This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 26093.40 22197.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3298.09 6799.23 1
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 7099.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
IU-MVS98.77 586.00 5096.84 6581.26 27197.26 795.50 2399.13 399.03 8
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
PC_three_145282.47 23897.09 1097.07 5192.72 198.04 16592.70 5599.02 1298.86 11
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6698.99 1498.84 14
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29294.25 17596.29 11188.33 9094.46 3896.88 5888.07 2598.64 10193.62 3898.09 6798.73 17
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8996.30 8389.24 1799.34 3493.46 3998.62 4798.73 17
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15997.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5098.40 5698.62 21
MVS_030494.60 1894.38 2595.23 1195.41 13487.49 1696.53 3892.75 28393.82 293.07 7097.84 2283.66 7499.59 897.61 298.76 2898.61 22
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12488.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8298.59 24
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5499.54 2092.21 6798.74 3198.56 25
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 5998.81 2298.52 26
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8780.00 22294.00 19697.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
casdiffmvs_mvgpermissive92.96 7192.83 6993.35 7294.59 17683.40 11895.00 12496.34 10890.30 3092.05 9796.05 9583.43 7598.15 14992.07 7395.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6499.03 5893.35 4397.99 7198.48 30
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 2898.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17296.97 5091.07 1393.14 6697.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7597.16 4785.02 5999.49 2691.99 7798.56 5198.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7523.41 40885.02 5999.49 2691.99 7798.56 5198.47 33
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9997.19 4485.43 5299.56 1292.06 7698.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10897.17 4683.96 7199.55 1691.44 9298.64 4698.43 38
test111189.10 15488.64 14990.48 20895.53 13074.97 31496.08 6184.89 38288.13 10090.16 13296.65 7063.29 31598.10 15286.14 15496.90 9698.39 39
CANet93.54 5193.20 6194.55 4395.65 12385.73 6594.94 12796.69 8491.89 890.69 12495.88 10281.99 10599.54 2093.14 4697.95 7398.39 39
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7896.97 5485.37 5399.24 4390.87 10398.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 15092.83 7797.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test250687.21 22286.28 21990.02 23095.62 12573.64 32896.25 4871.38 40687.89 10890.45 12696.65 7055.29 36398.09 16086.03 15896.94 9498.33 43
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12575.89 30596.16 5384.22 38487.89 10890.20 13096.65 7063.19 31798.10 15285.90 15996.94 9498.33 43
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8696.80 6584.85 6399.17 4792.43 5798.65 4598.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6599.51 2490.75 10598.57 5098.32 46
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5199.59 891.43 9398.40 5698.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
baseline92.39 8292.29 8292.69 11094.46 18581.77 16994.14 18196.27 11589.22 6191.88 10496.00 9682.35 9197.99 16991.05 9695.27 13198.30 47
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16595.05 3497.18 4587.31 3599.07 5391.90 8598.61 4998.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MGCFI-Net93.03 6892.63 7494.23 5395.62 12585.92 5796.08 6196.33 10989.86 4193.89 5194.66 15682.11 9998.50 11592.33 6592.82 18098.27 52
sasdasda93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
agg_prior290.54 10698.68 3998.27 52
canonicalmvs93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7298.96 7792.71 5497.87 7598.26 56
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8397.23 4185.20 5599.32 3892.15 7098.83 2198.25 57
casdiffmvspermissive92.51 7992.43 8092.74 10694.41 18981.98 16494.54 15596.23 12089.57 5191.96 10196.17 9182.58 8898.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet91.43 9591.09 9792.46 12095.87 11581.38 18096.95 1993.69 26689.72 4989.50 14095.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4898.24 14293.64 3798.17 6298.19 60
LFMVS90.08 12389.13 13792.95 9596.71 7782.32 15996.08 6189.91 35486.79 13392.15 9696.81 6362.60 31998.34 13587.18 14393.90 15498.19 60
CDPH-MVS92.83 7292.30 8194.44 4597.79 4986.11 4994.06 19096.66 8580.09 28492.77 8096.63 7386.62 3899.04 5787.40 13998.66 4298.17 62
alignmvs93.08 6792.50 7894.81 3295.62 12587.61 1495.99 7196.07 13489.77 4794.12 4394.87 14380.56 11898.66 9992.42 5893.10 17398.15 63
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7395.77 10885.02 5998.33 13793.03 4798.62 4798.13 64
VNet92.24 8491.91 8593.24 7596.59 8283.43 11694.84 13496.44 9889.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16798.13 64
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17893.56 5896.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
test9_res91.91 8398.71 3398.07 68
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19890.05 13495.66 11287.77 2699.15 5089.91 11298.27 6098.07 68
EPNet91.79 8891.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17895.78 10779.39 13399.01 6388.13 13097.48 8498.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.24 6392.88 6894.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13397.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23397.24 3288.76 7791.60 11395.85 10386.07 4698.66 9991.91 8398.16 6398.03 72
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19894.87 13291.49 32080.47 28089.46 14195.44 11754.72 36598.23 14382.19 21289.89 21797.97 74
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7797.96 75
iter_conf05_1192.98 7092.96 6693.03 8795.91 11282.49 15396.06 6596.37 10686.94 12994.09 4495.16 13081.94 10798.67 9891.65 8998.56 5197.95 76
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18896.78 7281.86 25592.77 8096.20 8787.63 2999.12 5192.14 7198.69 3797.94 77
mvs_anonymous89.37 15089.32 13389.51 25493.47 22874.22 32391.65 28394.83 22382.91 23185.45 22693.79 19181.23 11596.36 28886.47 15394.09 15197.94 77
VDD-MVS90.74 10789.92 12093.20 7796.27 9383.02 13495.73 8393.86 26088.42 8992.53 8796.84 6062.09 32198.64 10190.95 10192.62 18297.93 79
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16292.47 9097.13 4882.38 9099.07 5390.51 10898.40 5697.92 80
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 6899.01 6392.73 5197.80 7897.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8392.73 5197.80 7897.88 81
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 8197.86 83
test1294.34 5097.13 7086.15 4896.29 11191.04 12185.08 5799.01 6398.13 6597.86 83
VDDNet89.56 14088.49 15692.76 10495.07 15082.09 16196.30 4393.19 27381.05 27691.88 10496.86 5961.16 33498.33 13788.43 12792.49 18697.84 85
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16593.93 25689.77 4794.21 4195.59 11587.35 3498.61 10692.72 5396.15 11397.83 86
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22895.74 11875.85 30695.61 9390.80 33887.66 11687.83 16795.40 12076.79 16096.46 28178.37 26896.73 10197.80 87
3Dnovator86.66 591.73 9190.82 10294.44 4594.59 17686.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7297.79 88
Vis-MVSNetpermissive91.75 9091.23 9393.29 7395.32 13683.78 10596.14 5795.98 14089.89 3990.45 12696.58 7675.09 18298.31 14084.75 17396.90 9697.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 11189.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8897.74 90
GeoE90.05 12489.43 12991.90 14895.16 14580.37 20795.80 8094.65 23383.90 20387.55 17494.75 15178.18 14997.62 19381.28 23193.63 15897.71 91
MVSMamba_pp92.75 7492.66 7293.02 8995.09 14982.85 14094.72 14396.46 9786.35 14593.33 6194.96 13781.98 10698.55 11492.35 6298.70 3597.67 92
DELS-MVS93.43 5893.25 5993.97 5695.42 13385.04 7293.06 24097.13 4090.74 2191.84 10695.09 13486.32 4299.21 4591.22 9498.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mamv492.71 7792.58 7693.09 8395.16 14583.05 13294.67 14696.50 9586.30 14793.09 6794.88 14182.03 10498.57 10991.94 8298.66 4297.63 94
MG-MVS91.77 8991.70 8892.00 13897.08 7180.03 22093.60 21495.18 20087.85 11090.89 12296.47 8082.06 10298.36 13285.07 16797.04 9297.62 95
diffmvspermissive91.37 9791.23 9391.77 15693.09 23880.27 20892.36 26095.52 17987.03 12691.40 11794.93 13880.08 12297.44 21092.13 7294.56 14397.61 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR91.22 10090.78 10392.52 11897.60 5681.46 17794.37 17196.24 11986.39 14487.41 17594.80 14982.06 10298.48 11782.80 20195.37 12797.61 96
Effi-MVS+91.59 9491.11 9593.01 9094.35 19483.39 11994.60 15195.10 20487.10 12490.57 12593.10 21481.43 11398.07 16389.29 11794.48 14697.59 98
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13096.99 4889.02 7189.56 13897.37 3582.51 8999.38 3192.20 6898.30 5997.57 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet91.70 9291.56 8992.13 13495.88 11380.50 20497.33 795.25 19686.15 15489.76 13795.60 11483.42 7798.32 13987.37 14193.25 17097.56 100
MVS_Test91.31 9891.11 9591.93 14394.37 19080.14 21293.46 21995.80 15586.46 14291.35 11893.77 19382.21 9798.09 16087.57 13794.95 13497.55 101
EIA-MVS91.95 8691.94 8491.98 13995.16 14580.01 22195.36 9996.73 7988.44 8789.34 14292.16 24283.82 7398.45 12589.35 11697.06 9197.48 102
PAPR90.02 12589.27 13692.29 13095.78 11780.95 19292.68 25096.22 12181.91 25286.66 19393.75 19582.23 9698.44 12779.40 26394.79 13697.48 102
UA-Net92.83 7292.54 7793.68 6896.10 10084.71 7995.66 8996.39 10491.92 793.22 6496.49 7983.16 7998.87 8284.47 17795.47 12397.45 104
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15283.51 11594.48 15795.77 15790.87 1592.52 8896.67 6884.50 6699.00 6891.99 7794.44 14897.36 105
test_yl90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
DCV-MVSNet90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
EC-MVSNet93.44 5593.71 5192.63 11295.21 14382.43 15497.27 996.71 8290.57 2692.88 7495.80 10683.16 7998.16 14893.68 3698.14 6497.31 106
MVSFormer91.68 9391.30 9192.80 10293.86 21383.88 10395.96 7395.90 14884.66 19291.76 10994.91 13977.92 15197.30 22589.64 11497.11 8997.24 109
jason90.80 10590.10 11392.90 9793.04 24383.53 11493.08 23894.15 24980.22 28191.41 11694.91 13976.87 15897.93 17490.28 11196.90 9697.24 109
jason: jason.
WTY-MVS89.60 13888.92 14291.67 15995.47 13281.15 18692.38 25994.78 22783.11 22589.06 14794.32 16778.67 14296.61 26881.57 22890.89 20397.24 109
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10680.63 20090.01 32095.79 15673.42 36087.68 17192.10 24873.86 20397.96 17180.75 24191.70 19097.19 112
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11684.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6997.17 113
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22283.93 10192.33 26390.94 33484.16 19772.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
EI-MVSNet-UG-set92.74 7592.62 7593.12 8094.86 16383.20 12394.40 16595.74 16090.71 2392.05 9796.60 7584.00 7098.99 7091.55 9093.63 15897.17 113
lupinMVS90.92 10490.21 10993.03 8793.86 21383.88 10392.81 24893.86 26079.84 28791.76 10994.29 16977.92 15198.04 16590.48 10997.11 8997.17 113
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13885.43 6895.68 8696.43 9986.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 10097.16 117
bld_raw_dy_0_6492.29 8392.45 7991.80 15595.49 13179.68 23193.44 22096.40 10386.21 15293.01 7194.88 14181.93 10898.57 10991.99 7798.73 3297.16 117
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9681.42 17990.01 32095.86 15274.52 34987.41 17593.94 18375.46 17998.36 13280.36 24795.53 11997.12 119
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13784.98 7395.61 9396.28 11486.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9397.07 120
thisisatest053088.67 16887.61 17691.86 14994.87 16280.07 21594.63 14989.90 35584.00 20188.46 15693.78 19266.88 28798.46 12183.30 19192.65 18197.06 121
CPTT-MVS91.99 8591.80 8692.55 11698.24 3181.98 16496.76 3096.49 9681.89 25490.24 12996.44 8178.59 14398.61 10689.68 11397.85 7697.06 121
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 17980.27 20891.36 28894.74 22984.87 18489.82 13692.61 22974.72 18998.47 12083.97 18393.53 16197.04 123
tttt051788.61 17087.78 17391.11 18294.96 15677.81 27595.35 10089.69 35885.09 18088.05 16394.59 16166.93 28598.48 11783.27 19292.13 18997.03 124
Anonymous2024052988.09 18486.59 20792.58 11596.53 8681.92 16695.99 7195.84 15374.11 35389.06 14795.21 12761.44 32798.81 8983.67 18987.47 26097.01 125
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16395.16 11696.36 10770.19 37985.81 21195.25 12476.70 16298.63 10382.07 21696.86 9997.00 126
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 10093.75 21983.13 12696.02 6995.74 16087.68 11495.89 2598.17 282.78 8698.46 12196.71 1096.17 11296.98 127
旧先验196.79 7681.81 16895.67 16696.81 6386.69 3797.66 8396.97 128
ab-mvs89.41 14688.35 15892.60 11395.15 14882.65 15092.20 26895.60 17383.97 20288.55 15393.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
DPM-MVS92.58 7891.74 8795.08 1596.19 9589.31 592.66 25196.56 9383.44 21691.68 11295.04 13586.60 4098.99 7085.60 16397.92 7496.93 130
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9995.62 12583.17 12496.14 5796.12 12988.13 10095.82 2698.04 1683.43 7598.48 11796.97 996.23 11196.92 131
DP-MVS Recon91.95 8691.28 9293.96 5798.33 2785.92 5794.66 14896.66 8582.69 23690.03 13595.82 10582.30 9499.03 5884.57 17596.48 10896.91 132
QAPM89.51 14188.15 16593.59 7094.92 15984.58 8196.82 2996.70 8378.43 31083.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9195.02 15183.67 10896.19 5096.10 13187.27 12195.98 2498.05 1383.07 8298.45 12596.68 1195.51 12096.88 134
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9392.49 25683.62 11196.02 6995.72 16386.78 13496.04 2298.19 182.30 9498.43 12996.38 1395.42 12696.86 135
testing9187.11 22786.18 22289.92 23494.43 18875.38 31391.53 28592.27 29686.48 14086.50 19490.24 30261.19 33297.53 19982.10 21490.88 20496.84 136
OMC-MVS91.23 9990.62 10493.08 8496.27 9384.07 9893.52 21695.93 14486.95 12889.51 13996.13 9378.50 14598.35 13485.84 16192.90 17696.83 137
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6297.76 18092.19 6998.66 4296.76 138
MVS_111021_LR92.47 8092.29 8292.98 9295.99 10984.43 9193.08 23896.09 13288.20 9791.12 12095.72 11181.33 11497.76 18091.74 8697.37 8796.75 139
UGNet89.95 12988.95 14192.95 9594.51 18283.31 12095.70 8595.23 19789.37 5687.58 17293.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24894.74 14095.61 17284.07 20085.36 23694.52 16359.78 34297.34 22482.93 19687.88 25496.71 141
testing9986.72 24085.73 24589.69 24694.23 19674.91 31691.35 28990.97 33386.14 15586.36 20090.22 30359.41 34497.48 20382.24 21190.66 20596.69 142
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17072.41 34593.15 23490.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
h-mvs3390.80 10590.15 11292.75 10596.01 10582.66 14995.43 9895.53 17889.80 4393.08 6895.64 11375.77 17199.00 6892.07 7378.05 35496.60 144
无先验93.28 23096.26 11673.95 35599.05 5580.56 24596.59 145
ETVMVS84.43 28582.92 29488.97 26894.37 19074.67 31791.23 29488.35 36683.37 21986.06 20989.04 32755.38 36195.67 31867.12 35391.34 19496.58 146
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16780.81 19693.54 21595.10 20483.11 22586.82 19190.67 29579.74 12797.75 18380.51 24693.55 16096.57 147
sss88.93 16288.26 16490.94 19394.05 20380.78 19791.71 28095.38 19081.55 26588.63 15293.91 18775.04 18395.47 32782.47 20591.61 19196.57 147
ETV-MVS92.74 7592.66 7292.97 9395.20 14484.04 10095.07 12096.51 9490.73 2292.96 7291.19 27684.06 6998.34 13591.72 8796.54 10596.54 149
FE-MVS87.40 21186.02 23091.57 16294.56 18079.69 23090.27 30993.72 26580.57 27988.80 15091.62 26565.32 30298.59 10874.97 30594.33 15096.44 150
DP-MVS87.25 21885.36 25292.90 9797.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13672.66 21999.05 5566.92 35792.33 18796.40 151
CANet_DTU90.26 12089.41 13092.81 10193.46 22983.01 13593.48 21794.47 23689.43 5487.76 17094.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22384.26 9595.83 7996.14 12689.00 7292.43 9197.50 2883.37 7898.72 9696.61 1297.44 8596.32 153
TAMVS89.21 15288.29 16291.96 14193.71 22082.62 15193.30 22894.19 24782.22 24387.78 16993.94 18378.83 13896.95 25277.70 27792.98 17596.32 153
thisisatest051587.33 21485.99 23191.37 17193.49 22779.55 23290.63 30589.56 36180.17 28287.56 17390.86 28767.07 28498.28 14181.50 22993.02 17496.29 155
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22483.61 11393.01 24194.68 23281.95 25087.82 16893.24 20878.69 14196.99 25080.34 24893.23 17196.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss88.42 17487.33 18391.72 15794.92 15980.98 19092.97 24394.54 23478.16 31683.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15879.28 24391.77 27894.30 24376.04 33483.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
testing1186.44 25185.35 25389.69 24694.29 19575.40 31291.30 29090.53 34184.76 18885.06 24090.13 30858.95 34897.45 20782.08 21591.09 20096.21 159
GA-MVS86.61 24285.27 25590.66 19991.33 29978.71 25090.40 30893.81 26385.34 17385.12 23989.57 32061.25 32997.11 24280.99 23789.59 22596.15 160
原ACMM192.01 13597.34 6481.05 18896.81 7078.89 30090.45 12695.92 10082.65 8798.84 8880.68 24398.26 6196.14 161
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 19994.39 16796.21 12476.38 32986.19 20695.44 11779.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GSMVS96.12 163
sam_mvs171.70 22896.12 163
SCA86.32 25385.18 25689.73 24492.15 26576.60 29591.12 29691.69 31383.53 21485.50 22388.81 33166.79 28896.48 27876.65 28790.35 21096.12 163
PatchmatchNetpermissive85.85 26084.70 26789.29 25891.76 28275.54 30988.49 34491.30 32481.63 26385.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing22284.84 28083.32 28589.43 25694.15 20175.94 30491.09 29789.41 36284.90 18385.78 21289.44 32252.70 37396.28 29270.80 33091.57 19296.07 167
新几何193.10 8197.30 6684.35 9495.56 17471.09 37691.26 11996.24 8582.87 8598.86 8479.19 26498.10 6696.07 167
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34687.12 36192.75 28378.80 30384.95 24390.53 29764.43 30896.71 26274.74 30693.86 15596.06 169
test22296.55 8481.70 17092.22 26795.01 20768.36 38290.20 13096.14 9280.26 12197.80 7896.05 170
PVSNet_Blended_VisFu91.38 9690.91 10092.80 10296.39 9083.17 12494.87 13296.66 8583.29 22189.27 14394.46 16480.29 12099.17 4787.57 13795.37 12796.05 170
testdata90.49 20796.40 8977.89 27295.37 19272.51 36893.63 5596.69 6682.08 10197.65 18883.08 19397.39 8695.94 172
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20881.21 18591.87 27696.06 13685.78 16188.55 15395.73 11074.67 19097.27 22988.71 12489.64 22495.91 173
MAR-MVS90.30 11889.37 13193.07 8696.61 8184.48 8795.68 8695.67 16682.36 24187.85 16692.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16382.77 14192.08 27394.49 23581.52 26686.93 18392.79 22578.32 14898.23 14379.93 25390.55 20695.88 175
BH-RMVSNet88.37 17687.48 17991.02 18795.28 13879.45 23592.89 24593.07 27585.45 17186.91 18594.84 14870.35 24797.76 18073.97 31194.59 14295.85 176
PVSNet_Blended90.73 10890.32 10891.98 13996.12 9781.25 18292.55 25596.83 6682.04 24889.10 14592.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32580.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
XVG-OURS89.40 14888.70 14891.52 16394.06 20281.46 17791.27 29296.07 13486.14 15588.89 14995.77 10868.73 27297.26 23187.39 14089.96 21595.83 178
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33594.11 18392.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15795.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27785.75 21389.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
test_vis1_n_192089.39 14989.84 12188.04 29192.97 24772.64 34094.71 14496.03 13986.18 15391.94 10396.56 7861.63 32495.74 31693.42 4195.11 13395.74 182
hse-mvs289.88 13389.34 13291.51 16494.83 16581.12 18793.94 19993.91 25989.80 4393.08 6893.60 19775.77 17197.66 18792.07 7377.07 36195.74 182
AUN-MVS87.78 19286.54 20991.48 16694.82 16681.05 18893.91 20393.93 25683.00 22886.93 18393.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35482.17 38987.50 37278.47 30877.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
LS3D87.89 18886.32 21792.59 11496.07 10382.92 13895.23 11094.92 21675.66 33682.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
SDMVSNet90.19 12189.61 12491.93 14396.00 10683.09 13092.89 24595.98 14088.73 7886.85 18995.20 12872.09 22697.08 24388.90 12189.85 21995.63 187
sd_testset88.59 17287.85 17290.83 19496.00 10680.42 20692.35 26194.71 23088.73 7886.85 18995.20 12867.31 27996.43 28379.64 25789.85 21995.63 187
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18793.24 27181.41 26784.46 25495.13 13375.57 17896.62 26577.21 28293.84 15695.61 189
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
baseline188.10 18387.28 18590.57 20194.96 15680.07 21594.27 17491.29 32586.74 13587.41 17594.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33888.62 34381.96 39081.37 26885.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
CR-MVSNet85.35 26983.76 28090.12 22490.58 33079.34 23985.24 37491.96 30878.27 31385.55 21887.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28386.08 20888.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23985.24 37496.76 7571.44 37485.55 21882.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 30086.14 37579.90 28686.26 20490.72 29457.17 35495.81 31271.03 32992.62 18295.35 196
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34389.47 33091.04 33176.26 33286.45 19889.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34794.55 15494.43 23778.47 30891.95 10295.50 11651.16 37693.81 35093.02 4894.56 14395.26 198
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27991.29 32583.28 22280.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline286.50 24885.39 25089.84 23791.12 30776.70 29491.88 27588.58 36482.35 24279.95 32790.95 28673.42 21097.63 19280.27 25089.95 21695.19 200
test_cas_vis1_n_192088.83 16688.85 14788.78 27091.15 30676.72 29393.85 20494.93 21583.23 22492.81 7896.00 9661.17 33394.45 33791.67 8894.84 13595.17 201
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32483.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34883.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13394.42 16495.92 14582.81 23386.34 20294.65 15773.89 20299.02 6180.69 24295.51 12095.05 204
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14894.29 17395.44 18679.71 28984.01 26994.18 17476.68 16398.75 9377.28 28193.41 16695.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu88.65 16988.35 15889.54 25193.33 23276.39 29994.47 16094.36 24187.70 11385.43 22989.56 32173.45 20997.26 23185.57 16491.28 19594.97 206
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35189.55 32689.88 35683.41 21784.54 25187.95 34567.25 28195.11 33281.82 22293.37 16894.97 206
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35189.55 32689.88 35679.17 29584.54 25187.95 34555.56 35995.11 33281.82 22293.37 16894.97 206
nrg03091.08 10390.39 10693.17 7893.07 24086.91 2296.41 3996.26 11688.30 9288.37 15894.85 14682.19 9897.64 19191.09 9582.95 29994.96 209
thres600view787.65 19686.67 20290.59 20096.08 10278.72 24994.88 13191.58 31687.06 12588.08 16192.30 23868.91 26998.10 15270.05 33891.10 19694.96 209
thres40087.62 20186.64 20390.57 20195.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.96 209
PAPM86.68 24185.39 25090.53 20393.05 24279.33 24289.79 32394.77 22878.82 30281.95 30193.24 20876.81 15997.30 22566.94 35593.16 17294.95 212
MIMVSNet82.59 30480.53 30988.76 27191.51 28978.32 26186.57 36590.13 34879.32 29280.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21191.47 32166.19 38686.16 20795.28 12267.18 28393.33 35780.89 23990.42 20994.88 214
PatchT82.68 30381.27 30586.89 32090.09 34070.94 36084.06 38190.15 34774.91 34585.63 21783.57 37669.37 25994.87 33665.19 36288.50 24394.84 215
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8492.70 25385.39 6996.57 3696.43 9978.74 30580.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 216
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20484.43 9189.27 33295.87 15173.62 35884.43 25694.33 16678.48 14698.86 8470.27 33194.45 14794.81 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
F-COLMAP87.95 18786.80 19791.40 16996.35 9280.88 19494.73 14195.45 18479.65 29082.04 30094.61 15871.13 23398.50 11576.24 29391.05 20194.80 218
FIs90.51 11690.35 10790.99 19093.99 20980.98 19095.73 8397.54 489.15 6486.72 19294.68 15481.83 11197.24 23385.18 16688.31 24894.76 219
FC-MVSNet-test90.27 11990.18 11190.53 20393.71 22079.85 22795.77 8297.59 389.31 5886.27 20394.67 15581.93 10897.01 24984.26 17988.09 25194.71 220
HQP_MVS90.60 11590.19 11091.82 15294.70 17182.73 14595.85 7796.22 12190.81 1786.91 18594.86 14474.23 19498.12 15088.15 12889.99 21394.63 221
plane_prior596.22 12198.12 15088.15 12889.99 21394.63 221
tpm284.08 28982.94 29387.48 30391.39 29571.27 35389.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 221
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 16096.59 9089.50 5286.46 19693.29 20677.25 15697.23 23484.92 16981.02 32894.59 224
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11889.05 6780.04 32693.29 20679.02 13797.05 24781.71 22780.05 34294.59 224
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19595.26 10995.98 14086.26 15086.21 20594.29 16979.70 12897.65 18888.87 12388.10 24994.57 226
VPNet88.20 18187.47 18090.39 21393.56 22679.46 23494.04 19195.54 17788.67 8186.96 18294.58 16269.33 26097.15 23884.05 18280.53 33794.56 227
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28292.46 28976.20 33382.67 29395.22 12563.94 31197.29 22877.51 28085.80 27494.53 228
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34994.01 19494.04 25478.30 31291.97 10095.22 12556.28 35793.71 35292.89 4994.71 13794.52 229
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21382.89 13995.46 9797.33 2587.91 10588.43 15793.31 20474.17 19797.40 21987.32 14282.86 30494.52 229
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16796.68 3392.37 29189.03 6987.00 18194.85 14673.05 21497.65 18891.03 9788.63 23994.51 231
HQP4-MVS85.43 22997.96 17194.51 231
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13594.92 12996.31 11089.88 4085.53 22093.85 19076.63 16496.96 25181.91 22079.87 34594.50 233
HQP-MVS89.80 13489.28 13591.34 17294.17 19881.56 17194.39 16796.04 13788.81 7485.43 22993.97 18273.83 20497.96 17187.11 14689.77 22294.50 233
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23183.72 10694.43 16397.12 4189.80 4386.46 19693.32 20383.16 7997.23 23484.92 16981.02 32894.49 235
thres100view90087.63 19986.71 20090.38 21596.12 9778.55 25395.03 12391.58 31687.15 12288.06 16292.29 23968.91 26998.10 15270.13 33591.10 19694.48 236
tfpn200view987.58 20386.64 20390.41 21295.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.48 236
WR-MVS88.38 17587.67 17590.52 20593.30 23380.18 21093.26 23195.96 14388.57 8585.47 22592.81 22376.12 16696.91 25581.24 23282.29 30894.47 238
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35589.55 32687.88 36877.41 32083.37 28487.31 35356.71 35593.65 35480.62 24492.85 17994.40 239
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33794.68 14593.78 26479.55 29190.70 12395.31 12148.75 38193.28 35893.15 4593.99 15294.38 240
iter_conf0590.51 11690.46 10590.67 19893.09 23880.06 21794.62 15094.98 21086.30 14788.54 15594.80 14981.89 11097.59 19490.45 11089.49 22694.36 241
API-MVS90.66 11190.07 11492.45 12196.36 9184.57 8296.06 6595.22 19982.39 23989.13 14494.27 17280.32 11998.46 12180.16 25196.71 10294.33 242
PS-MVSNAJ91.18 10190.92 9991.96 14195.26 14182.60 15292.09 27295.70 16486.27 14991.84 10692.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
xiu_mvs_v2_base91.13 10290.89 10191.86 14994.97 15582.42 15592.24 26695.64 17186.11 15891.74 11193.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
xiu_mvs_v1_base_debu90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24992.04 27077.68 28194.03 19293.94 25585.81 16082.42 29491.32 27370.33 24897.06 24680.33 24990.23 21194.14 248
131487.51 20686.57 20890.34 21792.42 26079.74 22992.63 25295.35 19478.35 31180.14 32391.62 26574.05 19997.15 23881.05 23393.53 16194.12 249
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22584.52 8594.78 13897.47 1189.26 6086.44 19992.32 23782.10 10097.39 22284.81 17280.84 33294.12 249
BH-untuned88.60 17188.13 16690.01 23195.24 14278.50 25693.29 22994.15 24984.75 18984.46 25493.40 20075.76 17397.40 21977.59 27894.52 14594.12 249
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33181.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
ACMM84.12 989.14 15388.48 15791.12 17994.65 17481.22 18495.31 10296.12 12985.31 17485.92 21094.34 16570.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121186.59 24485.13 25790.98 19296.52 8781.50 17396.14 5796.16 12573.78 35683.65 27792.15 24363.26 31697.37 22382.82 20081.74 31794.06 254
test_djsdf89.03 15988.64 14990.21 21990.74 32579.28 24395.96 7395.90 14884.66 19285.33 23792.94 21874.02 20097.30 22589.64 11488.53 24194.05 255
cascas86.43 25284.98 26090.80 19692.10 26980.92 19390.24 31395.91 14773.10 36383.57 28088.39 33865.15 30497.46 20684.90 17191.43 19394.03 256
XXY-MVS87.65 19686.85 19590.03 22892.14 26680.60 20293.76 20795.23 19782.94 23084.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
CLD-MVS89.47 14388.90 14491.18 17894.22 19782.07 16292.13 27096.09 13287.90 10685.37 23592.45 23374.38 19297.56 19787.15 14490.43 20893.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax88.24 18087.50 17890.48 20890.89 31980.14 21295.31 10295.65 17084.97 18284.24 26594.02 17865.31 30397.42 21288.56 12588.52 24293.89 259
IterMVS-LS88.36 17787.91 17189.70 24593.80 21678.29 26393.73 20895.08 20685.73 16384.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 15488.86 14689.80 24191.84 27878.30 26293.70 21195.01 20785.73 16387.15 17995.28 12279.87 12597.21 23683.81 18687.36 26393.88 261
mvs_tets88.06 18687.28 18590.38 21590.94 31579.88 22595.22 11195.66 16885.10 17984.21 26693.94 18363.53 31397.40 21988.50 12688.40 24693.87 262
MVSTER88.84 16388.29 16290.51 20692.95 24880.44 20593.73 20895.01 20784.66 19287.15 17993.12 21372.79 21897.21 23687.86 13387.36 26393.87 262
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35887.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
v2v48287.84 18987.06 18990.17 22090.99 31179.23 24694.00 19695.13 20184.87 18485.53 22092.07 25174.45 19197.45 20784.71 17481.75 31693.85 265
thres20087.21 22286.24 22190.12 22495.36 13578.53 25493.26 23192.10 30086.42 14388.00 16491.11 28269.24 26498.00 16869.58 33991.04 20293.83 266
tt080586.92 23285.74 24490.48 20892.22 26379.98 22395.63 9294.88 21983.83 20684.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
CP-MVSNet87.63 19987.26 18788.74 27493.12 23776.59 29695.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
GBi-Net87.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26282.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18381.49 17595.30 10496.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18381.49 17596.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
PS-CasMVS87.32 21586.88 19388.63 27792.99 24676.33 30195.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
FMVSNet287.19 22485.82 23891.30 17494.01 20583.67 10894.79 13794.94 21183.57 21183.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
ACMP84.23 889.01 16188.35 15890.99 19094.73 16881.27 18195.07 12095.89 15086.48 14083.67 27694.30 16869.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FMVSNet387.40 21186.11 22691.30 17493.79 21883.64 11094.20 17994.81 22583.89 20484.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
OPM-MVS90.12 12289.56 12591.82 15293.14 23683.90 10294.16 18095.74 16088.96 7387.86 16595.43 11972.48 22297.91 17588.10 13290.18 21293.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS86.80 23586.27 22088.40 28092.32 26275.71 30895.18 11496.38 10587.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
TR-MVS86.78 23685.76 24289.82 23894.37 19078.41 25892.47 25692.83 28081.11 27586.36 20092.40 23468.73 27297.48 20373.75 31489.85 21993.57 280
v14419287.19 22486.35 21589.74 24290.64 32878.24 26493.92 20195.43 18781.93 25185.51 22291.05 28474.21 19697.45 20782.86 19881.56 31893.53 281
v192192086.97 23186.06 22989.69 24690.53 33378.11 26793.80 20595.43 18781.90 25385.33 23791.05 28472.66 21997.41 21782.05 21781.80 31593.53 281
v119287.25 21886.33 21690.00 23290.76 32479.04 24793.80 20595.48 18082.57 23785.48 22491.18 27873.38 21297.42 21282.30 20982.06 31093.53 281
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35988.31 34791.70 31278.91 29880.49 31987.18 35769.30 26397.08 24368.12 34983.56 29493.51 284
v124086.78 23685.85 23789.56 25090.45 33477.79 27793.61 21395.37 19281.65 26185.43 22991.15 28071.50 23097.43 21181.47 23082.05 31293.47 285
eth_miper_zixun_eth86.50 24885.77 24188.68 27591.94 27375.81 30790.47 30794.89 21782.05 24684.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
v114487.61 20286.79 19890.06 22791.01 31079.34 23993.95 19895.42 18983.36 22085.66 21691.31 27474.98 18497.42 21283.37 19082.06 31093.42 287
cl2286.78 23685.98 23289.18 26192.34 26177.62 28290.84 30294.13 25181.33 26983.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
v14887.04 22986.32 21789.21 25990.94 31577.26 28693.71 21094.43 23784.84 18684.36 26090.80 29176.04 16897.05 24782.12 21379.60 34793.31 289
AllTest83.42 29881.39 30489.52 25295.01 15277.79 27793.12 23590.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
TestCases89.52 25295.01 15277.79 27790.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
c3_l87.14 22686.50 21189.04 26592.20 26477.26 28691.22 29594.70 23182.01 24984.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
DIV-MVS_self_test86.53 24685.78 23988.75 27292.02 27276.45 29890.74 30394.30 24381.83 25783.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
cl____86.52 24785.78 23988.75 27292.03 27176.46 29790.74 30394.30 24381.83 25783.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31594.93 12895.75 15987.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21791.99 30585.54 16977.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
WR-MVS_H87.80 19187.37 18289.10 26393.23 23478.12 26695.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34294.01 19494.40 23984.72 19079.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
gg-mvs-nofinetune81.77 31079.37 32588.99 26790.85 32177.73 28086.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14193.11 299
MSDG84.86 27983.09 29090.14 22393.80 21680.05 21889.18 33593.09 27478.89 30078.19 34191.91 25565.86 30197.27 22968.47 34488.45 24493.11 299
v7n86.81 23485.76 24289.95 23390.72 32679.25 24595.07 12095.92 14584.45 19582.29 29590.86 28772.60 22197.53 19979.42 26280.52 33893.08 301
miper_ehance_all_eth87.22 22186.62 20689.02 26692.13 26777.40 28590.91 30194.81 22581.28 27084.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31887.69 35594.09 25381.20 27481.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
ACMH80.38 1785.36 26883.68 28190.39 21394.45 18680.63 20094.73 14194.85 22182.09 24577.24 34892.65 22760.01 34097.58 19572.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall86.90 23386.18 22289.06 26491.66 28777.58 28390.22 31594.82 22479.16 29684.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
V4287.68 19486.86 19490.15 22290.58 33080.14 21294.24 17795.28 19583.66 20985.67 21591.33 27174.73 18897.41 21784.43 17881.83 31492.89 307
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25591.20 30178.00 26891.70 28195.55 17585.05 18182.97 28992.25 24154.49 36697.48 20382.93 19687.45 26292.89 307
v887.50 20886.71 20089.89 23591.37 29679.40 23694.50 15695.38 19084.81 18783.60 27991.33 27176.05 16797.42 21282.84 19980.51 33992.84 309
pm-mvs186.61 24285.54 24689.82 23891.44 29180.18 21095.28 10894.85 22183.84 20581.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25487.71 37085.56 16873.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
anonymousdsp87.84 18987.09 18890.12 22489.13 35280.54 20394.67 14695.55 17582.05 24683.82 27292.12 24571.47 23197.15 23887.15 14487.80 25892.67 312
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29190.19 31692.65 28785.40 17281.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
v1087.25 21886.38 21389.85 23691.19 30279.50 23394.48 15795.45 18483.79 20783.62 27891.19 27675.13 18197.42 21281.94 21980.60 33492.63 314
ACMH+81.04 1485.05 27683.46 28489.82 23894.66 17379.37 23794.44 16294.12 25282.19 24478.04 34392.82 22258.23 35097.54 19873.77 31382.90 30392.54 315
pmmvs584.21 28782.84 29788.34 28388.95 35476.94 29092.41 25791.91 31075.63 33780.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30390.18 31792.41 29083.24 22381.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25295.66 16867.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27590.04 31990.19 34684.70 19181.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29190.70 34083.70 20878.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 33081.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
BH-w/o87.57 20487.05 19089.12 26294.90 16177.90 27192.41 25793.51 26882.89 23283.70 27591.34 27075.75 17497.07 24575.49 29793.49 16392.39 322
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28888.68 34290.06 35072.32 37086.47 19590.76 29372.15 22594.40 33981.78 22493.49 16392.36 323
PVSNet_BlendedMVS89.98 12689.70 12290.82 19596.12 9781.25 18293.92 20196.83 6683.49 21589.10 14592.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 30084.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
PatchMatch-RL86.77 23985.54 24690.47 21195.88 11382.71 14790.54 30692.31 29479.82 28884.32 26291.57 26968.77 27196.39 28573.16 31693.48 16592.32 325
pmmvs683.42 29881.60 30288.87 26988.01 36677.87 27394.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
testing380.46 32679.59 32483.06 35593.44 23064.64 38493.33 22385.47 37984.34 19679.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
CHOSEN 280x42085.15 27483.99 27788.65 27692.47 25778.40 25979.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34188.45 34694.87 22082.99 22971.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 20092.89 27877.62 31886.89 18893.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33490.24 31387.83 36983.41 21779.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
pmmvs485.43 26683.86 27990.16 22190.02 34282.97 13790.27 30992.67 28675.93 33580.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21794.44 18781.50 17392.31 26594.89 21783.03 22779.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32289.04 33892.16 29975.33 34077.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24295.28 13879.75 22894.25 17592.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25978.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25978.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26991.49 28692.26 29776.87 32576.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
ITE_SJBPF88.24 28691.88 27777.05 28992.92 27785.54 16980.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32688.79 34090.42 34279.16 29659.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32791.61 28492.75 28378.11 31772.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22491.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
Baseline_NR-MVSNet87.07 22886.63 20588.40 28091.44 29177.87 27394.23 17892.57 28884.12 19985.74 21492.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
D2MVS85.90 25885.09 25888.35 28290.79 32277.42 28491.83 27795.70 16480.77 27880.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
TransMVSNet (Re)84.43 28583.06 29288.54 27891.72 28378.44 25795.18 11492.82 28182.73 23579.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33985.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
our_test_381.93 30880.46 31186.33 32888.46 36073.48 33088.46 34591.11 32776.46 32776.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28792.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34490.25 31193.07 27581.24 27279.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33685.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31187.61 35880.97 39276.82 32688.68 15195.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29993.93 25678.71 30676.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35791.89 27487.98 36778.91 29884.78 24590.22 30369.11 26794.02 34664.70 36690.44 20790.71 355
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
USDC82.76 30181.26 30687.26 30791.17 30374.55 31989.27 33293.39 27078.26 31475.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
GG-mvs-BLEND87.94 29489.73 34877.91 27087.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18890.60 359
tfpnnormal84.72 28283.23 28889.20 26092.79 25280.05 21894.48 15795.81 15482.38 24081.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24793.23 27275.61 33875.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29791.08 32881.23 27374.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 31093.12 23592.03 30376.45 32875.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26291.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
EG-PatchMatch MVS82.37 30680.34 31288.46 27990.27 33679.35 23892.80 24994.33 24277.14 32473.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33973.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
MVP-Stereo85.97 25784.86 26489.32 25790.92 31782.19 16092.11 27194.19 24778.76 30478.77 34091.63 26468.38 27696.56 27375.01 30493.95 15389.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31569.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25591.25 29393.53 26777.50 31980.15 32291.58 26761.99 32295.51 32375.69 29694.35 14989.16 371
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33385.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28574.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32974.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33289.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
test_040281.30 32079.17 33087.67 29793.19 23578.17 26592.98 24291.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35683.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23471.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30292.33 26390.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 35090.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32989.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1580.00 4140.00 41594.29 16975.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.15 3486.62 3397.07 4583.63 21094.19 4296.91 5787.57 3199.26 4291.99 7798.44 55
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15795.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_part298.55 1287.22 1996.40 17
sam_mvs70.60 241
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32388.99 32897.57 19679.44 260
TEST997.53 5886.49 3794.07 18896.78 7281.61 26492.77 8096.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19396.76 7581.86 25592.70 8496.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5796.72 8192.16 9598.97 75
test_prior485.96 5494.11 183
test_prior294.12 18287.67 11592.63 8596.39 8286.62 3891.50 9198.67 41
旧先验293.36 22271.25 37594.37 3997.13 24186.74 149
新几何293.11 237
原ACMM292.94 244
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata192.15 26987.94 104
plane_prior794.70 17182.74 144
plane_prior694.52 18182.75 14274.23 194
plane_prior494.86 144
plane_prior382.75 14290.26 3386.91 185
plane_prior295.85 7790.81 17
plane_prior194.59 176
plane_prior82.73 14595.21 11289.66 5089.88 218
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 171
HQP-NCC94.17 19894.39 16788.81 7485.43 229
ACMP_Plane94.17 19894.39 16788.81 7485.43 229
BP-MVS87.11 146
HQP3-MVS96.04 13789.77 222
HQP2-MVS73.83 204
NP-MVS94.37 19082.42 15593.98 181
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30784.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123