This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
MSP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 10894.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 40
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 12698.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
DVP-MVS97.59 797.54 597.73 3899.40 1193.77 5798.53 998.29 2495.55 598.56 1297.81 7893.90 1299.65 5396.62 2099.21 6599.77 1
SD-MVS97.41 997.53 697.06 6998.57 6894.46 2997.92 5298.14 5494.82 2899.01 398.55 1994.18 1197.41 29196.94 1099.64 1199.32 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 7694.25 3798.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 4795.86 497.27 11798.08 6595.81 397.87 2398.31 4494.26 1099.68 4797.02 999.49 3499.57 19
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3898.07 4397.85 10893.72 5698.57 1198.35 3593.69 1599.40 10497.06 899.46 3899.44 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4594.28 3497.02 13997.22 17795.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
SF-MVS97.39 1097.13 1198.17 1199.02 4195.28 1798.23 3198.27 2892.37 10398.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
DeepPCF-MVS93.97 196.61 4697.09 1295.15 15598.09 10186.63 25596.00 22598.15 5295.43 697.95 1998.56 1793.40 1699.36 10896.77 1799.48 3599.45 44
MSLP-MVS++96.94 3297.06 1396.59 8198.72 5591.86 10797.67 7798.49 1294.66 3597.24 3398.41 3192.31 3698.94 14696.61 2199.46 3898.96 88
SMA-MVS97.35 1297.03 1498.30 699.06 3995.42 897.94 5098.18 4790.57 16298.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
NCCC97.30 1497.03 1498.11 1498.77 5395.06 2297.34 10998.04 8195.96 297.09 4297.88 7093.18 2099.71 3895.84 4699.17 6899.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8293.84 5296.83 15998.10 6295.24 1197.49 2698.25 5192.57 3099.61 6196.80 1499.29 5599.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3796.16 297.55 9097.97 9595.59 496.61 5297.89 6892.57 3099.84 1995.95 4399.51 2999.40 50
Regformer-197.10 2096.96 1897.54 4998.32 8293.48 6396.83 15997.99 9395.20 1397.46 2798.25 5192.48 3399.58 6996.79 1699.29 5599.55 26
XVS97.18 1696.96 1897.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5498.29 4791.70 4999.80 2795.66 4999.40 4599.62 13
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4498.52 1098.32 2093.21 7297.18 3598.29 4792.08 3899.83 2295.63 5499.59 1599.54 28
Regformer-496.97 2996.87 2197.25 6198.34 7992.66 8496.96 14798.01 8795.12 1797.14 3898.42 2891.82 4599.61 6196.90 1199.13 7199.50 36
SR-MVS97.01 2896.86 2297.47 5199.09 3593.27 7097.98 4798.07 7093.75 5597.45 2898.48 2291.43 5599.59 6696.22 3299.27 5999.54 28
ACMMP_NAP97.20 1596.86 2298.23 899.09 3595.16 2097.60 8698.19 4592.82 9197.93 2098.74 1191.60 5299.86 896.26 2999.52 2599.67 8
region2R97.07 2296.84 2497.77 3599.46 193.79 5498.52 1098.24 3593.19 7597.14 3898.34 3891.59 5399.87 795.46 6299.59 1599.64 10
ACMMPR97.07 2296.84 2497.79 3299.44 593.88 5198.52 1098.31 2293.21 7297.15 3798.33 4191.35 5699.86 895.63 5499.59 1599.62 13
MCST-MVS97.18 1696.84 2498.20 1099.30 2495.35 1297.12 13498.07 7093.54 6496.08 7397.69 8693.86 1399.71 3896.50 2499.39 4799.55 26
CP-MVS97.02 2696.81 2797.64 4699.33 2293.54 6198.80 398.28 2692.99 8196.45 6298.30 4691.90 4499.85 1495.61 5699.68 499.54 28
Regformer-396.85 3696.80 2897.01 7098.34 7992.02 10396.96 14797.76 11295.01 2197.08 4398.42 2891.71 4899.54 8296.80 1499.13 7199.48 40
MTAPA97.08 2196.78 2997.97 2299.37 1694.42 3197.24 11998.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
zzz-MVS97.07 2296.77 3097.97 2299.37 1694.42 3197.15 13298.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
9.1496.75 3198.93 4397.73 6998.23 3991.28 13897.88 2298.44 2593.00 2199.65 5395.76 4899.47 36
#test#97.02 2696.75 3197.83 2699.42 694.12 4498.15 3798.32 2092.57 9997.18 3598.29 4792.08 3899.83 2295.12 6899.59 1599.54 28
ETH3D-3000-0.197.07 2296.71 3398.14 1398.90 4795.33 1497.68 7698.24 3591.57 12497.90 2198.37 3392.61 2999.66 5295.59 5999.51 2999.43 48
APD-MVS_3200maxsize96.81 3896.71 3397.12 6899.01 4292.31 9297.98 4798.06 7393.11 7897.44 2998.55 1990.93 6599.55 8096.06 4099.25 6199.51 33
ZNCC-MVS96.96 3096.67 3597.85 2599.37 1694.12 4498.49 1498.18 4792.64 9896.39 6498.18 5591.61 5199.88 495.59 5999.55 2199.57 19
DeepC-MVS_fast93.89 296.93 3396.64 3697.78 3398.64 6394.30 3397.41 10198.04 8194.81 2996.59 5498.37 3391.24 5899.64 6095.16 6699.52 2599.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS96.86 3596.60 3797.64 4699.40 1193.44 6498.50 1398.09 6493.27 7195.95 8098.33 4191.04 6399.88 495.20 6599.57 2099.60 16
APD-MVScopyleft96.95 3196.60 3798.01 1999.03 4094.93 2497.72 7298.10 6291.50 12698.01 1898.32 4392.33 3499.58 6994.85 7699.51 2999.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4596.58 3996.99 7198.46 7092.31 9296.20 21598.90 294.30 4495.86 8297.74 8392.33 3499.38 10796.04 4199.42 4399.28 62
testtj96.93 3396.56 4098.05 1799.10 3494.66 2797.78 6498.22 4092.74 9497.59 2498.20 5491.96 4399.86 894.21 8999.25 6199.63 11
PGM-MVS96.81 3896.53 4197.65 4499.35 2193.53 6297.65 8098.98 192.22 10597.14 3898.44 2591.17 6199.85 1494.35 8799.46 3899.57 19
GST-MVS96.85 3696.52 4297.82 2999.36 1994.14 4398.29 2498.13 5592.72 9596.70 4698.06 6091.35 5699.86 894.83 7899.28 5799.47 43
TSAR-MVS + GP.96.69 4396.49 4397.27 6098.31 8493.39 6596.79 16396.72 22094.17 4597.44 2997.66 8992.76 2399.33 10996.86 1397.76 11499.08 77
EI-MVSNet-Vis-set96.51 4996.47 4496.63 7898.24 8991.20 13096.89 15497.73 11594.74 3396.49 5898.49 2190.88 6799.58 6996.44 2798.32 9899.13 71
PHI-MVS96.77 4096.46 4597.71 4198.40 7494.07 4798.21 3498.45 1589.86 17497.11 4198.01 6492.52 3299.69 4496.03 4299.53 2499.36 55
MP-MVScopyleft96.77 4096.45 4697.72 3999.39 1393.80 5398.41 1898.06 7393.37 6795.54 9798.34 3890.59 7199.88 494.83 7899.54 2399.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4396.45 4697.40 5399.36 1993.11 7398.87 198.06 7391.17 14296.40 6397.99 6590.99 6499.58 6995.61 5699.61 1499.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS96.61 4696.38 4897.30 5797.79 11593.19 7195.96 22798.18 4795.23 1295.87 8197.65 9091.45 5499.70 4395.87 4499.44 4299.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set96.34 5496.30 4996.47 8998.20 9490.93 14196.86 15597.72 11894.67 3496.16 7098.46 2390.43 7299.58 6996.23 3197.96 10898.90 95
MP-MVS-pluss96.70 4296.27 5097.98 2199.23 3094.71 2696.96 14798.06 7390.67 15395.55 9598.78 1091.07 6299.86 896.58 2299.55 2199.38 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 4996.27 5097.22 6499.32 2392.74 8198.74 498.06 7390.57 16296.77 4598.35 3590.21 7599.53 8594.80 8199.63 1299.38 53
abl_696.40 5296.21 5296.98 7298.89 5092.20 9797.89 5398.03 8393.34 7097.22 3498.42 2887.93 9999.72 3595.10 6999.07 7699.02 80
test_prior396.46 5196.20 5397.23 6298.67 5892.99 7596.35 20098.00 8992.80 9296.03 7497.59 9792.01 4099.41 10295.01 7199.38 4899.29 59
MVS_111021_LR96.24 5796.19 5496.39 9698.23 9391.35 12396.24 21398.79 493.99 4995.80 8497.65 9089.92 8099.24 11695.87 4499.20 6698.58 115
ETH3D cwj APD-0.1696.56 4896.06 5598.05 1798.26 8895.19 1896.99 14498.05 8089.85 17697.26 3298.22 5391.80 4699.69 4494.84 7799.28 5799.27 63
CANet96.39 5396.02 5697.50 5097.62 12393.38 6697.02 13997.96 9695.42 794.86 10697.81 7887.38 11099.82 2596.88 1299.20 6699.29 59
ACMMPcopyleft96.27 5695.93 5797.28 5999.24 2892.62 8598.25 2898.81 392.99 8194.56 11098.39 3288.96 8599.85 1494.57 8697.63 11599.36 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG96.05 6195.91 5896.46 9199.24 2890.47 15498.30 2398.57 1189.01 19493.97 12297.57 9992.62 2899.76 3094.66 8499.27 5999.15 69
ETV-MVS96.02 6295.89 5996.40 9497.16 13792.44 9097.47 9897.77 11194.55 3796.48 5994.51 24391.23 5998.92 14795.65 5298.19 10197.82 163
train_agg96.30 5595.83 6097.72 3998.70 5694.19 3996.41 19298.02 8488.58 21196.03 7497.56 10192.73 2599.59 6695.04 7099.37 5299.39 51
agg_prior196.22 5895.77 6197.56 4898.67 5893.79 5496.28 20898.00 8988.76 20895.68 8997.55 10392.70 2799.57 7795.01 7199.32 5399.32 57
DeepC-MVS93.07 396.06 6095.66 6297.29 5897.96 10593.17 7297.30 11598.06 7393.92 5093.38 13598.66 1286.83 11699.73 3295.60 5899.22 6498.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS95.80 6895.65 6396.24 10897.32 13191.43 12198.10 3997.91 9993.38 6695.16 10394.57 24190.21 7598.98 14395.53 6198.67 9098.30 142
UA-Net95.95 6595.53 6497.20 6697.67 12092.98 7797.65 8098.13 5594.81 2996.61 5298.35 3588.87 8699.51 9090.36 15997.35 12599.11 75
ETH3 D test640096.16 5995.52 6598.07 1698.90 4795.06 2297.03 13698.21 4188.16 22596.64 5197.70 8591.18 6099.67 4992.44 12099.47 3699.48 40
casdiffmvs95.64 7195.49 6696.08 11296.76 15990.45 15597.29 11697.44 15694.00 4895.46 9997.98 6687.52 10798.73 16395.64 5397.33 12699.08 77
EIA-MVS95.53 7595.47 6795.71 13197.06 14589.63 17197.82 6097.87 10493.57 6093.92 12395.04 22090.61 7098.95 14594.62 8598.68 8998.54 117
canonicalmvs96.02 6295.45 6897.75 3797.59 12695.15 2198.28 2597.60 13094.52 3896.27 6796.12 17187.65 10399.18 12196.20 3794.82 17298.91 94
VNet95.89 6695.45 6897.21 6598.07 10392.94 7897.50 9398.15 5293.87 5197.52 2597.61 9685.29 13699.53 8595.81 4795.27 16499.16 67
baseline95.58 7395.42 7096.08 11296.78 15690.41 15797.16 13097.45 15293.69 5995.65 9397.85 7487.29 11198.68 16895.66 4997.25 12999.13 71
CDPH-MVS95.97 6495.38 7197.77 3598.93 4394.44 3096.35 20097.88 10286.98 25596.65 5097.89 6891.99 4299.47 9592.26 12199.46 3899.39 51
MG-MVS95.61 7295.38 7196.31 10198.42 7390.53 15296.04 22197.48 14193.47 6595.67 9298.10 5789.17 8399.25 11591.27 14998.77 8699.13 71
PS-MVSNAJ95.37 7795.33 7395.49 14497.35 13090.66 15095.31 25497.48 14193.85 5296.51 5795.70 19588.65 9099.65 5394.80 8198.27 9996.17 206
xiu_mvs_v2_base95.32 7995.29 7495.40 14997.22 13390.50 15395.44 24897.44 15693.70 5896.46 6196.18 16888.59 9399.53 8594.79 8397.81 11196.17 206
alignmvs95.87 6795.23 7597.78 3397.56 12895.19 1897.86 5597.17 18094.39 4196.47 6096.40 16085.89 12999.20 11896.21 3695.11 16898.95 90
CPTT-MVS95.57 7495.19 7696.70 7599.27 2691.48 11798.33 2198.11 6087.79 23695.17 10298.03 6287.09 11499.61 6193.51 10499.42 4399.02 80
MVSFormer95.37 7795.16 7795.99 11896.34 18091.21 12898.22 3297.57 13391.42 13096.22 6897.32 10986.20 12697.92 24594.07 9199.05 7798.85 100
diffmvs95.25 8195.13 7895.63 13496.43 17689.34 18795.99 22697.35 16892.83 9096.31 6597.37 10886.44 12198.67 16996.26 2997.19 13198.87 99
DP-MVS Recon95.68 7095.12 7997.37 5499.19 3194.19 3997.03 13698.08 6588.35 21895.09 10497.65 9089.97 7999.48 9492.08 13098.59 9398.44 132
EPP-MVSNet95.22 8395.04 8095.76 12597.49 12989.56 17598.67 597.00 20090.69 15294.24 11697.62 9589.79 8198.81 15693.39 10996.49 14598.92 93
DPM-MVS95.69 6994.92 8198.01 1998.08 10295.71 795.27 25797.62 12990.43 16595.55 9597.07 12191.72 4799.50 9289.62 17398.94 8298.82 103
PVSNet_Blended_VisFu95.27 8094.91 8296.38 9798.20 9490.86 14397.27 11798.25 3490.21 16794.18 11797.27 11187.48 10899.73 3293.53 10397.77 11398.55 116
Vis-MVSNetpermissive95.23 8294.81 8396.51 8697.18 13691.58 11598.26 2798.12 5794.38 4294.90 10598.15 5682.28 18798.92 14791.45 14698.58 9499.01 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v1_base_debu95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base_debi95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
OMC-MVS95.09 8694.70 8796.25 10798.46 7091.28 12496.43 19097.57 13392.04 11494.77 10897.96 6787.01 11599.09 13291.31 14896.77 13798.36 139
MVS_Test94.89 9494.62 8895.68 13296.83 15489.55 17696.70 17097.17 18091.17 14295.60 9496.11 17387.87 10098.76 16193.01 11797.17 13298.72 109
PAPM_NR95.01 8794.59 8996.26 10698.89 5090.68 14997.24 11997.73 11591.80 11992.93 14896.62 14989.13 8499.14 12689.21 18597.78 11298.97 87
lupinMVS94.99 9194.56 9096.29 10496.34 18091.21 12895.83 23396.27 24388.93 19996.22 6896.88 13086.20 12698.85 15395.27 6499.05 7798.82 103
EPNet95.20 8494.56 9097.14 6792.80 31392.68 8397.85 5894.87 30096.64 192.46 15197.80 8086.23 12399.65 5393.72 10198.62 9299.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended94.87 9594.56 9095.81 12498.27 8589.46 18295.47 24798.36 1688.84 20294.36 11396.09 17488.02 9699.58 6993.44 10698.18 10298.40 135
IS-MVSNet94.90 9394.52 9396.05 11597.67 12090.56 15198.44 1696.22 24693.21 7293.99 12097.74 8385.55 13498.45 18589.98 16297.86 10999.14 70
API-MVS94.84 9694.49 9495.90 12197.90 11192.00 10497.80 6297.48 14189.19 19094.81 10796.71 13588.84 8799.17 12288.91 19198.76 8796.53 197
3Dnovator+91.43 495.40 7694.48 9598.16 1296.90 15095.34 1398.48 1597.87 10494.65 3688.53 24998.02 6383.69 15699.71 3893.18 11298.96 8199.44 46
Effi-MVS+94.93 9294.45 9696.36 9996.61 16191.47 11896.41 19297.41 16191.02 14794.50 11195.92 17887.53 10698.78 15893.89 9796.81 13698.84 102
3Dnovator91.36 595.19 8594.44 9797.44 5296.56 16793.36 6898.65 698.36 1694.12 4689.25 23498.06 6082.20 18999.77 2993.41 10899.32 5399.18 66
jason94.84 9694.39 9896.18 11095.52 21390.93 14196.09 21996.52 23689.28 18796.01 7897.32 10984.70 14398.77 16095.15 6798.91 8498.85 100
jason: jason.
test_yl94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
DCV-MVSNet94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
WTY-MVS94.71 10094.02 10196.79 7497.71 11992.05 10196.59 18397.35 16890.61 15994.64 10996.93 12586.41 12299.39 10591.20 15194.71 17698.94 91
PVSNet_BlendedMVS94.06 11393.92 10294.47 18498.27 8589.46 18296.73 16798.36 1690.17 16894.36 11395.24 21488.02 9699.58 6993.44 10690.72 23194.36 298
Vis-MVSNet (Re-imp)94.15 10893.88 10394.95 16697.61 12487.92 22698.10 3995.80 25892.22 10593.02 14297.45 10584.53 14697.91 24888.24 19997.97 10799.02 80
112194.71 10093.83 10497.34 5598.57 6893.64 5996.04 22197.73 11581.56 31395.68 8997.85 7490.23 7499.65 5387.68 21399.12 7498.73 108
sss94.51 10293.80 10596.64 7697.07 14291.97 10596.32 20498.06 7388.94 19894.50 11196.78 13284.60 14499.27 11491.90 13296.02 14998.68 113
mvs_anonymous93.82 12193.74 10694.06 19996.44 17585.41 27395.81 23497.05 19489.85 17690.09 20696.36 16287.44 10997.75 26193.97 9396.69 14199.02 80
FIs94.09 11293.70 10795.27 15195.70 20792.03 10298.10 3998.68 793.36 6990.39 19396.70 13787.63 10497.94 24192.25 12390.50 23595.84 220
mvs-test193.63 12793.69 10893.46 23396.02 19684.61 28397.24 11996.72 22093.85 5292.30 15895.76 19083.08 16698.89 15191.69 14096.54 14496.87 190
AdaColmapbinary94.34 10493.68 10996.31 10198.59 6591.68 11196.59 18397.81 11089.87 17392.15 16197.06 12283.62 15799.54 8289.34 17998.07 10597.70 167
CANet_DTU94.37 10393.65 11096.55 8296.46 17492.13 9996.21 21496.67 22894.38 4293.53 13197.03 12379.34 23699.71 3890.76 15398.45 9697.82 163
FC-MVSNet-test93.94 11893.57 11195.04 15995.48 21591.45 12098.12 3898.71 593.37 6790.23 19696.70 13787.66 10297.85 25191.49 14490.39 23695.83 221
XVG-OURS-SEG-HR93.86 12093.55 11294.81 17297.06 14588.53 21095.28 25597.45 15291.68 12294.08 11997.68 8782.41 18598.90 15093.84 9992.47 20196.98 184
CDS-MVSNet94.14 11093.54 11395.93 11996.18 18791.46 11996.33 20397.04 19688.97 19793.56 12896.51 15387.55 10597.89 24989.80 16795.95 15198.44 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA94.28 10593.53 11496.52 8398.38 7792.55 8796.59 18396.88 21190.13 17091.91 16597.24 11385.21 13799.09 13287.64 21697.83 11097.92 155
PS-MVSNAJss93.74 12493.51 11594.44 18593.91 28789.28 19397.75 6697.56 13692.50 10089.94 20996.54 15288.65 9098.18 20493.83 10090.90 22995.86 217
CHOSEN 1792x268894.15 10893.51 11596.06 11498.27 8589.38 18595.18 26198.48 1485.60 27393.76 12697.11 11983.15 16499.61 6191.33 14798.72 8899.19 65
TAMVS94.01 11693.46 11795.64 13396.16 18990.45 15596.71 16996.89 21089.27 18893.46 13396.92 12887.29 11197.94 24188.70 19595.74 15698.53 118
MAR-MVS94.22 10693.46 11796.51 8698.00 10492.19 9897.67 7797.47 14488.13 22793.00 14395.84 18284.86 14299.51 9087.99 20398.17 10397.83 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP_MVS93.78 12393.43 11994.82 17096.21 18489.99 16397.74 6797.51 13994.85 2491.34 17496.64 14281.32 20398.60 17593.02 11592.23 20495.86 217
PLCcopyleft91.00 694.11 11193.43 11996.13 11198.58 6791.15 13596.69 17297.39 16287.29 25091.37 17396.71 13588.39 9499.52 8987.33 22397.13 13397.73 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR94.18 10793.42 12196.48 8897.64 12291.42 12295.55 24397.71 12288.99 19592.34 15795.82 18489.19 8299.11 12886.14 24197.38 12398.90 95
XVG-OURS93.72 12593.35 12294.80 17397.07 14288.61 20894.79 26597.46 14691.97 11793.99 12097.86 7381.74 19898.88 15292.64 11992.67 19996.92 188
nrg03094.05 11493.31 12396.27 10595.22 23594.59 2898.34 2097.46 14692.93 8891.21 18396.64 14287.23 11398.22 19894.99 7485.80 27795.98 215
UGNet94.04 11593.28 12496.31 10196.85 15191.19 13197.88 5497.68 12394.40 4093.00 14396.18 16873.39 29199.61 6191.72 13798.46 9598.13 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu93.08 14393.21 12592.68 26196.02 19683.25 29797.14 13396.72 22093.85 5291.20 18493.44 29083.08 16698.30 19491.69 14095.73 15796.50 199
VDD-MVS93.82 12193.08 12696.02 11697.88 11289.96 16797.72 7295.85 25692.43 10195.86 8298.44 2568.42 31499.39 10596.31 2894.85 17098.71 111
114514_t93.95 11793.06 12796.63 7899.07 3891.61 11297.46 10097.96 9677.99 32993.00 14397.57 9986.14 12899.33 10989.22 18499.15 6998.94 91
F-COLMAP93.58 12992.98 12895.37 15098.40 7488.98 20197.18 12897.29 17387.75 23990.49 19097.10 12085.21 13799.50 9286.70 23296.72 14097.63 169
HY-MVS89.66 993.87 11992.95 12996.63 7897.10 14192.49 8995.64 24196.64 22989.05 19393.00 14395.79 18885.77 13299.45 9889.16 18894.35 17897.96 152
HyFIR lowres test93.66 12692.92 13095.87 12298.24 8989.88 16894.58 26998.49 1285.06 28093.78 12595.78 18982.86 17398.67 16991.77 13695.71 15899.07 79
EI-MVSNet93.03 14692.88 13193.48 23195.77 20486.98 24696.44 18897.12 18490.66 15591.30 17797.64 9386.56 11898.05 22389.91 16490.55 23395.41 241
MVSTER93.20 14092.81 13294.37 18896.56 16789.59 17497.06 13597.12 18491.24 13991.30 17795.96 17682.02 19298.05 22393.48 10590.55 23395.47 237
OPM-MVS93.28 13792.76 13394.82 17094.63 26690.77 14796.65 17597.18 17893.72 5691.68 16897.26 11279.33 23798.63 17292.13 12792.28 20395.07 262
test_djsdf93.07 14492.76 13394.00 20293.49 30088.70 20798.22 3297.57 13391.42 13090.08 20795.55 20382.85 17497.92 24594.07 9191.58 21695.40 245
Fast-Effi-MVS+93.46 13292.75 13595.59 13796.77 15790.03 16096.81 16297.13 18388.19 22191.30 17794.27 25986.21 12598.63 17287.66 21596.46 14798.12 147
HQP-MVS93.19 14192.74 13694.54 18395.86 19989.33 18896.65 17597.39 16293.55 6190.14 19795.87 18080.95 20698.50 18292.13 12792.10 20995.78 224
CHOSEN 280x42093.12 14292.72 13794.34 19096.71 16087.27 23790.29 32897.72 11886.61 26191.34 17495.29 21184.29 15098.41 18693.25 11198.94 8297.35 180
UniMVSNet_NR-MVSNet93.37 13492.67 13895.47 14795.34 22492.83 7997.17 12998.58 1092.98 8690.13 20195.80 18588.37 9597.85 25191.71 13883.93 30395.73 230
LFMVS93.60 12892.63 13996.52 8398.13 10091.27 12597.94 5093.39 32290.57 16296.29 6698.31 4469.00 31099.16 12394.18 9095.87 15399.12 74
BH-untuned92.94 15192.62 14093.92 21297.22 13386.16 26496.40 19596.25 24590.06 17189.79 21496.17 17083.19 16298.35 19187.19 22697.27 12897.24 181
LS3D93.57 13092.61 14196.47 8997.59 12691.61 11297.67 7797.72 11885.17 27890.29 19598.34 3884.60 14499.73 3283.85 27398.27 9998.06 151
LPG-MVS_test92.94 15192.56 14294.10 19796.16 18988.26 21697.65 8097.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
UniMVSNet (Re)93.31 13692.55 14395.61 13695.39 21893.34 6997.39 10598.71 593.14 7790.10 20594.83 22987.71 10198.03 22791.67 14283.99 30295.46 238
ab-mvs93.57 13092.55 14396.64 7697.28 13291.96 10695.40 24997.45 15289.81 17893.22 14196.28 16579.62 23399.46 9690.74 15493.11 19398.50 122
CLD-MVS92.98 14892.53 14594.32 19196.12 19389.20 19595.28 25597.47 14492.66 9689.90 21095.62 19880.58 21398.40 18792.73 11892.40 20295.38 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LCM-MVSNet-Re92.50 16392.52 14692.44 26496.82 15581.89 30696.92 15193.71 31992.41 10284.30 30494.60 24085.08 13997.03 30391.51 14397.36 12498.40 135
ACMM89.79 892.96 14992.50 14794.35 18996.30 18288.71 20697.58 8797.36 16791.40 13390.53 18996.65 14179.77 22998.75 16291.24 15091.64 21495.59 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet93.24 13892.48 14895.51 14295.70 20792.39 9197.86 5598.66 992.30 10492.09 16395.37 20980.49 21598.40 18793.95 9485.86 27695.75 228
1112_ss93.37 13492.42 14996.21 10997.05 14790.99 13796.31 20596.72 22086.87 25889.83 21396.69 13986.51 12099.14 12688.12 20193.67 18798.50 122
PMMVS92.86 15592.34 15094.42 18794.92 25086.73 25194.53 27196.38 23984.78 28594.27 11595.12 21983.13 16598.40 18791.47 14596.49 14598.12 147
tttt051792.96 14992.33 15194.87 16997.11 14087.16 24397.97 4992.09 33090.63 15793.88 12497.01 12476.50 26899.06 13790.29 16195.45 16198.38 137
RRT_MVS93.21 13992.32 15295.91 12094.92 25094.15 4296.92 15196.86 21491.42 13091.28 18096.43 15779.66 23298.10 21293.29 11090.06 23895.46 238
QAPM93.45 13392.27 15396.98 7296.77 15792.62 8598.39 1998.12 5784.50 28888.27 25597.77 8182.39 18699.81 2685.40 25498.81 8598.51 121
thisisatest053093.03 14692.21 15495.49 14497.07 14289.11 19997.49 9792.19 32990.16 16994.09 11896.41 15976.43 27199.05 13890.38 15895.68 15998.31 141
ACMP89.59 1092.62 16292.14 15594.05 20096.40 17788.20 21997.36 10897.25 17691.52 12588.30 25396.64 14278.46 25198.72 16691.86 13591.48 21895.23 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VDDNet93.05 14592.07 15696.02 11696.84 15290.39 15898.08 4295.85 25686.22 26695.79 8598.46 2367.59 31799.19 11994.92 7594.85 17098.47 127
DU-MVS92.90 15392.04 15795.49 14494.95 24892.83 7997.16 13098.24 3593.02 8090.13 20195.71 19383.47 15897.85 25191.71 13883.93 30395.78 224
131492.81 15992.03 15895.14 15695.33 22789.52 17996.04 22197.44 15687.72 24086.25 28995.33 21083.84 15498.79 15789.26 18297.05 13497.11 182
PatchMatch-RL92.90 15392.02 15995.56 13898.19 9690.80 14595.27 25797.18 17887.96 22991.86 16795.68 19680.44 21698.99 14284.01 26997.54 11796.89 189
Fast-Effi-MVS+-dtu92.29 17491.99 16093.21 24495.27 23185.52 27197.03 13696.63 23292.09 11289.11 23695.14 21780.33 21998.08 21787.54 21994.74 17596.03 214
BH-RMVSNet92.72 16191.97 16194.97 16497.16 13787.99 22596.15 21795.60 26490.62 15891.87 16697.15 11878.41 25298.57 17883.16 27597.60 11698.36 139
IterMVS-LS92.29 17491.94 16293.34 23896.25 18386.97 24796.57 18697.05 19490.67 15389.50 22594.80 23186.59 11797.64 26989.91 16486.11 27595.40 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline192.82 15891.90 16395.55 14097.20 13590.77 14797.19 12794.58 30592.20 10792.36 15596.34 16384.16 15198.21 19989.20 18683.90 30697.68 168
jajsoiax92.42 16791.89 16494.03 20193.33 30588.50 21197.73 6997.53 13792.00 11688.85 24196.50 15475.62 27798.11 21193.88 9891.56 21795.48 235
Test_1112_low_res92.84 15791.84 16595.85 12397.04 14889.97 16695.53 24596.64 22985.38 27489.65 21995.18 21585.86 13099.10 12987.70 21093.58 19298.49 124
mvs_tets92.31 17291.76 16693.94 21093.41 30288.29 21497.63 8597.53 13792.04 11488.76 24496.45 15674.62 28198.09 21693.91 9691.48 21895.45 240
CVMVSNet91.23 21591.75 16789.67 31195.77 20474.69 33596.44 18894.88 29785.81 27092.18 16097.64 9379.07 23995.58 32688.06 20295.86 15498.74 107
BH-w/o92.14 18291.75 16793.31 23996.99 14985.73 26895.67 23895.69 26088.73 20989.26 23394.82 23082.97 17198.07 22085.26 25696.32 14896.13 210
PVSNet86.66 1892.24 17791.74 16993.73 21897.77 11683.69 29492.88 31296.72 22087.91 23193.00 14394.86 22778.51 25099.05 13886.53 23397.45 12298.47 127
OpenMVScopyleft89.19 1292.86 15591.68 17096.40 9495.34 22492.73 8298.27 2698.12 5784.86 28385.78 29297.75 8278.89 24799.74 3187.50 22098.65 9196.73 194
TranMVSNet+NR-MVSNet92.50 16391.63 17195.14 15694.76 25992.07 10097.53 9198.11 6092.90 8989.56 22296.12 17183.16 16397.60 27489.30 18083.20 31295.75 228
thres600view792.49 16591.60 17295.18 15497.91 11089.47 18097.65 8094.66 30292.18 11193.33 13694.91 22478.06 25899.10 12981.61 28794.06 18496.98 184
thres100view90092.43 16691.58 17394.98 16397.92 10989.37 18697.71 7494.66 30292.20 10793.31 13794.90 22578.06 25899.08 13481.40 29094.08 18196.48 200
anonymousdsp92.16 18091.55 17493.97 20592.58 31789.55 17697.51 9297.42 16089.42 18488.40 25094.84 22880.66 21297.88 25091.87 13491.28 22294.48 294
WR-MVS92.34 17091.53 17594.77 17595.13 24090.83 14496.40 19597.98 9491.88 11889.29 23195.54 20482.50 18297.80 25689.79 16885.27 28495.69 231
tfpn200view992.38 16991.52 17694.95 16697.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.48 200
thres40092.42 16791.52 17695.12 15897.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.98 184
DP-MVS92.76 16091.51 17896.52 8398.77 5390.99 13797.38 10796.08 25082.38 30689.29 23197.87 7183.77 15599.69 4481.37 29396.69 14198.89 97
thres20092.23 17891.39 17994.75 17697.61 12489.03 20096.60 18295.09 28792.08 11393.28 13894.00 27178.39 25399.04 14081.26 29494.18 18096.19 205
WR-MVS_H92.00 18491.35 18093.95 20795.09 24289.47 18098.04 4598.68 791.46 12888.34 25194.68 23685.86 13097.56 27685.77 24984.24 30094.82 279
PatchmatchNetpermissive91.91 18691.35 18093.59 22695.38 21984.11 28893.15 30895.39 27089.54 18092.10 16293.68 28382.82 17598.13 20784.81 26095.32 16398.52 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 20391.32 18291.79 28195.15 23879.20 32793.42 30395.37 27288.55 21493.49 13293.67 28482.49 18398.27 19590.41 15789.34 24597.90 156
VPNet92.23 17891.31 18394.99 16195.56 21190.96 13997.22 12597.86 10792.96 8790.96 18596.62 14975.06 27998.20 20191.90 13283.65 30895.80 223
thisisatest051592.29 17491.30 18495.25 15296.60 16288.90 20394.36 27892.32 32887.92 23093.43 13494.57 24177.28 26599.00 14189.42 17795.86 15497.86 159
EPNet_dtu91.71 19091.28 18592.99 25093.76 29283.71 29296.69 17295.28 27793.15 7687.02 28195.95 17783.37 16197.38 29379.46 30496.84 13597.88 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NR-MVSNet92.34 17091.27 18695.53 14194.95 24893.05 7497.39 10598.07 7092.65 9784.46 30295.71 19385.00 14097.77 26089.71 16983.52 30995.78 224
CP-MVSNet91.89 18791.24 18793.82 21595.05 24388.57 20997.82 6098.19 4591.70 12188.21 25795.76 19081.96 19397.52 28287.86 20584.65 29395.37 248
XXY-MVS92.16 18091.23 18894.95 16694.75 26090.94 14097.47 9897.43 15989.14 19188.90 23896.43 15779.71 23098.24 19689.56 17487.68 25995.67 232
TAPA-MVS90.10 792.30 17391.22 18995.56 13898.33 8189.60 17396.79 16397.65 12681.83 31091.52 17097.23 11487.94 9898.91 14971.31 33198.37 9798.17 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test-LLR91.42 20491.19 19092.12 27194.59 26780.66 31294.29 28292.98 32491.11 14490.76 18792.37 30479.02 24298.07 22088.81 19296.74 13897.63 169
SCA91.84 18891.18 19193.83 21495.59 20984.95 27994.72 26695.58 26690.82 14892.25 15993.69 28175.80 27498.10 21286.20 23995.98 15098.45 129
miper_ehance_all_eth91.59 19491.13 19292.97 25195.55 21286.57 25694.47 27296.88 21187.77 23788.88 24094.01 27086.22 12497.54 27889.49 17586.93 26694.79 284
miper_enhance_ethall91.54 19991.01 19393.15 24595.35 22387.07 24593.97 29096.90 20886.79 25989.17 23593.43 29286.55 11997.64 26989.97 16386.93 26694.74 288
D2MVS91.30 21390.95 19492.35 26794.71 26285.52 27196.18 21698.21 4188.89 20086.60 28693.82 27779.92 22797.95 24089.29 18190.95 22893.56 312
cl_fuxian91.38 20690.89 19592.88 25495.58 21086.30 25994.68 26796.84 21688.17 22388.83 24394.23 26285.65 13397.47 28589.36 17884.63 29494.89 274
V4291.58 19690.87 19693.73 21894.05 28488.50 21197.32 11296.97 20188.80 20789.71 21594.33 25482.54 18198.05 22389.01 18985.07 28894.64 292
baseline291.63 19390.86 19793.94 21094.33 27686.32 25895.92 22991.64 33489.37 18586.94 28294.69 23581.62 20098.69 16788.64 19694.57 17796.81 192
RPSCF90.75 23690.86 19790.42 30596.84 15276.29 33395.61 24296.34 24083.89 29491.38 17297.87 7176.45 26998.78 15887.16 22892.23 20496.20 204
v2v48291.59 19490.85 19993.80 21693.87 28988.17 22196.94 15096.88 21189.54 18089.53 22394.90 22581.70 19998.02 22889.25 18385.04 29095.20 259
PS-CasMVS91.55 19890.84 20093.69 22294.96 24788.28 21597.84 5998.24 3591.46 12888.04 26195.80 18579.67 23197.48 28487.02 22984.54 29795.31 251
Anonymous20240521192.07 18390.83 20195.76 12598.19 9688.75 20597.58 8795.00 29086.00 26993.64 12797.45 10566.24 32499.53 8590.68 15692.71 19799.01 84
RRT_test8_iter0591.19 22090.78 20292.41 26695.76 20683.14 29897.32 11297.46 14691.37 13489.07 23795.57 20070.33 30498.21 19993.56 10286.62 27195.89 216
MDTV_nov1_ep1390.76 20395.22 23580.33 31793.03 31195.28 27788.14 22692.84 14993.83 27581.34 20298.08 21782.86 27894.34 179
Anonymous2024052991.98 18590.73 20495.73 13098.14 9989.40 18497.99 4697.72 11879.63 32393.54 13097.41 10769.94 30899.56 7991.04 15291.11 22498.22 143
CostFormer91.18 22190.70 20592.62 26294.84 25681.76 30794.09 28894.43 30784.15 29192.72 15093.77 27979.43 23598.20 20190.70 15592.18 20797.90 156
FMVSNet391.78 18990.69 20695.03 16096.53 16992.27 9497.02 13996.93 20489.79 17989.35 22894.65 23877.01 26697.47 28586.12 24288.82 24895.35 249
Baseline_NR-MVSNet91.20 21790.62 20792.95 25293.83 29088.03 22497.01 14395.12 28688.42 21689.70 21695.13 21883.47 15897.44 28889.66 17283.24 31193.37 316
v114491.37 20890.60 20893.68 22393.89 28888.23 21896.84 15897.03 19888.37 21789.69 21794.39 25082.04 19197.98 23187.80 20785.37 28294.84 276
eth_miper_zixun_eth91.02 22590.59 20992.34 26895.33 22784.35 28494.10 28796.90 20888.56 21388.84 24294.33 25484.08 15297.60 27488.77 19484.37 29995.06 263
TR-MVS91.48 20290.59 20994.16 19696.40 17787.33 23595.67 23895.34 27687.68 24191.46 17195.52 20576.77 26798.35 19182.85 27993.61 19096.79 193
cl-mvsnet291.21 21690.56 21193.14 24696.09 19586.80 24994.41 27696.58 23587.80 23588.58 24893.99 27280.85 21197.62 27289.87 16686.93 26694.99 265
v891.29 21490.53 21293.57 22894.15 28088.12 22397.34 10997.06 19388.99 19588.32 25294.26 26183.08 16698.01 22987.62 21783.92 30594.57 293
MVS91.71 19090.44 21395.51 14295.20 23791.59 11496.04 22197.45 15273.44 33687.36 27495.60 19985.42 13599.10 12985.97 24697.46 11895.83 221
PEN-MVS91.20 21790.44 21393.48 23194.49 27087.91 22897.76 6598.18 4791.29 13587.78 26695.74 19280.35 21897.33 29585.46 25382.96 31395.19 260
v14890.99 22690.38 21592.81 25793.83 29085.80 26796.78 16596.68 22689.45 18388.75 24593.93 27482.96 17297.82 25587.83 20683.25 31094.80 282
cl-mvsnet190.97 22890.33 21692.88 25495.36 22286.19 26394.46 27496.63 23287.82 23388.18 25894.23 26282.99 16997.53 28087.72 20885.57 27994.93 270
cl-mvsnet_90.96 22990.32 21792.89 25395.37 22186.21 26294.46 27496.64 22987.82 23388.15 25994.18 26582.98 17097.54 27887.70 21085.59 27894.92 272
GA-MVS91.38 20690.31 21894.59 17894.65 26487.62 23394.34 27996.19 24790.73 15190.35 19493.83 27571.84 29497.96 23887.22 22593.61 19098.21 144
PAPM91.52 20090.30 21995.20 15395.30 23089.83 16993.38 30496.85 21586.26 26588.59 24795.80 18584.88 14198.15 20675.67 31995.93 15297.63 169
v14419291.06 22390.28 22093.39 23593.66 29587.23 24096.83 15997.07 19187.43 24689.69 21794.28 25881.48 20198.00 23087.18 22784.92 29294.93 270
GBi-Net91.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
test191.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
MSDG91.42 20490.24 22394.96 16597.15 13988.91 20293.69 29796.32 24185.72 27286.93 28396.47 15580.24 22098.98 14380.57 29695.05 16996.98 184
v119291.07 22290.23 22493.58 22793.70 29387.82 23096.73 16797.07 19187.77 23789.58 22094.32 25680.90 21097.97 23486.52 23485.48 28094.95 266
v1091.04 22490.23 22493.49 23094.12 28188.16 22297.32 11297.08 19088.26 22088.29 25494.22 26482.17 19097.97 23486.45 23684.12 30194.33 299
UniMVSNet_ETH3D91.34 21190.22 22694.68 17794.86 25587.86 22997.23 12497.46 14687.99 22889.90 21096.92 12866.35 32298.23 19790.30 16090.99 22797.96 152
XVG-ACMP-BASELINE90.93 23090.21 22793.09 24794.31 27885.89 26695.33 25297.26 17491.06 14689.38 22795.44 20868.61 31298.60 17589.46 17691.05 22594.79 284
OurMVSNet-221017-090.51 24490.19 22891.44 29093.41 30281.25 30996.98 14696.28 24291.68 12286.55 28796.30 16474.20 28497.98 23188.96 19087.40 26495.09 261
ET-MVSNet_ETH3D91.49 20190.11 22995.63 13496.40 17791.57 11695.34 25193.48 32190.60 16175.58 33295.49 20680.08 22396.79 31294.25 8889.76 24298.52 119
MVP-Stereo90.74 23790.08 23092.71 25993.19 30788.20 21995.86 23196.27 24386.07 26884.86 30094.76 23277.84 26197.75 26183.88 27298.01 10692.17 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 21290.08 23094.99 16196.51 17092.21 9597.41 10196.95 20288.82 20488.62 24694.75 23373.87 28597.42 29085.20 25788.55 25495.35 249
cascas91.20 21790.08 23094.58 18294.97 24689.16 19893.65 29997.59 13279.90 32289.40 22692.92 29675.36 27898.36 19092.14 12694.75 17496.23 203
miper_lstm_enhance90.50 24590.06 23391.83 27895.33 22783.74 29093.86 29296.70 22587.56 24487.79 26593.81 27883.45 16096.92 30987.39 22184.62 29594.82 279
v192192090.85 23290.03 23493.29 24093.55 29686.96 24896.74 16697.04 19687.36 24889.52 22494.34 25380.23 22197.97 23486.27 23785.21 28594.94 268
PCF-MVS89.48 1191.56 19789.95 23596.36 9996.60 16292.52 8892.51 31797.26 17479.41 32488.90 23896.56 15184.04 15399.55 8077.01 31597.30 12797.01 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB88.41 1390.99 22689.92 23694.19 19496.18 18789.55 17696.31 20597.09 18987.88 23285.67 29395.91 17978.79 24898.57 17881.50 28889.98 23994.44 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DWT-MVSNet_test90.76 23489.89 23793.38 23695.04 24483.70 29395.85 23294.30 31388.19 22190.46 19192.80 29773.61 28998.50 18288.16 20090.58 23297.95 154
v7n90.76 23489.86 23893.45 23493.54 29787.60 23497.70 7597.37 16588.85 20187.65 26894.08 26981.08 20598.10 21284.68 26283.79 30794.66 291
v124090.70 23989.85 23993.23 24293.51 29986.80 24996.61 18097.02 19987.16 25389.58 22094.31 25779.55 23497.98 23185.52 25285.44 28194.90 273
pmmvs490.93 23089.85 23994.17 19593.34 30490.79 14694.60 26896.02 25184.62 28687.45 27095.15 21681.88 19697.45 28787.70 21087.87 25894.27 303
IterMVS-SCA-FT90.31 24789.81 24191.82 27995.52 21384.20 28794.30 28196.15 24890.61 15987.39 27394.27 25975.80 27496.44 31587.34 22286.88 27094.82 279
EPMVS90.70 23989.81 24193.37 23794.73 26184.21 28693.67 29888.02 34189.50 18292.38 15493.49 28877.82 26297.78 25886.03 24592.68 19898.11 150
MS-PatchMatch90.27 24889.77 24391.78 28294.33 27684.72 28295.55 24396.73 21986.17 26786.36 28895.28 21371.28 29897.80 25684.09 26898.14 10492.81 319
CR-MVSNet90.82 23389.77 24393.95 20794.45 27287.19 24190.23 32995.68 26286.89 25792.40 15292.36 30780.91 20897.05 30181.09 29593.95 18597.60 174
DTE-MVSNet90.56 24289.75 24593.01 24993.95 28587.25 23897.64 8497.65 12690.74 15087.12 27795.68 19679.97 22697.00 30783.33 27481.66 31894.78 286
tpm90.25 24989.74 24691.76 28493.92 28679.73 32393.98 28993.54 32088.28 21991.99 16493.25 29377.51 26497.44 28887.30 22487.94 25798.12 147
X-MVStestdata91.71 19089.67 24797.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5432.69 34791.70 4999.80 2795.66 4999.40 4599.62 13
IterMVS90.15 25389.67 24791.61 28695.48 21583.72 29194.33 28096.12 24989.99 17287.31 27694.15 26775.78 27696.27 31886.97 23086.89 26994.83 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs190.72 23889.65 24993.96 20694.29 27989.63 17197.79 6396.82 21789.07 19286.12 29195.48 20778.61 24997.78 25886.97 23081.67 31794.46 295
test-mter90.19 25289.54 25092.12 27194.59 26780.66 31294.29 28292.98 32487.68 24190.76 18792.37 30467.67 31698.07 22088.81 19296.74 13897.63 169
Anonymous2023121190.63 24189.42 25194.27 19298.24 8989.19 19798.05 4497.89 10079.95 32188.25 25694.96 22172.56 29298.13 20789.70 17085.14 28695.49 234
TESTMET0.1,190.06 25489.42 25191.97 27494.41 27480.62 31494.29 28291.97 33287.28 25190.44 19292.47 30368.79 31197.67 26688.50 19896.60 14397.61 173
ACMH87.59 1690.53 24389.42 25193.87 21396.21 18487.92 22697.24 11996.94 20388.45 21583.91 31096.27 16671.92 29398.62 17484.43 26689.43 24495.05 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft87.81 1590.40 24689.28 25493.79 21797.95 10687.13 24496.92 15195.89 25582.83 30486.88 28597.18 11573.77 28899.29 11378.44 30993.62 18994.95 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm289.96 25589.21 25592.23 27094.91 25381.25 30993.78 29494.42 30880.62 31991.56 16993.44 29076.44 27097.94 24185.60 25192.08 21197.49 178
ACMH+87.92 1490.20 25189.18 25693.25 24196.48 17386.45 25796.99 14496.68 22688.83 20384.79 30196.22 16770.16 30798.53 18084.42 26788.04 25694.77 287
tpmvs89.83 26089.15 25791.89 27694.92 25080.30 31893.11 30995.46 26986.28 26488.08 26092.65 29980.44 21698.52 18181.47 28989.92 24096.84 191
AllTest90.23 25088.98 25893.98 20397.94 10786.64 25296.51 18795.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
EU-MVSNet88.72 27288.90 25988.20 31493.15 30874.21 33696.63 17994.22 31485.18 27787.32 27595.97 17576.16 27294.98 33085.27 25586.17 27395.41 241
pmmvs589.86 25988.87 26092.82 25692.86 31186.23 26196.26 20995.39 27084.24 29087.12 27794.51 24374.27 28397.36 29487.61 21887.57 26094.86 275
test0.0.03 189.37 26488.70 26191.41 29192.47 31885.63 26995.22 26092.70 32691.11 14486.91 28493.65 28579.02 24293.19 33878.00 31089.18 24695.41 241
ADS-MVSNet89.89 25788.68 26293.53 22995.86 19984.89 28090.93 32495.07 28883.23 30291.28 18091.81 31479.01 24497.85 25179.52 30191.39 22097.84 160
ADS-MVSNet289.45 26288.59 26392.03 27395.86 19982.26 30590.93 32494.32 31283.23 30291.28 18091.81 31479.01 24495.99 31979.52 30191.39 22097.84 160
SixPastTwentyTwo89.15 26588.54 26490.98 29593.49 30080.28 31996.70 17094.70 30190.78 14984.15 30795.57 20071.78 29597.71 26484.63 26385.07 28894.94 268
tfpnnormal89.70 26188.40 26593.60 22595.15 23890.10 15997.56 8998.16 5187.28 25186.16 29094.63 23977.57 26398.05 22374.48 32084.59 29692.65 320
FMVSNet189.88 25888.31 26694.59 17895.41 21791.18 13297.50 9396.93 20486.62 26087.41 27294.51 24365.94 32697.29 29783.04 27787.43 26295.31 251
IB-MVS87.33 1789.91 25688.28 26794.79 17495.26 23487.70 23295.12 26293.95 31889.35 18687.03 28092.49 30270.74 30299.19 11989.18 18781.37 31997.49 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.90 26888.26 26890.81 29894.58 26976.62 33292.85 31394.93 29585.12 27990.07 20893.07 29475.81 27398.12 21080.53 29787.42 26397.71 166
Patchmatch-test89.42 26387.99 26993.70 22195.27 23185.11 27588.98 33594.37 31081.11 31487.10 27993.69 28182.28 18797.50 28374.37 32294.76 17398.48 126
our_test_388.78 27187.98 27091.20 29392.45 31982.53 30193.61 30195.69 26085.77 27184.88 29993.71 28079.99 22596.78 31379.47 30386.24 27294.28 302
USDC88.94 26687.83 27192.27 26994.66 26384.96 27893.86 29295.90 25487.34 24983.40 31295.56 20267.43 31898.19 20382.64 28389.67 24393.66 311
MVS_030488.79 27087.57 27292.46 26394.65 26486.15 26596.40 19597.17 18086.44 26288.02 26291.71 31656.68 33897.03 30384.47 26592.58 20094.19 304
TransMVSNet (Re)88.94 26687.56 27393.08 24894.35 27588.45 21397.73 6995.23 28187.47 24584.26 30595.29 21179.86 22897.33 29579.44 30574.44 33393.45 315
PatchT88.87 26987.42 27493.22 24394.08 28385.10 27689.51 33394.64 30481.92 30992.36 15588.15 33080.05 22497.01 30672.43 32793.65 18897.54 177
ppachtmachnet_test88.35 27787.29 27591.53 28792.45 31983.57 29593.75 29595.97 25284.28 28985.32 29894.18 26579.00 24696.93 30875.71 31884.99 29194.10 305
Patchmtry88.64 27387.25 27692.78 25894.09 28286.64 25289.82 33295.68 26280.81 31887.63 26992.36 30780.91 20897.03 30378.86 30785.12 28794.67 290
LF4IMVS87.94 28087.25 27689.98 30992.38 32180.05 32294.38 27795.25 28087.59 24384.34 30394.74 23464.31 32997.66 26884.83 25987.45 26192.23 325
testgi87.97 27987.21 27890.24 30792.86 31180.76 31196.67 17494.97 29391.74 12085.52 29495.83 18362.66 33294.47 33276.25 31688.36 25595.48 235
tpm cat188.36 27687.21 27891.81 28095.13 24080.55 31592.58 31695.70 25974.97 33387.45 27091.96 31278.01 26098.17 20580.39 29888.74 25196.72 195
JIA-IIPM88.26 27887.04 28091.91 27593.52 29881.42 30889.38 33494.38 30980.84 31790.93 18680.74 33779.22 23897.92 24582.76 28091.62 21596.38 202
MIMVSNet88.50 27586.76 28193.72 22094.84 25687.77 23191.39 32194.05 31586.41 26387.99 26392.59 30163.27 33095.82 32277.44 31192.84 19697.57 176
K. test v387.64 28386.75 28290.32 30693.02 31079.48 32596.61 18092.08 33190.66 15580.25 32494.09 26867.21 32096.65 31485.96 24780.83 32194.83 277
RPMNet88.52 27486.72 28393.95 20794.45 27287.19 24190.23 32994.99 29277.87 33192.40 15287.55 33280.17 22297.05 30168.84 33593.95 18597.60 174
Patchmatch-RL test87.38 28486.24 28490.81 29888.74 33578.40 33088.12 33793.17 32387.11 25482.17 31589.29 32481.95 19495.60 32588.64 19677.02 32798.41 134
pmmvs687.81 28286.19 28592.69 26091.32 32586.30 25997.34 10996.41 23880.59 32084.05 30994.37 25267.37 31997.67 26684.75 26179.51 32494.09 307
Anonymous2023120687.09 28786.14 28689.93 31091.22 32680.35 31696.11 21895.35 27383.57 29984.16 30693.02 29573.54 29095.61 32472.16 32886.14 27493.84 310
DSMNet-mixed86.34 29286.12 28787.00 31989.88 33170.43 33994.93 26490.08 33977.97 33085.42 29792.78 29874.44 28293.96 33474.43 32195.14 16596.62 196
FMVSNet587.29 28685.79 28891.78 28294.80 25887.28 23695.49 24695.28 27784.09 29283.85 31191.82 31362.95 33194.17 33378.48 30885.34 28393.91 309
gg-mvs-nofinetune87.82 28185.61 28994.44 18594.46 27189.27 19491.21 32384.61 34680.88 31689.89 21274.98 33971.50 29697.53 28085.75 25097.21 13096.51 198
EG-PatchMatch MVS87.02 28885.44 29091.76 28492.67 31585.00 27796.08 22096.45 23783.41 30179.52 32693.49 28857.10 33797.72 26379.34 30690.87 23092.56 321
test20.0386.14 29485.40 29188.35 31290.12 32880.06 32195.90 23095.20 28288.59 21081.29 31793.62 28671.43 29792.65 33971.26 33281.17 32092.34 324
TinyColmap86.82 28985.35 29291.21 29294.91 25382.99 29993.94 29194.02 31783.58 29881.56 31694.68 23662.34 33398.13 20775.78 31787.35 26592.52 322
testing_287.33 28585.03 29394.22 19387.77 33989.32 19094.97 26397.11 18689.22 18971.64 33588.73 32555.16 34097.94 24191.95 13188.73 25295.41 241
CMPMVSbinary62.92 2185.62 29884.92 29487.74 31689.14 33473.12 33894.17 28596.80 21873.98 33473.65 33494.93 22366.36 32197.61 27383.95 27191.28 22292.48 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040286.46 29184.79 29591.45 28995.02 24585.55 27096.29 20794.89 29680.90 31582.21 31493.97 27368.21 31597.29 29762.98 33988.68 25391.51 330
TDRefinement86.53 29084.76 29691.85 27782.23 34384.25 28596.38 19895.35 27384.97 28284.09 30894.94 22265.76 32798.34 19384.60 26474.52 33292.97 317
pmmvs-eth3d86.22 29384.45 29791.53 28788.34 33687.25 23894.47 27295.01 28983.47 30079.51 32789.61 32369.75 30995.71 32383.13 27676.73 32991.64 328
UnsupCasMVSNet_eth85.99 29584.45 29790.62 30289.97 33082.40 30493.62 30097.37 16589.86 17478.59 32992.37 30465.25 32895.35 32982.27 28570.75 33694.10 305
YYNet185.87 29684.23 29990.78 30192.38 32182.46 30393.17 30695.14 28582.12 30867.69 33692.36 30778.16 25795.50 32877.31 31379.73 32394.39 297
MDA-MVSNet_test_wron85.87 29684.23 29990.80 30092.38 32182.57 30093.17 30695.15 28482.15 30767.65 33792.33 31078.20 25495.51 32777.33 31279.74 32294.31 301
PVSNet_082.17 1985.46 29983.64 30190.92 29695.27 23179.49 32490.55 32795.60 26483.76 29783.00 31389.95 32071.09 29997.97 23482.75 28160.79 34195.31 251
MIMVSNet184.93 30183.05 30290.56 30389.56 33384.84 28195.40 24995.35 27383.91 29380.38 32292.21 31157.23 33693.34 33770.69 33482.75 31693.50 313
MDA-MVSNet-bldmvs85.00 30082.95 30391.17 29493.13 30983.33 29694.56 27095.00 29084.57 28765.13 34092.65 29970.45 30395.85 32073.57 32577.49 32694.33 299
OpenMVS_ROBcopyleft81.14 2084.42 30282.28 30490.83 29790.06 32984.05 28995.73 23794.04 31673.89 33580.17 32591.53 31859.15 33597.64 26966.92 33789.05 24790.80 333
new-patchmatchnet83.18 30481.87 30587.11 31886.88 34075.99 33493.70 29695.18 28385.02 28177.30 33088.40 32765.99 32593.88 33574.19 32470.18 33791.47 332
PM-MVS83.48 30381.86 30688.31 31387.83 33877.59 33193.43 30291.75 33386.91 25680.63 32089.91 32144.42 34495.84 32185.17 25876.73 32991.50 331
MVS-HIRNet82.47 30681.21 30786.26 32195.38 21969.21 34288.96 33689.49 34066.28 33880.79 31974.08 34168.48 31397.39 29271.93 32995.47 16092.18 326
new_pmnet82.89 30581.12 30888.18 31589.63 33280.18 32091.77 32092.57 32776.79 33275.56 33388.23 32961.22 33494.48 33171.43 33082.92 31489.87 335
UnsupCasMVSNet_bld82.13 30779.46 30990.14 30888.00 33782.47 30290.89 32696.62 23478.94 32675.61 33184.40 33556.63 33996.31 31777.30 31466.77 34091.63 329
N_pmnet78.73 30978.71 31078.79 32492.80 31346.50 35194.14 28643.71 35478.61 32780.83 31891.66 31774.94 28096.36 31667.24 33684.45 29893.50 313
pmmvs379.97 30877.50 31187.39 31782.80 34279.38 32692.70 31590.75 33870.69 33778.66 32887.47 33351.34 34293.40 33673.39 32669.65 33889.38 336
FPMVS71.27 31169.85 31275.50 32674.64 34559.03 34791.30 32291.50 33558.80 34157.92 34288.28 32829.98 34885.53 34453.43 34182.84 31581.95 339
LCM-MVSNet72.55 31069.39 31382.03 32270.81 34965.42 34590.12 33194.36 31155.02 34265.88 33981.72 33624.16 35289.96 34074.32 32368.10 33990.71 334
PMMVS270.19 31266.92 31480.01 32376.35 34465.67 34486.22 33887.58 34364.83 34062.38 34180.29 33826.78 35088.49 34263.79 33854.07 34285.88 337
Gipumacopyleft67.86 31365.41 31575.18 32792.66 31673.45 33766.50 34694.52 30653.33 34357.80 34366.07 34330.81 34689.20 34148.15 34378.88 32562.90 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high63.94 31459.58 31677.02 32561.24 35166.06 34385.66 34087.93 34278.53 32842.94 34571.04 34225.42 35180.71 34552.60 34230.83 34584.28 338
PMVScopyleft53.92 2258.58 31555.40 31768.12 32951.00 35248.64 34978.86 34387.10 34546.77 34435.84 34974.28 3408.76 35386.34 34342.07 34473.91 33469.38 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 31953.82 31846.29 33333.73 35345.30 35378.32 34467.24 35318.02 34850.93 34487.05 33452.99 34153.11 35070.76 33325.29 34740.46 346
E-PMN53.28 31652.56 31955.43 33174.43 34647.13 35083.63 34276.30 35042.23 34542.59 34662.22 34528.57 34974.40 34731.53 34631.51 34444.78 344
EMVS52.08 31851.31 32054.39 33272.62 34845.39 35283.84 34175.51 35141.13 34640.77 34759.65 34630.08 34773.60 34828.31 34729.90 34644.18 345
MVEpermissive50.73 2353.25 31748.81 32166.58 33065.34 35057.50 34872.49 34570.94 35240.15 34739.28 34863.51 3446.89 35573.48 34938.29 34542.38 34368.76 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.24 32130.99 3220.00 3370.00 3560.00 3570.00 34897.63 1280.00 3520.00 35396.88 13084.38 1470.00 3540.00 3510.00 3510.00 350
wuyk23d25.11 32024.57 32326.74 33473.98 34739.89 35457.88 3479.80 35512.27 34910.39 3506.97 3527.03 35436.44 35125.43 34817.39 3483.89 349
testmvs13.36 32216.33 3244.48 3365.04 3542.26 35693.18 3053.28 3562.70 3508.24 35121.66 3482.29 3572.19 3527.58 3492.96 3499.00 348
test12313.04 32315.66 3255.18 3354.51 3553.45 35592.50 3181.81 3572.50 3517.58 35220.15 3493.67 3562.18 3537.13 3501.07 3509.90 347
ab-mvs-re8.06 32410.74 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35396.69 1390.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.39 3259.85 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35388.65 900.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.42 695.39 997.94 9890.40 16698.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5296.86 198.25 2898.26 5096.04 199.24 11695.36 6399.59 1599.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
save fliter98.91 4594.28 3497.02 13998.02 8495.35 8
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 129
test_part299.28 2595.74 698.10 17
test_part10.00 3370.00 3570.00 34898.26 330.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs182.76 17698.45 129
sam_mvs81.94 195
ambc86.56 32083.60 34170.00 34185.69 33994.97 29380.60 32188.45 32637.42 34596.84 31182.69 28275.44 33192.86 318
MTGPAbinary98.08 65
test_post192.81 31416.58 35180.53 21497.68 26586.20 239
test_post17.58 35081.76 19798.08 217
patchmatchnet-post90.45 31982.65 18098.10 212
GG-mvs-BLEND93.62 22493.69 29489.20 19592.39 31983.33 34787.98 26489.84 32271.00 30096.87 31082.08 28695.40 16294.80 282
MTMP97.86 5582.03 348
gm-plane-assit93.22 30678.89 32984.82 28493.52 28798.64 17187.72 208
test9_res94.81 8099.38 4899.45 44
TEST998.70 5694.19 3996.41 19298.02 8488.17 22396.03 7497.56 10192.74 2499.59 66
test_898.67 5894.06 4896.37 19998.01 8788.58 21195.98 7997.55 10392.73 2599.58 69
agg_prior293.94 9599.38 4899.50 36
agg_prior98.67 5893.79 5498.00 8995.68 8999.57 77
TestCases93.98 20397.94 10786.64 25295.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
test_prior493.66 5896.42 191
test_prior296.35 20092.80 9296.03 7497.59 9792.01 4095.01 7199.38 48
test_prior97.23 6298.67 5892.99 7598.00 8999.41 10299.29 59
旧先验295.94 22881.66 31197.34 3198.82 15592.26 121
新几何295.79 235
新几何197.32 5698.60 6493.59 6097.75 11381.58 31295.75 8697.85 7490.04 7899.67 4986.50 23599.13 7198.69 112
旧先验198.38 7793.38 6697.75 11398.09 5892.30 3799.01 7999.16 67
无先验95.79 23597.87 10483.87 29699.65 5387.68 21398.89 97
原ACMM295.67 238
原ACMM196.38 9798.59 6591.09 13697.89 10087.41 24795.22 10197.68 8790.25 7399.54 8287.95 20499.12 7498.49 124
test22298.24 8992.21 9595.33 25297.60 13079.22 32595.25 10097.84 7788.80 8899.15 6998.72 109
testdata299.67 4985.96 247
segment_acmp92.89 22
testdata95.46 14898.18 9888.90 20397.66 12482.73 30597.03 4498.07 5990.06 7798.85 15389.67 17198.98 8098.64 114
testdata195.26 25993.10 79
test1297.65 4498.46 7094.26 3697.66 12495.52 9890.89 6699.46 9699.25 6199.22 64
plane_prior796.21 18489.98 165
plane_prior696.10 19490.00 16181.32 203
plane_prior597.51 13998.60 17593.02 11592.23 20495.86 217
plane_prior496.64 142
plane_prior390.00 16194.46 3991.34 174
plane_prior297.74 6794.85 24
plane_prior196.14 192
plane_prior89.99 16397.24 11994.06 4792.16 208
n20.00 358
nn0.00 358
door-mid91.06 337
lessismore_v090.45 30491.96 32479.09 32887.19 34480.32 32394.39 25066.31 32397.55 27784.00 27076.84 32894.70 289
LGP-MVS_train94.10 19796.16 18988.26 21697.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
test1197.88 102
door91.13 336
HQP5-MVS89.33 188
HQP-NCC95.86 19996.65 17593.55 6190.14 197
ACMP_Plane95.86 19996.65 17593.55 6190.14 197
BP-MVS92.13 127
HQP4-MVS90.14 19798.50 18295.78 224
HQP3-MVS97.39 16292.10 209
HQP2-MVS80.95 206
NP-MVS95.99 19889.81 17095.87 180
MDTV_nov1_ep13_2view70.35 34093.10 31083.88 29593.55 12982.47 18486.25 23898.38 137
ACMMP++_ref90.30 237
ACMMP++91.02 226
Test By Simon88.73 89
ITE_SJBPF92.43 26595.34 22485.37 27495.92 25391.47 12787.75 26796.39 16171.00 30097.96 23882.36 28489.86 24193.97 308
DeepMVS_CXcopyleft74.68 32890.84 32764.34 34681.61 34965.34 33967.47 33888.01 33148.60 34380.13 34662.33 34073.68 33579.58 340