This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3999.92 1199.90 1
IU-MVS99.84 3299.88 799.32 25398.30 8999.84 1398.86 8199.85 5899.89 2
UA-Net99.42 3899.29 4699.80 4099.62 12699.55 7699.50 12899.70 1598.79 4999.77 3399.96 197.45 11899.96 1998.92 7099.90 2399.89 2
CHOSEN 1792x268899.19 7199.10 7199.45 11799.89 898.52 19899.39 18499.94 198.73 5399.11 19399.89 1095.50 18499.94 5499.50 1099.97 399.89 2
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3199.96 1998.91 7199.84 6599.88 5
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8399.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 5
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6099.96 1998.16 16899.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 3899.27 5299.88 699.89 899.80 2699.67 4599.50 12298.70 5599.77 3399.49 22498.21 9799.95 4398.46 14399.77 9399.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DP-MVS99.16 7798.95 9799.78 4599.77 4999.53 8199.41 17299.50 12297.03 22899.04 20999.88 1597.39 11999.92 8098.66 11399.90 2399.87 10
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12899.60 7599.45 18299.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
Test_1112_low_res98.89 11798.66 13399.57 8899.69 9698.95 15499.03 27699.47 16096.98 23099.15 18799.23 29196.77 14299.89 11498.83 8898.78 18499.86 11
HyFIR lowres test99.11 9298.92 9999.65 7299.90 399.37 10199.02 27999.91 397.67 16399.59 8799.75 11195.90 17199.73 18699.53 699.02 16899.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12799.61 7499.45 18299.01 1899.89 499.82 4999.01 1699.92 8099.56 599.95 699.85 14
CVMVSNet98.57 15298.67 13098.30 26599.35 19695.59 31299.50 12899.55 6698.60 6199.39 13299.83 4294.48 22799.45 23898.75 9898.56 19399.85 14
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15699.76 3799.75 11199.13 1099.92 8099.07 5599.92 1199.85 14
MG-MVS99.13 8199.02 8499.45 11799.57 14098.63 18699.07 26599.34 23898.99 2599.61 8099.82 4997.98 10799.87 12297.00 25999.80 8499.85 14
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12499.76 3799.86 2398.82 4499.93 6998.82 9299.91 1699.84 18
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 5099.67 2298.15 10599.68 5399.69 14099.06 1399.96 1998.69 10899.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5799.66 2798.13 10799.66 6599.68 14698.96 2599.96 1998.62 11799.87 4099.84 18
#test#99.43 3399.29 4699.86 1899.87 1599.80 2699.55 10999.67 2297.83 14299.68 5399.69 14099.06 1399.96 1998.39 14799.87 4099.84 18
Regformer-499.59 399.54 499.73 5899.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2299.94 5499.45 1999.92 1199.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13799.74 11798.81 4599.94 5498.79 9499.86 5199.84 18
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13764.01 36898.81 4599.94 5498.79 9499.86 5199.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 5099.67 2298.15 10599.67 6099.69 14098.95 2899.96 1998.69 10899.87 4099.84 18
HPM-MVScopyleft99.42 3899.28 5099.83 3399.90 399.72 4299.81 1399.54 7397.59 16899.68 5399.63 17398.91 3699.94 5498.58 12699.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2699.83 4299.28 399.97 1198.48 13999.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 11198.77 12099.59 8499.68 10099.02 14199.25 23399.48 14297.23 20899.13 18999.58 19296.93 13799.90 10698.87 7898.78 18499.84 18
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21199.60 8499.79 8898.79 4799.95 4398.83 8899.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
Regformer-399.57 799.53 599.68 6599.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2499.91 9199.44 2199.92 1199.83 29
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8899.65 3297.84 14199.71 4699.80 7699.12 1199.97 1198.33 15599.87 4099.83 29
mPP-MVS99.44 3099.30 4299.86 1899.88 1199.79 3099.69 3799.48 14298.12 10999.50 10499.75 11198.78 4899.97 1198.57 12899.89 3399.83 29
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 9098.07 11999.53 9999.63 17398.93 3599.97 1198.74 9999.91 1699.83 29
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11899.55 9699.64 16698.91 3699.96 1998.72 10399.90 2399.82 36
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6299.39 21398.91 3899.78 3199.85 2999.36 299.94 5498.84 8599.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11499.48 10899.74 11798.29 9399.96 1997.93 18699.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 3399.30 4299.82 3599.79 4299.74 4199.29 21599.40 20998.79 4999.52 10199.62 17998.91 3699.90 10698.64 11599.75 9899.82 36
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6999.36 19699.46 17099.07 1399.79 2699.82 4998.85 4199.92 8098.68 11099.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj99.12 8798.87 10699.86 1899.72 8099.79 3099.44 15799.51 10397.29 20199.59 8799.74 11798.15 10299.96 1996.74 27499.69 11199.81 41
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2299.80 7698.94 3199.96 1998.93 6899.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 4599.24 5799.85 2599.86 2199.79 3099.60 7599.67 2297.97 13099.63 7399.68 14698.52 7499.95 4398.38 14999.86 5199.81 41
SMA-MVScopyleft99.44 3099.30 4299.85 2599.73 7599.83 1499.56 10099.47 16097.45 18599.78 3199.82 4999.18 899.91 9198.79 9499.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9298.90 10299.74 5699.80 4199.46 9399.59 8199.49 13097.03 22899.63 7399.69 14097.27 12699.96 1997.82 19599.84 6599.81 41
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6899.69 1898.12 10999.63 7399.84 3898.73 5999.96 1998.55 13499.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 13399.37 1997.12 31799.60 13491.75 35298.61 32999.44 19199.35 199.83 1799.85 2998.70 6299.81 15699.02 5999.91 1699.81 41
3Dnovator+97.12 1399.18 7398.97 9399.82 3599.17 24699.68 4999.81 1399.51 10399.20 498.72 25499.89 1095.68 17999.97 1198.86 8199.86 5199.81 41
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9599.49 13899.46 17098.95 3299.83 1799.76 10699.01 1699.93 6999.17 4599.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8499.49 13899.49 13098.94 3399.83 1799.76 10699.01 1699.94 5499.15 4899.87 4099.80 49
APD-MVScopyleft99.27 6299.08 7499.84 3299.75 6299.79 3099.50 12899.50 12297.16 21399.77 3399.82 4998.78 4899.94 5497.56 22299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5299.19 6399.79 4399.61 13099.65 5799.30 21199.48 14298.86 4099.21 17599.63 17398.72 6099.90 10698.25 15999.63 12599.80 49
test117299.43 3399.29 4699.85 2599.75 6299.82 2099.60 7599.56 5698.28 9199.74 4199.79 8898.53 7299.95 4398.55 13499.78 9099.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 599.96 1998.91 7199.85 5899.79 53
OPU-MVS99.64 7799.56 14499.72 4299.60 7599.70 13399.27 499.42 24898.24 16099.80 8499.79 53
SR-MVS99.43 3399.29 4699.86 1899.75 6299.83 1499.59 8199.62 3398.21 10099.73 4399.79 8898.68 6399.96 1998.44 14599.77 9399.79 53
HPM-MVS++copyleft99.39 4799.23 5999.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 15999.53 21198.64 6899.96 1998.44 14599.80 8499.79 53
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 5099.59 4398.13 10799.82 2099.81 6298.60 6999.96 1998.46 14399.88 3699.79 53
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8299.86 2199.07 13799.47 14999.93 297.66 16499.71 4699.86 2397.73 11399.96 1999.47 1799.82 7899.79 53
3Dnovator97.25 999.24 6899.05 7699.81 3899.12 25399.66 5499.84 699.74 1099.09 1098.92 22899.90 795.94 16899.98 698.95 6599.92 1199.79 53
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6299.54 7398.36 8199.79 2699.82 4998.86 4099.95 4398.62 11799.81 8099.78 61
CDPH-MVS99.13 8198.91 10199.80 4099.75 6299.71 4499.15 25199.41 20396.60 25999.60 8499.55 20298.83 4399.90 10697.48 22999.83 7299.78 61
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.53 7299.95 4398.61 12099.81 8099.77 63
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.75 5698.61 12099.81 8099.77 63
SD-MVS99.41 4299.52 699.05 16799.74 7099.68 4999.46 15299.52 9099.11 799.88 599.91 599.43 197.70 34998.72 10399.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 3899.30 4299.78 4599.62 12699.71 4499.26 23199.52 9098.82 4499.39 13299.71 12998.96 2599.85 13198.59 12599.80 8499.77 63
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9198.95 29899.85 698.82 4499.54 9799.73 12498.51 7599.74 17998.91 7199.88 3699.77 63
QAPM98.67 14698.30 16399.80 4099.20 23599.67 5299.77 2499.72 1194.74 32198.73 25399.90 795.78 17599.98 696.96 26399.88 3699.76 68
GeoE98.85 12998.62 14099.53 9999.61 13099.08 13599.80 1799.51 10397.10 22199.31 14999.78 9595.23 19699.77 17198.21 16199.03 16699.75 69
test9_res97.49 22899.72 10599.75 69
train_agg99.02 10698.77 12099.77 4799.67 10199.65 5799.05 27099.41 20396.28 28098.95 22399.49 22498.76 5399.91 9197.63 21399.72 10599.75 69
agg_prior199.01 10998.76 12299.76 5099.67 10199.62 6198.99 28699.40 20996.26 28398.87 23699.49 22498.77 5199.91 9197.69 21099.72 10599.75 69
agg_prior297.21 24599.73 10499.75 69
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6999.14 25399.53 8499.00 2299.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
SF-MVS99.38 4899.24 5799.79 4399.79 4299.68 4999.57 9399.54 7397.82 14799.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
test_prior399.21 6999.05 7699.68 6599.67 10199.48 8998.96 29499.56 5698.34 8499.01 21299.52 21498.68 6399.83 14597.96 18399.74 10199.74 74
test_prior99.68 6599.67 10199.48 8999.56 5699.83 14599.74 74
test1299.75 5199.64 11799.61 6399.29 26599.21 17598.38 8699.89 11499.74 10199.74 74
114514_t98.93 11598.67 13099.72 6199.85 2599.53 8199.62 6899.59 4392.65 34099.71 4699.78 9598.06 10599.90 10698.84 8599.91 1699.74 74
Vis-MVSNetpermissive99.12 8798.97 9399.56 9099.78 4499.10 13399.68 4299.66 2798.49 6799.86 1199.87 2094.77 21399.84 13699.19 4299.41 13799.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 7099.59 6999.54 7399.69 14098.47 7899.68 11699.73 81
112199.09 9698.87 10699.75 5199.74 7099.60 6599.27 22299.48 14296.82 24499.25 16699.65 15998.38 8699.93 6997.53 22599.67 11899.73 81
EPNet98.86 12198.71 12699.30 14097.20 34898.18 21799.62 6898.91 31199.28 298.63 27299.81 6295.96 16599.99 199.24 3899.72 10599.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10298.87 10699.57 8899.73 7599.32 10499.75 2899.20 27898.02 12899.56 9299.86 2396.54 14999.67 20898.09 17299.13 15699.73 81
F-COLMAP99.19 7199.04 7999.64 7799.78 4499.27 11299.42 17099.54 7397.29 20199.41 12599.59 18998.42 8499.93 6998.19 16399.69 11199.73 81
DeepC-MVS98.35 299.30 5799.19 6399.64 7799.82 3799.23 11699.62 6899.55 6698.94 3399.63 7399.95 295.82 17499.94 5499.37 2399.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.75 5199.75 6299.59 6999.54 7396.76 24599.29 15499.64 16698.43 8199.94 5496.92 26899.66 11999.72 87
无先验98.99 28699.51 10396.89 23899.93 6997.53 22599.72 87
test22299.75 6299.49 8898.91 30399.49 13096.42 27499.34 14699.65 15998.28 9499.69 11199.72 87
testdata99.54 9399.75 6298.95 15499.51 10397.07 22399.43 11899.70 13398.87 3999.94 5497.76 20099.64 12399.72 87
VNet99.11 9298.90 10299.73 5899.52 14999.56 7499.41 17299.39 21399.01 1899.74 4199.78 9595.56 18299.92 8099.52 798.18 21099.72 87
WTY-MVS99.06 10098.88 10599.61 8299.62 12699.16 12399.37 19299.56 5698.04 12599.53 9999.62 17996.84 13899.94 5498.85 8398.49 19799.72 87
CSCG99.32 5599.32 3199.32 13599.85 2598.29 21299.71 3499.66 2798.11 11199.41 12599.80 7698.37 8899.96 1998.99 6199.96 599.72 87
ETH3D-3000-0.199.21 6999.02 8499.77 4799.73 7599.69 4799.38 18999.51 10397.45 18599.61 8099.75 11198.51 7599.91 9197.45 23499.83 7299.71 94
原ACMM199.65 7299.73 7599.33 10399.47 16097.46 18299.12 19199.66 15898.67 6699.91 9197.70 20999.69 11199.71 94
ETH3 D test640098.70 14298.35 15899.73 5899.69 9699.60 6599.16 24799.45 18295.42 30999.27 15999.60 18697.39 11999.91 9195.36 30799.83 7299.70 96
Anonymous20240521198.30 16997.98 18799.26 14899.57 14098.16 21899.41 17298.55 33796.03 30399.19 18199.74 11791.87 29099.92 8099.16 4798.29 20599.70 96
casdiffmvs99.13 8198.98 9299.56 9099.65 11599.16 12399.56 10099.50 12298.33 8799.41 12599.86 2395.92 16999.83 14599.45 1999.16 15299.70 96
LFMVS97.90 21797.35 26299.54 9399.52 14999.01 14399.39 18498.24 34197.10 22199.65 7099.79 8884.79 35199.91 9199.28 3498.38 19999.69 99
EPNet_dtu98.03 19897.96 19098.23 27198.27 33295.54 31599.23 23698.75 32299.02 1597.82 31499.71 12996.11 16199.48 23493.04 33499.65 12299.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10398.84 11299.66 6899.74 7099.44 9599.39 18499.38 21997.70 15899.28 15699.28 28398.34 9099.85 13196.96 26399.45 13499.69 99
EPP-MVSNet99.13 8198.99 8999.53 9999.65 11599.06 13899.81 1399.33 24597.43 18999.60 8499.88 1597.14 12899.84 13699.13 4998.94 17299.69 99
sss99.17 7599.05 7699.53 9999.62 12698.97 14899.36 19699.62 3397.83 14299.67 6099.65 15997.37 12399.95 4399.19 4299.19 15199.68 103
PHI-MVS99.30 5799.17 6599.70 6499.56 14499.52 8499.58 8899.80 897.12 21799.62 7799.73 12498.58 7099.90 10698.61 12099.91 1699.68 103
PVSNet_094.43 1996.09 30395.47 30697.94 28899.31 20994.34 33797.81 35499.70 1597.12 21797.46 32098.75 32989.71 32199.79 16497.69 21081.69 35499.68 103
diffmvs99.14 7999.02 8499.51 10799.61 13098.96 15299.28 21799.49 13098.46 7099.72 4599.71 12996.50 15099.88 11999.31 3199.11 15799.67 106
baseline99.15 7899.02 8499.53 9999.66 11099.14 12899.72 3299.48 14298.35 8299.42 12199.84 3896.07 16299.79 16499.51 999.14 15599.67 106
TAMVS99.12 8799.08 7499.24 15199.46 17098.55 19299.51 12299.46 17098.09 11499.45 11399.82 4998.34 9099.51 23398.70 10598.93 17399.67 106
Anonymous2024052998.09 18997.68 22199.34 13099.66 11098.44 20699.40 18099.43 19993.67 33199.22 17299.89 1090.23 31699.93 6999.26 3798.33 20099.66 109
CHOSEN 280x42099.12 8799.13 6899.08 16399.66 11097.89 23398.43 33999.71 1398.88 3999.62 7799.76 10696.63 14699.70 20399.46 1899.99 199.66 109
CDS-MVSNet99.09 9699.03 8199.25 14999.42 17898.73 17899.45 15399.46 17098.11 11199.46 11299.77 10298.01 10699.37 25598.70 10598.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 15098.34 15999.51 10799.40 18699.03 14098.80 31399.36 22996.33 27799.00 21799.12 30598.46 7999.84 13695.23 30999.37 14299.66 109
hse-mvs397.70 25397.28 27198.97 17899.70 9397.27 25399.36 19699.45 18298.94 3399.66 6599.64 16694.93 20199.99 199.48 1584.36 35099.65 113
CANet99.25 6799.14 6799.59 8499.41 18199.16 12399.35 20299.57 5198.82 4499.51 10399.61 18396.46 15199.95 4399.59 199.98 299.65 113
TSAR-MVS + GP.99.36 5099.36 2199.36 12999.67 10198.61 18999.07 26599.33 24599.00 2299.82 2099.81 6299.06 1399.84 13699.09 5399.42 13699.65 113
MVSFormer99.17 7599.12 6999.29 14399.51 15298.94 15799.88 199.46 17097.55 17399.80 2499.65 15997.39 11999.28 27399.03 5799.85 5899.65 113
jason99.13 8199.03 8199.45 11799.46 17098.87 16499.12 25599.26 26898.03 12799.79 2699.65 15997.02 13399.85 13199.02 5999.90 2399.65 113
jason: jason.
PLCcopyleft97.94 499.02 10698.85 11199.53 9999.66 11099.01 14399.24 23599.52 9096.85 24099.27 15999.48 23098.25 9699.91 9197.76 20099.62 12699.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 24597.34 26598.94 18299.70 9397.53 24699.25 23399.51 10391.90 34299.30 15199.63 17398.78 4899.64 21888.09 35399.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6199.51 15299.60 6599.23 23699.44 19197.04 22699.39 13299.67 15298.30 9299.92 8097.27 24199.69 11199.64 120
LCM-MVSNet-Re97.83 22898.15 16996.87 32399.30 21092.25 35199.59 8198.26 34097.43 18996.20 33899.13 30296.27 15898.73 33398.17 16798.99 17099.64 120
BH-RMVSNet98.41 16098.08 17799.40 12499.41 18198.83 17199.30 21198.77 32197.70 15898.94 22599.65 15992.91 26399.74 17996.52 28299.55 13199.64 120
MVS_111021_LR99.41 4299.33 2999.65 7299.77 4999.51 8698.94 30099.85 698.82 4499.65 7099.74 11798.51 7599.80 16198.83 8899.89 3399.64 120
MVS97.28 28096.55 28899.48 11198.78 30298.95 15499.27 22299.39 21383.53 35598.08 30499.54 20796.97 13599.87 12294.23 32199.16 15299.63 124
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12399.41 17299.71 1398.98 2799.45 11399.78 9599.19 799.54 23299.28 3499.84 6599.63 124
GA-MVS97.85 22397.47 24299.00 17499.38 19197.99 22698.57 33299.15 28497.04 22698.90 23199.30 27989.83 31999.38 25296.70 27798.33 20099.62 126
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13699.71 8698.88 16399.80 1799.44 19197.91 13599.36 14099.78 9595.49 18599.43 24797.91 18799.11 15799.62 126
DPM-MVS98.95 11498.71 12699.66 6899.63 12099.55 7698.64 32899.10 28997.93 13399.42 12199.55 20298.67 6699.80 16195.80 29699.68 11699.61 128
baseline198.31 16797.95 19299.38 12899.50 15998.74 17799.59 8198.93 30698.41 7599.14 18899.60 18694.59 22299.79 16498.48 13993.29 32799.61 128
VDD-MVS97.73 24697.35 26298.88 19899.47 16997.12 25999.34 20598.85 31798.19 10199.67 6099.85 2982.98 35399.92 8099.49 1498.32 20499.60 130
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 10099.05 27099.66 2799.14 699.57 9199.80 7698.46 7999.94 5499.57 499.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 9898.97 9399.42 12399.76 5298.79 17598.78 31599.91 396.74 24699.67 6099.49 22497.53 11699.88 11998.98 6299.85 5899.60 130
OMC-MVS99.08 9899.04 7999.20 15499.67 10198.22 21699.28 21799.52 9098.07 11999.66 6599.81 6297.79 11199.78 16997.79 19799.81 8099.60 130
test_yl98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
DCV-MVSNet98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
AllTest98.87 11898.72 12499.31 13699.86 2198.48 20499.56 10099.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
TestCases99.31 13699.86 2198.48 20499.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
lupinMVS99.13 8199.01 8899.46 11699.51 15298.94 15799.05 27099.16 28397.86 13799.80 2499.56 19997.39 11999.86 12598.94 6699.85 5899.58 138
tttt051798.42 15898.14 17099.28 14699.66 11098.38 21099.74 3196.85 35697.68 16099.79 2699.74 11791.39 30399.89 11498.83 8899.56 12999.57 139
RPSCF98.22 17398.62 14096.99 31899.82 3791.58 35399.72 3299.44 19196.61 25799.66 6599.89 1095.92 16999.82 15297.46 23299.10 16099.57 139
DSMNet-mixed97.25 28197.35 26296.95 32197.84 33893.61 34599.57 9396.63 35996.13 29798.87 23698.61 33494.59 22297.70 34995.08 31198.86 17999.55 141
AdaColmapbinary99.01 10998.80 11799.66 6899.56 14499.54 7899.18 24599.70 1598.18 10499.35 14399.63 17396.32 15699.90 10697.48 22999.77 9399.55 141
alignmvs98.81 13398.56 14899.58 8799.43 17799.42 9799.51 12298.96 30498.61 6099.35 14398.92 32294.78 21099.77 17199.35 2498.11 21699.54 143
PatchmatchNetpermissive98.31 16798.36 15698.19 27399.16 24895.32 32199.27 22298.92 30897.37 19599.37 13799.58 19294.90 20499.70 20397.43 23699.21 14999.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 12998.84 11298.89 19599.73 7597.28 25298.32 34599.60 4097.86 13799.50 10499.57 19696.75 14399.86 12598.56 13199.70 11099.54 143
MSDG98.98 11198.80 11799.53 9999.76 5299.19 11898.75 31899.55 6697.25 20599.47 10999.77 10297.82 11099.87 12296.93 26699.90 2399.54 143
UGNet98.87 11898.69 12899.40 12499.22 23198.72 17999.44 15799.68 1999.24 399.18 18499.42 24492.74 26799.96 1999.34 2899.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 148
sam_mvs194.86 20699.52 148
SCA98.19 17798.16 16898.27 27099.30 21095.55 31399.07 26598.97 30297.57 17199.43 11899.57 19692.72 26899.74 17997.58 21799.20 15099.52 148
Patchmatch-test97.93 21297.65 22498.77 21899.18 24097.07 26499.03 27699.14 28696.16 29398.74 25299.57 19694.56 22499.72 19093.36 33099.11 15799.52 148
PMMVS98.80 13698.62 14099.34 13099.27 21998.70 18098.76 31799.31 25697.34 19699.21 17599.07 30797.20 12799.82 15298.56 13198.87 17899.52 148
LS3D99.27 6299.12 6999.74 5699.18 24099.75 3899.56 10099.57 5198.45 7199.49 10799.85 2997.77 11299.94 5498.33 15599.84 6599.52 148
Effi-MVS+98.81 13398.59 14699.48 11199.46 17099.12 13298.08 35199.50 12297.50 18199.38 13599.41 24896.37 15599.81 15699.11 5198.54 19499.51 154
Patchmatch-RL test95.84 30595.81 30395.95 33195.61 35490.57 35498.24 34798.39 33995.10 31595.20 34498.67 33194.78 21097.77 34796.28 28890.02 34299.51 154
mvs_anonymous99.03 10598.99 8999.16 15899.38 19198.52 19899.51 12299.38 21997.79 14899.38 13599.81 6297.30 12499.45 23899.35 2498.99 17099.51 154
UniMVSNet_ETH3D97.32 27996.81 28598.87 20299.40 18697.46 24899.51 12299.53 8495.86 30598.54 28099.77 10282.44 35699.66 21198.68 11097.52 23599.50 157
ab-mvs98.86 12198.63 13599.54 9399.64 11799.19 11899.44 15799.54 7397.77 15099.30 15199.81 6294.20 23599.93 6999.17 4598.82 18199.49 158
thisisatest053098.35 16598.03 18299.31 13699.63 12098.56 19199.54 11296.75 35897.53 17899.73 4399.65 15991.25 30699.89 11498.62 11799.56 12999.48 159
ADS-MVSNet298.02 20098.07 18097.87 29399.33 20195.19 32499.23 23699.08 29296.24 28599.10 19699.67 15294.11 23998.93 32796.81 27199.05 16499.48 159
ADS-MVSNet98.20 17698.08 17798.56 23599.33 20196.48 29399.23 23699.15 28496.24 28599.10 19699.67 15294.11 23999.71 19696.81 27199.05 16499.48 159
tpm97.67 25997.55 23298.03 28199.02 27295.01 32799.43 16398.54 33896.44 27299.12 19199.34 26991.83 29299.60 22697.75 20296.46 26899.48 159
CNLPA99.14 7998.99 8999.59 8499.58 13899.41 9899.16 24799.44 19198.45 7199.19 18199.49 22498.08 10499.89 11497.73 20499.75 9899.48 159
canonicalmvs99.02 10698.86 11099.51 10799.42 17899.32 10499.80 1799.48 14298.63 5899.31 14998.81 32597.09 13099.75 17899.27 3697.90 22099.47 164
MIMVSNet97.73 24697.45 24598.57 23399.45 17597.50 24799.02 27998.98 30196.11 29899.41 12599.14 30190.28 31298.74 33295.74 29798.93 17399.47 164
MVS_Test99.10 9598.97 9399.48 11199.49 16199.14 12899.67 4599.34 23897.31 19999.58 8999.76 10697.65 11599.82 15298.87 7899.07 16399.46 166
MDTV_nov1_ep13_2view95.18 32599.35 20296.84 24199.58 8995.19 19797.82 19599.46 166
MVS-HIRNet95.75 30695.16 31097.51 30899.30 21093.69 34398.88 30595.78 36185.09 35498.78 24992.65 35891.29 30599.37 25594.85 31499.85 5899.46 166
DP-MVS Recon99.12 8798.95 9799.65 7299.74 7099.70 4699.27 22299.57 5196.40 27699.42 12199.68 14698.75 5699.80 16197.98 18299.72 10599.44 169
PatchMatch-RL98.84 13298.62 14099.52 10599.71 8699.28 11099.06 26899.77 997.74 15599.50 10499.53 21195.41 18699.84 13697.17 25299.64 12399.44 169
DROMVSNet99.40 4599.35 2499.55 9299.52 14999.50 8799.84 699.58 4998.35 8299.68 5399.64 16698.19 9899.71 19699.59 199.80 8499.43 171
VDDNet97.55 26597.02 28299.16 15899.49 16198.12 22299.38 18999.30 26095.35 31099.68 5399.90 782.62 35599.93 6999.31 3198.13 21599.42 172
PCF-MVS97.08 1497.66 26097.06 28199.47 11499.61 13099.09 13498.04 35299.25 27091.24 34598.51 28199.70 13394.55 22599.91 9192.76 33899.85 5899.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16799.53 14798.82 17298.84 30997.51 35397.63 16684.77 35699.21 29592.09 28798.91 32898.98 6292.21 33799.41 174
HY-MVS97.30 798.85 12998.64 13499.47 11499.42 17899.08 13599.62 6899.36 22997.39 19499.28 15699.68 14696.44 15399.92 8098.37 15198.22 20699.40 175
Fast-Effi-MVS+98.70 14298.43 15399.51 10799.51 15299.28 11099.52 11899.47 16096.11 29899.01 21299.34 26996.20 16099.84 13697.88 18998.82 18199.39 176
CANet_DTU98.97 11398.87 10699.25 14999.33 20198.42 20999.08 26499.30 26099.16 599.43 11899.75 11195.27 19299.97 1198.56 13199.95 699.36 177
EIA-MVS99.18 7399.09 7399.45 11799.49 16199.18 12099.67 4599.53 8497.66 16499.40 13099.44 23998.10 10399.81 15698.94 6699.62 12699.35 178
EPMVS97.82 23197.65 22498.35 26098.88 28795.98 30599.49 13894.71 36497.57 17199.26 16499.48 23092.46 28299.71 19697.87 19099.08 16299.35 178
CostFormer97.72 24897.73 21797.71 30299.15 25194.02 33999.54 11299.02 29894.67 32299.04 20999.35 26692.35 28599.77 17198.50 13897.94 21999.34 180
BH-untuned98.42 15898.36 15698.59 22999.49 16196.70 28599.27 22299.13 28797.24 20798.80 24699.38 25795.75 17699.74 17997.07 25799.16 15299.33 181
PAPM97.59 26497.09 28099.07 16499.06 26598.26 21598.30 34699.10 28994.88 31898.08 30499.34 26996.27 15899.64 21889.87 34798.92 17599.31 182
tpm297.44 27697.34 26597.74 30199.15 25194.36 33699.45 15398.94 30593.45 33698.90 23199.44 23991.35 30499.59 22797.31 23998.07 21799.29 183
JIA-IIPM97.50 27197.02 28298.93 18498.73 30897.80 23899.30 21198.97 30291.73 34398.91 22994.86 35695.10 19899.71 19697.58 21797.98 21899.28 184
dp97.75 24297.80 20597.59 30599.10 25893.71 34299.32 20798.88 31596.48 26999.08 20299.55 20292.67 27399.82 15296.52 28298.58 19099.24 185
thisisatest051598.14 18497.79 20699.19 15599.50 15998.50 20198.61 32996.82 35796.95 23499.54 9799.43 24191.66 29999.86 12598.08 17699.51 13399.22 186
TESTMET0.1,197.55 26597.27 27498.40 25698.93 28396.53 29198.67 32497.61 35296.96 23298.64 27199.28 28388.63 33399.45 23897.30 24099.38 13899.21 187
DWT-MVSNet_test97.53 26797.40 25697.93 28999.03 27194.86 33199.57 9398.63 33496.59 26198.36 29298.79 32689.32 32599.74 17998.14 17098.16 21499.20 188
CR-MVSNet98.17 18097.93 19598.87 20299.18 24098.49 20299.22 24199.33 24596.96 23299.56 9299.38 25794.33 23199.00 31594.83 31598.58 19099.14 189
RPMNet96.72 29095.90 30099.19 15599.18 24098.49 20299.22 24199.52 9088.72 35199.56 9297.38 34894.08 24199.95 4386.87 35798.58 19099.14 189
testgi97.65 26197.50 23998.13 27799.36 19596.45 29499.42 17099.48 14297.76 15197.87 31299.45 23891.09 30798.81 33194.53 31798.52 19599.13 191
test-LLR98.06 19297.90 19798.55 23798.79 29997.10 26098.67 32497.75 34997.34 19698.61 27598.85 32394.45 22899.45 23897.25 24399.38 13899.10 192
test-mter97.49 27497.13 27998.55 23798.79 29997.10 26098.67 32497.75 34996.65 25398.61 27598.85 32388.23 33799.45 23897.25 24399.38 13899.10 192
IB-MVS95.67 1896.22 29895.44 30898.57 23399.21 23396.70 28598.65 32797.74 35196.71 24897.27 32498.54 33586.03 34799.92 8098.47 14286.30 34899.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 12198.63 13599.54 9399.37 19399.66 5499.45 15399.54 7396.61 25799.01 21299.40 25297.09 13099.86 12597.68 21299.53 13299.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 16698.48 15197.90 29299.16 24894.78 33299.31 20999.11 28897.27 20399.45 11399.59 18995.33 19099.84 13698.48 13998.61 18799.09 196
hse-mvs297.50 27197.14 27898.59 22999.49 16197.05 26699.28 21799.22 27498.94 3399.66 6599.42 24494.93 20199.65 21599.48 1583.80 35299.08 197
xiu_mvs_v1_base_debu99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base_debi99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15799.88 1198.53 19499.34 20599.59 4397.55 17398.70 26199.89 1095.83 17399.90 10698.10 17199.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 28796.31 29298.59 22999.48 16897.04 26999.27 22299.22 27497.44 18898.51 28199.41 24891.97 28899.66 21197.71 20783.83 35199.07 202
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10599.04 26999.53 8199.82 1199.72 1194.56 32498.08 30499.88 1594.73 21699.98 697.47 23199.76 9699.06 203
CS-MVS99.34 5299.31 3899.43 12299.44 17699.47 9199.68 4299.56 5698.41 7599.62 7799.41 24898.35 8999.76 17599.52 799.76 9699.05 204
ETV-MVS99.26 6599.21 6199.40 12499.46 17099.30 10899.56 10099.52 9098.52 6599.44 11799.27 28698.41 8599.86 12599.10 5299.59 12899.04 205
PatchT97.03 28696.44 29098.79 21698.99 27598.34 21199.16 24799.07 29492.13 34199.52 10197.31 35194.54 22698.98 31788.54 35198.73 18699.03 206
BH-w/o98.00 20597.89 20198.32 26399.35 19696.20 30299.01 28498.90 31396.42 27498.38 29099.00 31595.26 19499.72 19096.06 29098.61 18799.03 206
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22899.41 18196.99 27399.52 11899.49 13098.11 11199.24 16799.34 26996.96 13699.79 16497.95 18599.45 13499.02 208
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19599.71 8697.74 24099.12 25599.54 7398.44 7499.42 12199.71 12994.20 23599.92 8098.54 13698.90 17799.00 209
XVG-OURS98.73 14198.68 12998.88 19899.70 9397.73 24198.92 30199.55 6698.52 6599.45 11399.84 3895.27 19299.91 9198.08 17698.84 18099.00 209
tpm cat197.39 27797.36 26097.50 30999.17 24693.73 34199.43 16399.31 25691.27 34498.71 25599.08 30694.31 23399.77 17196.41 28698.50 19699.00 209
xiu_mvs_v2_base99.26 6599.25 5699.29 14399.53 14798.91 16199.02 27999.45 18298.80 4899.71 4699.26 28798.94 3199.98 699.34 2899.23 14898.98 212
PS-MVSNAJ99.32 5599.32 3199.30 14099.57 14098.94 15798.97 29399.46 17098.92 3799.71 4699.24 29099.01 1699.98 699.35 2499.66 11998.97 213
tpmvs97.98 20798.02 18497.84 29599.04 26994.73 33399.31 20999.20 27896.10 30298.76 25199.42 24494.94 20099.81 15696.97 26298.45 19898.97 213
mvs-test198.86 12198.84 11298.89 19599.33 20197.77 23999.44 15799.30 26098.47 6899.10 19699.43 24196.78 14099.95 4398.73 10199.02 16898.96 215
thres600view797.86 22297.51 23898.92 18699.72 8097.95 23199.59 8198.74 32597.94 13299.27 15998.62 33291.75 29399.86 12593.73 32698.19 20998.96 215
thres40097.77 23797.38 25898.92 18699.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.96 215
TR-MVS97.76 23897.41 25598.82 21199.06 26597.87 23498.87 30798.56 33696.63 25698.68 26399.22 29292.49 27899.65 21595.40 30597.79 22298.95 218
test0.0.03 197.71 25297.42 25498.56 23598.41 33197.82 23798.78 31598.63 33497.34 19698.05 30898.98 31994.45 22898.98 31795.04 31297.15 25798.89 219
baseline297.87 22097.55 23298.82 21199.18 24098.02 22499.41 17296.58 36096.97 23196.51 33599.17 29793.43 25299.57 22897.71 20799.03 16698.86 220
cascas97.69 25497.43 25398.48 24398.60 32397.30 25198.18 35099.39 21392.96 33998.41 28898.78 32893.77 24999.27 27698.16 16898.61 18798.86 220
131498.68 14598.54 14999.11 16298.89 28698.65 18499.27 22299.49 13096.89 23897.99 30999.56 19997.72 11499.83 14597.74 20399.27 14698.84 222
CS-MVS-test99.27 6299.22 6099.40 12499.39 18999.60 6599.67 4599.56 5698.30 8999.47 10999.25 28898.27 9599.79 16499.41 2299.66 11998.81 223
PS-MVSNAJss98.92 11698.92 9998.90 19298.78 30298.53 19499.78 2299.54 7398.07 11999.00 21799.76 10699.01 1699.37 25599.13 4997.23 25298.81 223
RRT_test8_iter0597.72 24897.60 22998.08 27899.23 22796.08 30499.63 6299.49 13097.54 17698.94 22599.81 6287.99 34099.35 26399.21 4196.51 26798.81 223
FC-MVSNet-test98.75 14098.62 14099.15 16099.08 26299.45 9499.86 599.60 4098.23 9798.70 26199.82 4996.80 13999.22 28399.07 5596.38 27098.79 226
test_part197.75 24297.24 27599.29 14399.59 13699.63 6099.65 5799.49 13096.17 29198.44 28699.69 14089.80 32099.47 23598.68 11093.66 32398.78 227
nrg03098.64 14998.42 15499.28 14699.05 26899.69 4799.81 1399.46 17098.04 12599.01 21299.82 4996.69 14599.38 25299.34 2894.59 31098.78 227
FIs98.78 13798.63 13599.23 15399.18 24099.54 7899.83 1099.59 4398.28 9198.79 24899.81 6296.75 14399.37 25599.08 5496.38 27098.78 227
EU-MVSNet97.98 20798.03 18297.81 29898.72 31096.65 28899.66 5099.66 2798.09 11498.35 29399.82 4995.25 19598.01 34297.41 23795.30 29798.78 227
jajsoiax98.43 15798.28 16498.88 19898.60 32398.43 20799.82 1199.53 8498.19 10198.63 27299.80 7693.22 25799.44 24399.22 3997.50 23898.77 231
mvs_tets98.40 16298.23 16698.91 19098.67 31698.51 20099.66 5099.53 8498.19 10198.65 27099.81 6292.75 26599.44 24399.31 3197.48 24298.77 231
Anonymous2023121197.88 21897.54 23598.90 19299.71 8698.53 19499.48 14499.57 5194.16 32798.81 24499.68 14693.23 25599.42 24898.84 8594.42 31398.76 233
XXY-MVS98.38 16398.09 17699.24 15199.26 22199.32 10499.56 10099.55 6697.45 18598.71 25599.83 4293.23 25599.63 22398.88 7496.32 27298.76 233
v7n97.87 22097.52 23698.92 18698.76 30698.58 19099.84 699.46 17096.20 28898.91 22999.70 13394.89 20599.44 24396.03 29193.89 32198.75 235
bset_n11_16_dypcd98.16 18197.97 18898.73 22098.26 33398.28 21497.99 35398.01 34697.68 16099.10 19699.63 17395.68 17999.15 29398.78 9796.55 26598.75 235
PS-CasMVS97.93 21297.59 23198.95 18198.99 27599.06 13899.68 4299.52 9097.13 21598.31 29599.68 14692.44 28399.05 30798.51 13794.08 31998.75 235
test_djsdf98.67 14698.57 14798.98 17698.70 31398.91 16199.88 199.46 17097.55 17399.22 17299.88 1595.73 17799.28 27399.03 5797.62 22798.75 235
Effi-MVS+-dtu98.78 13798.89 10498.47 24799.33 20196.91 27999.57 9399.30 26098.47 6899.41 12598.99 31696.78 14099.74 17998.73 10199.38 13898.74 239
CP-MVSNet98.09 18997.78 20999.01 17298.97 28099.24 11599.67 4599.46 17097.25 20598.48 28499.64 16693.79 24899.06 30698.63 11694.10 31898.74 239
VPA-MVSNet98.29 17097.95 19299.30 14099.16 24899.54 7899.50 12899.58 4998.27 9399.35 14399.37 26092.53 27799.65 21599.35 2494.46 31198.72 241
PEN-MVS97.76 23897.44 25098.72 22298.77 30598.54 19399.78 2299.51 10397.06 22598.29 29799.64 16692.63 27498.89 33098.09 17293.16 32998.72 241
VPNet97.84 22697.44 25099.01 17299.21 23398.94 15799.48 14499.57 5198.38 7899.28 15699.73 12488.89 32999.39 25099.19 4293.27 32898.71 243
EI-MVSNet98.67 14698.67 13098.68 22599.35 19697.97 22799.50 12899.38 21996.93 23799.20 17899.83 4297.87 10899.36 25998.38 14997.56 23298.71 243
WR-MVS98.06 19297.73 21799.06 16598.86 29499.25 11499.19 24499.35 23497.30 20098.66 26499.43 24193.94 24499.21 28898.58 12694.28 31598.71 243
IterMVS-LS98.46 15598.42 15498.58 23299.59 13698.00 22599.37 19299.43 19996.94 23699.07 20399.59 18997.87 10899.03 31098.32 15795.62 29098.71 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 21597.60 22998.87 20298.83 29798.65 18499.55 10999.34 23896.20 28899.32 14899.40 25294.36 23099.26 27796.37 28795.03 30398.70 247
v124097.69 25497.32 26898.79 21698.85 29598.43 20799.48 14499.36 22996.11 29899.27 15999.36 26393.76 25099.24 27994.46 31895.23 29898.70 247
DTE-MVSNet97.51 27097.19 27798.46 24898.63 31998.13 22199.84 699.48 14296.68 25097.97 31099.67 15292.92 26198.56 33496.88 27092.60 33698.70 247
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 21998.78 30298.62 18799.65 5799.49 13097.76 15198.49 28399.60 18694.23 23498.97 32498.00 18192.90 33198.70 247
v192192097.80 23597.45 24598.84 20998.80 29898.53 19499.52 11899.34 23896.15 29599.24 16799.47 23393.98 24399.29 27295.40 30595.13 30198.69 251
v119297.81 23397.44 25098.91 19098.88 28798.68 18199.51 12299.34 23896.18 29099.20 17899.34 26994.03 24299.36 25995.32 30895.18 29998.69 251
v2v48298.06 19297.77 21198.92 18698.90 28598.82 17299.57 9399.36 22996.65 25399.19 18199.35 26694.20 23599.25 27897.72 20694.97 30498.69 251
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 17998.92 28498.98 14599.48 14499.53 8497.76 15198.71 25599.46 23796.43 15499.22 28398.57 12892.87 33398.69 251
OurMVSNet-221017-097.88 21897.77 21198.19 27398.71 31296.53 29199.88 199.00 29997.79 14898.78 24999.94 391.68 29699.35 26397.21 24596.99 25998.69 251
gg-mvs-nofinetune96.17 30195.32 30998.73 22098.79 29998.14 22099.38 18994.09 36591.07 34798.07 30791.04 36189.62 32499.35 26396.75 27399.09 16198.68 256
v114497.98 20797.69 22098.85 20898.87 29198.66 18399.54 11299.35 23496.27 28299.23 17199.35 26694.67 21999.23 28096.73 27595.16 30098.68 256
DU-MVS98.08 19197.79 20698.96 17998.87 29198.98 14599.41 17299.45 18297.87 13698.71 25599.50 22194.82 20799.22 28398.57 12892.87 33398.68 256
NR-MVSNet97.97 21097.61 22899.02 17198.87 29199.26 11399.47 14999.42 20197.63 16697.08 33099.50 22195.07 19999.13 29797.86 19193.59 32498.68 256
LPG-MVS_test98.22 17398.13 17198.49 24199.33 20197.05 26699.58 8899.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LGP-MVS_train98.49 24199.33 20197.05 26699.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25699.23 22796.80 28399.70 3599.60 4097.12 21798.18 30199.70 13391.73 29599.72 19098.39 14797.45 24398.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 23197.75 21598.06 28099.57 14096.36 29799.02 27999.49 13097.18 21198.71 25599.72 12892.72 26899.14 29497.44 23595.86 28498.67 263
pm-mvs197.68 25697.28 27198.88 19899.06 26598.62 18799.50 12899.45 18296.32 27897.87 31299.79 8892.47 27999.35 26397.54 22493.54 32598.67 263
v1097.85 22397.52 23698.86 20598.99 27598.67 18299.75 2899.41 20395.70 30698.98 21999.41 24894.75 21599.23 28096.01 29294.63 30998.67 263
HQP_MVS98.27 17298.22 16798.44 25299.29 21496.97 27599.39 18499.47 16098.97 3099.11 19399.61 18392.71 27099.69 20697.78 19897.63 22598.67 263
plane_prior599.47 16099.69 20697.78 19897.63 22598.67 263
SixPastTwentyTwo97.50 27197.33 26798.03 28198.65 31796.23 30199.77 2498.68 33397.14 21497.90 31199.93 490.45 31199.18 29197.00 25996.43 26998.67 263
IterMVS97.83 22897.77 21198.02 28399.58 13896.27 30099.02 27999.48 14297.22 20998.71 25599.70 13392.75 26599.13 29797.46 23296.00 27898.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 18897.99 18698.44 25299.41 18196.96 27799.60 7599.56 5698.09 11498.15 30299.91 590.87 31099.70 20398.88 7497.45 24398.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 21197.63 22798.93 18498.95 28298.81 17499.80 1799.41 20396.03 30399.10 19699.42 24494.92 20399.30 27196.94 26594.08 31998.66 271
UniMVSNet (Re)98.29 17098.00 18599.13 16199.00 27499.36 10299.49 13899.51 10397.95 13198.97 22199.13 30296.30 15799.38 25298.36 15393.34 32698.66 271
pmmvs696.53 29396.09 29697.82 29798.69 31495.47 31799.37 19299.47 16093.46 33597.41 32199.78 9587.06 34599.33 26796.92 26892.70 33598.65 273
K. test v397.10 28596.79 28698.01 28498.72 31096.33 29899.87 497.05 35597.59 16896.16 33999.80 7688.71 33099.04 30896.69 27896.55 26598.65 273
our_test_397.65 26197.68 22197.55 30798.62 32094.97 32898.84 30999.30 26096.83 24398.19 30099.34 26997.01 13499.02 31295.00 31396.01 27798.64 275
RRT_MVS98.60 15198.44 15299.05 16798.88 28799.14 12899.49 13899.38 21997.76 15199.29 15499.86 2395.38 18799.36 25998.81 9397.16 25698.64 275
YYNet195.36 31094.51 31697.92 29097.89 33797.10 26099.10 26399.23 27393.26 33780.77 36099.04 31192.81 26498.02 34194.30 31994.18 31798.64 275
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28498.16 33597.21 25899.11 26199.24 27293.49 33480.73 36198.98 31993.02 25898.18 33794.22 32294.45 31298.64 275
Baseline_NR-MVSNet97.76 23897.45 24598.68 22599.09 26098.29 21299.41 17298.85 31795.65 30798.63 27299.67 15294.82 20799.10 30498.07 17992.89 33298.64 275
HQP4-MVS98.66 26499.64 21898.64 275
HQP-MVS98.02 20097.90 19798.37 25999.19 23796.83 28098.98 29099.39 21398.24 9498.66 26499.40 25292.47 27999.64 21897.19 24997.58 23098.64 275
ACMM97.58 598.37 16498.34 15998.48 24399.41 18197.10 26099.56 10099.45 18298.53 6499.04 20999.85 2993.00 25999.71 19698.74 9997.45 24398.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 26897.30 27098.16 27598.57 32596.73 28499.27 22298.90 31396.14 29698.37 29199.53 21191.54 30299.14 29497.51 22795.87 28398.63 283
v14897.79 23697.55 23298.50 24098.74 30797.72 24299.54 11299.33 24596.26 28398.90 23199.51 21894.68 21899.14 29497.83 19493.15 33098.63 283
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29098.24 33497.27 25399.15 25199.33 24593.80 33080.09 36299.03 31288.31 33697.86 34693.49 32994.36 31498.62 285
TransMVSNet (Re)97.15 28396.58 28798.86 20599.12 25398.85 16799.49 13898.91 31195.48 30897.16 32899.80 7693.38 25399.11 30294.16 32391.73 33898.62 285
lessismore_v097.79 29998.69 31495.44 31994.75 36395.71 34399.87 2088.69 33199.32 26895.89 29394.93 30698.62 285
MVSTER98.49 15398.32 16199.00 17499.35 19699.02 14199.54 11299.38 21997.41 19299.20 17899.73 12493.86 24799.36 25998.87 7897.56 23298.62 285
GBi-Net97.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
test197.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
FMVSNet196.84 28896.36 29198.29 26699.32 20897.26 25599.43 16399.48 14295.11 31398.55 27999.32 27683.95 35298.98 31795.81 29596.26 27398.62 285
ACMP97.20 1198.06 19297.94 19498.45 24999.37 19397.01 27199.44 15799.49 13097.54 17698.45 28599.79 8891.95 28999.72 19097.91 18797.49 24198.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 21597.78 20998.32 26399.46 17096.68 28799.56 10099.54 7398.41 7597.79 31699.87 2090.18 31799.66 21198.05 18097.18 25598.62 285
ppachtmachnet_test97.49 27497.45 24597.61 30498.62 32095.24 32298.80 31399.46 17096.11 29898.22 29999.62 17996.45 15298.97 32493.77 32595.97 28298.61 294
OPM-MVS98.19 17798.10 17398.45 24998.88 28797.07 26499.28 21799.38 21998.57 6299.22 17299.81 6292.12 28699.66 21198.08 17697.54 23498.61 294
WR-MVS_H98.13 18597.87 20298.90 19299.02 27298.84 16899.70 3599.59 4397.27 20398.40 28999.19 29695.53 18399.23 28098.34 15493.78 32298.61 294
MIMVSNet195.51 30795.04 31196.92 32297.38 34395.60 31199.52 11899.50 12293.65 33296.97 33399.17 29785.28 35096.56 35788.36 35295.55 29298.60 297
N_pmnet94.95 31495.83 30292.31 33798.47 32979.33 36299.12 25592.81 36993.87 32997.68 31799.13 30293.87 24699.01 31491.38 34296.19 27498.59 298
FMVSNet297.72 24897.36 26098.80 21599.51 15298.84 16899.45 15399.42 20196.49 26598.86 24199.29 28190.26 31398.98 31796.44 28496.56 26498.58 299
anonymousdsp98.44 15698.28 16498.94 18298.50 32898.96 15299.77 2499.50 12297.07 22398.87 23699.77 10294.76 21499.28 27398.66 11397.60 22898.57 300
FMVSNet398.03 19897.76 21498.84 20999.39 18998.98 14599.40 18099.38 21996.67 25199.07 20399.28 28392.93 26098.98 31797.10 25496.65 26198.56 301
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27299.11 25596.33 29899.41 17299.52 9098.06 12399.05 20899.50 22189.64 32399.73 18697.73 20497.38 24998.53 302
Patchmtry97.75 24297.40 25698.81 21399.10 25898.87 16499.11 26199.33 24594.83 31998.81 24499.38 25794.33 23199.02 31296.10 28995.57 29198.53 302
miper_lstm_enhance98.00 20597.91 19698.28 26999.34 20097.43 24998.88 30599.36 22996.48 26998.80 24699.55 20295.98 16498.91 32897.27 24195.50 29498.51 304
USDC97.34 27897.20 27697.75 30099.07 26395.20 32398.51 33699.04 29797.99 12998.31 29599.86 2389.02 32799.55 23195.67 30097.36 25098.49 305
cl_fuxian98.12 18798.04 18198.38 25899.30 21097.69 24598.81 31299.33 24596.67 25198.83 24299.34 26997.11 12998.99 31697.58 21795.34 29698.48 306
CLD-MVS98.16 18198.10 17398.33 26199.29 21496.82 28298.75 31899.44 19197.83 14299.13 18999.55 20292.92 26199.67 20898.32 15797.69 22498.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 19797.96 19098.33 26199.26 22197.38 25098.56 33499.31 25696.65 25398.88 23499.52 21496.58 14799.12 30197.39 23895.53 29398.47 308
MVS_030496.79 28996.52 28997.59 30599.22 23194.92 33099.04 27599.59 4396.49 26598.43 28798.99 31680.48 35999.39 25097.15 25399.27 14698.47 308
Anonymous2023120696.22 29896.03 29796.79 32597.31 34694.14 33899.63 6299.08 29296.17 29197.04 33199.06 30993.94 24497.76 34886.96 35695.06 30298.47 308
FMVSNet596.43 29696.19 29497.15 31499.11 25595.89 30799.32 20799.52 9094.47 32698.34 29499.07 30787.54 34497.07 35392.61 33995.72 28898.47 308
cl-mvsnet____98.01 20397.84 20498.55 23799.25 22597.97 22798.71 32299.34 23896.47 27198.59 27899.54 20795.65 18199.21 28897.21 24595.77 28598.46 312
cl-mvsnet198.01 20397.85 20398.48 24399.24 22697.95 23198.71 32299.35 23496.50 26498.60 27799.54 20795.72 17899.03 31097.21 24595.77 28598.46 312
pmmvs498.13 18597.90 19798.81 21398.61 32298.87 16498.99 28699.21 27796.44 27299.06 20799.58 19295.90 17199.11 30297.18 25196.11 27698.46 312
cl-mvsnet297.85 22397.64 22698.48 24399.09 26097.87 23498.60 33199.33 24597.11 22098.87 23699.22 29292.38 28499.17 29298.21 16195.99 27998.42 315
V4298.06 19297.79 20698.86 20598.98 27898.84 16899.69 3799.34 23896.53 26399.30 15199.37 26094.67 21999.32 26897.57 22194.66 30898.42 315
PVSNet_BlendedMVS98.86 12198.80 11799.03 17099.76 5298.79 17599.28 21799.91 397.42 19199.67 6099.37 26097.53 11699.88 11998.98 6297.29 25198.42 315
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31198.65 31795.65 31099.36 19699.51 10397.13 21596.04 34198.99 31688.40 33598.17 33896.71 27690.27 34198.40 318
TinyColmap97.12 28496.89 28497.83 29699.07 26395.52 31698.57 33298.74 32597.58 17097.81 31599.79 8888.16 33899.56 22995.10 31097.21 25398.39 319
miper_ehance_all_eth98.18 17998.10 17398.41 25499.23 22797.72 24298.72 32199.31 25696.60 25998.88 23499.29 28197.29 12599.13 29797.60 21595.99 27998.38 320
thres100view90097.76 23897.45 24598.69 22499.72 8097.86 23699.59 8198.74 32597.93 13399.26 16498.62 33291.75 29399.83 14593.22 33198.18 21098.37 321
tfpn200view997.72 24897.38 25898.72 22299.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.37 321
miper_enhance_ethall98.16 18198.08 17798.41 25498.96 28197.72 24298.45 33899.32 25396.95 23498.97 22199.17 29797.06 13299.22 28397.86 19195.99 27998.29 323
tfpnnormal97.84 22697.47 24298.98 17699.20 23599.22 11799.64 6099.61 3596.32 27898.27 29899.70 13393.35 25499.44 24395.69 29895.40 29598.27 324
test20.0396.12 30295.96 29996.63 32697.44 34295.45 31899.51 12299.38 21996.55 26296.16 33999.25 28893.76 25096.17 35887.35 35594.22 31698.27 324
test_method91.10 32491.36 32790.31 34195.85 35373.72 36794.89 35999.25 27068.39 36195.82 34299.02 31480.50 35898.95 32693.64 32794.89 30798.25 326
ITE_SJBPF98.08 27899.29 21496.37 29698.92 30898.34 8498.83 24299.75 11191.09 30799.62 22495.82 29497.40 24898.25 326
DIV-MVS_2432*160095.00 31294.34 31796.96 32097.07 35195.39 32099.56 10099.44 19195.11 31397.13 32997.32 35091.86 29197.27 35290.35 34681.23 35598.23 328
EG-PatchMatch MVS95.97 30495.69 30496.81 32497.78 33992.79 34999.16 24798.93 30696.16 29394.08 34899.22 29282.72 35499.47 23595.67 30097.50 23898.17 329
D2MVS98.41 16098.50 15098.15 27699.26 22196.62 28999.40 18099.61 3597.71 15798.98 21999.36 26396.04 16399.67 20898.70 10597.41 24798.15 330
TDRefinement95.42 30994.57 31597.97 28789.83 36396.11 30399.48 14498.75 32296.74 24696.68 33499.88 1588.65 33299.71 19698.37 15182.74 35398.09 331
Anonymous2024052196.20 30095.89 30197.13 31697.72 34094.96 32999.79 2199.29 26593.01 33897.20 32799.03 31289.69 32298.36 33691.16 34396.13 27598.07 332
API-MVS99.04 10399.03 8199.06 16599.40 18699.31 10799.55 10999.56 5698.54 6399.33 14799.39 25698.76 5399.78 16996.98 26199.78 9098.07 332
new_pmnet96.38 29796.03 29797.41 31098.13 33695.16 32699.05 27099.20 27893.94 32897.39 32298.79 32691.61 30199.04 30890.43 34595.77 28598.05 334
thres20097.61 26397.28 27198.62 22799.64 11798.03 22399.26 23198.74 32597.68 16099.09 20198.32 34191.66 29999.81 15692.88 33598.22 20698.03 335
KD-MVS_2432*160094.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
miper_refine_blended94.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
DeepMVS_CXcopyleft93.34 33599.29 21482.27 35999.22 27485.15 35396.33 33799.05 31090.97 30999.73 18693.57 32897.77 22398.01 336
CL-MVSNet_2432*160094.49 31793.97 32096.08 33096.16 35293.67 34498.33 34499.38 21995.13 31197.33 32398.15 34392.69 27296.57 35688.67 35079.87 35697.99 339
GG-mvs-BLEND98.45 24998.55 32698.16 21899.43 16393.68 36697.23 32598.46 33689.30 32699.22 28395.43 30498.22 20697.98 340
pmmvs394.09 32193.25 32496.60 32794.76 35894.49 33498.92 30198.18 34489.66 34896.48 33698.06 34486.28 34697.33 35189.68 34887.20 34797.97 341
LF4IMVS97.52 26897.46 24497.70 30398.98 27895.55 31399.29 21598.82 32098.07 11998.66 26499.64 16689.97 31899.61 22597.01 25896.68 26097.94 342
test_040296.64 29196.24 29397.85 29498.85 29596.43 29599.44 15799.26 26893.52 33396.98 33299.52 21488.52 33499.20 29092.58 34097.50 23897.93 343
MVP-Stereo97.81 23397.75 21597.99 28697.53 34196.60 29098.96 29498.85 31797.22 20997.23 32599.36 26395.28 19199.46 23795.51 30299.78 9097.92 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 28297.32 26896.99 31898.45 33093.51 34698.82 31199.32 25397.41 19298.13 30399.30 27988.99 32899.56 22995.68 29999.80 8497.90 345
ambc93.06 33692.68 35982.36 35898.47 33798.73 33095.09 34597.41 34755.55 36599.10 30496.42 28591.32 33997.71 346
new-patchmatchnet94.48 31894.08 31895.67 33295.08 35792.41 35099.18 24599.28 26794.55 32593.49 35097.37 34987.86 34397.01 35491.57 34188.36 34597.61 347
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 35695.94 30699.35 20299.10 28995.13 31193.55 34997.54 34688.15 33997.91 34494.58 31689.69 34497.61 347
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32897.38 34393.82 34098.24 34799.48 14291.10 34693.10 35196.66 35274.89 36098.37 33594.03 32487.71 34697.56 349
PM-MVS92.96 32392.23 32695.14 33395.61 35489.98 35699.37 19298.21 34294.80 32095.04 34697.69 34565.06 36297.90 34594.30 31989.98 34397.54 350
LCM-MVSNet86.80 32785.22 33191.53 33987.81 36480.96 36098.23 34998.99 30071.05 35990.13 35596.51 35348.45 36896.88 35590.51 34485.30 34996.76 351
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 32997.38 34393.17 34799.06 26898.75 32286.58 35294.84 34798.26 34281.53 35799.32 26889.01 34997.87 22196.76 351
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33897.24 34780.01 36198.52 33599.48 14289.01 34991.99 35399.67 15285.67 34999.13 29795.44 30397.03 25896.39 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 32685.37 33091.35 34090.21 36283.80 35798.89 30497.45 35483.13 35691.67 35495.03 35448.49 36794.70 36085.86 35877.62 35795.54 354
tmp_tt82.80 32981.52 33286.66 34266.61 37068.44 36892.79 36297.92 34768.96 36080.04 36399.85 2985.77 34896.15 35997.86 19143.89 36495.39 355
FPMVS84.93 32885.65 32982.75 34686.77 36563.39 36998.35 34198.92 30874.11 35883.39 35898.98 31950.85 36692.40 36284.54 35994.97 30492.46 356
Gipumacopyleft90.99 32590.15 32893.51 33498.73 30890.12 35593.98 36099.45 18279.32 35792.28 35294.91 35569.61 36197.98 34387.42 35495.67 28992.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 33274.86 33684.62 34475.88 36877.61 36397.63 35693.15 36888.81 35064.27 36589.29 36236.51 36983.93 36675.89 36152.31 36392.33 358
MVEpermissive76.82 2176.91 33374.31 33784.70 34385.38 36776.05 36696.88 35893.17 36767.39 36271.28 36489.01 36321.66 37487.69 36371.74 36272.29 36090.35 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 33474.97 33579.01 34870.98 36955.18 37093.37 36198.21 34265.08 36561.78 36693.83 35721.74 37392.53 36178.59 36091.12 34089.34 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 33179.22 33482.43 34791.19 36076.40 36497.55 35792.49 37066.36 36483.01 35991.27 36064.63 36385.79 36565.82 36460.65 36285.08 361
E-PMN80.61 33079.88 33382.81 34590.75 36176.38 36597.69 35595.76 36266.44 36383.52 35792.25 35962.54 36487.16 36468.53 36361.40 36184.89 362
test12339.01 33742.50 33928.53 35039.17 37120.91 37298.75 31819.17 37319.83 36838.57 36766.67 36533.16 37015.42 36837.50 36729.66 36649.26 363
testmvs39.17 33643.78 33825.37 35136.04 37216.84 37398.36 34026.56 37120.06 36738.51 36867.32 36429.64 37115.30 36937.59 36639.90 36543.98 364
wuyk23d40.18 33541.29 34036.84 34986.18 36649.12 37179.73 36322.81 37227.64 36625.46 36928.45 36921.98 37248.89 36755.80 36523.56 36712.51 365
uanet_test0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3520.00 3730.00 3740.00 36499.51 1030.00 3690.00 37099.56 19996.58 1470.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 37099.01 160.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.30 33911.06 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.58 1920.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.71 8699.79 3099.61 3596.84 24199.56 9299.54 20798.58 7099.96 1996.93 26699.75 98
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 599.76 175
9.1499.10 7199.72 8099.40 18099.51 10397.53 17899.64 7299.78 9598.84 4299.91 9197.63 21399.82 78
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 31
test_part299.81 4099.83 1499.77 33
sam_mvs94.72 217
MTGPAbinary99.47 160
test_post199.23 23665.14 36794.18 23899.71 19697.58 217
test_post65.99 36694.65 22199.73 186
patchmatchnet-post98.70 33094.79 20999.74 179
MTMP99.54 11298.88 315
gm-plane-assit98.54 32792.96 34894.65 32399.15 30099.64 21897.56 222
TEST999.67 10199.65 5799.05 27099.41 20396.22 28798.95 22399.49 22498.77 5199.91 91
test_899.67 10199.61 6399.03 27699.41 20396.28 28098.93 22799.48 23098.76 5399.91 91
agg_prior99.67 10199.62 6199.40 20998.87 23699.91 91
test_prior499.56 7498.99 286
test_prior298.96 29498.34 8499.01 21299.52 21498.68 6397.96 18399.74 101
旧先验298.96 29496.70 24999.47 10999.94 5498.19 163
新几何299.01 284
原ACMM298.95 298
testdata299.95 4396.67 279
segment_acmp98.96 25
testdata198.85 30898.32 88
plane_prior799.29 21497.03 270
plane_prior699.27 21996.98 27492.71 270
plane_prior499.61 183
plane_prior397.00 27298.69 5699.11 193
plane_prior299.39 18498.97 30
plane_prior199.26 221
plane_prior96.97 27599.21 24398.45 7197.60 228
n20.00 374
nn0.00 374
door-mid98.05 345
test1199.35 234
door97.92 347
HQP5-MVS96.83 280
HQP-NCC99.19 23798.98 29098.24 9498.66 264
ACMP_Plane99.19 23798.98 29098.24 9498.66 264
BP-MVS97.19 249
HQP3-MVS99.39 21397.58 230
HQP2-MVS92.47 279
NP-MVS99.23 22796.92 27899.40 252
MDTV_nov1_ep1398.32 16199.11 25594.44 33599.27 22298.74 32597.51 18099.40 13099.62 17994.78 21099.76 17597.59 21698.81 183
ACMMP++_ref97.19 254
ACMMP++97.43 246
Test By Simon98.75 56