This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
FC-MVSNet-test90.27 10890.18 10090.53 18593.71 19679.85 21195.77 6497.59 289.31 4986.27 17294.67 13081.93 9897.01 22884.26 15388.09 21994.71 191
FIs90.51 10590.35 9690.99 17493.99 18680.98 17895.73 6597.54 389.15 5486.72 16394.68 12981.83 9997.24 21085.18 14088.31 21594.76 190
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15493.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
UniMVSNet (Re)89.80 11989.07 12392.01 12793.60 20084.52 8494.78 12197.47 889.26 5086.44 16992.32 20982.10 9397.39 19984.81 14680.84 29594.12 218
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13195.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4297.37 1884.15 17090.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11595.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
VPA-MVSNet89.62 12188.96 12591.60 14893.86 19082.89 13195.46 7797.33 2287.91 8888.43 13193.31 17674.17 18097.40 19687.32 11982.86 26894.52 201
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
WR-MVS_H87.80 17287.37 16289.10 23993.23 20978.12 24795.61 7397.30 2687.90 8983.72 23992.01 22579.65 12196.01 27976.36 25780.54 29993.16 267
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13397.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20593.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21197.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 16893.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 15986.13 20194.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35385.02 6099.49 2391.99 5398.56 4798.47 28
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12792.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DELS-MVS93.43 5493.25 5393.97 5995.42 12685.04 7493.06 21897.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14293.39 20583.72 10694.43 14497.12 4089.80 3786.46 16693.32 17583.16 7897.23 21284.92 14381.02 29194.49 205
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23494.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20794.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
ZD-MVS98.15 3586.62 3597.07 4483.63 18094.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16186.37 4397.18 797.02 4689.20 5284.31 22796.66 6173.74 18999.17 5086.74 12697.96 6797.79 83
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTGPAbinary96.97 49
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 13995.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
CS-MVS92.60 6892.56 6792.73 9895.55 12282.35 14896.14 4696.85 6288.71 6591.44 9691.51 24184.13 7198.48 11291.27 7297.47 8097.34 97
test117293.97 3994.07 3493.66 7198.11 3783.45 11496.26 4096.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
IU-MVS98.77 486.00 5496.84 6381.26 23897.26 695.50 799.13 399.03 4
PVSNet_BlendedMVS89.98 11389.70 10990.82 17896.12 10081.25 17193.92 18196.83 6583.49 18589.10 12292.26 21281.04 10498.85 9386.72 12987.86 22392.35 293
PVSNet_Blended90.73 9790.32 9791.98 13096.12 10081.25 17192.55 23296.83 6582.04 21689.10 12292.56 20281.04 10498.85 9386.72 12995.91 10495.84 153
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
原ACMM192.01 12797.34 6681.05 17696.81 6878.89 26290.45 10795.92 9182.65 8398.84 9580.68 21198.26 5996.14 137
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13692.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
TEST997.53 5886.49 3994.07 17196.78 7081.61 23192.77 6396.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22492.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12088.73 497.07 1396.77 7290.84 1684.02 23296.62 6375.95 15699.34 3387.77 11197.68 7598.59 18
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
test_897.49 6186.30 4894.02 17696.76 7381.86 22492.70 6796.20 8087.63 2799.02 68
RPMNet83.95 26281.53 27291.21 16090.58 29779.34 22185.24 32896.76 7371.44 32785.55 18482.97 33470.87 21998.91 8561.01 33489.36 19795.40 167
EIA-MVS91.95 7691.94 7491.98 13095.16 13680.01 20695.36 7896.73 7788.44 7389.34 11992.16 21483.82 7698.45 11889.35 9397.06 8697.48 93
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21892.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
Regformer-294.33 2794.22 2594.68 3895.54 12386.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
QAPM89.51 12588.15 14693.59 7294.92 14684.58 8096.82 2496.70 8178.43 27083.41 24896.19 8373.18 19799.30 3977.11 25296.54 9796.89 118
CANet93.54 5193.20 5694.55 4495.65 11985.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 25092.77 6396.63 6286.62 3999.04 6387.40 11698.66 4098.17 54
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12194.87 11596.66 8583.29 19089.27 12094.46 13780.29 10999.17 5087.57 11495.37 11496.05 146
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20490.03 11395.82 9582.30 8999.03 6484.57 14996.48 10096.91 117
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-CasMVS87.32 19486.88 17288.63 25292.99 22076.33 28195.33 8096.61 8988.22 8283.30 25293.07 18773.03 19995.79 29078.36 23881.00 29393.75 244
DU-MVS89.34 13588.50 13591.85 13993.04 21683.72 10694.47 14196.59 9089.50 4386.46 16693.29 17877.25 14297.23 21284.92 14381.02 29194.59 196
CP-MVSNet87.63 18087.26 16788.74 24993.12 21276.59 27695.29 8696.58 9188.43 7483.49 24792.98 18975.28 16495.83 28778.97 23381.15 28793.79 238
test1196.57 92
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22796.56 9383.44 18691.68 9295.04 11686.60 4298.99 7685.60 13797.92 6996.93 116
ETV-MVS92.74 6692.66 6592.97 8895.20 13584.04 10095.07 10196.51 9490.73 2192.96 5891.19 24984.06 7298.34 12591.72 6496.54 9796.54 128
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22390.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
Regformer-194.22 3294.13 3294.51 4695.54 12386.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
VNet92.24 7491.91 7593.24 7696.59 8683.43 11594.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9893.38 14698.13 58
OpenMVScopyleft83.78 1188.74 14987.29 16493.08 8292.70 22585.39 7196.57 2996.43 9878.74 26780.85 27896.07 8769.64 23799.01 7078.01 24396.65 9494.83 187
canonicalmvs93.27 5892.75 6494.85 2795.70 11887.66 1196.33 3596.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
Regformer-493.91 4193.81 4194.19 5795.36 12785.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15195.47 11197.45 95
PEN-MVS86.80 21186.27 19888.40 25692.32 23375.71 28695.18 9596.38 10287.97 8682.82 25693.15 18373.39 19595.92 28276.15 26179.03 31693.59 249
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33285.81 17895.25 10976.70 14898.63 10482.07 18596.86 9097.00 113
TranMVSNet+NR-MVSNet88.84 14687.95 15091.49 15092.68 22683.01 12794.92 11196.31 10489.88 3685.53 18693.85 16376.63 15096.96 23081.91 18979.87 30894.50 203
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
baseline92.39 7392.29 7292.69 10294.46 16781.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
nrg03091.08 9390.39 9593.17 7993.07 21486.91 2096.41 3396.26 10788.30 7888.37 13294.85 12482.19 9297.64 17291.09 7482.95 26394.96 180
无先验93.28 20796.26 10773.95 30999.05 6080.56 21396.59 125
NR-MVSNet88.58 15487.47 16091.93 13493.04 21684.16 9794.77 12296.25 10989.05 5680.04 29293.29 17879.02 12597.05 22681.71 19680.05 30594.59 196
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16694.37 15396.24 11086.39 12587.41 14894.80 12682.06 9598.48 11282.80 17495.37 11497.61 87
casdiffmvs92.51 7092.43 7092.74 9794.41 17081.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
HQP_MVS90.60 10490.19 9991.82 14094.70 15782.73 13795.85 6196.22 11290.81 1786.91 15994.86 12274.23 17798.12 13688.15 10689.99 18494.63 192
plane_prior596.22 11298.12 13688.15 10689.99 18494.63 192
PAPR90.02 11289.27 12092.29 12295.78 11480.95 18092.68 22696.22 11281.91 22186.66 16493.75 16982.23 9098.44 11979.40 23194.79 12197.48 93
TAPA-MVS84.62 688.16 16387.01 17191.62 14796.64 8480.65 18794.39 14896.21 11576.38 28686.19 17495.44 10379.75 11598.08 14562.75 33095.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121186.59 21985.13 22990.98 17696.52 9081.50 16296.14 4696.16 11673.78 31083.65 24292.15 21563.26 29097.37 20082.82 17381.74 28194.06 223
LPG-MVS_test89.45 12888.90 12891.12 16394.47 16581.49 16495.30 8496.14 11786.73 11885.45 19295.16 11269.89 23398.10 13887.70 11289.23 20093.77 242
LGP-MVS_train91.12 16394.47 16581.49 16496.14 11786.73 11885.45 19295.16 11269.89 23398.10 13887.70 11289.23 20093.77 242
ACMM84.12 989.14 13788.48 13891.12 16394.65 16081.22 17395.31 8196.12 11985.31 15085.92 17794.34 13870.19 23198.06 14785.65 13688.86 20594.08 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21696.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
CLD-MVS89.47 12788.90 12891.18 16294.22 17582.07 15292.13 24596.09 12087.90 8985.37 20192.45 20574.38 17597.56 17687.15 12190.43 17993.93 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
alignmvs93.08 6292.50 6994.81 3295.62 12187.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
XVG-OURS89.40 13388.70 13191.52 14994.06 17981.46 16691.27 26496.07 12286.14 13088.89 12695.77 9768.73 25297.26 20887.39 11789.96 18695.83 154
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15294.00 18581.21 17491.87 25096.06 12485.78 13588.55 12895.73 9874.67 17397.27 20688.71 10189.64 19395.91 149
test_part186.16 22884.40 24491.46 15392.63 22782.80 13296.42 3296.05 12573.47 31382.06 26491.43 24263.89 28897.43 18784.51 15079.11 31494.14 216
HQP3-MVS96.04 12689.77 191
HQP-MVS89.80 11989.28 11991.34 15794.17 17681.56 16094.39 14896.04 12688.81 6185.43 19593.97 15573.83 18797.96 15487.11 12389.77 19194.50 203
PS-MVSNAJss89.97 11489.62 11091.02 17191.90 24580.85 18395.26 8995.98 12886.26 12786.21 17394.29 14279.70 11797.65 17088.87 9988.10 21794.57 198
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13083.78 10596.14 4695.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14796.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.38 15687.67 15690.52 18793.30 20880.18 19693.26 20895.96 13088.57 7185.47 19192.81 19676.12 15296.91 23481.24 20082.29 27194.47 208
RRT_test8_iter0586.90 20886.36 19388.52 25493.00 21973.27 30194.32 15595.96 13085.50 14584.26 22892.86 19160.76 30797.70 16888.32 10582.29 27194.60 195
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19695.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13592.90 15696.83 119
v7n86.81 21085.76 21889.95 21390.72 29379.25 22795.07 10195.92 13384.45 16782.29 26090.86 26072.60 20497.53 17879.42 23080.52 30193.08 271
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12594.42 14595.92 13382.81 20286.34 17194.65 13173.89 18599.02 6880.69 21095.51 10995.05 175
cascas86.43 22584.98 23290.80 17992.10 23980.92 18190.24 27895.91 13573.10 31783.57 24588.39 30265.15 28197.46 18384.90 14591.43 16994.03 225
MVSFormer91.68 8391.30 8192.80 9493.86 19083.88 10395.96 5795.90 13684.66 16491.76 8994.91 11977.92 13897.30 20289.64 9197.11 8497.24 101
test_djsdf89.03 14188.64 13290.21 20090.74 29279.28 22595.96 5795.90 13684.66 16485.33 20392.94 19074.02 18397.30 20289.64 9188.53 20894.05 224
ACMP84.23 889.01 14388.35 13990.99 17494.73 15481.27 17095.07 10195.89 13886.48 12283.67 24194.30 14169.33 24197.99 15287.10 12588.55 20793.72 246
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS84.11 1087.74 17486.08 20592.70 10194.02 18184.43 9289.27 29495.87 13973.62 31284.43 21994.33 13978.48 13498.86 9070.27 29394.45 13094.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CHOSEN 1792x268888.84 14687.69 15492.30 12196.14 9981.42 16890.01 28495.86 14074.52 30587.41 14893.94 15675.46 16398.36 12280.36 21695.53 10897.12 108
Anonymous2024052988.09 16586.59 18692.58 10696.53 8981.92 15695.99 5495.84 14174.11 30889.06 12495.21 11161.44 30098.81 9683.67 16287.47 22597.01 112
Regformer-393.68 4793.64 4893.81 6795.36 12784.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
tfpnnormal84.72 25583.23 25989.20 23692.79 22480.05 20394.48 13895.81 14382.38 20881.08 27691.21 24869.01 24896.95 23161.69 33280.59 29890.58 322
MVS_Test91.31 8891.11 8591.93 13494.37 17180.14 19893.46 19995.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11494.95 12097.55 92
HyFIR lowres test88.09 16586.81 17591.93 13496.00 10780.63 18890.01 28495.79 14573.42 31487.68 14592.10 22073.86 18697.96 15480.75 20991.70 16797.19 104
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 13983.51 11394.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
cdsmvs_eth3d_5k22.14 32429.52 3270.00 3410.00 3620.00 3630.00 35395.76 1470.00 3580.00 35994.29 14275.66 1610.00 3590.00 3570.00 3570.00 355
DTE-MVSNet86.11 22985.48 22287.98 26891.65 25674.92 28994.93 11095.75 14887.36 10482.26 26193.04 18872.85 20095.82 28874.04 27777.46 32193.20 265
OPM-MVS90.12 11089.56 11191.82 14093.14 21183.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 10990.18 18393.65 248
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15083.20 12094.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
D2MVS85.90 23285.09 23088.35 25890.79 28977.42 26691.83 25195.70 15180.77 24480.08 29190.02 27866.74 26896.37 26481.88 19087.97 22191.26 311
PS-MVSNAJ91.18 9190.92 8991.96 13295.26 13382.60 14392.09 24795.70 15186.27 12691.84 8692.46 20479.70 11798.99 7689.08 9695.86 10594.29 211
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 20987.85 14092.85 19276.63 15098.80 9780.01 22196.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_tets88.06 16787.28 16590.38 19590.94 28279.88 20995.22 9195.66 15585.10 15584.21 23093.94 15663.53 28997.40 19688.50 10388.40 21393.87 233
MVS87.44 19086.10 20491.44 15492.61 22883.62 11092.63 22895.66 15567.26 33681.47 27092.15 21577.95 13798.22 13379.71 22495.48 11092.47 288
jajsoiax88.24 16187.50 15890.48 19090.89 28680.14 19895.31 8195.65 15784.97 15884.24 22994.02 15165.31 28097.42 18988.56 10288.52 20993.89 230
xiu_mvs_v2_base91.13 9290.89 9191.86 13794.97 14282.42 14492.24 24195.64 15886.11 13291.74 9193.14 18479.67 12098.89 8689.06 9795.46 11294.28 212
UniMVSNet_ETH3D87.53 18686.37 19291.00 17392.44 23078.96 23094.74 12395.61 15984.07 17285.36 20294.52 13659.78 31497.34 20182.93 16987.88 22296.71 123
ab-mvs89.41 13188.35 13992.60 10495.15 13782.65 14192.20 24395.60 16083.97 17488.55 12893.70 17074.16 18198.21 13482.46 17989.37 19696.94 115
testing_283.40 26981.02 27690.56 18485.06 33880.51 19291.37 26295.57 16182.92 19967.06 33985.54 32649.47 33997.24 21086.74 12685.44 24193.93 228
新几何193.10 8197.30 6884.35 9495.56 16271.09 32991.26 10096.24 7782.87 8298.86 9079.19 23298.10 6296.07 144
anonymousdsp87.84 17087.09 16890.12 20589.13 31680.54 19194.67 12895.55 16382.05 21483.82 23792.12 21771.47 21397.15 21687.15 12187.80 22492.67 282
XVG-ACMP-BASELINE86.00 23084.84 23789.45 23291.20 26978.00 24991.70 25695.55 16385.05 15782.97 25492.25 21354.49 33097.48 18182.93 16987.45 22792.89 277
VPNet88.20 16287.47 16090.39 19393.56 20179.46 21694.04 17495.54 16588.67 6786.96 15694.58 13569.33 24197.15 21684.05 15680.53 30094.56 199
diffmvs91.37 8791.23 8391.77 14393.09 21380.27 19592.36 23795.52 16687.03 11091.40 9894.93 11880.08 11197.44 18692.13 5194.56 12797.61 87
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22895.51 16771.01 33091.20 10196.21 7982.92 8199.05 6080.56 21398.07 6396.10 142
v119287.25 19786.33 19590.00 21290.76 29179.04 22993.80 18595.48 16882.57 20685.48 19091.18 25173.38 19697.42 18982.30 18182.06 27493.53 251
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16989.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
v1087.25 19786.38 19189.85 21591.19 27079.50 21594.48 13895.45 17383.79 17783.62 24391.19 24975.13 16597.42 18981.94 18880.60 29792.63 284
F-COLMAP87.95 16886.80 17691.40 15596.35 9580.88 18294.73 12495.45 17379.65 25682.04 26694.61 13271.13 21598.50 11176.24 26091.05 17594.80 189
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17579.71 25584.01 23394.18 14776.68 14998.75 9977.28 24993.41 14595.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v14419287.19 20286.35 19489.74 22190.64 29578.24 24593.92 18195.43 17681.93 22085.51 18891.05 25774.21 17997.45 18482.86 17181.56 28293.53 251
v192192086.97 20786.06 20689.69 22590.53 30078.11 24893.80 18595.43 17681.90 22285.33 20391.05 25772.66 20297.41 19482.05 18681.80 27993.53 251
v114487.61 18386.79 17790.06 20891.01 27779.34 22193.95 18095.42 17883.36 18985.66 18291.31 24774.98 16897.42 18983.37 16382.06 27493.42 257
v887.50 18986.71 17989.89 21491.37 26479.40 21894.50 13795.38 17984.81 16183.60 24491.33 24476.05 15397.42 18982.84 17280.51 30292.84 279
sss88.93 14488.26 14590.94 17794.05 18080.78 18591.71 25595.38 17981.55 23288.63 12793.91 16075.04 16795.47 30282.47 17891.61 16896.57 126
v124086.78 21285.85 21389.56 22790.45 30177.79 25793.61 19395.37 18181.65 22885.43 19591.15 25371.50 21297.43 18781.47 19982.05 27693.47 255
testdata90.49 18996.40 9277.89 25395.37 18172.51 32293.63 4596.69 5882.08 9497.65 17083.08 16697.39 8195.94 148
131487.51 18786.57 18790.34 19892.42 23179.74 21392.63 22895.35 18378.35 27180.14 28991.62 23774.05 18297.15 21681.05 20193.53 14194.12 218
V4287.68 17586.86 17390.15 20390.58 29780.14 19894.24 15995.28 18483.66 17985.67 18191.33 24474.73 17297.41 19484.43 15281.83 27892.89 277
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11180.50 19397.33 395.25 18586.15 12989.76 11495.60 10183.42 7798.32 12887.37 11893.25 14997.56 91
UGNet89.95 11588.95 12692.95 8994.51 16483.31 11895.70 6795.23 18689.37 4887.58 14693.94 15664.00 28698.78 9883.92 15796.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS87.65 17786.85 17490.03 20992.14 23680.60 19093.76 18795.23 18682.94 19884.60 21294.02 15174.27 17695.49 30181.04 20283.68 25694.01 226
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18882.39 20789.13 12194.27 14580.32 10898.46 11580.16 22096.71 9294.33 210
MG-MVS91.77 7991.70 7892.00 12997.08 7580.03 20593.60 19495.18 18987.85 9190.89 10496.47 7082.06 9598.36 12285.07 14197.04 8797.62 86
v2v48287.84 17087.06 16990.17 20190.99 27879.23 22894.00 17895.13 19084.87 15985.53 18692.07 22374.45 17497.45 18484.71 14881.75 28093.85 236
test_yl90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
Effi-MVS+91.59 8491.11 8593.01 8694.35 17483.39 11794.60 13195.10 19387.10 10890.57 10693.10 18681.43 10198.07 14689.29 9494.48 12997.59 89
Fast-Effi-MVS+89.41 13188.64 13291.71 14594.74 15380.81 18493.54 19595.10 19383.11 19386.82 16290.67 26679.74 11697.75 16680.51 21593.55 14096.57 126
IterMVS-LS88.36 15887.91 15289.70 22493.80 19378.29 24493.73 18895.08 19585.73 13784.75 21091.90 22879.88 11396.92 23383.83 15882.51 26993.89 230
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test22296.55 8881.70 15992.22 24295.01 19668.36 33590.20 11096.14 8580.26 11097.80 7296.05 146
EI-MVSNet89.10 13888.86 13089.80 22091.84 24778.30 24393.70 19195.01 19685.73 13787.15 15295.28 10779.87 11497.21 21483.81 15987.36 22893.88 232
MVSTER88.84 14688.29 14390.51 18892.95 22180.44 19493.73 18895.01 19684.66 16487.15 15293.12 18572.79 20197.21 21487.86 11087.36 22893.87 233
RRT_MVS88.86 14587.68 15592.39 11692.02 24286.09 5394.38 15294.94 19985.45 14687.14 15493.84 16465.88 27897.11 22088.73 10086.77 23593.98 227
GBi-Net87.26 19585.98 20891.08 16794.01 18283.10 12295.14 9894.94 19983.57 18184.37 22091.64 23366.59 27096.34 26778.23 24085.36 24293.79 238
test187.26 19585.98 20891.08 16794.01 18283.10 12295.14 9894.94 19983.57 18184.37 22091.64 23366.59 27096.34 26778.23 24085.36 24293.79 238
FMVSNet287.19 20285.82 21491.30 15894.01 18283.67 10894.79 12094.94 19983.57 18183.88 23592.05 22466.59 27096.51 25577.56 24785.01 24593.73 245
FMVSNet185.85 23484.11 24791.08 16792.81 22383.10 12295.14 9894.94 19981.64 22982.68 25791.64 23359.01 31796.34 26775.37 26783.78 25393.79 238
LS3D87.89 16986.32 19692.59 10596.07 10582.92 13095.23 9094.92 20475.66 29382.89 25595.98 8972.48 20599.21 4768.43 30795.23 11995.64 160
eth_miper_zixun_eth86.50 22285.77 21788.68 25091.94 24475.81 28590.47 27594.89 20582.05 21484.05 23190.46 26975.96 15596.77 23882.76 17579.36 31293.46 256
LTVRE_ROB82.13 1386.26 22784.90 23590.34 19894.44 16981.50 16292.31 24094.89 20583.03 19579.63 29692.67 19969.69 23697.79 16171.20 28986.26 23691.72 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UnsupCasMVSNet_eth80.07 29678.27 30085.46 30585.24 33772.63 30988.45 30794.87 20782.99 19771.64 33488.07 30856.34 32391.75 33673.48 28263.36 34392.01 299
pm-mvs186.61 21785.54 22089.82 21791.44 25880.18 19695.28 8894.85 20883.84 17681.66 26992.62 20172.45 20796.48 25779.67 22578.06 31792.82 280
ACMH80.38 1785.36 24183.68 25390.39 19394.45 16880.63 18894.73 12494.85 20882.09 21377.24 30992.65 20060.01 31297.58 17472.25 28684.87 24692.96 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous89.37 13489.32 11789.51 23193.47 20374.22 29391.65 25894.83 21082.91 20085.45 19293.79 16581.23 10396.36 26686.47 13194.09 13397.94 72
miper_enhance_ethall86.90 20886.18 20089.06 24091.66 25577.58 26490.22 28094.82 21179.16 25984.48 21689.10 29179.19 12496.66 24284.06 15582.94 26492.94 275
miper_ehance_all_eth87.22 20086.62 18589.02 24292.13 23777.40 26790.91 26994.81 21281.28 23784.32 22590.08 27779.26 12396.62 24483.81 15982.94 26493.04 272
FMVSNet387.40 19286.11 20391.30 15893.79 19583.64 10994.20 16194.81 21283.89 17584.37 22091.87 22968.45 25596.56 25278.23 24085.36 24293.70 247
WTY-MVS89.60 12288.92 12791.67 14695.47 12581.15 17592.38 23694.78 21483.11 19389.06 12494.32 14078.67 13096.61 24781.57 19790.89 17797.24 101
PAPM86.68 21685.39 22490.53 18593.05 21579.33 22489.79 28794.77 21578.82 26481.95 26793.24 18076.81 14597.30 20266.94 31393.16 15194.95 183
cl_fuxian87.14 20486.50 19089.04 24192.20 23477.26 26891.22 26694.70 21682.01 21784.34 22490.43 27078.81 12796.61 24783.70 16181.09 28893.25 262
CDS-MVSNet89.45 12888.51 13492.29 12293.62 19983.61 11193.01 21994.68 21781.95 21987.82 14293.24 18078.69 12996.99 22980.34 21793.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss88.42 15587.33 16391.72 14494.92 14680.98 17892.97 22194.54 21878.16 27583.82 23793.88 16178.78 12897.91 15879.45 22789.41 19596.26 134
HY-MVS83.01 1289.03 14187.94 15192.29 12294.86 15082.77 13392.08 24894.49 21981.52 23386.93 15792.79 19878.32 13698.23 13179.93 22290.55 17895.88 151
CANet_DTU90.26 10989.41 11592.81 9393.46 20483.01 12793.48 19794.47 22089.43 4687.76 14494.23 14670.54 22799.03 6484.97 14296.39 10196.38 130
v14887.04 20686.32 19689.21 23590.94 28277.26 26893.71 19094.43 22184.84 16084.36 22390.80 26376.04 15497.05 22682.12 18479.60 31093.31 259
OurMVSNet-221017-085.35 24284.64 24187.49 27890.77 29072.59 31094.01 17794.40 22284.72 16379.62 29793.17 18261.91 29796.72 23981.99 18781.16 28593.16 267
Effi-MVS+-dtu88.65 15188.35 13989.54 22893.33 20676.39 27994.47 14194.36 22387.70 9585.43 19589.56 28873.45 19297.26 20885.57 13891.28 17094.97 177
mvs-test189.45 12889.14 12190.38 19593.33 20677.63 26294.95 10894.36 22387.70 9587.10 15592.81 19673.45 19298.03 14985.57 13893.04 15395.48 163
EG-PatchMatch MVS82.37 27680.34 28188.46 25590.27 30379.35 22092.80 22594.33 22577.14 28273.26 32890.18 27447.47 34496.72 23970.25 29487.32 23089.30 326
cl-mvsnet_86.52 22185.78 21588.75 24792.03 24176.46 27790.74 27194.30 22681.83 22683.34 25090.78 26475.74 16096.57 25081.74 19481.54 28393.22 264
cl-mvsnet186.53 22085.78 21588.75 24792.02 24276.45 27890.74 27194.30 22681.83 22683.34 25090.82 26275.75 15896.57 25081.73 19581.52 28493.24 263
Test_1112_low_res87.65 17786.51 18991.08 16794.94 14579.28 22591.77 25294.30 22676.04 29183.51 24692.37 20777.86 14097.73 16778.69 23689.13 20296.22 135
pmmvs683.42 26781.60 27188.87 24488.01 32977.87 25494.96 10794.24 22974.67 30478.80 30091.09 25660.17 31196.49 25677.06 25475.40 32692.23 296
MVP-Stereo85.97 23184.86 23689.32 23390.92 28482.19 15092.11 24694.19 23078.76 26678.77 30191.63 23668.38 25696.56 25275.01 27293.95 13489.20 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS89.21 13688.29 14391.96 13293.71 19682.62 14293.30 20594.19 23082.22 21187.78 14393.94 15678.83 12696.95 23177.70 24592.98 15596.32 131
jason90.80 9590.10 10192.90 9193.04 21683.53 11293.08 21694.15 23280.22 24791.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
BH-untuned88.60 15388.13 14790.01 21195.24 13478.50 23893.29 20694.15 23284.75 16284.46 21793.40 17275.76 15797.40 19677.59 24694.52 12894.12 218
cl-mvsnet286.78 21285.98 20889.18 23792.34 23277.62 26390.84 27094.13 23481.33 23683.97 23490.15 27573.96 18496.60 24984.19 15482.94 26493.33 258
ACMH+81.04 1485.05 24983.46 25789.82 21794.66 15979.37 21994.44 14394.12 23582.19 21278.04 30492.82 19558.23 31997.54 17773.77 28082.90 26792.54 285
miper_lstm_enhance85.27 24584.59 24287.31 28191.28 26874.63 29087.69 31494.09 23681.20 24081.36 27389.85 28374.97 16994.30 31581.03 20479.84 30993.01 273
Fast-Effi-MVS+-dtu87.44 19086.72 17889.63 22692.04 24077.68 26194.03 17593.94 23785.81 13482.42 25991.32 24670.33 22997.06 22580.33 21890.23 18294.14 216
AUN-MVS87.78 17386.54 18891.48 15194.82 15281.05 17693.91 18493.93 23883.00 19686.93 15793.53 17169.50 23997.67 16986.14 13277.12 32395.73 158
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23889.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12695.73 6593.86 24088.42 7592.53 7196.84 5062.09 29598.64 10390.95 7992.62 16097.93 74
lupinMVS90.92 9490.21 9893.03 8593.86 19083.88 10392.81 22493.86 24079.84 25391.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
CMPMVSbinary59.16 2180.52 29479.20 29484.48 31283.98 34067.63 33789.95 28693.84 24264.79 33966.81 34091.14 25457.93 32095.17 30576.25 25988.10 21790.65 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS86.61 21785.27 22790.66 18091.33 26778.71 23290.40 27693.81 24385.34 14985.12 20589.57 28761.25 30297.11 22080.99 20589.59 19496.15 136
MVS_030483.46 26681.92 26988.10 26690.63 29677.49 26593.26 20893.75 24480.04 25180.44 28587.24 31847.94 34295.55 29575.79 26388.16 21691.26 311
IS-MVSNet91.43 8591.09 8792.46 11195.87 11381.38 16996.95 1493.69 24589.72 4089.50 11795.98 8978.57 13297.77 16283.02 16896.50 9998.22 52
MS-PatchMatch85.05 24984.16 24687.73 27291.42 26278.51 23791.25 26593.53 24677.50 27780.15 28891.58 23861.99 29695.51 29875.69 26494.35 13289.16 329
BH-w/o87.57 18587.05 17089.12 23894.90 14877.90 25292.41 23493.51 24782.89 20183.70 24091.34 24375.75 15897.07 22475.49 26593.49 14292.39 291
UnsupCasMVSNet_bld76.23 30973.27 31285.09 30983.79 34172.92 30385.65 32793.47 24871.52 32668.84 33779.08 33949.77 33793.21 32666.81 31760.52 34589.13 331
USDC82.76 27181.26 27587.26 28391.17 27174.55 29189.27 29493.39 24978.26 27375.30 31892.08 22154.43 33196.63 24371.64 28785.79 24090.61 319
CNLPA89.07 13987.98 14992.34 11896.87 7884.78 7794.08 17093.24 25081.41 23484.46 21795.13 11475.57 16296.62 24477.21 25093.84 13795.61 161
VDDNet89.56 12488.49 13792.76 9695.07 13882.09 15196.30 3693.19 25181.05 24291.88 8496.86 4961.16 30598.33 12788.43 10492.49 16397.84 80
MSDG84.86 25383.09 26090.14 20493.80 19380.05 20389.18 29793.09 25278.89 26278.19 30291.91 22765.86 27997.27 20668.47 30688.45 21193.11 269
BH-RMVSNet88.37 15787.48 15991.02 17195.28 13179.45 21792.89 22393.07 25385.45 14686.91 15994.84 12570.35 22897.76 16373.97 27894.59 12695.85 152
ITE_SJBPF88.24 26291.88 24677.05 27192.92 25485.54 14380.13 29093.30 17757.29 32196.20 27172.46 28584.71 24791.49 306
ambc83.06 31879.99 34663.51 34477.47 34492.86 25574.34 32484.45 32828.74 35095.06 30973.06 28468.89 33790.61 319
TR-MVS86.78 21285.76 21889.82 21794.37 17178.41 24092.47 23392.83 25681.11 24186.36 17092.40 20668.73 25297.48 18173.75 28189.85 19093.57 250
TransMVSNet (Re)84.43 25883.06 26188.54 25391.72 25178.44 23995.18 9592.82 25782.73 20379.67 29592.12 21773.49 19195.96 28171.10 29268.73 33891.21 313
CHOSEN 280x42085.15 24783.99 24988.65 25192.47 22978.40 24179.68 34392.76 25874.90 30281.41 27289.59 28669.85 23595.51 29879.92 22395.29 11692.03 298
MIMVSNet179.38 30177.28 30385.69 30486.35 33473.67 29891.61 25992.75 25978.11 27672.64 33088.12 30748.16 34191.97 33560.32 33577.49 32091.43 308
PVSNet78.82 1885.55 23884.65 24088.23 26394.72 15571.93 31387.12 31892.75 25978.80 26584.95 20890.53 26864.43 28596.71 24174.74 27393.86 13696.06 145
pmmvs485.43 24083.86 25190.16 20290.02 30982.97 12990.27 27792.67 26175.93 29280.73 27991.74 23271.05 21695.73 29278.85 23483.46 26091.78 301
IterMVS-SCA-FT85.45 23984.53 24388.18 26491.71 25276.87 27390.19 28192.65 26285.40 14881.44 27190.54 26766.79 26695.00 31081.04 20281.05 28992.66 283
Baseline_NR-MVSNet87.07 20586.63 18488.40 25691.44 25877.87 25494.23 16092.57 26384.12 17185.74 18092.08 22177.25 14296.04 27682.29 18279.94 30691.30 310
RPSCF85.07 24884.27 24587.48 27992.91 22270.62 32591.69 25792.46 26476.20 29082.67 25895.22 11063.94 28797.29 20577.51 24885.80 23994.53 200
IterMVS84.88 25283.98 25087.60 27491.44 25876.03 28390.18 28292.41 26583.24 19281.06 27790.42 27166.60 26994.28 31679.46 22680.98 29492.48 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL86.77 21585.54 22090.47 19195.88 11182.71 13990.54 27492.31 26679.82 25484.32 22591.57 24068.77 25196.39 26373.16 28393.48 14492.32 294
COLMAP_ROBcopyleft80.39 1683.96 26182.04 26889.74 22195.28 13179.75 21294.25 15892.28 26775.17 29878.02 30593.77 16758.60 31897.84 16065.06 32385.92 23791.63 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet581.52 28579.60 29187.27 28291.17 27177.95 25091.49 26092.26 26876.87 28376.16 31387.91 31151.67 33592.34 33167.74 31281.16 28591.52 305
EPNet_dtu86.49 22485.94 21188.14 26590.24 30472.82 30594.11 16692.20 26986.66 12179.42 29892.36 20873.52 19095.81 28971.26 28893.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test81.84 27980.07 28687.15 28988.46 32374.43 29289.04 29992.16 27075.33 29677.75 30688.99 29266.20 27495.37 30365.12 32277.60 31991.65 303
thres20087.21 20186.24 19990.12 20595.36 12778.53 23693.26 20892.10 27186.42 12488.00 13891.11 25569.24 24598.00 15169.58 30191.04 17693.83 237
Anonymous2023120681.03 29179.77 28984.82 31087.85 33170.26 32791.42 26192.08 27273.67 31177.75 30689.25 29062.43 29493.08 32861.50 33382.00 27791.12 316
EPNet91.79 7891.02 8894.10 5890.10 30685.25 7396.03 5392.05 27392.83 187.39 15195.78 9679.39 12299.01 7088.13 10897.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement79.81 29877.34 30287.22 28779.24 34775.48 28893.12 21392.03 27476.45 28575.01 31991.58 23849.19 34096.44 26170.22 29669.18 33589.75 325
DP-MVS87.25 19785.36 22692.90 9197.65 5683.24 11994.81 11992.00 27574.99 30081.92 26895.00 11772.66 20299.05 6066.92 31592.33 16496.40 129
SixPastTwentyTwo83.91 26382.90 26386.92 29290.99 27870.67 32493.48 19791.99 27685.54 14377.62 30892.11 21960.59 30896.87 23676.05 26277.75 31893.20 265
tfpn200view987.58 18486.64 18290.41 19295.99 10878.64 23394.58 13291.98 27786.94 11388.09 13391.77 23069.18 24698.10 13870.13 29791.10 17194.48 206
thres40087.62 18286.64 18290.57 18295.99 10878.64 23394.58 13291.98 27786.94 11388.09 13391.77 23069.18 24698.10 13870.13 29791.10 17194.96 180
CR-MVSNet85.35 24283.76 25290.12 20590.58 29779.34 22185.24 32891.96 27978.27 27285.55 18487.87 31271.03 21795.61 29373.96 27989.36 19795.40 167
Patchmtry82.71 27280.93 27888.06 26790.05 30876.37 28084.74 33091.96 27972.28 32481.32 27487.87 31271.03 21795.50 30068.97 30380.15 30492.32 294
pmmvs584.21 25982.84 26588.34 25988.95 31876.94 27292.41 23491.91 28175.63 29480.28 28691.18 25164.59 28495.57 29477.09 25383.47 25992.53 286
test_040281.30 28979.17 29587.67 27393.19 21078.17 24692.98 22091.71 28275.25 29776.02 31690.31 27259.23 31696.37 26450.22 34483.63 25788.47 335
tpmvs83.35 27082.07 26787.20 28891.07 27671.00 32288.31 30891.70 28378.91 26180.49 28487.18 31969.30 24497.08 22368.12 31183.56 25893.51 254
SCA86.32 22685.18 22889.73 22392.15 23576.60 27591.12 26791.69 28483.53 18485.50 18988.81 29566.79 26696.48 25776.65 25590.35 18196.12 139
pmmvs-eth3d80.97 29278.72 29987.74 27184.99 33979.97 20890.11 28391.65 28575.36 29573.51 32686.03 32359.45 31593.96 31975.17 26972.21 33189.29 327
thres100view90087.63 18086.71 17990.38 19596.12 10078.55 23595.03 10591.58 28687.15 10688.06 13692.29 21168.91 24998.10 13870.13 29791.10 17194.48 206
thres600view787.65 17786.67 18190.59 18196.08 10478.72 23194.88 11491.58 28687.06 10988.08 13592.30 21068.91 24998.10 13870.05 30091.10 17194.96 180
MDTV_nov1_ep1383.56 25691.69 25469.93 32987.75 31391.54 28878.60 26884.86 20988.90 29469.54 23896.03 27770.25 29488.93 204
tpm cat181.96 27780.27 28287.01 29091.09 27571.02 32187.38 31791.53 28966.25 33780.17 28786.35 32268.22 25796.15 27469.16 30282.29 27193.86 235
Anonymous20240521187.68 17586.13 20192.31 12096.66 8380.74 18694.87 11591.49 29080.47 24689.46 11895.44 10354.72 32998.23 13182.19 18389.89 18897.97 70
CVMVSNet84.69 25684.79 23884.37 31391.84 24764.92 34293.70 19191.47 29166.19 33886.16 17595.28 10767.18 26193.33 32580.89 20790.42 18094.88 185
tpmrst85.35 24284.99 23186.43 29890.88 28767.88 33588.71 30291.43 29280.13 24986.08 17688.80 29773.05 19896.02 27882.48 17783.40 26295.40 167
EU-MVSNet81.32 28880.95 27782.42 32088.50 32263.67 34393.32 20191.33 29364.02 34080.57 28392.83 19461.21 30492.27 33276.34 25880.38 30391.32 309
PatchmatchNetpermissive85.85 23484.70 23989.29 23491.76 25075.54 28788.49 30591.30 29481.63 23085.05 20688.70 29971.71 20996.24 27074.61 27589.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 16487.28 16590.57 18294.96 14380.07 20194.27 15791.29 29586.74 11787.41 14894.00 15376.77 14796.20 27180.77 20879.31 31395.44 165
IB-MVS80.51 1585.24 24683.26 25891.19 16192.13 23779.86 21091.75 25391.29 29583.28 19180.66 28188.49 30161.28 30198.46 11580.99 20579.46 31195.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_381.93 27880.46 28086.33 30088.46 32373.48 29988.46 30691.11 29776.46 28476.69 31188.25 30566.89 26494.36 31468.75 30479.08 31591.14 315
new-patchmatchnet76.41 30875.17 31080.13 32282.65 34559.61 34587.66 31591.08 29878.23 27469.85 33583.22 33254.76 32891.63 33864.14 32664.89 34189.16 329
test20.0379.95 29779.08 29682.55 31985.79 33567.74 33691.09 26891.08 29881.23 23974.48 32389.96 28161.63 29890.15 34060.08 33676.38 32489.76 324
LF4IMVS80.37 29579.07 29784.27 31586.64 33369.87 33089.39 29391.05 30076.38 28674.97 32090.00 27947.85 34394.25 31774.55 27680.82 29688.69 333
CostFormer85.77 23684.94 23488.26 26191.16 27372.58 31189.47 29291.04 30176.26 28986.45 16889.97 28070.74 22196.86 23782.35 18087.07 23395.34 170
LCM-MVSNet-Re88.30 16088.32 14288.27 26094.71 15672.41 31293.15 21290.98 30287.77 9379.25 29991.96 22678.35 13595.75 29183.04 16795.62 10796.65 124
DWT-MVSNet_test84.95 25183.68 25388.77 24591.43 26173.75 29791.74 25490.98 30280.66 24583.84 23687.36 31662.44 29397.11 22078.84 23585.81 23895.46 164
ET-MVSNet_ETH3D87.51 18785.91 21292.32 11993.70 19883.93 10192.33 23890.94 30484.16 16972.09 33192.52 20369.90 23295.85 28689.20 9588.36 21497.17 105
LCM-MVSNet66.00 31462.16 31877.51 32664.51 35458.29 34683.87 33490.90 30548.17 34754.69 34573.31 34216.83 35886.75 34465.47 31961.67 34487.48 338
AllTest83.42 26781.39 27389.52 22995.01 13977.79 25793.12 21390.89 30677.41 27876.12 31493.34 17354.08 33297.51 17968.31 30884.27 25093.26 260
TestCases89.52 22995.01 13977.79 25790.89 30677.41 27876.12 31493.34 17354.08 33297.51 17968.31 30884.27 25093.26 260
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20995.74 11575.85 28495.61 7390.80 30887.66 9987.83 14195.40 10676.79 14696.46 26078.37 23796.73 9197.80 82
OpenMVS_ROBcopyleft74.94 1979.51 30077.03 30686.93 29187.00 33276.23 28292.33 23890.74 30968.93 33474.52 32288.23 30649.58 33896.62 24457.64 34084.29 24987.94 337
testgi80.94 29380.20 28483.18 31787.96 33066.29 33891.28 26390.70 31083.70 17878.12 30392.84 19351.37 33690.82 33963.34 32782.46 27092.43 289
MDA-MVSNet-bldmvs78.85 30476.31 30786.46 29789.76 31373.88 29688.79 30190.42 31179.16 25959.18 34488.33 30460.20 31094.04 31862.00 33168.96 33691.48 307
tpm284.08 26082.94 26287.48 27991.39 26371.27 31789.23 29690.37 31271.95 32584.64 21189.33 28967.30 25896.55 25475.17 26987.09 23294.63 192
TinyColmap79.76 29977.69 30185.97 30291.71 25273.12 30289.55 28890.36 31375.03 29972.03 33290.19 27346.22 34596.19 27363.11 32881.03 29088.59 334
Gipumacopyleft57.99 31854.91 32067.24 33188.51 32165.59 34052.21 35190.33 31443.58 34942.84 34951.18 35020.29 35585.07 34634.77 34970.45 33351.05 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT82.68 27381.27 27486.89 29490.09 30770.94 32384.06 33290.15 31574.91 30185.63 18383.57 33169.37 24094.87 31165.19 32088.50 21094.84 186
MIMVSNet82.59 27480.53 27988.76 24691.51 25778.32 24286.57 32190.13 31679.32 25780.70 28088.69 30052.98 33493.07 32966.03 31888.86 20594.90 184
dp81.47 28680.23 28385.17 30889.92 31165.49 34186.74 31990.10 31776.30 28881.10 27587.12 32062.81 29195.92 28268.13 31079.88 30794.09 221
MDA-MVSNet_test_wron79.21 30377.19 30585.29 30688.22 32772.77 30685.87 32490.06 31874.34 30662.62 34387.56 31566.14 27591.99 33466.90 31673.01 32891.10 317
PMMVS85.71 23784.96 23387.95 26988.90 31977.09 27088.68 30390.06 31872.32 32386.47 16590.76 26572.15 20894.40 31381.78 19393.49 14292.36 292
YYNet179.22 30277.20 30485.28 30788.20 32872.66 30885.87 32490.05 32074.33 30762.70 34287.61 31466.09 27692.03 33366.94 31372.97 32991.15 314
tpm84.73 25484.02 24886.87 29590.33 30268.90 33289.06 29889.94 32180.85 24385.75 17989.86 28268.54 25495.97 28077.76 24484.05 25295.75 157
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32286.79 11692.15 8096.81 5362.60 29298.34 12587.18 12093.90 13598.19 53
thisisatest053088.67 15087.61 15791.86 13794.87 14980.07 20194.63 13089.90 32384.00 17388.46 13093.78 16666.88 26598.46 11583.30 16492.65 15997.06 109
test-LLR85.87 23385.41 22387.25 28490.95 28071.67 31589.55 28889.88 32483.41 18784.54 21487.95 30967.25 25995.11 30781.82 19193.37 14794.97 177
test-mter84.54 25783.64 25587.25 28490.95 28071.67 31589.55 28889.88 32479.17 25884.54 21487.95 30955.56 32595.11 30781.82 19193.37 14794.97 177
tttt051788.61 15287.78 15391.11 16694.96 14377.81 25695.35 7989.69 32685.09 15688.05 13794.59 13466.93 26398.48 11283.27 16592.13 16697.03 111
PVSNet_073.20 2077.22 30674.83 31184.37 31390.70 29471.10 32083.09 33789.67 32772.81 32173.93 32583.13 33360.79 30693.70 32168.54 30550.84 34788.30 336
JIA-IIPM81.04 29078.98 29887.25 28488.64 32073.48 29981.75 34089.61 32873.19 31682.05 26573.71 34166.07 27795.87 28571.18 29184.60 24892.41 290
thisisatest051587.33 19385.99 20791.37 15693.49 20279.55 21490.63 27389.56 32980.17 24887.56 14790.86 26067.07 26298.28 13081.50 19893.02 15496.29 132
ADS-MVSNet81.56 28479.78 28886.90 29391.35 26571.82 31483.33 33589.16 33072.90 31982.24 26285.77 32464.98 28293.76 32064.57 32483.74 25495.12 173
baseline286.50 22285.39 22489.84 21691.12 27476.70 27491.88 24988.58 33182.35 21079.95 29390.95 25973.42 19497.63 17380.27 21989.95 18795.19 172
ADS-MVSNet281.66 28279.71 29087.50 27791.35 26574.19 29483.33 33588.48 33272.90 31982.24 26285.77 32464.98 28293.20 32764.57 32483.74 25495.12 173
TESTMET0.1,183.74 26582.85 26486.42 29989.96 31071.21 31989.55 28887.88 33377.41 27883.37 24987.31 31756.71 32293.65 32280.62 21292.85 15894.40 209
test0.0.03 182.41 27581.69 27084.59 31188.23 32672.89 30490.24 27887.83 33483.41 18779.86 29489.78 28467.25 25988.99 34265.18 32183.42 26191.90 300
K. test v381.59 28380.15 28585.91 30389.89 31269.42 33192.57 23187.71 33585.56 14273.44 32789.71 28555.58 32495.52 29777.17 25169.76 33492.78 281
Patchmatch-test81.37 28779.30 29387.58 27590.92 28474.16 29580.99 34187.68 33670.52 33176.63 31288.81 29571.21 21492.76 33060.01 33886.93 23495.83 154
Patchmatch-RL test81.67 28179.96 28786.81 29685.42 33671.23 31882.17 33987.50 33778.47 26977.19 31082.50 33570.81 22093.48 32382.66 17672.89 33095.71 159
ANet_high58.88 31754.22 32172.86 32756.50 35756.67 34880.75 34286.00 33873.09 31837.39 35064.63 34722.17 35379.49 35043.51 34623.96 35182.43 342
door-mid85.49 339
door85.33 340
PM-MVS78.11 30576.12 30984.09 31683.54 34270.08 32888.97 30085.27 34179.93 25274.73 32186.43 32134.70 34993.48 32379.43 22972.06 33288.72 332
FPMVS64.63 31562.55 31770.88 32870.80 35056.71 34784.42 33184.42 34251.78 34649.57 34681.61 33623.49 35281.48 34840.61 34876.25 32574.46 344
pmmvs371.81 31268.71 31581.11 32175.86 34870.42 32686.74 31983.66 34358.95 34368.64 33880.89 33736.93 34889.52 34163.10 32963.59 34283.39 339
MVS-HIRNet73.70 31072.20 31378.18 32591.81 24956.42 34982.94 33882.58 34455.24 34468.88 33666.48 34555.32 32795.13 30658.12 33988.42 21283.01 340
new_pmnet72.15 31170.13 31478.20 32482.95 34465.68 33983.91 33382.40 34562.94 34164.47 34179.82 33842.85 34786.26 34557.41 34174.44 32782.65 341
EPMVS83.90 26482.70 26687.51 27690.23 30572.67 30788.62 30481.96 34681.37 23585.01 20788.34 30366.31 27394.45 31275.30 26887.12 23195.43 166
lessismore_v086.04 30188.46 32368.78 33380.59 34773.01 32990.11 27655.39 32696.43 26275.06 27165.06 34092.90 276
DSMNet-mixed76.94 30776.29 30878.89 32383.10 34356.11 35087.78 31279.77 34860.65 34275.64 31788.71 29861.56 29988.34 34360.07 33789.29 19992.21 297
gg-mvs-nofinetune81.77 28079.37 29288.99 24390.85 28877.73 26086.29 32279.63 34974.88 30383.19 25369.05 34460.34 30996.11 27575.46 26694.64 12593.11 269
PMVScopyleft47.18 2252.22 31948.46 32263.48 33245.72 35846.20 35573.41 34778.31 35041.03 35030.06 35265.68 3466.05 35983.43 34730.04 35065.86 33960.80 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND87.94 27089.73 31477.91 25187.80 31178.23 35180.58 28283.86 32959.88 31395.33 30471.20 28992.22 16590.60 321
PMMVS259.60 31656.40 31969.21 33068.83 35146.58 35473.02 34877.48 35255.07 34549.21 34772.95 34317.43 35780.04 34949.32 34544.33 34880.99 343
E-PMN43.23 32142.29 32346.03 33565.58 35337.41 35673.51 34664.62 35333.99 35128.47 35447.87 35119.90 35667.91 35122.23 35224.45 35032.77 349
EMVS42.07 32241.12 32444.92 33663.45 35535.56 35873.65 34563.48 35433.05 35226.88 35545.45 35221.27 35467.14 35219.80 35323.02 35232.06 350
MTMP96.16 4460.64 355
MVEpermissive39.65 2343.39 32038.59 32657.77 33356.52 35648.77 35355.38 35058.64 35629.33 35328.96 35352.65 3494.68 36064.62 35328.11 35133.07 34959.93 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 33474.23 34951.81 35256.67 35744.85 34848.54 34875.16 34027.87 35158.74 35440.92 34752.22 34658.39 347
tmp_tt35.64 32339.24 32524.84 33714.87 35923.90 36062.71 34951.51 3586.58 35536.66 35162.08 34844.37 34630.34 35652.40 34322.00 35320.27 351
N_pmnet68.89 31368.44 31670.23 32989.07 31728.79 35988.06 30919.50 35969.47 33371.86 33384.93 32761.24 30391.75 33654.70 34277.15 32290.15 323
wuyk23d21.27 32520.48 32823.63 33868.59 35236.41 35749.57 3526.85 3609.37 3547.89 3564.46 3584.03 36131.37 35517.47 35416.07 3543.12 352
testmvs8.92 32611.52 3291.12 3401.06 3600.46 36286.02 3230.65 3610.62 3562.74 3579.52 3560.31 3630.45 3582.38 3550.39 3552.46 354
test1238.76 32711.22 3301.39 3390.85 3610.97 36185.76 3260.35 3620.54 3572.45 3588.14 3570.60 3620.48 3572.16 3560.17 3562.71 353
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas6.64 3298.86 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35979.70 1170.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
n20.00 363
nn0.00 363
ab-mvs-re7.82 32810.43 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35993.88 1610.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 139
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21096.12 139
sam_mvs70.60 222
test_post188.00 3109.81 35569.31 24395.53 29676.65 255
test_post10.29 35470.57 22695.91 284
patchmatchnet-post83.76 33071.53 21196.48 257
gm-plane-assit89.60 31568.00 33477.28 28188.99 29297.57 17579.44 228
test9_res91.91 5898.71 3098.07 63
agg_prior290.54 8498.68 3598.27 47
test_prior485.96 5794.11 166
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
旧先验293.36 20071.25 32894.37 2697.13 21986.74 126
新几何293.11 215
原ACMM292.94 222
testdata298.75 9978.30 239
segment_acmp87.16 35
testdata192.15 24487.94 87
plane_prior794.70 15782.74 136
plane_prior694.52 16382.75 13474.23 177
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 159
plane_prior295.85 6190.81 17
plane_prior194.59 161
plane_prior82.73 13795.21 9289.66 4189.88 189
HQP5-MVS81.56 160
HQP-NCC94.17 17694.39 14888.81 6185.43 195
ACMP_Plane94.17 17694.39 14888.81 6185.43 195
BP-MVS87.11 123
HQP4-MVS85.43 19597.96 15494.51 202
HQP2-MVS73.83 187
NP-MVS94.37 17182.42 14493.98 154
MDTV_nov1_ep13_2view55.91 35187.62 31673.32 31584.59 21370.33 22974.65 27495.50 162
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112