This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17198.79 9297.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17398.76 9997.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9997.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9597.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7697.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9594.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
ETV-MVS97.96 5897.81 5998.40 10398.42 15397.27 9198.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
PS-MVSNAJ97.73 7197.77 6097.62 15598.68 13795.58 16597.34 27398.51 16197.29 2898.66 6097.88 19794.51 8599.90 3397.87 4299.17 10997.39 217
CANet98.05 5697.76 6198.90 7198.73 12997.27 9198.35 17598.78 9597.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
xiu_mvs_v2_base97.66 7597.70 6397.56 15998.61 14395.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8498.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
CS-MVS97.81 6797.61 6598.41 10298.52 14997.15 9999.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24798.78 9596.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
EIA-MVS97.75 7097.58 6798.27 10998.38 15596.44 12799.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9498.75 10296.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
MVSFormer97.57 8397.49 7597.84 13598.07 18295.76 16199.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
baseline97.64 7697.44 7998.25 11298.35 15796.20 13799.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
casdiffmvs97.63 7797.41 8098.28 10898.33 16296.14 14098.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
VNet97.79 6997.40 8198.96 6798.88 11897.55 8198.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
diffmvs97.58 8297.40 8198.13 12098.32 16495.81 16098.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14095.38 17399.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
API-MVS97.41 9497.25 8697.91 13298.70 13496.80 11098.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
canonicalmvs97.67 7497.23 8798.98 6598.70 13498.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
lupinMVS97.44 9197.22 8898.12 12298.07 18295.76 16197.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
CHOSEN 280x42097.18 10697.18 8997.20 17398.81 12593.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13896.23 13699.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
jason97.32 9997.08 9398.06 12597.45 22895.59 16497.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
alignmvs97.56 8497.07 9499.01 6298.66 13898.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26798.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
MVS_Test97.28 10097.00 9798.13 12098.33 16295.97 14898.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
sss97.39 9596.98 9998.61 8398.60 14496.61 11898.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19997.64 7799.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10998.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13199.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17698.59 13399.47 98
EPNet97.28 10096.87 10398.51 9294.98 32696.14 14098.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
TAMVS97.02 11296.79 10697.70 14898.06 18495.31 17898.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
test_yl97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 20998.76 9992.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19798.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30398.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
Effi-MVS+97.12 10996.69 11398.39 10498.19 17396.72 11497.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18595.98 14398.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs-test196.60 12596.68 11596.37 23797.89 19491.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
LS3D97.16 10796.66 11698.68 7998.53 14897.19 9798.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
PVSNet_BlendedMVS96.73 12296.60 11797.12 17999.25 8695.35 17698.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19490.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
CANet_DTU96.96 11496.55 11998.21 11498.17 17796.07 14297.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12995.46 17199.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
mvs_anonymous96.70 12396.53 12197.18 17598.19 17393.78 23598.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
XVG-OURS96.55 12996.41 12396.99 18598.75 12893.76 23697.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
MAR-MVS96.91 11696.40 12498.45 9798.69 13696.90 10798.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18498.77 12793.76 23697.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
PMMVS96.60 12596.33 12697.41 16597.90 19393.93 23197.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
UGNet96.78 12196.30 12798.19 11798.24 16795.89 15898.88 8598.93 3797.39 2396.81 15297.84 20282.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9098.90 4484.80 33897.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18799.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23796.88 9893.45 24397.06 226
PAPR96.84 11996.24 13098.65 8198.72 13396.92 10697.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15297.00 10298.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18196.54 19198.95 159
PVSNet91.96 1896.35 13596.15 13296.96 18999.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20888.86 19199.69 11994.26 19099.01 11399.15 138
FIs96.51 13096.12 13397.67 15197.13 25097.54 8299.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
FC-MVSNet-test96.42 13396.05 13497.53 16196.95 25997.27 9199.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
CVMVSNet95.43 17296.04 13593.57 31397.93 19183.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
1112_ss96.63 12496.00 13798.50 9398.56 14596.37 13098.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12698.39 18489.45 31494.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21298.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 235
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20391.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
EI-MVSNet95.96 14895.83 14196.36 23897.93 19193.70 24298.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17293.46 24196.84 249
131496.25 14195.73 14297.79 13997.13 25095.55 16898.19 20298.59 14193.47 20392.03 29897.82 20691.33 14299.49 14594.62 17598.44 14198.32 194
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
BH-untuned95.95 14995.72 14396.65 20898.55 14792.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
MVSTER96.06 14495.72 14397.08 18298.23 16895.93 15498.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
ab-mvs96.42 13395.71 14698.55 8798.63 14196.75 11397.88 23698.74 10393.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16695.97 14898.58 14398.25 21091.74 26295.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13494.58 20497.86 19989.16 18098.41 26496.91 9294.12 22796.88 244
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14595.94 15197.71 24998.07 24292.10 25494.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
RRT_MVS96.04 14595.53 15197.56 15997.07 25497.32 8898.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21390.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051796.07 14395.51 15397.78 14098.41 15494.84 19899.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
HQP-MVS95.72 15995.40 15496.69 20697.20 24394.25 22598.05 21898.46 17196.43 6794.45 20997.73 21186.75 23698.96 20195.30 15694.18 22396.86 248
QAPM96.29 13795.40 15498.96 6797.85 19697.60 8099.23 2198.93 3789.76 30993.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 30096.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
ACMM93.85 995.69 16295.38 15896.61 21397.61 21093.84 23498.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053096.01 14695.36 15997.97 12998.38 15595.52 16998.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
LPG-MVS_test95.62 16595.34 16096.47 22997.46 22493.54 24598.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
CLD-MVS95.62 16595.34 16096.46 23297.52 22193.75 23897.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20798.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17587.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
BH-RMVSNet95.92 15195.32 16397.69 14998.32 16494.64 20698.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27894.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
VDD-MVS95.82 15695.23 16697.61 15698.84 12393.98 23098.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
IterMVS-LS95.46 16995.21 16796.22 24598.12 17993.72 24198.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17390.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)95.78 15795.19 16897.58 15796.99 25897.47 8498.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31496.79 253
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16796.84 26796.97 10398.74 11399.24 1095.16 12493.88 23997.72 21391.68 13198.31 27595.81 13887.25 31996.92 235
SCA95.46 16995.13 17096.46 23297.67 20691.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
baseline195.84 15495.12 17198.01 12798.49 15195.98 14398.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17687.48 31598.90 162
VPA-MVSNet95.75 15895.11 17297.69 14997.24 23997.27 9198.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 243
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18293.60 24095.65 322
BH-w/o95.38 17695.08 17396.26 24498.34 16191.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
jajsoiax95.45 17195.03 17596.73 20295.42 32394.63 20799.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23596.95 9194.04 22896.91 240
mvs_tets95.41 17595.00 17696.65 20895.58 31694.42 21799.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23697.09 8494.00 23096.91 240
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8899.21 2898.97 3089.96 30591.14 30699.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13398.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
ACMP93.49 1095.34 18194.98 17896.43 23497.67 20693.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15799.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
thisisatest051595.61 16794.89 18297.76 14298.15 17895.15 18396.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17397.73 16698.68 175
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20399.29 7893.24 25898.58 14398.11 23289.92 30693.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres600view795.49 16894.77 18597.67 15198.98 11295.02 18898.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
DU-MVS95.42 17394.76 18697.40 16796.53 28296.97 10398.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 235
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 24096.61 31798.08 24092.20 25393.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31196.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
thres100view90095.38 17694.70 18997.41 16598.98 11294.92 19698.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20593.31 25597.02 29398.07 24292.23 25093.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
AllTest95.24 18694.65 19196.99 18599.25 8693.21 25998.59 14198.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
tfpn200view995.32 18394.62 19297.43 16498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
thres20095.25 18594.57 19497.28 17098.81 12594.92 19698.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
TAPA-MVS93.98 795.35 18094.56 19597.74 14499.13 10294.83 20098.33 17898.64 13686.62 32796.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDDNet95.36 17994.53 19697.86 13498.10 18195.13 18598.85 9097.75 26490.46 29598.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
baseline295.11 19394.52 19796.87 19596.65 27893.56 24498.27 19194.10 35093.45 20492.02 29997.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
Anonymous20240521195.28 18494.49 19897.67 15199.00 10993.75 23898.70 12697.04 30590.66 29196.49 16898.80 11078.13 32399.83 5596.21 12595.36 21599.44 105
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 18096.45 28796.36 13199.03 5599.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 234
EPMVS94.99 20094.48 19996.52 22597.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15999.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31196.38 303
WR-MVS95.15 19194.46 20197.22 17296.67 27796.45 12698.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 242
ADS-MVSNet95.00 19994.45 20396.63 21198.00 18691.91 27596.04 32497.74 26590.15 30196.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
XXY-MVS95.20 18994.45 20397.46 16296.75 27296.56 12298.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 232
cl_fuxian94.79 21394.43 20595.89 25997.75 20093.12 26297.16 28798.03 24992.23 25093.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
eth_miper_zixun_eth94.68 21894.41 20695.47 27297.64 20891.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
ADS-MVSNet294.58 22794.40 20795.11 28398.00 18688.74 32496.04 32497.30 29490.15 30196.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
tpmvs94.60 22494.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 28093.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 18095.78 21398.70 172
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17792.42 29197.90 19487.19 22898.12 29194.32 18788.21 30896.82 252
bset_n11_16_dypcd94.89 20894.27 21196.76 20094.41 33395.15 18395.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
FMVSNet394.97 20394.26 21297.11 18098.18 17596.62 11698.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
Anonymous2024052995.10 19494.22 21397.75 14399.01 10894.26 22498.87 8798.83 6885.79 33596.64 15798.97 8778.73 31899.85 4996.27 12294.89 21699.12 142
TR-MVS94.94 20694.20 21497.17 17697.75 20094.14 22797.59 25797.02 30892.28 24995.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
cl-mvsnet294.68 21894.19 21596.13 24998.11 18093.60 24396.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
VPNet94.99 20094.19 21597.40 16797.16 24896.57 12198.71 12298.97 3095.67 9694.84 19698.24 17080.36 30998.67 23396.46 11687.32 31896.96 232
RRT_test8_iter0594.56 22894.19 21595.67 26797.60 21191.34 28698.93 7598.42 17994.75 14393.39 25897.87 19879.00 31798.61 23796.78 10790.99 27497.07 225
NR-MVSNet94.98 20294.16 21897.44 16396.53 28297.22 9698.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17887.40 31796.92 235
CR-MVSNet94.76 21594.15 21996.59 21697.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
V4294.78 21494.14 22096.70 20596.33 29295.22 18098.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
EU-MVSNet93.66 26794.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
XVG-ACMP-BASELINE94.54 23094.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31699.11 18294.05 19893.85 23496.48 298
miper_lstm_enhance94.33 24294.07 22395.11 28397.75 20090.97 29497.22 28198.03 24991.67 26692.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
cl-mvsnet194.52 23294.03 22495.99 25297.57 21793.38 25397.05 29197.94 25591.74 26292.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
v2v48294.69 21694.03 22496.65 20896.17 29794.79 20398.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
GA-MVS94.81 21294.03 22497.14 17797.15 24993.86 23396.76 31297.58 27394.00 17294.76 20197.04 26880.91 30498.48 24991.79 25996.25 20499.09 144
cl-mvsnet_94.51 23394.01 22796.02 25197.58 21393.40 25297.05 29197.96 25491.73 26492.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
OurMVSNet-221017-094.21 24994.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29598.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
PAPM94.95 20494.00 22897.78 14097.04 25595.65 16396.03 32698.25 21091.23 28394.19 22697.80 20891.27 14498.86 21782.61 33597.61 16998.84 165
pmmvs494.69 21693.99 23096.81 19895.74 31195.94 15197.40 26597.67 26790.42 29793.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
PS-CasMVS94.67 22193.99 23096.71 20396.68 27695.26 17999.13 3999.03 2593.68 19492.33 29297.95 19085.35 26098.10 29293.59 21088.16 31096.79 253
ACMH92.88 1694.55 22993.95 23296.34 24097.63 20993.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29899.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo94.28 24793.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26890.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114494.59 22693.92 23396.60 21596.21 29494.78 20498.59 14198.14 22891.86 26194.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
dp94.15 25493.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28496.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
LTVRE_ROB92.95 1594.60 22493.90 23596.68 20797.41 23294.42 21798.52 15398.59 14191.69 26591.21 30598.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 25793.87 23794.85 29197.98 19090.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
cascas94.63 22393.86 23896.93 19196.91 26394.27 22396.00 32798.51 16185.55 33694.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
IterMVS94.09 25993.85 23994.80 29497.99 18890.35 30497.18 28498.12 23093.68 19492.46 29097.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part194.82 21093.82 24097.82 13898.84 12397.82 7299.03 5598.81 7692.31 24892.51 28797.89 19681.96 29798.67 23394.80 17188.24 30796.98 230
Baseline_NR-MVSNet94.35 24193.81 24195.96 25596.20 29594.05 22998.61 14096.67 32491.44 27293.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
tpm94.13 25593.80 24295.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
GBi-Net94.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
test194.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
v894.47 23693.77 24596.57 21996.36 29094.83 20099.05 5298.19 21591.92 25893.16 26596.97 27588.82 19398.48 24991.69 26287.79 31296.39 302
ACMH+92.99 1494.30 24493.77 24595.88 26097.81 19892.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30699.05 18992.75 23492.40 25696.55 285
v14894.29 24593.76 24795.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
tpm294.19 25193.76 24795.46 27397.23 24089.04 32097.31 27696.85 31987.08 32696.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
AUN-MVS94.53 23193.73 24996.92 19398.50 15093.52 24798.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
PEN-MVS94.42 23893.73 24996.49 22796.28 29394.84 19899.17 3399.00 2793.51 20192.23 29497.83 20586.10 24897.90 30892.55 24186.92 32396.74 259
v14419294.39 24093.70 25196.48 22896.06 30294.35 22198.58 14398.16 22591.45 27194.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
TESTMET0.1,194.18 25393.69 25295.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31998.92 20793.09 22398.50 13898.85 163
Patchmatch-test94.42 23893.68 25396.63 21197.60 21191.76 27894.83 34197.49 28489.45 31494.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
MS-PatchMatch93.84 26693.63 25494.46 30596.18 29689.45 31397.76 24698.27 20592.23 25092.13 29697.49 23179.50 31398.69 22989.75 29099.38 10095.25 326
FMVSNet294.47 23693.61 25597.04 18398.21 17096.43 12898.79 10898.27 20592.46 23793.50 25597.09 25981.16 30198.00 30291.09 26791.93 26096.70 266
v119294.32 24393.58 25696.53 22496.10 30094.45 21698.50 15898.17 22391.54 26994.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
v1094.29 24593.55 25796.51 22696.39 28994.80 20298.99 6498.19 21591.35 27693.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
MVS94.67 22193.54 25898.08 12396.88 26596.56 12298.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
test-mter94.08 26093.51 25995.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32698.97 19893.06 22498.50 13898.72 170
test0.0.03 194.08 26093.51 25995.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
v192192094.20 25093.47 26196.40 23695.98 30594.08 22898.52 15398.15 22691.33 27794.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
v7n94.19 25193.43 26296.47 22995.90 30794.38 22099.26 1898.34 19291.99 25692.76 27797.13 25488.31 20298.52 24789.48 29787.70 31396.52 291
PCF-MVS93.45 1194.68 21893.43 26298.42 10198.62 14296.77 11295.48 33598.20 21484.63 33993.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_ETH3D94.24 24893.33 26496.97 18897.19 24693.38 25398.74 11398.57 14791.21 28593.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
our_test_393.65 26993.30 26594.69 29695.45 32189.68 31196.91 30097.65 26891.97 25791.66 30296.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
v124094.06 26293.29 26696.34 24096.03 30493.90 23298.44 16598.17 22391.18 28694.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
Anonymous2023121194.10 25893.26 26796.61 21399.11 10494.28 22299.01 6098.88 4986.43 32992.81 27597.57 22681.66 30098.68 23294.83 16889.02 30096.88 244
DTE-MVSNet93.98 26493.26 26796.14 24896.06 30294.39 21999.20 2998.86 6193.06 21891.78 30097.81 20785.87 25297.58 31990.53 27786.17 32896.46 300
pm-mvs193.94 26593.06 26996.59 21696.49 28595.16 18198.95 7298.03 24992.32 24691.08 30797.84 20284.54 27498.41 26492.16 24886.13 33096.19 311
ET-MVSNet_ETH3D94.13 25592.98 27097.58 15798.22 16996.20 13797.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
pmmvs593.65 26992.97 27195.68 26695.49 31992.37 26898.20 19897.28 29689.66 31192.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
SixPastTwentyTwo93.34 27392.86 27294.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30598.27 28390.90 27290.64 27796.57 281
tpm cat193.36 27192.80 27395.07 28597.58 21387.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
LF4IMVS93.14 28092.79 27494.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30197.65 21877.96 32598.81 22291.47 26591.92 26195.12 329
USDC93.33 27492.71 27595.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32698.82 22189.51 29693.21 24995.97 316
tfpnnormal93.66 26792.70 27696.55 22396.94 26095.94 15198.97 6899.19 1591.04 28891.38 30497.34 24084.94 26698.61 23785.45 32589.02 30095.11 330
ppachtmachnet_test93.22 27792.63 27794.97 28795.45 32190.84 29596.88 30697.88 25990.60 29292.08 29797.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
DSMNet-mixed92.52 28792.58 27892.33 32394.15 33582.65 34798.30 18694.26 34789.08 31892.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
JIA-IIPM93.35 27292.49 27995.92 25696.48 28690.65 30095.01 33696.96 31085.93 33396.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
testgi93.06 28192.45 28094.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30397.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
Patchmtry93.22 27792.35 28195.84 26196.77 26993.09 26394.66 34297.56 27487.37 32592.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
X-MVStestdata94.06 26292.30 28299.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
MIMVSNet93.26 27692.21 28396.41 23597.73 20493.13 26195.65 33297.03 30691.27 28294.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
FMVSNet193.19 27992.07 28496.56 22097.54 21895.00 18998.82 9798.18 21890.38 29892.27 29397.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
MVS_030492.81 28392.01 28595.23 27897.46 22491.33 28898.17 20798.81 7691.13 28793.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
PatchT93.06 28191.97 28696.35 23996.69 27592.67 26694.48 34397.08 30286.62 32797.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
IB-MVS91.98 1793.27 27591.97 28697.19 17497.47 22393.41 25197.09 29095.99 32893.32 20992.47 28995.73 31978.06 32499.53 14294.59 17882.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v392.55 28691.91 28894.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32997.64 31792.08 25089.43 29396.57 281
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29689.62 31997.85 20176.06 33498.81 22286.74 31592.51 25595.41 324
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20598.90 7896.73 32090.86 29089.46 32197.86 19985.62 25598.09 29486.45 31781.12 33895.71 320
RPMNet92.81 28391.34 29197.24 17197.00 25693.43 24994.96 33798.80 8782.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29490.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31690.86 30995.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 26087.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33189.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
gg-mvs-nofinetune92.21 28990.58 29697.13 17896.75 27295.09 18695.85 32889.40 35785.43 33794.50 20781.98 35180.80 30798.40 27092.16 24898.33 14797.88 203
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30894.13 34979.15 34486.17 32895.01 334
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33288.30 32896.98 27477.65 32897.99 30378.13 34792.94 25294.34 336
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31785.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18887.29 33894.84 34098.50 16692.06 25589.86 31795.19 32679.81 31299.39 15592.27 24769.79 34998.33 193
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 27088.83 32697.84 20277.31 33099.09 18692.79 23377.98 34295.04 332
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 21074.75 33998.61 23789.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32472.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29990.25 31493.96 33679.82 31195.94 34184.62 33176.69 34495.33 325
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32372.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29390.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31984.91 34193.13 33978.32 32096.74 33288.70 30481.81 33794.09 340
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 33085.67 33993.62 33777.18 33197.10 32781.61 33789.29 29594.23 337
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21382.15 34894.16 34693.05 35375.73 34990.90 30882.52 35079.42 31498.33 27283.53 33398.68 12797.43 214
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32171.17 35296.13 31379.22 31596.63 33783.65 33286.27 32796.52 291
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32287.90 33095.87 31767.63 34994.56 34878.73 34688.18 30995.83 319
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33488.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31383.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28186.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 34082.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31676.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.46 5198.70 1998.79 9293.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
MTGPAbinary98.74 103
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32889.42 17398.89 212
GG-mvs-BLEND96.59 21696.34 29194.98 19296.51 32088.58 35893.10 27094.34 33580.34 31098.05 29889.53 29596.99 17996.74 259
MTMP98.89 8294.14 349
gm-plane-assit95.88 30887.47 33689.74 31096.94 28099.19 17193.32 218
test9_res96.39 12199.57 7599.69 51
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
agg_prior295.87 13799.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
TestCases96.99 18599.25 8693.21 25998.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
test_prior498.01 6297.86 238
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
旧先验297.57 25991.30 27998.67 5899.80 7995.70 147
新几何297.64 254
新几何199.16 5099.34 6298.01 6298.69 11790.06 30498.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
旧先验199.29 7897.48 8398.70 11699.09 7495.56 4799.47 9099.61 75
无先验97.58 25898.72 10991.38 27399.87 4493.36 21699.60 78
原ACMM297.67 252
原ACMM198.65 8199.32 6896.62 11698.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
test22299.23 9397.17 9897.40 26598.66 13188.68 32098.05 8698.96 9394.14 9499.53 8599.61 75
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata98.26 11199.20 9795.36 17498.68 12091.89 25998.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
testdata197.32 27596.34 71
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22994.63 207
plane_prior697.35 23494.61 21087.09 230
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 235
plane_prior498.28 164
plane_prior394.61 21097.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior197.37 233
plane_prior94.60 21298.44 16596.74 5594.22 221
n20.00 367
nn0.00 367
door-mid94.37 345
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
LGP-MVS_train96.47 22997.46 22493.54 24598.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
test1198.66 131
door94.64 343
HQP5-MVS94.25 225
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
BP-MVS95.30 156
HQP4-MVS94.45 20998.96 20196.87 246
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21597.73 211
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28997.90 10489.89 16893.91 20099.18 136
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29998.88 21489.71 29193.39 24596.12 312
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346