This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
EPNet98.86 11998.71 12499.30 13797.20 34198.18 21399.62 6398.91 30299.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27499.45 17998.80 4699.71 4699.26 28198.94 3199.98 599.34 2399.23 14698.98 208
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28899.46 16798.92 3599.71 4699.24 28399.01 1699.98 599.35 1999.66 11798.97 209
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31298.73 24799.90 795.78 17399.98 596.96 25899.88 3699.76 68
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 7999.82 1099.72 1194.56 31598.08 29799.88 1594.73 21099.98 597.47 22699.76 9599.06 200
CANet_DTU98.97 11198.87 10499.25 14599.33 19698.42 20699.08 25999.30 25599.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
ZD-MVS99.71 8699.79 3099.61 3696.84 23599.56 8899.54 20398.58 7099.96 1896.93 26199.75 96
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10297.29 19699.59 8399.74 11798.15 10099.96 1896.74 26999.69 10999.81 41
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22399.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10499.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22299.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14599.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
CANet99.25 6499.14 6499.59 8499.41 17799.16 12099.35 19899.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20799.52 8997.18 20699.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23599.44 15399.30 25598.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 211
testdata299.95 4296.67 274
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
RPMNet96.72 28495.90 29499.19 15199.18 23598.49 19999.22 23699.52 8988.72 34299.56 8897.38 33794.08 23599.95 4286.87 34798.58 18799.14 186
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19399.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13499.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28695.45 30099.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35898.81 4599.94 5398.79 9099.86 5199.84 18
旧先验298.96 28996.70 24399.47 10599.94 5398.19 158
新几何199.75 5199.75 6299.59 6799.54 7196.76 23999.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
testdata99.54 9299.75 6298.95 15199.51 10297.07 21799.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 12097.16 20899.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26599.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18999.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24899.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17799.43 19593.67 32299.22 16699.89 1090.23 30999.93 6899.26 3298.33 19799.66 108
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
无先验98.99 28199.51 10296.89 23299.93 6897.53 22099.72 86
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21799.48 13996.82 23899.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18699.30 25595.35 30499.68 5399.90 782.62 34599.93 6899.31 2698.13 21299.42 169
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15399.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16699.54 7197.29 19699.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 23199.44 18797.04 22099.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16998.55 32896.03 29799.19 17599.74 11791.87 28399.92 7999.16 4298.29 20299.70 95
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
VDD-MVS97.73 24197.35 25898.88 19499.47 16597.12 25499.34 20198.85 30898.19 9799.67 5999.85 2982.98 34399.92 7999.49 1298.32 20199.60 128
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16999.39 20999.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 25099.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 205
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13299.62 6399.36 22497.39 18999.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16999.50 12097.03 22299.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
IB-MVS95.67 1896.22 29295.44 30198.57 22799.21 22896.70 28098.65 32297.74 34196.71 24297.27 31598.54 32786.03 33799.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24299.45 17995.42 30399.27 15399.60 18297.39 11799.91 9095.36 30299.83 7299.70 95
9.1499.10 6999.72 8099.40 17799.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22999.83 7299.71 93
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 10099.65 5799.05 26599.41 19996.22 28298.95 21799.49 22098.77 5199.91 90
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26599.41 19996.28 27598.95 21799.49 22098.76 5399.91 9097.63 20899.72 10399.75 69
test_899.67 10099.61 6299.03 27199.41 19996.28 27598.93 22199.48 22698.76 5399.91 90
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 28199.40 20596.26 27898.87 23099.49 22098.77 5199.91 9097.69 20599.72 10399.75 69
agg_prior99.67 10099.62 6099.40 20598.87 23099.91 90
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18198.24 33297.10 21699.65 6799.79 8884.79 34199.91 9099.28 2998.38 19699.69 98
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29699.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 205
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 23099.52 8996.85 23499.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34499.25 26591.24 33698.51 27599.70 13394.55 21999.91 9092.76 33099.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21199.40 20598.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24699.41 19996.60 25399.60 8099.55 19898.83 4399.90 10597.48 22499.83 7299.78 61
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20799.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 33099.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22899.48 13997.23 20399.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21299.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 24099.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20199.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10796.75 34897.53 17399.73 4399.65 15891.25 29999.89 11398.62 11199.56 12799.48 157
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34697.68 15699.79 2699.74 11791.39 29699.89 11398.83 8499.56 12799.57 137
test1299.75 5199.64 11699.61 6299.29 26099.21 16998.38 8699.89 11399.74 9999.74 73
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27199.47 15796.98 22499.15 18199.23 28596.77 14099.89 11398.83 8498.78 18199.86 11
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24299.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28398.25 9499.88 11898.98 5799.63 12299.12 189
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21399.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21399.91 397.42 18699.67 5999.37 25497.53 11499.88 11898.98 5797.29 24898.42 310
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31099.91 396.74 24099.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
MVS97.28 27396.55 28199.48 10998.78 29798.95 15199.27 21799.39 20983.53 34698.08 29799.54 20396.97 13399.87 12294.23 31699.16 15099.63 122
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 26099.34 23398.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31399.55 6497.25 20099.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
ETV-MVS99.26 6299.21 5899.40 12299.46 16699.30 10599.56 9599.52 8998.52 6399.44 11299.27 28098.41 8599.86 12599.10 4799.59 12699.04 201
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32496.82 34796.95 22899.54 9399.43 23791.66 29299.86 12598.08 17199.51 13199.22 183
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31697.94 12899.27 15398.62 32491.75 28699.86 12593.73 32198.19 20698.96 211
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26599.16 27497.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33799.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7196.61 25199.01 20599.40 24697.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
jason99.13 7999.03 7999.45 11599.46 16698.87 16199.12 25099.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22699.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18199.38 21597.70 15499.28 15099.28 27798.34 8999.85 13196.96 25899.45 13299.69 98
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11399.47 15796.11 29299.01 20599.34 26396.20 15899.84 13697.88 18498.82 17899.39 173
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 26099.33 24099.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32499.31 20599.11 27997.27 19899.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13698.80 30899.36 22496.33 27299.00 21099.12 29998.46 7999.84 13695.23 30499.37 14099.66 108
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26399.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24799.64 12099.44 167
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 24097.43 18499.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31697.93 12999.26 15898.62 32491.75 28699.83 14593.22 32598.18 20798.37 316
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.37 316
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28999.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
131498.68 14298.54 14699.11 15898.89 28198.65 18199.27 21799.49 12896.89 23297.99 30299.56 19597.72 11299.83 14597.74 19899.27 14498.84 218
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.96 211
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23397.31 19499.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
dp97.75 23897.80 20197.59 30099.10 25393.71 33499.32 20398.88 30696.48 26499.08 19599.55 19892.67 26699.82 15296.52 27798.58 18799.24 182
RPSCF98.22 17098.62 13896.99 31099.82 3791.58 34499.72 2999.44 18796.61 25199.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31299.31 25197.34 19199.21 16999.07 30197.20 12599.82 15298.56 12598.87 17599.52 146
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
Effi-MVS+98.81 13098.59 14399.48 10999.46 16699.12 12998.08 34399.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22698.74 31697.68 15699.09 19498.32 33191.66 29299.81 15692.88 32998.22 20398.03 328
tpmvs97.98 20398.02 18197.84 29099.04 26494.73 32599.31 20599.20 27196.10 29698.76 24599.42 24094.94 19699.81 15696.97 25798.45 19598.97 209
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30999.60 13291.75 34398.61 32499.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32399.10 28097.93 12999.42 11699.55 19898.67 6699.80 16195.80 29199.68 11499.61 126
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21799.57 5196.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29599.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17796.99 26799.52 11399.49 12898.11 10799.24 16199.34 26396.96 13499.79 16497.95 18099.45 13299.02 204
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29798.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
PVSNet_094.43 1996.09 29695.47 29997.94 28399.31 20494.34 32997.81 34599.70 1597.12 21297.46 31298.75 32189.71 31399.79 16497.69 20581.69 34799.68 102
API-MVS99.04 10199.03 7999.06 16199.40 18299.31 10499.55 10499.56 5698.54 6199.33 14299.39 25098.76 5399.78 16896.98 25699.78 8998.07 326
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21399.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9399.51 11898.96 29598.61 5899.35 13898.92 31494.78 20499.77 17099.35 1998.11 21399.54 141
tpm cat197.39 27097.36 25697.50 30499.17 24193.73 33399.43 15999.31 25191.27 33598.71 24999.08 30094.31 22799.77 17096.41 28198.50 19399.00 205
CostFormer97.72 24397.73 21397.71 29799.15 24694.02 33199.54 10799.02 28994.67 31399.04 20299.35 26092.35 27899.77 17098.50 13297.94 21699.34 177
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
MDTV_nov1_ep1398.32 15899.11 25094.44 32799.27 21798.74 31697.51 17599.40 12599.62 17594.78 20499.76 17397.59 21198.81 180
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10199.80 1699.48 13998.63 5699.31 14498.81 31797.09 12899.75 17599.27 3197.90 21799.47 162
Effi-MVS+-dtu98.78 13498.89 10298.47 24199.33 19696.91 27399.57 8899.30 25598.47 6699.41 12098.99 30896.78 13899.74 17698.73 9699.38 13698.74 233
patchmatchnet-post98.70 32294.79 20399.74 176
SCA98.19 17498.16 16598.27 26599.30 20595.55 30699.07 26098.97 29397.57 16699.43 11399.57 19292.72 26299.74 17697.58 21299.20 14899.52 146
DWT-MVSNet_test97.53 26197.40 25297.93 28499.03 26694.86 32399.57 8898.63 32596.59 25698.36 28598.79 31889.32 31699.74 17698.14 16598.16 21199.20 185
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 28099.27 21799.13 27897.24 20298.80 24099.38 25195.75 17499.74 17697.07 25299.16 15099.33 178
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20798.77 31297.70 15498.94 21999.65 15892.91 25799.74 17696.52 27799.55 12999.64 118
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29399.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
test_post65.99 35694.65 21599.73 183
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26799.11 25096.33 29399.41 16999.52 8998.06 11999.05 20199.50 21789.64 31499.73 18397.73 19997.38 24698.53 297
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27499.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
DeepMVS_CXcopyleft93.34 32699.29 20982.27 35099.22 26885.15 34496.33 32799.05 30490.97 30299.73 18393.57 32297.77 22098.01 329
Patchmatch-test97.93 20897.65 22098.77 21499.18 23597.07 25999.03 27199.14 27796.16 28798.74 24699.57 19294.56 21899.72 18793.36 32499.11 15599.52 146
LPG-MVS_test98.22 17098.13 16898.49 23599.33 19697.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
LGP-MVS_train98.49 23599.33 19697.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
BH-w/o98.00 20197.89 19798.32 25899.35 19196.20 29799.01 27998.90 30496.42 26998.38 28399.00 30795.26 19199.72 18796.06 28598.61 18499.03 202
ACMP97.20 1198.06 18897.94 19098.45 24399.37 18897.01 26599.44 15399.49 12897.54 17198.45 27999.79 8891.95 28299.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 19697.90 19398.40 25099.23 22296.80 27799.70 3399.60 4197.12 21298.18 29499.70 13391.73 28899.72 18798.39 14197.45 24098.68 250
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 23165.14 35794.18 23299.71 19397.58 212
ADS-MVSNet98.20 17398.08 17498.56 22999.33 19696.48 28899.23 23199.15 27596.24 28099.10 19099.67 15194.11 23399.71 19396.81 26699.05 16299.48 157
JIA-IIPM97.50 26597.02 27598.93 18098.73 30397.80 23499.30 20798.97 29391.73 33398.91 22394.86 34695.10 19499.71 19397.58 21297.98 21599.28 181
EPMVS97.82 22797.65 22098.35 25498.88 28295.98 30099.49 13494.71 35497.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
TDRefinement95.42 30294.57 30897.97 28289.83 35396.11 29899.48 14098.75 31396.74 24096.68 32499.88 1588.65 32399.71 19398.37 14582.74 34698.09 325
ACMM97.58 598.37 16198.34 15698.48 23799.41 17797.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33499.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31499.27 21798.92 29997.37 19099.37 13299.58 18894.90 19899.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 18497.99 18398.44 24699.41 17796.96 27199.60 7099.56 5698.09 11098.15 29599.91 590.87 30399.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 16998.22 16498.44 24699.29 20996.97 26999.39 18199.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 258
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17799.61 3697.71 15398.98 21399.36 25796.04 16199.67 20498.70 10097.41 24498.15 324
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
CLD-MVS98.16 17898.10 17098.33 25599.29 20996.82 27698.75 31399.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AUN-MVS96.88 28096.31 28698.59 22499.48 16497.04 26399.27 21799.22 26897.44 18398.51 27599.41 24391.97 28199.66 20797.71 20283.83 34599.07 199
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18297.46 24499.51 11899.53 8395.86 29998.54 27499.77 10182.44 34699.66 20798.68 10597.52 23299.50 155
OPM-MVS98.19 17498.10 17098.45 24398.88 28297.07 25999.28 21399.38 21598.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 289
ACMH+97.24 1097.92 21197.78 20598.32 25899.46 16696.68 28299.56 9599.54 7198.41 7397.79 30999.87 2090.18 31099.66 20798.05 17597.18 25298.62 280
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24399.54 7699.50 12499.58 5098.27 8899.35 13899.37 25492.53 27099.65 21199.35 1994.46 30698.72 235
TR-MVS97.76 23497.41 25198.82 20799.06 26097.87 23098.87 30298.56 32796.63 25098.68 25799.22 28692.49 27199.65 21195.40 30097.79 21998.95 214
gm-plane-assit98.54 32292.96 33994.65 31499.15 29499.64 21397.56 217
HQP4-MVS98.66 25899.64 21398.64 270
HQP-MVS98.02 19697.90 19398.37 25399.19 23296.83 27498.98 28599.39 20998.24 9098.66 25899.40 24692.47 27299.64 21397.19 24497.58 22798.64 270
PAPM97.59 25897.09 27399.07 16099.06 26098.26 21198.30 33899.10 28094.88 30998.08 29799.34 26396.27 15699.64 21389.87 33898.92 17299.31 179
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22899.51 10291.90 33299.30 14599.63 17098.78 4899.64 21388.09 34399.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 16098.09 17399.24 14799.26 21699.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21898.88 7096.32 26898.76 228
ITE_SJBPF98.08 27399.29 20996.37 29198.92 29998.34 8098.83 23699.75 11191.09 30099.62 21995.82 28997.40 24598.25 321
LF4IMVS97.52 26297.46 24097.70 29898.98 27395.55 30699.29 21198.82 31198.07 11598.66 25899.64 16589.97 31199.61 22097.01 25396.68 25797.94 332
tpm97.67 25397.55 22898.03 27699.02 26795.01 32099.43 15998.54 32996.44 26799.12 18599.34 26391.83 28599.60 22197.75 19796.46 26499.48 157
tpm297.44 26997.34 26197.74 29699.15 24694.36 32899.45 14998.94 29693.45 32798.90 22599.44 23591.35 29799.59 22297.31 23498.07 21499.29 180
baseline297.87 21697.55 22898.82 20799.18 23598.02 22099.41 16996.58 35096.97 22596.51 32599.17 29193.43 24699.57 22397.71 20299.03 16498.86 216
MS-PatchMatch97.24 27597.32 26496.99 31098.45 32593.51 33798.82 30699.32 24897.41 18798.13 29699.30 27388.99 31999.56 22495.68 29499.80 8497.90 335
TinyColmap97.12 27796.89 27797.83 29199.07 25895.52 30998.57 32798.74 31697.58 16597.81 30899.79 8888.16 32999.56 22495.10 30597.21 25098.39 314
USDC97.34 27197.20 27097.75 29599.07 25895.20 31698.51 33199.04 28897.99 12598.31 28899.86 2389.02 31899.55 22695.67 29597.36 24798.49 300
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16999.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
TAMVS99.12 8599.08 7299.24 14799.46 16698.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10098.93 17099.67 105
EPNet_dtu98.03 19497.96 18698.23 26698.27 32795.54 30899.23 23198.75 31399.02 1597.82 30799.71 12996.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 29795.69 29796.81 31697.78 33392.79 34099.16 24298.93 29796.16 28794.08 33799.22 28682.72 34499.47 23095.67 29597.50 23598.17 323
MVP-Stereo97.81 22997.75 21197.99 28197.53 33496.60 28598.96 28998.85 30897.22 20497.23 31699.36 25795.28 18899.46 23195.51 29799.78 8997.92 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30599.50 12499.55 6498.60 5999.39 12799.83 4294.48 22199.45 23298.75 9398.56 19099.85 14
test-LLR98.06 18897.90 19398.55 23198.79 29497.10 25598.67 31997.75 33997.34 19198.61 26998.85 31594.45 22299.45 23297.25 23899.38 13699.10 190
TESTMET0.1,197.55 25997.27 26998.40 25098.93 27896.53 28698.67 31997.61 34296.96 22698.64 26599.28 27788.63 32499.45 23297.30 23599.38 13699.21 184
test-mter97.49 26797.13 27298.55 23198.79 29497.10 25598.67 31997.75 33996.65 24798.61 26998.85 31588.23 32899.45 23297.25 23899.38 13699.10 190
mvs_anonymous99.03 10398.99 8799.16 15499.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23299.35 1998.99 16799.51 152
test_part196.83 28296.34 28598.33 25599.46 16696.71 27999.52 11399.63 3391.48 33497.75 31099.76 10587.49 33499.44 23798.37 14593.55 31998.82 219
tfpnnormal97.84 22297.47 23898.98 17299.20 23099.22 11499.64 5599.61 3696.32 27398.27 29199.70 13393.35 24899.44 23795.69 29395.40 29198.27 319
v7n97.87 21697.52 23298.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22399.70 13394.89 19999.44 23796.03 28693.89 31698.75 230
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23799.22 3497.50 23598.77 226
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23799.31 2697.48 23998.77 226
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24297.91 18299.11 15599.62 124
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24398.24 15599.80 8499.79 53
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 14099.57 5194.16 31898.81 23899.68 14593.23 24999.42 24398.84 8194.42 30898.76 228
MVS_030496.79 28396.52 28297.59 30099.22 22694.92 32299.04 27099.59 4496.49 26098.43 28098.99 30880.48 34899.39 24597.15 24899.27 14498.47 303
VPNet97.84 22297.44 24699.01 16899.21 22898.94 15499.48 14099.57 5198.38 7599.28 15099.73 12488.89 32099.39 24599.19 3793.27 32398.71 237
nrg03098.64 14698.42 15199.28 14299.05 26399.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24799.34 2394.59 30598.78 223
GA-MVS97.85 21997.47 23899.00 17099.38 18697.99 22298.57 32799.15 27597.04 22098.90 22599.30 27389.83 31299.38 24796.70 27298.33 19799.62 124
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26999.36 9899.49 13499.51 10297.95 12798.97 21599.13 29696.30 15599.38 24798.36 14893.34 32198.66 266
FIs98.78 13498.63 13399.23 14999.18 23599.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 25099.08 4996.38 26698.78 223
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 25099.13 4497.23 24998.81 220
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 29995.16 30397.51 30399.30 20593.69 33598.88 30095.78 35185.09 34598.78 24392.65 34891.29 29899.37 25094.85 30999.85 5899.46 164
v119297.81 22997.44 24698.91 18698.88 28298.68 17899.51 11899.34 23396.18 28599.20 17299.34 26394.03 23699.36 25495.32 30395.18 29598.69 245
RRT_MVS98.60 14898.44 14999.05 16398.88 28299.14 12599.49 13499.38 21597.76 14799.29 14899.86 2395.38 18499.36 25498.81 8997.16 25398.64 270
EI-MVSNet98.67 14398.67 12898.68 22099.35 19197.97 22399.50 12499.38 21596.93 23199.20 17299.83 4297.87 10699.36 25498.38 14397.56 22998.71 237
MVSTER98.49 15098.32 15899.00 17099.35 19199.02 13799.54 10799.38 21597.41 18799.20 17299.73 12493.86 24199.36 25498.87 7497.56 22998.62 280
gg-mvs-nofinetune96.17 29495.32 30298.73 21698.79 29498.14 21699.38 18694.09 35591.07 33898.07 30091.04 35189.62 31599.35 25896.75 26899.09 15998.68 250
pm-mvs197.68 25097.28 26798.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30599.79 8892.47 27299.35 25897.54 21993.54 32098.67 258
RRT_test8_iter0597.72 24397.60 22598.08 27399.23 22296.08 29999.63 5799.49 12897.54 17198.94 21999.81 6287.99 33199.35 25899.21 3696.51 26398.81 220
OurMVSNet-221017-097.88 21497.77 20798.19 26898.71 30796.53 28699.88 199.00 29097.79 14498.78 24399.94 391.68 28999.35 25897.21 24096.99 25698.69 245
pmmvs696.53 28796.09 29097.82 29298.69 30995.47 31099.37 18999.47 15793.46 32697.41 31399.78 9587.06 33599.33 26296.92 26392.70 33098.65 268
V4298.06 18897.79 20298.86 20198.98 27398.84 16599.69 3599.34 23396.53 25899.30 14599.37 25494.67 21399.32 26397.57 21694.66 30398.42 310
lessismore_v097.79 29498.69 30995.44 31294.75 35395.71 33299.87 2088.69 32299.32 26395.89 28894.93 30298.62 280
OpenMVS_ROBcopyleft92.34 2094.38 31093.70 31396.41 32197.38 33693.17 33899.06 26398.75 31386.58 34394.84 33698.26 33281.53 34799.32 26389.01 34097.87 21896.76 341
v897.95 20797.63 22398.93 18098.95 27798.81 17199.80 1699.41 19996.03 29799.10 19099.42 24094.92 19799.30 26696.94 26094.08 31498.66 266
v192192097.80 23197.45 24198.84 20598.80 29398.53 19199.52 11399.34 23396.15 28999.24 16199.47 22993.98 23799.29 26795.40 30095.13 29798.69 245
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 12097.07 21798.87 23099.77 10194.76 20899.28 26898.66 10797.60 22598.57 295
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17298.70 30898.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
testing_294.44 30992.93 31598.98 17294.16 34899.00 14199.42 16699.28 26196.60 25384.86 34596.84 34170.91 35099.27 27198.23 15696.08 27298.68 250
cascas97.69 24897.43 24998.48 23798.60 31897.30 24798.18 34299.39 20992.96 32998.41 28198.78 32093.77 24399.27 27198.16 16398.61 18498.86 216
v14419297.92 21197.60 22598.87 19898.83 29298.65 18199.55 10499.34 23396.20 28399.32 14399.40 24694.36 22499.26 27396.37 28295.03 29998.70 241
v2v48298.06 18897.77 20798.92 18298.90 28098.82 16999.57 8899.36 22496.65 24799.19 17599.35 26094.20 22999.25 27497.72 20194.97 30098.69 245
v124097.69 24897.32 26498.79 21298.85 29098.43 20499.48 14099.36 22496.11 29299.27 15399.36 25793.76 24499.24 27594.46 31395.23 29498.70 241
v114497.98 20397.69 21698.85 20498.87 28698.66 18099.54 10799.35 22996.27 27799.23 16599.35 26094.67 21399.23 27696.73 27095.16 29698.68 250
v1097.85 21997.52 23298.86 20198.99 27098.67 17999.75 2599.41 19995.70 30098.98 21399.41 24394.75 20999.23 27696.01 28794.63 30498.67 258
WR-MVS_H98.13 18197.87 19898.90 18899.02 26798.84 16599.70 3399.59 4497.27 19898.40 28299.19 29095.53 18099.23 27698.34 14993.78 31798.61 289
miper_enhance_ethall98.16 17898.08 17498.41 24898.96 27697.72 23898.45 33399.32 24896.95 22898.97 21599.17 29197.06 13099.22 27997.86 18695.99 27598.29 318
GG-mvs-BLEND98.45 24398.55 32198.16 21499.43 15993.68 35697.23 31698.46 32889.30 31799.22 27995.43 29998.22 20397.98 330
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25799.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27999.07 5096.38 26698.79 222
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8397.76 14798.71 24999.46 23396.43 15299.22 27998.57 12292.87 32898.69 245
DU-MVS98.08 18797.79 20298.96 17598.87 28698.98 14299.41 16999.45 17997.87 13298.71 24999.50 21794.82 20199.22 27998.57 12292.87 32898.68 250
cl-mvsnet_98.01 19997.84 20098.55 23199.25 22097.97 22398.71 31799.34 23396.47 26698.59 27299.54 20395.65 17899.21 28497.21 24095.77 28198.46 307
WR-MVS98.06 18897.73 21399.06 16198.86 28999.25 11199.19 23999.35 22997.30 19598.66 25899.43 23793.94 23899.21 28498.58 12094.28 31098.71 237
test_040296.64 28596.24 28797.85 28998.85 29096.43 29099.44 15399.26 26393.52 32496.98 32299.52 21088.52 32599.20 28692.58 33297.50 23597.93 333
SixPastTwentyTwo97.50 26597.33 26398.03 27698.65 31296.23 29699.77 2198.68 32497.14 20997.90 30499.93 490.45 30499.18 28797.00 25496.43 26598.67 258
cl-mvsnet297.85 21997.64 22298.48 23799.09 25597.87 23098.60 32699.33 24097.11 21598.87 23099.22 28692.38 27799.17 28898.21 15795.99 27598.42 310
IterMVS-SCA-FT97.82 22797.75 21198.06 27599.57 13796.36 29299.02 27499.49 12897.18 20698.71 24999.72 12892.72 26299.14 28997.44 23095.86 28098.67 258
pmmvs597.52 26297.30 26698.16 27098.57 32096.73 27899.27 21798.90 30496.14 29098.37 28499.53 20791.54 29599.14 28997.51 22295.87 27998.63 278
v14897.79 23297.55 22898.50 23498.74 30297.72 23899.54 10799.33 24096.26 27898.90 22599.51 21494.68 21299.14 28997.83 18993.15 32598.63 278
miper_ehance_all_eth98.18 17698.10 17098.41 24899.23 22297.72 23898.72 31699.31 25196.60 25398.88 22899.29 27597.29 12399.13 29297.60 21095.99 27598.38 315
NR-MVSNet97.97 20697.61 22499.02 16798.87 28699.26 11099.47 14599.42 19797.63 16197.08 32099.50 21795.07 19599.13 29297.86 18693.59 31898.68 250
IterMVS97.83 22497.77 20798.02 27899.58 13596.27 29599.02 27499.48 13997.22 20498.71 24999.70 13392.75 25999.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 31194.90 30591.84 32997.24 34080.01 35298.52 33099.48 13989.01 34091.99 34299.67 15185.67 33999.13 29295.44 29897.03 25596.39 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 19397.96 18698.33 25599.26 21697.38 24698.56 32999.31 25196.65 24798.88 22899.52 21096.58 14599.12 29697.39 23395.53 28998.47 303
pmmvs498.13 18197.90 19398.81 20998.61 31798.87 16198.99 28199.21 27096.44 26799.06 20099.58 18895.90 16999.11 29797.18 24696.11 27198.46 307
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24898.85 16499.49 13498.91 30295.48 30297.16 31899.80 7693.38 24799.11 29794.16 31891.73 33398.62 280
ambc93.06 32792.68 34982.36 34998.47 33298.73 32195.09 33497.41 33655.55 35599.10 29996.42 28091.32 33497.71 336
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25598.29 20999.41 16998.85 30895.65 30198.63 26699.67 15194.82 20199.10 29998.07 17492.89 32798.64 270
CP-MVSNet98.09 18597.78 20599.01 16898.97 27599.24 11299.67 4299.46 16797.25 20098.48 27899.64 16593.79 24299.06 30198.63 11094.10 31398.74 233
PS-CasMVS97.93 20897.59 22798.95 17798.99 27099.06 13499.68 4099.52 8997.13 21098.31 28899.68 14592.44 27699.05 30298.51 13194.08 31498.75 230
K. test v397.10 27896.79 27998.01 27998.72 30596.33 29399.87 497.05 34597.59 16396.16 32999.80 7688.71 32199.04 30396.69 27396.55 26298.65 268
new_pmnet96.38 29196.03 29197.41 30598.13 33095.16 31999.05 26599.20 27193.94 31997.39 31498.79 31891.61 29499.04 30390.43 33695.77 28198.05 327
cl-mvsnet198.01 19997.85 19998.48 23799.24 22197.95 22798.71 31799.35 22996.50 25998.60 27199.54 20395.72 17699.03 30597.21 24095.77 28198.46 307
IterMVS-LS98.46 15298.42 15198.58 22699.59 13498.00 22199.37 18999.43 19596.94 23099.07 19699.59 18597.87 10699.03 30598.32 15295.62 28698.71 237
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 25597.68 21797.55 30298.62 31594.97 32198.84 30499.30 25596.83 23798.19 29399.34 26397.01 13299.02 30795.00 30896.01 27398.64 270
Patchmtry97.75 23897.40 25298.81 20999.10 25398.87 16199.11 25699.33 24094.83 31098.81 23899.38 25194.33 22599.02 30796.10 28495.57 28798.53 297
N_pmnet94.95 30795.83 29592.31 32898.47 32479.33 35399.12 25092.81 35993.87 32097.68 31199.13 29693.87 24099.01 30991.38 33496.19 27098.59 293
CR-MVSNet98.17 17797.93 19198.87 19899.18 23598.49 19999.22 23699.33 24096.96 22699.56 8899.38 25194.33 22599.00 31094.83 31098.58 18799.14 186
cl_fuxian98.12 18398.04 17898.38 25299.30 20597.69 24198.81 30799.33 24096.67 24598.83 23699.34 26397.11 12798.99 31197.58 21295.34 29298.48 301
test0.0.03 197.71 24797.42 25098.56 22998.41 32697.82 23398.78 31098.63 32597.34 19198.05 30198.98 31194.45 22298.98 31295.04 30797.15 25498.89 215
PatchT97.03 27996.44 28398.79 21298.99 27098.34 20899.16 24299.07 28592.13 33199.52 9797.31 34094.54 22098.98 31288.54 34198.73 18399.03 202
GBi-Net97.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
test197.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
FMVSNet398.03 19497.76 21098.84 20599.39 18598.98 14299.40 17799.38 21596.67 24599.07 19699.28 27792.93 25498.98 31297.10 24996.65 25898.56 296
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14999.42 19796.49 26098.86 23599.29 27590.26 30698.98 31296.44 27996.56 26198.58 294
FMVSNet196.84 28196.36 28498.29 26199.32 20397.26 25099.43 15999.48 13995.11 30698.55 27399.32 27083.95 34298.98 31295.81 29096.26 26998.62 280
ppachtmachnet_test97.49 26797.45 24197.61 29998.62 31595.24 31598.80 30899.46 16796.11 29298.22 29299.62 17596.45 15098.97 31993.77 32095.97 27898.61 289
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29798.62 18499.65 5399.49 12897.76 14798.49 27799.60 18294.23 22898.97 31998.00 17692.90 32698.70 241
ADS-MVSNet298.02 19698.07 17797.87 28899.33 19695.19 31799.23 23199.08 28396.24 28099.10 19099.67 15194.11 23398.93 32196.81 26699.05 16299.48 157
ET-MVSNet_ETH3D96.49 28895.64 29899.05 16399.53 14598.82 16998.84 30497.51 34397.63 16184.77 34699.21 28992.09 28098.91 32298.98 5792.21 33299.41 171
miper_lstm_enhance98.00 20197.91 19298.28 26499.34 19597.43 24598.88 30099.36 22496.48 26498.80 24099.55 19895.98 16298.91 32297.27 23695.50 29098.51 299
PEN-MVS97.76 23497.44 24698.72 21798.77 30098.54 19099.78 1999.51 10297.06 21998.29 29099.64 16592.63 26798.89 32498.09 16793.16 32498.72 235
testgi97.65 25597.50 23598.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30599.45 23491.09 30098.81 32594.53 31298.52 19299.13 188
MIMVSNet97.73 24197.45 24198.57 22799.45 17297.50 24399.02 27498.98 29296.11 29299.41 12099.14 29590.28 30598.74 32695.74 29298.93 17099.47 162
LCM-MVSNet-Re97.83 22498.15 16696.87 31599.30 20592.25 34299.59 7698.26 33197.43 18496.20 32899.13 29696.27 15698.73 32798.17 16298.99 16799.64 118
DTE-MVSNet97.51 26497.19 27198.46 24298.63 31498.13 21799.84 699.48 13996.68 24497.97 30399.67 15192.92 25598.56 32896.88 26592.60 33198.70 241
UnsupCasMVSNet_bld93.53 31392.51 31696.58 32097.38 33693.82 33298.24 33999.48 13991.10 33793.10 34096.66 34274.89 34998.37 32994.03 31987.71 34197.56 339
MDA-MVSNet_test_wron95.45 30194.60 30798.01 27998.16 32997.21 25399.11 25699.24 26693.49 32580.73 35198.98 31193.02 25298.18 33094.22 31794.45 30798.64 270
UnsupCasMVSNet_eth96.44 28996.12 28997.40 30698.65 31295.65 30399.36 19399.51 10297.13 21096.04 33198.99 30888.40 32698.17 33196.71 27190.27 33698.40 313
YYNet195.36 30394.51 30997.92 28597.89 33197.10 25599.10 25899.23 26793.26 32880.77 35099.04 30592.81 25898.02 33294.30 31494.18 31298.64 270
EU-MVSNet97.98 20398.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28699.82 4995.25 19298.01 33397.41 23295.30 29398.78 223
Gipumacopyleft90.99 31590.15 31893.51 32598.73 30390.12 34693.98 35099.45 17979.32 34892.28 34194.91 34569.61 35197.98 33487.42 34495.67 28592.45 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 30494.73 30697.15 30795.53 34595.94 30199.35 19899.10 28095.13 30593.55 33897.54 33588.15 33097.91 33594.58 31189.69 33997.61 337
PM-MVS92.96 31492.23 31795.14 32495.61 34389.98 34799.37 18998.21 33394.80 31195.04 33597.69 33465.06 35297.90 33694.30 31489.98 33897.54 340
MDA-MVSNet-bldmvs94.96 30693.98 31297.92 28598.24 32897.27 24999.15 24699.33 24093.80 32180.09 35299.03 30688.31 32797.86 33793.49 32394.36 30998.62 280
Patchmatch-RL test95.84 29895.81 29695.95 32295.61 34390.57 34598.24 33998.39 33095.10 30895.20 33398.67 32394.78 20497.77 33896.28 28390.02 33799.51 152
Anonymous2023120696.22 29296.03 29196.79 31797.31 33994.14 33099.63 5799.08 28396.17 28697.04 32199.06 30393.94 23897.76 33986.96 34695.06 29898.47 303
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14899.52 8999.11 799.88 599.91 599.43 197.70 34098.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 27497.35 25896.95 31397.84 33293.61 33699.57 8896.63 34996.13 29198.87 23098.61 32694.59 21697.70 34095.08 30698.86 17699.55 139
pmmvs394.09 31293.25 31496.60 31994.76 34794.49 32698.92 29698.18 33589.66 33996.48 32698.06 33386.28 33697.33 34289.68 33987.20 34297.97 331
CL-MVSNet_2432*160095.00 30594.34 31096.96 31297.07 34295.39 31399.56 9599.44 18795.11 30697.13 31997.32 33991.86 28497.27 34390.35 33781.23 34898.23 322
FMVSNet596.43 29096.19 28897.15 30799.11 25095.89 30299.32 20399.52 8994.47 31798.34 28799.07 30187.54 33397.07 34492.61 33195.72 28498.47 303
new-patchmatchnet94.48 30894.08 31195.67 32395.08 34692.41 34199.18 24099.28 26194.55 31693.49 33997.37 33887.86 33297.01 34591.57 33388.36 34097.61 337
LCM-MVSNet86.80 31785.22 32191.53 33087.81 35480.96 35198.23 34198.99 29171.05 35090.13 34496.51 34348.45 35896.88 34690.51 33585.30 34496.76 341
MIMVSNet195.51 30095.04 30496.92 31497.38 33695.60 30499.52 11399.50 12093.65 32396.97 32399.17 29185.28 34096.56 34788.36 34295.55 28898.60 292
test20.0396.12 29595.96 29396.63 31897.44 33595.45 31199.51 11899.38 21596.55 25796.16 32999.25 28293.76 24496.17 34887.35 34594.22 31198.27 319
tmp_tt82.80 31981.52 32286.66 33266.61 36068.44 35892.79 35297.92 33768.96 35180.04 35399.85 2985.77 33896.15 34997.86 18643.89 35495.39 345
PMMVS286.87 31685.37 32091.35 33190.21 35283.80 34898.89 29997.45 34483.13 34791.67 34395.03 34448.49 35794.70 35085.86 34877.62 34995.54 344
PMVScopyleft70.75 2275.98 32474.97 32579.01 33870.98 35955.18 36093.37 35198.21 33365.08 35561.78 35693.83 34721.74 36392.53 35178.59 35091.12 33589.34 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 31885.65 31982.75 33686.77 35563.39 35998.35 33698.92 29974.11 34983.39 34898.98 31150.85 35692.40 35284.54 34994.97 30092.46 346
MVEpermissive76.82 2176.91 32374.31 32784.70 33385.38 35776.05 35796.88 34993.17 35767.39 35271.28 35489.01 35321.66 36487.69 35371.74 35272.29 35090.35 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 32079.88 32382.81 33590.75 35176.38 35697.69 34695.76 35266.44 35383.52 34792.25 34962.54 35487.16 35468.53 35361.40 35184.89 352
EMVS80.02 32179.22 32482.43 33791.19 35076.40 35597.55 34892.49 36066.36 35483.01 34991.27 35064.63 35385.79 35565.82 35460.65 35285.08 351
ANet_high77.30 32274.86 32684.62 33475.88 35877.61 35497.63 34793.15 35888.81 34164.27 35589.29 35236.51 35983.93 35675.89 35152.31 35392.33 348
wuyk23d40.18 32541.29 33036.84 33986.18 35649.12 36179.73 35322.81 36227.64 35625.46 35928.45 35921.98 36248.89 35755.80 35523.56 35712.51 355
test12339.01 32742.50 32928.53 34039.17 36120.91 36298.75 31319.17 36319.83 35838.57 35766.67 35533.16 36015.42 35837.50 35729.66 35649.26 353
testmvs39.17 32643.78 32825.37 34136.04 36216.84 36398.36 33526.56 36120.06 35738.51 35867.32 35429.64 36115.30 35937.59 35639.90 35543.98 354
uanet_test0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k24.64 32832.85 3310.00 3420.00 3630.00 3640.00 35499.51 1020.00 3590.00 36099.56 19596.58 1450.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas8.27 33011.03 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 36099.01 160.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.30 32911.06 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36099.58 1880.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
IU-MVS99.84 3299.88 799.32 24898.30 8599.84 1398.86 7799.85 5899.89 2
save fliter99.76 5299.59 6799.14 24899.40 20599.00 22
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
MTMP99.54 10798.88 306
test9_res97.49 22399.72 10399.75 69
agg_prior297.21 24099.73 10299.75 69
test_prior499.56 7298.99 281
test_prior298.96 28998.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
新几何299.01 279
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
原ACMM298.95 293
test22299.75 6299.49 8598.91 29899.49 12896.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
segment_acmp98.96 25
testdata198.85 30398.32 84
plane_prior799.29 20997.03 264
plane_prior699.27 21496.98 26892.71 264
plane_prior499.61 179
plane_prior397.00 26698.69 5499.11 187
plane_prior299.39 18198.97 30
plane_prior199.26 216
plane_prior96.97 26999.21 23898.45 6997.60 225
n20.00 364
nn0.00 364
door-mid98.05 336
test1199.35 229
door97.92 337
HQP5-MVS96.83 274
HQP-NCC99.19 23298.98 28598.24 9098.66 258
ACMP_Plane99.19 23298.98 28598.24 9098.66 258
BP-MVS97.19 244
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 272
NP-MVS99.23 22296.92 27299.40 246
MDTV_nov1_ep13_2view95.18 31899.35 19896.84 23599.58 8595.19 19397.82 19099.46 164
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56