This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
IU-MVS99.42 695.39 997.94 10290.40 17098.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16698.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
test_part299.28 2595.74 698.10 17
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13098.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15898.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12897.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
9.1496.75 3398.93 4797.73 7398.23 3891.28 14297.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22494.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
旧先验295.94 23381.66 32197.34 3498.82 15992.26 126
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 18097.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10997.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17897.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
ZD-MVS99.05 4194.59 2898.08 6489.22 19597.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
testdata95.46 15198.18 10288.90 20897.66 12982.73 31597.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16696.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26196.65 5497.89 7291.99 4399.47 9992.26 12699.46 3899.39 54
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23196.64 5597.70 8991.18 6399.67 4992.44 12599.47 3699.48 41
UA-Net95.95 6795.53 6797.20 6697.67 12592.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16597.35 12999.11 78
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19489.67 25397.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35791.70 5099.80 2795.66 5299.40 4599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 7995.33 7695.49 14797.35 13590.66 15595.31 25997.48 14693.85 5296.51 6195.70 20188.65 9499.65 5394.80 8498.27 10396.17 210
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
ETV-MVS96.02 6495.89 6296.40 9697.16 14292.44 9297.47 10297.77 11594.55 3796.48 6394.51 25091.23 6298.92 15195.65 5598.19 10597.82 166
alignmvs95.87 6995.23 7897.78 3397.56 13395.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
xiu_mvs_v2_base95.32 8195.29 7795.40 15297.22 13890.50 15895.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14696.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
diffmvs95.25 8395.13 8195.63 13696.43 18289.34 19395.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 13097.94 5493.39 33190.57 16696.29 7098.31 4769.00 31999.16 12794.18 9595.87 15799.12 77
canonicalmvs96.02 6495.45 7197.75 3797.59 13195.15 2198.28 2597.60 13594.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
MVSFormer95.37 7995.16 8095.99 12096.34 18691.21 13398.22 3297.57 13891.42 13496.22 7297.32 11386.20 13097.92 25094.07 9699.05 8198.85 103
lupinMVS94.99 9394.56 9396.29 10696.34 18691.21 13395.83 23896.27 24988.93 20596.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
TEST998.70 6094.19 4096.41 19798.02 8888.17 22996.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21796.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
jason94.84 9894.39 10196.18 11295.52 21990.93 14696.09 22496.52 24089.28 19396.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
test_898.67 6294.06 4996.37 20498.01 9188.58 21795.98 8397.55 10792.73 2599.58 70
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
DELS-MVS96.61 4896.38 5197.30 5797.79 12093.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17397.72 7695.85 26392.43 10495.86 8698.44 2868.42 32399.39 10996.31 2894.85 17498.71 114
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
VDDNet93.05 14792.07 15996.02 11896.84 15890.39 16398.08 4295.85 26386.22 27395.79 8998.46 2667.59 32699.19 12394.92 7894.85 17498.47 130
新几何197.32 5698.60 6893.59 6197.75 11781.58 32295.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
test_yl94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21495.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 32395.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
baseline95.58 7595.42 7396.08 11496.78 16290.41 16297.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
MVS_Test94.89 9694.62 9195.68 13496.83 16089.55 18296.70 17497.17 18591.17 14695.60 9896.11 17887.87 10498.76 16593.01 12297.17 13698.72 112
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13490.43 16995.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15795.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4498.46 7494.26 3797.66 12995.52 10290.89 6999.46 10099.25 6599.22 67
casdiffmvs95.64 7395.49 6996.08 11496.76 16590.45 16097.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
test22298.24 9392.21 10095.33 25797.60 13579.22 33595.25 10497.84 8188.80 9299.15 7398.72 112
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25395.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24295.17 10698.03 6687.09 11899.61 6293.51 10999.42 4399.02 83
CS-MVS95.80 7095.65 6696.24 11097.32 13691.43 12698.10 3997.91 10393.38 6995.16 10794.57 24890.21 7998.98 14795.53 6498.67 9498.30 145
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22495.09 10897.65 9489.97 8399.48 9892.08 13598.59 9798.44 135
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 5596.02 5997.50 5097.62 12893.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10997.80 6697.48 14689.19 19694.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19597.57 13892.04 11894.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
WTY-MVS94.71 10294.02 10496.79 7697.71 12492.05 10696.59 18897.35 17390.61 16394.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 9494.45 9996.36 10196.61 16791.47 12396.41 19797.41 16691.02 15194.50 11595.92 18487.53 11098.78 16293.89 10296.81 14098.84 105
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 20998.06 7388.94 20494.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
PVSNet_BlendedMVS94.06 11593.92 10594.47 18998.27 8989.46 18896.73 17198.36 1690.17 17294.36 11795.24 22088.02 10099.58 7093.44 11190.72 23594.36 303
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18895.47 25298.36 1688.84 20894.36 11796.09 17988.02 10099.58 7093.44 11198.18 10698.40 138
PMMVS92.86 15792.34 15394.42 19394.92 25686.73 25794.53 27696.38 24584.78 29594.27 11995.12 22583.13 16998.40 19291.47 14996.49 14998.12 150
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13489.56 18198.67 597.00 20490.69 15694.24 12097.62 9989.79 8598.81 16093.39 11496.49 14998.92 96
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12198.25 3390.21 17194.18 12197.27 11587.48 11299.73 3293.53 10897.77 11798.55 119
thisisatest053093.03 14892.21 15795.49 14797.07 14789.11 20497.49 10192.19 33890.16 17394.09 12296.41 16376.43 27999.05 14290.38 16495.68 16398.31 144
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17597.06 15088.53 21695.28 26097.45 15791.68 12694.08 12397.68 9182.41 18998.90 15493.84 10492.47 20596.98 188
XVG-OURS93.72 12793.35 12594.80 17797.07 14788.61 21394.79 27097.46 15191.97 12193.99 12497.86 7781.74 20298.88 15692.64 12492.67 20396.92 192
IS-MVSNet94.90 9594.52 9696.05 11797.67 12590.56 15698.44 1696.22 25293.21 7593.99 12497.74 8785.55 13898.45 19089.98 16897.86 11399.14 73
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20093.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
EIA-MVS95.53 7795.47 7095.71 13397.06 15089.63 17797.82 6497.87 10893.57 6193.92 12795.04 22690.61 7498.95 14994.62 8898.68 9398.54 120
tttt051792.96 15192.33 15494.87 17297.11 14587.16 24997.97 5292.09 33990.63 16193.88 12897.01 12876.50 27699.06 14190.29 16795.45 16598.38 140
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17494.58 27498.49 1285.06 29093.78 12995.78 19582.86 17798.67 17391.77 14095.71 16299.07 82
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19195.18 26698.48 1485.60 28193.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
Anonymous20240521192.07 18690.83 20595.76 12798.19 10088.75 21097.58 9195.00 29986.00 27693.64 13197.45 10966.24 33599.53 8890.68 16292.71 20199.01 87
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19391.46 12496.33 20897.04 20088.97 20393.56 13296.51 15787.55 10997.89 25489.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 35093.10 31683.88 30593.55 13382.47 18886.25 24498.38 140
Anonymous2024052991.98 18890.73 20995.73 13298.14 10389.40 19097.99 4797.72 12279.63 33393.54 13497.41 11169.94 31799.56 8091.04 15691.11 22898.22 146
CANet_DTU94.37 10593.65 11396.55 8496.46 18092.13 10496.21 21996.67 23294.38 4293.53 13597.03 12779.34 24099.71 3890.76 15998.45 10097.82 166
tpmrst91.44 20891.32 18591.79 28595.15 24479.20 33693.42 30995.37 28188.55 22093.49 13693.67 29182.49 18798.27 20090.41 16389.34 24997.90 159
TAMVS94.01 11893.46 12095.64 13596.16 19590.45 16096.71 17396.89 21489.27 19493.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
thisisatest051592.29 17691.30 18795.25 15596.60 16888.90 20894.36 28392.32 33787.92 23693.43 13894.57 24877.28 27299.00 14589.42 18395.86 15897.86 162
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 16791.60 17595.18 15797.91 11489.47 18697.65 8494.66 31092.18 11593.33 14094.91 23078.06 26599.10 13381.61 29394.06 18896.98 188
thres100view90092.43 16891.58 17694.98 16697.92 11389.37 19297.71 7894.66 31092.20 11193.31 14194.90 23178.06 26599.08 13881.40 29694.08 18596.48 204
thres20092.23 18091.39 18294.75 18197.61 12989.03 20596.60 18795.09 29692.08 11793.28 14294.00 27878.39 25999.04 14481.26 30094.18 18496.19 209
tfpn200view992.38 17191.52 17994.95 16997.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.48 204
thres40092.42 16991.52 17995.12 16197.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.98 188
ab-mvs93.57 13292.55 14696.64 7897.28 13791.96 11195.40 25497.45 15789.81 18293.22 14596.28 16979.62 23799.46 10090.74 16093.11 19798.50 125
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16997.61 12987.92 23298.10 3995.80 26592.22 10993.02 14697.45 10984.53 15097.91 25388.24 20597.97 11199.02 83
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11797.46 10497.96 10077.99 33993.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
UGNet94.04 11793.28 12796.31 10396.85 15791.19 13697.88 5897.68 12794.40 4093.00 14796.18 17273.39 29999.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14692.49 9195.64 24696.64 23389.05 19993.00 14795.79 19485.77 13699.45 10289.16 19494.35 18297.96 155
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12183.69 30292.88 31896.72 22487.91 23793.00 14794.86 23378.51 25599.05 14286.53 23997.45 12698.47 130
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10397.67 8197.47 14988.13 23393.00 14795.84 18884.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12397.73 11991.80 12392.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
MDTV_nov1_ep1390.76 20795.22 24180.33 32693.03 31795.28 28688.14 23292.84 15393.83 28281.34 20698.08 22382.86 28494.34 183
CostFormer91.18 22690.70 21092.62 26694.84 26281.76 31594.09 29394.43 31584.15 30192.72 15493.77 28679.43 23998.20 20690.70 16192.18 21197.90 159
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30896.64 192.46 15597.80 8486.23 12799.65 5393.72 10698.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 23889.77 24993.95 21294.45 27887.19 24790.23 33895.68 27186.89 26392.40 15692.36 31480.91 21297.05 30781.09 30193.95 18997.60 177
RPMNet88.98 27187.05 28694.77 17994.45 27887.19 24790.23 33898.03 8477.87 34192.40 15687.55 34280.17 22699.51 9368.84 34593.95 18997.60 177
EPMVS90.70 24489.81 24793.37 24194.73 26784.21 29493.67 30488.02 35089.50 18892.38 15893.49 29577.82 26997.78 26486.03 25192.68 20298.11 153
baseline192.82 16091.90 16695.55 14297.20 14090.77 15297.19 13194.58 31392.20 11192.36 15996.34 16784.16 15598.21 20489.20 19283.90 31197.68 171
PatchT88.87 27587.42 28093.22 24794.08 28985.10 28489.51 34294.64 31281.92 31992.36 15988.15 34080.05 22897.01 31172.43 33793.65 19297.54 180
PAPR94.18 10993.42 12496.48 9097.64 12791.42 12795.55 24897.71 12688.99 20192.34 16195.82 19089.19 8699.11 13286.14 24797.38 12798.90 98
mvs-test193.63 12993.69 11193.46 23796.02 20284.61 29197.24 12396.72 22493.85 5292.30 16295.76 19683.08 17098.89 15591.69 14496.54 14896.87 194
SCA91.84 19191.18 19493.83 21895.59 21584.95 28794.72 27195.58 27590.82 15292.25 16393.69 28875.80 28298.10 21886.20 24595.98 15498.45 132
CVMVSNet91.23 22091.75 17089.67 31895.77 21074.69 34596.44 19394.88 30585.81 27892.18 16497.64 9779.07 24395.58 33388.06 20895.86 15898.74 110
AUN-MVS91.76 19390.75 20894.81 17597.00 15488.57 21496.65 17996.49 24189.63 18592.15 16596.12 17578.66 25398.50 18690.83 15879.18 33097.36 183
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 18897.81 11489.87 17792.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
PatchmatchNetpermissive91.91 18991.35 18393.59 23095.38 22584.11 29693.15 31495.39 27989.54 18692.10 16793.68 29082.82 17998.13 21384.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21392.39 9397.86 5998.66 992.30 10792.09 16895.37 21580.49 21998.40 19293.95 9985.86 28095.75 232
tpm90.25 25489.74 25291.76 28893.92 29279.73 33293.98 29493.54 32888.28 22591.99 16993.25 30077.51 27197.44 29487.30 23087.94 26098.12 150
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 18896.88 21590.13 17491.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
BH-RMVSNet92.72 16391.97 16494.97 16797.16 14287.99 23196.15 22295.60 27390.62 16291.87 17197.15 12278.41 25898.57 18283.16 28197.60 12098.36 142
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 15095.27 26297.18 18387.96 23591.86 17295.68 20280.44 22098.99 14684.01 27597.54 12196.89 193
OPM-MVS93.28 13992.76 13694.82 17394.63 27290.77 15296.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13292.28 20795.07 267
tpm289.96 26089.21 26192.23 27494.91 25981.25 31893.78 30094.42 31680.62 32991.56 17493.44 29776.44 27897.94 24785.60 25792.08 21597.49 181
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17996.79 16797.65 13181.83 32091.52 17597.23 11887.94 10298.91 15371.31 34198.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS91.48 20790.59 21494.16 20196.40 18387.33 24195.67 24395.34 28587.68 24791.46 17695.52 21176.77 27598.35 19682.85 28593.61 19496.79 197
RPSCF90.75 24190.86 20190.42 31196.84 15876.29 34395.61 24796.34 24683.89 30491.38 17797.87 7576.45 27798.78 16287.16 23492.23 20896.20 208
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 14096.69 17697.39 16787.29 25691.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 14492.72 14094.34 19696.71 16687.27 24390.29 33797.72 12286.61 26891.34 17995.29 21784.29 15498.41 19193.25 11698.94 8697.35 184
HQP_MVS93.78 12593.43 12294.82 17396.21 19089.99 16997.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 12092.23 20895.86 221
plane_prior390.00 16794.46 3991.34 179
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16390.03 16696.81 16697.13 18888.19 22791.30 18294.27 26686.21 12998.63 17687.66 22196.46 15198.12 150
EI-MVSNet93.03 14892.88 13493.48 23595.77 21086.98 25296.44 19397.12 18990.66 15991.30 18297.64 9786.56 12298.05 22989.91 17090.55 23795.41 246
MVSTER93.20 14292.81 13594.37 19496.56 17389.59 18097.06 13997.12 18991.24 14391.30 18295.96 18282.02 19698.05 22993.48 11090.55 23795.47 242
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21891.42 13491.28 18596.43 16179.66 23698.10 21893.29 11590.06 24295.46 243
ADS-MVSNet289.45 26788.59 26992.03 27795.86 20582.26 31390.93 33394.32 32083.23 31291.28 18591.81 32179.01 24895.99 32479.52 30891.39 22497.84 163
ADS-MVSNet89.89 26288.68 26893.53 23395.86 20584.89 28890.93 33395.07 29783.23 31291.28 18591.81 32179.01 24897.85 25679.52 30891.39 22497.84 163
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20283.25 30597.14 13796.72 22493.85 5291.20 18993.44 29783.08 17098.30 19991.69 14495.73 16196.50 203
VPNet92.23 18091.31 18694.99 16495.56 21790.96 14497.22 12997.86 11192.96 9090.96 19096.62 15375.06 28798.20 20691.90 13683.65 31395.80 227
JIA-IIPM88.26 28387.04 28791.91 27993.52 30481.42 31789.38 34394.38 31780.84 32790.93 19180.74 34779.22 24297.92 25082.76 28691.62 21996.38 206
test-LLR91.42 20991.19 19392.12 27594.59 27380.66 32194.29 28792.98 33391.11 14890.76 19292.37 31179.02 24698.07 22688.81 19896.74 14297.63 172
test-mter90.19 25789.54 25692.12 27594.59 27380.66 32194.29 28792.98 33387.68 24790.76 19292.37 31167.67 32598.07 22688.81 19896.74 14297.63 172
ACMM89.79 892.96 15192.50 15094.35 19596.30 18888.71 21197.58 9197.36 17291.40 13790.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 13192.98 13195.37 15398.40 7888.98 20697.18 13297.29 17887.75 24590.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
DWT-MVSNet_test90.76 23989.89 24393.38 24095.04 25083.70 30195.85 23794.30 32188.19 22790.46 19692.80 30473.61 29798.50 18688.16 20690.58 23697.95 157
TESTMET0.1,190.06 25989.42 25791.97 27894.41 28080.62 32394.29 28791.97 34187.28 25790.44 19792.47 31068.79 32097.67 27288.50 20496.60 14797.61 176
FIs94.09 11493.70 11095.27 15495.70 21392.03 10798.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12890.50 23995.84 224
GA-MVS91.38 21190.31 22494.59 18394.65 27087.62 23994.34 28496.19 25490.73 15590.35 19993.83 28271.84 30297.96 24487.22 23193.61 19498.21 147
LS3D93.57 13292.61 14496.47 9197.59 13191.61 11797.67 8197.72 12285.17 28890.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
FC-MVSNet-test93.94 12093.57 11495.04 16295.48 22191.45 12598.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25691.49 14890.39 24095.83 225
bset_n11_16_dypcd91.55 20290.59 21494.44 19091.51 33190.25 16492.70 32193.42 33092.27 10890.22 20294.74 24078.42 25797.80 26194.19 9487.86 26295.29 262
HQP-NCC95.86 20596.65 17993.55 6290.14 203
ACMP_Plane95.86 20596.65 17993.55 6290.14 203
HQP4-MVS90.14 20398.50 18695.78 228
HQP-MVS93.19 14392.74 13994.54 18895.86 20589.33 19496.65 17997.39 16793.55 6290.14 20395.87 18680.95 21098.50 18692.13 13292.10 21395.78 228
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 15095.34 23092.83 8097.17 13398.58 1092.98 8990.13 20795.80 19188.37 9997.85 25691.71 14283.93 30895.73 234
DU-MVS92.90 15592.04 16095.49 14794.95 25492.83 8097.16 13498.24 3493.02 8390.13 20795.71 19983.47 16297.85 25691.71 14283.93 30895.78 228
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19588.26 22297.65 8497.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
LGP-MVS_train94.10 20296.16 19588.26 22297.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22493.34 7097.39 10998.71 593.14 8090.10 21194.83 23587.71 10598.03 23391.67 14683.99 30795.46 243
mvs_anonymous93.82 12393.74 10994.06 20496.44 18185.41 27995.81 23997.05 19889.85 18090.09 21296.36 16687.44 11397.75 26793.97 9896.69 14599.02 83
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13490.08 21395.55 20982.85 17897.92 25094.07 9691.58 22095.40 249
dp88.90 27488.26 27490.81 30494.58 27576.62 34292.85 31994.93 30385.12 28990.07 21493.07 30175.81 28198.12 21680.53 30387.42 26797.71 169
PS-MVSNAJss93.74 12693.51 11894.44 19093.91 29389.28 19897.75 7097.56 14192.50 10389.94 21596.54 15688.65 9498.18 20993.83 10590.90 23395.86 221
UniMVSNet_ETH3D91.34 21690.22 23294.68 18294.86 26187.86 23597.23 12897.46 15187.99 23489.90 21696.92 13266.35 33398.23 20290.30 16690.99 23197.96 155
CLD-MVS92.98 15092.53 14894.32 19796.12 19989.20 20095.28 26097.47 14992.66 9989.90 21695.62 20480.58 21798.40 19292.73 12392.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 28685.61 29594.44 19094.46 27789.27 19991.21 33284.61 35580.88 32689.89 21874.98 34971.50 30497.53 28685.75 25697.21 13496.51 202
1112_ss93.37 13692.42 15296.21 11197.05 15290.99 14296.31 21096.72 22486.87 26489.83 21996.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
BH-untuned92.94 15392.62 14393.92 21697.22 13886.16 27096.40 20096.25 25190.06 17589.79 22096.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
V4291.58 20090.87 20093.73 22294.05 29088.50 21797.32 11696.97 20588.80 21389.71 22194.33 26182.54 18598.05 22989.01 19585.07 29294.64 297
Baseline_NR-MVSNet91.20 22290.62 21292.95 25693.83 29688.03 23097.01 14795.12 29588.42 22289.70 22295.13 22483.47 16297.44 29489.66 17883.24 31693.37 321
v14419291.06 22890.28 22693.39 23993.66 30187.23 24696.83 16397.07 19587.43 25289.69 22394.28 26581.48 20598.00 23687.18 23384.92 29694.93 275
v114491.37 21390.60 21393.68 22793.89 29488.23 22496.84 16297.03 20288.37 22389.69 22394.39 25782.04 19597.98 23787.80 21385.37 28694.84 281
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15389.97 17295.53 25096.64 23385.38 28489.65 22595.18 22185.86 13499.10 13387.70 21693.58 19698.49 127
v119291.07 22790.23 23093.58 23193.70 29987.82 23696.73 17197.07 19587.77 24389.58 22694.32 26380.90 21497.97 24086.52 24085.48 28494.95 271
v124090.70 24489.85 24593.23 24693.51 30586.80 25596.61 18597.02 20387.16 25989.58 22694.31 26479.55 23897.98 23785.52 25885.44 28594.90 278
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15994.76 26592.07 10597.53 9598.11 5992.90 9289.56 22896.12 17583.16 16797.60 28089.30 18683.20 31795.75 232
v2v48291.59 19890.85 20393.80 22093.87 29588.17 22796.94 15496.88 21589.54 18689.53 22994.90 23181.70 20398.02 23489.25 18985.04 29495.20 264
v192192090.85 23790.03 24093.29 24493.55 30286.96 25496.74 17097.04 20087.36 25489.52 23094.34 26080.23 22597.97 24086.27 24385.21 28994.94 273
IterMVS-LS92.29 17691.94 16593.34 24296.25 18986.97 25396.57 19197.05 19890.67 15789.50 23194.80 23786.59 12197.64 27589.91 17086.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 22290.08 23694.58 18794.97 25289.16 20393.65 30597.59 13779.90 33289.40 23292.92 30375.36 28698.36 19592.14 13194.75 17896.23 207
XVG-ACMP-BASELINE90.93 23590.21 23393.09 25194.31 28485.89 27295.33 25797.26 17991.06 15089.38 23395.44 21468.61 32198.60 17989.46 18291.05 22994.79 289
GBi-Net91.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
test191.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
FMVSNet391.78 19290.69 21195.03 16396.53 17592.27 9997.02 14396.93 20889.79 18389.35 23494.65 24577.01 27397.47 29186.12 24888.82 25295.35 253
WR-MVS92.34 17291.53 17894.77 17995.13 24690.83 14996.40 20097.98 9891.88 12289.29 23795.54 21082.50 18697.80 26189.79 17485.27 28895.69 235
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14297.38 11196.08 25782.38 31689.29 23797.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
BH-w/o92.14 18591.75 17093.31 24396.99 15585.73 27495.67 24395.69 26988.73 21589.26 23994.82 23682.97 17598.07 22685.26 26296.32 15296.13 214
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17393.36 6998.65 698.36 1694.12 4689.25 24098.06 6482.20 19399.77 2993.41 11399.32 5399.18 69
miper_enhance_ethall91.54 20491.01 19793.15 24995.35 22987.07 25193.97 29596.90 21286.79 26589.17 24193.43 29986.55 12397.64 27589.97 16986.93 27094.74 293
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23692.09 11689.11 24295.14 22380.33 22398.08 22387.54 22594.74 17996.03 218
RRT_test8_iter0591.19 22590.78 20692.41 27095.76 21283.14 30697.32 11697.46 15191.37 13889.07 24395.57 20670.33 31298.21 20493.56 10786.62 27595.89 220
XXY-MVS92.16 18391.23 19194.95 16994.75 26690.94 14597.47 10297.43 16489.14 19788.90 24496.43 16179.71 23498.24 20189.56 18087.68 26395.67 237
PCF-MVS89.48 1191.56 20189.95 24196.36 10196.60 16892.52 9092.51 32497.26 17979.41 33488.90 24496.56 15584.04 15799.55 8377.01 32497.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 19891.13 19592.97 25595.55 21886.57 26294.47 27796.88 21587.77 24388.88 24694.01 27786.22 12897.54 28489.49 18186.93 27094.79 289
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 12088.85 24796.50 15875.62 28598.11 21793.88 10391.56 22195.48 240
eth_miper_zixun_eth91.02 23090.59 21492.34 27295.33 23384.35 29294.10 29296.90 21288.56 21988.84 24894.33 26184.08 15697.60 28088.77 20084.37 30395.06 268
cl_fuxian91.38 21190.89 19992.88 25895.58 21686.30 26594.68 27296.84 22088.17 22988.83 24994.23 26985.65 13797.47 29189.36 18484.63 29894.89 279
test_part192.21 18291.10 19695.51 14497.80 11992.66 8598.02 4697.68 12789.79 18388.80 25096.02 18076.85 27498.18 20990.86 15784.11 30695.69 235
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11888.76 25196.45 16074.62 28998.09 22293.91 10191.48 22295.45 245
v14890.99 23190.38 22192.81 26193.83 29685.80 27396.78 16996.68 23089.45 18988.75 25293.93 28182.96 17697.82 26087.83 21283.25 31594.80 287
FMVSNet291.31 21790.08 23694.99 16496.51 17692.21 10097.41 10596.95 20688.82 21088.62 25394.75 23973.87 29397.42 29685.20 26388.55 25795.35 253
PAPM91.52 20590.30 22595.20 15695.30 23689.83 17593.38 31096.85 21986.26 27288.59 25495.80 19184.88 14598.15 21275.67 32895.93 15697.63 172
cl-mvsnet291.21 22190.56 21793.14 25096.09 20186.80 25594.41 28196.58 23987.80 24188.58 25593.99 27980.85 21597.62 27889.87 17286.93 27094.99 270
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15695.34 1398.48 1597.87 10894.65 3688.53 25698.02 6783.69 16099.71 3893.18 11798.96 8599.44 47
anonymousdsp92.16 18391.55 17793.97 21092.58 32389.55 18297.51 9697.42 16589.42 19088.40 25794.84 23480.66 21697.88 25591.87 13891.28 22694.48 299
WR-MVS_H92.00 18791.35 18393.95 21295.09 24889.47 18698.04 4598.68 791.46 13288.34 25894.68 24385.86 13497.56 28285.77 25584.24 30494.82 284
v891.29 21990.53 21893.57 23294.15 28688.12 22997.34 11397.06 19788.99 20188.32 25994.26 26883.08 17098.01 23587.62 22383.92 31094.57 298
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18388.20 22597.36 11297.25 18191.52 12988.30 26096.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 22990.23 23093.49 23494.12 28788.16 22897.32 11697.08 19488.26 22688.29 26194.22 27182.17 19497.97 24086.45 24284.12 30594.33 304
QAPM93.45 13592.27 15696.98 7496.77 16392.62 8798.39 1998.12 5684.50 29888.27 26297.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
Anonymous2023121190.63 24689.42 25794.27 19898.24 9389.19 20298.05 4497.89 10479.95 33188.25 26394.96 22772.56 30098.13 21389.70 17685.14 29095.49 239
CP-MVSNet91.89 19091.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12588.21 26495.76 19681.96 19797.52 28887.86 21184.65 29795.37 252
cl-mvsnet190.97 23390.33 22292.88 25895.36 22886.19 26994.46 27996.63 23687.82 23988.18 26594.23 26982.99 17397.53 28687.72 21485.57 28394.93 275
cl-mvsnet_90.96 23490.32 22392.89 25795.37 22786.21 26894.46 27996.64 23387.82 23988.15 26694.18 27282.98 17497.54 28487.70 21685.59 28294.92 277
tpmvs89.83 26589.15 26391.89 28094.92 25680.30 32793.11 31595.46 27886.28 27188.08 26792.65 30680.44 22098.52 18581.47 29589.92 24496.84 195
PS-CasMVS91.55 20290.84 20493.69 22694.96 25388.28 22197.84 6398.24 3491.46 13288.04 26895.80 19179.67 23597.48 29087.02 23584.54 30195.31 255
MVS_030488.79 27687.57 27892.46 26794.65 27086.15 27196.40 20097.17 18586.44 26988.02 26991.71 32356.68 34997.03 30884.47 27192.58 20494.19 309
MIMVSNet88.50 28086.76 28893.72 22494.84 26287.77 23791.39 32894.05 32386.41 27087.99 27092.59 30863.27 34195.82 32977.44 31892.84 20097.57 179
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32683.33 35687.98 27189.84 33371.00 30896.87 31582.08 29295.40 16694.80 287
miper_lstm_enhance90.50 25090.06 23991.83 28295.33 23383.74 29893.86 29896.70 22987.56 25087.79 27293.81 28583.45 16496.92 31487.39 22784.62 29994.82 284
PEN-MVS91.20 22290.44 21993.48 23594.49 27687.91 23497.76 6998.18 4691.29 13987.78 27395.74 19880.35 22297.33 30185.46 25982.96 31895.19 265
ITE_SJBPF92.43 26995.34 23085.37 28095.92 26091.47 13187.75 27496.39 16571.00 30897.96 24482.36 29089.86 24593.97 313
v7n90.76 23989.86 24493.45 23893.54 30387.60 24097.70 7997.37 17088.85 20787.65 27594.08 27681.08 20998.10 21884.68 26883.79 31294.66 296
Patchmtry88.64 27987.25 28292.78 26294.09 28886.64 25889.82 34195.68 27180.81 32887.63 27692.36 31480.91 21297.03 30878.86 31485.12 29194.67 295
pmmvs490.93 23589.85 24594.17 20093.34 31090.79 15194.60 27396.02 25884.62 29687.45 27795.15 22281.88 20097.45 29387.70 21687.87 26194.27 308
tpm cat188.36 28187.21 28491.81 28495.13 24680.55 32492.58 32395.70 26874.97 34387.45 27791.96 31978.01 26798.17 21180.39 30488.74 25596.72 199
FMVSNet189.88 26388.31 27294.59 18395.41 22391.18 13797.50 9796.93 20886.62 26787.41 27994.51 25065.94 33797.29 30383.04 28387.43 26695.31 255
IterMVS-SCA-FT90.31 25289.81 24791.82 28395.52 21984.20 29594.30 28696.15 25590.61 16387.39 28094.27 26675.80 28296.44 32087.34 22886.88 27494.82 284
MVS91.71 19490.44 21995.51 14495.20 24391.59 11996.04 22697.45 15773.44 34687.36 28195.60 20585.42 13999.10 13385.97 25297.46 12295.83 225
EU-MVSNet88.72 27888.90 26588.20 32293.15 31474.21 34696.63 18494.22 32285.18 28787.32 28295.97 18176.16 28094.98 33785.27 26186.17 27795.41 246
IterMVS90.15 25889.67 25391.61 29095.48 22183.72 29994.33 28596.12 25689.99 17687.31 28394.15 27475.78 28496.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 26488.87 26692.82 26092.86 31786.23 26796.26 21495.39 27984.24 30087.12 28494.51 25074.27 29197.36 30087.61 22487.57 26494.86 280
DTE-MVSNet90.56 24789.75 25193.01 25393.95 29187.25 24497.64 8897.65 13190.74 15487.12 28495.68 20279.97 23097.00 31283.33 28081.66 32394.78 291
Patchmatch-test89.42 26887.99 27593.70 22595.27 23785.11 28388.98 34494.37 31881.11 32487.10 28693.69 28882.28 19197.50 28974.37 33294.76 17798.48 129
IB-MVS87.33 1789.91 26188.28 27394.79 17895.26 24087.70 23895.12 26893.95 32689.35 19287.03 28792.49 30970.74 31099.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 19491.28 18892.99 25493.76 29883.71 30096.69 17695.28 28693.15 7987.02 28895.95 18383.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 19790.86 20193.94 21494.33 28286.32 26495.92 23491.64 34389.37 19186.94 28994.69 24281.62 20498.69 17188.64 20294.57 18196.81 196
MSDG91.42 20990.24 22994.96 16897.15 14488.91 20793.69 30396.32 24785.72 28086.93 29096.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
test0.0.03 189.37 26988.70 26791.41 29592.47 32485.63 27595.22 26592.70 33591.11 14886.91 29193.65 29279.02 24693.19 34778.00 31789.18 25095.41 246
COLMAP_ROBcopyleft87.81 1590.40 25189.28 26093.79 22197.95 11087.13 25096.92 15595.89 26282.83 31486.88 29297.18 11973.77 29699.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 21890.95 19892.35 27194.71 26885.52 27796.18 22198.21 4088.89 20686.60 29393.82 28479.92 23197.95 24689.29 18790.95 23293.56 317
OurMVSNet-221017-090.51 24990.19 23491.44 29493.41 30881.25 31896.98 15096.28 24891.68 12686.55 29496.30 16874.20 29297.98 23788.96 19687.40 26895.09 266
MS-PatchMatch90.27 25389.77 24991.78 28694.33 28284.72 29095.55 24896.73 22386.17 27486.36 29595.28 21971.28 30697.80 26184.09 27498.14 10892.81 326
131492.81 16192.03 16195.14 15995.33 23389.52 18596.04 22697.44 16187.72 24686.25 29695.33 21683.84 15898.79 16189.26 18897.05 13897.11 186
tfpnnormal89.70 26688.40 27193.60 22995.15 24490.10 16597.56 9398.16 5087.28 25786.16 29794.63 24677.57 27098.05 22974.48 33084.59 30092.65 329
pm-mvs190.72 24389.65 25593.96 21194.29 28589.63 17797.79 6796.82 22189.07 19886.12 29895.48 21378.61 25497.78 26486.97 23681.67 32294.46 300
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 23092.73 8398.27 2698.12 5684.86 29385.78 29997.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
LTVRE_ROB88.41 1390.99 23189.92 24294.19 19996.18 19389.55 18296.31 21097.09 19387.88 23885.67 30095.91 18578.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 28487.21 28490.24 31392.86 31780.76 32096.67 17894.97 30191.74 12485.52 30195.83 18962.66 34394.47 34176.25 32588.36 25895.48 240
AllTest90.23 25588.98 26493.98 20897.94 11186.64 25896.51 19295.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
TestCases93.98 20897.94 11186.64 25895.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
DSMNet-mixed86.34 29686.12 29387.00 32789.88 34070.43 34994.93 26990.08 34877.97 34085.42 30492.78 30574.44 29093.96 34374.43 33195.14 16996.62 200
ppachtmachnet_test88.35 28287.29 28191.53 29192.45 32583.57 30393.75 30195.97 25984.28 29985.32 30594.18 27279.00 25096.93 31375.71 32784.99 29594.10 310
CL-MVSNet_2432*160086.31 29785.15 29989.80 31788.83 34581.74 31693.93 29796.22 25286.67 26685.03 30690.80 32678.09 26494.50 33974.92 32971.86 34393.15 322
our_test_388.78 27787.98 27691.20 29992.45 32582.53 30993.61 30795.69 26985.77 27984.88 30793.71 28779.99 22996.78 31879.47 31086.24 27694.28 307
MVP-Stereo90.74 24290.08 23692.71 26393.19 31388.20 22595.86 23696.27 24986.07 27584.86 30894.76 23877.84 26897.75 26783.88 27898.01 11092.17 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 25689.18 26293.25 24596.48 17986.45 26396.99 14896.68 23088.83 20984.79 30996.22 17170.16 31598.53 18484.42 27388.04 25994.77 292
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 31095.71 19985.00 14497.77 26689.71 17583.52 31495.78 228
LF4IMVS87.94 28587.25 28289.98 31592.38 32780.05 33194.38 28295.25 28987.59 24984.34 31194.74 24064.31 34097.66 27484.83 26587.45 26592.23 334
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16181.89 31496.92 15593.71 32792.41 10584.30 31294.60 24785.08 14397.03 30891.51 14797.36 12898.40 138
TransMVSNet (Re)88.94 27287.56 27993.08 25294.35 28188.45 21997.73 7395.23 29087.47 25184.26 31395.29 21779.86 23297.33 30179.44 31274.44 33993.45 320
Anonymous2023120687.09 29186.14 29289.93 31691.22 33380.35 32596.11 22395.35 28283.57 30984.16 31493.02 30273.54 29895.61 33172.16 33886.14 27893.84 315
SixPastTwentyTwo89.15 27088.54 27090.98 30193.49 30680.28 32896.70 17494.70 30990.78 15384.15 31595.57 20671.78 30397.71 27084.63 26985.07 29294.94 273
TDRefinement86.53 29484.76 30391.85 28182.23 35384.25 29396.38 20395.35 28284.97 29284.09 31694.94 22865.76 33898.34 19884.60 27074.52 33892.97 323
DIV-MVS_2432*160085.95 30184.95 30088.96 31989.55 34379.11 33795.13 26796.42 24385.91 27784.07 31790.48 32770.03 31694.82 33880.04 30572.94 34292.94 324
pmmvs687.81 28786.19 29192.69 26491.32 33286.30 26597.34 11396.41 24480.59 33084.05 31894.37 25967.37 32897.67 27284.75 26779.51 32994.09 312
ACMH87.59 1690.53 24889.42 25793.87 21796.21 19087.92 23297.24 12396.94 20788.45 22183.91 31996.27 17071.92 30198.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 29085.79 29491.78 28694.80 26487.28 24295.49 25195.28 28684.09 30283.85 32091.82 32062.95 34294.17 34278.48 31585.34 28793.91 314
USDC88.94 27287.83 27792.27 27394.66 26984.96 28693.86 29895.90 26187.34 25583.40 32195.56 20867.43 32798.19 20882.64 28989.67 24793.66 316
KD-MVS_2432*160084.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
miper_refine_blended84.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
PVSNet_082.17 1985.46 30583.64 30890.92 30295.27 23779.49 33390.55 33695.60 27383.76 30783.00 32489.95 33171.09 30797.97 24082.75 28760.79 35195.31 255
test_040286.46 29584.79 30291.45 29395.02 25185.55 27696.29 21294.89 30480.90 32582.21 32593.97 28068.21 32497.29 30362.98 34988.68 25691.51 339
Patchmatch-RL test87.38 28986.24 29090.81 30488.74 34678.40 34088.12 34693.17 33287.11 26082.17 32689.29 33581.95 19895.60 33288.64 20277.02 33398.41 137
TinyColmap86.82 29385.35 29891.21 29894.91 25982.99 30793.94 29694.02 32583.58 30881.56 32794.68 24362.34 34498.13 21375.78 32687.35 26992.52 331
test20.0386.14 29985.40 29788.35 32090.12 33780.06 33095.90 23595.20 29188.59 21681.29 32893.62 29371.43 30592.65 34871.26 34281.17 32592.34 333
N_pmnet78.73 31778.71 31978.79 33292.80 31946.50 36194.14 29143.71 36378.61 33780.83 32991.66 32474.94 28896.36 32167.24 34684.45 30293.50 318
MVS-HIRNet82.47 31481.21 31686.26 32995.38 22569.21 35288.96 34589.49 34966.28 34880.79 33074.08 35168.48 32297.39 29871.93 33995.47 16492.18 335
PM-MVS83.48 31181.86 31588.31 32187.83 34977.59 34193.43 30891.75 34286.91 26280.63 33189.91 33244.42 35495.84 32885.17 26476.73 33591.50 340
ambc86.56 32883.60 35170.00 35185.69 34894.97 30180.60 33288.45 33637.42 35596.84 31682.69 28875.44 33792.86 325
MIMVSNet184.93 30783.05 30990.56 30989.56 34284.84 28995.40 25495.35 28283.91 30380.38 33392.21 31857.23 34793.34 34670.69 34482.75 32193.50 318
lessismore_v090.45 31091.96 33079.09 33887.19 35380.32 33494.39 25766.31 33497.55 28384.00 27676.84 33494.70 294
K. test v387.64 28886.75 28990.32 31293.02 31679.48 33496.61 18592.08 34090.66 15980.25 33594.09 27567.21 32996.65 31985.96 25380.83 32694.83 282
OpenMVS_ROBcopyleft81.14 2084.42 31082.28 31390.83 30390.06 33884.05 29795.73 24294.04 32473.89 34580.17 33691.53 32559.15 34697.64 27566.92 34789.05 25190.80 342
EG-PatchMatch MVS87.02 29285.44 29691.76 28892.67 32185.00 28596.08 22596.45 24283.41 31179.52 33793.49 29557.10 34897.72 26979.34 31390.87 23492.56 330
pmmvs-eth3d86.22 29884.45 30491.53 29188.34 34787.25 24494.47 27795.01 29883.47 31079.51 33889.61 33469.75 31895.71 33083.13 28276.73 33591.64 337
pmmvs379.97 31677.50 32087.39 32582.80 35279.38 33592.70 32190.75 34770.69 34778.66 33987.47 34351.34 35293.40 34573.39 33669.65 34689.38 345
UnsupCasMVSNet_eth85.99 30084.45 30490.62 30889.97 33982.40 31293.62 30697.37 17089.86 17878.59 34092.37 31165.25 33995.35 33682.27 29170.75 34494.10 310
new-patchmatchnet83.18 31281.87 31487.11 32686.88 35075.99 34493.70 30295.18 29285.02 29177.30 34188.40 33765.99 33693.88 34474.19 33470.18 34591.47 341
UnsupCasMVSNet_bld82.13 31579.46 31890.14 31488.00 34882.47 31090.89 33596.62 23878.94 33675.61 34284.40 34556.63 35096.31 32277.30 32166.77 34891.63 338
ET-MVSNet_ETH3D91.49 20690.11 23595.63 13696.40 18391.57 12195.34 25693.48 32990.60 16575.58 34395.49 21280.08 22796.79 31794.25 9289.76 24698.52 122
new_pmnet82.89 31381.12 31788.18 32389.63 34180.18 32991.77 32792.57 33676.79 34275.56 34488.23 33961.22 34594.48 34071.43 34082.92 31989.87 344
CMPMVSbinary62.92 2185.62 30484.92 30187.74 32489.14 34473.12 34894.17 29096.80 22273.98 34473.65 34594.93 22966.36 33297.61 27983.95 27791.28 22692.48 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet185.87 30284.23 30690.78 30792.38 32782.46 31193.17 31295.14 29482.12 31867.69 34692.36 31478.16 26395.50 33577.31 32079.73 32894.39 302
MDA-MVSNet_test_wron85.87 30284.23 30690.80 30692.38 32782.57 30893.17 31295.15 29382.15 31767.65 34792.33 31778.20 26095.51 33477.33 31979.74 32794.31 306
DeepMVS_CXcopyleft74.68 33690.84 33664.34 35681.61 35865.34 34967.47 34888.01 34148.60 35380.13 35562.33 35073.68 34179.58 349
LCM-MVSNet72.55 31869.39 32282.03 33070.81 35965.42 35590.12 34094.36 31955.02 35265.88 34981.72 34624.16 36289.96 34974.32 33368.10 34790.71 343
MDA-MVSNet-bldmvs85.00 30682.95 31091.17 30093.13 31583.33 30494.56 27595.00 29984.57 29765.13 35092.65 30670.45 31195.85 32773.57 33577.49 33294.33 304
PMMVS270.19 32066.92 32380.01 33176.35 35465.67 35486.22 34787.58 35264.83 35062.38 35180.29 34826.78 36088.49 35163.79 34854.07 35285.88 346
FPMVS71.27 31969.85 32175.50 33474.64 35559.03 35791.30 32991.50 34458.80 35157.92 35288.28 33829.98 35885.53 35353.43 35182.84 32081.95 348
Gipumacopyleft67.86 32165.41 32475.18 33592.66 32273.45 34766.50 35594.52 31453.33 35357.80 35366.07 35330.81 35689.20 35048.15 35378.88 33162.90 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 32753.82 32746.29 34133.73 36345.30 36378.32 35367.24 36218.02 35850.93 35487.05 34452.99 35153.11 35970.76 34325.29 35740.46 355
ANet_high63.94 32259.58 32577.02 33361.24 36166.06 35385.66 34987.93 35178.53 33842.94 35571.04 35225.42 36180.71 35452.60 35230.83 35584.28 347
E-PMN53.28 32452.56 32855.43 33974.43 35647.13 36083.63 35176.30 35942.23 35542.59 35662.22 35528.57 35974.40 35631.53 35631.51 35444.78 353
EMVS52.08 32651.31 32954.39 34072.62 35845.39 36283.84 35075.51 36041.13 35640.77 35759.65 35630.08 35773.60 35728.31 35729.90 35644.18 354
MVEpermissive50.73 2353.25 32548.81 33066.58 33865.34 36057.50 35872.49 35470.94 36140.15 35739.28 35863.51 3546.89 36573.48 35838.29 35542.38 35368.76 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 32355.40 32668.12 33751.00 36248.64 35978.86 35287.10 35446.77 35435.84 35974.28 3508.76 36386.34 35242.07 35473.91 34069.38 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 32824.57 33226.74 34273.98 35739.89 36457.88 3569.80 36412.27 35910.39 3606.97 3627.03 36436.44 36025.43 35817.39 3583.89 358
testmvs13.36 33016.33 3334.48 3445.04 3642.26 36693.18 3113.28 3652.70 3608.24 36121.66 3582.29 3672.19 3617.58 3592.96 3599.00 357
test12313.04 33115.66 3345.18 3434.51 3653.45 36592.50 3251.81 3662.50 3617.58 36220.15 3593.67 3662.18 3627.13 3601.07 3609.90 356
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.24 32930.99 3310.00 3450.00 3660.00 3670.00 35797.63 1330.00 3620.00 36396.88 13484.38 1510.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.39 3339.85 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36388.65 940.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.06 33210.74 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36396.69 1430.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 132
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
MTGPAbinary98.08 64
test_post192.81 32016.58 36180.53 21897.68 27186.20 245
test_post17.58 36081.76 20198.08 223
patchmatchnet-post90.45 32882.65 18498.10 218
MTMP97.86 5982.03 357
gm-plane-assit93.22 31278.89 33984.82 29493.52 29498.64 17587.72 214
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 10099.38 4899.50 37
test_prior493.66 5996.42 196
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
新几何295.79 240
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 24097.87 10883.87 30699.65 5387.68 21998.89 100
原ACMM295.67 243
testdata299.67 4985.96 253
segment_acmp92.89 22
testdata195.26 26493.10 82
plane_prior796.21 19089.98 171
plane_prior696.10 20090.00 16781.32 207
plane_prior597.51 14498.60 17993.02 12092.23 20895.86 221
plane_prior496.64 146
plane_prior297.74 7194.85 24
plane_prior196.14 198
plane_prior89.99 16997.24 12394.06 4792.16 212
n20.00 367
nn0.00 367
door-mid91.06 346
test1197.88 106
door91.13 345
HQP5-MVS89.33 194
BP-MVS92.13 132
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20489.81 17695.87 186
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93