This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
IU-MVS87.77 459.15 6085.53 2553.93 22884.64 379.07 1190.87 588.37 17
PC_three_145255.09 20684.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 42
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3764.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 68
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FOURS186.12 3660.82 3788.18 183.61 6860.87 8481.50 16
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 26
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6160.37 9679.89 1889.38 4954.97 4885.58 9976.12 3184.94 6686.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6459.34 11979.37 1989.76 4559.84 1687.62 5076.69 2786.74 5287.68 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 32
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4760.61 8979.05 2190.30 3055.54 4388.32 3373.48 5387.03 4584.83 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6665.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 131
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
ZD-MVS86.64 2160.38 4382.70 9257.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 48
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3262.88 5378.10 2491.26 1352.51 8288.39 3179.34 890.52 1386.78 69
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 40
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3766.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 60
test_fmvsm_n_192071.73 9971.14 9973.50 13372.52 28056.53 10175.60 19476.16 21048.11 29677.22 2885.56 12653.10 7777.43 25974.86 4077.14 16186.55 77
sasdasda74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
canonicalmvs74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5573.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
alignmvs73.86 6773.99 6173.45 13678.20 16750.50 20478.57 12582.43 9459.40 11776.57 3286.71 8956.42 3881.23 19365.84 10881.79 9988.62 10
旧先验276.08 18445.32 32676.55 3365.56 33758.75 165
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8486.78 6880.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22151.83 18679.67 11185.08 3465.02 1975.84 3588.58 6059.42 2285.08 11072.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21180.97 13065.13 1575.77 3690.88 1748.63 12986.66 7177.23 2488.17 3384.81 144
dcpmvs_274.55 6075.23 4872.48 15682.34 7753.34 15577.87 13981.46 10957.80 15075.49 3786.81 8462.22 1377.75 25571.09 6782.02 9686.34 83
MGCFI-Net72.45 8573.34 7169.81 21777.77 18343.21 28975.84 19281.18 12459.59 11575.45 3886.64 9057.74 2877.94 25063.92 12381.90 9888.30 18
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7567.86 8687.87 4186.06 95
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17871.45 29654.40 13877.18 16170.46 27548.67 28775.17 4086.86 8253.77 6876.86 27076.33 3077.51 15483.17 198
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9759.99 10675.10 4190.35 2847.66 14186.52 7771.64 6482.99 8284.47 153
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6188.68 2776.48 2889.63 2087.16 58
test_prior281.75 7960.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10869.89 32355.81 11578.22 13175.40 22354.17 22575.00 4488.03 6853.82 6780.23 21778.08 2078.34 14686.69 71
TEST985.58 4361.59 2481.62 8181.26 12155.65 19374.93 4588.81 5653.70 7084.68 120
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12155.86 18274.93 4588.81 5653.70 7084.68 12075.24 3888.33 3083.65 184
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4286.57 76
test_fmvsmconf_n73.01 7672.59 7774.27 10771.28 30355.88 11478.21 13275.56 22054.31 22374.86 4887.80 7254.72 5180.23 21778.07 2178.48 14386.70 70
h-mvs3372.71 8171.49 9076.40 5981.99 8259.58 5276.92 16876.74 20660.40 9374.81 4985.95 11745.54 16985.76 9570.41 7070.61 24183.86 172
hse-mvs271.04 10869.86 12074.60 9779.58 12857.12 9673.96 22775.25 22660.40 9374.81 4981.95 20245.54 16982.90 15370.41 7066.83 29283.77 177
test_885.40 4660.96 3481.54 8481.18 12455.86 18274.81 4988.80 5853.70 7084.45 124
agg_prior85.04 5059.96 4781.04 12874.68 5284.04 130
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4666.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4386.38 79
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34055.58 12378.06 13674.67 23854.19 22474.54 5488.23 6150.35 11380.24 21678.07 2177.46 15586.65 74
nrg03072.96 7773.01 7372.84 14975.41 23650.24 20680.02 9982.89 9058.36 13774.44 5586.73 8758.90 2480.83 20365.84 10874.46 18587.44 49
casdiffmvspermissive74.80 5174.89 5274.53 10075.59 23350.37 20578.17 13385.06 3662.80 5874.40 5687.86 7057.88 2783.61 14069.46 7582.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a70.50 12070.27 11471.18 19071.30 30254.09 14076.89 16969.87 27847.90 30074.37 5786.49 9953.07 7876.69 27575.41 3577.11 16282.76 205
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7878.57 16958.58 13274.32 5884.51 14855.94 4187.22 5567.11 9684.48 7185.52 116
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8188.53 3074.79 4288.34 2986.63 75
MVS_030478.73 1678.75 1578.66 3080.82 10257.62 8385.31 3081.31 11870.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5256.32 17474.05 6188.98 5453.34 7487.92 4369.23 7688.42 2887.59 45
baseline74.61 5874.70 5374.34 10475.70 22949.99 21477.54 15084.63 4462.73 5973.98 6287.79 7357.67 3083.82 13669.49 7382.74 9089.20 6
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4862.82 5573.96 6390.50 2453.20 7588.35 3274.02 4887.05 4486.13 93
testdata64.66 28481.52 8752.93 16365.29 31446.09 31973.88 6487.46 7538.08 24866.26 33453.31 20578.48 14374.78 318
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 8158.41 13573.71 6690.14 3345.62 16685.99 8969.64 7282.85 8885.78 104
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7063.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4962.82 5573.55 6890.56 2249.80 11688.24 3474.02 4887.03 4586.32 87
PHI-MVS75.87 4475.36 4577.41 4680.62 10855.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10888.54 2970.79 6889.71 1787.79 37
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5863.24 4573.30 7087.27 7955.06 4686.30 8571.78 6284.58 6889.25 4
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5162.81 5773.30 7090.58 2149.90 11488.21 3573.78 5087.03 4586.29 90
test_fmvsmvis_n_192070.84 11270.38 11272.22 16371.16 30455.39 12775.86 19072.21 26249.03 28373.28 7286.17 10851.83 9577.29 26275.80 3278.05 14883.98 166
VDD-MVS72.50 8372.09 8373.75 12181.58 8649.69 21977.76 14477.63 19163.21 4773.21 7389.02 5342.14 20383.32 14461.72 14382.50 9188.25 20
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16470.91 30753.78 14578.12 13462.30 33749.35 27973.20 7486.55 9851.99 9276.79 27274.83 4168.68 27985.32 127
DELS-MVS74.76 5274.46 5575.65 7577.84 18152.25 17775.59 19584.17 5063.76 3873.15 7582.79 17759.58 2086.80 6767.24 9586.04 6087.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post74.57 5973.90 6276.58 5783.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3444.74 18085.84 9368.20 8081.76 10084.03 163
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3443.06 19568.20 8081.76 10084.03 163
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16572.47 28253.82 14478.25 12962.26 33849.78 27573.12 7886.21 10652.66 8076.79 27275.02 3968.88 27485.18 132
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3462.57 6073.09 7989.97 4150.90 10987.48 5275.30 3686.85 5087.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 4161.98 7473.06 8088.88 5553.72 6989.06 2368.27 7988.04 3887.42 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16871.07 30552.88 16577.85 14162.44 33549.58 27772.97 8186.22 10551.68 9876.48 27975.53 3470.10 25286.14 92
VDDNet71.81 9671.33 9573.26 14382.80 7547.60 24778.74 12075.27 22559.59 11572.94 8289.40 4841.51 21483.91 13458.75 16582.99 8288.26 19
test1277.76 4384.52 5858.41 7583.36 7872.93 8354.61 5388.05 3988.12 3586.81 67
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17072.31 28652.90 16477.90 13862.43 33649.97 27372.85 8485.90 11952.21 8876.49 27875.75 3370.26 24985.97 97
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12453.09 16179.97 10185.21 2955.21 20372.81 8585.37 13353.93 6287.17 5867.93 8586.46 5788.80 7
mamv474.72 5474.09 5976.61 5679.86 12253.06 16279.89 10585.13 3355.66 19172.81 8585.24 13453.83 6588.07 3867.77 8786.63 5588.71 9
LFMVS71.78 9771.59 8772.32 16183.40 6746.38 25679.75 10971.08 26964.18 3272.80 8788.64 5942.58 19983.72 13757.41 17184.49 7086.86 65
EC-MVSNet75.84 4575.87 4275.74 7278.86 14652.65 16883.73 5086.08 1763.47 4272.77 8887.25 8053.13 7687.93 4271.97 6185.57 6386.66 73
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7462.44 6472.68 8990.50 2448.18 13487.34 5373.59 5285.71 6184.76 147
ETV-MVS74.46 6173.84 6476.33 6279.27 13555.24 12979.22 11685.00 3964.97 2172.65 9079.46 25153.65 7387.87 4467.45 9482.91 8585.89 101
UA-Net73.13 7472.93 7473.76 11983.58 6451.66 18778.75 11977.66 19067.75 472.61 9189.42 4749.82 11583.29 14553.61 20283.14 7986.32 87
bld_raw_dy_0_6474.00 6573.69 6774.93 8680.28 11050.00 21377.56 14885.20 3155.84 18472.52 9284.05 15653.90 6386.60 7267.59 9286.28 5988.18 25
OPM-MVS74.73 5374.25 5776.19 6480.81 10359.01 6782.60 6683.64 6763.74 3972.52 9287.49 7447.18 15185.88 9269.47 7480.78 10583.66 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16972.46 9486.76 8556.89 3487.86 4566.36 10188.91 2583.64 185
MVS_Test72.45 8572.46 8072.42 16074.88 24248.50 23576.28 18083.14 8659.40 11772.46 9484.68 14055.66 4281.12 19465.98 10779.66 12287.63 43
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6561.71 7672.45 9690.34 2948.48 13288.13 3672.32 5886.85 5085.78 104
iter_conf0573.64 6973.08 7275.33 8178.05 17450.61 19979.76 10884.74 4355.66 19172.19 9785.10 13553.98 5987.65 4968.56 7879.69 12187.73 39
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 9890.01 4047.95 13688.01 4071.55 6586.74 5286.37 81
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 986.49 40847.95 13688.01 4071.55 6586.74 5286.37 81
Effi-MVS+73.31 7372.54 7975.62 7677.87 17953.64 14779.62 11379.61 14861.63 7772.02 10082.61 18256.44 3785.97 9063.99 12279.07 13487.25 57
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3146.61 16086.55 7671.71 6385.66 6284.97 140
diffmvspermissive70.69 11670.43 11071.46 17969.45 32848.95 22972.93 24378.46 17557.27 15571.69 10283.97 16051.48 10077.92 25270.70 6977.95 15087.53 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8778.47 15754.02 14177.05 16479.33 15465.03 1871.68 10379.35 25452.75 7984.89 11666.46 10074.23 18985.83 103
MSLP-MVS++73.77 6873.47 6874.66 9383.02 7159.29 5882.30 7481.88 10159.34 11971.59 10486.83 8345.94 16483.65 13965.09 11385.22 6581.06 239
iter_conf05_1173.52 7072.59 7776.30 6380.93 10151.97 18478.62 12383.48 7152.20 24571.53 10585.93 11854.01 5888.55 2861.08 14885.56 6488.39 16
CS-MVS-test75.62 4775.31 4776.56 5880.63 10755.13 13083.88 4885.22 2862.05 7171.49 10686.03 11353.83 6586.36 8367.74 8886.91 4988.19 23
EI-MVSNet-UG-set71.92 9571.06 10174.52 10177.98 17753.56 14976.62 17379.16 15564.40 2771.18 10778.95 25952.19 8984.66 12265.47 11173.57 20085.32 127
MG-MVS73.96 6673.89 6374.16 10985.65 4249.69 21981.59 8381.29 12061.45 7871.05 10888.11 6351.77 9687.73 4761.05 14983.09 8085.05 137
patch_mono-269.85 13371.09 10066.16 26479.11 14154.80 13571.97 25974.31 24353.50 23370.90 10984.17 15257.63 3163.31 34366.17 10282.02 9680.38 250
VNet69.68 13970.19 11668.16 24079.73 12641.63 30570.53 27877.38 19660.37 9670.69 11086.63 9251.08 10577.09 26553.61 20281.69 10485.75 109
MVS_111021_HR74.02 6473.46 6975.69 7383.01 7260.63 4077.29 15878.40 18061.18 8270.58 11185.97 11554.18 5784.00 13367.52 9382.98 8482.45 211
HPM-MVS_fast74.30 6373.46 6976.80 5284.45 6059.04 6683.65 5281.05 12760.15 10370.43 11289.84 4341.09 22085.59 9867.61 9182.90 8685.77 107
CLD-MVS73.33 7272.68 7675.29 8478.82 14853.33 15678.23 13084.79 4261.30 8170.41 11381.04 21952.41 8587.12 6064.61 11882.49 9285.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
新几何170.76 19885.66 4161.13 3066.43 30644.68 33070.29 11486.64 9041.29 21675.23 28749.72 23381.75 10275.93 302
原ACMM174.69 9185.39 4759.40 5483.42 7551.47 25470.27 11586.61 9348.61 13086.51 7853.85 20087.96 3978.16 276
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 8067.78 370.09 11686.34 10354.92 4988.90 2572.68 5784.55 6987.76 38
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15555.93 11281.63 8082.12 9856.24 17770.02 12085.68 12547.05 15384.34 12665.27 11274.41 18885.67 111
test_yl69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
DCV-MVSNet69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
xiu_mvs_v2_base70.52 11869.75 12172.84 14981.21 9655.63 12075.11 20578.92 16054.92 21269.96 12379.68 24647.00 15782.09 17561.60 14579.37 12680.81 244
Anonymous2024052969.91 13269.02 13572.56 15480.19 11647.65 24577.56 14880.99 12955.45 19869.88 12486.76 8539.24 23582.18 17454.04 19777.10 16387.85 33
PS-MVSNAJ70.51 11969.70 12372.93 14781.52 8755.79 11674.92 21179.00 15855.04 21169.88 12478.66 26147.05 15382.19 17361.61 14479.58 12380.83 243
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4563.04 4969.80 12689.74 4645.43 17387.16 5972.01 6082.87 8785.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS61.88 870.95 11169.49 12775.35 8077.63 18855.71 11776.04 18781.81 10350.30 26969.66 12785.40 13252.51 8284.89 11651.82 21780.24 11585.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 12069.45 12973.66 12672.62 27750.03 21277.58 14680.51 13759.90 10769.52 12882.14 19847.53 14484.88 11865.07 11470.17 25086.09 94
MVSFormer71.50 10370.38 11274.88 8878.76 14957.15 9482.79 6178.48 17351.26 25869.49 12983.22 17243.99 18883.24 14666.06 10379.37 12684.23 158
lupinMVS69.57 14368.28 15373.44 13778.76 14957.15 9476.57 17473.29 25446.19 31869.49 12982.18 19443.99 18879.23 22964.66 11679.37 12683.93 167
V4268.65 16267.35 17372.56 15468.93 33450.18 20872.90 24479.47 15156.92 16069.45 13180.26 23546.29 16282.99 15064.07 11967.82 28484.53 150
v114470.42 12269.31 13073.76 11973.22 26550.64 19877.83 14281.43 11058.58 13269.40 13281.16 21647.53 14485.29 10964.01 12170.64 23985.34 126
jason69.65 14068.39 15273.43 13878.27 16656.88 9877.12 16273.71 25146.53 31569.34 13383.22 17243.37 19279.18 23064.77 11579.20 13184.23 158
jason: jason.
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5364.52 2569.27 13486.10 11045.26 17787.21 5668.16 8280.58 10984.65 148
plane_prior356.09 10863.92 3669.27 134
VPA-MVSNet69.02 15569.47 12867.69 24477.42 19941.00 31074.04 22579.68 14660.06 10469.26 13684.81 13951.06 10677.58 25754.44 19674.43 18784.48 152
Vis-MVSNetpermissive72.18 9071.37 9474.61 9681.29 9355.41 12680.90 8978.28 18260.73 8869.23 13788.09 6444.36 18582.65 16457.68 16881.75 10285.77 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet69.27 15268.44 15071.73 17274.47 25349.39 22475.20 20378.45 17659.60 11269.16 13876.51 29851.29 10182.50 16859.86 16071.45 23383.30 190
MVSTER67.16 19665.58 20971.88 16770.37 31549.70 21770.25 28378.45 17651.52 25269.16 13880.37 23138.45 24282.50 16860.19 15471.46 23283.44 188
v119269.97 13168.68 14273.85 11473.19 26650.94 19177.68 14581.36 11357.51 15368.95 14080.85 22645.28 17685.33 10862.97 13270.37 24585.27 130
OMC-MVS71.40 10570.60 10773.78 11776.60 21753.15 15879.74 11079.78 14458.37 13668.75 14186.45 10145.43 17380.60 20762.58 13477.73 15187.58 46
Fast-Effi-MVS+70.28 12569.12 13473.73 12278.50 15551.50 18875.01 20879.46 15256.16 17968.59 14279.55 24953.97 6084.05 12953.34 20477.53 15385.65 113
v192192069.47 14768.17 15473.36 14073.06 26950.10 21077.39 15380.56 13556.58 17068.59 14280.37 23144.72 18184.98 11362.47 13769.82 25885.00 138
v14419269.71 13668.51 14573.33 14173.10 26850.13 20977.54 15080.64 13456.65 16368.57 14480.55 22946.87 15884.96 11562.98 13169.66 26384.89 142
TranMVSNet+NR-MVSNet70.36 12370.10 11971.17 19178.64 15342.97 29276.53 17581.16 12666.95 668.53 14585.42 13151.61 9983.07 14952.32 21069.70 26287.46 48
API-MVS72.17 9171.41 9274.45 10281.95 8357.22 8984.03 4580.38 13959.89 11068.40 14682.33 19149.64 11787.83 4651.87 21684.16 7578.30 274
BH-RMVSNet68.81 15867.42 16972.97 14680.11 11952.53 17274.26 22276.29 20958.48 13468.38 14784.20 15142.59 19883.83 13546.53 26075.91 17482.56 206
v124069.24 15367.91 15773.25 14473.02 27149.82 21577.21 16080.54 13656.43 17268.34 14880.51 23043.33 19384.99 11162.03 14169.77 26184.95 141
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18079.20 13744.13 27976.02 18882.60 9366.48 1168.20 14984.60 14556.82 3582.82 16054.62 19370.43 24387.36 55
DU-MVS70.01 12969.53 12671.44 18078.05 17444.13 27975.01 20881.51 10864.37 2868.20 14984.52 14649.12 12682.82 16054.62 19370.43 24387.37 53
UniMVSNet (Re)70.63 11770.20 11571.89 16678.55 15445.29 27075.94 18982.92 8863.68 4068.16 15183.59 16753.89 6483.49 14353.97 19871.12 23686.89 64
Baseline_NR-MVSNet67.05 19867.56 16265.50 27675.65 23037.70 33875.42 19874.65 23959.90 10768.14 15283.15 17549.12 12677.20 26352.23 21169.78 25981.60 224
WR-MVS68.47 16868.47 14868.44 23780.20 11539.84 31673.75 23576.07 21364.68 2268.11 15383.63 16650.39 11279.14 23549.78 23069.66 26386.34 83
MAR-MVS71.51 10270.15 11775.60 7781.84 8459.39 5581.38 8582.90 8954.90 21368.08 15478.70 26047.73 13985.51 10151.68 22084.17 7481.88 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521166.84 20365.99 20269.40 22480.19 11642.21 29871.11 27271.31 26858.80 12667.90 15586.39 10229.83 32879.65 22249.60 23678.78 13886.33 85
TR-MVS66.59 21065.07 21571.17 19179.18 13849.63 22173.48 23775.20 22952.95 23667.90 15580.33 23439.81 22883.68 13843.20 29373.56 20180.20 252
HQP-NCC80.66 10482.31 7162.10 6867.85 157
ACMP_Plane80.66 10482.31 7162.10 6867.85 157
HQP4-MVS67.85 15786.93 6484.32 155
HQP-MVS73.45 7172.80 7575.40 7980.66 10454.94 13182.31 7183.90 5862.10 6867.85 15785.54 12945.46 17186.93 6467.04 9780.35 11384.32 155
MVS_111021_LR69.50 14668.78 14071.65 17578.38 16059.33 5674.82 21370.11 27758.08 14067.83 16184.68 14041.96 20576.34 28265.62 11077.54 15279.30 267
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16289.24 5142.03 20489.38 1964.07 11986.50 5689.69 2
VPNet67.52 18768.11 15565.74 27379.18 13836.80 34772.17 25672.83 25762.04 7267.79 16385.83 12248.88 12876.60 27751.30 22172.97 21383.81 173
XVG-OURS68.76 16167.37 17172.90 14874.32 25857.22 8970.09 28478.81 16255.24 20167.79 16385.81 12436.54 26678.28 24662.04 14075.74 17783.19 195
GeoE71.01 10970.15 11773.60 13179.57 12952.17 17878.93 11878.12 18358.02 14367.76 16583.87 16152.36 8682.72 16256.90 17375.79 17685.92 99
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 15850.04 21175.58 19778.99 15958.16 13967.59 16682.14 19842.66 19785.63 9656.60 17476.19 17285.84 102
test22283.14 6858.68 7372.57 25063.45 32741.78 35167.56 16786.12 10937.13 26078.73 14074.98 314
CPTT-MVS72.78 7972.08 8474.87 8984.88 5761.41 2684.15 4377.86 18655.27 20067.51 16888.08 6541.93 20681.85 17969.04 7780.01 11781.35 232
v14868.24 17367.19 18171.40 18370.43 31347.77 24475.76 19377.03 20158.91 12467.36 16980.10 23848.60 13181.89 17860.01 15666.52 29584.53 150
FIs70.82 11471.43 9168.98 23078.33 16438.14 33276.96 16683.59 6961.02 8367.33 17086.73 8755.07 4581.64 18254.61 19579.22 13087.14 59
Anonymous2023121169.28 15168.47 14871.73 17280.28 11047.18 25179.98 10082.37 9554.61 21667.24 17184.01 15839.43 23182.41 17155.45 18772.83 21485.62 114
ECVR-MVScopyleft67.72 18467.51 16668.35 23879.46 13136.29 35574.79 21466.93 30258.72 12767.19 17288.05 6636.10 26781.38 18852.07 21384.25 7287.39 51
ACMM61.98 770.80 11569.73 12274.02 11180.59 10958.59 7482.68 6482.02 10055.46 19767.18 17384.39 15038.51 24183.17 14860.65 15176.10 17380.30 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192056.91 29856.71 29557.51 33159.13 38445.40 26963.58 33161.29 34336.24 37267.14 17471.85 33729.89 32756.69 37157.65 16963.58 31870.46 359
mvs_anonymous68.03 17667.51 16669.59 22072.08 28844.57 27771.99 25875.23 22751.67 24867.06 17582.57 18354.68 5277.94 25056.56 17575.71 17886.26 91
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15174.40 25656.87 9970.59 27779.04 15754.77 21466.99 17686.01 11439.57 23078.21 24762.54 13573.33 20683.37 189
test111167.21 19167.14 18267.42 24779.24 13634.76 36273.89 23265.65 31158.71 12966.96 17787.95 6936.09 26880.53 20852.03 21483.79 7786.97 61
mvsmamba71.15 10669.54 12575.99 6677.61 19353.46 15281.95 7775.11 23157.73 15166.95 17885.96 11637.14 25987.56 5167.94 8475.49 18186.97 61
PAPR71.72 10070.82 10474.41 10381.20 9751.17 18979.55 11483.33 7955.81 18666.93 17984.61 14450.95 10786.06 8655.79 18279.20 13186.00 96
DP-MVS Recon72.15 9470.73 10676.40 5986.57 2457.99 7981.15 8882.96 8757.03 15866.78 18085.56 12644.50 18388.11 3751.77 21880.23 11683.10 199
UniMVSNet_ETH3D67.60 18667.07 18369.18 22977.39 20042.29 29674.18 22475.59 21960.37 9666.77 18186.06 11237.64 25078.93 24252.16 21273.49 20286.32 87
test250665.33 22564.61 21867.50 24579.46 13134.19 36774.43 22151.92 37458.72 12766.75 18288.05 6625.99 35780.92 20151.94 21584.25 7287.39 51
AUN-MVS68.45 16966.41 19274.57 9979.53 13057.08 9773.93 23075.23 22754.44 22166.69 18381.85 20437.10 26182.89 15462.07 13966.84 29183.75 178
LPG-MVS_test72.74 8071.74 8675.76 7080.22 11357.51 8682.55 6783.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
EIA-MVS71.78 9770.60 10775.30 8379.85 12353.54 15077.27 15983.26 8357.92 14766.49 18679.39 25252.07 9186.69 7060.05 15579.14 13385.66 112
IS-MVSNet71.57 10171.00 10273.27 14278.86 14645.63 26780.22 9778.69 16664.14 3566.46 18787.36 7649.30 12085.60 9750.26 22983.71 7888.59 11
v870.33 12469.28 13173.49 13473.15 26750.22 20778.62 12380.78 13360.79 8666.45 18882.11 20049.35 11984.98 11363.58 12868.71 27785.28 129
v1070.21 12669.02 13573.81 11673.51 26450.92 19378.74 12081.39 11160.05 10566.39 18981.83 20547.58 14385.41 10762.80 13368.86 27685.09 136
tt080567.77 18367.24 17969.34 22574.87 24340.08 31377.36 15481.37 11255.31 19966.33 19084.65 14237.35 25482.55 16755.65 18572.28 22485.39 125
PAPM_NR72.63 8271.80 8575.13 8581.72 8553.42 15479.91 10483.28 8259.14 12166.31 19185.90 11951.86 9486.06 8657.45 17080.62 10785.91 100
c3_l68.33 17067.56 16270.62 20170.87 30846.21 25974.47 22078.80 16356.22 17866.19 19278.53 26651.88 9381.40 18762.08 13869.04 27284.25 157
BH-untuned68.27 17167.29 17471.21 18879.74 12553.22 15776.06 18577.46 19557.19 15666.10 19381.61 20945.37 17583.50 14245.42 27676.68 16876.91 297
miper_ehance_all_eth68.03 17667.24 17970.40 20570.54 31146.21 25973.98 22678.68 16755.07 20966.05 19477.80 27752.16 9081.31 19061.53 14769.32 26683.67 181
ab-mvs66.65 20766.42 19167.37 24876.17 22441.73 30270.41 28176.14 21253.99 22765.98 19583.51 16949.48 11876.24 28348.60 24373.46 20484.14 161
EPP-MVSNet72.16 9371.31 9674.71 9078.68 15249.70 21782.10 7581.65 10560.40 9365.94 19685.84 12151.74 9786.37 8255.93 17979.55 12588.07 29
eth_miper_zixun_eth67.63 18566.28 19871.67 17471.60 29448.33 23773.68 23677.88 18555.80 18765.91 19778.62 26447.35 15082.88 15559.45 16266.25 29683.81 173
QAPM70.05 12868.81 13973.78 11776.54 21953.43 15383.23 5483.48 7152.89 23865.90 19886.29 10441.55 21386.49 7951.01 22378.40 14581.42 226
test_vis1_n_192058.86 28459.06 27558.25 32363.76 36343.14 29067.49 30466.36 30740.22 36365.89 19971.95 33631.04 31859.75 35759.94 15764.90 30571.85 346
FC-MVSNet-test69.80 13570.58 10967.46 24677.61 19334.73 36376.05 18683.19 8460.84 8565.88 20086.46 10054.52 5480.76 20652.52 20978.12 14786.91 63
IterMVS-LS69.22 15468.48 14671.43 18274.44 25549.40 22376.23 18177.55 19259.60 11265.85 20181.59 21151.28 10281.58 18559.87 15969.90 25783.30 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_Blended_VisFu71.45 10470.39 11174.65 9482.01 8058.82 7179.93 10380.35 14055.09 20665.82 20282.16 19749.17 12382.64 16560.34 15378.62 14282.50 210
miper_enhance_ethall67.11 19766.09 20170.17 20969.21 33145.98 26172.85 24578.41 17951.38 25565.65 20375.98 30651.17 10481.25 19160.82 15069.32 26683.29 192
thisisatest053067.92 18065.78 20574.33 10576.29 22251.03 19076.89 16974.25 24553.67 23165.59 20481.76 20635.15 27585.50 10255.94 17872.47 21986.47 78
cl2267.47 18866.45 18870.54 20369.85 32446.49 25573.85 23377.35 19755.07 20965.51 20577.92 27347.64 14281.10 19561.58 14669.32 26684.01 165
3Dnovator64.47 572.49 8471.39 9375.79 6977.70 18458.99 6880.66 9383.15 8562.24 6665.46 20686.59 9442.38 20285.52 10059.59 16184.72 6782.85 204
test_djsdf69.45 14867.74 15874.58 9874.57 25254.92 13382.79 6178.48 17351.26 25865.41 20783.49 17038.37 24383.24 14666.06 10369.25 26985.56 115
FE-MVS65.91 21663.33 23473.63 12977.36 20151.95 18572.62 24875.81 21553.70 23065.31 20878.96 25828.81 33786.39 8143.93 28573.48 20382.55 207
TAMVS66.78 20565.27 21371.33 18779.16 14053.67 14673.84 23469.59 28252.32 24465.28 20981.72 20744.49 18477.40 26142.32 30078.66 14182.92 201
cl____67.18 19466.26 19969.94 21270.20 31645.74 26373.30 23876.83 20455.10 20465.27 21079.57 24847.39 14880.53 20859.41 16469.22 27083.53 187
DIV-MVS_self_test67.18 19466.26 19969.94 21270.20 31645.74 26373.29 23976.83 20455.10 20465.27 21079.58 24747.38 14980.53 20859.43 16369.22 27083.54 186
EPNet73.09 7572.16 8275.90 6875.95 22756.28 10483.05 5672.39 26066.53 1065.27 21087.00 8150.40 11185.47 10462.48 13686.32 5885.94 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu69.64 14167.53 16575.95 6776.10 22562.29 1580.20 9876.06 21459.83 11165.26 21377.09 28741.56 21284.02 13260.60 15271.09 23781.53 225
ACMP63.53 672.30 8871.20 9875.59 7880.28 11057.54 8482.74 6382.84 9160.58 9065.24 21486.18 10739.25 23486.03 8866.95 9976.79 16683.22 193
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS59.36 1066.60 20865.20 21470.81 19776.63 21648.75 23176.52 17680.04 14350.64 26665.24 21484.93 13739.15 23678.54 24336.77 33076.88 16585.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet266.93 20166.31 19768.79 23377.63 18842.98 29176.11 18377.47 19356.62 16665.22 21682.17 19641.85 20780.18 21947.05 25872.72 21883.20 194
SDMVSNet68.03 17668.10 15667.84 24277.13 20548.72 23365.32 32179.10 15658.02 14365.08 21782.55 18447.83 13873.40 29463.92 12373.92 19381.41 227
sd_testset64.46 23564.45 21964.51 28677.13 20542.25 29762.67 33572.11 26358.02 14365.08 21782.55 18441.22 21969.88 31547.32 25373.92 19381.41 227
GBi-Net67.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
test167.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
FMVSNet366.32 21365.61 20868.46 23676.48 22042.34 29574.98 21077.15 20055.83 18565.04 21981.16 21639.91 22580.14 22047.18 25572.76 21582.90 203
anonymousdsp67.00 20064.82 21773.57 13270.09 31956.13 10776.35 17877.35 19748.43 29264.99 22280.84 22733.01 29980.34 21264.66 11667.64 28684.23 158
BH-w/o66.85 20265.83 20469.90 21579.29 13352.46 17474.66 21776.65 20754.51 22064.85 22378.12 26745.59 16882.95 15243.26 29275.54 18074.27 323
CDS-MVSNet66.80 20465.37 21071.10 19378.98 14353.13 16073.27 24071.07 27052.15 24664.72 22480.23 23643.56 19177.10 26445.48 27478.88 13583.05 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS65.53 22163.70 22871.02 19570.87 30848.10 23970.48 27974.40 24156.69 16264.70 22576.77 29233.66 29381.10 19555.42 18870.32 24783.87 171
tttt051767.83 18265.66 20774.33 10576.69 21450.82 19577.86 14073.99 24854.54 21964.64 22682.53 18735.06 27685.50 10255.71 18369.91 25686.67 72
FMVSNet166.70 20665.87 20369.19 22677.49 19743.33 28677.31 15577.83 18756.45 17164.60 22782.70 17838.08 24880.33 21346.08 26472.31 22383.92 168
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8082.63 6578.71 16556.28 17664.34 22884.14 15341.57 21187.06 6346.45 26178.88 13577.02 293
jajsoiax68.25 17266.45 18873.66 12675.62 23155.49 12580.82 9078.51 17252.33 24364.33 22984.11 15428.28 34081.81 18163.48 12970.62 24083.67 181
CostFormer64.04 23962.51 24368.61 23571.88 29145.77 26271.30 26770.60 27447.55 30464.31 23076.61 29641.63 21079.62 22449.74 23269.00 27380.42 248
UWE-MVS60.18 27559.78 27061.39 30877.67 18633.92 37069.04 29463.82 32448.56 28864.27 23177.64 28227.20 34870.40 31233.56 35076.24 17179.83 259
mvs_tets68.18 17466.36 19473.63 12975.61 23255.35 12880.77 9178.56 17052.48 24264.27 23184.10 15527.45 34681.84 18063.45 13070.56 24283.69 180
baseline163.81 24163.87 22563.62 29076.29 22236.36 35071.78 26267.29 29956.05 18164.23 23382.95 17647.11 15274.41 29147.30 25461.85 33280.10 255
PVSNet_BlendedMVS68.56 16767.72 15971.07 19477.03 20950.57 20074.50 21981.52 10653.66 23264.22 23479.72 24549.13 12482.87 15655.82 18073.92 19379.77 262
PVSNet_Blended68.59 16367.72 15971.19 18977.03 20950.57 20072.51 25181.52 10651.91 24764.22 23477.77 28049.13 12482.87 15655.82 18079.58 12380.14 254
thisisatest051565.83 21763.50 23172.82 15173.75 26249.50 22271.32 26673.12 25649.39 27863.82 23676.50 30034.95 27884.84 11953.20 20675.49 18184.13 162
test_fmvs1_n51.37 33250.35 33554.42 34652.85 39137.71 33761.16 34651.93 37328.15 38363.81 23769.73 35413.72 38653.95 38151.16 22260.65 34171.59 348
test_fmvs151.32 33450.48 33453.81 34853.57 38937.51 33960.63 35051.16 37628.02 38563.62 23869.23 35716.41 38153.93 38251.01 22360.70 34069.99 363
HyFIR lowres test65.67 21963.01 23873.67 12579.97 12155.65 11969.07 29375.52 22142.68 34963.53 23977.95 27140.43 22381.64 18246.01 26571.91 22783.73 179
CANet_DTU68.18 17467.71 16169.59 22074.83 24446.24 25878.66 12276.85 20359.60 11263.45 24082.09 20135.25 27477.41 26059.88 15878.76 13985.14 133
UGNet68.81 15867.39 17073.06 14578.33 16454.47 13779.77 10775.40 22360.45 9263.22 24184.40 14932.71 30680.91 20251.71 21980.56 11183.81 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS60.68 27261.67 25357.70 33070.43 31338.45 33064.19 32966.47 30548.05 29863.22 24180.86 22549.28 12160.47 35245.25 27867.28 28974.19 324
testing9164.46 23563.80 22666.47 25778.43 15940.06 31467.63 30169.59 28259.06 12263.18 24378.05 26934.05 28676.99 26748.30 24675.87 17582.37 213
CHOSEN 1792x268865.08 22962.84 24071.82 16981.49 8956.26 10566.32 31074.20 24640.53 36163.16 24478.65 26241.30 21577.80 25445.80 26774.09 19081.40 229
testing22262.29 25961.31 25865.25 28177.87 17938.53 32968.34 29666.31 30856.37 17363.15 24577.58 28328.47 33876.18 28537.04 32876.65 16981.05 240
testing9964.05 23863.29 23566.34 25978.17 17139.76 31867.33 30668.00 29558.60 13163.03 24678.10 26832.57 31176.94 26948.22 24775.58 17982.34 214
114514_t70.83 11369.56 12474.64 9586.21 3154.63 13682.34 7081.81 10348.22 29463.01 24785.83 12240.92 22187.10 6157.91 16779.79 11882.18 216
tpm262.07 26160.10 26967.99 24172.79 27443.86 28271.05 27466.85 30343.14 34662.77 24875.39 31338.32 24480.80 20441.69 30468.88 27479.32 266
NR-MVSNet69.54 14468.85 13771.59 17778.05 17443.81 28374.20 22380.86 13265.18 1462.76 24984.52 14652.35 8783.59 14150.96 22570.78 23887.37 53
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15374.26 25953.99 14281.21 8781.34 11752.70 23962.75 25085.55 12838.86 23984.14 12848.41 24583.01 8179.97 256
v7n69.01 15667.36 17273.98 11272.51 28152.65 16878.54 12781.30 11960.26 10262.67 25181.62 20843.61 19084.49 12357.01 17268.70 27884.79 145
WR-MVS_H67.02 19966.92 18467.33 25077.95 17837.75 33677.57 14782.11 9962.03 7362.65 25282.48 18850.57 11079.46 22542.91 29664.01 31384.79 145
tfpn200view963.18 24962.18 24866.21 26376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20879.83 259
thres40063.31 24562.18 24866.72 25376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20881.36 230
MVS67.37 18966.33 19570.51 20475.46 23550.94 19173.95 22881.85 10241.57 35562.54 25578.57 26547.98 13585.47 10452.97 20782.05 9575.14 310
CP-MVSNet66.49 21166.41 19266.72 25377.67 18636.33 35276.83 17279.52 15062.45 6362.54 25583.47 17146.32 16178.37 24445.47 27563.43 32085.45 120
PEN-MVS66.60 20866.45 18867.04 25177.11 20736.56 34977.03 16580.42 13862.95 5062.51 25784.03 15746.69 15979.07 23644.22 28063.08 32385.51 117
thres100view90063.28 24762.41 24565.89 27177.31 20238.66 32772.65 24669.11 28957.07 15762.45 25881.03 22037.01 26379.17 23131.84 35973.25 20879.83 259
PS-CasMVS66.42 21266.32 19666.70 25577.60 19536.30 35476.94 16779.61 14862.36 6562.43 25983.66 16545.69 16578.37 24445.35 27763.26 32185.42 123
thres600view763.30 24662.27 24666.41 25877.18 20438.87 32572.35 25369.11 28956.98 15962.37 26080.96 22237.01 26379.00 24031.43 36673.05 21281.36 230
pm-mvs165.24 22664.97 21666.04 26872.38 28339.40 32272.62 24875.63 21855.53 19562.35 26183.18 17447.45 14676.47 28049.06 24066.54 29482.24 215
Fast-Effi-MVS+-dtu67.37 18965.33 21273.48 13572.94 27257.78 8277.47 15276.88 20257.60 15261.97 26276.85 29139.31 23280.49 21154.72 19270.28 24882.17 218
WTY-MVS59.75 27960.39 26757.85 32872.32 28537.83 33561.05 34764.18 32245.95 32361.91 26379.11 25747.01 15660.88 35142.50 29969.49 26574.83 316
thres20062.20 26061.16 26265.34 27975.38 23739.99 31569.60 28869.29 28755.64 19461.87 26476.99 28837.07 26278.96 24131.28 36773.28 20777.06 292
TransMVSNet (Re)64.72 23064.33 22065.87 27275.22 23838.56 32874.66 21775.08 23558.90 12561.79 26582.63 18151.18 10378.07 24943.63 28955.87 35980.99 241
WB-MVSnew59.66 28059.69 27159.56 31275.19 24035.78 35769.34 29164.28 32146.88 31361.76 26675.79 30740.61 22265.20 33832.16 35571.21 23477.70 283
DTE-MVSNet65.58 22065.34 21166.31 26076.06 22634.79 36076.43 17779.38 15362.55 6161.66 26783.83 16245.60 16779.15 23441.64 30760.88 33885.00 138
HY-MVS56.14 1364.55 23463.89 22366.55 25674.73 24741.02 30769.96 28574.43 24049.29 28061.66 26780.92 22347.43 14776.68 27644.91 27971.69 22981.94 220
CNLPA65.43 22264.02 22269.68 21878.73 15158.07 7877.82 14370.71 27351.49 25361.57 26983.58 16838.23 24670.82 30743.90 28670.10 25280.16 253
miper_lstm_enhance62.03 26260.88 26565.49 27766.71 34846.25 25756.29 36775.70 21750.68 26461.27 27075.48 31240.21 22468.03 32456.31 17765.25 30382.18 216
cascas65.98 21563.42 23273.64 12877.26 20352.58 17172.26 25577.21 19948.56 28861.21 27174.60 31932.57 31185.82 9450.38 22876.75 16782.52 209
ETVMVS59.51 28258.81 27661.58 30577.46 19834.87 35964.94 32659.35 34854.06 22661.08 27276.67 29329.54 32971.87 30332.16 35574.07 19178.01 282
PAPM67.92 18066.69 18571.63 17678.09 17249.02 22777.09 16381.24 12351.04 26160.91 27383.98 15947.71 14084.99 11140.81 30879.32 12980.90 242
IterMVS-SCA-FT62.49 25461.52 25565.40 27871.99 29050.80 19671.15 27169.63 28145.71 32460.61 27477.93 27237.45 25265.99 33555.67 18463.50 31979.42 265
1112_ss64.00 24063.36 23365.93 27079.28 13442.58 29471.35 26572.36 26146.41 31660.55 27577.89 27546.27 16373.28 29546.18 26369.97 25481.92 221
tfpnnormal62.47 25561.63 25464.99 28374.81 24539.01 32471.22 26873.72 25055.22 20260.21 27680.09 23941.26 21876.98 26830.02 37268.09 28278.97 271
testing1162.81 25261.90 25165.54 27578.38 16040.76 31167.59 30366.78 30455.48 19660.13 27777.11 28631.67 31776.79 27245.53 27274.45 18679.06 268
tpm57.34 29558.16 28454.86 34271.80 29334.77 36167.47 30556.04 36648.20 29560.10 27876.92 28937.17 25853.41 38340.76 30965.01 30476.40 300
ET-MVSNet_ETH3D67.96 17965.72 20674.68 9276.67 21555.62 12275.11 20574.74 23652.91 23760.03 27980.12 23733.68 29282.64 16561.86 14276.34 17085.78 104
131464.61 23363.21 23668.80 23271.87 29247.46 24873.95 22878.39 18142.88 34859.97 28076.60 29738.11 24779.39 22754.84 19172.32 22279.55 263
CL-MVSNet_self_test61.53 26760.94 26463.30 29368.95 33336.93 34667.60 30272.80 25855.67 19059.95 28176.63 29445.01 17972.22 30139.74 31562.09 33180.74 245
XVG-ACMP-BASELINE64.36 23762.23 24770.74 19972.35 28452.45 17570.80 27678.45 17653.84 22959.87 28281.10 21816.24 38279.32 22855.64 18671.76 22880.47 247
IterMVS62.79 25361.27 25967.35 24969.37 32952.04 18271.17 26968.24 29452.63 24159.82 28376.91 29037.32 25572.36 29852.80 20863.19 32277.66 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24263.88 22463.14 29574.75 24631.04 38171.16 27063.64 32656.32 17459.80 28484.99 13644.51 18275.46 28639.12 31780.62 10782.92 201
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 36048.05 38525.71 38959.76 28569.60 35511.57 39252.23 38749.45 23756.86 35471.58 349
pmmvs663.69 24262.82 24166.27 26270.63 31039.27 32373.13 24175.47 22252.69 24059.75 28682.30 19239.71 22977.03 26647.40 25264.35 31282.53 208
test_vis1_n49.89 33948.69 34153.50 35153.97 38837.38 34061.53 34047.33 38728.54 38259.62 28767.10 36813.52 38752.27 38649.07 23957.52 35170.84 357
pmmvs461.48 26959.39 27267.76 24371.57 29553.86 14371.42 26465.34 31344.20 33559.46 28877.92 27335.90 26974.71 28943.87 28764.87 30674.71 319
Patchmatch-RL test58.16 28955.49 30566.15 26567.92 34148.89 23060.66 34951.07 37847.86 30159.36 28962.71 38034.02 28872.27 30056.41 17659.40 34577.30 288
CR-MVSNet59.91 27757.90 28765.96 26969.96 32152.07 18065.31 32263.15 33042.48 35059.36 28974.84 31635.83 27070.75 30845.50 27364.65 30875.06 311
RPMNet61.53 26758.42 28170.86 19669.96 32152.07 18065.31 32281.36 11343.20 34559.36 28970.15 35035.37 27385.47 10436.42 33764.65 30875.06 311
SCA60.49 27358.38 28266.80 25274.14 26148.06 24063.35 33263.23 32949.13 28259.33 29272.10 33337.45 25274.27 29244.17 28162.57 32678.05 278
DP-MVS65.68 21863.66 22971.75 17184.93 5556.87 9980.74 9273.16 25553.06 23559.09 29382.35 19036.79 26585.94 9132.82 35369.96 25572.45 337
Test_1112_low_res62.32 25761.77 25264.00 28979.08 14239.53 32168.17 29770.17 27643.25 34459.03 29479.90 24044.08 18671.24 30643.79 28868.42 28081.25 233
PatchmatchNetpermissive59.84 27858.24 28364.65 28573.05 27046.70 25469.42 29062.18 33947.55 30458.88 29571.96 33534.49 28269.16 31742.99 29563.60 31778.07 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_040263.25 24861.01 26369.96 21180.00 12054.37 13976.86 17172.02 26454.58 21858.71 29680.79 22835.00 27784.36 12526.41 38564.71 30771.15 355
LTVRE_ROB55.42 1663.15 25061.23 26168.92 23176.57 21847.80 24259.92 35176.39 20854.35 22258.67 29782.46 18929.44 33281.49 18642.12 30171.14 23577.46 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 30656.57 29654.96 34166.93 34636.32 35357.94 35961.69 34141.67 35358.64 29875.32 31438.72 24056.25 37442.04 30266.19 29772.31 342
testing356.54 30055.92 30258.41 32277.52 19627.93 38969.72 28756.36 36254.75 21558.63 29977.80 27720.88 37571.75 30425.31 38762.25 32975.53 307
tpmrst58.24 28858.70 27956.84 33266.97 34534.32 36569.57 28961.14 34447.17 31158.58 30071.60 33841.28 21760.41 35349.20 23862.84 32475.78 304
IB-MVS56.42 1265.40 22462.73 24273.40 13974.89 24152.78 16773.09 24275.13 23055.69 18958.48 30173.73 32432.86 30186.32 8450.63 22670.11 25181.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet59.63 28159.14 27461.08 31074.47 25338.84 32675.20 20368.74 29131.15 37958.24 30276.51 29832.39 31368.58 32049.77 23165.84 29975.81 303
D2MVS62.30 25860.29 26868.34 23966.46 35148.42 23665.70 31373.42 25247.71 30258.16 30375.02 31530.51 32177.71 25653.96 19971.68 23078.90 272
RPSCF55.80 30954.22 31860.53 31165.13 35842.91 29364.30 32857.62 35636.84 37158.05 30482.28 19328.01 34156.24 37537.14 32758.61 34882.44 212
tpm cat159.25 28356.95 29266.15 26572.19 28746.96 25268.09 29865.76 31040.03 36557.81 30570.56 34538.32 24474.51 29038.26 32161.50 33577.00 294
gg-mvs-nofinetune57.86 29256.43 29862.18 30172.62 27735.35 35866.57 30756.33 36350.65 26557.64 30657.10 38630.65 32076.36 28137.38 32578.88 13574.82 317
ACMH+57.40 1166.12 21464.06 22172.30 16277.79 18252.83 16680.39 9478.03 18457.30 15457.47 30782.55 18427.68 34484.17 12745.54 27169.78 25979.90 257
dmvs_re56.77 29956.83 29456.61 33369.23 33041.02 30758.37 35664.18 32250.59 26757.45 30871.42 33935.54 27258.94 36137.23 32667.45 28769.87 364
MS-PatchMatch62.42 25661.46 25665.31 28075.21 23952.10 17972.05 25774.05 24746.41 31657.42 30974.36 32034.35 28477.57 25845.62 27073.67 19766.26 372
PVSNet50.76 1958.40 28757.39 28861.42 30675.53 23444.04 28161.43 34163.45 32747.04 31256.91 31073.61 32527.00 35164.76 33939.12 31772.40 22075.47 308
Patchmtry57.16 29656.47 29759.23 31569.17 33234.58 36462.98 33363.15 33044.53 33156.83 31174.84 31635.83 27068.71 31940.03 31260.91 33774.39 322
LS3D64.71 23162.50 24471.34 18679.72 12755.71 11779.82 10674.72 23748.50 29156.62 31284.62 14333.59 29482.34 17229.65 37475.23 18375.97 301
ACMH55.70 1565.20 22763.57 23070.07 21078.07 17352.01 18379.48 11579.69 14555.75 18856.59 31380.98 22127.12 34980.94 19942.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS56.00 30756.23 30055.32 33974.69 24826.44 39565.52 31657.49 35750.97 26256.52 31472.18 33139.89 22668.09 32224.20 38864.59 31071.44 351
myMVS_eth3d54.86 31654.61 31155.61 33874.69 24827.31 39265.52 31657.49 35750.97 26256.52 31472.18 33121.87 37368.09 32227.70 38064.59 31071.44 351
MVP-Stereo65.41 22363.80 22670.22 20677.62 19255.53 12476.30 17978.53 17150.59 26756.47 31678.65 26239.84 22782.68 16344.10 28472.12 22672.44 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28565.69 27470.47 31244.82 27275.33 19970.86 27245.04 32756.06 31776.00 30326.89 35279.65 22235.36 34267.29 28872.60 334
EG-PatchMatch MVS64.71 23162.87 23970.22 20677.68 18553.48 15177.99 13778.82 16153.37 23456.03 31877.41 28524.75 36484.04 13046.37 26273.42 20573.14 329
PLCcopyleft56.13 1465.09 22863.21 23670.72 20081.04 9954.87 13478.57 12577.47 19348.51 29055.71 31981.89 20333.71 29179.71 22141.66 30570.37 24577.58 285
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 31853.69 32154.79 34366.12 35431.96 37962.34 33849.05 38144.42 33455.54 32071.33 34130.22 32456.70 37041.65 30662.54 32775.71 305
MDTV_nov1_ep1357.00 29172.73 27538.26 33165.02 32564.73 31844.74 32955.46 32172.48 32932.61 31070.47 30937.47 32467.75 285
test-LLR58.15 29058.13 28658.22 32468.57 33544.80 27365.46 31857.92 35450.08 27155.44 32269.82 35232.62 30857.44 36749.66 23473.62 19872.41 339
test-mter56.42 30355.82 30358.22 32468.57 33544.80 27365.46 31857.92 35439.94 36655.44 32269.82 35221.92 37057.44 36749.66 23473.62 19872.41 339
ITE_SJBPF62.09 30266.16 35344.55 27864.32 32047.36 30755.31 32480.34 23319.27 37662.68 34636.29 33862.39 32879.04 269
MIMVSNet57.35 29457.07 29058.22 32474.21 26037.18 34162.46 33660.88 34548.88 28555.29 32575.99 30531.68 31662.04 34831.87 35872.35 22175.43 309
Anonymous2023120655.10 31555.30 30754.48 34469.81 32533.94 36962.91 33462.13 34041.08 35755.18 32675.65 30932.75 30556.59 37330.32 37167.86 28372.91 330
KD-MVS_2432*160053.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
miper_refine_blended53.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
pmmvs-eth3d58.81 28556.31 29966.30 26167.61 34252.42 17672.30 25464.76 31743.55 34154.94 32974.19 32228.95 33472.60 29743.31 29057.21 35373.88 327
baseline263.42 24461.26 26069.89 21672.55 27947.62 24671.54 26368.38 29350.11 27054.82 33075.55 31143.06 19580.96 19848.13 24867.16 29081.11 237
OurMVSNet-221017-061.37 27058.63 28069.61 21972.05 28948.06 24073.93 23072.51 25947.23 31054.74 33180.92 22321.49 37481.24 19248.57 24456.22 35879.53 264
GG-mvs-BLEND62.34 30071.36 30137.04 34569.20 29257.33 35954.73 33265.48 37430.37 32277.82 25334.82 34374.93 18472.17 343
tpmvs58.47 28656.95 29263.03 29770.20 31641.21 30667.90 30067.23 30049.62 27654.73 33270.84 34334.14 28576.24 28336.64 33461.29 33671.64 347
EPNet_dtu61.90 26361.97 25061.68 30372.89 27339.78 31775.85 19165.62 31255.09 20654.56 33479.36 25337.59 25167.02 32939.80 31476.95 16478.25 275
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35754.41 36944.46 33354.56 33469.05 35833.32 29660.94 35036.93 32961.76 33470.73 358
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35254.11 37050.08 27154.40 33674.31 32132.62 30855.92 37630.50 37063.95 31572.15 344
ambc65.13 28263.72 36537.07 34447.66 38778.78 16454.37 33771.42 33911.24 39480.94 19945.64 26953.85 36677.38 287
SixPastTwentyTwo61.65 26658.80 27870.20 20875.80 22847.22 25075.59 19569.68 28054.61 21654.11 33879.26 25527.07 35082.96 15143.27 29149.79 37680.41 249
ppachtmachnet_test58.06 29155.38 30666.10 26769.51 32648.99 22868.01 29966.13 30944.50 33254.05 33970.74 34432.09 31572.34 29936.68 33356.71 35776.99 296
TESTMET0.1,155.28 31254.90 30956.42 33466.56 34943.67 28465.46 31856.27 36439.18 36853.83 34067.44 36424.21 36555.46 37848.04 24973.11 21170.13 362
pmmvs556.47 30255.68 30458.86 31961.41 37536.71 34866.37 30962.75 33240.38 36253.70 34176.62 29534.56 28067.05 32840.02 31365.27 30272.83 332
MSDG61.81 26559.23 27369.55 22372.64 27652.63 17070.45 28075.81 21551.38 25553.70 34176.11 30229.52 33081.08 19737.70 32365.79 30074.93 315
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38947.47 25049.82 37571.88 345
K. test v360.47 27457.11 28970.56 20273.74 26348.22 23875.10 20762.55 33358.27 13853.62 34476.31 30127.81 34381.59 18447.42 25139.18 38981.88 222
PM-MVS52.33 32850.19 33658.75 32062.10 37245.14 27165.75 31240.38 39743.60 34053.52 34572.65 3289.16 39965.87 33650.41 22754.18 36465.24 374
PMMVS53.96 31853.26 32456.04 33562.60 37050.92 19361.17 34556.09 36532.81 37753.51 34666.84 36934.04 28759.93 35644.14 28368.18 28157.27 384
PatchMatch-RL56.25 30554.55 31261.32 30977.06 20856.07 10965.57 31554.10 37144.13 33753.49 34771.27 34225.20 36166.78 33036.52 33663.66 31661.12 376
LCM-MVSNet-Re61.88 26461.35 25763.46 29174.58 25131.48 38061.42 34258.14 35358.71 12953.02 34879.55 24943.07 19476.80 27145.69 26877.96 14982.11 219
F-COLMAP63.05 25160.87 26669.58 22276.99 21153.63 14878.12 13476.16 21047.97 29952.41 34981.61 20927.87 34278.11 24840.07 31166.66 29377.00 294
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34359.21 34951.34 25752.09 35077.43 28433.29 29758.55 36329.76 37360.27 34373.58 328
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35558.15 35249.03 28351.83 35179.21 25622.39 36855.59 37729.24 37662.64 32572.40 341
EU-MVSNet55.61 31054.41 31459.19 31765.41 35733.42 37272.44 25271.91 26528.81 38151.27 35273.87 32324.76 36369.08 31843.04 29458.20 34975.06 311
MDTV_nov1_ep13_2view25.89 39761.22 34440.10 36451.10 35332.97 30038.49 31978.61 273
COLMAP_ROBcopyleft52.97 1761.27 27158.81 27668.64 23474.63 25052.51 17378.42 12873.30 25349.92 27450.96 35481.51 21223.06 36779.40 22631.63 36365.85 29874.01 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test55.22 31353.89 32059.21 31657.80 38727.47 39157.75 36174.32 24247.38 30650.90 35570.00 35128.45 33970.30 31340.44 31057.92 35079.87 258
ADS-MVSNet251.33 33348.76 34059.07 31866.02 35544.60 27650.90 38059.76 34736.90 36950.74 35666.18 37226.38 35363.11 34427.17 38154.76 36269.50 366
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38527.17 38154.76 36269.50 366
our_test_356.49 30154.42 31362.68 29969.51 32645.48 26866.08 31161.49 34244.11 33850.73 35869.60 35533.05 29868.15 32138.38 32056.86 35474.40 321
FMVSNet555.86 30854.93 30858.66 32171.05 30636.35 35164.18 33062.48 33446.76 31450.66 35974.73 31825.80 35864.04 34133.11 35165.57 30175.59 306
lessismore_v069.91 21471.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18945.91 26634.10 39580.59 246
UnsupCasMVSNet_eth53.16 32752.47 32555.23 34059.45 38333.39 37359.43 35369.13 28845.98 32050.35 36172.32 33029.30 33358.26 36542.02 30344.30 38274.05 325
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34851.50 37551.17 26050.30 36267.44 36439.28 23360.29 35422.38 39057.49 35262.76 375
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33754.57 36844.16 33649.31 36367.91 36028.87 33656.61 37233.89 34654.89 36169.24 369
Anonymous2024052155.30 31154.41 31457.96 32760.92 38141.73 30271.09 27371.06 27141.18 35648.65 36473.31 32616.93 37959.25 35942.54 29864.01 31372.90 331
JIA-IIPM51.56 33147.68 34563.21 29464.61 36050.73 19747.71 38658.77 35142.90 34748.46 36551.72 39024.97 36270.24 31436.06 33953.89 36568.64 370
USDC56.35 30454.24 31762.69 29864.74 35940.31 31265.05 32473.83 24943.93 33947.58 36677.71 28115.36 38575.05 28838.19 32261.81 33372.70 333
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34960.97 38033.67 37157.62 36264.56 31939.47 36747.38 36764.02 37827.47 34559.32 35834.69 34443.68 38367.98 371
AllTest57.08 29754.65 31064.39 28771.44 29749.03 22569.92 28667.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
TestCases64.39 28771.44 29749.03 22567.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
CMPMVSbinary42.80 2157.81 29355.97 30163.32 29260.98 37947.38 24964.66 32769.50 28432.06 37846.83 37077.80 27729.50 33171.36 30548.68 24273.75 19671.21 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet155.17 31454.31 31657.77 32970.03 32032.01 37865.68 31464.81 31649.19 28146.75 37176.00 30325.53 36064.04 34128.65 37762.13 33077.26 290
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40133.01 35235.91 39253.63 387
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35446.15 37358.75 38330.99 31958.66 36232.18 35424.81 39855.46 386
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39427.08 38360.65 34177.27 289
YYNet150.73 33548.96 33756.03 33661.10 37741.78 30151.94 37756.44 36140.94 35944.84 37567.80 36230.08 32555.08 37936.77 33050.71 37271.22 353
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33761.17 37641.84 30051.90 37856.45 36040.96 35844.79 37667.84 36130.04 32655.07 38036.71 33250.69 37371.11 356
TDRefinement53.44 32450.72 33361.60 30464.31 36246.96 25270.89 27565.27 31541.78 35144.61 37777.98 27011.52 39366.36 33328.57 37851.59 37071.49 350
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34943.28 34344.22 37868.66 35925.67 35957.20 36931.57 36549.35 37774.62 320
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39639.27 31653.02 36759.14 379
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39826.02 38651.77 36965.44 373
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 39036.53 33560.80 33957.76 383
TinyColmap54.14 31751.72 32861.40 30766.84 34741.97 29966.52 30868.51 29244.81 32842.69 38275.77 30811.66 39172.94 29631.96 35756.77 35669.27 368
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29666.25 35248.58 23456.93 36563.82 32448.09 29741.22 38370.48 34830.34 32368.00 32534.24 34545.92 38172.57 335
pmmvs344.92 34741.95 35453.86 34752.58 39343.55 28562.11 33946.90 38926.05 38840.63 38460.19 38211.08 39657.91 36631.83 36246.15 38060.11 377
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39731.63 36349.18 37858.72 380
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35845.20 39045.42 32540.44 38667.26 36734.01 28958.98 36011.96 40324.88 39759.20 378
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39522.43 38952.69 36858.31 381
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 36039.33 39048.65 39816.91 38048.34 39112.18 40219.05 40235.44 401
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34238.30 39166.45 37032.67 30758.42 36410.98 40421.91 40057.99 382
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35444.50 39227.03 38637.96 39250.47 39426.16 35664.10 34026.74 38459.52 34447.82 393
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38814.01 39855.11 36043.09 395
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
LCM-MVSNet40.30 35635.88 36253.57 35042.24 40229.15 38545.21 39260.53 34622.23 39528.02 39750.98 3933.72 40861.78 34931.22 36838.76 39069.78 365
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38418.92 39341.17 38748.14 392
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27947.65 30326.04 39952.32 38912.44 38962.38 34721.80 39110.61 40872.49 336
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3559.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30123.23 39118.41 40425.84 4044.24 40562.73 34514.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39910.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 4009.18 40813.66 40617.32 405
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
EGC-MVSNET42.47 35138.48 35954.46 34574.33 25748.73 23270.33 28251.10 3770.03 4110.18 41267.78 36313.28 38866.49 33218.91 39450.36 37448.15 391
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1680.00 4140.00 41582.18 19449.25 1220.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
eth-test20.00 419
eth-test0.00 419
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
save fliter86.17 3361.30 2883.98 4779.66 14759.00 123
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 44
GSMVS78.05 278
sam_mvs134.74 27978.05 278
sam_mvs33.43 295
MTGPAbinary80.97 130
test_post168.67 2953.64 40932.39 31369.49 31644.17 281
test_post3.55 41033.90 29066.52 331
patchmatchnet-post64.03 37634.50 28174.27 292
MTMP86.03 1917.08 413
gm-plane-assit71.40 30041.72 30448.85 28673.31 32682.48 17048.90 241
test9_res75.28 3788.31 3283.81 173
agg_prior273.09 5587.93 4084.33 154
test_prior462.51 1482.08 76
test_prior76.69 5384.20 6157.27 8884.88 4086.43 8086.38 79
新几何276.12 182
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18680.76 10678.03 281
无先验79.66 11274.30 24448.40 29380.78 20553.62 20179.03 270
原ACMM279.02 117
testdata272.18 30246.95 259
segment_acmp54.23 56
testdata172.65 24660.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior584.01 5387.21 5668.16 8280.58 10984.65 148
plane_prior486.10 110
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
test1183.47 73
door47.60 386
HQP5-MVS54.94 131
BP-MVS67.04 97
HQP3-MVS83.90 5880.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 129
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 133