This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7199.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5599.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7099.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8499.49 12799.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8499.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7199.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14899.52 8899.11 799.88 599.91 599.43 197.70 34298.72 9999.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5899.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8999.37 22499.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13499.49 12798.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12199.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11698.81 4599.94 5398.79 9099.86 5199.84 18
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7799.51 10198.62 5799.79 2699.83 4299.28 399.97 1098.48 13599.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26499.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5597.72 15299.76 3799.75 11099.13 1099.92 7999.07 5099.92 1199.85 14
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6899.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10699.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 13999.06 1399.96 1898.69 10499.87 4099.84 18
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31199.60 13291.75 34698.61 32399.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 13998.95 2899.96 1898.69 10499.87 4099.84 18
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25999.33 24199.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11399.87 4099.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5899.54 7098.36 7899.79 2699.82 4998.86 4099.95 4298.62 11399.81 8099.78 61
RE-MVS-def99.34 2699.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.75 5698.61 11699.81 8099.77 63
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5699.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9999.90 2399.82 36
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29499.85 698.82 4299.65 6799.74 11698.51 7599.80 16198.83 8499.89 3399.64 118
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24799.53 8299.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10198.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13898.94 15498.97 28799.46 16798.92 3599.71 4699.24 28499.01 1699.98 599.35 1999.66 11798.97 209
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8898.07 11599.53 9599.63 17098.93 3599.97 1098.74 9599.91 1699.83 29
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29299.85 698.82 4299.54 9399.73 12398.51 7599.74 17698.91 6799.88 3699.77 63
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6499.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 13099.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.53 7299.95 4298.61 11699.81 8099.77 63
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8499.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15199.87 4099.83 29
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4398.13 10399.82 2099.81 6298.60 6999.96 1898.46 13999.88 3699.79 53
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9699.47 15797.45 18199.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20598.79 4799.52 9799.62 17698.91 3699.90 10598.64 11199.75 9699.82 36
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11098.78 4899.97 1098.57 12499.89 3399.83 29
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22599.52 8898.82 4299.39 12799.71 12898.96 2599.85 13198.59 12199.80 8499.77 63
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7199.56 5598.28 8699.74 4199.79 8898.53 7299.95 4298.55 13099.78 8999.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7799.62 3398.21 9699.73 4399.79 8898.68 6399.96 1898.44 14199.77 9299.79 53
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7599.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10599.67 2297.83 13899.68 5399.69 13999.06 1399.96 1898.39 14399.87 4099.84 18
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16499.68 5399.63 17098.91 3699.94 5398.58 12299.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14599.93 297.66 16099.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 11998.70 5399.77 3399.49 22198.21 9699.95 4298.46 13999.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14698.91 15899.02 27399.45 17998.80 4699.71 4699.26 28298.94 3199.98 599.34 2399.23 14698.98 208
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8999.54 7097.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7199.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14599.86 5199.81 41
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10198.68 5599.27 15399.53 20898.64 6899.96 1898.44 14199.80 8499.79 53
ETV-MVS99.26 6299.21 5899.40 12299.46 16799.30 10699.56 9699.52 8898.52 6399.44 11299.27 28198.41 8599.86 12599.10 4799.59 12699.04 201
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8897.18 20799.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15599.63 12299.80 49
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6499.55 6398.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 5599.17 6299.70 6499.56 14299.52 8399.58 8499.80 897.12 21399.62 7499.73 12398.58 7099.90 10598.61 11699.91 1699.68 102
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11698.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 6499.14 6499.59 8499.41 17799.16 12199.35 19799.57 5098.82 4299.51 9999.61 18096.46 14999.95 4299.59 199.98 299.65 112
CS-MVS99.21 6699.13 6599.45 11599.54 14599.34 10099.71 3199.54 7098.26 8998.99 21399.24 28498.25 9499.88 11898.98 5799.63 12299.12 189
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 10997.89 23098.43 33399.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
MVSFormer99.17 7399.12 6799.29 14099.51 15098.94 15499.88 199.46 16797.55 16999.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9699.57 5098.45 6999.49 10399.85 2997.77 11099.94 5398.33 15199.84 6599.52 146
9.1499.10 6999.72 8099.40 17699.51 10197.53 17499.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18299.94 5399.50 899.97 399.89 2
EIA-MVS99.18 7199.09 7199.45 11599.49 15999.18 11899.67 4299.53 8297.66 16099.40 12599.44 23698.10 10199.81 15698.94 6299.62 12499.35 175
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 11997.16 20999.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8599.08 7299.24 14899.46 16798.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10198.93 17099.67 105
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8798.96 28899.56 5598.34 8099.01 20699.52 21198.68 6399.83 14597.96 17899.74 9999.74 73
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3397.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22399.90 795.94 16699.98 598.95 6199.92 1199.79 53
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16699.54 7097.29 19799.41 12099.59 18698.42 8499.93 6898.19 15899.69 10999.73 80
OMC-MVS99.08 9699.04 7799.20 15199.67 10098.22 21399.28 21299.52 8898.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
jason99.13 7999.03 7999.45 11599.46 16798.87 16199.12 24999.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10198.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 10199.03 7999.06 16299.40 18299.31 10599.55 10599.56 5598.54 6199.33 14299.39 25198.76 5399.78 16896.98 25699.78 8998.07 326
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10197.45 18199.61 7699.75 11098.51 7599.91 9097.45 22999.83 7299.71 93
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12798.46 6899.72 4599.71 12896.50 14899.88 11899.31 2699.11 15599.67 105
baseline99.15 7699.02 8299.53 9899.66 10999.14 12699.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
MG-MVS99.13 7999.02 8299.45 11599.57 13898.63 18399.07 25999.34 23498.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
lupinMVS99.13 7999.01 8699.46 11499.51 15098.94 15499.05 26499.16 27697.86 13399.80 2499.56 19697.39 11799.86 12598.94 6299.85 5899.58 136
mvs_anonymous99.03 10398.99 8799.16 15599.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23399.35 1998.99 16799.51 152
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13599.81 1299.33 24197.43 18599.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
CNLPA99.14 7798.99 8799.59 8499.58 13699.41 9599.16 24199.44 18798.45 6999.19 17599.49 22198.08 10299.89 11397.73 19999.75 9699.48 157
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12199.56 9699.50 11998.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
MVS_Test99.10 9398.97 9199.48 10999.49 15999.14 12699.67 4299.34 23497.31 19599.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30999.91 396.74 24199.67 5999.49 22197.53 11499.88 11898.98 5799.85 5899.60 128
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4099.66 2798.49 6599.86 1199.87 2094.77 20899.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10199.20 498.72 24999.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5096.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16899.50 11997.03 22399.04 20399.88 1597.39 11799.92 7998.66 10999.90 2399.87 10
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7098.07 11599.00 21199.76 10599.01 1699.37 25099.13 4497.23 24998.81 219
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27399.91 397.67 15999.59 8399.75 11095.90 16999.73 18399.53 599.02 16599.86 11
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24599.41 19996.60 25499.60 8099.55 19998.83 4399.90 10597.48 22499.83 7299.78 61
VNet99.11 9098.90 10099.73 5899.52 14899.56 7399.41 16899.39 20999.01 1899.74 4199.78 9595.56 18099.92 7999.52 698.18 20799.72 86
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7799.49 12797.03 22399.63 7099.69 13997.27 12499.96 1897.82 19099.84 6599.81 41
Effi-MVS+-dtu98.78 13498.89 10298.47 24299.33 19696.91 27499.57 8999.30 25698.47 6699.41 12098.99 30996.78 13899.74 17698.73 9799.38 13698.74 234
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12199.37 18899.56 5598.04 12199.53 9599.62 17696.84 13699.94 5398.85 7998.49 19499.72 86
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10197.29 19799.59 8399.74 11698.15 10099.96 1896.74 26999.69 10999.81 41
CANet_DTU98.97 11198.87 10499.25 14699.33 19698.42 20699.08 25899.30 25699.16 599.43 11399.75 11095.27 19099.97 1098.56 12799.95 699.36 174
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21699.48 13996.82 23999.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10299.80 1699.48 13998.63 5699.31 14498.81 31897.09 12899.75 17599.27 3197.90 21799.47 162
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 14099.24 22999.52 8896.85 23599.27 15399.48 22798.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15099.60 6599.23 23099.44 18797.04 22199.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23699.44 15399.30 25698.47 6699.10 19099.43 23896.78 13899.95 4298.73 9799.02 16598.96 211
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18099.38 21597.70 15499.28 15099.28 27898.34 8999.85 13196.96 25899.45 13299.69 98
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24998.32 33999.60 4097.86 13399.50 10099.57 19396.75 14199.86 12598.56 12799.70 10899.54 141
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22499.41 17796.99 26899.52 11499.49 12798.11 10799.24 16199.34 26496.96 13499.79 16497.95 18099.45 13299.02 204
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21299.91 397.42 18799.67 5999.37 25597.53 11499.88 11898.98 5797.29 24898.42 310
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14299.54 7799.18 23999.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31299.55 6397.25 20199.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26499.41 19996.28 27598.95 21899.49 22198.76 5399.91 9097.63 20899.72 10399.75 69
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13899.25 22799.48 13997.23 20499.13 18399.58 18996.93 13599.90 10598.87 7498.78 18199.84 18
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6198.99 28099.40 20596.26 27898.87 23199.49 22198.77 5199.91 9097.69 20599.72 10399.75 69
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20099.59 4397.55 16998.70 25699.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9699.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18399.43 24297.91 18299.11 15599.62 124
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7598.64 32299.10 28297.93 12999.42 11699.55 19998.67 6699.80 16195.80 29199.68 11499.61 126
EPNet98.86 11998.71 12499.30 13797.20 34298.18 21499.62 6498.91 30499.28 298.63 26799.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24192.74 26299.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23898.92 29599.55 6398.52 6399.45 10899.84 3895.27 19099.91 9098.08 17198.84 17799.00 205
EI-MVSNet98.67 14398.67 12898.68 22199.35 19197.97 22499.50 12499.38 21596.93 23299.20 17299.83 4297.87 10699.36 25498.38 14597.56 22998.71 238
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30799.50 12499.55 6398.60 5999.39 12799.83 4294.48 22299.45 23398.75 9498.56 19099.85 14
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6499.59 4392.65 33499.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27099.47 15796.98 22599.15 18199.23 28696.77 14099.89 11398.83 8498.78 18199.86 11
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13399.62 6499.36 22597.39 19099.28 15099.68 14596.44 15199.92 7998.37 14798.22 20399.40 172
test_yl98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
FIs98.78 13498.63 13399.23 15099.18 23599.54 7799.83 999.59 4398.28 8698.79 24399.81 6296.75 14199.37 25099.08 4996.38 26798.78 222
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11699.44 15399.54 7097.77 14699.30 14599.81 6294.20 23099.93 6899.17 4098.82 17899.49 156
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7096.61 25299.01 20699.40 24797.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25799.45 9199.86 599.60 4098.23 9398.70 25699.82 4996.80 13799.22 27899.07 5096.38 26798.79 221
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23799.12 24999.54 7098.44 7299.42 11699.71 12894.20 23099.92 7998.54 13298.90 17499.00 205
RPSCF98.22 17098.62 13896.99 31299.82 3791.58 34799.72 2999.44 18796.61 25299.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26299.77 997.74 15199.50 10099.53 20895.41 18499.84 13697.17 24799.64 12099.44 167
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31199.31 25297.34 19299.21 16999.07 30297.20 12599.82 15298.56 12798.87 17599.52 146
Effi-MVS+98.81 13098.59 14399.48 10999.46 16799.12 13098.08 34599.50 11997.50 17799.38 13099.41 24496.37 15399.81 15699.11 4698.54 19199.51 152
test_djsdf98.67 14398.57 14498.98 17398.70 30898.91 15899.88 199.46 16797.55 16999.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9499.51 11898.96 29798.61 5899.35 13898.92 31594.78 20599.77 17099.35 1998.11 21399.54 141
131498.68 14298.54 14699.11 15998.89 28198.65 18199.27 21699.49 12796.89 23397.99 30499.56 19697.72 11299.83 14597.74 19899.27 14498.84 218
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17699.61 3597.71 15398.98 21499.36 25896.04 16199.67 20498.70 10197.41 24498.15 324
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32699.31 20499.11 28197.27 19999.45 10899.59 18695.33 18899.84 13698.48 13598.61 18499.09 194
RRT_MVS98.60 14898.44 14999.05 16498.88 28299.14 12699.49 13499.38 21597.76 14799.29 14899.86 2395.38 18599.36 25498.81 8997.16 25398.64 270
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15099.28 10899.52 11499.47 15796.11 29399.01 20699.34 26496.20 15899.84 13697.88 18498.82 17899.39 173
nrg03098.64 14698.42 15199.28 14399.05 26399.69 4799.81 1299.46 16798.04 12199.01 20699.82 4996.69 14399.38 24799.34 2394.59 30598.78 222
IterMVS-LS98.46 15298.42 15198.58 22799.59 13498.00 22299.37 18899.43 19596.94 23199.07 19799.59 18697.87 10699.03 30598.32 15395.62 28698.71 238
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned98.42 15598.36 15398.59 22599.49 15996.70 28099.27 21699.13 28097.24 20398.80 24199.38 25295.75 17499.74 17697.07 25299.16 15099.33 178
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31699.27 21698.92 30197.37 19199.37 13299.58 18994.90 19999.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6599.16 24199.45 17995.42 30499.27 15399.60 18397.39 11799.91 9095.36 30299.83 7299.70 95
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13798.80 30799.36 22596.33 27299.00 21199.12 30098.46 7999.84 13695.23 30499.37 14099.66 108
ACMM97.58 598.37 16198.34 15698.48 23899.41 17797.10 25699.56 9699.45 17998.53 6299.04 20399.85 2993.00 25499.71 19398.74 9597.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 15098.32 15899.00 17199.35 19199.02 13899.54 10899.38 21597.41 18899.20 17299.73 12393.86 24299.36 25498.87 7497.56 22998.62 280
MDTV_nov1_ep1398.32 15899.11 25094.44 32999.27 21698.74 31897.51 17699.40 12599.62 17694.78 20599.76 17397.59 21198.81 180
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31698.73 24899.90 795.78 17399.98 596.96 25899.88 3699.76 68
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 11997.07 21898.87 23199.77 10194.76 20999.28 26898.66 10997.60 22598.57 295
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8298.19 9798.63 26799.80 7693.22 25299.44 23899.22 3497.50 23598.77 226
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8298.19 9798.65 26599.81 6292.75 26099.44 23899.31 2697.48 23998.77 226
HQP_MVS98.27 16998.22 16498.44 24799.29 20996.97 27099.39 18099.47 15798.97 3099.11 18799.61 18092.71 26599.69 20297.78 19397.63 22298.67 258
SCA98.19 17498.16 16598.27 26599.30 20595.55 30899.07 25998.97 29597.57 16799.43 11399.57 19392.72 26399.74 17697.58 21299.20 14899.52 146
LCM-MVSNet-Re97.83 22598.15 16696.87 31799.30 20592.25 34599.59 7798.26 33397.43 18596.20 33299.13 29796.27 15698.73 32798.17 16298.99 16799.64 118
tttt051798.42 15598.14 16799.28 14399.66 10998.38 20799.74 2896.85 34997.68 15699.79 2699.74 11691.39 29899.89 11398.83 8499.56 12799.57 137
LPG-MVS_test98.22 17098.13 16898.49 23699.33 19697.05 26299.58 8499.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 8099.82 1099.72 1194.56 31998.08 29999.88 1594.73 21199.98 597.47 22699.76 9599.06 200
miper_ehance_all_eth98.18 17698.10 17098.41 24999.23 22297.72 23998.72 31599.31 25296.60 25498.88 22999.29 27697.29 12399.13 29297.60 21095.99 27598.38 315
OPM-MVS98.19 17498.10 17098.45 24498.88 28297.07 26099.28 21299.38 21598.57 6099.22 16699.81 6292.12 28199.66 20798.08 17197.54 23198.61 289
CLD-MVS98.16 17898.10 17098.33 25699.29 20996.82 27798.75 31299.44 18797.83 13899.13 18399.55 19992.92 25699.67 20498.32 15397.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 16098.09 17399.24 14899.26 21699.32 10299.56 9699.55 6397.45 18198.71 25099.83 4293.23 25099.63 21898.88 7096.32 26998.76 228
miper_enhance_ethall98.16 17898.08 17498.41 24998.96 27697.72 23998.45 33299.32 24996.95 22998.97 21699.17 29297.06 13099.22 27897.86 18695.99 27598.29 318
ADS-MVSNet98.20 17398.08 17498.56 23099.33 19696.48 28899.23 23099.15 27796.24 28099.10 19099.67 15194.11 23499.71 19396.81 26699.05 16299.48 157
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20698.77 31497.70 15498.94 22099.65 15892.91 25899.74 17696.52 27799.55 12999.64 118
ADS-MVSNet298.02 19798.07 17797.87 28899.33 19695.19 31999.23 23099.08 28596.24 28099.10 19099.67 15194.11 23498.93 32196.81 26699.05 16299.48 157
cl_fuxian98.12 18498.04 17898.38 25399.30 20597.69 24298.81 30699.33 24196.67 24698.83 23799.34 26497.11 12798.99 31197.58 21295.34 29298.48 301
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10896.75 35197.53 17499.73 4399.65 15891.25 30199.89 11398.62 11399.56 12799.48 157
EU-MVSNet97.98 20498.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28899.82 4995.25 19398.01 33597.41 23295.30 29398.78 222
tpmvs97.98 20498.02 18197.84 29099.04 26494.73 32799.31 20499.20 27196.10 29798.76 24699.42 24194.94 19799.81 15696.97 25798.45 19598.97 209
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 26999.36 9999.49 13499.51 10197.95 12798.97 21699.13 29796.30 15599.38 24798.36 14993.34 32198.66 266
ACMH97.28 898.10 18597.99 18398.44 24799.41 17796.96 27299.60 7199.56 5598.09 11098.15 29799.91 590.87 30599.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 16697.98 18499.26 14599.57 13898.16 21599.41 16898.55 33096.03 29899.19 17599.74 11691.87 28599.92 7999.16 4298.29 20299.70 95
bset_n11_16_dypcd98.16 17897.97 18598.73 21698.26 32898.28 21197.99 34798.01 33997.68 15699.10 19099.63 17095.68 17799.15 28898.78 9396.55 26298.75 230
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8297.76 14798.71 25099.46 23496.43 15299.22 27898.57 12492.87 32898.69 246
eth_miper_zixun_eth98.05 19497.96 18798.33 25699.26 21697.38 24798.56 32899.31 25296.65 24898.88 22999.52 21196.58 14599.12 29697.39 23395.53 28998.47 303
EPNet_dtu98.03 19597.96 18798.23 26698.27 32795.54 31099.23 23098.75 31599.02 1597.82 30999.71 12896.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24399.54 7799.50 12499.58 4998.27 8899.35 13899.37 25592.53 27299.65 21199.35 1994.46 30698.72 236
baseline198.31 16497.95 18999.38 12599.50 15798.74 17499.59 7798.93 29998.41 7399.14 18299.60 18394.59 21799.79 16498.48 13593.29 32299.61 126
ACMP97.20 1198.06 18997.94 19198.45 24499.37 18897.01 26699.44 15399.49 12797.54 17298.45 28099.79 8891.95 28499.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 17797.93 19298.87 19899.18 23598.49 19999.22 23599.33 24196.96 22799.56 8899.38 25294.33 22699.00 31094.83 31098.58 18799.14 186
miper_lstm_enhance98.00 20297.91 19398.28 26499.34 19597.43 24698.88 29999.36 22596.48 26498.80 24199.55 19995.98 16298.91 32297.27 23695.50 29098.51 299
pmmvs498.13 18297.90 19498.81 20998.61 31798.87 16198.99 28099.21 27096.44 26799.06 20199.58 18995.90 16999.11 29797.18 24696.11 27298.46 307
test-LLR98.06 18997.90 19498.55 23298.79 29497.10 25698.67 31897.75 34297.34 19298.61 27098.85 31694.45 22399.45 23397.25 23899.38 13699.10 190
HQP-MVS98.02 19797.90 19498.37 25499.19 23296.83 27598.98 28499.39 20998.24 9098.66 25999.40 24792.47 27499.64 21397.19 24497.58 22798.64 270
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25199.23 22296.80 27899.70 3399.60 4097.12 21398.18 29699.70 13291.73 29099.72 18798.39 14397.45 24098.68 251
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 20297.89 19898.32 25899.35 19196.20 29799.01 27898.90 30696.42 26998.38 28599.00 30895.26 19299.72 18796.06 28598.61 18499.03 202
WR-MVS_H98.13 18297.87 19998.90 18899.02 26798.84 16599.70 3399.59 4397.27 19998.40 28499.19 29195.53 18199.23 27598.34 15093.78 31798.61 289
cl-mvsnet198.01 20097.85 20098.48 23899.24 22197.95 22898.71 31699.35 23096.50 25998.60 27299.54 20495.72 17699.03 30597.21 24095.77 28198.46 307
cl-mvsnet_98.01 20097.84 20198.55 23299.25 22097.97 22498.71 31699.34 23496.47 26698.59 27399.54 20495.65 17999.21 28397.21 24095.77 28198.46 307
dp97.75 23997.80 20297.59 30099.10 25393.71 33699.32 20298.88 30896.48 26499.08 19699.55 19992.67 26899.82 15296.52 27798.58 18799.24 182
thisisatest051598.14 18197.79 20399.19 15299.50 15798.50 19898.61 32396.82 35096.95 22999.54 9399.43 23891.66 29499.86 12598.08 17199.51 13199.22 183
V4298.06 18997.79 20398.86 20198.98 27398.84 16599.69 3599.34 23496.53 25899.30 14599.37 25594.67 21499.32 26397.57 21694.66 30398.42 310
DU-MVS98.08 18897.79 20398.96 17598.87 28698.98 14299.41 16899.45 17997.87 13298.71 25099.50 21894.82 20299.22 27898.57 12492.87 32898.68 251
CP-MVSNet98.09 18697.78 20699.01 16998.97 27599.24 11399.67 4299.46 16797.25 20198.48 27999.64 16593.79 24399.06 30198.63 11294.10 31398.74 234
ACMH+97.24 1097.92 21297.78 20698.32 25899.46 16796.68 28299.56 9699.54 7098.41 7397.79 31199.87 2090.18 31299.66 20798.05 17597.18 25298.62 280
v2v48298.06 18997.77 20898.92 18298.90 28098.82 16999.57 8999.36 22596.65 24899.19 17599.35 26194.20 23099.25 27397.72 20194.97 30098.69 246
OurMVSNet-221017-097.88 21597.77 20898.19 26898.71 30796.53 28699.88 199.00 29297.79 14498.78 24499.94 391.68 29199.35 25897.21 24096.99 25698.69 246
IterMVS97.83 22597.77 20898.02 27899.58 13696.27 29599.02 27399.48 13997.22 20598.71 25099.70 13292.75 26099.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 19597.76 21198.84 20599.39 18598.98 14299.40 17699.38 21596.67 24699.07 19799.28 27892.93 25598.98 31297.10 24996.65 25898.56 296
IterMVS-SCA-FT97.82 22897.75 21298.06 27599.57 13896.36 29299.02 27399.49 12797.18 20798.71 25099.72 12792.72 26399.14 28997.44 23095.86 28098.67 258
MVP-Stereo97.81 23097.75 21297.99 28197.53 33596.60 28598.96 28898.85 31097.22 20597.23 32099.36 25895.28 18999.46 23295.51 29799.78 8997.92 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 18997.73 21499.06 16298.86 28999.25 11299.19 23899.35 23097.30 19698.66 25999.43 23893.94 23999.21 28398.58 12294.28 31098.71 238
CostFormer97.72 24597.73 21497.71 29799.15 24694.02 33399.54 10899.02 29194.67 31799.04 20399.35 26192.35 28099.77 17098.50 13497.94 21699.34 177
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26799.11 25096.33 29399.41 16899.52 8898.06 11999.05 20299.50 21889.64 31799.73 18397.73 19997.38 24698.53 297
v114497.98 20497.69 21798.85 20498.87 28698.66 18099.54 10899.35 23096.27 27799.23 16599.35 26194.67 21499.23 27596.73 27095.16 29698.68 251
Anonymous2024052998.09 18697.68 21899.34 12799.66 10998.44 20399.40 17699.43 19593.67 32699.22 16699.89 1090.23 31199.93 6899.26 3298.33 19799.66 108
our_test_397.65 25797.68 21897.55 30298.62 31594.97 32398.84 30399.30 25696.83 23898.19 29599.34 26497.01 13299.02 30795.00 30896.01 27398.64 270
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21598.78 29798.62 18499.65 5399.49 12797.76 14798.49 27899.60 18394.23 22998.97 31998.00 17692.90 32698.70 242
Patchmatch-test97.93 20997.65 22198.77 21499.18 23597.07 26099.03 27099.14 27996.16 28898.74 24799.57 19394.56 21999.72 18793.36 32499.11 15599.52 146
EPMVS97.82 22897.65 22198.35 25598.88 28295.98 30099.49 13494.71 35797.57 16799.26 15899.48 22792.46 27799.71 19397.87 18599.08 16099.35 175
cl-mvsnet297.85 22097.64 22398.48 23899.09 25597.87 23198.60 32599.33 24197.11 21698.87 23199.22 28792.38 27999.17 28798.21 15795.99 27598.42 310
v897.95 20897.63 22498.93 18098.95 27798.81 17199.80 1699.41 19996.03 29899.10 19099.42 24194.92 19899.30 26696.94 26094.08 31498.66 266
NR-MVSNet97.97 20797.61 22599.02 16898.87 28699.26 11199.47 14599.42 19797.63 16297.08 32499.50 21895.07 19699.13 29297.86 18693.59 31998.68 251
v14419297.92 21297.60 22698.87 19898.83 29298.65 18199.55 10599.34 23496.20 28399.32 14399.40 24794.36 22599.26 27296.37 28295.03 29998.70 242
RRT_test8_iter0597.72 24597.60 22698.08 27399.23 22296.08 29999.63 5899.49 12797.54 17298.94 22099.81 6287.99 33499.35 25899.21 3696.51 26498.81 219
PS-CasMVS97.93 20997.59 22898.95 17798.99 27099.06 13599.68 4099.52 8897.13 21198.31 29099.68 14592.44 27899.05 30298.51 13394.08 31498.75 230
v14897.79 23397.55 22998.50 23598.74 30297.72 23999.54 10899.33 24196.26 27898.90 22699.51 21594.68 21399.14 28997.83 18993.15 32598.63 278
baseline297.87 21797.55 22998.82 20799.18 23598.02 22199.41 16896.58 35396.97 22696.51 32999.17 29293.43 24799.57 22397.71 20299.03 16498.86 216
tpm97.67 25597.55 22998.03 27699.02 26795.01 32299.43 15998.54 33196.44 26799.12 18599.34 26491.83 28799.60 22197.75 19796.46 26599.48 157
Anonymous2023121197.88 21597.54 23298.90 18899.71 8698.53 19199.48 14099.57 5094.16 32298.81 23999.68 14593.23 25099.42 24398.84 8194.42 30898.76 228
v7n97.87 21797.52 23398.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22499.70 13294.89 20099.44 23896.03 28693.89 31698.75 230
v1097.85 22097.52 23398.86 20198.99 27098.67 17999.75 2599.41 19995.70 30198.98 21499.41 24494.75 21099.23 27596.01 28794.63 30498.67 258
thres600view797.86 21997.51 23598.92 18299.72 8097.95 22899.59 7798.74 31897.94 12899.27 15398.62 32591.75 28899.86 12593.73 32198.19 20698.96 211
testgi97.65 25797.50 23698.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30799.45 23591.09 30298.81 32594.53 31298.52 19299.13 188
GBi-Net97.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
test197.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
tfpnnormal97.84 22397.47 23998.98 17399.20 23099.22 11599.64 5699.61 3596.32 27398.27 29399.70 13293.35 24999.44 23895.69 29395.40 29198.27 319
GA-MVS97.85 22097.47 23999.00 17199.38 18697.99 22398.57 32699.15 27797.04 22198.90 22699.30 27489.83 31499.38 24796.70 27298.33 19799.62 124
LF4IMVS97.52 26497.46 24197.70 29898.98 27395.55 30899.29 21098.82 31398.07 11598.66 25999.64 16589.97 31399.61 22097.01 25396.68 25797.94 335
ppachtmachnet_test97.49 26997.45 24297.61 29998.62 31595.24 31798.80 30799.46 16796.11 29398.22 29499.62 17696.45 15098.97 31993.77 32095.97 27898.61 289
thres100view90097.76 23597.45 24298.69 22099.72 8097.86 23399.59 7798.74 31897.93 12999.26 15898.62 32591.75 28899.83 14593.22 32598.18 20798.37 316
v192192097.80 23297.45 24298.84 20598.80 29398.53 19199.52 11499.34 23496.15 29099.24 16199.47 23093.98 23899.29 26795.40 30095.13 29798.69 246
Baseline_NR-MVSNet97.76 23597.45 24298.68 22199.09 25598.29 20999.41 16898.85 31095.65 30298.63 26799.67 15194.82 20299.10 29998.07 17492.89 32798.64 270
MIMVSNet97.73 24397.45 24298.57 22899.45 17297.50 24499.02 27398.98 29496.11 29399.41 12099.14 29690.28 30798.74 32695.74 29298.93 17099.47 162
v119297.81 23097.44 24798.91 18698.88 28298.68 17899.51 11899.34 23496.18 28599.20 17299.34 26494.03 23799.36 25495.32 30395.18 29598.69 246
VPNet97.84 22397.44 24799.01 16999.21 22898.94 15499.48 14099.57 5098.38 7599.28 15099.73 12388.89 32399.39 24599.19 3793.27 32398.71 238
PEN-MVS97.76 23597.44 24798.72 21898.77 30098.54 19099.78 1999.51 10197.06 22098.29 29299.64 16592.63 26998.89 32498.09 16793.16 32498.72 236
cascas97.69 25097.43 25098.48 23898.60 31897.30 24898.18 34499.39 20992.96 33398.41 28398.78 32193.77 24499.27 27198.16 16398.61 18498.86 216
test0.0.03 197.71 24997.42 25198.56 23098.41 32697.82 23498.78 30998.63 32797.34 19298.05 30398.98 31294.45 22398.98 31295.04 30797.15 25498.89 215
TR-MVS97.76 23597.41 25298.82 20799.06 26097.87 23198.87 30198.56 32996.63 25198.68 25899.22 28792.49 27399.65 21195.40 30097.79 21998.95 214
DWT-MVSNet_test97.53 26397.40 25397.93 28499.03 26694.86 32599.57 8998.63 32796.59 25698.36 28798.79 31989.32 31999.74 17698.14 16598.16 21199.20 185
Patchmtry97.75 23997.40 25398.81 20999.10 25398.87 16199.11 25599.33 24194.83 31498.81 23999.38 25294.33 22699.02 30796.10 28495.57 28798.53 297
tfpn200view997.72 24597.38 25598.72 21899.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.37 316
thres40097.77 23497.38 25598.92 18299.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.96 211
tpm cat197.39 27297.36 25797.50 30499.17 24193.73 33599.43 15999.31 25291.27 33898.71 25099.08 30194.31 22899.77 17096.41 28198.50 19399.00 205
FMVSNet297.72 24597.36 25798.80 21199.51 15098.84 16599.45 14999.42 19796.49 26098.86 23699.29 27690.26 30898.98 31296.44 27996.56 26198.58 294
LFMVS97.90 21497.35 25999.54 9299.52 14899.01 14099.39 18098.24 33497.10 21799.65 6799.79 8884.79 34599.91 9099.28 2998.38 19699.69 98
VDD-MVS97.73 24397.35 25998.88 19499.47 16697.12 25599.34 20098.85 31098.19 9799.67 5999.85 2982.98 34799.92 7999.49 1298.32 20199.60 128
DSMNet-mixed97.25 27697.35 25996.95 31597.84 33393.61 33999.57 8996.63 35296.13 29298.87 23198.61 32794.59 21797.70 34295.08 30698.86 17699.55 139
tpm297.44 27197.34 26297.74 29699.15 24694.36 33099.45 14998.94 29893.45 33198.90 22699.44 23691.35 29999.59 22297.31 23498.07 21499.29 180
TAPA-MVS97.07 1597.74 24297.34 26298.94 17899.70 9397.53 24399.25 22799.51 10191.90 33699.30 14599.63 17098.78 4899.64 21388.09 34699.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 26797.33 26498.03 27698.65 31296.23 29699.77 2198.68 32697.14 21097.90 30699.93 490.45 30699.18 28697.00 25496.43 26698.67 258
MS-PatchMatch97.24 27797.32 26596.99 31298.45 32593.51 34098.82 30599.32 24997.41 18898.13 29899.30 27488.99 32299.56 22495.68 29499.80 8497.90 338
v124097.69 25097.32 26598.79 21298.85 29098.43 20499.48 14099.36 22596.11 29399.27 15399.36 25893.76 24599.24 27494.46 31395.23 29498.70 242
pmmvs597.52 26497.30 26798.16 27098.57 32096.73 27999.27 21698.90 30696.14 29198.37 28699.53 20891.54 29799.14 28997.51 22295.87 27998.63 278
pm-mvs197.68 25297.28 26898.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30799.79 8892.47 27499.35 25897.54 21993.54 32098.67 258
thres20097.61 25997.28 26898.62 22399.64 11698.03 22099.26 22598.74 31897.68 15699.09 19598.32 33491.66 29499.81 15692.88 32998.22 20398.03 328
TESTMET0.1,197.55 26197.27 27098.40 25198.93 27896.53 28698.67 31897.61 34596.96 22798.64 26699.28 27888.63 32799.45 23397.30 23599.38 13699.21 184
test_part197.75 23997.24 27199.29 14099.59 13499.63 6099.65 5399.49 12796.17 28698.44 28199.69 13989.80 31599.47 23098.68 10693.66 31898.78 222
USDC97.34 27397.20 27297.75 29599.07 25895.20 31898.51 33099.04 29097.99 12598.31 29099.86 2389.02 32199.55 22695.67 29597.36 24798.49 300
DTE-MVSNet97.51 26697.19 27398.46 24398.63 31498.13 21899.84 699.48 13996.68 24597.97 30599.67 15192.92 25698.56 32896.88 26592.60 33198.70 242
test-mter97.49 26997.13 27498.55 23298.79 29497.10 25698.67 31897.75 34296.65 24898.61 27098.85 31688.23 33199.45 23397.25 23899.38 13699.10 190
PAPM97.59 26097.09 27599.07 16199.06 26098.26 21298.30 34099.10 28294.88 31398.08 29999.34 26496.27 15699.64 21389.87 34098.92 17299.31 179
PCF-MVS97.08 1497.66 25697.06 27699.47 11299.61 12999.09 13298.04 34699.25 26591.24 33998.51 27699.70 13294.55 22099.91 9092.76 33299.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet97.55 26197.02 27799.16 15599.49 15998.12 21999.38 18599.30 25695.35 30599.68 5399.90 782.62 34999.93 6899.31 2698.13 21299.42 169
JIA-IIPM97.50 26797.02 27798.93 18098.73 30397.80 23599.30 20698.97 29591.73 33798.91 22494.86 34995.10 19599.71 19397.58 21297.98 21599.28 181
TinyColmap97.12 27996.89 27997.83 29199.07 25895.52 31198.57 32698.74 31897.58 16697.81 31099.79 8888.16 33299.56 22495.10 30597.21 25098.39 314
UniMVSNet_ETH3D97.32 27496.81 28098.87 19899.40 18297.46 24599.51 11899.53 8295.86 30098.54 27599.77 10182.44 35099.66 20798.68 10697.52 23299.50 155
K. test v397.10 28096.79 28198.01 27998.72 30596.33 29399.87 497.05 34897.59 16496.16 33399.80 7688.71 32499.04 30396.69 27396.55 26298.65 268
TransMVSNet (Re)97.15 27896.58 28298.86 20199.12 24898.85 16499.49 13498.91 30495.48 30397.16 32299.80 7693.38 24899.11 29794.16 31891.73 33398.62 280
MVS97.28 27596.55 28399.48 10998.78 29798.95 15199.27 21699.39 20983.53 34998.08 29999.54 20496.97 13399.87 12294.23 31699.16 15099.63 122
MVS_030496.79 28496.52 28497.59 30099.22 22694.92 32499.04 26999.59 4396.49 26098.43 28298.99 30980.48 35299.39 24597.15 24899.27 14498.47 303
PatchT97.03 28196.44 28598.79 21298.99 27098.34 20899.16 24199.07 28792.13 33599.52 9797.31 34494.54 22198.98 31288.54 34498.73 18399.03 202
FMVSNet196.84 28396.36 28698.29 26199.32 20397.26 25199.43 15999.48 13995.11 30898.55 27499.32 27183.95 34698.98 31295.81 29096.26 27098.62 280
AUN-MVS96.88 28296.31 28798.59 22599.48 16597.04 26499.27 21699.22 26897.44 18498.51 27699.41 24491.97 28399.66 20797.71 20283.83 34599.07 199
test_040296.64 28696.24 28897.85 28998.85 29096.43 29099.44 15399.26 26393.52 32896.98 32699.52 21188.52 32899.20 28592.58 33497.50 23597.93 336
FMVSNet596.43 29196.19 28997.15 30999.11 25095.89 30299.32 20299.52 8894.47 32198.34 28999.07 30287.54 33897.07 34692.61 33395.72 28498.47 303
UnsupCasMVSNet_eth96.44 29096.12 29097.40 30698.65 31295.65 30599.36 19299.51 10197.13 21196.04 33598.99 30988.40 32998.17 33196.71 27190.27 33698.40 313
pmmvs696.53 28896.09 29197.82 29298.69 30995.47 31299.37 18899.47 15793.46 33097.41 31699.78 9587.06 33999.33 26296.92 26392.70 33098.65 268
Anonymous2023120696.22 29396.03 29296.79 31997.31 34094.14 33299.63 5899.08 28596.17 28697.04 32599.06 30493.94 23997.76 34186.96 34995.06 29898.47 303
new_pmnet96.38 29296.03 29297.41 30598.13 33195.16 32199.05 26499.20 27193.94 32397.39 31798.79 31991.61 29699.04 30390.43 33895.77 28198.05 327
test20.0396.12 29695.96 29496.63 32097.44 33695.45 31399.51 11899.38 21596.55 25796.16 33399.25 28393.76 24596.17 35187.35 34894.22 31198.27 319
RPMNet96.72 28595.90 29599.19 15299.18 23598.49 19999.22 23599.52 8888.72 34599.56 8897.38 34194.08 23699.95 4286.87 35098.58 18799.14 186
N_pmnet94.95 30895.83 29692.31 33198.47 32479.33 35699.12 24992.81 36293.87 32497.68 31299.13 29793.87 24199.01 30991.38 33696.19 27198.59 293
Patchmatch-RL test95.84 29995.81 29795.95 32595.61 34790.57 34898.24 34198.39 33295.10 31095.20 33798.67 32494.78 20597.77 34096.28 28390.02 33799.51 152
EG-PatchMatch MVS95.97 29895.69 29896.81 31897.78 33492.79 34399.16 24198.93 29996.16 28894.08 34199.22 28782.72 34899.47 23095.67 29597.50 23598.17 323
ET-MVSNet_ETH3D96.49 28995.64 29999.05 16499.53 14698.82 16998.84 30397.51 34697.63 16284.77 34999.21 29092.09 28298.91 32298.98 5792.21 33299.41 171
PVSNet_094.43 1996.09 29795.47 30097.94 28399.31 20494.34 33197.81 34899.70 1597.12 21397.46 31598.75 32289.71 31699.79 16497.69 20581.69 34799.68 102
X-MVStestdata96.55 28795.45 30199.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 36198.81 4599.94 5398.79 9099.86 5199.84 18
IB-MVS95.67 1896.22 29395.44 30298.57 22899.21 22896.70 28098.65 32197.74 34496.71 24397.27 31998.54 32886.03 34199.92 7998.47 13886.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 29595.32 30398.73 21698.79 29498.14 21799.38 18594.09 35891.07 34198.07 30291.04 35489.62 31899.35 25896.75 26899.09 15998.68 251
MVS-HIRNet95.75 30095.16 30497.51 30399.30 20593.69 33798.88 29995.78 35485.09 34898.78 24492.65 35191.29 30099.37 25094.85 30999.85 5899.46 164
MIMVSNet195.51 30195.04 30596.92 31697.38 33795.60 30699.52 11499.50 11993.65 32796.97 32799.17 29285.28 34496.56 35088.36 34595.55 28898.60 292
CMPMVSbinary69.68 2394.13 31494.90 30691.84 33297.24 34180.01 35598.52 32999.48 13989.01 34391.99 34699.67 15185.67 34399.13 29295.44 29897.03 25596.39 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 30594.73 30797.15 30995.53 34995.94 30199.35 19799.10 28295.13 30693.55 34297.54 33988.15 33397.91 33794.58 31189.69 33997.61 340
MDA-MVSNet_test_wron95.45 30294.60 30898.01 27998.16 33097.21 25499.11 25599.24 26693.49 32980.73 35498.98 31293.02 25398.18 33094.22 31794.45 30798.64 270
TDRefinement95.42 30394.57 30997.97 28289.83 35696.11 29899.48 14098.75 31596.74 24196.68 32899.88 1588.65 32699.71 19398.37 14782.74 34698.09 325
YYNet195.36 30494.51 31097.92 28597.89 33297.10 25699.10 25799.23 26793.26 33280.77 35399.04 30692.81 25998.02 33494.30 31494.18 31298.64 270
DIV-MVS_2432*160095.00 30694.34 31196.96 31497.07 34595.39 31599.56 9699.44 18795.11 30897.13 32397.32 34391.86 28697.27 34590.35 33981.23 34898.23 322
new-patchmatchnet94.48 31294.08 31295.67 32695.08 35092.41 34499.18 23999.28 26294.55 32093.49 34397.37 34287.86 33797.01 34791.57 33588.36 34097.61 340
MDA-MVSNet-bldmvs94.96 30793.98 31397.92 28598.24 32997.27 25099.15 24599.33 24193.80 32580.09 35599.03 30788.31 33097.86 33993.49 32394.36 30998.62 280
CL-MVSNet_2432*160094.49 31193.97 31496.08 32496.16 34693.67 33898.33 33899.38 21595.13 30697.33 31898.15 33692.69 26796.57 34988.67 34379.87 34997.99 332
KD-MVS_2432*160094.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
miper_refine_blended94.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
OpenMVS_ROBcopyleft92.34 2094.38 31393.70 31796.41 32397.38 33793.17 34199.06 26298.75 31586.58 34694.84 34098.26 33581.53 35199.32 26389.01 34297.87 21896.76 344
pmmvs394.09 31593.25 31896.60 32194.76 35194.49 32898.92 29598.18 33789.66 34296.48 33098.06 33786.28 34097.33 34489.68 34187.20 34297.97 334
UnsupCasMVSNet_bld93.53 31692.51 31996.58 32297.38 33793.82 33498.24 34199.48 13991.10 34093.10 34496.66 34574.89 35398.37 32994.03 31987.71 34197.56 342
PM-MVS92.96 31792.23 32095.14 32795.61 34789.98 35099.37 18898.21 33594.80 31595.04 33997.69 33865.06 35597.90 33894.30 31489.98 33897.54 343
Gipumacopyleft90.99 31890.15 32193.51 32898.73 30390.12 34993.98 35399.45 17979.32 35192.28 34594.91 34869.61 35497.98 33687.42 34795.67 28592.45 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 32185.65 32282.75 33986.77 35863.39 36298.35 33598.92 30174.11 35283.39 35198.98 31250.85 35992.40 35584.54 35294.97 30092.46 349
PMMVS286.87 31985.37 32391.35 33490.21 35583.80 35198.89 29897.45 34783.13 35091.67 34795.03 34748.49 36094.70 35385.86 35177.62 35095.54 347
LCM-MVSNet86.80 32085.22 32491.53 33387.81 35780.96 35498.23 34398.99 29371.05 35390.13 34896.51 34648.45 36196.88 34890.51 33785.30 34496.76 344
tmp_tt82.80 32281.52 32586.66 33566.61 36368.44 36192.79 35597.92 34068.96 35480.04 35699.85 2985.77 34296.15 35297.86 18643.89 35795.39 348
E-PMN80.61 32379.88 32682.81 33890.75 35476.38 35997.69 34995.76 35566.44 35683.52 35092.25 35262.54 35787.16 35768.53 35661.40 35484.89 355
EMVS80.02 32479.22 32782.43 34091.19 35376.40 35897.55 35192.49 36366.36 35783.01 35291.27 35364.63 35685.79 35865.82 35760.65 35585.08 354
PMVScopyleft70.75 2275.98 32774.97 32879.01 34170.98 36255.18 36393.37 35498.21 33565.08 35861.78 35993.83 35021.74 36692.53 35478.59 35391.12 33589.34 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 32574.86 32984.62 33775.88 36177.61 35797.63 35093.15 36188.81 34464.27 35889.29 35536.51 36283.93 35975.89 35452.31 35692.33 351
MVEpermissive76.82 2176.91 32674.31 33084.70 33685.38 36076.05 36096.88 35293.17 36067.39 35571.28 35789.01 35621.66 36787.69 35671.74 35572.29 35390.35 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 32943.78 33125.37 34436.04 36516.84 36698.36 33426.56 36420.06 36038.51 36167.32 35729.64 36415.30 36237.59 35939.90 35843.98 357
test12339.01 33042.50 33228.53 34339.17 36420.91 36598.75 31219.17 36619.83 36138.57 36066.67 35833.16 36315.42 36137.50 36029.66 35949.26 356
wuyk23d40.18 32841.29 33336.84 34286.18 35949.12 36479.73 35622.81 36527.64 35925.46 36228.45 36221.98 36548.89 36055.80 35823.56 36012.51 358
cdsmvs_eth3d_5k24.64 33132.85 3340.00 3450.00 3660.00 3670.00 35799.51 1010.00 3620.00 36399.56 19696.58 1450.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.30 33211.06 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.58 1890.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.27 33311.03 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 36399.01 160.00 3630.00 3610.00 3610.00 359
uanet_test0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.71 8699.79 3099.61 3596.84 23699.56 8899.54 20498.58 7099.96 1896.93 26199.75 96
IU-MVS99.84 3299.88 799.32 24998.30 8599.84 1398.86 7799.85 5899.89 2
OPU-MVS99.64 7799.56 14299.72 4299.60 7199.70 13299.27 499.42 24398.24 15699.80 8499.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 173
save fliter99.76 5299.59 6899.14 24799.40 20599.00 22
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 8999.51 10199.96 1898.93 6499.86 5199.88 5
test072699.85 2599.89 399.62 6499.50 11999.10 899.86 1199.82 4998.94 31
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20199.52 146
sam_mvs94.72 212
ambc93.06 33092.68 35282.36 35298.47 33198.73 32395.09 33897.41 34055.55 35899.10 29996.42 28091.32 33497.71 339
MTGPAbinary99.47 157
test_post199.23 23065.14 36094.18 23399.71 19397.58 212
test_post65.99 35994.65 21699.73 183
patchmatchnet-post98.70 32394.79 20499.74 176
GG-mvs-BLEND98.45 24498.55 32198.16 21599.43 15993.68 35997.23 32098.46 32989.30 32099.22 27895.43 29998.22 20397.98 333
MTMP99.54 10898.88 308
gm-plane-assit98.54 32292.96 34294.65 31899.15 29599.64 21397.56 217
test9_res97.49 22399.72 10399.75 69
TEST999.67 10099.65 5799.05 26499.41 19996.22 28298.95 21899.49 22198.77 5199.91 90
test_899.67 10099.61 6399.03 27099.41 19996.28 27598.93 22299.48 22798.76 5399.91 90
agg_prior297.21 24099.73 10299.75 69
agg_prior99.67 10099.62 6199.40 20598.87 23199.91 90
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
test_prior499.56 7398.99 280
test_prior298.96 28898.34 8099.01 20699.52 21198.68 6397.96 17899.74 99
test_prior99.68 6599.67 10099.48 8799.56 5599.83 14599.74 73
旧先验298.96 28896.70 24499.47 10599.94 5398.19 158
新几何299.01 278
新几何199.75 5199.75 6299.59 6899.54 7096.76 24099.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
无先验98.99 28099.51 10196.89 23399.93 6897.53 22099.72 86
原ACMM298.95 292
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17899.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
test22299.75 6299.49 8698.91 29799.49 12796.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
testdata299.95 4296.67 274
segment_acmp98.96 25
testdata99.54 9299.75 6298.95 15199.51 10197.07 21899.43 11399.70 13298.87 3999.94 5397.76 19599.64 12099.72 86
testdata198.85 30298.32 84
test1299.75 5199.64 11699.61 6399.29 26199.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20997.03 265
plane_prior699.27 21496.98 26992.71 265
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
plane_prior499.61 180
plane_prior397.00 26798.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 216
plane_prior96.97 27099.21 23798.45 6997.60 225
n20.00 367
nn0.00 367
door-mid98.05 338
lessismore_v097.79 29498.69 30995.44 31494.75 35695.71 33699.87 2088.69 32599.32 26395.89 28894.93 30298.62 280
LGP-MVS_train98.49 23699.33 19697.05 26299.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
test1199.35 230
door97.92 340
HQP5-MVS96.83 275
HQP-NCC99.19 23298.98 28498.24 9098.66 259
ACMP_Plane99.19 23298.98 28498.24 9098.66 259
BP-MVS97.19 244
HQP4-MVS98.66 25999.64 21398.64 270
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 274
NP-MVS99.23 22296.92 27399.40 247
MDTV_nov1_ep13_2view95.18 32099.35 19796.84 23699.58 8595.19 19497.82 19099.46 164
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56
ITE_SJBPF98.08 27399.29 20996.37 29198.92 30198.34 8098.83 23799.75 11091.09 30299.62 21995.82 28997.40 24598.25 321
DeepMVS_CXcopyleft93.34 32999.29 20982.27 35399.22 26885.15 34796.33 33199.05 30590.97 30499.73 18393.57 32297.77 22098.01 329