.16 26198.33 15797.88 216
test20.0390.89 31090.38 30892.43 33593.48 35688.14 34898.33 19097.56 28593.40 21887.96 34396.71 30480.69 31994.13 36579.15 35986.17 34195.01 348
VPNet94.99 20994.19 22497.40 17497.16 26296.57 12698.71 13198.97 3195.67 10794.84 20998.24 18280.36 32098.67 24596.46 12887.32 33196.96 245
GG-mvs-BLEND96.59 22696.34 30594.98 20096.51 33388.58 37493.10 28394.34 35080.34 32198.05 31189.53 30896.99 19096.74 272
KD-MVS_self_test90.38 31389.38 31693.40 32892.85 35988.94 33797.95 23997.94 26690.35 31290.25 32793.96 35179.82 32295.94 35684.62 34576.69 36095.33 339
PVSNet_088.72 1991.28 30590.03 31195.00 29897.99 20287.29 35494.84 35398.50 17292.06 26889.86 33095.19 34079.81 32399.39 16392.27 26069.79 36598.33 205
MS-PatchMatch93.84 27693.63 26494.46 31796.18 31089.45 32797.76 25898.27 21492.23 26392.13 30997.49 24479.50 32498.69 24189.75 30399.38 10895.25 340
MVS-HIRNet89.46 32288.40 32192.64 33497.58 22782.15 36494.16 35993.05 36775.73 36390.90 32182.52 36579.42 32598.33 28583.53 34898.68 13797.43 227
MDA-MVSNet-bldmvs89.97 31788.35 32294.83 30595.21 33891.34 29697.64 26697.51 29388.36 33571.17 36796.13 32579.22 32696.63 35183.65 34786.27 34096.52 304
XVG-ACMP-BASELINE94.54 23994.14 22995.75 27796.55 29591.65 29298.11 22698.44 18294.96 14894.22 23797.90 20779.18 32799.11 19194.05 21093.85 24596.48 311
RRT_test8_iter0594.56 23794.19 22495.67 27997.60 22591.34 29698.93 8498.42 18794.75 15593.39 27197.87 21179.00 32898.61 24996.78 11890.99 28697.07 238
Anonymous2024052995.10 20394.22 22297.75 15099.01 11994.26 23398.87 9698.83 7285.79 34996.64 16998.97 9578.73 32999.85 5496.27 13494.89 22799.12 152
TESTMET0.1,194.18 26393.69 26295.63 28096.92 27589.12 33296.91 31394.78 35593.17 22794.88 20896.45 31478.52 33098.92 21993.09 23598.50 14898.85 176
pmmvs-eth3d90.36 31489.05 31994.32 31991.10 36492.12 28097.63 26996.95 32388.86 33284.91 35593.13 35478.32 33196.74 34688.70 31781.81 35094.09 355
KD-MVS_2432*160089.61 32087.96 32494.54 31294.06 35291.59 29395.59 34697.63 28189.87 32088.95 33894.38 34878.28 33296.82 34484.83 34168.05 36695.21 341
miper_refine_blended89.61 32087.96 32494.54 31294.06 35291.59 29395.59 34697.63 28189.87 32088.95 33894.38 34878.28 33296.82 34484.83 34168.05 36695.21 341
Anonymous20240521195.28 19394.49 20797.67 15899.00 12093.75 24798.70 13597.04 31790.66 30496.49 18098.80 12078.13 33499.83 6096.21 13795.36 22699.44 113
IB-MVS91.98 1793.27 28591.97 29697.19 18197.47 23793.41 26197.09 30395.99 34293.32 22192.47 30295.73 33278.06 33599.53 14794.59 19082.98 34698.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 29092.79 28494.20 32095.88 32288.67 34097.66 26597.07 31593.81 19591.71 31497.65 23177.96 33698.81 23491.47 27891.92 27295.12 343
test-mter94.08 27093.51 26995.80 27496.77 28389.70 32296.91 31395.21 35092.89 23994.83 21195.72 33477.69 33798.97 20993.06 23698.50 14898.72 183
USDC93.33 28492.71 28595.21 29196.83 28290.83 30796.91 31397.50 29493.84 19290.72 32398.14 18877.69 33798.82 23389.51 30993.21 26095.97 329
test_040291.32 30490.27 30994.48 31596.60 29391.12 30298.50 16997.22 31186.10 34688.30 34296.98 28677.65 33997.99 31678.13 36292.94 26394.34 351
K. test v392.55 29691.91 29894.48 31595.64 32889.24 33099.07 5594.88 35494.04 18086.78 34797.59 23777.64 34097.64 33092.08 26389.43 30696.57 294
TDRefinement91.06 30889.68 31395.21 29185.35 37091.49 29598.51 16897.07 31591.47 28388.83 34097.84 21577.31 34199.09 19592.79 24677.98 35895.04 346
test250694.44 24793.91 24496.04 26299.02 11788.99 33699.06 5679.47 37996.96 5898.36 8699.26 4677.21 34299.52 15096.78 11899.04 12099.59 86
new_pmnet90.06 31689.00 32093.22 33294.18 34988.32 34696.42 33596.89 32886.19 34485.67 35393.62 35277.18 34397.10 34081.61 35289.29 30894.23 352
Anonymous2024052191.18 30690.44 30793.42 32693.70 35588.47 34398.94 8297.56 28588.46 33489.56 33495.08 34377.15 34496.97 34283.92 34689.55 30394.82 349
new-patchmatchnet88.50 32487.45 32791.67 34090.31 36685.89 35797.16 30097.33 30589.47 32683.63 35792.77 35576.38 34595.06 36282.70 34977.29 35994.06 356
lessismore_v094.45 31894.93 34288.44 34491.03 37186.77 34897.64 23376.23 34698.42 27090.31 29385.64 34496.51 307
TinyColmap92.31 29891.53 29994.65 31096.92 27589.75 32196.92 31196.68 33690.45 30989.62 33297.85 21476.06 34798.81 23486.74 32892.51 26695.41 338
pmmvs691.77 30190.63 30595.17 29394.69 34791.24 30198.67 14197.92 26886.14 34589.62 33297.56 24175.79 34898.34 28490.75 28884.56 34595.94 330
MIMVSNet93.26 28692.21 29396.41 24597.73 21893.13 27195.65 34597.03 31891.27 29594.04 24696.06 32675.33 34997.19 33986.56 32996.23 21698.92 174
UnsupCasMVSNet_eth90.99 30989.92 31294.19 32194.08 35189.83 32097.13 30298.67 13393.69 20485.83 35296.19 32475.15 35096.74 34689.14 31479.41 35696.00 328
LFMVS95.86 16194.98 18798.47 10098.87 13196.32 14098.84 10296.02 34193.40 21898.62 7299.20 5874.99 35199.63 13397.72 6197.20 18799.46 110
CMPMVSbinary66.06 2189.70 31889.67 31489.78 34293.19 35776.56 36797.00 30798.35 19980.97 35881.57 35997.75 22374.75 35298.61 24989.85 30193.63 24994.17 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 30090.92 30394.49 31497.21 25692.09 28198.00 23697.55 29089.31 32990.86 32295.61 33874.48 35395.32 36085.57 33689.70 29996.07 327
testgi93.06 29192.45 29094.88 30296.43 30289.90 31998.75 11997.54 29195.60 11091.63 31697.91 20674.46 35497.02 34186.10 33293.67 24797.72 223
VDD-MVS95.82 16495.23 17597.61 16398.84 13593.98 23998.68 13897.40 30395.02 14597.95 11199.34 3474.37 35599.78 10098.64 796.80 19399.08 160
FMVSNet193.19 28992.07 29496.56 23097.54 23295.00 19798.82 10698.18 22790.38 31192.27 30697.07 27473.68 35697.95 31789.36 31291.30 28096.72 275
VDDNet95.36 18894.53 20597.86 14098.10 19595.13 19398.85 9997.75 27590.46 30898.36 8699.39 1773.27 35799.64 13097.98 4396.58 20098.81 179
UniMVSNet_ETH3D94.24 25893.33 27496.97 19597.19 26093.38 26398.74 12298.57 15491.21 29893.81 25698.58 14372.85 35898.77 23895.05 17693.93 24498.77 182
DeepMVS_CXcopyleft86.78 34497.09 26772.30 37095.17 35375.92 36284.34 35695.19 34070.58 35995.35 35879.98 35789.04 31292.68 361
OpenMVS_ROBcopyleft86.42 2089.00 32387.43 32893.69 32493.08 35889.42 32897.91 24396.89 32878.58 36085.86 35194.69 34569.48 36098.29 29377.13 36393.29 25993.36 360
EGC-MVSNET75.22 33469.54 33792.28 33794.81 34489.58 32597.64 26696.50 3401.82 3775.57 37895.74 33068.21 36196.26 35573.80 36691.71 27490.99 362
EG-PatchMatch MVS91.13 30790.12 31094.17 32294.73 34689.00 33598.13 22397.81 27289.22 33085.32 35496.46 31367.71 36298.42 27087.89 32493.82 24695.08 345
MIMVSNet189.67 31988.28 32393.82 32392.81 36091.08 30398.01 23497.45 29987.95 33687.90 34495.87 32967.63 36394.56 36478.73 36188.18 32295.83 332
pmmvs386.67 32884.86 33192.11 33988.16 36787.19 35596.63 32994.75 35679.88 35987.22 34692.75 35666.56 36495.20 36181.24 35376.56 36193.96 357
MVS_030492.81 29392.01 29595.23 29097.46 23891.33 29898.17 21998.81 8091.13 30093.80 25795.68 33766.08 36598.06 31090.79 28696.13 21996.32 320
tmp_tt68.90 33666.97 33874.68 35350.78 38059.95 37687.13 36583.47 37738.80 37362.21 36996.23 32164.70 36676.91 37588.91 31630.49 37387.19 365
UnsupCasMVSNet_bld87.17 32685.12 33093.31 33091.94 36188.77 33894.92 35298.30 21184.30 35482.30 35890.04 36063.96 36797.25 33885.85 33574.47 36493.93 358
test_method79.03 32978.17 33281.63 34986.06 36954.40 37982.75 36896.89 32839.54 37280.98 36095.57 33958.37 36894.73 36384.74 34478.61 35795.75 333
PM-MVS87.77 32586.55 32991.40 34191.03 36583.36 36296.92 31195.18 35291.28 29486.48 35093.42 35353.27 36996.74 34689.43 31181.97 34994.11 354
ambc89.49 34386.66 36875.78 36892.66 36196.72 33486.55 34992.50 35746.01 37097.90 32190.32 29282.09 34794.80 350
Gipumacopyleft78.40 33176.75 33483.38 34895.54 33180.43 36679.42 36997.40 30364.67 36673.46 36480.82 36745.65 37193.14 36666.32 36887.43 32976.56 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 33963.26 34266.53 35681.73 37358.81 37891.85 36284.75 37651.93 37159.09 37175.13 37043.32 37279.09 37442.03 37339.47 37161.69 370
E-PMN64.94 33864.25 34067.02 35582.28 37259.36 37791.83 36385.63 37552.69 36960.22 37077.28 36941.06 37380.12 37346.15 37241.14 37061.57 371
FPMVS77.62 33377.14 33379.05 35179.25 37460.97 37595.79 34295.94 34465.96 36567.93 36894.40 34737.73 37488.88 37068.83 36788.46 31887.29 364
PMMVS277.95 33275.44 33685.46 34682.54 37174.95 36994.23 35893.08 36672.80 36474.68 36387.38 36236.36 37591.56 36873.95 36563.94 36889.87 363
LCM-MVSNet78.70 33076.24 33586.08 34577.26 37671.99 37194.34 35796.72 33461.62 36776.53 36289.33 36133.91 37692.78 36781.85 35174.60 36393.46 359
ANet_high69.08 33565.37 33980.22 35065.99 37871.96 37290.91 36490.09 37282.62 35549.93 37378.39 36829.36 37781.75 37162.49 36938.52 37286.95 366
PMVScopyleft61.03 2365.95 33763.57 34173.09 35457.90 37951.22 38085.05 36793.93 36554.45 36844.32 37483.57 36413.22 37889.15 36958.68 37081.00 35378.91 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 34423.72 34712.64 35813.54 3828.19 38296.55 3326.13 3837.48 37616.74 37637.98 37412.97 3796.05 37716.69 3755.43 37623.68 372
wuyk23d30.17 34130.18 34530.16 35778.61 37543.29 38166.79 37014.21 38117.31 37414.82 37711.93 37711.55 38041.43 37637.08 37419.30 3745.76 374
MVEpermissive62.14 2263.28 34059.38 34374.99 35274.33 37765.47 37385.55 36680.50 37852.02 37051.10 37275.00 37110.91 38180.50 37251.60 37153.40 36978.99 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 34324.95 34611.09 35914.89 3816.47 38396.56 3319.87 3827.55 37517.93 37539.02 3739.43 3825.90 37816.56 37612.72 37520.91 373
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re8.20 34510.94 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37998.43 1560.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
MSC_two_6792asdad99.62 699.17 10199.08 1198.63 14399.94 498.53 1399.80 1899.86 2
No_MVS99.62 699.17 10199.08 1198.63 14399.94 498.53 1399.80 1899.86 2
eth-test20.00 383
eth-test0.00 383
IU-MVS99.71 2199.23 798.64 14195.28 12999.63 498.35 3199.81 1199.83 7
save fliter99.46 5498.38 4098.21 20798.71 11897.95 3
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5199.94 498.47 2199.81 1199.84 6
GSMVS99.20 138
test_part299.63 3199.18 1099.27 20
MTGPAbinary98.74 108
MTMP98.89 9194.14 363
gm-plane-assit95.88 32287.47 35289.74 32396.94 29299.19 17893.32 230
test9_res96.39 13399.57 8099.69 56
agg_prior295.87 14999.57 8099.68 62
agg_prior99.30 7898.38 4098.72 11497.57 13799.81 75
test_prior498.01 6797.86 250
test_prior99.19 4699.31 7398.22 5598.84 6999.70 11999.65 72
旧先验297.57 27291.30 29298.67 6699.80 8495.70 159
新几何297.64 266
无先验97.58 27198.72 11491.38 28699.87 4893.36 22899.60 84
原ACMM297.67 264
testdata299.89 3991.65 276
testdata197.32 28896.34 83
plane_prior797.42 24394.63 215
plane_prior598.56 15699.03 20296.07 13994.27 23096.92 248
plane_prior498.28 176
plane_prior394.61 21897.02 5595.34 199
plane_prior298.80 11397.28 35
plane_prior197.37 247
plane_prior94.60 22098.44 17696.74 6794.22 232
n20.00 384
nn0.00 384
door-mid94.37 359
test1198.66 136
door94.64 357
HQP5-MVS94.25 234
HQP-NCC97.20 25798.05 23096.43 7994.45 222
ACMP_Plane97.20 25798.05 23096.43 7994.45 222
BP-MVS95.30 168
HQP4-MVS94.45 22298.96 21396.87 259
HQP3-MVS98.46 17894.18 234
NP-MVS97.28 25194.51 22397.73 224
ACMMP++_ref92.97 262
ACMMP++93.61 250