This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 32
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 44
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4286.57 76
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 42
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7567.86 8687.87 4186.06 95
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 68
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16289.24 5142.03 20489.38 1964.07 11986.50 5689.69 2
EC-MVSNet75.84 4575.87 4275.74 7278.86 14652.65 16883.73 5086.08 1763.47 4272.77 8887.25 8053.13 7687.93 4271.97 6185.57 6386.66 73
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6188.68 2776.48 2889.63 2087.16 58
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 40
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 4475.36 4577.41 4680.62 10855.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10888.54 2970.79 6889.71 1787.79 37
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16972.46 9486.76 8556.89 3487.86 4566.36 10188.91 2583.64 185
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
IU-MVS87.77 459.15 6085.53 2553.93 22884.64 379.07 1190.87 588.37 17
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8486.78 6880.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 26
CS-MVS-test75.62 4775.31 4776.56 5880.63 10755.13 13083.88 4885.22 2862.05 7171.49 10686.03 11353.83 6586.36 8367.74 8886.91 4988.19 23
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12453.09 16179.97 10185.21 2955.21 20372.81 8585.37 13353.93 6287.17 5867.93 8586.46 5788.80 7
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8188.53 3074.79 4288.34 2986.63 75
bld_raw_dy_0_6474.00 6573.69 6774.93 8680.28 11050.00 21377.56 14885.20 3155.84 18472.52 9284.05 15653.90 6386.60 7267.59 9286.28 5988.18 25
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3262.88 5378.10 2491.26 1352.51 8288.39 3179.34 890.52 1386.78 69
mamv474.72 5474.09 5976.61 5679.86 12253.06 16279.89 10585.13 3355.66 19172.81 8585.24 13453.83 6588.07 3867.77 8786.63 5588.71 9
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3462.57 6073.09 7989.97 4150.90 10987.48 5275.30 3686.85 5087.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22151.83 18679.67 11185.08 3465.02 1975.84 3588.58 6059.42 2285.08 11072.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive74.80 5174.89 5274.53 10075.59 23350.37 20578.17 13385.06 3662.80 5874.40 5687.86 7057.88 2783.61 14069.46 7582.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3764.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3766.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 60
ETV-MVS74.46 6173.84 6476.33 6279.27 13555.24 12979.22 11685.00 3964.97 2172.65 9079.46 25153.65 7387.87 4467.45 9482.91 8585.89 101
test_prior76.69 5384.20 6157.27 8884.88 4086.43 8086.38 79
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 4161.98 7473.06 8088.88 5553.72 6989.06 2368.27 7988.04 3887.42 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 7272.68 7675.29 8478.82 14853.33 15678.23 13084.79 4261.30 8170.41 11381.04 21952.41 8587.12 6064.61 11882.49 9285.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0573.64 6973.08 7275.33 8178.05 17450.61 19979.76 10884.74 4355.66 19172.19 9785.10 13553.98 5987.65 4968.56 7879.69 12187.73 39
baseline74.61 5874.70 5374.34 10475.70 22949.99 21477.54 15084.63 4462.73 5973.98 6287.79 7357.67 3083.82 13669.49 7382.74 9089.20 6
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4563.04 4969.80 12689.74 4645.43 17387.16 5972.01 6082.87 8785.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4666.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4386.38 79
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4760.61 8979.05 2190.30 3055.54 4388.32 3373.48 5387.03 4584.83 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4862.82 5573.96 6390.50 2453.20 7588.35 3274.02 4887.05 4486.13 93
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4962.82 5573.55 6890.56 2249.80 11688.24 3474.02 4887.03 4586.32 87
DELS-MVS74.76 5274.46 5575.65 7577.84 18152.25 17775.59 19584.17 5063.76 3873.15 7582.79 17759.58 2086.80 6767.24 9586.04 6087.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5162.81 5773.30 7090.58 2149.90 11488.21 3573.78 5087.03 4586.29 90
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5256.32 17474.05 6188.98 5453.34 7487.92 4369.23 7688.42 2887.59 45
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5364.52 2569.27 13486.10 11045.26 17787.21 5668.16 8280.58 10984.65 148
plane_prior584.01 5387.21 5668.16 8280.58 10984.65 148
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5573.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 9890.01 4047.95 13688.01 4071.55 6586.74 5286.37 81
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 986.49 40847.95 13688.01 4071.55 6586.74 5286.37 81
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5863.24 4573.30 7087.27 7955.06 4686.30 8571.78 6284.58 6889.25 4
HQP3-MVS83.90 5880.35 113
HQP-MVS73.45 7172.80 7575.40 7980.66 10454.94 13182.31 7183.90 5862.10 6867.85 15785.54 12945.46 17186.93 6467.04 9780.35 11384.32 155
sasdasda74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
canonicalmvs74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6160.37 9679.89 1889.38 4954.97 4885.58 9976.12 3184.94 6686.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6459.34 11979.37 1989.76 4559.84 1687.62 5076.69 2786.74 5287.68 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6561.71 7672.45 9690.34 2948.48 13288.13 3672.32 5886.85 5085.78 104
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6665.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 131
OPM-MVS74.73 5374.25 5776.19 6480.81 10359.01 6782.60 6683.64 6763.74 3972.52 9287.49 7447.18 15185.88 9269.47 7480.78 10583.66 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 3660.82 3788.18 183.61 6860.87 8481.50 16
FIs70.82 11471.43 9168.98 23078.33 16438.14 33276.96 16683.59 6961.02 8367.33 17086.73 8755.07 4581.64 18254.61 19579.22 13087.14 59
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7063.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
iter_conf05_1173.52 7072.59 7776.30 6380.93 10151.97 18478.62 12383.48 7152.20 24571.53 10585.93 11854.01 5888.55 2861.08 14885.56 6488.39 16
QAPM70.05 12868.81 13973.78 11776.54 21953.43 15383.23 5483.48 7152.89 23865.90 19886.29 10441.55 21386.49 7951.01 22378.40 14581.42 226
test1183.47 73
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7462.44 6472.68 8990.50 2448.18 13487.34 5373.59 5285.71 6184.76 147
原ACMM174.69 9185.39 4759.40 5483.42 7551.47 25470.27 11586.61 9348.61 13086.51 7853.85 20087.96 3978.16 276
LPG-MVS_test72.74 8071.74 8675.76 7080.22 11357.51 8682.55 6783.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
test1277.76 4384.52 5858.41 7583.36 7872.93 8354.61 5388.05 3988.12 3586.81 67
PAPR71.72 10070.82 10474.41 10381.20 9751.17 18979.55 11483.33 7955.81 18666.93 17984.61 14450.95 10786.06 8655.79 18279.20 13186.00 96
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 8067.78 370.09 11686.34 10354.92 4988.90 2572.68 5784.55 6987.76 38
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 8158.41 13573.71 6690.14 3345.62 16685.99 8969.64 7282.85 8885.78 104
PAPM_NR72.63 8271.80 8575.13 8581.72 8553.42 15479.91 10483.28 8259.14 12166.31 19185.90 11951.86 9486.06 8657.45 17080.62 10785.91 100
EIA-MVS71.78 9770.60 10775.30 8379.85 12353.54 15077.27 15983.26 8357.92 14766.49 18679.39 25252.07 9186.69 7060.05 15579.14 13385.66 112
FC-MVSNet-test69.80 13570.58 10967.46 24677.61 19334.73 36376.05 18683.19 8460.84 8565.88 20086.46 10054.52 5480.76 20652.52 20978.12 14786.91 63
3Dnovator64.47 572.49 8471.39 9375.79 6977.70 18458.99 6880.66 9383.15 8562.24 6665.46 20686.59 9442.38 20285.52 10059.59 16184.72 6782.85 204
MVS_Test72.45 8572.46 8072.42 16074.88 24248.50 23576.28 18083.14 8659.40 11772.46 9484.68 14055.66 4281.12 19465.98 10779.66 12287.63 43
DP-MVS Recon72.15 9470.73 10676.40 5986.57 2457.99 7981.15 8882.96 8757.03 15866.78 18085.56 12644.50 18388.11 3751.77 21880.23 11683.10 199
UniMVSNet (Re)70.63 11770.20 11571.89 16678.55 15445.29 27075.94 18982.92 8863.68 4068.16 15183.59 16753.89 6483.49 14353.97 19871.12 23686.89 64
MAR-MVS71.51 10270.15 11775.60 7781.84 8459.39 5581.38 8582.90 8954.90 21368.08 15478.70 26047.73 13985.51 10151.68 22084.17 7481.88 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 7773.01 7372.84 14975.41 23650.24 20680.02 9982.89 9058.36 13774.44 5586.73 8758.90 2480.83 20365.84 10874.46 18587.44 49
ACMP63.53 672.30 8871.20 9875.59 7880.28 11057.54 8482.74 6382.84 9160.58 9065.24 21486.18 10739.25 23486.03 8866.95 9976.79 16683.22 193
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2160.38 4382.70 9257.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 48
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18079.20 13744.13 27976.02 18882.60 9366.48 1168.20 14984.60 14556.82 3582.82 16054.62 19370.43 24387.36 55
alignmvs73.86 6773.99 6173.45 13678.20 16750.50 20478.57 12582.43 9459.40 11776.57 3286.71 8956.42 3881.23 19365.84 10881.79 9988.62 10
Anonymous2023121169.28 15168.47 14871.73 17280.28 11047.18 25179.98 10082.37 9554.61 21667.24 17184.01 15839.43 23182.41 17155.45 18772.83 21485.62 114
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3146.61 16086.55 7671.71 6385.66 6284.97 140
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9759.99 10675.10 4190.35 2847.66 14186.52 7771.64 6482.99 8284.47 153
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15555.93 11281.63 8082.12 9856.24 17770.02 12085.68 12547.05 15384.34 12665.27 11274.41 18885.67 111
WR-MVS_H67.02 19966.92 18467.33 25077.95 17837.75 33677.57 14782.11 9962.03 7362.65 25282.48 18850.57 11079.46 22542.91 29664.01 31384.79 145
ACMM61.98 770.80 11569.73 12274.02 11180.59 10958.59 7482.68 6482.02 10055.46 19767.18 17384.39 15038.51 24183.17 14860.65 15176.10 17380.30 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 6873.47 6874.66 9383.02 7159.29 5882.30 7481.88 10159.34 11971.59 10486.83 8345.94 16483.65 13965.09 11385.22 6581.06 239
MVS67.37 18966.33 19570.51 20475.46 23550.94 19173.95 22881.85 10241.57 35562.54 25578.57 26547.98 13585.47 10452.97 20782.05 9575.14 310
114514_t70.83 11369.56 12474.64 9586.21 3154.63 13682.34 7081.81 10348.22 29463.01 24785.83 12240.92 22187.10 6157.91 16779.79 11882.18 216
PCF-MVS61.88 870.95 11169.49 12775.35 8077.63 18855.71 11776.04 18781.81 10350.30 26969.66 12785.40 13252.51 8284.89 11651.82 21780.24 11585.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 9371.31 9674.71 9078.68 15249.70 21782.10 7581.65 10560.40 9365.94 19685.84 12151.74 9786.37 8255.93 17979.55 12588.07 29
PVSNet_BlendedMVS68.56 16767.72 15971.07 19477.03 20950.57 20074.50 21981.52 10653.66 23264.22 23479.72 24549.13 12482.87 15655.82 18073.92 19379.77 262
PVSNet_Blended68.59 16367.72 15971.19 18977.03 20950.57 20072.51 25181.52 10651.91 24764.22 23477.77 28049.13 12482.87 15655.82 18079.58 12380.14 254
DU-MVS70.01 12969.53 12671.44 18078.05 17444.13 27975.01 20881.51 10864.37 2868.20 14984.52 14649.12 12682.82 16054.62 19370.43 24387.37 53
dcpmvs_274.55 6075.23 4872.48 15682.34 7753.34 15577.87 13981.46 10957.80 15075.49 3786.81 8462.22 1377.75 25571.09 6782.02 9686.34 83
v114470.42 12269.31 13073.76 11973.22 26550.64 19877.83 14281.43 11058.58 13269.40 13281.16 21647.53 14485.29 10964.01 12170.64 23985.34 126
v1070.21 12669.02 13573.81 11673.51 26450.92 19378.74 12081.39 11160.05 10566.39 18981.83 20547.58 14385.41 10762.80 13368.86 27685.09 136
tt080567.77 18367.24 17969.34 22574.87 24340.08 31377.36 15481.37 11255.31 19966.33 19084.65 14237.35 25482.55 16755.65 18572.28 22485.39 125
SR-MVS-dyc-post74.57 5973.90 6276.58 5783.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3444.74 18085.84 9368.20 8081.76 10084.03 163
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3443.06 19568.20 8081.76 10084.03 163
v119269.97 13168.68 14273.85 11473.19 26650.94 19177.68 14581.36 11357.51 15368.95 14080.85 22645.28 17685.33 10862.97 13270.37 24585.27 130
RPMNet61.53 26758.42 28170.86 19669.96 32152.07 18065.31 32281.36 11343.20 34559.36 28970.15 35035.37 27385.47 10436.42 33764.65 30875.06 311
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15374.26 25953.99 14281.21 8781.34 11752.70 23962.75 25085.55 12838.86 23984.14 12848.41 24583.01 8179.97 256
MVS_030478.73 1678.75 1578.66 3080.82 10257.62 8385.31 3081.31 11870.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
v7n69.01 15667.36 17273.98 11272.51 28152.65 16878.54 12781.30 11960.26 10262.67 25181.62 20843.61 19084.49 12357.01 17268.70 27884.79 145
MG-MVS73.96 6673.89 6374.16 10985.65 4249.69 21981.59 8381.29 12061.45 7871.05 10888.11 6351.77 9687.73 4761.05 14983.09 8085.05 137
TEST985.58 4361.59 2481.62 8181.26 12155.65 19374.93 4588.81 5653.70 7084.68 120
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12155.86 18274.93 4588.81 5653.70 7084.68 12075.24 3888.33 3083.65 184
PAPM67.92 18066.69 18571.63 17678.09 17249.02 22777.09 16381.24 12351.04 26160.91 27383.98 15947.71 14084.99 11140.81 30879.32 12980.90 242
MGCFI-Net72.45 8573.34 7169.81 21777.77 18343.21 28975.84 19281.18 12459.59 11575.45 3886.64 9057.74 2877.94 25063.92 12381.90 9888.30 18
test_885.40 4660.96 3481.54 8481.18 12455.86 18274.81 4988.80 5853.70 7084.45 124
TranMVSNet+NR-MVSNet70.36 12370.10 11971.17 19178.64 15342.97 29276.53 17581.16 12666.95 668.53 14585.42 13151.61 9983.07 14952.32 21069.70 26287.46 48
HPM-MVS_fast74.30 6373.46 6976.80 5284.45 6059.04 6683.65 5281.05 12760.15 10370.43 11289.84 4341.09 22085.59 9867.61 9182.90 8685.77 107
agg_prior85.04 5059.96 4781.04 12874.68 5284.04 130
Anonymous2024052969.91 13269.02 13572.56 15480.19 11647.65 24577.56 14880.99 12955.45 19869.88 12486.76 8539.24 23582.18 17454.04 19777.10 16387.85 33
MTGPAbinary80.97 130
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21180.97 13065.13 1575.77 3690.88 1748.63 12986.66 7177.23 2488.17 3384.81 144
NR-MVSNet69.54 14468.85 13771.59 17778.05 17443.81 28374.20 22380.86 13265.18 1462.76 24984.52 14652.35 8783.59 14150.96 22570.78 23887.37 53
v870.33 12469.28 13173.49 13473.15 26750.22 20778.62 12380.78 13360.79 8666.45 18882.11 20049.35 11984.98 11363.58 12868.71 27785.28 129
v14419269.71 13668.51 14573.33 14173.10 26850.13 20977.54 15080.64 13456.65 16368.57 14480.55 22946.87 15884.96 11562.98 13169.66 26384.89 142
v192192069.47 14768.17 15473.36 14073.06 26950.10 21077.39 15380.56 13556.58 17068.59 14280.37 23144.72 18184.98 11362.47 13769.82 25885.00 138
v124069.24 15367.91 15773.25 14473.02 27149.82 21577.21 16080.54 13656.43 17268.34 14880.51 23043.33 19384.99 11162.03 14169.77 26184.95 141
v2v48270.50 12069.45 12973.66 12672.62 27750.03 21277.58 14680.51 13759.90 10769.52 12882.14 19847.53 14484.88 11865.07 11470.17 25086.09 94
PEN-MVS66.60 20866.45 18867.04 25177.11 20736.56 34977.03 16580.42 13862.95 5062.51 25784.03 15746.69 15979.07 23644.22 28063.08 32385.51 117
API-MVS72.17 9171.41 9274.45 10281.95 8357.22 8984.03 4580.38 13959.89 11068.40 14682.33 19149.64 11787.83 4651.87 21684.16 7578.30 274
PVSNet_Blended_VisFu71.45 10470.39 11174.65 9482.01 8058.82 7179.93 10380.35 14055.09 20665.82 20282.16 19749.17 12382.64 16560.34 15378.62 14282.50 210
test_yl69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
DCV-MVSNet69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
TAPA-MVS59.36 1066.60 20865.20 21470.81 19776.63 21648.75 23176.52 17680.04 14350.64 26665.24 21484.93 13739.15 23678.54 24336.77 33076.88 16585.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 10570.60 10773.78 11776.60 21753.15 15879.74 11079.78 14458.37 13668.75 14186.45 10145.43 17380.60 20762.58 13477.73 15187.58 46
ACMH55.70 1565.20 22763.57 23070.07 21078.07 17352.01 18379.48 11579.69 14555.75 18856.59 31380.98 22127.12 34980.94 19942.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 15569.47 12867.69 24477.42 19941.00 31074.04 22579.68 14660.06 10469.26 13684.81 13951.06 10677.58 25754.44 19674.43 18784.48 152
save fliter86.17 3361.30 2883.98 4779.66 14759.00 123
Effi-MVS+73.31 7372.54 7975.62 7677.87 17953.64 14779.62 11379.61 14861.63 7772.02 10082.61 18256.44 3785.97 9063.99 12279.07 13487.25 57
PS-CasMVS66.42 21266.32 19666.70 25577.60 19536.30 35476.94 16779.61 14862.36 6562.43 25983.66 16545.69 16578.37 24445.35 27763.26 32185.42 123
CP-MVSNet66.49 21166.41 19266.72 25377.67 18636.33 35276.83 17279.52 15062.45 6362.54 25583.47 17146.32 16178.37 24445.47 27563.43 32085.45 120
V4268.65 16267.35 17372.56 15468.93 33450.18 20872.90 24479.47 15156.92 16069.45 13180.26 23546.29 16282.99 15064.07 11967.82 28484.53 150
Fast-Effi-MVS+70.28 12569.12 13473.73 12278.50 15551.50 18875.01 20879.46 15256.16 17968.59 14279.55 24953.97 6084.05 12953.34 20477.53 15385.65 113
DTE-MVSNet65.58 22065.34 21166.31 26076.06 22634.79 36076.43 17779.38 15362.55 6161.66 26783.83 16245.60 16779.15 23441.64 30760.88 33885.00 138
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8778.47 15754.02 14177.05 16479.33 15465.03 1871.68 10379.35 25452.75 7984.89 11666.46 10074.23 18985.83 103
EI-MVSNet-UG-set71.92 9571.06 10174.52 10177.98 17753.56 14976.62 17379.16 15564.40 2771.18 10778.95 25952.19 8984.66 12265.47 11173.57 20085.32 127
SDMVSNet68.03 17668.10 15667.84 24277.13 20548.72 23365.32 32179.10 15658.02 14365.08 21782.55 18447.83 13873.40 29463.92 12373.92 19381.41 227
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15174.40 25656.87 9970.59 27779.04 15754.77 21466.99 17686.01 11439.57 23078.21 24762.54 13573.33 20683.37 189
PS-MVSNAJ70.51 11969.70 12372.93 14781.52 8755.79 11674.92 21179.00 15855.04 21169.88 12478.66 26147.05 15382.19 17361.61 14479.58 12380.83 243
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 15850.04 21175.58 19778.99 15958.16 13967.59 16682.14 19842.66 19785.63 9656.60 17476.19 17285.84 102
xiu_mvs_v2_base70.52 11869.75 12172.84 14981.21 9655.63 12075.11 20578.92 16054.92 21269.96 12379.68 24647.00 15782.09 17561.60 14579.37 12680.81 244
EG-PatchMatch MVS64.71 23162.87 23970.22 20677.68 18553.48 15177.99 13778.82 16153.37 23456.03 31877.41 28524.75 36484.04 13046.37 26273.42 20573.14 329
XVG-OURS68.76 16167.37 17172.90 14874.32 25857.22 8970.09 28478.81 16255.24 20167.79 16385.81 12436.54 26678.28 24662.04 14075.74 17783.19 195
c3_l68.33 17067.56 16270.62 20170.87 30846.21 25974.47 22078.80 16356.22 17866.19 19278.53 26651.88 9381.40 18762.08 13869.04 27284.25 157
ambc65.13 28263.72 36537.07 34447.66 38778.78 16454.37 33771.42 33911.24 39480.94 19945.64 26953.85 36677.38 287
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8082.63 6578.71 16556.28 17664.34 22884.14 15341.57 21187.06 6346.45 26178.88 13577.02 293
IS-MVSNet71.57 10171.00 10273.27 14278.86 14645.63 26780.22 9778.69 16664.14 3566.46 18787.36 7649.30 12085.60 9750.26 22983.71 7888.59 11
miper_ehance_all_eth68.03 17667.24 17970.40 20570.54 31146.21 25973.98 22678.68 16755.07 20966.05 19477.80 27752.16 9081.31 19061.53 14769.32 26683.67 181
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1680.00 4140.00 41582.18 19449.25 1220.00 4130.00 4140.00 4110.00 411
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7878.57 16958.58 13274.32 5884.51 14855.94 4187.22 5567.11 9684.48 7185.52 116
mvs_tets68.18 17466.36 19473.63 12975.61 23255.35 12880.77 9178.56 17052.48 24264.27 23184.10 15527.45 34681.84 18063.45 13070.56 24283.69 180
MVP-Stereo65.41 22363.80 22670.22 20677.62 19255.53 12476.30 17978.53 17150.59 26756.47 31678.65 26239.84 22782.68 16344.10 28472.12 22672.44 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 17266.45 18873.66 12675.62 23155.49 12580.82 9078.51 17252.33 24364.33 22984.11 15428.28 34081.81 18163.48 12970.62 24083.67 181
MVSFormer71.50 10370.38 11274.88 8878.76 14957.15 9482.79 6178.48 17351.26 25869.49 12983.22 17243.99 18883.24 14666.06 10379.37 12684.23 158
test_djsdf69.45 14867.74 15874.58 9874.57 25254.92 13382.79 6178.48 17351.26 25865.41 20783.49 17038.37 24383.24 14666.06 10369.25 26985.56 115
diffmvspermissive70.69 11670.43 11071.46 17969.45 32848.95 22972.93 24378.46 17557.27 15571.69 10283.97 16051.48 10077.92 25270.70 6977.95 15087.53 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 15268.44 15071.73 17274.47 25349.39 22475.20 20378.45 17659.60 11269.16 13876.51 29851.29 10182.50 16859.86 16071.45 23383.30 190
XVG-ACMP-BASELINE64.36 23762.23 24770.74 19972.35 28452.45 17570.80 27678.45 17653.84 22959.87 28281.10 21816.24 38279.32 22855.64 18671.76 22880.47 247
MVSTER67.16 19665.58 20971.88 16770.37 31549.70 21770.25 28378.45 17651.52 25269.16 13880.37 23138.45 24282.50 16860.19 15471.46 23283.44 188
miper_enhance_ethall67.11 19766.09 20170.17 20969.21 33145.98 26172.85 24578.41 17951.38 25565.65 20375.98 30651.17 10481.25 19160.82 15069.32 26683.29 192
MVS_111021_HR74.02 6473.46 6975.69 7383.01 7260.63 4077.29 15878.40 18061.18 8270.58 11185.97 11554.18 5784.00 13367.52 9382.98 8482.45 211
131464.61 23363.21 23668.80 23271.87 29247.46 24873.95 22878.39 18142.88 34859.97 28076.60 29738.11 24779.39 22754.84 19172.32 22279.55 263
Vis-MVSNetpermissive72.18 9071.37 9474.61 9681.29 9355.41 12680.90 8978.28 18260.73 8869.23 13788.09 6444.36 18582.65 16457.68 16881.75 10285.77 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE71.01 10970.15 11773.60 13179.57 12952.17 17878.93 11878.12 18358.02 14367.76 16583.87 16152.36 8682.72 16256.90 17375.79 17685.92 99
ACMH+57.40 1166.12 21464.06 22172.30 16277.79 18252.83 16680.39 9478.03 18457.30 15457.47 30782.55 18427.68 34484.17 12745.54 27169.78 25979.90 257
eth_miper_zixun_eth67.63 18566.28 19871.67 17471.60 29448.33 23773.68 23677.88 18555.80 18765.91 19778.62 26447.35 15082.88 15559.45 16266.25 29683.81 173
CPTT-MVS72.78 7972.08 8474.87 8984.88 5761.41 2684.15 4377.86 18655.27 20067.51 16888.08 6541.93 20681.85 17969.04 7780.01 11781.35 232
GBi-Net67.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
test167.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
FMVSNet166.70 20665.87 20369.19 22677.49 19743.33 28677.31 15577.83 18756.45 17164.60 22782.70 17838.08 24880.33 21346.08 26472.31 22383.92 168
UA-Net73.13 7472.93 7473.76 11983.58 6451.66 18778.75 11977.66 19067.75 472.61 9189.42 4749.82 11583.29 14553.61 20283.14 7986.32 87
VDD-MVS72.50 8372.09 8373.75 12181.58 8649.69 21977.76 14477.63 19163.21 4773.21 7389.02 5342.14 20383.32 14461.72 14382.50 9188.25 20
IterMVS-LS69.22 15468.48 14671.43 18274.44 25549.40 22376.23 18177.55 19259.60 11265.85 20181.59 21151.28 10281.58 18559.87 15969.90 25783.30 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 20166.31 19768.79 23377.63 18842.98 29176.11 18377.47 19356.62 16665.22 21682.17 19641.85 20780.18 21947.05 25872.72 21883.20 194
PLCcopyleft56.13 1465.09 22863.21 23670.72 20081.04 9954.87 13478.57 12577.47 19348.51 29055.71 31981.89 20333.71 29179.71 22141.66 30570.37 24577.58 285
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 17167.29 17471.21 18879.74 12553.22 15776.06 18577.46 19557.19 15666.10 19381.61 20945.37 17583.50 14245.42 27676.68 16876.91 297
VNet69.68 13970.19 11668.16 24079.73 12641.63 30570.53 27877.38 19660.37 9670.69 11086.63 9251.08 10577.09 26553.61 20281.69 10485.75 109
cl2267.47 18866.45 18870.54 20369.85 32446.49 25573.85 23377.35 19755.07 20965.51 20577.92 27347.64 14281.10 19561.58 14669.32 26684.01 165
anonymousdsp67.00 20064.82 21773.57 13270.09 31956.13 10776.35 17877.35 19748.43 29264.99 22280.84 22733.01 29980.34 21264.66 11667.64 28684.23 158
cascas65.98 21563.42 23273.64 12877.26 20352.58 17172.26 25577.21 19948.56 28861.21 27174.60 31932.57 31185.82 9450.38 22876.75 16782.52 209
FMVSNet366.32 21365.61 20868.46 23676.48 22042.34 29574.98 21077.15 20055.83 18565.04 21981.16 21639.91 22580.14 22047.18 25572.76 21582.90 203
v14868.24 17367.19 18171.40 18370.43 31347.77 24475.76 19377.03 20158.91 12467.36 16980.10 23848.60 13181.89 17860.01 15666.52 29584.53 150
Fast-Effi-MVS+-dtu67.37 18965.33 21273.48 13572.94 27257.78 8277.47 15276.88 20257.60 15261.97 26276.85 29139.31 23280.49 21154.72 19270.28 24882.17 218
CANet_DTU68.18 17467.71 16169.59 22074.83 24446.24 25878.66 12276.85 20359.60 11263.45 24082.09 20135.25 27477.41 26059.88 15878.76 13985.14 133
cl____67.18 19466.26 19969.94 21270.20 31645.74 26373.30 23876.83 20455.10 20465.27 21079.57 24847.39 14880.53 20859.41 16469.22 27083.53 187
DIV-MVS_self_test67.18 19466.26 19969.94 21270.20 31645.74 26373.29 23976.83 20455.10 20465.27 21079.58 24747.38 14980.53 20859.43 16369.22 27083.54 186
h-mvs3372.71 8171.49 9076.40 5981.99 8259.58 5276.92 16876.74 20660.40 9374.81 4985.95 11745.54 16985.76 9570.41 7070.61 24183.86 172
BH-w/o66.85 20265.83 20469.90 21579.29 13352.46 17474.66 21776.65 20754.51 22064.85 22378.12 26745.59 16882.95 15243.26 29275.54 18074.27 323
LTVRE_ROB55.42 1663.15 25061.23 26168.92 23176.57 21847.80 24259.92 35176.39 20854.35 22258.67 29782.46 18929.44 33281.49 18642.12 30171.14 23577.46 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 15867.42 16972.97 14680.11 11952.53 17274.26 22276.29 20958.48 13468.38 14784.20 15142.59 19883.83 13546.53 26075.91 17482.56 206
test_fmvsm_n_192071.73 9971.14 9973.50 13372.52 28056.53 10175.60 19476.16 21048.11 29677.22 2885.56 12653.10 7777.43 25974.86 4077.14 16186.55 77
F-COLMAP63.05 25160.87 26669.58 22276.99 21153.63 14878.12 13476.16 21047.97 29952.41 34981.61 20927.87 34278.11 24840.07 31166.66 29377.00 294
ab-mvs66.65 20766.42 19167.37 24876.17 22441.73 30270.41 28176.14 21253.99 22765.98 19583.51 16949.48 11876.24 28348.60 24373.46 20484.14 161
WR-MVS68.47 16868.47 14868.44 23780.20 11539.84 31673.75 23576.07 21364.68 2268.11 15383.63 16650.39 11279.14 23549.78 23069.66 26386.34 83
Effi-MVS+-dtu69.64 14167.53 16575.95 6776.10 22562.29 1580.20 9876.06 21459.83 11165.26 21377.09 28741.56 21284.02 13260.60 15271.09 23781.53 225
FE-MVS65.91 21663.33 23473.63 12977.36 20151.95 18572.62 24875.81 21553.70 23065.31 20878.96 25828.81 33786.39 8143.93 28573.48 20382.55 207
MSDG61.81 26559.23 27369.55 22372.64 27652.63 17070.45 28075.81 21551.38 25553.70 34176.11 30229.52 33081.08 19737.70 32365.79 30074.93 315
miper_lstm_enhance62.03 26260.88 26565.49 27766.71 34846.25 25756.29 36775.70 21750.68 26461.27 27075.48 31240.21 22468.03 32456.31 17765.25 30382.18 216
pm-mvs165.24 22664.97 21666.04 26872.38 28339.40 32272.62 24875.63 21855.53 19562.35 26183.18 17447.45 14676.47 28049.06 24066.54 29482.24 215
UniMVSNet_ETH3D67.60 18667.07 18369.18 22977.39 20042.29 29674.18 22475.59 21960.37 9666.77 18186.06 11237.64 25078.93 24252.16 21273.49 20286.32 87
test_fmvsmconf_n73.01 7672.59 7774.27 10771.28 30355.88 11478.21 13275.56 22054.31 22374.86 4887.80 7254.72 5180.23 21778.07 2178.48 14386.70 70
HyFIR lowres test65.67 21963.01 23873.67 12579.97 12155.65 11969.07 29375.52 22142.68 34963.53 23977.95 27140.43 22381.64 18246.01 26571.91 22783.73 179
pmmvs663.69 24262.82 24166.27 26270.63 31039.27 32373.13 24175.47 22252.69 24059.75 28682.30 19239.71 22977.03 26647.40 25264.35 31282.53 208
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10869.89 32355.81 11578.22 13175.40 22354.17 22575.00 4488.03 6853.82 6780.23 21778.08 2078.34 14686.69 71
UGNet68.81 15867.39 17073.06 14578.33 16454.47 13779.77 10775.40 22360.45 9263.22 24184.40 14932.71 30680.91 20251.71 21980.56 11183.81 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 9671.33 9573.26 14382.80 7547.60 24778.74 12075.27 22559.59 11572.94 8289.40 4841.51 21483.91 13458.75 16582.99 8288.26 19
hse-mvs271.04 10869.86 12074.60 9779.58 12857.12 9673.96 22775.25 22660.40 9374.81 4981.95 20245.54 16982.90 15370.41 7066.83 29283.77 177
AUN-MVS68.45 16966.41 19274.57 9979.53 13057.08 9773.93 23075.23 22754.44 22166.69 18381.85 20437.10 26182.89 15462.07 13966.84 29183.75 178
mvs_anonymous68.03 17667.51 16669.59 22072.08 28844.57 27771.99 25875.23 22751.67 24867.06 17582.57 18354.68 5277.94 25056.56 17575.71 17886.26 91
TR-MVS66.59 21065.07 21571.17 19179.18 13849.63 22173.48 23775.20 22952.95 23667.90 15580.33 23439.81 22883.68 13843.20 29373.56 20180.20 252
IB-MVS56.42 1265.40 22462.73 24273.40 13974.89 24152.78 16773.09 24275.13 23055.69 18958.48 30173.73 32432.86 30186.32 8450.63 22670.11 25181.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba71.15 10669.54 12575.99 6677.61 19353.46 15281.95 7775.11 23157.73 15166.95 17885.96 11637.14 25987.56 5167.94 8475.49 18186.97 61
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
TransMVSNet (Re)64.72 23064.33 22065.87 27275.22 23838.56 32874.66 21775.08 23558.90 12561.79 26582.63 18151.18 10378.07 24943.63 28955.87 35980.99 241
ET-MVSNet_ETH3D67.96 17965.72 20674.68 9276.67 21555.62 12275.11 20574.74 23652.91 23760.03 27980.12 23733.68 29282.64 16561.86 14276.34 17085.78 104
LS3D64.71 23162.50 24471.34 18679.72 12755.71 11779.82 10674.72 23748.50 29156.62 31284.62 14333.59 29482.34 17229.65 37475.23 18375.97 301
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34055.58 12378.06 13674.67 23854.19 22474.54 5488.23 6150.35 11380.24 21678.07 2177.46 15586.65 74
Baseline_NR-MVSNet67.05 19867.56 16265.50 27675.65 23037.70 33875.42 19874.65 23959.90 10768.14 15283.15 17549.12 12677.20 26352.23 21169.78 25981.60 224
HY-MVS56.14 1364.55 23463.89 22366.55 25674.73 24741.02 30769.96 28574.43 24049.29 28061.66 26780.92 22347.43 14776.68 27644.91 27971.69 22981.94 220
GA-MVS65.53 22163.70 22871.02 19570.87 30848.10 23970.48 27974.40 24156.69 16264.70 22576.77 29233.66 29381.10 19555.42 18870.32 24783.87 171
KD-MVS_self_test55.22 31353.89 32059.21 31657.80 38727.47 39157.75 36174.32 24247.38 30650.90 35570.00 35128.45 33970.30 31340.44 31057.92 35079.87 258
patch_mono-269.85 13371.09 10066.16 26479.11 14154.80 13571.97 25974.31 24353.50 23370.90 10984.17 15257.63 3163.31 34366.17 10282.02 9680.38 250
无先验79.66 11274.30 24448.40 29380.78 20553.62 20179.03 270
thisisatest053067.92 18065.78 20574.33 10576.29 22251.03 19076.89 16974.25 24553.67 23165.59 20481.76 20635.15 27585.50 10255.94 17872.47 21986.47 78
CHOSEN 1792x268865.08 22962.84 24071.82 16981.49 8956.26 10566.32 31074.20 24640.53 36163.16 24478.65 26241.30 21577.80 25445.80 26774.09 19081.40 229
MS-PatchMatch62.42 25661.46 25665.31 28075.21 23952.10 17972.05 25774.05 24746.41 31657.42 30974.36 32034.35 28477.57 25845.62 27073.67 19766.26 372
tttt051767.83 18265.66 20774.33 10576.69 21450.82 19577.86 14073.99 24854.54 21964.64 22682.53 18735.06 27685.50 10255.71 18369.91 25686.67 72
USDC56.35 30454.24 31762.69 29864.74 35940.31 31265.05 32473.83 24943.93 33947.58 36677.71 28115.36 38575.05 28838.19 32261.81 33372.70 333
tfpnnormal62.47 25561.63 25464.99 28374.81 24539.01 32471.22 26873.72 25055.22 20260.21 27680.09 23941.26 21876.98 26830.02 37268.09 28278.97 271
jason69.65 14068.39 15273.43 13878.27 16656.88 9877.12 16273.71 25146.53 31569.34 13383.22 17243.37 19279.18 23064.77 11579.20 13184.23 158
jason: jason.
D2MVS62.30 25860.29 26868.34 23966.46 35148.42 23665.70 31373.42 25247.71 30258.16 30375.02 31530.51 32177.71 25653.96 19971.68 23078.90 272
COLMAP_ROBcopyleft52.97 1761.27 27158.81 27668.64 23474.63 25052.51 17378.42 12873.30 25349.92 27450.96 35481.51 21223.06 36779.40 22631.63 36365.85 29874.01 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 14368.28 15373.44 13778.76 14957.15 9476.57 17473.29 25446.19 31869.49 12982.18 19443.99 18879.23 22964.66 11679.37 12683.93 167
DP-MVS65.68 21863.66 22971.75 17184.93 5556.87 9980.74 9273.16 25553.06 23559.09 29382.35 19036.79 26585.94 9132.82 35369.96 25572.45 337
thisisatest051565.83 21763.50 23172.82 15173.75 26249.50 22271.32 26673.12 25649.39 27863.82 23676.50 30034.95 27884.84 11953.20 20675.49 18184.13 162
VPNet67.52 18768.11 15565.74 27379.18 13836.80 34772.17 25672.83 25762.04 7267.79 16385.83 12248.88 12876.60 27751.30 22172.97 21383.81 173
CL-MVSNet_self_test61.53 26760.94 26463.30 29368.95 33336.93 34667.60 30272.80 25855.67 19059.95 28176.63 29445.01 17972.22 30139.74 31562.09 33180.74 245
OurMVSNet-221017-061.37 27058.63 28069.61 21972.05 28948.06 24073.93 23072.51 25947.23 31054.74 33180.92 22321.49 37481.24 19248.57 24456.22 35879.53 264
EPNet73.09 7572.16 8275.90 6875.95 22756.28 10483.05 5672.39 26066.53 1065.27 21087.00 8150.40 11185.47 10462.48 13686.32 5885.94 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 24063.36 23365.93 27079.28 13442.58 29471.35 26572.36 26146.41 31660.55 27577.89 27546.27 16373.28 29546.18 26369.97 25481.92 221
test_fmvsmvis_n_192070.84 11270.38 11272.22 16371.16 30455.39 12775.86 19072.21 26249.03 28373.28 7286.17 10851.83 9577.29 26275.80 3278.05 14883.98 166
sd_testset64.46 23564.45 21964.51 28677.13 20542.25 29762.67 33572.11 26358.02 14365.08 21782.55 18441.22 21969.88 31547.32 25373.92 19381.41 227
test_040263.25 24861.01 26369.96 21180.00 12054.37 13976.86 17172.02 26454.58 21858.71 29680.79 22835.00 27784.36 12526.41 38564.71 30771.15 355
EU-MVSNet55.61 31054.41 31459.19 31765.41 35733.42 37272.44 25271.91 26528.81 38151.27 35273.87 32324.76 36369.08 31843.04 29458.20 34975.06 311
KD-MVS_2432*160053.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
miper_refine_blended53.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
Anonymous20240521166.84 20365.99 20269.40 22480.19 11642.21 29871.11 27271.31 26858.80 12667.90 15586.39 10229.83 32879.65 22249.60 23678.78 13886.33 85
LFMVS71.78 9771.59 8772.32 16183.40 6746.38 25679.75 10971.08 26964.18 3272.80 8788.64 5942.58 19983.72 13757.41 17184.49 7086.86 65
CDS-MVSNet66.80 20465.37 21071.10 19378.98 14353.13 16073.27 24071.07 27052.15 24664.72 22480.23 23643.56 19177.10 26445.48 27478.88 13583.05 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 31154.41 31457.96 32760.92 38141.73 30271.09 27371.06 27141.18 35648.65 36473.31 32616.93 37959.25 35942.54 29864.01 31372.90 331
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28565.69 27470.47 31244.82 27275.33 19970.86 27245.04 32756.06 31776.00 30326.89 35279.65 22235.36 34267.29 28872.60 334
CNLPA65.43 22264.02 22269.68 21878.73 15158.07 7877.82 14370.71 27351.49 25361.57 26983.58 16838.23 24670.82 30743.90 28670.10 25280.16 253
CostFormer64.04 23962.51 24368.61 23571.88 29145.77 26271.30 26770.60 27447.55 30464.31 23076.61 29641.63 21079.62 22449.74 23269.00 27380.42 248
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17871.45 29654.40 13877.18 16170.46 27548.67 28775.17 4086.86 8253.77 6876.86 27076.33 3077.51 15483.17 198
Test_1112_low_res62.32 25761.77 25264.00 28979.08 14239.53 32168.17 29770.17 27643.25 34459.03 29479.90 24044.08 18671.24 30643.79 28868.42 28081.25 233
MVS_111021_LR69.50 14668.78 14071.65 17578.38 16059.33 5674.82 21370.11 27758.08 14067.83 16184.68 14041.96 20576.34 28265.62 11077.54 15279.30 267
fmvsm_l_conf0.5_n_a70.50 12070.27 11471.18 19071.30 30254.09 14076.89 16969.87 27847.90 30074.37 5786.49 9953.07 7876.69 27575.41 3577.11 16282.76 205
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27947.65 30326.04 39952.32 38912.44 38962.38 34721.80 39110.61 40872.49 336
SixPastTwentyTwo61.65 26658.80 27870.20 20875.80 22847.22 25075.59 19569.68 28054.61 21654.11 33879.26 25527.07 35082.96 15143.27 29149.79 37680.41 249
IterMVS-SCA-FT62.49 25461.52 25565.40 27871.99 29050.80 19671.15 27169.63 28145.71 32460.61 27477.93 27237.45 25265.99 33555.67 18463.50 31979.42 265
testing9164.46 23563.80 22666.47 25778.43 15940.06 31467.63 30169.59 28259.06 12263.18 24378.05 26934.05 28676.99 26748.30 24675.87 17582.37 213
TAMVS66.78 20565.27 21371.33 18779.16 14053.67 14673.84 23469.59 28252.32 24465.28 20981.72 20744.49 18477.40 26142.32 30078.66 14182.92 201
CMPMVSbinary42.80 2157.81 29355.97 30163.32 29260.98 37947.38 24964.66 32769.50 28432.06 37846.83 37077.80 27729.50 33171.36 30548.68 24273.75 19671.21 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 24962.18 24866.21 26376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20879.83 259
thres40063.31 24562.18 24866.72 25376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20881.36 230
thres20062.20 26061.16 26265.34 27975.38 23739.99 31569.60 28869.29 28755.64 19461.87 26476.99 28837.07 26278.96 24131.28 36773.28 20777.06 292
UnsupCasMVSNet_eth53.16 32752.47 32555.23 34059.45 38333.39 37359.43 35369.13 28845.98 32050.35 36172.32 33029.30 33358.26 36542.02 30344.30 38274.05 325
thres100view90063.28 24762.41 24565.89 27177.31 20238.66 32772.65 24669.11 28957.07 15762.45 25881.03 22037.01 26379.17 23131.84 35973.25 20879.83 259
thres600view763.30 24662.27 24666.41 25877.18 20438.87 32572.35 25369.11 28956.98 15962.37 26080.96 22237.01 26379.00 24031.43 36673.05 21281.36 230
CVMVSNet59.63 28159.14 27461.08 31074.47 25338.84 32675.20 20368.74 29131.15 37958.24 30276.51 29832.39 31368.58 32049.77 23165.84 29975.81 303
TinyColmap54.14 31751.72 32861.40 30766.84 34741.97 29966.52 30868.51 29244.81 32842.69 38275.77 30811.66 39172.94 29631.96 35756.77 35669.27 368
baseline263.42 24461.26 26069.89 21672.55 27947.62 24671.54 26368.38 29350.11 27054.82 33075.55 31143.06 19580.96 19848.13 24867.16 29081.11 237
IterMVS62.79 25361.27 25967.35 24969.37 32952.04 18271.17 26968.24 29452.63 24159.82 28376.91 29037.32 25572.36 29852.80 20863.19 32277.66 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing9964.05 23863.29 23566.34 25978.17 17139.76 31867.33 30668.00 29558.60 13163.03 24678.10 26832.57 31176.94 26948.22 24775.58 17982.34 214
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18680.76 10678.03 281
AllTest57.08 29754.65 31064.39 28771.44 29749.03 22569.92 28667.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
TestCases64.39 28771.44 29749.03 22567.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
baseline163.81 24163.87 22563.62 29076.29 22236.36 35071.78 26267.29 29956.05 18164.23 23382.95 17647.11 15274.41 29147.30 25461.85 33280.10 255
tpmvs58.47 28656.95 29263.03 29770.20 31641.21 30667.90 30067.23 30049.62 27654.73 33270.84 34334.14 28576.24 28336.64 33461.29 33671.64 347
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30123.23 39118.41 40425.84 4044.24 40562.73 34514.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 18467.51 16668.35 23879.46 13136.29 35574.79 21466.93 30258.72 12767.19 17288.05 6636.10 26781.38 18852.07 21384.25 7287.39 51
tpm262.07 26160.10 26967.99 24172.79 27443.86 28271.05 27466.85 30343.14 34662.77 24875.39 31338.32 24480.80 20441.69 30468.88 27479.32 266
testing1162.81 25261.90 25165.54 27578.38 16040.76 31167.59 30366.78 30455.48 19660.13 27777.11 28631.67 31776.79 27245.53 27274.45 18679.06 268
XXY-MVS60.68 27261.67 25357.70 33070.43 31338.45 33064.19 32966.47 30548.05 29863.22 24180.86 22549.28 12160.47 35245.25 27867.28 28974.19 324
新几何170.76 19885.66 4161.13 3066.43 30644.68 33070.29 11486.64 9041.29 21675.23 28749.72 23381.75 10275.93 302
test_vis1_n_192058.86 28459.06 27558.25 32363.76 36343.14 29067.49 30466.36 30740.22 36365.89 19971.95 33631.04 31859.75 35759.94 15764.90 30571.85 346
testing22262.29 25961.31 25865.25 28177.87 17938.53 32968.34 29666.31 30856.37 17363.15 24577.58 28328.47 33876.18 28537.04 32876.65 16981.05 240
ppachtmachnet_test58.06 29155.38 30666.10 26769.51 32648.99 22868.01 29966.13 30944.50 33254.05 33970.74 34432.09 31572.34 29936.68 33356.71 35776.99 296
tpm cat159.25 28356.95 29266.15 26572.19 28746.96 25268.09 29865.76 31040.03 36557.81 30570.56 34538.32 24474.51 29038.26 32161.50 33577.00 294
test111167.21 19167.14 18267.42 24779.24 13634.76 36273.89 23265.65 31158.71 12966.96 17787.95 6936.09 26880.53 20852.03 21483.79 7786.97 61
EPNet_dtu61.90 26361.97 25061.68 30372.89 27339.78 31775.85 19165.62 31255.09 20654.56 33479.36 25337.59 25167.02 32939.80 31476.95 16478.25 275
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs461.48 26959.39 27267.76 24371.57 29553.86 14371.42 26465.34 31344.20 33559.46 28877.92 27335.90 26974.71 28943.87 28764.87 30674.71 319
testdata64.66 28481.52 8752.93 16365.29 31446.09 31973.88 6487.46 7538.08 24866.26 33453.31 20578.48 14374.78 318
TDRefinement53.44 32450.72 33361.60 30464.31 36246.96 25270.89 27565.27 31541.78 35144.61 37777.98 27011.52 39366.36 33328.57 37851.59 37071.49 350
MIMVSNet155.17 31454.31 31657.77 32970.03 32032.01 37865.68 31464.81 31649.19 28146.75 37176.00 30325.53 36064.04 34128.65 37762.13 33077.26 290
pmmvs-eth3d58.81 28556.31 29966.30 26167.61 34252.42 17672.30 25464.76 31743.55 34154.94 32974.19 32228.95 33472.60 29743.31 29057.21 35373.88 327
MDTV_nov1_ep1357.00 29172.73 27538.26 33165.02 32564.73 31844.74 32955.46 32172.48 32932.61 31070.47 30937.47 32467.75 285
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34960.97 38033.67 37157.62 36264.56 31939.47 36747.38 36764.02 37827.47 34559.32 35834.69 34443.68 38367.98 371
ITE_SJBPF62.09 30266.16 35344.55 27864.32 32047.36 30755.31 32480.34 23319.27 37662.68 34636.29 33862.39 32879.04 269
WB-MVSnew59.66 28059.69 27159.56 31275.19 24035.78 35769.34 29164.28 32146.88 31361.76 26675.79 30740.61 22265.20 33832.16 35571.21 23477.70 283
dmvs_re56.77 29956.83 29456.61 33369.23 33041.02 30758.37 35664.18 32250.59 26757.45 30871.42 33935.54 27258.94 36137.23 32667.45 28769.87 364
WTY-MVS59.75 27960.39 26757.85 32872.32 28537.83 33561.05 34764.18 32245.95 32361.91 26379.11 25747.01 15660.88 35142.50 29969.49 26574.83 316
UWE-MVS60.18 27559.78 27061.39 30877.67 18633.92 37069.04 29463.82 32448.56 28864.27 23177.64 28227.20 34870.40 31233.56 35076.24 17179.83 259
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29666.25 35248.58 23456.93 36563.82 32448.09 29741.22 38370.48 34830.34 32368.00 32534.24 34545.92 38172.57 335
Vis-MVSNet (Re-imp)63.69 24263.88 22463.14 29574.75 24631.04 38171.16 27063.64 32656.32 17459.80 28484.99 13644.51 18275.46 28639.12 31780.62 10782.92 201
test22283.14 6858.68 7372.57 25063.45 32741.78 35167.56 16786.12 10937.13 26078.73 14074.98 314
PVSNet50.76 1958.40 28757.39 28861.42 30675.53 23444.04 28161.43 34163.45 32747.04 31256.91 31073.61 32527.00 35164.76 33939.12 31772.40 22075.47 308
SCA60.49 27358.38 28266.80 25274.14 26148.06 24063.35 33263.23 32949.13 28259.33 29272.10 33337.45 25274.27 29244.17 28162.57 32678.05 278
CR-MVSNet59.91 27757.90 28765.96 26969.96 32152.07 18065.31 32263.15 33042.48 35059.36 28974.84 31635.83 27070.75 30845.50 27364.65 30875.06 311
Patchmtry57.16 29656.47 29759.23 31569.17 33234.58 36462.98 33363.15 33044.53 33156.83 31174.84 31635.83 27068.71 31940.03 31260.91 33774.39 322
pmmvs556.47 30255.68 30458.86 31961.41 37536.71 34866.37 30962.75 33240.38 36253.70 34176.62 29534.56 28067.05 32840.02 31365.27 30272.83 332
K. test v360.47 27457.11 28970.56 20273.74 26348.22 23875.10 20762.55 33358.27 13853.62 34476.31 30127.81 34381.59 18447.42 25139.18 38981.88 222
FMVSNet555.86 30854.93 30858.66 32171.05 30636.35 35164.18 33062.48 33446.76 31450.66 35974.73 31825.80 35864.04 34133.11 35165.57 30175.59 306
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16871.07 30552.88 16577.85 14162.44 33549.58 27772.97 8186.22 10551.68 9876.48 27975.53 3470.10 25286.14 92
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17072.31 28652.90 16477.90 13862.43 33649.97 27372.85 8485.90 11952.21 8876.49 27875.75 3370.26 24985.97 97
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16470.91 30753.78 14578.12 13462.30 33749.35 27973.20 7486.55 9851.99 9276.79 27274.83 4168.68 27985.32 127
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16572.47 28253.82 14478.25 12962.26 33849.78 27573.12 7886.21 10652.66 8076.79 27275.02 3968.88 27485.18 132
PatchmatchNetpermissive59.84 27858.24 28364.65 28573.05 27046.70 25469.42 29062.18 33947.55 30458.88 29571.96 33534.49 28269.16 31742.99 29563.60 31778.07 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 31555.30 30754.48 34469.81 32533.94 36962.91 33462.13 34041.08 35755.18 32675.65 30932.75 30556.59 37330.32 37167.86 28372.91 330
sss56.17 30656.57 29654.96 34166.93 34636.32 35357.94 35961.69 34141.67 35358.64 29875.32 31438.72 24056.25 37442.04 30266.19 29772.31 342
our_test_356.49 30154.42 31362.68 29969.51 32645.48 26866.08 31161.49 34244.11 33850.73 35869.60 35533.05 29868.15 32138.38 32056.86 35474.40 321
test_cas_vis1_n_192056.91 29856.71 29557.51 33159.13 38445.40 26963.58 33161.29 34336.24 37267.14 17471.85 33729.89 32756.69 37157.65 16963.58 31870.46 359
tpmrst58.24 28858.70 27956.84 33266.97 34534.32 36569.57 28961.14 34447.17 31158.58 30071.60 33841.28 21760.41 35349.20 23862.84 32475.78 304
MIMVSNet57.35 29457.07 29058.22 32474.21 26037.18 34162.46 33660.88 34548.88 28555.29 32575.99 30531.68 31662.04 34831.87 35872.35 22175.43 309
LCM-MVSNet40.30 35635.88 36253.57 35042.24 40229.15 38545.21 39260.53 34622.23 39528.02 39750.98 3933.72 40861.78 34931.22 36838.76 39069.78 365
ADS-MVSNet251.33 33348.76 34059.07 31866.02 35544.60 27650.90 38059.76 34736.90 36950.74 35666.18 37226.38 35363.11 34427.17 38154.76 36269.50 366
ETVMVS59.51 28258.81 27661.58 30577.46 19834.87 35964.94 32659.35 34854.06 22661.08 27276.67 29329.54 32971.87 30332.16 35574.07 19178.01 282
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34943.28 34344.22 37868.66 35925.67 35957.20 36931.57 36549.35 37774.62 320
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34359.21 34951.34 25752.09 35077.43 28433.29 29758.55 36329.76 37360.27 34373.58 328
JIA-IIPM51.56 33147.68 34563.21 29464.61 36050.73 19747.71 38658.77 35142.90 34748.46 36551.72 39024.97 36270.24 31436.06 33953.89 36568.64 370
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35558.15 35249.03 28351.83 35179.21 25622.39 36855.59 37729.24 37662.64 32572.40 341
LCM-MVSNet-Re61.88 26461.35 25763.46 29174.58 25131.48 38061.42 34258.14 35358.71 12953.02 34879.55 24943.07 19476.80 27145.69 26877.96 14982.11 219
test-LLR58.15 29058.13 28658.22 32468.57 33544.80 27365.46 31857.92 35450.08 27155.44 32269.82 35232.62 30857.44 36749.66 23473.62 19872.41 339
test-mter56.42 30355.82 30358.22 32468.57 33544.80 27365.46 31857.92 35439.94 36655.44 32269.82 35221.92 37057.44 36749.66 23473.62 19872.41 339
RPSCF55.80 30954.22 31860.53 31165.13 35842.91 29364.30 32857.62 35636.84 37158.05 30482.28 19328.01 34156.24 37537.14 32758.61 34882.44 212
Syy-MVS56.00 30756.23 30055.32 33974.69 24826.44 39565.52 31657.49 35750.97 26256.52 31472.18 33139.89 22668.09 32224.20 38864.59 31071.44 351
myMVS_eth3d54.86 31654.61 31155.61 33874.69 24827.31 39265.52 31657.49 35750.97 26256.52 31472.18 33121.87 37368.09 32227.70 38064.59 31071.44 351
GG-mvs-BLEND62.34 30071.36 30137.04 34569.20 29257.33 35954.73 33265.48 37430.37 32277.82 25334.82 34374.93 18472.17 343
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33761.17 37641.84 30051.90 37856.45 36040.96 35844.79 37667.84 36130.04 32655.07 38036.71 33250.69 37371.11 356
YYNet150.73 33548.96 33756.03 33661.10 37741.78 30151.94 37756.44 36140.94 35944.84 37567.80 36230.08 32555.08 37936.77 33050.71 37271.22 353
testing356.54 30055.92 30258.41 32277.52 19627.93 38969.72 28756.36 36254.75 21558.63 29977.80 27720.88 37571.75 30425.31 38762.25 32975.53 307
gg-mvs-nofinetune57.86 29256.43 29862.18 30172.62 27735.35 35866.57 30756.33 36350.65 26557.64 30657.10 38630.65 32076.36 28137.38 32578.88 13574.82 317
TESTMET0.1,155.28 31254.90 30956.42 33466.56 34943.67 28465.46 31856.27 36439.18 36853.83 34067.44 36424.21 36555.46 37848.04 24973.11 21170.13 362
PMMVS53.96 31853.26 32456.04 33562.60 37050.92 19361.17 34556.09 36532.81 37753.51 34666.84 36934.04 28759.93 35644.14 28368.18 28157.27 384
tpm57.34 29558.16 28454.86 34271.80 29334.77 36167.47 30556.04 36648.20 29560.10 27876.92 28937.17 25853.41 38340.76 30965.01 30476.40 300
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35446.15 37358.75 38330.99 31958.66 36232.18 35424.81 39855.46 386
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33754.57 36844.16 33649.31 36367.91 36028.87 33656.61 37233.89 34654.89 36169.24 369
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35754.41 36944.46 33354.56 33469.05 35833.32 29660.94 35036.93 32961.76 33470.73 358
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35254.11 37050.08 27154.40 33674.31 32132.62 30855.92 37630.50 37063.95 31572.15 344
PatchMatch-RL56.25 30554.55 31261.32 30977.06 20856.07 10965.57 31554.10 37144.13 33753.49 34771.27 34225.20 36166.78 33036.52 33663.66 31661.12 376
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38814.01 39855.11 36043.09 395
test_fmvs1_n51.37 33250.35 33554.42 34652.85 39137.71 33761.16 34651.93 37328.15 38363.81 23769.73 35413.72 38653.95 38151.16 22260.65 34171.59 348
test250665.33 22564.61 21867.50 24579.46 13134.19 36774.43 22151.92 37458.72 12766.75 18288.05 6625.99 35780.92 20151.94 21584.25 7287.39 51
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34851.50 37551.17 26050.30 36267.44 36439.28 23360.29 35422.38 39057.49 35262.76 375
test_fmvs151.32 33450.48 33453.81 34853.57 38937.51 33960.63 35051.16 37628.02 38563.62 23869.23 35716.41 38153.93 38251.01 22360.70 34069.99 363
EGC-MVSNET42.47 35138.48 35954.46 34574.33 25748.73 23270.33 28251.10 3770.03 4110.18 41267.78 36313.28 38866.49 33218.91 39450.36 37448.15 391
Patchmatch-RL test58.16 28955.49 30566.15 26567.92 34148.89 23060.66 34951.07 37847.86 30159.36 28962.71 38034.02 28872.27 30056.41 17659.40 34577.30 288
lessismore_v069.91 21471.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18945.91 26634.10 39580.59 246
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38527.17 38154.76 36269.50 366
EPMVS53.96 31853.69 32154.79 34366.12 35431.96 37962.34 33849.05 38144.42 33455.54 32071.33 34130.22 32456.70 37041.65 30662.54 32775.71 305
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3559.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39731.63 36349.18 37858.72 380
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39427.08 38360.65 34177.27 289
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 36048.05 38525.71 38959.76 28569.60 35511.57 39252.23 38749.45 23756.86 35471.58 349
door47.60 386
test_vis1_n49.89 33948.69 34153.50 35153.97 38837.38 34061.53 34047.33 38728.54 38259.62 28767.10 36813.52 38752.27 38649.07 23957.52 35170.84 357
door-mid47.19 388
pmmvs344.92 34741.95 35453.86 34752.58 39343.55 28562.11 33946.90 38926.05 38840.63 38460.19 38211.08 39657.91 36631.83 36246.15 38060.11 377
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35845.20 39045.42 32540.44 38667.26 36734.01 28958.98 36011.96 40324.88 39759.20 378
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38947.47 25049.82 37571.88 345
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35444.50 39227.03 38637.96 39250.47 39426.16 35664.10 34026.74 38459.52 34447.82 393
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34238.30 39166.45 37032.67 30758.42 36410.98 40421.91 40057.99 382
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38418.92 39341.17 38748.14 392
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 39036.53 33560.80 33957.76 383
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
PM-MVS52.33 32850.19 33658.75 32062.10 37245.14 27165.75 31240.38 39743.60 34053.52 34572.65 3289.16 39965.87 33650.41 22754.18 36465.24 374
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39639.27 31653.02 36759.14 379
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39910.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 4009.18 40813.66 40617.32 405
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39522.43 38952.69 36858.31 381
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40133.01 35235.91 39253.63 387
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 36039.33 39048.65 39816.91 38048.34 39112.18 40219.05 40235.44 401
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
MTMP86.03 1917.08 413
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39826.02 38651.77 36965.44 373
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
n20.00 418
nn0.00 418
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
PC_three_145255.09 20684.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
eth-test20.00 419
eth-test0.00 419
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
GSMVS78.05 278
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 278
sam_mvs33.43 295
test_post168.67 2953.64 40932.39 31369.49 31644.17 281
test_post3.55 41033.90 29066.52 331
patchmatchnet-post64.03 37634.50 28174.27 292
gm-plane-assit71.40 30041.72 30448.85 28673.31 32682.48 17048.90 241
test9_res75.28 3788.31 3283.81 173
agg_prior273.09 5587.93 4084.33 154
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
旧先验276.08 18445.32 32676.55 3365.56 33758.75 165
新几何276.12 182
原ACMM279.02 117
testdata272.18 30246.95 259
segment_acmp54.23 56
testdata172.65 24660.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior486.10 110
plane_prior356.09 10863.92 3669.27 134
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
HQP5-MVS54.94 131
HQP-NCC80.66 10482.31 7162.10 6867.85 157
ACMP_Plane80.66 10482.31 7162.10 6867.85 157
BP-MVS67.04 97
HQP4-MVS67.85 15786.93 6484.32 155
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 129
MDTV_nov1_ep13_2view25.89 39761.22 34440.10 36451.10 35332.97 30038.49 31978.61 273
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 133