SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 71 | 87.82 5 | 86.78 12 | 64.18 32 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
|
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 66 | 87.85 3 | 85.03 33 | 64.26 29 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 104 |
|
DPE-MVS | | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 43 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
|
SMA-MVS | | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 23 | 62.49 60 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 49 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
HPM-MVS++ | | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 60 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 48 | 79.00 7 | 90.37 10 | 85.26 113 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 35 | 85.03 33 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 21 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 53 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 27 |
Skip Steuart: Steuart Systems R&D Blog. |
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 83 | 84.65 33 | 87.66 4 | 58.56 130 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 28 | 62.86 52 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 87 | 84.99 31 | 88.13 3 | 61.86 73 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 19 | 63.32 42 | 75.08 39 | 90.47 25 | 53.96 57 | 88.68 24 | 76.48 23 | 89.63 20 | 87.16 47 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 30 | 62.88 51 | 78.10 24 | 91.26 11 | 52.51 71 | 88.39 27 | 79.34 5 | 90.52 9 | 86.78 58 |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 86 | 84.14 44 | 88.31 1 | 60.37 93 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 59 | 77.16 19 | 89.90 14 | 87.97 18 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 30 | 84.42 42 | 66.73 9 | 74.67 48 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 41 | 86.85 9 | 63.23 44 | 73.84 61 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 27 | 62.12 66 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 85 |
|
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 45 | 83.82 58 | 59.34 118 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 45 | 76.69 22 | 86.74 54 | 87.68 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 47 | 79.95 141 | 59.00 121 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 57 | 82.93 61 | 85.39 26 | 62.15 65 | 76.41 32 | 91.51 9 | 52.47 73 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS | | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 63 | 63.89 37 | 73.60 64 | 90.60 18 | 54.85 48 | 86.72 66 | 77.20 18 | 88.06 37 | 85.74 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 29 | 63.56 41 | 74.29 53 | 90.03 41 | 52.56 70 | 88.53 26 | 74.79 31 | 88.34 30 | 86.63 60 |
|
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 76 | 82.72 66 | 87.55 5 | 58.33 136 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 44 | 76.15 25 | 89.86 15 | 86.82 55 |
|
APD-MVS | | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 43 | 60.61 88 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 30 | 73.48 44 | 87.03 48 | 84.83 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 44 | 62.82 53 | 73.96 56 | 90.50 22 | 53.20 67 | 88.35 28 | 74.02 37 | 87.05 46 | 86.13 77 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 44 | 61.61 76 | 73.96 56 | 90.50 22 | 53.20 67 | 88.35 28 | 73.68 40 | 87.05 46 | 86.13 77 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 46 | 62.82 53 | 73.55 65 | 90.56 20 | 49.80 99 | 88.24 31 | 74.02 37 | 87.03 48 | 86.32 72 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 34 | 83.87 56 | 60.37 93 | 79.89 14 | 89.38 53 | 54.97 45 | 85.58 96 | 76.12 26 | 84.94 63 | 86.33 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 48 | 62.81 55 | 73.30 67 | 90.58 19 | 49.90 97 | 88.21 32 | 73.78 39 | 87.03 48 | 86.29 75 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 125 | 65.13 17 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 80 | 83.22 57 | 86.93 8 | 56.91 154 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 43 | 73.67 41 | 87.45 43 | 86.57 61 |
|
HPM-MVS | | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 31 | 62.57 58 | 73.09 72 | 89.97 44 | 50.90 93 | 87.48 46 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 32 | 84.85 38 | 61.98 72 | 73.06 73 | 88.88 61 | 53.72 61 | 89.06 19 | 68.27 69 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 23 | 72.17 84 | 90.01 43 | 47.95 121 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 67 |
|
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 66 | 62.44 62 | 72.68 77 | 90.50 22 | 48.18 119 | 87.34 47 | 73.59 42 | 85.71 60 | 84.76 129 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 86 | 75.27 37 | 84.83 118 | 60.76 12 | 86.56 73 | 67.86 75 | 87.87 42 | 86.06 80 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 199 | 80.97 125 | 65.13 17 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 95 | 81.75 81 | 84.88 36 | 60.37 93 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 78 | 72.19 49 | 88.96 24 | 86.38 63 |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 70 | 83.74 59 | 61.71 74 | 72.45 83 | 90.34 29 | 48.48 117 | 88.13 33 | 72.32 48 | 86.85 52 | 85.78 87 |
|
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 89 | 62.90 50 | 71.77 87 | 90.26 32 | 46.61 144 | 86.55 74 | 71.71 52 | 85.66 61 | 84.97 121 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 92 | 82.35 72 | 83.31 72 | 67.78 3 | 70.09 101 | 86.34 95 | 54.92 46 | 88.90 21 | 72.68 47 | 84.55 66 | 87.76 26 |
|
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 64 | 81.31 90 | 84.02 49 | 56.32 167 | 74.05 54 | 88.98 59 | 53.34 66 | 87.92 38 | 69.23 66 | 88.42 29 | 87.59 32 |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.86 177 | 74.93 42 | 88.81 62 | 53.70 62 | 84.68 117 | 75.24 29 | 88.33 31 | 83.65 165 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 90 | 59.99 104 | 75.10 38 | 90.35 27 | 47.66 125 | 86.52 75 | 71.64 53 | 82.99 75 | 84.47 136 |
|
ACMMP | | | 76.02 46 | 75.33 49 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 29 | 84.44 41 | 63.04 47 | 69.80 111 | 89.74 49 | 45.43 155 | 87.16 52 | 72.01 51 | 82.87 80 | 85.14 114 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 76 | 85.04 52 | 59.96 51 | 81.44 88 | 81.04 122 | 56.14 173 | 74.68 46 | 88.90 60 | 53.91 58 | 84.04 129 | 75.01 30 | 87.92 41 | 83.16 180 |
|
PHI-MVS | | | 75.87 48 | 75.36 48 | 77.41 49 | 80.62 109 | 55.91 119 | 84.28 38 | 85.78 22 | 56.08 175 | 73.41 66 | 86.58 90 | 50.94 92 | 88.54 25 | 70.79 58 | 89.71 17 | 87.79 25 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 57 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 149 | 89.24 55 | 42.03 185 | 89.38 14 | 64.07 107 | 86.50 57 | 89.69 1 |
|
Regformer-2 | | | 75.63 50 | 74.99 51 | 77.54 47 | 80.43 111 | 58.32 81 | 79.50 117 | 82.92 80 | 67.84 1 | 75.94 33 | 80.75 203 | 55.73 40 | 86.80 63 | 71.44 56 | 80.38 105 | 87.50 35 |
|
DPM-MVS | | | 75.47 51 | 75.00 50 | 76.88 56 | 81.38 96 | 59.16 62 | 79.94 107 | 85.71 24 | 56.59 162 | 72.46 81 | 86.76 80 | 56.89 29 | 87.86 40 | 66.36 87 | 88.91 26 | 83.64 166 |
|
Regformer-1 | | | 75.47 51 | 74.93 53 | 77.09 54 | 80.43 111 | 57.70 90 | 79.50 117 | 82.13 91 | 67.84 1 | 75.73 36 | 80.75 203 | 56.50 32 | 86.07 82 | 71.07 57 | 80.38 105 | 87.50 35 |
|
test1172 | | | 75.36 53 | 74.81 55 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 102 | 59.52 115 | 74.66 49 | 90.18 34 | 44.74 161 | 85.84 91 | 70.63 60 | 82.52 84 | 84.42 137 |
|
APD-MVS_3200maxsize | | | 74.96 54 | 74.39 59 | 76.67 61 | 82.20 83 | 58.24 82 | 83.67 51 | 83.29 73 | 58.41 132 | 73.71 62 | 90.14 35 | 45.62 150 | 85.99 86 | 69.64 62 | 82.85 81 | 85.78 87 |
|
TSAR-MVS + GP. | | | 74.90 55 | 74.15 61 | 77.17 53 | 82.00 86 | 58.77 74 | 81.80 80 | 78.57 166 | 58.58 128 | 74.32 52 | 84.51 127 | 55.94 38 | 87.22 49 | 67.11 82 | 84.48 68 | 85.52 100 |
|
casdiffmvs | | | 74.80 56 | 74.89 54 | 74.53 101 | 75.59 215 | 50.37 191 | 78.17 134 | 85.06 32 | 62.80 56 | 74.40 51 | 87.86 70 | 57.88 24 | 83.61 140 | 69.46 65 | 82.79 82 | 89.59 2 |
|
DELS-MVS | | | 74.76 57 | 74.46 58 | 75.65 79 | 77.84 169 | 52.25 168 | 75.59 184 | 84.17 47 | 63.76 38 | 73.15 69 | 82.79 155 | 59.58 16 | 86.80 63 | 67.24 81 | 86.04 59 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OPM-MVS | | | 74.73 58 | 74.25 60 | 76.19 68 | 80.81 105 | 59.01 69 | 82.60 69 | 83.64 61 | 63.74 39 | 72.52 80 | 87.49 73 | 47.18 135 | 85.88 90 | 69.47 64 | 80.78 97 | 83.66 164 |
|
canonicalmvs | | | 74.67 59 | 74.98 52 | 73.71 120 | 78.94 139 | 50.56 188 | 80.23 102 | 83.87 56 | 60.30 99 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 174 | 66.01 91 | 82.12 87 | 88.58 6 |
|
baseline | | | 74.61 60 | 74.70 56 | 74.34 105 | 75.70 211 | 49.99 198 | 77.54 145 | 84.63 40 | 62.73 57 | 73.98 55 | 87.79 72 | 57.67 27 | 83.82 136 | 69.49 63 | 82.74 83 | 89.20 3 |
|
SR-MVS-dyc-post | | | 74.57 61 | 73.90 63 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 36 | 81.36 109 | 58.07 139 | 73.14 70 | 90.07 36 | 44.74 161 | 85.84 91 | 68.20 70 | 81.76 91 | 84.03 147 |
|
ETV-MVS | | | 74.46 62 | 73.84 65 | 76.33 67 | 79.27 131 | 55.24 131 | 79.22 120 | 85.00 35 | 64.97 21 | 72.65 78 | 79.46 230 | 53.65 65 | 87.87 39 | 67.45 80 | 82.91 78 | 85.89 84 |
|
abl_6 | | | 74.34 63 | 73.50 69 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 96 | 58.81 125 | 73.95 58 | 89.86 46 | 41.87 188 | 86.62 70 | 67.98 74 | 81.23 96 | 83.80 159 |
|
HQP_MVS | | | 74.31 64 | 73.73 66 | 76.06 69 | 81.41 94 | 56.31 108 | 84.22 39 | 84.01 50 | 64.52 25 | 69.27 120 | 86.10 99 | 45.26 159 | 87.21 50 | 68.16 72 | 80.58 101 | 84.65 130 |
|
HPM-MVS_fast | | | 74.30 65 | 73.46 72 | 76.80 58 | 84.45 63 | 59.04 68 | 83.65 52 | 81.05 121 | 60.15 101 | 70.43 96 | 89.84 47 | 41.09 203 | 85.59 95 | 67.61 78 | 82.90 79 | 85.77 90 |
|
Regformer-4 | | | 74.25 66 | 73.48 70 | 76.57 64 | 79.75 124 | 56.54 107 | 78.54 129 | 81.49 106 | 66.93 7 | 73.90 59 | 80.30 211 | 53.84 60 | 85.98 87 | 69.76 61 | 76.84 152 | 87.17 46 |
|
CS-MVS | | | 74.18 67 | 73.60 68 | 75.92 71 | 78.99 137 | 52.53 162 | 80.61 98 | 85.93 20 | 61.17 82 | 71.15 92 | 79.34 234 | 54.52 51 | 88.86 22 | 66.07 88 | 84.67 65 | 86.38 63 |
|
MVS_111021_HR | | | 74.02 68 | 73.46 72 | 75.69 78 | 83.01 77 | 60.63 44 | 77.29 152 | 78.40 177 | 61.18 81 | 70.58 95 | 85.97 103 | 54.18 55 | 84.00 133 | 67.52 79 | 82.98 77 | 82.45 192 |
|
MG-MVS | | | 73.96 69 | 73.89 64 | 74.16 108 | 85.65 42 | 49.69 203 | 81.59 86 | 81.29 115 | 61.45 77 | 71.05 93 | 88.11 67 | 51.77 81 | 87.73 42 | 61.05 134 | 83.09 73 | 85.05 118 |
|
Regformer-3 | | | 73.89 70 | 73.28 74 | 75.71 77 | 79.75 124 | 55.48 128 | 78.54 129 | 79.93 142 | 66.58 11 | 73.62 63 | 80.30 211 | 54.87 47 | 84.54 120 | 69.09 67 | 76.84 152 | 87.10 49 |
|
alignmvs | | | 73.86 71 | 73.99 62 | 73.45 129 | 78.20 158 | 50.50 189 | 78.57 127 | 82.43 87 | 59.40 116 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 189 | 65.84 93 | 81.79 89 | 88.62 4 |
|
MSLP-MVS++ | | | 73.77 72 | 73.47 71 | 74.66 96 | 83.02 76 | 59.29 61 | 82.30 77 | 81.88 95 | 59.34 118 | 71.59 90 | 86.83 79 | 45.94 148 | 83.65 139 | 65.09 99 | 85.22 62 | 81.06 216 |
|
HQP-MVS | | | 73.45 73 | 72.80 77 | 75.40 83 | 80.66 106 | 54.94 133 | 82.31 74 | 83.90 54 | 62.10 67 | 67.85 144 | 85.54 112 | 45.46 153 | 86.93 60 | 67.04 83 | 80.35 107 | 84.32 139 |
|
CLD-MVS | | | 73.33 74 | 72.68 78 | 75.29 87 | 78.82 141 | 53.33 151 | 78.23 133 | 84.79 39 | 61.30 80 | 70.41 97 | 81.04 193 | 52.41 74 | 87.12 54 | 64.61 104 | 82.49 86 | 85.41 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 73.31 75 | 72.54 79 | 75.62 80 | 77.87 168 | 53.64 144 | 79.62 115 | 79.61 147 | 61.63 75 | 72.02 86 | 82.61 160 | 56.44 33 | 85.97 88 | 63.99 110 | 79.07 127 | 87.25 45 |
|
test_part1 | | | 73.17 76 | 72.05 84 | 76.54 65 | 78.34 154 | 54.99 132 | 85.51 28 | 86.99 7 | 58.40 133 | 69.77 112 | 84.50 128 | 48.78 112 | 87.16 52 | 64.60 105 | 71.53 209 | 87.48 37 |
|
UA-Net | | | 73.13 77 | 72.93 76 | 73.76 116 | 83.58 68 | 51.66 174 | 78.75 122 | 77.66 186 | 67.75 4 | 72.61 79 | 89.42 51 | 49.82 98 | 83.29 145 | 53.61 184 | 83.14 72 | 86.32 72 |
|
EPNet | | | 73.09 78 | 72.16 81 | 75.90 72 | 75.95 207 | 56.28 110 | 83.05 58 | 72.39 246 | 66.53 12 | 65.27 188 | 87.00 78 | 50.40 95 | 85.47 102 | 62.48 123 | 86.32 58 | 85.94 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
nrg030 | | | 72.96 79 | 73.01 75 | 72.84 142 | 75.41 218 | 50.24 192 | 80.02 105 | 82.89 83 | 58.36 135 | 74.44 50 | 86.73 82 | 58.90 19 | 80.83 198 | 65.84 93 | 74.46 166 | 87.44 39 |
|
CPTT-MVS | | | 72.78 80 | 72.08 83 | 74.87 92 | 84.88 60 | 61.41 29 | 84.15 42 | 77.86 182 | 55.27 189 | 67.51 153 | 88.08 69 | 41.93 187 | 81.85 176 | 69.04 68 | 80.01 111 | 81.35 209 |
|
LPG-MVS_test | | | 72.74 81 | 71.74 86 | 75.76 74 | 80.22 115 | 57.51 93 | 82.55 70 | 83.40 68 | 61.32 78 | 66.67 163 | 87.33 76 | 39.15 216 | 86.59 71 | 67.70 76 | 77.30 147 | 83.19 177 |
|
PAPM_NR | | | 72.63 82 | 71.80 85 | 75.13 88 | 81.72 89 | 53.42 150 | 79.91 109 | 83.28 74 | 59.14 120 | 66.31 171 | 85.90 104 | 51.86 80 | 86.06 83 | 57.45 154 | 80.62 99 | 85.91 83 |
|
VDD-MVS | | | 72.50 83 | 72.09 82 | 73.75 118 | 81.58 90 | 49.69 203 | 77.76 140 | 77.63 187 | 63.21 45 | 73.21 68 | 89.02 58 | 42.14 184 | 83.32 144 | 61.72 129 | 82.50 85 | 88.25 9 |
|
3Dnovator | | 64.47 5 | 72.49 84 | 71.39 91 | 75.79 73 | 77.70 171 | 58.99 70 | 80.66 97 | 83.15 77 | 62.24 64 | 65.46 185 | 86.59 89 | 42.38 183 | 85.52 98 | 59.59 146 | 84.72 64 | 82.85 186 |
|
MVS_Test | | | 72.45 85 | 72.46 80 | 72.42 154 | 74.88 223 | 48.50 217 | 76.28 172 | 83.14 78 | 59.40 116 | 72.46 81 | 84.68 120 | 55.66 41 | 81.12 190 | 65.98 92 | 79.66 115 | 87.63 30 |
|
EI-MVSNet-Vis-set | | | 72.42 86 | 71.59 87 | 74.91 90 | 78.47 150 | 54.02 140 | 77.05 157 | 79.33 153 | 65.03 20 | 71.68 89 | 79.35 233 | 52.75 69 | 84.89 113 | 66.46 86 | 74.23 169 | 85.83 86 |
|
ACMP | | 63.53 6 | 72.30 87 | 71.20 96 | 75.59 82 | 80.28 113 | 57.54 91 | 82.74 65 | 82.84 84 | 60.58 89 | 65.24 192 | 86.18 97 | 39.25 214 | 86.03 85 | 66.95 85 | 76.79 154 | 83.22 175 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PS-MVSNAJss | | | 72.24 88 | 71.21 95 | 75.31 85 | 78.50 148 | 55.93 118 | 81.63 83 | 82.12 92 | 56.24 170 | 70.02 105 | 85.68 109 | 47.05 137 | 84.34 124 | 65.27 98 | 74.41 168 | 85.67 94 |
|
Vis-MVSNet | | | 72.18 89 | 71.37 92 | 74.61 99 | 81.29 97 | 55.41 129 | 80.90 93 | 78.28 179 | 60.73 87 | 69.23 123 | 88.09 68 | 44.36 167 | 82.65 163 | 57.68 153 | 81.75 93 | 85.77 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 72.17 90 | 71.41 90 | 74.45 103 | 81.95 87 | 57.22 97 | 84.03 45 | 80.38 135 | 59.89 108 | 68.40 132 | 82.33 167 | 49.64 100 | 87.83 41 | 51.87 195 | 84.16 70 | 78.30 246 |
|
EPP-MVSNet | | | 72.16 91 | 71.31 94 | 74.71 93 | 78.68 145 | 49.70 201 | 82.10 78 | 81.65 101 | 60.40 92 | 65.94 176 | 85.84 105 | 51.74 82 | 86.37 80 | 55.93 161 | 79.55 118 | 88.07 17 |
|
DP-MVS Recon | | | 72.15 92 | 70.73 101 | 76.40 66 | 86.57 22 | 57.99 85 | 81.15 92 | 82.96 79 | 57.03 151 | 66.78 161 | 85.56 110 | 44.50 165 | 88.11 34 | 51.77 197 | 80.23 110 | 83.10 181 |
|
EI-MVSNet-UG-set | | | 71.92 93 | 71.06 97 | 74.52 102 | 77.98 166 | 53.56 146 | 76.62 164 | 79.16 154 | 64.40 27 | 71.18 91 | 78.95 238 | 52.19 76 | 84.66 119 | 65.47 97 | 73.57 178 | 85.32 110 |
|
VDDNet | | | 71.81 94 | 71.33 93 | 73.26 136 | 82.80 80 | 47.60 229 | 78.74 123 | 75.27 218 | 59.59 114 | 72.94 74 | 89.40 52 | 41.51 197 | 83.91 134 | 58.75 150 | 82.99 75 | 88.26 8 |
|
EIA-MVS | | | 71.78 95 | 70.60 102 | 75.30 86 | 79.85 123 | 53.54 147 | 77.27 153 | 83.26 75 | 57.92 142 | 66.49 166 | 79.39 231 | 52.07 78 | 86.69 67 | 60.05 141 | 79.14 126 | 85.66 95 |
|
LFMVS | | | 71.78 95 | 71.59 87 | 72.32 155 | 83.40 71 | 46.38 238 | 79.75 112 | 71.08 251 | 64.18 32 | 72.80 76 | 88.64 65 | 42.58 180 | 83.72 137 | 57.41 155 | 84.49 67 | 86.86 53 |
|
PAPR | | | 71.72 97 | 70.82 100 | 74.41 104 | 81.20 101 | 51.17 176 | 79.55 116 | 83.33 71 | 55.81 180 | 66.93 160 | 84.61 123 | 50.95 91 | 86.06 83 | 55.79 164 | 79.20 124 | 86.00 81 |
|
IS-MVSNet | | | 71.57 98 | 71.00 98 | 73.27 135 | 78.86 140 | 45.63 251 | 80.22 103 | 78.69 163 | 64.14 35 | 66.46 167 | 87.36 75 | 49.30 103 | 85.60 94 | 50.26 206 | 83.71 71 | 88.59 5 |
|
MAR-MVS | | | 71.51 99 | 70.15 110 | 75.60 81 | 81.84 88 | 59.39 59 | 81.38 89 | 82.90 82 | 54.90 200 | 68.08 141 | 78.70 239 | 47.73 123 | 85.51 99 | 51.68 199 | 84.17 69 | 81.88 201 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 71.50 100 | 70.38 107 | 74.88 91 | 78.76 142 | 57.15 102 | 82.79 63 | 78.48 170 | 51.26 237 | 69.49 115 | 83.22 150 | 43.99 170 | 83.24 146 | 66.06 89 | 79.37 119 | 84.23 142 |
|
PVSNet_Blended_VisFu | | | 71.45 101 | 70.39 106 | 74.65 97 | 82.01 85 | 58.82 73 | 79.93 108 | 80.35 137 | 55.09 194 | 65.82 181 | 82.16 173 | 49.17 106 | 82.64 164 | 60.34 139 | 78.62 135 | 82.50 191 |
|
OMC-MVS | | | 71.40 102 | 70.60 102 | 73.78 114 | 76.60 197 | 53.15 153 | 79.74 113 | 79.78 143 | 58.37 134 | 68.75 127 | 86.45 93 | 45.43 155 | 80.60 203 | 62.58 121 | 77.73 141 | 87.58 33 |
|
UniMVSNet_NR-MVSNet | | | 71.11 103 | 71.00 98 | 71.44 169 | 79.20 132 | 44.13 262 | 76.02 180 | 82.60 86 | 66.48 13 | 68.20 135 | 84.60 124 | 56.82 30 | 82.82 160 | 54.62 174 | 70.43 219 | 87.36 43 |
|
PCF-MVS | | 61.88 8 | 70.95 104 | 69.49 117 | 75.35 84 | 77.63 174 | 55.71 121 | 76.04 179 | 81.81 98 | 50.30 245 | 69.66 113 | 85.40 115 | 52.51 71 | 84.89 113 | 51.82 196 | 80.24 109 | 85.45 104 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 70.83 105 | 69.56 115 | 74.64 98 | 86.21 30 | 54.63 137 | 82.34 73 | 81.81 98 | 48.22 264 | 63.01 217 | 85.83 106 | 40.92 204 | 87.10 55 | 57.91 152 | 79.79 112 | 82.18 195 |
|
FIs | | | 70.82 106 | 71.43 89 | 68.98 216 | 78.33 155 | 38.14 306 | 76.96 159 | 83.59 62 | 61.02 83 | 67.33 155 | 86.73 82 | 55.07 44 | 81.64 179 | 54.61 176 | 79.22 123 | 87.14 48 |
|
ACMM | | 61.98 7 | 70.80 107 | 69.73 113 | 74.02 109 | 80.59 110 | 58.59 77 | 82.68 67 | 82.02 94 | 55.46 187 | 67.18 157 | 84.39 130 | 38.51 221 | 83.17 148 | 60.65 136 | 76.10 158 | 80.30 225 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
diffmvs | | | 70.69 108 | 70.43 105 | 71.46 168 | 69.45 297 | 48.95 213 | 72.93 227 | 78.46 172 | 57.27 148 | 71.69 88 | 83.97 138 | 51.48 84 | 77.92 243 | 70.70 59 | 77.95 140 | 87.53 34 |
|
UniMVSNet (Re) | | | 70.63 109 | 70.20 108 | 71.89 158 | 78.55 147 | 45.29 253 | 75.94 181 | 82.92 80 | 63.68 40 | 68.16 138 | 83.59 145 | 53.89 59 | 83.49 143 | 53.97 179 | 71.12 213 | 86.89 52 |
|
xiu_mvs_v2_base | | | 70.52 110 | 69.75 112 | 72.84 142 | 81.21 100 | 55.63 124 | 75.11 193 | 78.92 157 | 54.92 199 | 69.96 108 | 79.68 225 | 47.00 141 | 82.09 173 | 61.60 131 | 79.37 119 | 80.81 220 |
|
PS-MVSNAJ | | | 70.51 111 | 69.70 114 | 72.93 140 | 81.52 91 | 55.79 120 | 74.92 199 | 79.00 156 | 55.04 198 | 69.88 109 | 78.66 240 | 47.05 137 | 82.19 171 | 61.61 130 | 79.58 116 | 80.83 219 |
|
v2v482 | | | 70.50 112 | 69.45 119 | 73.66 122 | 72.62 254 | 50.03 197 | 77.58 142 | 80.51 133 | 59.90 105 | 69.52 114 | 82.14 174 | 47.53 128 | 84.88 115 | 65.07 100 | 70.17 225 | 86.09 79 |
|
mvs-test1 | | | 70.44 113 | 68.19 139 | 77.18 52 | 76.10 204 | 63.22 6 | 80.59 99 | 76.06 208 | 59.83 109 | 66.32 170 | 79.87 219 | 41.56 194 | 85.53 97 | 60.60 137 | 72.77 192 | 82.80 187 |
|
v1144 | | | 70.42 114 | 69.31 120 | 73.76 116 | 73.22 242 | 50.64 185 | 77.83 138 | 81.43 107 | 58.58 128 | 69.40 118 | 81.16 190 | 47.53 128 | 85.29 107 | 64.01 109 | 70.64 216 | 85.34 109 |
|
TranMVSNet+NR-MVSNet | | | 70.36 115 | 70.10 111 | 71.17 179 | 78.64 146 | 42.97 273 | 76.53 166 | 81.16 120 | 66.95 6 | 68.53 131 | 85.42 114 | 51.61 83 | 83.07 150 | 52.32 192 | 69.70 236 | 87.46 38 |
|
v8 | | | 70.33 116 | 69.28 121 | 73.49 127 | 73.15 244 | 50.22 193 | 78.62 126 | 80.78 129 | 60.79 85 | 66.45 168 | 82.11 175 | 49.35 102 | 84.98 110 | 63.58 115 | 68.71 250 | 85.28 111 |
|
Fast-Effi-MVS+ | | | 70.28 117 | 69.12 124 | 73.73 119 | 78.50 148 | 51.50 175 | 75.01 196 | 79.46 151 | 56.16 172 | 68.59 128 | 79.55 228 | 53.97 56 | 84.05 128 | 53.34 186 | 77.53 143 | 85.65 96 |
|
X-MVStestdata | | | 70.21 118 | 67.28 159 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 23 | 72.17 84 | 6.49 352 | 47.95 121 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 67 |
|
v10 | | | 70.21 118 | 69.02 125 | 73.81 113 | 73.51 241 | 50.92 180 | 78.74 123 | 81.39 108 | 60.05 103 | 66.39 169 | 81.83 178 | 47.58 127 | 85.41 105 | 62.80 120 | 68.86 249 | 85.09 117 |
|
QAPM | | | 70.05 120 | 68.81 128 | 73.78 114 | 76.54 199 | 53.43 149 | 83.23 56 | 83.48 64 | 52.89 218 | 65.90 178 | 86.29 96 | 41.55 196 | 86.49 77 | 51.01 201 | 78.40 137 | 81.42 205 |
|
DU-MVS | | | 70.01 121 | 69.53 116 | 71.44 169 | 78.05 164 | 44.13 262 | 75.01 196 | 81.51 105 | 64.37 28 | 68.20 135 | 84.52 125 | 49.12 109 | 82.82 160 | 54.62 174 | 70.43 219 | 87.37 41 |
|
AdaColmap | | | 69.99 122 | 68.66 131 | 73.97 111 | 84.94 57 | 57.83 87 | 82.63 68 | 78.71 162 | 56.28 169 | 64.34 204 | 84.14 132 | 41.57 193 | 87.06 58 | 46.45 233 | 78.88 128 | 77.02 263 |
|
v1192 | | | 69.97 123 | 68.68 130 | 73.85 112 | 73.19 243 | 50.94 178 | 77.68 141 | 81.36 109 | 57.51 146 | 68.95 126 | 80.85 200 | 45.28 158 | 85.33 106 | 62.97 119 | 70.37 221 | 85.27 112 |
|
Anonymous20240529 | | | 69.91 124 | 69.02 125 | 72.56 149 | 80.19 118 | 47.65 227 | 77.56 144 | 80.99 124 | 55.45 188 | 69.88 109 | 86.76 80 | 39.24 215 | 82.18 172 | 54.04 178 | 77.10 149 | 87.85 23 |
|
FC-MVSNet-test | | | 69.80 125 | 70.58 104 | 67.46 230 | 77.61 179 | 34.73 326 | 76.05 178 | 83.19 76 | 60.84 84 | 65.88 179 | 86.46 92 | 54.52 51 | 80.76 202 | 52.52 191 | 78.12 138 | 86.91 51 |
|
v144192 | | | 69.71 126 | 68.51 132 | 73.33 134 | 73.10 245 | 50.13 195 | 77.54 145 | 80.64 130 | 56.65 156 | 68.57 130 | 80.55 205 | 46.87 142 | 84.96 112 | 62.98 118 | 69.66 237 | 84.89 123 |
|
test_yl | | | 69.69 127 | 69.13 122 | 71.36 173 | 78.37 152 | 45.74 247 | 74.71 202 | 80.20 138 | 57.91 143 | 70.01 106 | 83.83 139 | 42.44 181 | 82.87 156 | 54.97 170 | 79.72 113 | 85.48 102 |
|
DCV-MVSNet | | | 69.69 127 | 69.13 122 | 71.36 173 | 78.37 152 | 45.74 247 | 74.71 202 | 80.20 138 | 57.91 143 | 70.01 106 | 83.83 139 | 42.44 181 | 82.87 156 | 54.97 170 | 79.72 113 | 85.48 102 |
|
VNet | | | 69.68 129 | 70.19 109 | 68.16 225 | 79.73 127 | 41.63 285 | 70.53 261 | 77.38 192 | 60.37 93 | 70.69 94 | 86.63 87 | 51.08 89 | 77.09 254 | 53.61 184 | 81.69 95 | 85.75 92 |
|
jason | | | 69.65 130 | 68.39 137 | 73.43 131 | 78.27 157 | 56.88 104 | 77.12 155 | 73.71 238 | 46.53 279 | 69.34 119 | 83.22 150 | 43.37 174 | 79.18 222 | 64.77 101 | 79.20 124 | 84.23 142 |
jason: jason. |
Effi-MVS+-dtu | | | 69.64 131 | 67.53 150 | 75.95 70 | 76.10 204 | 62.29 18 | 80.20 104 | 76.06 208 | 59.83 109 | 65.26 191 | 77.09 260 | 41.56 194 | 84.02 132 | 60.60 137 | 71.09 214 | 81.53 204 |
|
lupinMVS | | | 69.57 132 | 68.28 138 | 73.44 130 | 78.76 142 | 57.15 102 | 76.57 165 | 73.29 241 | 46.19 282 | 69.49 115 | 82.18 170 | 43.99 170 | 79.23 221 | 64.66 102 | 79.37 119 | 83.93 150 |
|
NR-MVSNet | | | 69.54 133 | 68.85 127 | 71.59 167 | 78.05 164 | 43.81 266 | 74.20 209 | 80.86 128 | 65.18 16 | 62.76 219 | 84.52 125 | 52.35 75 | 83.59 141 | 50.96 202 | 70.78 215 | 87.37 41 |
|
MVS_111021_LR | | | 69.50 134 | 68.78 129 | 71.65 165 | 78.38 151 | 59.33 60 | 74.82 201 | 70.11 257 | 58.08 138 | 67.83 148 | 84.68 120 | 41.96 186 | 76.34 262 | 65.62 96 | 77.54 142 | 79.30 240 |
|
v1921920 | | | 69.47 135 | 68.17 140 | 73.36 133 | 73.06 246 | 50.10 196 | 77.39 148 | 80.56 131 | 56.58 163 | 68.59 128 | 80.37 207 | 44.72 163 | 84.98 110 | 62.47 124 | 69.82 232 | 85.00 119 |
|
test_djsdf | | | 69.45 136 | 67.74 143 | 74.58 100 | 74.57 230 | 54.92 135 | 82.79 63 | 78.48 170 | 51.26 237 | 65.41 186 | 83.49 148 | 38.37 223 | 83.24 146 | 66.06 89 | 69.25 243 | 85.56 99 |
|
Anonymous20231211 | | | 69.28 137 | 68.47 134 | 71.73 162 | 80.28 113 | 47.18 233 | 79.98 106 | 82.37 88 | 54.61 202 | 67.24 156 | 84.01 136 | 39.43 212 | 82.41 169 | 55.45 168 | 72.83 191 | 85.62 98 |
|
EI-MVSNet | | | 69.27 138 | 68.44 136 | 71.73 162 | 74.47 231 | 49.39 208 | 75.20 191 | 78.45 173 | 59.60 111 | 69.16 124 | 76.51 270 | 51.29 85 | 82.50 166 | 59.86 145 | 71.45 211 | 83.30 172 |
|
v1240 | | | 69.24 139 | 67.91 142 | 73.25 137 | 73.02 248 | 49.82 199 | 77.21 154 | 80.54 132 | 56.43 165 | 68.34 134 | 80.51 206 | 43.33 175 | 84.99 108 | 62.03 127 | 69.77 235 | 84.95 122 |
|
IterMVS-LS | | | 69.22 140 | 68.48 133 | 71.43 171 | 74.44 233 | 49.40 207 | 76.23 173 | 77.55 188 | 59.60 111 | 65.85 180 | 81.59 184 | 51.28 86 | 81.58 182 | 59.87 144 | 69.90 231 | 83.30 172 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 69.02 141 | 69.47 118 | 67.69 229 | 77.42 182 | 41.00 289 | 74.04 211 | 79.68 145 | 60.06 102 | 69.26 122 | 84.81 119 | 51.06 90 | 77.58 248 | 54.44 177 | 74.43 167 | 84.48 135 |
|
v7n | | | 69.01 142 | 67.36 156 | 73.98 110 | 72.51 257 | 52.65 159 | 78.54 129 | 81.30 114 | 60.26 100 | 62.67 221 | 81.62 181 | 43.61 172 | 84.49 121 | 57.01 156 | 68.70 251 | 84.79 127 |
|
OpenMVS | | 61.03 9 | 68.85 143 | 67.56 147 | 72.70 147 | 74.26 236 | 53.99 141 | 81.21 91 | 81.34 113 | 52.70 219 | 62.75 220 | 85.55 111 | 38.86 219 | 84.14 127 | 48.41 221 | 83.01 74 | 79.97 230 |
|
XVG-OURS-SEG-HR | | | 68.81 144 | 67.47 152 | 72.82 144 | 74.40 234 | 56.87 105 | 70.59 260 | 79.04 155 | 54.77 201 | 66.99 159 | 86.01 102 | 39.57 211 | 78.21 239 | 62.54 122 | 73.33 183 | 83.37 170 |
|
BH-RMVSNet | | | 68.81 144 | 67.42 153 | 72.97 139 | 80.11 120 | 52.53 162 | 74.26 208 | 76.29 204 | 58.48 131 | 68.38 133 | 84.20 131 | 42.59 179 | 83.83 135 | 46.53 232 | 75.91 159 | 82.56 188 |
|
UGNet | | | 68.81 144 | 67.39 154 | 73.06 138 | 78.33 155 | 54.47 138 | 79.77 111 | 75.40 217 | 60.45 91 | 63.22 214 | 84.40 129 | 32.71 278 | 80.91 197 | 51.71 198 | 80.56 103 | 83.81 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RRT_MVS | | | 68.77 147 | 66.71 169 | 74.95 89 | 75.93 208 | 58.55 78 | 80.50 100 | 75.84 210 | 56.09 174 | 68.17 137 | 83.74 142 | 28.50 306 | 82.98 152 | 65.67 95 | 65.91 270 | 83.33 171 |
|
XVG-OURS | | | 68.76 148 | 67.37 155 | 72.90 141 | 74.32 235 | 57.22 97 | 70.09 266 | 78.81 159 | 55.24 190 | 67.79 150 | 85.81 108 | 36.54 243 | 78.28 238 | 62.04 126 | 75.74 160 | 83.19 177 |
|
V42 | | | 68.65 149 | 67.35 157 | 72.56 149 | 68.93 301 | 50.18 194 | 72.90 229 | 79.47 150 | 56.92 153 | 69.45 117 | 80.26 213 | 46.29 146 | 82.99 151 | 64.07 107 | 67.82 259 | 84.53 133 |
|
PVSNet_Blended | | | 68.59 150 | 67.72 144 | 71.19 178 | 77.03 189 | 50.57 186 | 72.51 235 | 81.52 103 | 51.91 226 | 64.22 209 | 77.77 256 | 49.13 107 | 82.87 156 | 55.82 162 | 79.58 116 | 80.14 228 |
|
xiu_mvs_v1_base_debu | | | 68.58 151 | 67.28 159 | 72.48 151 | 78.19 159 | 57.19 99 | 75.28 188 | 75.09 222 | 51.61 228 | 70.04 102 | 81.41 186 | 32.79 274 | 79.02 229 | 63.81 111 | 77.31 144 | 81.22 211 |
|
xiu_mvs_v1_base | | | 68.58 151 | 67.28 159 | 72.48 151 | 78.19 159 | 57.19 99 | 75.28 188 | 75.09 222 | 51.61 228 | 70.04 102 | 81.41 186 | 32.79 274 | 79.02 229 | 63.81 111 | 77.31 144 | 81.22 211 |
|
xiu_mvs_v1_base_debi | | | 68.58 151 | 67.28 159 | 72.48 151 | 78.19 159 | 57.19 99 | 75.28 188 | 75.09 222 | 51.61 228 | 70.04 102 | 81.41 186 | 32.79 274 | 79.02 229 | 63.81 111 | 77.31 144 | 81.22 211 |
|
PVSNet_BlendedMVS | | | 68.56 154 | 67.72 144 | 71.07 182 | 77.03 189 | 50.57 186 | 74.50 206 | 81.52 103 | 53.66 213 | 64.22 209 | 79.72 224 | 49.13 107 | 82.87 156 | 55.82 162 | 73.92 173 | 79.77 235 |
|
1121 | | | 68.53 155 | 67.16 165 | 72.63 148 | 85.64 43 | 61.14 34 | 73.95 213 | 66.46 282 | 44.61 294 | 70.28 99 | 86.68 85 | 41.42 198 | 80.78 200 | 53.62 182 | 81.79 89 | 75.97 271 |
|
WR-MVS | | | 68.47 156 | 68.47 134 | 68.44 223 | 80.20 117 | 39.84 292 | 73.75 219 | 76.07 207 | 64.68 22 | 68.11 140 | 83.63 144 | 50.39 96 | 79.14 227 | 49.78 207 | 69.66 237 | 86.34 69 |
|
cl_fuxian | | | 68.33 157 | 67.56 147 | 70.62 189 | 70.87 277 | 46.21 242 | 74.47 207 | 78.80 160 | 56.22 171 | 66.19 172 | 78.53 245 | 51.88 79 | 81.40 184 | 62.08 125 | 69.04 246 | 84.25 141 |
|
BH-untuned | | | 68.27 158 | 67.29 158 | 71.21 177 | 79.74 126 | 53.22 152 | 76.06 177 | 77.46 191 | 57.19 149 | 66.10 173 | 81.61 182 | 45.37 157 | 83.50 142 | 45.42 247 | 76.68 156 | 76.91 267 |
|
jajsoiax | | | 68.25 159 | 66.45 173 | 73.66 122 | 75.62 213 | 55.49 127 | 80.82 94 | 78.51 169 | 52.33 223 | 64.33 205 | 84.11 133 | 28.28 307 | 81.81 178 | 63.48 116 | 70.62 217 | 83.67 162 |
|
v148 | | | 68.24 160 | 67.19 164 | 71.40 172 | 70.43 282 | 47.77 226 | 75.76 183 | 77.03 197 | 58.91 123 | 67.36 154 | 80.10 216 | 48.60 116 | 81.89 175 | 60.01 142 | 66.52 267 | 84.53 133 |
|
CANet_DTU | | | 68.18 161 | 67.71 146 | 69.59 207 | 74.83 224 | 46.24 241 | 78.66 125 | 76.85 199 | 59.60 111 | 63.45 213 | 82.09 176 | 35.25 248 | 77.41 250 | 59.88 143 | 78.76 132 | 85.14 114 |
|
mvs_tets | | | 68.18 161 | 66.36 178 | 73.63 125 | 75.61 214 | 55.35 130 | 80.77 95 | 78.56 167 | 52.48 222 | 64.27 207 | 84.10 134 | 27.45 313 | 81.84 177 | 63.45 117 | 70.56 218 | 83.69 161 |
|
RRT_test8_iter05 | | | 68.17 163 | 66.86 168 | 72.07 157 | 75.81 209 | 46.33 239 | 76.41 169 | 81.81 98 | 56.43 165 | 66.52 165 | 81.30 189 | 31.90 286 | 84.25 125 | 63.77 114 | 67.83 258 | 85.64 97 |
|
miper_ehance_all_eth | | | 68.03 164 | 67.24 163 | 70.40 193 | 70.54 280 | 46.21 242 | 73.98 212 | 78.68 164 | 55.07 196 | 66.05 174 | 77.80 254 | 52.16 77 | 81.31 186 | 61.53 133 | 69.32 240 | 83.67 162 |
|
mvs_anonymous | | | 68.03 164 | 67.51 151 | 69.59 207 | 72.08 262 | 44.57 260 | 71.99 242 | 75.23 219 | 51.67 227 | 67.06 158 | 82.57 161 | 54.68 49 | 77.94 242 | 56.56 157 | 75.71 161 | 86.26 76 |
|
ET-MVSNet_ETH3D | | | 67.96 166 | 65.72 190 | 74.68 95 | 76.67 195 | 55.62 125 | 75.11 193 | 74.74 226 | 52.91 217 | 60.03 246 | 80.12 215 | 33.68 264 | 82.64 164 | 61.86 128 | 76.34 157 | 85.78 87 |
|
thisisatest0530 | | | 67.92 167 | 65.78 189 | 74.33 106 | 76.29 201 | 51.03 177 | 76.89 161 | 74.25 232 | 53.67 212 | 65.59 183 | 81.76 179 | 35.15 249 | 85.50 100 | 55.94 160 | 72.47 197 | 86.47 62 |
|
PAPM | | | 67.92 167 | 66.69 170 | 71.63 166 | 78.09 162 | 49.02 211 | 77.09 156 | 81.24 118 | 51.04 239 | 60.91 241 | 83.98 137 | 47.71 124 | 84.99 108 | 40.81 278 | 79.32 122 | 80.90 218 |
|
tttt0517 | | | 67.83 169 | 65.66 191 | 74.33 106 | 76.69 194 | 50.82 182 | 77.86 137 | 73.99 235 | 54.54 205 | 64.64 202 | 82.53 163 | 35.06 250 | 85.50 100 | 55.71 165 | 69.91 230 | 86.67 59 |
|
eth_miper_zixun_eth | | | 67.63 170 | 66.28 182 | 71.67 164 | 71.60 269 | 48.33 219 | 73.68 220 | 77.88 181 | 55.80 181 | 65.91 177 | 78.62 243 | 47.35 134 | 82.88 155 | 59.45 147 | 66.25 268 | 83.81 155 |
|
UniMVSNet_ETH3D | | | 67.60 171 | 67.07 166 | 69.18 215 | 77.39 183 | 42.29 277 | 74.18 210 | 75.59 214 | 60.37 93 | 66.77 162 | 86.06 101 | 37.64 230 | 78.93 234 | 52.16 194 | 73.49 180 | 86.32 72 |
|
VPNet | | | 67.52 172 | 68.11 141 | 65.74 253 | 79.18 133 | 36.80 314 | 72.17 240 | 72.83 244 | 62.04 70 | 67.79 150 | 85.83 106 | 48.88 111 | 76.60 259 | 51.30 200 | 72.97 190 | 83.81 155 |
|
cl-mvsnet2 | | | 67.47 173 | 66.45 173 | 70.54 191 | 69.85 293 | 46.49 237 | 73.85 217 | 77.35 193 | 55.07 196 | 65.51 184 | 77.92 250 | 47.64 126 | 81.10 191 | 61.58 132 | 69.32 240 | 84.01 149 |
|
Fast-Effi-MVS+-dtu | | | 67.37 174 | 65.33 196 | 73.48 128 | 72.94 249 | 57.78 89 | 77.47 147 | 76.88 198 | 57.60 145 | 61.97 232 | 76.85 264 | 39.31 213 | 80.49 206 | 54.72 173 | 70.28 224 | 82.17 197 |
|
MVS | | | 67.37 174 | 66.33 179 | 70.51 192 | 75.46 217 | 50.94 178 | 73.95 213 | 81.85 97 | 41.57 318 | 62.54 225 | 78.57 244 | 47.98 120 | 85.47 102 | 52.97 189 | 82.05 88 | 75.14 280 |
|
GBi-Net | | | 67.21 176 | 66.55 171 | 69.19 212 | 77.63 174 | 43.33 269 | 77.31 149 | 77.83 183 | 56.62 159 | 65.04 195 | 82.70 156 | 41.85 189 | 80.33 208 | 47.18 227 | 72.76 193 | 83.92 151 |
|
test1 | | | 67.21 176 | 66.55 171 | 69.19 212 | 77.63 174 | 43.33 269 | 77.31 149 | 77.83 183 | 56.62 159 | 65.04 195 | 82.70 156 | 41.85 189 | 80.33 208 | 47.18 227 | 72.76 193 | 83.92 151 |
|
cl-mvsnet_ | | | 67.18 178 | 66.26 183 | 69.94 200 | 70.20 285 | 45.74 247 | 73.30 222 | 76.83 200 | 55.10 192 | 65.27 188 | 79.57 227 | 47.39 132 | 80.53 204 | 59.41 149 | 69.22 244 | 83.53 168 |
|
cl-mvsnet1 | | | 67.18 178 | 66.26 183 | 69.94 200 | 70.20 285 | 45.74 247 | 73.29 223 | 76.83 200 | 55.10 192 | 65.27 188 | 79.58 226 | 47.38 133 | 80.53 204 | 59.43 148 | 69.22 244 | 83.54 167 |
|
MVSTER | | | 67.16 180 | 65.58 193 | 71.88 159 | 70.37 284 | 49.70 201 | 70.25 265 | 78.45 173 | 51.52 231 | 69.16 124 | 80.37 207 | 38.45 222 | 82.50 166 | 60.19 140 | 71.46 210 | 83.44 169 |
|
miper_enhance_ethall | | | 67.11 181 | 66.09 185 | 70.17 197 | 69.21 299 | 45.98 245 | 72.85 230 | 78.41 176 | 51.38 234 | 65.65 182 | 75.98 278 | 51.17 88 | 81.25 187 | 60.82 135 | 69.32 240 | 83.29 174 |
|
Baseline_NR-MVSNet | | | 67.05 182 | 67.56 147 | 65.50 255 | 75.65 212 | 37.70 310 | 75.42 186 | 74.65 228 | 59.90 105 | 68.14 139 | 83.15 153 | 49.12 109 | 77.20 252 | 52.23 193 | 69.78 233 | 81.60 203 |
|
WR-MVS_H | | | 67.02 183 | 66.92 167 | 67.33 233 | 77.95 167 | 37.75 309 | 77.57 143 | 82.11 93 | 62.03 71 | 62.65 222 | 82.48 164 | 50.57 94 | 79.46 217 | 42.91 266 | 64.01 283 | 84.79 127 |
|
anonymousdsp | | | 67.00 184 | 64.82 201 | 73.57 126 | 70.09 288 | 56.13 113 | 76.35 170 | 77.35 193 | 48.43 262 | 64.99 198 | 80.84 201 | 33.01 271 | 80.34 207 | 64.66 102 | 67.64 261 | 84.23 142 |
|
FMVSNet2 | | | 66.93 185 | 66.31 181 | 68.79 219 | 77.63 174 | 42.98 272 | 76.11 175 | 77.47 189 | 56.62 159 | 65.22 194 | 82.17 172 | 41.85 189 | 80.18 211 | 47.05 230 | 72.72 196 | 83.20 176 |
|
BH-w/o | | | 66.85 186 | 65.83 188 | 69.90 203 | 79.29 129 | 52.46 165 | 74.66 204 | 76.65 202 | 54.51 206 | 64.85 199 | 78.12 246 | 45.59 152 | 82.95 154 | 43.26 262 | 75.54 162 | 74.27 293 |
|
Anonymous202405211 | | | 66.84 187 | 65.99 186 | 69.40 211 | 80.19 118 | 42.21 278 | 71.11 255 | 71.31 250 | 58.80 126 | 67.90 142 | 86.39 94 | 29.83 298 | 79.65 214 | 49.60 213 | 78.78 131 | 86.33 70 |
|
CDS-MVSNet | | | 66.80 188 | 65.37 194 | 71.10 181 | 78.98 138 | 53.13 155 | 73.27 224 | 71.07 252 | 52.15 225 | 64.72 200 | 80.23 214 | 43.56 173 | 77.10 253 | 45.48 245 | 78.88 128 | 83.05 182 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 66.78 189 | 65.27 197 | 71.33 176 | 79.16 135 | 53.67 143 | 73.84 218 | 69.59 262 | 52.32 224 | 65.28 187 | 81.72 180 | 44.49 166 | 77.40 251 | 42.32 269 | 78.66 134 | 82.92 183 |
|
FMVSNet1 | | | 66.70 190 | 65.87 187 | 69.19 212 | 77.49 181 | 43.33 269 | 77.31 149 | 77.83 183 | 56.45 164 | 64.60 203 | 82.70 156 | 38.08 228 | 80.33 208 | 46.08 236 | 72.31 201 | 83.92 151 |
|
ab-mvs | | | 66.65 191 | 66.42 176 | 67.37 231 | 76.17 203 | 41.73 283 | 70.41 264 | 76.14 206 | 53.99 209 | 65.98 175 | 83.51 147 | 49.48 101 | 76.24 263 | 48.60 219 | 73.46 181 | 84.14 145 |
|
PEN-MVS | | | 66.60 192 | 66.45 173 | 67.04 234 | 77.11 187 | 36.56 316 | 77.03 158 | 80.42 134 | 62.95 48 | 62.51 227 | 84.03 135 | 46.69 143 | 79.07 228 | 44.22 251 | 63.08 291 | 85.51 101 |
|
TAPA-MVS | | 59.36 10 | 66.60 192 | 65.20 198 | 70.81 185 | 76.63 196 | 48.75 215 | 76.52 167 | 80.04 140 | 50.64 243 | 65.24 192 | 84.93 117 | 39.15 216 | 78.54 235 | 36.77 295 | 76.88 151 | 85.14 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 66.59 194 | 65.07 199 | 71.17 179 | 79.18 133 | 49.63 205 | 73.48 221 | 75.20 220 | 52.95 216 | 67.90 142 | 80.33 210 | 39.81 209 | 83.68 138 | 43.20 263 | 73.56 179 | 80.20 226 |
|
CP-MVSNet | | | 66.49 195 | 66.41 177 | 66.72 236 | 77.67 173 | 36.33 319 | 76.83 163 | 79.52 149 | 62.45 61 | 62.54 225 | 83.47 149 | 46.32 145 | 78.37 236 | 45.47 246 | 63.43 288 | 85.45 104 |
|
PS-CasMVS | | | 66.42 196 | 66.32 180 | 66.70 238 | 77.60 180 | 36.30 321 | 76.94 160 | 79.61 147 | 62.36 63 | 62.43 229 | 83.66 143 | 45.69 149 | 78.37 236 | 45.35 248 | 63.26 289 | 85.42 107 |
|
FMVSNet3 | | | 66.32 197 | 65.61 192 | 68.46 222 | 76.48 200 | 42.34 276 | 74.98 198 | 77.15 196 | 55.83 179 | 65.04 195 | 81.16 190 | 39.91 207 | 80.14 212 | 47.18 227 | 72.76 193 | 82.90 185 |
|
ACMH+ | | 57.40 11 | 66.12 198 | 64.06 203 | 72.30 156 | 77.79 170 | 52.83 157 | 80.39 101 | 78.03 180 | 57.30 147 | 57.47 271 | 82.55 162 | 27.68 311 | 84.17 126 | 45.54 243 | 69.78 233 | 79.90 231 |
|
testing_2 | | | 66.02 199 | 63.77 209 | 72.76 146 | 66.03 320 | 50.48 190 | 72.93 227 | 80.36 136 | 54.41 207 | 54.25 297 | 76.76 266 | 30.89 289 | 83.16 149 | 64.19 106 | 74.08 171 | 84.65 130 |
|
cascas | | | 65.98 200 | 63.42 214 | 73.64 124 | 77.26 185 | 52.58 161 | 72.26 239 | 77.21 195 | 48.56 259 | 61.21 240 | 74.60 290 | 32.57 282 | 85.82 93 | 50.38 205 | 76.75 155 | 82.52 190 |
|
thisisatest0515 | | | 65.83 201 | 63.50 213 | 72.82 144 | 73.75 239 | 49.50 206 | 71.32 249 | 73.12 243 | 49.39 252 | 63.82 211 | 76.50 272 | 34.95 252 | 84.84 116 | 53.20 188 | 75.49 163 | 84.13 146 |
|
DP-MVS | | | 65.68 202 | 63.66 211 | 71.75 161 | 84.93 58 | 56.87 105 | 80.74 96 | 73.16 242 | 53.06 215 | 59.09 257 | 82.35 166 | 36.79 242 | 85.94 89 | 32.82 313 | 69.96 229 | 72.45 307 |
|
HyFIR lowres test | | | 65.67 203 | 63.01 218 | 73.67 121 | 79.97 122 | 55.65 123 | 69.07 274 | 75.52 215 | 42.68 312 | 63.53 212 | 77.95 248 | 40.43 205 | 81.64 179 | 46.01 237 | 71.91 204 | 83.73 160 |
|
DTE-MVSNet | | | 65.58 204 | 65.34 195 | 66.31 241 | 76.06 206 | 34.79 324 | 76.43 168 | 79.38 152 | 62.55 59 | 61.66 236 | 83.83 139 | 45.60 151 | 79.15 226 | 41.64 277 | 60.88 304 | 85.00 119 |
|
GA-MVS | | | 65.53 205 | 63.70 210 | 71.02 183 | 70.87 277 | 48.10 221 | 70.48 262 | 74.40 230 | 56.69 155 | 64.70 201 | 76.77 265 | 33.66 265 | 81.10 191 | 55.42 169 | 70.32 223 | 83.87 154 |
|
CNLPA | | | 65.43 206 | 64.02 204 | 69.68 205 | 78.73 144 | 58.07 84 | 77.82 139 | 70.71 254 | 51.49 232 | 61.57 238 | 83.58 146 | 38.23 226 | 70.82 282 | 43.90 256 | 70.10 227 | 80.16 227 |
|
MVP-Stereo | | | 65.41 207 | 63.80 208 | 70.22 194 | 77.62 178 | 55.53 126 | 76.30 171 | 78.53 168 | 50.59 244 | 56.47 277 | 78.65 241 | 39.84 208 | 82.68 162 | 44.10 255 | 72.12 203 | 72.44 308 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 56.42 12 | 65.40 208 | 62.73 222 | 73.40 132 | 74.89 222 | 52.78 158 | 73.09 226 | 75.13 221 | 55.69 183 | 58.48 265 | 73.73 296 | 32.86 273 | 86.32 81 | 50.63 203 | 70.11 226 | 81.10 215 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pm-mvs1 | | | 65.24 209 | 64.97 200 | 66.04 248 | 72.38 258 | 39.40 297 | 72.62 233 | 75.63 213 | 55.53 186 | 62.35 231 | 83.18 152 | 47.45 130 | 76.47 260 | 49.06 216 | 66.54 266 | 82.24 194 |
|
ACMH | | 55.70 15 | 65.20 210 | 63.57 212 | 70.07 198 | 78.07 163 | 52.01 173 | 79.48 119 | 79.69 144 | 55.75 182 | 56.59 276 | 80.98 195 | 27.12 315 | 80.94 195 | 42.90 267 | 71.58 208 | 77.25 261 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC | | 56.13 14 | 65.09 211 | 63.21 216 | 70.72 188 | 81.04 103 | 54.87 136 | 78.57 127 | 77.47 189 | 48.51 260 | 55.71 280 | 81.89 177 | 33.71 263 | 79.71 213 | 41.66 275 | 70.37 221 | 77.58 255 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 1792x2688 | | | 65.08 212 | 62.84 220 | 71.82 160 | 81.49 93 | 56.26 111 | 66.32 284 | 74.20 233 | 40.53 322 | 63.16 216 | 78.65 241 | 41.30 199 | 77.80 245 | 45.80 239 | 74.09 170 | 81.40 206 |
|
TransMVSNet (Re) | | | 64.72 213 | 64.33 202 | 65.87 252 | 75.22 220 | 38.56 303 | 74.66 204 | 75.08 225 | 58.90 124 | 61.79 235 | 82.63 159 | 51.18 87 | 78.07 241 | 43.63 259 | 55.87 319 | 80.99 217 |
|
EG-PatchMatch MVS | | | 64.71 214 | 62.87 219 | 70.22 194 | 77.68 172 | 53.48 148 | 77.99 136 | 78.82 158 | 53.37 214 | 56.03 279 | 77.41 259 | 24.75 329 | 84.04 129 | 46.37 234 | 73.42 182 | 73.14 300 |
|
LS3D | | | 64.71 214 | 62.50 224 | 71.34 175 | 79.72 128 | 55.71 121 | 79.82 110 | 74.72 227 | 48.50 261 | 56.62 275 | 84.62 122 | 33.59 266 | 82.34 170 | 29.65 331 | 75.23 164 | 75.97 271 |
|
1314 | | | 64.61 216 | 63.21 216 | 68.80 218 | 71.87 267 | 47.46 230 | 73.95 213 | 78.39 178 | 42.88 311 | 59.97 247 | 76.60 269 | 38.11 227 | 79.39 219 | 54.84 172 | 72.32 200 | 79.55 236 |
|
HY-MVS | | 56.14 13 | 64.55 217 | 63.89 205 | 66.55 239 | 74.73 227 | 41.02 287 | 69.96 267 | 74.43 229 | 49.29 253 | 61.66 236 | 80.92 197 | 47.43 131 | 76.68 258 | 44.91 250 | 71.69 206 | 81.94 199 |
|
XVG-ACMP-BASELINE | | | 64.36 218 | 62.23 227 | 70.74 187 | 72.35 259 | 52.45 166 | 70.80 259 | 78.45 173 | 53.84 211 | 59.87 248 | 81.10 192 | 16.24 340 | 79.32 220 | 55.64 167 | 71.76 205 | 80.47 222 |
|
CostFormer | | | 64.04 219 | 62.51 223 | 68.61 221 | 71.88 266 | 45.77 246 | 71.30 250 | 70.60 255 | 47.55 272 | 64.31 206 | 76.61 268 | 41.63 192 | 79.62 216 | 49.74 209 | 69.00 247 | 80.42 223 |
|
1112_ss | | | 64.00 220 | 63.36 215 | 65.93 250 | 79.28 130 | 42.58 275 | 71.35 248 | 72.36 247 | 46.41 280 | 60.55 243 | 77.89 252 | 46.27 147 | 73.28 273 | 46.18 235 | 69.97 228 | 81.92 200 |
|
baseline1 | | | 63.81 221 | 63.87 207 | 63.62 267 | 76.29 201 | 36.36 317 | 71.78 245 | 67.29 277 | 56.05 176 | 64.23 208 | 82.95 154 | 47.11 136 | 74.41 270 | 47.30 226 | 61.85 298 | 80.10 229 |
|
pmmvs6 | | | 63.69 222 | 62.82 221 | 66.27 243 | 70.63 279 | 39.27 298 | 73.13 225 | 75.47 216 | 52.69 220 | 59.75 251 | 82.30 168 | 39.71 210 | 77.03 255 | 47.40 225 | 64.35 282 | 82.53 189 |
|
Vis-MVSNet (Re-imp) | | | 63.69 222 | 63.88 206 | 63.14 271 | 74.75 226 | 31.04 339 | 71.16 253 | 63.64 298 | 56.32 167 | 59.80 250 | 84.99 116 | 44.51 164 | 75.46 265 | 39.12 284 | 80.62 99 | 82.92 183 |
|
baseline2 | | | 63.42 224 | 61.26 238 | 69.89 204 | 72.55 256 | 47.62 228 | 71.54 246 | 68.38 272 | 50.11 246 | 54.82 289 | 75.55 282 | 43.06 177 | 80.96 194 | 48.13 222 | 67.16 264 | 81.11 214 |
|
thres400 | | | 63.31 225 | 62.18 228 | 66.72 236 | 76.85 192 | 39.62 294 | 71.96 243 | 69.44 264 | 56.63 157 | 62.61 223 | 79.83 220 | 37.18 235 | 79.17 223 | 31.84 317 | 73.25 185 | 81.36 207 |
|
thres600view7 | | | 63.30 226 | 62.27 226 | 66.41 240 | 77.18 186 | 38.87 300 | 72.35 237 | 69.11 268 | 56.98 152 | 62.37 230 | 80.96 196 | 37.01 240 | 79.00 232 | 31.43 324 | 73.05 189 | 81.36 207 |
|
thres100view900 | | | 63.28 227 | 62.41 225 | 65.89 251 | 77.31 184 | 38.66 302 | 72.65 231 | 69.11 268 | 57.07 150 | 62.45 228 | 81.03 194 | 37.01 240 | 79.17 223 | 31.84 317 | 73.25 185 | 79.83 232 |
|
test_0402 | | | 63.25 228 | 61.01 241 | 69.96 199 | 80.00 121 | 54.37 139 | 76.86 162 | 72.02 248 | 54.58 204 | 58.71 260 | 80.79 202 | 35.00 251 | 84.36 123 | 26.41 339 | 64.71 279 | 71.15 319 |
|
tfpn200view9 | | | 63.18 229 | 62.18 228 | 66.21 244 | 76.85 192 | 39.62 294 | 71.96 243 | 69.44 264 | 56.63 157 | 62.61 223 | 79.83 220 | 37.18 235 | 79.17 223 | 31.84 317 | 73.25 185 | 79.83 232 |
|
LTVRE_ROB | | 55.42 16 | 63.15 230 | 61.23 239 | 68.92 217 | 76.57 198 | 47.80 224 | 59.92 315 | 76.39 203 | 54.35 208 | 58.67 261 | 82.46 165 | 29.44 301 | 81.49 183 | 42.12 271 | 71.14 212 | 77.46 256 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 63.05 231 | 60.87 243 | 69.58 209 | 76.99 191 | 53.63 145 | 78.12 135 | 76.16 205 | 47.97 268 | 52.41 309 | 81.61 182 | 27.87 309 | 78.11 240 | 40.07 280 | 66.66 265 | 77.00 264 |
|
IterMVS | | | 62.79 232 | 61.27 237 | 67.35 232 | 69.37 298 | 52.04 172 | 71.17 252 | 68.24 273 | 52.63 221 | 59.82 249 | 76.91 263 | 37.32 234 | 72.36 276 | 52.80 190 | 63.19 290 | 77.66 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 62.49 233 | 61.52 234 | 65.40 257 | 71.99 264 | 50.80 183 | 71.15 254 | 69.63 261 | 45.71 288 | 60.61 242 | 77.93 249 | 37.45 232 | 65.99 303 | 55.67 166 | 63.50 287 | 79.42 238 |
|
tfpnnormal | | | 62.47 234 | 61.63 233 | 64.99 261 | 74.81 225 | 39.01 299 | 71.22 251 | 73.72 237 | 55.22 191 | 60.21 244 | 80.09 217 | 41.26 202 | 76.98 256 | 30.02 329 | 68.09 255 | 78.97 243 |
|
MS-PatchMatch | | | 62.42 235 | 61.46 235 | 65.31 259 | 75.21 221 | 52.10 169 | 72.05 241 | 74.05 234 | 46.41 280 | 57.42 272 | 74.36 291 | 34.35 258 | 77.57 249 | 45.62 242 | 73.67 175 | 66.26 330 |
|
Test_1112_low_res | | | 62.32 236 | 61.77 231 | 64.00 266 | 79.08 136 | 39.53 296 | 68.17 276 | 70.17 256 | 43.25 307 | 59.03 258 | 79.90 218 | 44.08 168 | 71.24 281 | 43.79 258 | 68.42 253 | 81.25 210 |
|
D2MVS | | | 62.30 237 | 60.29 245 | 68.34 224 | 66.46 316 | 48.42 218 | 65.70 287 | 73.42 239 | 47.71 270 | 58.16 267 | 75.02 286 | 30.51 291 | 77.71 246 | 53.96 180 | 71.68 207 | 78.90 244 |
|
thres200 | | | 62.20 238 | 61.16 240 | 65.34 258 | 75.38 219 | 39.99 291 | 69.60 269 | 69.29 266 | 55.64 185 | 61.87 234 | 76.99 261 | 37.07 239 | 78.96 233 | 31.28 325 | 73.28 184 | 77.06 262 |
|
tpm2 | | | 62.07 239 | 60.10 246 | 67.99 226 | 72.79 251 | 43.86 265 | 71.05 256 | 66.85 280 | 43.14 309 | 62.77 218 | 75.39 284 | 38.32 224 | 80.80 199 | 41.69 274 | 68.88 248 | 79.32 239 |
|
miper_lstm_enhance | | | 62.03 240 | 60.88 242 | 65.49 256 | 66.71 314 | 46.25 240 | 56.29 326 | 75.70 212 | 50.68 241 | 61.27 239 | 75.48 283 | 40.21 206 | 68.03 293 | 56.31 159 | 65.25 276 | 82.18 195 |
|
DWT-MVSNet_test | | | 61.90 241 | 59.93 247 | 67.83 227 | 71.98 265 | 46.09 244 | 71.03 257 | 69.71 258 | 50.09 247 | 58.51 264 | 70.62 311 | 30.21 295 | 77.63 247 | 49.28 214 | 67.91 256 | 79.78 234 |
|
EPNet_dtu | | | 61.90 241 | 61.97 230 | 61.68 280 | 72.89 250 | 39.78 293 | 75.85 182 | 65.62 286 | 55.09 194 | 54.56 293 | 79.36 232 | 37.59 231 | 67.02 298 | 39.80 283 | 76.95 150 | 78.25 247 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LCM-MVSNet-Re | | | 61.88 243 | 61.35 236 | 63.46 268 | 74.58 229 | 31.48 338 | 61.42 309 | 58.14 319 | 58.71 127 | 53.02 308 | 79.55 228 | 43.07 176 | 76.80 257 | 45.69 240 | 77.96 139 | 82.11 198 |
|
MSDG | | | 61.81 244 | 59.23 249 | 69.55 210 | 72.64 253 | 52.63 160 | 70.45 263 | 75.81 211 | 51.38 234 | 53.70 301 | 76.11 274 | 29.52 299 | 81.08 193 | 37.70 290 | 65.79 273 | 74.93 285 |
|
SixPastTwentyTwo | | | 61.65 245 | 58.80 252 | 70.20 196 | 75.80 210 | 47.22 232 | 75.59 184 | 69.68 260 | 54.61 202 | 54.11 298 | 79.26 235 | 27.07 316 | 82.96 153 | 43.27 261 | 49.79 333 | 80.41 224 |
|
RPMNet | | | 61.53 246 | 58.42 255 | 70.86 184 | 69.96 291 | 52.07 170 | 65.31 293 | 81.36 109 | 43.20 308 | 59.36 253 | 70.15 315 | 35.37 247 | 85.47 102 | 36.42 302 | 64.65 280 | 75.06 281 |
|
pmmvs4 | | | 61.48 247 | 59.39 248 | 67.76 228 | 71.57 270 | 53.86 142 | 71.42 247 | 65.34 288 | 44.20 299 | 59.46 252 | 77.92 250 | 35.90 244 | 74.71 268 | 43.87 257 | 64.87 278 | 74.71 289 |
|
OurMVSNet-221017-0 | | | 61.37 248 | 58.63 254 | 69.61 206 | 72.05 263 | 48.06 222 | 73.93 216 | 72.51 245 | 47.23 275 | 54.74 290 | 80.92 197 | 21.49 336 | 81.24 188 | 48.57 220 | 56.22 318 | 79.53 237 |
|
COLMAP_ROB | | 52.97 17 | 61.27 249 | 58.81 251 | 68.64 220 | 74.63 228 | 52.51 164 | 78.42 132 | 73.30 240 | 49.92 250 | 50.96 314 | 81.51 185 | 23.06 331 | 79.40 218 | 31.63 321 | 65.85 271 | 74.01 296 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XXY-MVS | | | 60.68 250 | 61.67 232 | 57.70 298 | 70.43 282 | 38.45 304 | 64.19 299 | 66.47 281 | 48.05 267 | 63.22 214 | 80.86 199 | 49.28 104 | 60.47 318 | 45.25 249 | 67.28 263 | 74.19 294 |
|
SCA | | | 60.49 251 | 58.38 256 | 66.80 235 | 74.14 238 | 48.06 222 | 63.35 301 | 63.23 301 | 49.13 255 | 59.33 256 | 72.10 302 | 37.45 232 | 74.27 271 | 44.17 252 | 62.57 294 | 78.05 250 |
|
K. test v3 | | | 60.47 252 | 57.11 264 | 70.56 190 | 73.74 240 | 48.22 220 | 75.10 195 | 62.55 305 | 58.27 137 | 53.62 303 | 76.31 273 | 27.81 310 | 81.59 181 | 47.42 224 | 39.18 342 | 81.88 201 |
|
OpenMVS_ROB | | 52.78 18 | 60.03 253 | 58.14 259 | 65.69 254 | 70.47 281 | 44.82 255 | 75.33 187 | 70.86 253 | 45.04 290 | 56.06 278 | 76.00 275 | 26.89 318 | 79.65 214 | 35.36 305 | 67.29 262 | 72.60 304 |
|
CR-MVSNet | | | 59.91 254 | 57.90 261 | 65.96 249 | 69.96 291 | 52.07 170 | 65.31 293 | 63.15 302 | 42.48 313 | 59.36 253 | 74.84 287 | 35.83 245 | 70.75 283 | 45.50 244 | 64.65 280 | 75.06 281 |
|
PatchmatchNet | | | 59.84 255 | 58.24 257 | 64.65 263 | 73.05 247 | 46.70 236 | 69.42 271 | 62.18 307 | 47.55 272 | 58.88 259 | 71.96 304 | 34.49 256 | 69.16 288 | 42.99 265 | 63.60 286 | 78.07 249 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WTY-MVS | | | 59.75 256 | 60.39 244 | 57.85 296 | 72.32 260 | 37.83 308 | 61.05 313 | 64.18 296 | 45.95 287 | 61.91 233 | 79.11 237 | 47.01 140 | 60.88 317 | 42.50 268 | 69.49 239 | 74.83 286 |
|
CVMVSNet | | | 59.63 257 | 59.14 250 | 61.08 285 | 74.47 231 | 38.84 301 | 75.20 191 | 68.74 270 | 31.15 337 | 58.24 266 | 76.51 270 | 32.39 283 | 68.58 291 | 49.77 208 | 65.84 272 | 75.81 274 |
|
tpm cat1 | | | 59.25 258 | 56.95 267 | 66.15 245 | 72.19 261 | 46.96 234 | 68.09 277 | 65.76 285 | 40.03 325 | 57.81 269 | 70.56 312 | 38.32 224 | 74.51 269 | 38.26 288 | 61.50 301 | 77.00 264 |
|
pmmvs-eth3d | | | 58.81 259 | 56.31 272 | 66.30 242 | 67.61 308 | 52.42 167 | 72.30 238 | 64.76 292 | 43.55 305 | 54.94 288 | 74.19 293 | 28.95 303 | 72.60 275 | 43.31 260 | 57.21 314 | 73.88 297 |
|
MVS_0304 | | | 58.51 260 | 57.36 263 | 61.96 279 | 70.04 289 | 41.83 281 | 69.40 272 | 65.46 287 | 50.73 240 | 53.30 307 | 74.06 294 | 22.65 332 | 70.18 286 | 42.16 270 | 68.44 252 | 73.86 298 |
|
tpmvs | | | 58.47 261 | 56.95 267 | 63.03 273 | 70.20 285 | 41.21 286 | 67.90 279 | 67.23 278 | 49.62 251 | 54.73 291 | 70.84 309 | 34.14 259 | 76.24 263 | 36.64 299 | 61.29 302 | 71.64 315 |
|
PVSNet | | 50.76 19 | 58.40 262 | 57.39 262 | 61.42 282 | 75.53 216 | 44.04 264 | 61.43 308 | 63.45 299 | 47.04 277 | 56.91 273 | 73.61 297 | 27.00 317 | 64.76 306 | 39.12 284 | 72.40 198 | 75.47 278 |
|
tpmrst | | | 58.24 263 | 58.70 253 | 56.84 299 | 66.97 311 | 34.32 328 | 69.57 270 | 61.14 311 | 47.17 276 | 58.58 263 | 71.60 305 | 41.28 201 | 60.41 319 | 49.20 215 | 62.84 292 | 75.78 275 |
|
Patchmatch-RL test | | | 58.16 264 | 55.49 276 | 66.15 245 | 67.92 307 | 48.89 214 | 60.66 314 | 51.07 336 | 47.86 269 | 59.36 253 | 62.71 335 | 34.02 261 | 72.27 278 | 56.41 158 | 59.40 309 | 77.30 258 |
|
test-LLR | | | 58.15 265 | 58.13 260 | 58.22 293 | 68.57 302 | 44.80 256 | 65.46 290 | 57.92 320 | 50.08 248 | 55.44 283 | 69.82 316 | 32.62 279 | 57.44 327 | 49.66 211 | 73.62 176 | 72.41 309 |
|
ppachtmachnet_test | | | 58.06 266 | 55.38 277 | 66.10 247 | 69.51 295 | 48.99 212 | 68.01 278 | 66.13 284 | 44.50 296 | 54.05 299 | 70.74 310 | 32.09 285 | 72.34 277 | 36.68 298 | 56.71 317 | 76.99 266 |
|
gg-mvs-nofinetune | | | 57.86 267 | 56.43 271 | 62.18 277 | 72.62 254 | 35.35 323 | 66.57 281 | 56.33 326 | 50.65 242 | 57.64 270 | 57.10 338 | 30.65 290 | 76.36 261 | 37.38 292 | 78.88 128 | 74.82 287 |
|
CMPMVS | | 42.80 21 | 57.81 268 | 55.97 273 | 63.32 269 | 60.98 339 | 47.38 231 | 64.66 297 | 69.50 263 | 32.06 336 | 46.83 327 | 77.80 254 | 29.50 300 | 71.36 280 | 48.68 218 | 73.75 174 | 71.21 318 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet | | | 57.35 269 | 57.07 265 | 58.22 293 | 74.21 237 | 37.18 311 | 62.46 304 | 60.88 312 | 48.88 257 | 55.29 286 | 75.99 277 | 31.68 287 | 62.04 314 | 31.87 316 | 72.35 199 | 75.43 279 |
|
tpm | | | 57.34 270 | 58.16 258 | 54.86 306 | 71.80 268 | 34.77 325 | 67.47 280 | 56.04 329 | 48.20 265 | 60.10 245 | 76.92 262 | 37.17 237 | 53.41 340 | 40.76 279 | 65.01 277 | 76.40 270 |
|
Patchmtry | | | 57.16 271 | 56.47 270 | 59.23 287 | 69.17 300 | 34.58 327 | 62.98 302 | 63.15 302 | 44.53 295 | 56.83 274 | 74.84 287 | 35.83 245 | 68.71 290 | 40.03 281 | 60.91 303 | 74.39 292 |
|
AllTest | | | 57.08 272 | 54.65 281 | 64.39 264 | 71.44 271 | 49.03 209 | 69.92 268 | 67.30 275 | 45.97 285 | 47.16 325 | 79.77 222 | 17.47 338 | 67.56 295 | 33.65 310 | 59.16 310 | 76.57 268 |
|
our_test_3 | | | 56.49 273 | 54.42 283 | 62.68 275 | 69.51 295 | 45.48 252 | 66.08 285 | 61.49 310 | 44.11 302 | 50.73 317 | 69.60 318 | 33.05 270 | 68.15 292 | 38.38 287 | 56.86 315 | 74.40 291 |
|
pmmvs5 | | | 56.47 274 | 55.68 275 | 58.86 290 | 61.41 336 | 36.71 315 | 66.37 283 | 62.75 304 | 40.38 323 | 53.70 301 | 76.62 267 | 34.56 254 | 67.05 297 | 40.02 282 | 65.27 275 | 72.83 302 |
|
test-mter | | | 56.42 275 | 55.82 274 | 58.22 293 | 68.57 302 | 44.80 256 | 65.46 290 | 57.92 320 | 39.94 326 | 55.44 283 | 69.82 316 | 21.92 335 | 57.44 327 | 49.66 211 | 73.62 176 | 72.41 309 |
|
USDC | | | 56.35 276 | 54.24 286 | 62.69 274 | 64.74 325 | 40.31 290 | 65.05 295 | 73.83 236 | 43.93 303 | 47.58 323 | 77.71 257 | 15.36 342 | 75.05 267 | 38.19 289 | 61.81 299 | 72.70 303 |
|
PatchMatch-RL | | | 56.25 277 | 54.55 282 | 61.32 284 | 77.06 188 | 56.07 115 | 65.57 289 | 54.10 334 | 44.13 301 | 53.49 306 | 71.27 308 | 25.20 326 | 66.78 299 | 36.52 301 | 63.66 285 | 61.12 333 |
|
sss | | | 56.17 278 | 56.57 269 | 54.96 305 | 66.93 312 | 36.32 320 | 57.94 321 | 61.69 309 | 41.67 316 | 58.64 262 | 75.32 285 | 38.72 220 | 56.25 333 | 42.04 272 | 66.19 269 | 72.31 312 |
|
FMVSNet5 | | | 55.86 279 | 54.93 279 | 58.66 292 | 71.05 276 | 36.35 318 | 64.18 300 | 62.48 306 | 46.76 278 | 50.66 318 | 74.73 289 | 25.80 323 | 64.04 308 | 33.11 312 | 65.57 274 | 75.59 277 |
|
RPSCF | | | 55.80 280 | 54.22 287 | 60.53 286 | 65.13 324 | 42.91 274 | 64.30 298 | 57.62 322 | 36.84 331 | 58.05 268 | 82.28 169 | 28.01 308 | 56.24 334 | 37.14 293 | 58.61 312 | 82.44 193 |
|
EU-MVSNet | | | 55.61 281 | 54.41 284 | 59.19 288 | 65.41 323 | 33.42 332 | 72.44 236 | 71.91 249 | 28.81 339 | 51.27 312 | 73.87 295 | 24.76 328 | 69.08 289 | 43.04 264 | 58.20 313 | 75.06 281 |
|
TESTMET0.1,1 | | | 55.28 282 | 54.90 280 | 56.42 300 | 66.56 315 | 43.67 267 | 65.46 290 | 56.27 327 | 39.18 328 | 53.83 300 | 67.44 324 | 24.21 330 | 55.46 337 | 48.04 223 | 73.11 188 | 70.13 322 |
|
MIMVSNet1 | | | 55.17 283 | 54.31 285 | 57.77 297 | 70.03 290 | 32.01 336 | 65.68 288 | 64.81 291 | 49.19 254 | 46.75 328 | 76.00 275 | 25.53 325 | 64.04 308 | 28.65 333 | 62.13 297 | 77.26 260 |
|
Anonymous20231206 | | | 55.10 284 | 55.30 278 | 54.48 308 | 69.81 294 | 33.94 330 | 62.91 303 | 62.13 308 | 41.08 319 | 55.18 287 | 75.65 280 | 32.75 277 | 56.59 332 | 30.32 328 | 67.86 257 | 72.91 301 |
|
TinyColmap | | | 54.14 285 | 51.72 295 | 61.40 283 | 66.84 313 | 41.97 279 | 66.52 282 | 68.51 271 | 44.81 291 | 42.69 337 | 75.77 279 | 11.66 345 | 72.94 274 | 31.96 315 | 56.77 316 | 69.27 326 |
|
EPMVS | | | 53.96 286 | 53.69 289 | 54.79 307 | 66.12 319 | 31.96 337 | 62.34 306 | 49.05 339 | 44.42 298 | 55.54 281 | 71.33 307 | 30.22 294 | 56.70 330 | 41.65 276 | 62.54 295 | 75.71 276 |
|
PMMVS | | | 53.96 286 | 53.26 292 | 56.04 301 | 62.60 332 | 50.92 180 | 61.17 312 | 56.09 328 | 32.81 335 | 53.51 305 | 66.84 326 | 34.04 260 | 59.93 321 | 44.14 254 | 68.18 254 | 57.27 338 |
|
test20.03 | | | 53.87 288 | 54.02 288 | 53.41 312 | 61.47 335 | 28.11 344 | 61.30 310 | 59.21 315 | 51.34 236 | 52.09 310 | 77.43 258 | 33.29 269 | 58.55 324 | 29.76 330 | 60.27 307 | 73.58 299 |
|
MDA-MVSNet-bldmvs | | | 53.87 288 | 50.81 297 | 63.05 272 | 66.25 317 | 48.58 216 | 56.93 324 | 63.82 297 | 48.09 266 | 41.22 338 | 70.48 313 | 30.34 293 | 68.00 294 | 34.24 308 | 45.92 338 | 72.57 305 |
|
TDRefinement | | | 53.44 290 | 50.72 298 | 61.60 281 | 64.31 328 | 46.96 234 | 70.89 258 | 65.27 290 | 41.78 314 | 44.61 333 | 77.98 247 | 11.52 346 | 66.36 301 | 28.57 334 | 51.59 329 | 71.49 316 |
|
test0.0.03 1 | | | 53.32 291 | 53.59 290 | 52.50 316 | 62.81 331 | 29.45 342 | 59.51 316 | 54.11 333 | 50.08 248 | 54.40 295 | 74.31 292 | 32.62 279 | 55.92 335 | 30.50 327 | 63.95 284 | 72.15 314 |
|
PatchT | | | 53.17 292 | 53.44 291 | 52.33 317 | 68.29 306 | 25.34 348 | 58.21 320 | 54.41 332 | 44.46 297 | 54.56 293 | 69.05 319 | 33.32 268 | 60.94 316 | 36.93 294 | 61.76 300 | 70.73 321 |
|
UnsupCasMVSNet_eth | | | 53.16 293 | 52.47 293 | 55.23 304 | 59.45 342 | 33.39 333 | 59.43 317 | 69.13 267 | 45.98 284 | 50.35 320 | 72.32 301 | 29.30 302 | 58.26 325 | 42.02 273 | 44.30 339 | 74.05 295 |
|
PM-MVS | | | 52.33 294 | 50.19 299 | 58.75 291 | 62.10 333 | 45.14 254 | 65.75 286 | 40.38 348 | 43.60 304 | 53.52 304 | 72.65 299 | 9.16 351 | 65.87 304 | 50.41 204 | 54.18 324 | 65.24 332 |
|
testgi | | | 51.90 295 | 52.37 294 | 50.51 321 | 60.39 341 | 23.55 350 | 58.42 319 | 58.15 318 | 49.03 256 | 51.83 311 | 79.21 236 | 22.39 333 | 55.59 336 | 29.24 332 | 62.64 293 | 72.40 311 |
|
dp | | | 51.89 296 | 51.60 296 | 52.77 315 | 68.44 305 | 32.45 335 | 62.36 305 | 54.57 331 | 44.16 300 | 49.31 321 | 67.91 321 | 28.87 305 | 56.61 331 | 33.89 309 | 54.89 321 | 69.24 327 |
|
JIA-IIPM | | | 51.56 297 | 47.68 307 | 63.21 270 | 64.61 326 | 50.73 184 | 47.71 338 | 58.77 317 | 42.90 310 | 48.46 322 | 51.72 341 | 24.97 327 | 70.24 285 | 36.06 304 | 53.89 325 | 68.64 328 |
|
ADS-MVSNet2 | | | 51.33 298 | 48.76 303 | 59.07 289 | 66.02 321 | 44.60 259 | 50.90 333 | 59.76 314 | 36.90 329 | 50.74 315 | 66.18 328 | 26.38 319 | 63.11 310 | 27.17 335 | 54.76 322 | 69.50 324 |
|
YYNet1 | | | 50.73 299 | 48.96 300 | 56.03 302 | 61.10 338 | 41.78 282 | 51.94 331 | 56.44 325 | 40.94 321 | 44.84 331 | 67.80 323 | 30.08 296 | 55.08 338 | 36.77 295 | 50.71 331 | 71.22 317 |
|
MDA-MVSNet_test_wron | | | 50.71 300 | 48.95 301 | 56.00 303 | 61.17 337 | 41.84 280 | 51.90 332 | 56.45 324 | 40.96 320 | 44.79 332 | 67.84 322 | 30.04 297 | 55.07 339 | 36.71 297 | 50.69 332 | 71.11 320 |
|
UnsupCasMVSNet_bld | | | 50.07 301 | 48.87 302 | 53.66 310 | 60.97 340 | 33.67 331 | 57.62 322 | 64.56 294 | 39.47 327 | 47.38 324 | 64.02 333 | 27.47 312 | 59.32 322 | 34.69 307 | 43.68 340 | 67.98 329 |
|
Patchmatch-test | | | 49.08 302 | 48.28 304 | 51.50 319 | 64.40 327 | 30.85 340 | 45.68 340 | 48.46 342 | 35.60 332 | 46.10 330 | 72.10 302 | 34.47 257 | 46.37 344 | 27.08 337 | 60.65 306 | 77.27 259 |
|
ADS-MVSNet | | | 48.48 303 | 47.77 305 | 50.63 320 | 66.02 321 | 29.92 341 | 50.90 333 | 50.87 338 | 36.90 329 | 50.74 315 | 66.18 328 | 26.38 319 | 52.47 341 | 27.17 335 | 54.76 322 | 69.50 324 |
|
CHOSEN 280x420 | | | 47.83 304 | 46.36 308 | 52.24 318 | 67.37 310 | 49.78 200 | 38.91 346 | 43.11 347 | 35.00 333 | 43.27 336 | 63.30 334 | 28.95 303 | 49.19 343 | 36.53 300 | 60.80 305 | 57.76 337 |
|
new-patchmatchnet | | | 47.56 305 | 47.73 306 | 47.06 323 | 58.81 343 | 9.37 356 | 48.78 337 | 59.21 315 | 43.28 306 | 44.22 334 | 68.66 320 | 25.67 324 | 57.20 329 | 31.57 323 | 49.35 334 | 74.62 290 |
|
PVSNet_0 | | 43.31 20 | 47.46 306 | 45.64 309 | 52.92 314 | 67.60 309 | 44.65 258 | 54.06 329 | 54.64 330 | 41.59 317 | 46.15 329 | 58.75 337 | 30.99 288 | 58.66 323 | 32.18 314 | 24.81 345 | 55.46 339 |
|
MVS-HIRNet | | | 45.52 307 | 44.48 310 | 48.65 322 | 68.49 304 | 34.05 329 | 59.41 318 | 44.50 346 | 27.03 341 | 37.96 342 | 50.47 344 | 26.16 322 | 64.10 307 | 26.74 338 | 59.52 308 | 47.82 341 |
|
pmmvs3 | | | 44.92 308 | 41.95 312 | 53.86 309 | 52.58 346 | 43.55 268 | 62.11 307 | 46.90 345 | 26.05 343 | 40.63 339 | 60.19 336 | 11.08 348 | 57.91 326 | 31.83 320 | 46.15 337 | 60.11 334 |
|
LF4IMVS | | | 42.95 309 | 42.26 311 | 45.04 325 | 48.30 348 | 32.50 334 | 54.80 327 | 48.49 341 | 28.03 340 | 40.51 340 | 70.16 314 | 9.24 350 | 43.89 346 | 31.63 321 | 49.18 335 | 58.72 335 |
|
FPMVS | | | 42.18 310 | 41.11 313 | 45.39 324 | 58.03 344 | 41.01 288 | 49.50 335 | 53.81 335 | 30.07 338 | 33.71 343 | 64.03 331 | 11.69 344 | 52.08 342 | 14.01 346 | 55.11 320 | 43.09 343 |
|
ANet_high | | | 41.38 311 | 37.47 316 | 53.11 313 | 39.73 353 | 24.45 349 | 56.94 323 | 69.69 259 | 47.65 271 | 26.04 346 | 52.32 340 | 12.44 343 | 62.38 313 | 21.80 342 | 10.61 351 | 72.49 306 |
|
LCM-MVSNet | | | 40.30 312 | 35.88 317 | 53.57 311 | 42.24 350 | 29.15 343 | 45.21 342 | 60.53 313 | 22.23 347 | 28.02 345 | 50.98 343 | 3.72 356 | 61.78 315 | 31.22 326 | 38.76 343 | 69.78 323 |
|
N_pmnet | | | 39.35 313 | 40.28 314 | 36.54 329 | 63.76 329 | 1.62 359 | 49.37 336 | 0.76 359 | 34.62 334 | 43.61 335 | 66.38 327 | 26.25 321 | 42.57 347 | 26.02 340 | 51.77 328 | 65.44 331 |
|
DSMNet-mixed | | | 39.30 314 | 38.72 315 | 41.03 328 | 51.22 347 | 19.66 352 | 45.53 341 | 31.35 352 | 15.83 350 | 39.80 341 | 67.42 325 | 22.19 334 | 45.13 345 | 22.43 341 | 52.69 327 | 58.31 336 |
|
PMVS | | 28.69 22 | 36.22 315 | 33.29 319 | 45.02 326 | 36.82 355 | 35.98 322 | 54.68 328 | 48.74 340 | 26.31 342 | 21.02 347 | 51.61 342 | 2.88 358 | 60.10 320 | 9.99 350 | 47.58 336 | 38.99 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma | | | 34.77 316 | 31.91 320 | 43.33 327 | 62.05 334 | 37.87 307 | 20.39 349 | 67.03 279 | 23.23 345 | 18.41 349 | 25.84 348 | 4.24 354 | 62.73 311 | 14.71 345 | 51.32 330 | 29.38 346 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 34.13 317 | 34.29 318 | 33.64 330 | 52.63 345 | 18.23 354 | 44.43 343 | 33.90 351 | 22.81 346 | 30.89 344 | 53.18 339 | 10.48 349 | 35.72 351 | 20.77 343 | 39.51 341 | 46.98 342 |
|
PMMVS2 | | | 27.40 318 | 25.91 321 | 31.87 332 | 39.46 354 | 6.57 357 | 31.17 347 | 28.52 353 | 23.96 344 | 20.45 348 | 48.94 345 | 4.20 355 | 37.94 350 | 16.51 344 | 19.97 346 | 51.09 340 |
|
E-PMN | | | 23.77 319 | 22.73 323 | 26.90 333 | 42.02 351 | 20.67 351 | 42.66 344 | 35.70 349 | 17.43 348 | 10.28 353 | 25.05 349 | 6.42 353 | 42.39 348 | 10.28 349 | 14.71 348 | 17.63 347 |
|
EMVS | | | 22.97 320 | 21.84 324 | 26.36 334 | 40.20 352 | 19.53 353 | 41.95 345 | 34.64 350 | 17.09 349 | 9.73 354 | 22.83 350 | 7.29 352 | 42.22 349 | 9.18 351 | 13.66 349 | 17.32 348 |
|
MVE | | 17.77 23 | 21.41 321 | 17.77 325 | 32.34 331 | 34.34 356 | 25.44 347 | 16.11 350 | 24.11 354 | 11.19 351 | 13.22 351 | 31.92 346 | 1.58 359 | 30.95 352 | 10.47 348 | 17.03 347 | 40.62 344 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 17.50 322 | 23.34 322 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 78.63 165 | 0.00 357 | 0.00 358 | 82.18 170 | 49.25 105 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
wuyk23d | | | 13.32 323 | 12.52 326 | 15.71 335 | 47.54 349 | 26.27 345 | 31.06 348 | 1.98 358 | 4.93 353 | 5.18 355 | 1.94 355 | 0.45 360 | 18.54 353 | 6.81 353 | 12.83 350 | 2.33 351 |
|
tmp_tt | | | 9.43 324 | 11.14 327 | 4.30 337 | 2.38 358 | 4.40 358 | 13.62 351 | 16.08 356 | 0.39 354 | 15.89 350 | 13.06 351 | 15.80 341 | 5.54 355 | 12.63 347 | 10.46 352 | 2.95 350 |
|
ab-mvs-re | | | 6.49 325 | 8.65 328 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 77.89 252 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
test123 | | | 4.73 326 | 6.30 329 | 0.02 338 | 0.01 359 | 0.01 360 | 56.36 325 | 0.00 360 | 0.01 355 | 0.04 356 | 0.21 357 | 0.01 361 | 0.00 356 | 0.03 355 | 0.00 354 | 0.04 352 |
|
testmvs | | | 4.52 327 | 6.03 330 | 0.01 339 | 0.01 359 | 0.00 361 | 53.86 330 | 0.00 360 | 0.01 355 | 0.04 356 | 0.27 356 | 0.00 362 | 0.00 356 | 0.04 354 | 0.00 354 | 0.03 353 |
|
pcd_1.5k_mvsjas | | | 3.92 328 | 5.23 331 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 47.05 137 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 362 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 85 | 57.95 141 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 23 | 74.05 36 | 87.00 51 | |
|
RE-MVS-def | | | | 73.71 67 | | 83.49 69 | 59.87 54 | 84.29 36 | 81.36 109 | 58.07 139 | 73.14 70 | 90.07 36 | 43.06 177 | | 68.20 70 | 81.76 91 | 84.03 147 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 25 | 53.93 210 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 32 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 29 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 71 | | 86.78 12 | 64.20 31 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 42 | 88.26 2 | 59.90 105 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 62 | 77.39 15 | 89.52 21 | |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 47 | 79.66 146 | 59.00 121 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 19 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 65 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 31 |
|
test0726 | | | | | | 87.75 7 | 59.07 66 | 87.86 2 | 86.83 10 | 64.26 29 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 250 |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 253 | | | | 78.05 250 |
|
sam_mvs | | | | | | | | | | | | | 33.43 267 | | | | |
|
ambc | | | | | 65.13 260 | 63.72 330 | 37.07 312 | 47.66 339 | 78.78 161 | | 54.37 296 | 71.42 306 | 11.24 347 | 80.94 195 | 45.64 241 | 53.85 326 | 77.38 257 |
|
MTGPA | | | | | | | | | 80.97 125 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 275 | | | | 3.64 353 | 32.39 283 | 69.49 287 | 44.17 252 | | |
|
test_post | | | | | | | | | | | | 3.55 354 | 33.90 262 | 66.52 300 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 331 | 34.50 255 | 74.27 271 | | | |
|
GG-mvs-BLEND | | | | | 62.34 276 | 71.36 275 | 37.04 313 | 69.20 273 | 57.33 323 | | 54.73 291 | 65.48 330 | 30.37 292 | 77.82 244 | 34.82 306 | 74.93 165 | 72.17 313 |
|
MTMP | | | | | | | | 86.03 17 | 17.08 355 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 274 | 41.72 284 | | | 48.85 258 | | 73.31 298 | | 82.48 168 | 48.90 217 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 155 |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.65 184 | 74.93 42 | 88.81 62 | 53.70 62 | 84.68 117 | | | |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 87 | 81.18 119 | 55.86 177 | 74.81 45 | 88.80 64 | 53.70 62 | 84.45 122 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 138 |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 122 | | 74.68 46 | | | 84.04 129 | | | |
|
TestCases | | | | | 64.39 264 | 71.44 271 | 49.03 209 | | 67.30 275 | 45.97 285 | 47.16 325 | 79.77 222 | 17.47 338 | 67.56 295 | 33.65 310 | 59.16 310 | 76.57 268 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 79 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 81 | | 60.37 93 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 95 | | 84.88 36 | | | | | 86.43 78 | | | 86.38 63 |
|
旧先验2 | | | | | | | | 76.08 176 | | 45.32 289 | 76.55 31 | | | 65.56 305 | 58.75 150 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 174 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 70.76 186 | 85.66 41 | 61.13 35 | | 66.43 283 | 44.68 293 | 70.29 98 | 86.64 86 | 41.29 200 | 75.23 266 | 49.72 210 | 81.75 93 | 75.93 273 |
|
旧先验1 | | | | | | 83.04 75 | 53.15 153 | | 67.52 274 | | | 87.85 71 | 44.08 168 | | | 80.76 98 | 78.03 253 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 114 | 74.30 231 | 48.40 263 | | | | 80.78 200 | 53.62 182 | | 79.03 242 |
|
原ACMM2 | | | | | | | | 79.02 121 | | | | | | | | | |
|
原ACMM1 | | | | | 74.69 94 | 85.39 49 | 59.40 58 | | 83.42 67 | 51.47 233 | 70.27 100 | 86.61 88 | 48.61 115 | 86.51 76 | 53.85 181 | 87.96 39 | 78.16 248 |
|
test222 | | | | | | 83.14 72 | 58.68 75 | 72.57 234 | 63.45 299 | 41.78 314 | 67.56 152 | 86.12 98 | 37.13 238 | | | 78.73 133 | 74.98 284 |
|
testdata2 | | | | | | | | | | | | | | 72.18 279 | 46.95 231 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
testdata | | | | | 64.66 262 | 81.52 91 | 52.93 156 | | 65.29 289 | 46.09 283 | 73.88 60 | 87.46 74 | 38.08 228 | 66.26 302 | 53.31 187 | 78.48 136 | 74.78 288 |
|
testdata1 | | | | | | | | 72.65 231 | | 60.50 90 | | | | | | | |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 79 | | 83.36 70 | | 72.93 75 | | 54.61 50 | 88.05 35 | | 88.12 36 | 86.81 56 |
|
plane_prior7 | | | | | | 81.41 94 | 55.96 117 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 101 | 56.24 112 | | | | | | 45.26 159 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 50 | | | | | 87.21 50 | 68.16 72 | 80.58 101 | 84.65 130 |
|
plane_prior4 | | | | | | | | | | | | 86.10 99 | | | | | |
|
plane_prior3 | | | | | | | 56.09 114 | | | 63.92 36 | 69.27 120 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 39 | | 64.52 25 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 108 | 83.58 53 | | 63.19 46 | | | | | | 80.48 104 | |
|
n2 | | | | | | | | | 0.00 360 | | | | | | | | |
|
nn | | | | | | | | | 0.00 360 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 344 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 202 | 71.42 273 | 47.80 224 | | 50.90 337 | | 50.39 319 | 75.56 281 | 27.43 314 | 81.33 185 | 45.91 238 | 34.10 344 | 80.59 221 |
|
LGP-MVS_train | | | | | 75.76 74 | 80.22 115 | 57.51 93 | | 83.40 68 | 61.32 78 | 66.67 163 | 87.33 76 | 39.15 216 | 86.59 71 | 67.70 76 | 77.30 147 | 83.19 177 |
|
test11 | | | | | | | | | 83.47 65 | | | | | | | | |
|
door | | | | | | | | | 47.60 343 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 133 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 106 | | 82.31 74 | | 62.10 67 | 67.85 144 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 106 | | 82.31 74 | | 62.10 67 | 67.85 144 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 83 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 144 | | | 86.93 60 | | | 84.32 139 |
|
HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 153 | | | | |
|
NP-MVS | | | | | | 80.98 104 | 56.05 116 | | | | | 85.54 112 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 346 | 61.22 311 | | 40.10 324 | 51.10 313 | | 32.97 272 | | 38.49 286 | | 78.61 245 |
|
MDTV_nov1_ep13 | | | | 57.00 266 | | 72.73 252 | 38.26 305 | 65.02 296 | 64.73 293 | 44.74 292 | 55.46 282 | 72.48 300 | 32.61 281 | 70.47 284 | 37.47 291 | 67.75 260 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 172 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 202 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 118 | | | | |
|
ITE_SJBPF | | | | | 62.09 278 | 66.16 318 | 44.55 261 | | 64.32 295 | 47.36 274 | 55.31 285 | 80.34 209 | 19.27 337 | 62.68 312 | 36.29 303 | 62.39 296 | 79.04 241 |
|
DeepMVS_CX | | | | | 12.03 336 | 17.97 357 | 10.91 355 | | 10.60 357 | 7.46 352 | 11.07 352 | 28.36 347 | 3.28 357 | 11.29 354 | 8.01 352 | 9.74 353 | 13.89 349 |
|