This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
CANet98.05 5697.76 6198.90 7198.73 12997.27 9198.35 17598.78 9597.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17198.79 9297.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
VDD-MVS95.82 15695.23 16697.61 15698.84 12393.98 23098.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
CHOSEN 280x42097.18 10697.18 8997.20 17398.81 12593.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
VNet97.79 6997.40 8198.96 6798.88 11897.55 8198.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17398.76 9997.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7697.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
alignmvs97.56 8497.07 9499.01 6298.66 13898.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
canonicalmvs97.67 7497.23 8798.98 6598.70 13498.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvs97.58 8297.40 8198.13 12098.32 16495.81 16098.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
casdiffmvs97.63 7797.41 8098.28 10898.33 16296.14 14098.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
baseline97.64 7697.44 7998.25 11298.35 15796.20 13799.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9594.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
VDDNet95.36 17994.53 19697.86 13498.10 18195.13 18598.85 9097.75 26490.46 29598.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
PS-MVSNAJ97.73 7197.77 6097.62 15598.68 13795.58 16597.34 27398.51 16197.29 2898.66 6097.88 19794.51 8599.90 3397.87 4299.17 10997.39 217
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26292.30 28299.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
xiu_mvs_v2_base97.66 7597.70 6397.56 15998.61 14395.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9498.75 10296.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13398.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
ETV-MVS97.96 5897.81 5998.40 10398.42 15397.27 9198.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
CS-MVS97.81 6797.61 6598.41 10298.52 14997.15 9999.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
jason97.32 9997.08 9398.06 12597.45 22895.59 16497.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
lupinMVS97.44 9197.22 8898.12 12298.07 18295.76 16197.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9597.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
mvs_anonymous96.70 12396.53 12197.18 17598.19 17393.78 23598.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
EIA-MVS97.75 7097.58 6798.27 10998.38 15596.44 12799.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9997.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
VPA-MVSNet95.75 15895.11 17297.69 14997.24 23997.27 9198.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 243
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19997.64 7799.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
mvs_tets95.41 17595.00 17696.65 20895.58 31694.42 21799.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23697.09 8494.00 23096.91 240
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
EPNet97.28 10096.87 10398.51 9294.98 32696.14 14098.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19798.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
jajsoiax95.45 17195.03 17596.73 20295.42 32394.63 20799.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23596.95 9194.04 22896.91 240
ET-MVSNet_ETH3D94.13 25592.98 27097.58 15798.22 16996.20 13797.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
MVSFormer97.57 8397.49 7597.84 13598.07 18295.76 16199.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13494.58 20497.86 19989.16 18098.41 26496.91 9294.12 22796.88 244
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14095.38 17399.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18799.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23796.88 9893.45 24397.06 226
PVSNet_BlendedMVS96.73 12296.60 11797.12 17999.25 8695.35 17698.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
Effi-MVS+97.12 10996.69 11398.39 10498.19 17396.72 11497.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
test_yl97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
RRT_test8_iter0594.56 22894.19 21595.67 26797.60 21191.34 28698.93 7598.42 17994.75 14393.39 25897.87 19879.00 31798.61 23796.78 10790.99 27497.07 225
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18498.77 12793.76 23697.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
MVSTER96.06 14495.72 14397.08 18298.23 16895.93 15498.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
bset_n11_16_dypcd94.89 20894.27 21196.76 20094.41 33395.15 18395.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
UGNet96.78 12196.30 12798.19 11798.24 16795.89 15898.88 8598.93 3797.39 2396.81 15297.84 20282.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 20094.19 21597.40 16797.16 24896.57 12198.71 12298.97 3095.67 9694.84 19698.24 17080.36 30998.67 23396.46 11687.32 31896.96 232
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
sss97.39 9596.98 9998.61 8398.60 14496.61 11898.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
MVS_Test97.28 10097.00 9798.13 12098.33 16295.97 14898.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
FIs96.51 13096.12 13397.67 15197.13 25097.54 8299.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
test9_res96.39 12199.57 7599.69 51
Anonymous2024052995.10 19494.22 21397.75 14399.01 10894.26 22498.87 8798.83 6885.79 33596.64 15798.97 8778.73 31899.85 4996.27 12294.89 21699.12 142
PMMVS96.60 12596.33 12697.41 16597.90 19393.93 23197.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
CLD-MVS95.62 16595.34 16096.46 23297.52 22193.75 23897.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 18494.49 19897.67 15199.00 10993.75 23898.70 12697.04 30590.66 29196.49 16898.80 11078.13 32399.83 5596.21 12595.36 21599.44 105
RRT_MVS96.04 14595.53 15197.56 15997.07 25497.32 8898.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
ZD-MVS99.46 5198.70 1998.79 9293.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21298.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 235
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 235
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
FC-MVSNet-test96.42 13396.05 13497.53 16196.95 25997.27 9199.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13896.23 13699.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 13395.71 14698.55 8798.63 14196.75 11397.88 23698.74 10393.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10998.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
XVG-OURS96.55 12996.41 12396.99 18598.75 12893.76 23697.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
agg_prior295.87 13799.57 7599.68 57
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16796.84 26796.97 10398.74 11399.24 1095.16 12493.88 23997.72 21391.68 13198.31 27595.81 13887.25 31996.92 235
DU-MVS95.42 17394.76 18697.40 16796.53 28296.97 10398.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 235
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
UniMVSNet (Re)95.78 15795.19 16897.58 15796.99 25897.47 8498.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31496.79 253
cascas94.63 22393.86 23896.93 19196.91 26394.27 22396.00 32798.51 16185.55 33694.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19490.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
mvs-test196.60 12596.68 11596.37 23797.89 19491.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
LPG-MVS_test95.62 16595.34 16096.47 22997.46 22493.54 24598.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
LGP-MVS_train96.47 22997.46 22493.54 24598.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
旧先验297.57 25991.30 27998.67 5899.80 7995.70 147
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17587.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15799.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31196.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
ACMM93.85 995.69 16295.38 15896.61 21397.61 21093.84 23498.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 18194.98 17896.43 23497.67 20693.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tttt051796.07 14395.51 15397.78 14098.41 15494.84 19899.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
TAMVS97.02 11296.79 10697.70 14898.06 18495.31 17898.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
BP-MVS95.30 156
HQP-MVS95.72 15995.40 15496.69 20697.20 24394.25 22598.05 21898.46 17196.43 6794.45 20997.73 21186.75 23698.96 20195.30 15694.18 22396.86 248
thisisatest053096.01 14695.36 15997.97 12998.38 15595.52 16998.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
WR-MVS95.15 19194.46 20197.22 17296.67 27796.45 12698.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 242
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18595.98 14398.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20798.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
UniMVSNet_ETH3D94.24 24893.33 26496.97 18897.19 24693.38 25398.74 11398.57 14791.21 28593.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
CANet_DTU96.96 11496.55 11998.21 11498.17 17796.07 14297.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8498.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9098.90 4484.80 33897.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
Anonymous2023121194.10 25893.26 26796.61 21399.11 10494.28 22299.01 6098.88 4986.43 32992.81 27597.57 22681.66 30098.68 23294.83 16889.02 30096.88 244
XXY-MVS95.20 18994.45 20397.46 16296.75 27296.56 12298.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 232
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24798.78 9596.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
test_part194.82 21093.82 24097.82 13898.84 12397.82 7299.03 5598.81 7692.31 24892.51 28797.89 19681.96 29798.67 23394.80 17188.24 30796.98 230
EI-MVSNet95.96 14895.83 14196.36 23897.93 19193.70 24298.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17293.46 24196.84 249
thisisatest051595.61 16794.89 18297.76 14298.15 17895.15 18396.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17397.73 16698.68 175
IterMVS-LS95.46 16995.21 16796.22 24598.12 17993.72 24198.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17390.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 14195.73 14297.79 13997.13 25095.55 16898.19 20298.59 14193.47 20392.03 29897.82 20691.33 14299.49 14594.62 17598.44 14198.32 194
baseline195.84 15495.12 17198.01 12798.49 15195.98 14398.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17687.48 31598.90 162
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13199.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17698.59 13399.47 98
NR-MVSNet94.98 20294.16 21897.44 16396.53 28297.22 9698.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17887.40 31796.92 235
IB-MVS91.98 1793.27 27591.97 28697.19 17497.47 22393.41 25197.09 29095.99 32893.32 20992.47 28995.73 31978.06 32499.53 14294.59 17882.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 18095.78 21398.70 172
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15297.00 10298.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18196.54 19198.95 159
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18293.60 24095.65 322
Baseline_NR-MVSNet94.35 24193.81 24195.96 25596.20 29594.05 22998.61 14096.67 32491.44 27293.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
AUN-MVS94.53 23193.73 24996.92 19398.50 15093.52 24798.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
1112_ss96.63 12496.00 13798.50 9398.56 14596.37 13098.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17792.42 29197.90 19487.19 22898.12 29194.32 18788.21 30896.82 252
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
testdata98.26 11199.20 9795.36 17498.68 12091.89 25998.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 18999.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20888.86 19199.69 11994.26 19099.01 11399.15 138
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 24096.61 31798.08 24092.20 25393.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14595.94 15197.71 24998.07 24292.10 25494.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 18096.45 28796.36 13199.03 5599.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 234
API-MVS97.41 9497.25 8697.91 13298.70 13496.80 11098.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26798.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
cl-mvsnet294.68 21894.19 21596.13 24998.11 18093.60 24396.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 20998.76 9992.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 23094.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31699.11 18294.05 19893.85 23496.48 298
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28997.90 10489.89 16893.91 20099.18 136
baseline295.11 19394.52 19796.87 19596.65 27893.56 24498.27 19194.10 35093.45 20492.02 29997.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
原ACMM198.65 8199.32 6896.62 11698.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 30096.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
ACMH92.88 1694.55 22993.95 23296.34 24097.63 20993.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29899.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20593.31 25597.02 29398.07 24292.23 25093.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
MAR-MVS96.91 11696.40 12498.45 9798.69 13696.90 10798.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12995.46 17199.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
LS3D97.16 10796.66 11698.68 7998.53 14897.19 9798.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
PS-CasMVS94.67 22193.99 23096.71 20396.68 27695.26 17999.13 3999.03 2593.68 19492.33 29297.95 19085.35 26098.10 29293.59 21088.16 31096.79 253
cl_fuxian94.79 21394.43 20595.89 25997.75 20093.12 26297.16 28798.03 24992.23 25093.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
CVMVSNet95.43 17296.04 13593.57 31397.93 19183.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
OurMVSNet-221017-094.21 24994.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29598.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
eth_miper_zixun_eth94.68 21894.41 20695.47 27297.64 20891.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8899.21 2898.97 3089.96 30591.14 30699.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
无先验97.58 25898.72 10991.38 27399.87 4493.36 21699.60 78
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30398.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
gm-plane-assit95.88 30887.47 33689.74 31096.94 28099.19 17193.32 218
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15999.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31196.38 303
tpm94.13 25593.80 24295.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20391.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
pmmvs593.65 26992.97 27195.68 26695.49 31992.37 26898.20 19897.28 29689.66 31192.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
TESTMET0.1,194.18 25393.69 25295.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31998.92 20793.09 22398.50 13898.85 163
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 26093.51 25995.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32698.97 19893.06 22498.50 13898.72 170
BH-untuned95.95 14995.72 14396.65 20898.55 14792.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
EPMVS94.99 20094.48 19996.52 22597.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
pmmvs494.69 21693.99 23096.81 19895.74 31195.94 15197.40 26597.67 26790.42 29793.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
v2v48294.69 21694.03 22496.65 20896.17 29794.79 20398.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16695.97 14898.58 14398.25 21091.74 26295.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
V4294.78 21494.14 22096.70 20596.33 29295.22 18098.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12698.39 18489.45 31494.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 27088.83 32697.84 20277.31 33099.09 18692.79 23377.98 34295.04 332
ACMH+92.99 1494.30 24493.77 24595.88 26097.81 19892.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30699.05 18992.75 23492.40 25696.55 285
cl-mvsnet_94.51 23394.01 22796.02 25197.58 21393.40 25297.05 29197.96 25491.73 26492.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
cl-mvsnet194.52 23294.03 22495.99 25297.57 21793.38 25397.05 29197.94 25591.74 26292.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
SCA95.46 16995.13 17096.46 23297.67 20691.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
v14894.29 24593.76 24795.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
PEN-MVS94.42 23893.73 24996.49 22796.28 29394.84 19899.17 3399.00 2793.51 20192.23 29497.83 20586.10 24897.90 30892.55 24186.92 32396.74 259
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 26087.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
miper_lstm_enhance94.33 24294.07 22395.11 28397.75 20090.97 29497.22 28198.03 24991.67 26692.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
IterMVS94.09 25993.85 23994.80 29497.99 18890.35 30497.18 28498.12 23093.68 19492.46 29097.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25793.87 23794.85 29197.98 19090.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
tpm294.19 25193.76 24795.46 27397.23 24089.04 32097.31 27696.85 31987.08 32696.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18887.29 33894.84 34098.50 16692.06 25589.86 31795.19 32679.81 31299.39 15592.27 24769.79 34998.33 193
gg-mvs-nofinetune92.21 28990.58 29697.13 17896.75 27295.09 18695.85 32889.40 35785.43 33794.50 20781.98 35180.80 30798.40 27092.16 24898.33 14797.88 203
pm-mvs193.94 26593.06 26996.59 21696.49 28595.16 18198.95 7298.03 24992.32 24691.08 30797.84 20284.54 27498.41 26492.16 24886.13 33096.19 311
K. test v392.55 28691.91 28894.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32997.64 31792.08 25089.43 29396.57 281
GBi-Net94.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
test194.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
FMVSNet394.97 20394.26 21297.11 18098.18 17596.62 11698.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21390.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM96.29 13795.40 15498.96 6797.85 19697.60 8099.23 2198.93 3789.76 30993.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
新几何199.16 5099.34 6298.01 6298.69 11790.06 30498.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
EU-MVSNet93.66 26794.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
GA-MVS94.81 21294.03 22497.14 17797.15 24993.86 23396.76 31297.58 27394.00 17294.76 20197.04 26880.91 30498.48 24991.79 25996.25 20499.09 144
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
v114494.59 22693.92 23396.60 21596.21 29494.78 20498.59 14198.14 22891.86 26194.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
v894.47 23693.77 24596.57 21996.36 29094.83 20099.05 5298.19 21591.92 25893.16 26596.97 27588.82 19398.48 24991.69 26287.79 31296.39 302
testdata299.89 3591.65 263
BH-w/o95.38 17695.08 17396.26 24498.34 16191.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
LF4IMVS93.14 28092.79 27494.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30197.65 21877.96 32598.81 22291.47 26591.92 26195.12 329
JIA-IIPM93.35 27292.49 27995.92 25696.48 28690.65 30095.01 33696.96 31085.93 33396.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
FMVSNet294.47 23693.61 25597.04 18398.21 17096.43 12898.79 10898.27 20592.46 23793.50 25597.09 25981.16 30198.00 30291.09 26791.93 26096.70 266
v14419294.39 24093.70 25196.48 22896.06 30294.35 22198.58 14398.16 22591.45 27194.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
tpmvs94.60 22494.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 28093.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
LTVRE_ROB92.95 1594.60 22493.90 23596.68 20797.41 23294.42 21798.52 15398.59 14191.69 26591.21 30598.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 11996.24 13098.65 8198.72 13396.92 10697.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
SixPastTwentyTwo93.34 27392.86 27294.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30598.27 28390.90 27290.64 27796.57 281
MVS_030492.81 28392.01 28595.23 27897.46 22491.33 28898.17 20798.81 7691.13 28793.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20399.29 7893.24 25898.58 14398.11 23289.92 30693.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33189.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
BH-RMVSNet95.92 15195.32 16397.69 14998.32 16494.64 20698.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
DTE-MVSNet93.98 26493.26 26796.14 24896.06 30294.39 21999.20 2998.86 6193.06 21891.78 30097.81 20785.87 25297.58 31990.53 27786.17 32896.46 300
v1094.29 24593.55 25796.51 22696.39 28994.80 20298.99 6498.19 21591.35 27693.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
v119294.32 24393.58 25696.53 22496.10 30094.45 21698.50 15898.17 22391.54 26994.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
MVS94.67 22193.54 25898.08 12396.88 26596.56 12298.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
ADS-MVSNet294.58 22794.40 20795.11 28398.00 18688.74 32496.04 32497.30 29490.15 30196.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21198.00 18691.91 27596.04 32497.74 26590.15 30196.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27894.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
v192192094.20 25093.47 26196.40 23695.98 30594.08 22898.52 15398.15 22691.33 27794.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
dp94.15 25493.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28496.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 21074.75 33998.61 23789.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 20694.20 21497.17 17697.75 20094.14 22797.59 25797.02 30892.28 24995.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
MS-PatchMatch93.84 26693.63 25494.46 30596.18 29689.45 31397.76 24698.27 20592.23 25092.13 29697.49 23179.50 31398.69 22989.75 29099.38 10095.25 326
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29998.88 21489.71 29193.39 24596.12 312
MVP-Stereo94.28 24793.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26890.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 18694.65 19196.99 18599.25 8693.21 25998.59 14198.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
TestCases96.99 18599.25 8693.21 25998.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
GG-mvs-BLEND96.59 21696.34 29194.98 19296.51 32088.58 35893.10 27094.34 33580.34 31098.05 29889.53 29596.99 17996.74 259
USDC93.33 27492.71 27595.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32698.82 22189.51 29693.21 24995.97 316
v7n94.19 25193.43 26296.47 22995.90 30794.38 22099.26 1898.34 19291.99 25692.76 27797.13 25488.31 20298.52 24789.48 29787.70 31396.52 291
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28186.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
FMVSNet193.19 27992.07 28496.56 22097.54 21895.00 18998.82 9798.18 21890.38 29892.27 29397.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
tpm cat193.36 27192.80 27395.07 28597.58 21387.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
v124094.06 26293.29 26696.34 24096.03 30493.90 23298.44 16598.17 22391.18 28694.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31984.91 34193.13 33978.32 32096.74 33288.70 30481.81 33794.09 340
thres600view795.49 16894.77 18597.67 15198.98 11295.02 18898.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
thres100view90095.38 17694.70 18997.41 16598.98 11294.92 19698.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
tfpn200view995.32 18394.62 19297.43 16498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
our_test_393.65 26993.30 26594.69 29695.45 32189.68 31196.91 30097.65 26891.97 25791.66 30296.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
thres20095.25 18594.57 19497.28 17098.81 12594.92 19698.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31785.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
CR-MVSNet94.76 21594.15 21996.59 21697.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
Patchmtry93.22 27792.35 28195.84 26196.77 26993.09 26394.66 34297.56 27487.37 32592.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
test0.0.03 194.08 26093.51 25995.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29689.62 31997.85 20176.06 33498.81 22286.74 31592.51 25595.41 324
MIMVSNet93.26 27692.21 28396.41 23597.73 20493.13 26195.65 33297.03 30691.27 28294.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20598.90 7896.73 32090.86 29089.46 32197.86 19985.62 25598.09 29486.45 31781.12 33895.71 320
DSMNet-mixed92.52 28792.58 27892.33 32394.15 33582.65 34798.30 18694.26 34789.08 31892.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
testgi93.06 28192.45 28094.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30397.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32472.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32372.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 34082.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31690.86 30995.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
tfpnnormal93.66 26792.70 27696.55 22396.94 26095.94 15198.97 6899.19 1591.04 28891.38 30497.34 24084.94 26698.61 23785.45 32589.02 30095.11 330
Patchmatch-test94.42 23893.68 25396.63 21197.60 21191.76 27894.83 34197.49 28489.45 31494.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
ppachtmachnet_test93.22 27792.63 27794.97 28795.45 32190.84 29596.88 30697.88 25990.60 29292.08 29797.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
PCF-MVS93.45 1194.68 21893.43 26298.42 10198.62 14296.77 11295.48 33598.20 21484.63 33993.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29990.25 31493.96 33679.82 31195.94 34184.62 33176.69 34495.33 325
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32171.17 35296.13 31379.22 31596.63 33783.65 33286.27 32796.52 291
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21382.15 34894.16 34693.05 35375.73 34990.90 30882.52 35079.42 31498.33 27283.53 33398.68 12797.43 214
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31383.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
PAPM94.95 20494.00 22897.78 14097.04 25595.65 16396.03 32698.25 21091.23 28394.19 22697.80 20891.27 14498.86 21782.61 33597.61 16998.84 165
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 33085.67 33993.62 33777.18 33197.10 32781.61 33789.29 29594.23 337
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29390.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33488.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
TAPA-MVS93.98 795.35 18094.56 19597.74 14499.13 10294.83 20098.33 17898.64 13686.62 32796.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29490.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30894.13 34979.15 34486.17 32895.01 334
PatchT93.06 28191.97 28696.35 23996.69 27592.67 26694.48 34397.08 30286.62 32797.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32287.90 33095.87 31767.63 34994.56 34878.73 34688.18 30995.83 319
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33288.30 32896.98 27477.65 32897.99 30378.13 34792.94 25294.34 336
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
RPMNet92.81 28391.34 29197.24 17197.00 25693.43 24994.96 33798.80 8782.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31676.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 103
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32889.42 17398.89 212
MTMP98.89 8294.14 349
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 238
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
新几何297.64 254
旧先验199.29 7897.48 8398.70 11699.09 7495.56 4799.47 9099.61 75
原ACMM297.67 252
test22299.23 9397.17 9897.40 26598.66 13188.68 32098.05 8698.96 9394.14 9499.53 8599.61 75
segment_acmp96.85 11
testdata197.32 27596.34 71
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22994.63 207
plane_prior697.35 23494.61 21087.09 230
plane_prior498.28 164
plane_prior394.61 21097.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior197.37 233
plane_prior94.60 21298.44 16596.74 5594.22 221
n20.00 367
nn0.00 367
door-mid94.37 345
test1198.66 131
door94.64 343
HQP5-MVS94.25 225
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
HQP4-MVS94.45 20998.96 20196.87 246
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21597.73 211
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80