This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 6899.48 13399.08 1199.91 199.81 6099.20 599.96 1898.91 6799.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 13399.07 1399.91 199.74 11399.20 599.76 169
MSP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8599.37 21799.10 899.81 2299.80 7498.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_SECOND99.91 299.84 3299.89 399.57 8599.51 9699.96 1898.93 6499.86 5199.88 5
test072699.85 2599.89 399.62 6199.50 11499.10 899.86 1199.82 4998.94 31
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5499.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
IU-MVS99.84 3299.88 799.32 24298.30 8399.84 1398.86 7799.85 5899.89 2
DPE-MVS99.46 2499.32 2999.91 299.78 4499.88 799.36 18899.51 9698.73 5199.88 599.84 3898.72 5999.96 1898.16 15999.87 4099.88 5
MP-MVS-pluss99.37 4699.20 5699.88 699.90 399.87 999.30 20299.52 8697.18 20299.60 7799.79 8698.79 4799.95 4198.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14099.48 13398.05 11799.76 3799.86 2398.82 4499.93 6498.82 8899.91 1699.84 18
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 18899.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
HPM-MVS++copyleft99.39 4499.23 5499.87 1199.75 6099.84 1399.43 15499.51 9698.68 5599.27 14999.53 20298.64 6799.96 1898.44 13699.80 8299.79 53
SR-MVS99.43 3299.29 4299.86 1899.75 6099.83 1499.59 7399.62 3398.21 9399.73 4099.79 8698.68 6299.96 1898.44 13699.77 8999.79 53
SMA-MVS99.44 2999.30 3899.85 2599.73 7299.83 1499.56 9299.47 15297.45 17799.78 3199.82 4999.18 899.91 8698.79 9099.89 3399.81 41
test_part299.81 4099.83 1499.77 33
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12899.74 11398.81 4599.94 4998.79 9099.86 5199.84 18
X-MVStestdata96.55 28295.45 29599.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12864.01 35198.81 4599.94 4998.79 9099.86 5199.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 6898.36 7699.79 2699.82 4998.86 4099.95 4198.62 11199.81 8099.78 60
MP-MVScopyleft99.33 5099.15 6099.87 1199.88 1199.82 2099.66 4699.46 16298.09 10799.48 10099.74 11398.29 8899.96 1897.93 17799.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS99.47 2299.33 2799.87 1199.87 1599.81 2199.64 5599.67 2298.08 11199.55 8899.64 16198.91 3699.96 1898.72 9899.90 2399.82 36
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2199.59 7399.51 9698.62 5799.79 2699.83 4299.28 399.97 1098.48 13099.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS99.42 3699.27 4799.88 699.89 899.80 2399.67 4299.50 11498.70 5399.77 3399.49 21598.21 9299.95 4198.46 13499.77 8999.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2399.66 4699.67 2298.15 9899.68 5099.69 13699.06 1399.96 1898.69 10399.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2399.65 5399.66 2798.13 10099.66 6199.68 14198.96 2599.96 1898.62 11199.87 4099.84 18
#test#99.43 3299.29 4299.86 1899.87 1599.80 2399.55 10099.67 2297.83 13599.68 5099.69 13699.06 1399.96 1898.39 13899.87 4099.84 18
testtj99.12 8398.87 10199.86 1899.72 7799.79 2799.44 14899.51 9697.29 19299.59 8099.74 11398.15 9699.96 1896.74 26399.69 10599.81 41
GST-MVS99.40 4399.24 5299.85 2599.86 2199.79 2799.60 6899.67 2297.97 12399.63 6799.68 14198.52 7099.95 4198.38 14099.86 5199.81 41
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 2799.66 4699.67 2298.15 9899.67 5699.69 13698.95 2899.96 1898.69 10399.87 4099.84 18
mPP-MVS99.44 2999.30 3899.86 1899.88 1199.79 2799.69 3599.48 13398.12 10299.50 9699.75 10798.78 4899.97 1098.57 12099.89 3399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 2799.76 2499.56 5497.72 14999.76 3799.75 10799.13 1099.92 7599.07 5099.92 1199.85 14
APD-MVScopyleft99.27 5899.08 6999.84 3099.75 6099.79 2799.50 11999.50 11497.16 20499.77 3399.82 4998.78 4899.94 4997.56 21299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS99.45 2699.31 3699.86 1899.87 1599.78 3399.58 8099.65 3297.84 13499.71 4399.80 7499.12 1199.97 1098.33 14699.87 4099.83 29
abl_699.44 2999.31 3699.83 3199.85 2599.75 3499.66 4699.59 4298.13 10099.82 2099.81 6098.60 6899.96 1898.46 13499.88 3699.79 53
CP-MVS99.45 2699.32 2999.85 2599.83 3699.75 3499.69 3599.52 8698.07 11299.53 9199.63 16698.93 3599.97 1098.74 9499.91 1699.83 29
LS3D99.27 5899.12 6499.74 5499.18 22999.75 3499.56 9299.57 4998.45 6999.49 9999.85 2997.77 10699.94 4998.33 14699.84 6599.52 143
MCST-MVS99.43 3299.30 3899.82 3399.79 4299.74 3799.29 20699.40 19998.79 4799.52 9399.62 17198.91 3699.90 10198.64 10999.75 9399.82 36
OPU-MVS99.64 7599.56 13799.72 3899.60 6899.70 12999.27 499.42 23798.24 15199.80 8299.79 53
HPM-MVScopyleft99.42 3699.28 4599.83 3199.90 399.72 3899.81 1299.54 6897.59 16099.68 5099.63 16698.91 3699.94 4998.58 11899.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS99.13 7798.91 9699.80 3899.75 6099.71 4099.15 24099.41 19396.60 24899.60 7799.55 19498.83 4399.90 10197.48 21999.83 7299.78 60
CNVR-MVS99.42 3699.30 3899.78 4399.62 12199.71 4099.26 22099.52 8698.82 4299.39 12399.71 12598.96 2599.85 12798.59 11799.80 8299.77 62
DP-MVS Recon99.12 8398.95 9299.65 7099.74 6799.70 4299.27 21299.57 4996.40 26699.42 11299.68 14198.75 5699.80 15797.98 17399.72 9999.44 164
ETH3D-3000-0.199.21 6499.02 7999.77 4599.73 7299.69 4399.38 18199.51 9697.45 17799.61 7399.75 10798.51 7199.91 8697.45 22499.83 7299.71 90
nrg03098.64 14498.42 14899.28 14099.05 25799.69 4399.81 1299.46 16298.04 11899.01 20199.82 4996.69 13999.38 24199.34 2394.59 30198.78 218
SF-MVS99.38 4599.24 5299.79 4199.79 4299.68 4599.57 8599.54 6897.82 14099.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
SD-MVS99.41 4099.52 699.05 16099.74 6799.68 4599.46 14399.52 8699.11 799.88 599.91 599.43 197.70 33598.72 9899.93 1099.77 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+97.12 1399.18 6998.97 8899.82 3399.17 23599.68 4599.81 1299.51 9699.20 498.72 24499.89 1095.68 17399.97 1098.86 7799.86 5199.81 41
QAPM98.67 14198.30 15799.80 3899.20 22499.67 4899.77 2199.72 1194.74 30698.73 24399.90 795.78 16999.98 596.96 25399.88 3699.76 65
ACMMPcopyleft99.45 2699.32 2999.82 3399.89 899.67 4899.62 6199.69 1898.12 10299.63 6799.84 3898.73 5899.96 1898.55 12699.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5099.63 5799.39 20398.91 3699.78 3199.85 2999.36 299.94 4998.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MAR-MVS98.86 11798.63 13099.54 9099.37 18299.66 5099.45 14499.54 6896.61 24699.01 20199.40 24097.09 12499.86 12197.68 20299.53 12699.10 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator97.25 999.24 6399.05 7199.81 3699.12 24299.66 5099.84 699.74 1099.09 1098.92 21899.90 795.94 16299.98 598.95 6199.92 1199.79 53
TEST999.67 9699.65 5399.05 25999.41 19396.22 27798.95 21399.49 21598.77 5199.91 86
train_agg99.02 10298.77 11599.77 4599.67 9699.65 5399.05 25999.41 19396.28 27098.95 21399.49 21598.76 5399.91 8697.63 20399.72 9999.75 66
NCCC99.34 4999.19 5799.79 4199.61 12599.65 5399.30 20299.48 13398.86 3899.21 16599.63 16698.72 5999.90 10198.25 15099.63 11899.80 49
agg_prior199.01 10598.76 11799.76 4899.67 9699.62 5698.99 27599.40 19996.26 27398.87 22699.49 21598.77 5199.91 8697.69 20099.72 9999.75 66
agg_prior99.67 9699.62 5699.40 19998.87 22699.91 86
test_899.67 9699.61 5899.03 26599.41 19396.28 27098.93 21799.48 22198.76 5399.91 86
test1299.75 4999.64 11299.61 5899.29 25499.21 16598.38 8299.89 10999.74 9599.74 70
ETH3D cwj APD-0.1699.06 9698.84 10799.72 5999.51 14599.60 6099.23 22599.44 18297.04 21699.39 12399.67 14798.30 8799.92 7597.27 23199.69 10599.64 115
ETH3 D test640098.70 13798.35 15299.73 5699.69 9199.60 6099.16 23699.45 17495.42 29899.27 14999.60 17897.39 11399.91 8695.36 29699.83 7299.70 92
112199.09 9298.87 10199.75 4999.74 6799.60 6099.27 21299.48 13396.82 23399.25 15699.65 15498.38 8299.93 6497.53 21599.67 11299.73 77
xxxxxxxxxxxxxcwj99.43 3299.32 2999.75 4999.76 5299.59 6399.14 24299.53 8099.00 2299.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
save fliter99.76 5299.59 6399.14 24299.40 19999.00 22
新几何199.75 4999.75 6099.59 6399.54 6896.76 23499.29 14499.64 16198.43 7799.94 4996.92 25799.66 11399.72 83
旧先验199.74 6799.59 6399.54 6899.69 13698.47 7499.68 11099.73 77
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4599.63 11599.59 6399.36 18899.46 16299.07 1399.79 2699.82 4998.85 4199.92 7598.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior499.56 6898.99 275
VNet99.11 8898.90 9799.73 5699.52 14399.56 6899.41 16499.39 20399.01 1899.74 3999.78 9295.56 17599.92 7599.52 698.18 20399.72 83
DPM-MVS98.95 11098.71 12199.66 6699.63 11599.55 7098.64 31799.10 27397.93 12699.42 11299.55 19498.67 6599.80 15795.80 28599.68 11099.61 123
UA-Net99.42 3699.29 4299.80 3899.62 12199.55 7099.50 11999.70 1598.79 4799.77 3399.96 197.45 11299.96 1898.92 6699.90 2399.89 2
FIs98.78 13298.63 13099.23 14799.18 22999.54 7299.83 999.59 4298.28 8498.79 23899.81 6096.75 13799.37 24499.08 4996.38 26298.78 218
VPA-MVSNet98.29 16597.95 18599.30 13599.16 23799.54 7299.50 11999.58 4898.27 8599.35 13499.37 24892.53 26699.65 20699.35 1994.46 30298.72 230
AdaColmapbinary99.01 10598.80 11299.66 6699.56 13799.54 7299.18 23499.70 1598.18 9799.35 13499.63 16696.32 15099.90 10197.48 21999.77 8999.55 136
114514_t98.93 11198.67 12599.72 5999.85 2599.53 7599.62 6199.59 4292.65 32499.71 4399.78 9298.06 9999.90 10198.84 8199.91 1699.74 70
DP-MVS99.16 7398.95 9299.78 4399.77 4999.53 7599.41 16499.50 11497.03 21899.04 19899.88 1597.39 11399.92 7598.66 10799.90 2399.87 10
OpenMVScopyleft96.50 1698.47 14998.12 16699.52 10199.04 25899.53 7599.82 1099.72 1194.56 30998.08 29299.88 1594.73 20699.98 597.47 22199.76 9299.06 196
Regformer-299.54 999.47 999.75 4999.71 8399.52 7899.49 12999.49 12298.94 3399.83 1799.76 10299.01 1699.94 4999.15 4399.87 4099.80 49
PHI-MVS99.30 5399.17 5999.70 6299.56 13799.52 7899.58 8099.80 897.12 20899.62 7199.73 12098.58 6999.90 10198.61 11499.91 1699.68 99
MVS_111021_LR99.41 4099.33 2799.65 7099.77 4999.51 8098.94 28999.85 698.82 4299.65 6499.74 11398.51 7199.80 15798.83 8499.89 3399.64 115
test22299.75 6099.49 8198.91 29299.49 12296.42 26499.34 13799.65 15498.28 8999.69 10599.72 83
test_prior399.21 6499.05 7199.68 6399.67 9699.48 8298.96 28399.56 5498.34 7899.01 20199.52 20598.68 6299.83 14197.96 17499.74 9599.74 70
test_prior99.68 6399.67 9699.48 8299.56 5499.83 14199.74 70
MVS_111021_HR99.41 4099.32 2999.66 6699.72 7799.47 8498.95 28799.85 698.82 4299.54 8999.73 12098.51 7199.74 17298.91 6799.88 3699.77 62
CPTT-MVS99.11 8898.90 9799.74 5499.80 4199.46 8599.59 7399.49 12297.03 21899.63 6799.69 13697.27 12099.96 1897.82 18699.84 6599.81 41
FC-MVSNet-test98.75 13598.62 13599.15 15399.08 25199.45 8699.86 599.60 3998.23 9098.70 25199.82 4996.80 13399.22 27399.07 5096.38 26298.79 217
Regformer-199.53 1199.47 999.72 5999.71 8399.44 8799.49 12999.46 16298.95 3299.83 1799.76 10299.01 1699.93 6499.17 4099.87 4099.80 49
PAPM_NR99.04 9998.84 10799.66 6699.74 6799.44 8799.39 17699.38 20997.70 15199.28 14699.28 27198.34 8599.85 12796.96 25399.45 12899.69 95
alignmvs98.81 12898.56 14299.58 8599.43 16799.42 8999.51 11398.96 28998.61 5899.35 13498.92 30894.78 20099.77 16699.35 1998.11 20999.54 138
Regformer-499.59 399.54 499.73 5699.76 5299.41 9099.58 8099.49 12299.02 1599.88 599.80 7499.00 2299.94 4999.45 1599.92 1199.84 18
CNLPA99.14 7598.99 8499.59 8299.58 13199.41 9099.16 23699.44 18298.45 6999.19 17199.49 21598.08 9899.89 10997.73 19599.75 9399.48 154
DELS-MVS99.48 1999.42 1399.65 7099.72 7799.40 9299.05 25999.66 2799.14 699.57 8499.80 7498.46 7599.94 4999.57 399.84 6599.60 125
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test99.11 8898.92 9499.65 7099.90 399.37 9399.02 26899.91 397.67 15599.59 8099.75 10795.90 16599.73 17999.53 599.02 16199.86 11
UniMVSNet (Re)98.29 16598.00 17999.13 15499.00 26399.36 9499.49 12999.51 9697.95 12498.97 21199.13 29096.30 15199.38 24198.36 14493.34 31698.66 261
CS-MVS99.21 6499.13 6299.45 11399.54 14099.34 9599.71 3199.54 6898.26 8698.99 20899.24 27798.25 9099.88 11498.98 5799.63 11899.12 186
原ACMM199.65 7099.73 7299.33 9699.47 15297.46 17499.12 18199.66 15398.67 6599.91 8697.70 19999.69 10599.71 90
canonicalmvs99.02 10298.86 10599.51 10399.42 16899.32 9799.80 1699.48 13398.63 5699.31 14098.81 31197.09 12499.75 17199.27 3197.90 21399.47 159
XXY-MVS98.38 15898.09 17099.24 14599.26 21099.32 9799.56 9299.55 6197.45 17798.71 24599.83 4293.23 24599.63 21398.88 7096.32 26498.76 223
IS-MVSNet99.05 9898.87 10199.57 8699.73 7299.32 9799.75 2599.20 26498.02 12199.56 8599.86 2396.54 14399.67 20098.09 16399.13 15099.73 77
API-MVS99.04 9999.03 7699.06 15899.40 17699.31 10099.55 10099.56 5498.54 6199.33 13899.39 24498.76 5399.78 16496.98 25199.78 8798.07 320
ETV-MVS99.26 6099.21 5599.40 12099.46 16199.30 10199.56 9299.52 8698.52 6399.44 10899.27 27498.41 8199.86 12199.10 4799.59 12299.04 197
Regformer-399.57 799.53 599.68 6399.76 5299.29 10299.58 8099.44 18299.01 1899.87 1099.80 7498.97 2499.91 8699.44 1799.92 1199.83 29
Fast-Effi-MVS+98.70 13798.43 14799.51 10399.51 14599.28 10399.52 10999.47 15296.11 28799.01 20199.34 25796.20 15499.84 13297.88 18098.82 17499.39 170
PatchMatch-RL98.84 12798.62 13599.52 10199.71 8399.28 10399.06 25799.77 997.74 14899.50 9699.53 20295.41 17999.84 13297.17 24299.64 11699.44 164
F-COLMAP99.19 6799.04 7499.64 7599.78 4499.27 10599.42 16199.54 6897.29 19299.41 11699.59 18198.42 8099.93 6498.19 15499.69 10599.73 77
NR-MVSNet97.97 20497.61 22199.02 16498.87 28099.26 10699.47 14099.42 19197.63 15897.08 31399.50 21295.07 19199.13 28697.86 18293.59 31498.68 245
WR-MVS98.06 18697.73 21099.06 15898.86 28399.25 10799.19 23399.35 22397.30 19198.66 25499.43 23293.94 23499.21 27898.58 11894.28 30698.71 232
CP-MVSNet98.09 18397.78 20299.01 16598.97 26999.24 10899.67 4299.46 16297.25 19698.48 27399.64 16193.79 23899.06 29598.63 11094.10 30998.74 228
DeepC-MVS98.35 299.30 5399.19 5799.64 7599.82 3799.23 10999.62 6199.55 6198.94 3399.63 6799.95 295.82 16899.94 4999.37 1899.97 399.73 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal97.84 22097.47 23598.98 16999.20 22499.22 11099.64 5599.61 3596.32 26898.27 28699.70 12993.35 24499.44 23295.69 28795.40 28798.27 314
ab-mvs98.86 11798.63 13099.54 9099.64 11299.19 11199.44 14899.54 6897.77 14399.30 14199.81 6094.20 22599.93 6499.17 4098.82 17499.49 153
MSDG98.98 10798.80 11299.53 9699.76 5299.19 11198.75 30799.55 6197.25 19699.47 10199.77 9897.82 10499.87 11896.93 25699.90 2399.54 138
EIA-MVS99.18 6999.09 6899.45 11399.49 15499.18 11399.67 4299.53 8097.66 15699.40 12199.44 23098.10 9799.81 15298.94 6299.62 12099.35 172
test_yl98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
DCV-MVSNet98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
CANet99.25 6299.14 6199.59 8299.41 17199.16 11699.35 19399.57 4998.82 4299.51 9599.61 17596.46 14599.95 4199.59 199.98 299.65 109
MSLP-MVS++99.46 2499.47 999.44 11899.60 12899.16 11699.41 16499.71 1398.98 2799.45 10499.78 9299.19 799.54 22299.28 2999.84 6599.63 119
casdiffmvs99.13 7798.98 8799.56 8899.65 11099.16 11699.56 9299.50 11498.33 8199.41 11699.86 2395.92 16399.83 14199.45 1599.16 14699.70 92
WTY-MVS99.06 9698.88 10099.61 8099.62 12199.16 11699.37 18499.56 5498.04 11899.53 9199.62 17196.84 13299.94 4998.85 7998.49 19099.72 83
EI-MVSNet-Vis-set99.58 499.56 399.64 7599.78 4499.15 12099.61 6799.45 17499.01 1899.89 499.82 4999.01 1699.92 7599.56 499.95 699.85 14
RRT_MVS98.60 14698.44 14699.05 16098.88 27699.14 12199.49 12999.38 20997.76 14499.29 14499.86 2395.38 18099.36 24898.81 8997.16 24998.64 265
EI-MVSNet-UG-set99.58 499.57 199.64 7599.78 4499.14 12199.60 6899.45 17499.01 1899.90 399.83 4298.98 2399.93 6499.59 199.95 699.86 11
MVS_Test99.10 9198.97 8899.48 10799.49 15499.14 12199.67 4299.34 22797.31 19099.58 8299.76 10297.65 10999.82 14898.87 7499.07 15799.46 161
baseline99.15 7499.02 7999.53 9699.66 10599.14 12199.72 2999.48 13398.35 7799.42 11299.84 3896.07 15699.79 16099.51 799.14 14999.67 102
Effi-MVS+98.81 12898.59 14099.48 10799.46 16199.12 12598.08 33799.50 11497.50 17399.38 12699.41 23896.37 14999.81 15299.11 4698.54 18799.51 149
Vis-MVSNetpermissive99.12 8398.97 8899.56 8899.78 4499.10 12699.68 4099.66 2798.49 6599.86 1199.87 2094.77 20399.84 13299.19 3799.41 13199.74 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS97.08 1497.66 25297.06 27199.47 11099.61 12599.09 12798.04 33899.25 25991.24 32998.51 27199.70 12994.55 21599.91 8692.76 32499.85 5899.42 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS97.30 798.85 12598.64 12999.47 11099.42 16899.08 12899.62 6199.36 21897.39 18599.28 14699.68 14196.44 14799.92 7598.37 14298.22 19999.40 169
PVSNet_Blended_VisFu99.36 4799.28 4599.61 8099.86 2199.07 12999.47 14099.93 297.66 15699.71 4399.86 2397.73 10799.96 1899.47 1399.82 7899.79 53
PS-CasMVS97.93 20697.59 22498.95 17498.99 26499.06 13099.68 4099.52 8697.13 20698.31 28399.68 14192.44 27299.05 29698.51 12894.08 31098.75 225
EPP-MVSNet99.13 7798.99 8499.53 9699.65 11099.06 13099.81 1299.33 23497.43 18099.60 7799.88 1597.14 12299.84 13299.13 4498.94 16599.69 95
PAPR98.63 14598.34 15399.51 10399.40 17699.03 13298.80 30299.36 21896.33 26799.00 20699.12 29398.46 7599.84 13295.23 29899.37 13699.66 105
MVSTER98.49 14898.32 15599.00 16799.35 18599.02 13399.54 10399.38 20997.41 18399.20 16899.73 12093.86 23799.36 24898.87 7497.56 22598.62 275
1112_ss98.98 10798.77 11599.59 8299.68 9599.02 13399.25 22299.48 13397.23 19999.13 17999.58 18496.93 13199.90 10198.87 7498.78 17799.84 18
LFMVS97.90 21197.35 25599.54 9099.52 14399.01 13599.39 17698.24 32697.10 21299.65 6499.79 8684.79 33499.91 8699.28 2998.38 19299.69 95
PLCcopyleft97.94 499.02 10298.85 10699.53 9699.66 10599.01 13599.24 22499.52 8696.85 23099.27 14999.48 22198.25 9099.91 8697.76 19199.62 12099.65 109
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing_294.44 30492.93 30998.98 16994.16 34199.00 13799.42 16199.28 25596.60 24884.86 33896.84 33470.91 34399.27 26598.23 15296.08 26898.68 245
UniMVSNet_NR-MVSNet98.22 16897.97 18298.96 17298.92 27398.98 13899.48 13599.53 8097.76 14498.71 24599.46 22896.43 14899.22 27398.57 12092.87 32398.69 240
DU-MVS98.08 18597.79 19998.96 17298.87 28098.98 13899.41 16499.45 17497.87 12998.71 24599.50 21294.82 19799.22 27398.57 12092.87 32398.68 245
FMVSNet398.03 19297.76 20798.84 20399.39 17998.98 13899.40 17299.38 20996.67 24099.07 19299.28 27192.93 25098.98 30797.10 24496.65 25498.56 291
xiu_mvs_v1_base_debu99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base_debi99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
sss99.17 7199.05 7199.53 9699.62 12198.97 14199.36 18899.62 3397.83 13599.67 5699.65 15497.37 11799.95 4199.19 3799.19 14599.68 99
anonymousdsp98.44 15198.28 15898.94 17598.50 31798.96 14599.77 2199.50 11497.07 21398.87 22699.77 9894.76 20499.28 26298.66 10797.60 22198.57 290
diffmvs99.14 7599.02 7999.51 10399.61 12598.96 14599.28 20899.49 12298.46 6899.72 4299.71 12596.50 14499.88 11499.31 2699.11 15199.67 102
testdata99.54 9099.75 6098.95 14799.51 9697.07 21399.43 10999.70 12998.87 3999.94 4997.76 19199.64 11699.72 83
MVS97.28 27196.55 27899.48 10798.78 29198.95 14799.27 21299.39 20383.53 33998.08 29299.54 19996.97 12999.87 11894.23 31099.16 14699.63 119
Test_1112_low_res98.89 11398.66 12899.57 8699.69 9198.95 14799.03 26599.47 15296.98 22099.15 17799.23 27996.77 13699.89 10998.83 8498.78 17799.86 11
PS-MVSNAJ99.32 5199.32 2999.30 13599.57 13398.94 15098.97 28299.46 16298.92 3599.71 4399.24 27799.01 1699.98 599.35 1999.66 11398.97 205
VPNet97.84 22097.44 24399.01 16599.21 22298.94 15099.48 13599.57 4998.38 7599.28 14699.73 12088.89 31499.39 23999.19 3793.27 31898.71 232
MVSFormer99.17 7199.12 6499.29 13899.51 14598.94 15099.88 199.46 16297.55 16599.80 2499.65 15497.39 11399.28 26299.03 5299.85 5899.65 109
lupinMVS99.13 7799.01 8399.46 11299.51 14598.94 15099.05 25999.16 26797.86 13099.80 2499.56 19197.39 11399.86 12198.94 6299.85 5899.58 133
xiu_mvs_v2_base99.26 6099.25 5199.29 13899.53 14198.91 15499.02 26899.45 17498.80 4699.71 4399.26 27598.94 3199.98 599.34 2399.23 14298.98 204
test_djsdf98.67 14198.57 14198.98 16998.70 30298.91 15499.88 199.46 16297.55 16599.22 16299.88 1595.73 17199.28 26299.03 5297.62 22098.75 225
Vis-MVSNet (Re-imp)98.87 11498.72 11999.31 13199.71 8398.88 15699.80 1699.44 18297.91 12899.36 13199.78 9295.49 17899.43 23697.91 17899.11 15199.62 121
pmmvs498.13 17997.90 19098.81 20798.61 31198.87 15798.99 27599.21 26396.44 26299.06 19699.58 18495.90 16599.11 29197.18 24196.11 26798.46 302
jason99.13 7799.03 7699.45 11399.46 16198.87 15799.12 24499.26 25798.03 12099.79 2699.65 15497.02 12799.85 12799.02 5499.90 2399.65 109
jason: jason.
Patchmtry97.75 23697.40 24998.81 20799.10 24798.87 15799.11 25099.33 23494.83 30498.81 23499.38 24594.33 22199.02 30196.10 27895.57 28398.53 292
TransMVSNet (Re)97.15 27496.58 27798.86 19999.12 24298.85 16099.49 12998.91 29695.48 29797.16 31299.80 7493.38 24399.11 29194.16 31291.73 32898.62 275
V4298.06 18697.79 19998.86 19998.98 26798.84 16199.69 3599.34 22796.53 25399.30 14199.37 24894.67 20999.32 25797.57 21194.66 29998.42 305
WR-MVS_H98.13 17997.87 19598.90 18599.02 26198.84 16199.70 3399.59 4297.27 19498.40 27799.19 28495.53 17699.23 27098.34 14593.78 31398.61 284
FMVSNet297.72 24197.36 25398.80 20999.51 14598.84 16199.45 14499.42 19196.49 25598.86 23199.29 26990.26 30098.98 30796.44 27396.56 25798.58 289
BH-RMVSNet98.41 15598.08 17199.40 12099.41 17198.83 16499.30 20298.77 30697.70 15198.94 21599.65 15492.91 25399.74 17296.52 27199.55 12599.64 115
ET-MVSNet_ETH3D96.49 28495.64 29399.05 16099.53 14198.82 16598.84 29897.51 33797.63 15884.77 33999.21 28392.09 27698.91 31798.98 5792.21 32799.41 168
v2v48298.06 18697.77 20498.92 17998.90 27498.82 16599.57 8599.36 21896.65 24299.19 17199.35 25494.20 22599.25 26897.72 19794.97 29698.69 240
v897.95 20597.63 22098.93 17798.95 27198.81 16799.80 1699.41 19396.03 29299.10 18699.42 23594.92 19399.30 26096.94 25594.08 31098.66 261
PVSNet_BlendedMVS98.86 11798.80 11299.03 16399.76 5298.79 16899.28 20899.91 397.42 18299.67 5699.37 24897.53 11099.88 11498.98 5797.29 24498.42 305
PVSNet_Blended99.08 9498.97 8899.42 11999.76 5298.79 16898.78 30499.91 396.74 23599.67 5699.49 21597.53 11099.88 11498.98 5799.85 5899.60 125
baseline198.31 16297.95 18599.38 12399.50 15298.74 17099.59 7398.93 29198.41 7399.14 17899.60 17894.59 21299.79 16098.48 13093.29 31799.61 123
CDS-MVSNet99.09 9299.03 7699.25 14399.42 16898.73 17199.45 14499.46 16298.11 10499.46 10399.77 9898.01 10099.37 24498.70 10098.92 16899.66 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet98.87 11498.69 12399.40 12099.22 22098.72 17299.44 14899.68 1999.24 399.18 17499.42 23592.74 25799.96 1899.34 2399.94 999.53 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS98.80 13198.62 13599.34 12599.27 20898.70 17398.76 30699.31 24597.34 18799.21 16599.07 29597.20 12199.82 14898.56 12398.87 17199.52 143
v119297.81 22797.44 24398.91 18398.88 27698.68 17499.51 11399.34 22796.18 28099.20 16899.34 25794.03 23299.36 24895.32 29795.18 29198.69 240
v1097.85 21797.52 22998.86 19998.99 26498.67 17599.75 2599.41 19395.70 29598.98 20999.41 23894.75 20599.23 27096.01 28194.63 30098.67 253
v114497.98 20197.69 21398.85 20298.87 28098.66 17699.54 10399.35 22396.27 27299.23 16199.35 25494.67 20999.23 27096.73 26495.16 29298.68 245
v14419297.92 20997.60 22298.87 19598.83 28698.65 17799.55 10099.34 22796.20 27899.32 13999.40 24094.36 22099.26 26796.37 27695.03 29598.70 236
131498.68 14098.54 14399.11 15598.89 27598.65 17799.27 21299.49 12296.89 22897.99 29799.56 19197.72 10899.83 14197.74 19499.27 14098.84 214
MG-MVS99.13 7799.02 7999.45 11399.57 13398.63 17999.07 25499.34 22798.99 2599.61 7399.82 4997.98 10199.87 11897.00 24999.80 8299.85 14
pm-mvs197.68 24897.28 26498.88 19199.06 25498.62 18099.50 11999.45 17496.32 26897.87 30099.79 8692.47 26899.35 25297.54 21493.54 31598.67 253
TranMVSNet+NR-MVSNet97.93 20697.66 21698.76 21398.78 29198.62 18099.65 5399.49 12297.76 14498.49 27299.60 17894.23 22498.97 31498.00 17292.90 32198.70 236
TSAR-MVS + GP.99.36 4799.36 2199.36 12499.67 9698.61 18299.07 25499.33 23499.00 2299.82 2099.81 6099.06 1399.84 13299.09 4899.42 13099.65 109
v7n97.87 21497.52 22998.92 17998.76 29598.58 18399.84 699.46 16296.20 27898.91 21999.70 12994.89 19599.44 23296.03 28093.89 31298.75 225
thisisatest053098.35 16098.03 17699.31 13199.63 11598.56 18499.54 10396.75 34297.53 17099.73 4099.65 15491.25 29399.89 10998.62 11199.56 12399.48 154
TAMVS99.12 8399.08 6999.24 14599.46 16198.55 18599.51 11399.46 16298.09 10799.45 10499.82 4998.34 8599.51 22398.70 10098.93 16699.67 102
PEN-MVS97.76 23297.44 24398.72 21598.77 29498.54 18699.78 1999.51 9697.06 21598.29 28599.64 16192.63 26398.89 31998.09 16393.16 31998.72 230
Anonymous2023121197.88 21297.54 22898.90 18599.71 8398.53 18799.48 13599.57 4994.16 31298.81 23499.68 14193.23 24599.42 23798.84 8194.42 30498.76 223
v192192097.80 22997.45 23898.84 20398.80 28798.53 18799.52 10999.34 22796.15 28499.24 15799.47 22493.98 23399.29 26195.40 29495.13 29398.69 240
PS-MVSNAJss98.92 11298.92 9498.90 18598.78 29198.53 18799.78 1999.54 6898.07 11299.00 20699.76 10299.01 1699.37 24499.13 4497.23 24598.81 215
COLMAP_ROBcopyleft97.56 698.86 11798.75 11899.17 15099.88 1198.53 18799.34 19699.59 4297.55 16598.70 25199.89 1095.83 16799.90 10198.10 16299.90 2399.08 192
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous99.03 10198.99 8499.16 15199.38 18098.52 19199.51 11399.38 20997.79 14199.38 12699.81 6097.30 11899.45 22799.35 1998.99 16399.51 149
CHOSEN 1792x268899.19 6799.10 6699.45 11399.89 898.52 19199.39 17699.94 198.73 5199.11 18399.89 1095.50 17799.94 4999.50 899.97 399.89 2
mvs_tets98.40 15798.23 16098.91 18398.67 30598.51 19399.66 4699.53 8098.19 9498.65 26099.81 6092.75 25599.44 23299.31 2697.48 23598.77 221
thisisatest051598.14 17897.79 19999.19 14999.50 15298.50 19498.61 31896.82 34196.95 22499.54 8999.43 23291.66 28699.86 12198.08 16799.51 12799.22 180
CR-MVSNet98.17 17597.93 18898.87 19599.18 22998.49 19599.22 23099.33 23496.96 22299.56 8599.38 24594.33 22199.00 30494.83 30498.58 18399.14 183
RPMNet96.61 28195.85 28998.87 19599.18 22998.49 19599.22 23099.08 27688.72 33599.56 8597.38 33194.08 23199.00 30486.87 34098.58 18399.14 183
AllTest98.87 11498.72 11999.31 13199.86 2198.48 19799.56 9299.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
TestCases99.31 13199.86 2198.48 19799.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
Anonymous2024052998.09 18397.68 21499.34 12599.66 10598.44 19999.40 17299.43 18993.67 31699.22 16299.89 1090.23 30399.93 6499.26 3298.33 19399.66 105
jajsoiax98.43 15298.28 15898.88 19198.60 31298.43 20099.82 1099.53 8098.19 9498.63 26299.80 7493.22 24799.44 23299.22 3497.50 23198.77 221
v124097.69 24697.32 26198.79 21098.85 28498.43 20099.48 13599.36 21896.11 28799.27 14999.36 25193.76 24099.24 26994.46 30795.23 29098.70 236
CANet_DTU98.97 10998.87 10199.25 14399.33 19098.42 20299.08 25399.30 24999.16 599.43 10999.75 10795.27 18599.97 1098.56 12399.95 699.36 171
tttt051798.42 15398.14 16499.28 14099.66 10598.38 20399.74 2896.85 34097.68 15399.79 2699.74 11391.39 29099.89 10998.83 8499.56 12399.57 134
PatchT97.03 27796.44 28098.79 21098.99 26498.34 20499.16 23699.07 27992.13 32599.52 9397.31 33394.54 21698.98 30788.54 33498.73 17999.03 198
Baseline_NR-MVSNet97.76 23297.45 23898.68 21899.09 24998.29 20599.41 16498.85 30295.65 29698.63 26299.67 14794.82 19799.10 29398.07 17092.89 32298.64 265
CSCG99.32 5199.32 2999.32 13099.85 2598.29 20599.71 3199.66 2798.11 10499.41 11699.80 7498.37 8499.96 1898.99 5699.96 599.72 83
PAPM97.59 25697.09 27099.07 15799.06 25498.26 20798.30 33299.10 27394.88 30398.08 29299.34 25796.27 15299.64 20889.87 33198.92 16899.31 176
OMC-MVS99.08 9499.04 7499.20 14899.67 9698.22 20899.28 20899.52 8698.07 11299.66 6199.81 6097.79 10599.78 16497.79 18899.81 8099.60 125
EPNet98.86 11798.71 12199.30 13597.20 33598.18 20999.62 6198.91 29699.28 298.63 26299.81 6095.96 15999.99 199.24 3399.72 9999.73 77
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521198.30 16497.98 18199.26 14299.57 13398.16 21099.41 16498.55 32296.03 29299.19 17199.74 11391.87 27899.92 7599.16 4298.29 19899.70 92
GG-mvs-BLEND98.45 24098.55 31598.16 21099.43 15493.68 35097.23 31098.46 32289.30 31199.22 27395.43 29398.22 19997.98 324
gg-mvs-nofinetune96.17 29095.32 29798.73 21498.79 28898.14 21299.38 18194.09 34991.07 33198.07 29591.04 34489.62 30999.35 25296.75 26299.09 15598.68 245
DTE-MVSNet97.51 26297.19 26898.46 23998.63 30898.13 21399.84 699.48 13396.68 23997.97 29899.67 14792.92 25198.56 32396.88 25992.60 32698.70 236
VDDNet97.55 25797.02 27299.16 15199.49 15498.12 21499.38 18199.30 24995.35 29999.68 5099.90 782.62 33899.93 6499.31 2698.13 20899.42 166
thres20097.61 25597.28 26498.62 22099.64 11298.03 21599.26 22098.74 31097.68 15399.09 19098.32 32591.66 28699.81 15292.88 32398.22 19998.03 322
baseline297.87 21497.55 22598.82 20599.18 22998.02 21699.41 16496.58 34496.97 22196.51 31899.17 28593.43 24299.57 21897.71 19899.03 16098.86 212
IterMVS-LS98.46 15098.42 14898.58 22399.59 13098.00 21799.37 18499.43 18996.94 22699.07 19299.59 18197.87 10299.03 29998.32 14895.62 28298.71 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.85 21797.47 23599.00 16799.38 18097.99 21898.57 32199.15 26897.04 21698.90 22199.30 26789.83 30699.38 24196.70 26698.33 19399.62 121
cl-mvsnet_98.01 19797.84 19798.55 22899.25 21497.97 21998.71 31199.34 22796.47 26198.59 26899.54 19995.65 17499.21 27897.21 23595.77 27798.46 302
EI-MVSNet98.67 14198.67 12598.68 21899.35 18597.97 21999.50 11999.38 20996.93 22799.20 16899.83 4297.87 10299.36 24898.38 14097.56 22598.71 232
tfpn200view997.72 24197.38 25198.72 21599.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.37 311
thres40097.77 23197.38 25198.92 17999.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.96 207
cl-mvsnet198.01 19797.85 19698.48 23499.24 21597.95 22398.71 31199.35 22396.50 25498.60 26799.54 19995.72 17299.03 29997.21 23595.77 27798.46 302
thres600view797.86 21697.51 23198.92 17999.72 7797.95 22399.59 7398.74 31097.94 12599.27 14998.62 31891.75 28099.86 12193.73 31598.19 20298.96 207
CHOSEN 280x42099.12 8399.13 6299.08 15699.66 10597.89 22598.43 32899.71 1398.88 3799.62 7199.76 10296.63 14099.70 19599.46 1499.99 199.66 105
cl-mvsnet297.85 21797.64 21998.48 23499.09 24997.87 22698.60 32099.33 23497.11 21198.87 22699.22 28092.38 27399.17 28298.21 15395.99 27198.42 305
TR-MVS97.76 23297.41 24898.82 20599.06 25497.87 22698.87 29698.56 32196.63 24598.68 25399.22 28092.49 26799.65 20695.40 29497.79 21598.95 210
thres100view90097.76 23297.45 23898.69 21799.72 7797.86 22899.59 7398.74 31097.93 12699.26 15498.62 31891.75 28099.83 14193.22 31998.18 20398.37 311
test0.0.03 197.71 24597.42 24798.56 22698.41 32097.82 22998.78 30498.63 31997.34 18798.05 29698.98 30594.45 21898.98 30795.04 30197.15 25098.89 211
JIA-IIPM97.50 26397.02 27298.93 17798.73 29797.80 23099.30 20298.97 28791.73 32798.91 21994.86 33995.10 19099.71 18997.58 20797.98 21199.28 178
mvs-test198.86 11798.84 10798.89 18899.33 19097.77 23199.44 14899.30 24998.47 6699.10 18699.43 23296.78 13499.95 4198.73 9699.02 16198.96 207
XVG-OURS-SEG-HR98.69 13998.62 13598.89 18899.71 8397.74 23299.12 24499.54 6898.44 7299.42 11299.71 12594.20 22599.92 7598.54 12798.90 17099.00 201
XVG-OURS98.73 13698.68 12498.88 19199.70 8997.73 23398.92 29099.55 6198.52 6399.45 10499.84 3895.27 18599.91 8698.08 16798.84 17399.00 201
miper_ehance_all_eth98.18 17498.10 16798.41 24599.23 21697.72 23498.72 31099.31 24596.60 24898.88 22499.29 26997.29 11999.13 28697.60 20595.99 27198.38 310
miper_enhance_ethall98.16 17698.08 17198.41 24598.96 27097.72 23498.45 32799.32 24296.95 22498.97 21199.17 28597.06 12699.22 27397.86 18295.99 27198.29 313
v14897.79 23097.55 22598.50 23198.74 29697.72 23499.54 10399.33 23496.26 27398.90 22199.51 20994.68 20899.14 28397.83 18593.15 32098.63 273
cl_fuxian98.12 18198.04 17598.38 24999.30 19997.69 23798.81 30199.33 23496.67 24098.83 23299.34 25797.11 12398.99 30697.58 20795.34 28898.48 296
TAPA-MVS97.07 1597.74 23897.34 25898.94 17599.70 8997.53 23899.25 22299.51 9691.90 32699.30 14199.63 16698.78 4899.64 20888.09 33699.87 4099.65 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet97.73 23997.45 23898.57 22499.45 16697.50 23999.02 26898.98 28696.11 28799.41 11699.14 28990.28 29998.74 32195.74 28698.93 16699.47 159
UniMVSNet_ETH3D97.32 27096.81 27598.87 19599.40 17697.46 24099.51 11399.53 8095.86 29498.54 27099.77 9882.44 33999.66 20398.68 10597.52 22899.50 152
miper_lstm_enhance98.00 19997.91 18998.28 26099.34 18997.43 24198.88 29499.36 21896.48 25998.80 23699.55 19495.98 15898.91 31797.27 23195.50 28698.51 294
eth_miper_zixun_eth98.05 19197.96 18398.33 25299.26 21097.38 24298.56 32399.31 24596.65 24298.88 22499.52 20596.58 14199.12 29097.39 22895.53 28598.47 298
cascas97.69 24697.43 24698.48 23498.60 31297.30 24398.18 33699.39 20392.96 32398.41 27698.78 31493.77 23999.27 26598.16 15998.61 18098.86 212
PVSNet96.02 1798.85 12598.84 10798.89 18899.73 7297.28 24498.32 33199.60 3997.86 13099.50 9699.57 18896.75 13799.86 12198.56 12399.70 10499.54 138
MDA-MVSNet-bldmvs94.96 30193.98 30697.92 28198.24 32297.27 24599.15 24099.33 23493.80 31580.09 34599.03 30088.31 32197.86 33293.49 31794.36 30598.62 275
GBi-Net97.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
test197.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
FMVSNet196.84 27896.36 28198.29 25799.32 19797.26 24699.43 15499.48 13395.11 30198.55 26999.32 26483.95 33598.98 30795.81 28496.26 26598.62 275
MDA-MVSNet_test_wron95.45 29794.60 30298.01 27598.16 32397.21 24999.11 25099.24 26093.49 31980.73 34498.98 30593.02 24898.18 32594.22 31194.45 30398.64 265
VDD-MVS97.73 23997.35 25598.88 19199.47 16097.12 25099.34 19698.85 30298.19 9499.67 5699.85 2982.98 33699.92 7599.49 1298.32 19799.60 125
test-LLR98.06 18697.90 19098.55 22898.79 28897.10 25198.67 31397.75 33397.34 18798.61 26598.85 30994.45 21899.45 22797.25 23399.38 13299.10 187
test-mter97.49 26597.13 26998.55 22898.79 28897.10 25198.67 31397.75 33396.65 24298.61 26598.85 30988.23 32299.45 22797.25 23399.38 13299.10 187
YYNet195.36 29994.51 30497.92 28197.89 32597.10 25199.10 25299.23 26193.26 32280.77 34399.04 29992.81 25498.02 32794.30 30894.18 30898.64 265
ACMM97.58 598.37 15998.34 15398.48 23499.41 17197.10 25199.56 9299.45 17498.53 6299.04 19899.85 2993.00 24999.71 18998.74 9497.45 23698.64 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS98.19 17298.10 16798.45 24098.88 27697.07 25599.28 20899.38 20998.57 6099.22 16299.81 6092.12 27599.66 20398.08 16797.54 22798.61 284
Patchmatch-test97.93 20697.65 21798.77 21299.18 22997.07 25599.03 26599.14 27096.16 28298.74 24299.57 18894.56 21499.72 18393.36 31899.11 15199.52 143
LPG-MVS_test98.22 16898.13 16598.49 23299.33 19097.05 25799.58 8099.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
LGP-MVS_train98.49 23299.33 19097.05 25799.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
plane_prior799.29 20397.03 259
ACMP97.20 1198.06 18697.94 18798.45 24099.37 18297.01 26099.44 14899.49 12297.54 16898.45 27499.79 8691.95 27799.72 18397.91 17897.49 23498.62 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior397.00 26198.69 5499.11 183
Fast-Effi-MVS+-dtu98.77 13498.83 11198.60 22199.41 17196.99 26299.52 10999.49 12298.11 10499.24 15799.34 25796.96 13099.79 16097.95 17699.45 12899.02 200
plane_prior699.27 20896.98 26392.71 260
HQP_MVS98.27 16798.22 16198.44 24399.29 20396.97 26499.39 17699.47 15298.97 3099.11 18399.61 17592.71 26099.69 19897.78 18997.63 21898.67 253
plane_prior96.97 26499.21 23298.45 6997.60 221
ACMH97.28 898.10 18297.99 18098.44 24399.41 17196.96 26699.60 6899.56 5498.09 10798.15 29099.91 590.87 29799.70 19598.88 7097.45 23698.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NP-MVS99.23 21696.92 26799.40 240
Effi-MVS+-dtu98.78 13298.89 9998.47 23899.33 19096.91 26899.57 8599.30 24998.47 6699.41 11698.99 30296.78 13499.74 17298.73 9699.38 13298.74 228
HQP5-MVS96.83 269
HQP-MVS98.02 19497.90 19098.37 25099.19 22696.83 26998.98 27999.39 20398.24 8798.66 25499.40 24092.47 26899.64 20897.19 23997.58 22398.64 265
CLD-MVS98.16 17698.10 16798.33 25299.29 20396.82 27198.75 30799.44 18297.83 13599.13 17999.55 19492.92 25199.67 20098.32 14897.69 21798.48 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LTVRE_ROB97.16 1298.02 19497.90 19098.40 24799.23 21696.80 27299.70 3399.60 3997.12 20898.18 28999.70 12991.73 28299.72 18398.39 13897.45 23698.68 245
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs597.52 26097.30 26398.16 26698.57 31496.73 27399.27 21298.90 29896.14 28598.37 27999.53 20291.54 28999.14 28397.51 21795.87 27598.63 273
BH-untuned98.42 15398.36 15098.59 22299.49 15496.70 27499.27 21299.13 27197.24 19898.80 23699.38 24595.75 17099.74 17297.07 24799.16 14699.33 175
IB-MVS95.67 1896.22 28895.44 29698.57 22499.21 22296.70 27498.65 31697.74 33596.71 23797.27 30998.54 32186.03 33099.92 7598.47 13386.30 33899.10 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+97.24 1097.92 20997.78 20298.32 25499.46 16196.68 27699.56 9299.54 6898.41 7397.79 30499.87 2090.18 30499.66 20398.05 17197.18 24898.62 275
EU-MVSNet97.98 20198.03 17697.81 28998.72 29996.65 27799.66 4699.66 2798.09 10798.35 28199.82 4995.25 18898.01 32897.41 22795.30 28998.78 218
D2MVS98.41 15598.50 14498.15 26799.26 21096.62 27899.40 17299.61 3597.71 15098.98 20999.36 25196.04 15799.67 20098.70 10097.41 24098.15 318
MVP-Stereo97.81 22797.75 20897.99 27797.53 32896.60 27998.96 28398.85 30297.22 20097.23 31099.36 25195.28 18499.46 22695.51 29199.78 8797.92 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TESTMET0.1,197.55 25797.27 26698.40 24798.93 27296.53 28098.67 31397.61 33696.96 22298.64 26199.28 27188.63 31899.45 22797.30 23099.38 13299.21 181
OurMVSNet-221017-097.88 21297.77 20498.19 26498.71 30196.53 28099.88 199.00 28497.79 14198.78 23999.94 391.68 28399.35 25297.21 23596.99 25298.69 240
ADS-MVSNet98.20 17198.08 17198.56 22699.33 19096.48 28299.23 22599.15 26896.24 27599.10 18699.67 14794.11 22999.71 18996.81 26099.05 15899.48 154
testgi97.65 25397.50 23298.13 26899.36 18496.45 28399.42 16199.48 13397.76 14497.87 30099.45 22991.09 29498.81 32094.53 30698.52 18899.13 185
test_040296.64 28096.24 28297.85 28598.85 28496.43 28499.44 14899.26 25793.52 31896.98 31599.52 20588.52 31999.20 28092.58 32697.50 23197.93 327
ITE_SJBPF98.08 26999.29 20396.37 28598.92 29398.34 7898.83 23299.75 10791.09 29499.62 21495.82 28397.40 24198.25 316
IterMVS-SCA-FT97.82 22597.75 20898.06 27199.57 13396.36 28699.02 26899.49 12297.18 20298.71 24599.72 12492.72 25899.14 28397.44 22595.86 27698.67 253
K. test v397.10 27696.79 27698.01 27598.72 29996.33 28799.87 497.05 33997.59 16096.16 32299.80 7488.71 31599.04 29796.69 26796.55 25898.65 263
XVG-ACMP-BASELINE97.83 22297.71 21298.20 26399.11 24496.33 28799.41 16499.52 8698.06 11699.05 19799.50 21289.64 30899.73 17997.73 19597.38 24298.53 292
IterMVS97.83 22297.77 20498.02 27499.58 13196.27 28999.02 26899.48 13397.22 20098.71 24599.70 12992.75 25599.13 28697.46 22296.00 27098.67 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo97.50 26397.33 26098.03 27298.65 30696.23 29099.77 2198.68 31897.14 20597.90 29999.93 490.45 29899.18 28197.00 24996.43 26198.67 253
BH-w/o98.00 19997.89 19498.32 25499.35 18596.20 29199.01 27398.90 29896.42 26498.38 27899.00 30195.26 18799.72 18396.06 27998.61 18099.03 198
TDRefinement95.42 29894.57 30397.97 27889.83 34696.11 29299.48 13598.75 30796.74 23596.68 31799.88 1588.65 31799.71 18998.37 14282.74 34098.09 319
RRT_test8_iter0597.72 24197.60 22298.08 26999.23 21696.08 29399.63 5799.49 12297.54 16898.94 21599.81 6087.99 32599.35 25299.21 3696.51 25998.81 215
EPMVS97.82 22597.65 21798.35 25198.88 27695.98 29499.49 12994.71 34897.57 16399.26 15499.48 22192.46 27199.71 18997.87 18199.08 15699.35 172
pmmvs-eth3d95.34 30094.73 30197.15 30395.53 33895.94 29599.35 19399.10 27395.13 30093.55 33197.54 32988.15 32497.91 33094.58 30589.69 33497.61 331
FMVSNet596.43 28696.19 28397.15 30399.11 24495.89 29699.32 19899.52 8694.47 31198.34 28299.07 29587.54 32797.07 33892.61 32595.72 28098.47 298
UnsupCasMVSNet_eth96.44 28596.12 28497.40 30298.65 30695.65 29799.36 18899.51 9697.13 20696.04 32498.99 30288.40 32098.17 32696.71 26590.27 33198.40 308
MIMVSNet195.51 29695.04 29996.92 30997.38 33095.60 29899.52 10999.50 11493.65 31796.97 31699.17 28585.28 33396.56 34188.36 33595.55 28498.60 287
CVMVSNet98.57 14798.67 12598.30 25699.35 18595.59 29999.50 11999.55 6198.60 5999.39 12399.83 4294.48 21799.45 22798.75 9398.56 18699.85 14
SCA98.19 17298.16 16298.27 26199.30 19995.55 30099.07 25498.97 28797.57 16399.43 10999.57 18892.72 25899.74 17297.58 20799.20 14499.52 143
LF4IMVS97.52 26097.46 23797.70 29498.98 26795.55 30099.29 20698.82 30598.07 11298.66 25499.64 16189.97 30599.61 21597.01 24896.68 25397.94 326
EPNet_dtu98.03 19297.96 18398.23 26298.27 32195.54 30299.23 22598.75 30799.02 1597.82 30299.71 12596.11 15599.48 22493.04 32299.65 11599.69 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 27596.89 27497.83 28799.07 25295.52 30398.57 32198.74 31097.58 16297.81 30399.79 8688.16 32399.56 21995.10 29997.21 24698.39 309
pmmvs696.53 28396.09 28597.82 28898.69 30395.47 30499.37 18499.47 15293.46 32097.41 30799.78 9287.06 32899.33 25696.92 25792.70 32598.65 263
test20.0396.12 29195.96 28896.63 31397.44 32995.45 30599.51 11399.38 20996.55 25296.16 32299.25 27693.76 24096.17 34287.35 33894.22 30798.27 314
lessismore_v097.79 29098.69 30395.44 30694.75 34795.71 32599.87 2088.69 31699.32 25795.89 28294.93 29898.62 275
PatchmatchNetpermissive98.31 16298.36 15098.19 26499.16 23795.32 30799.27 21298.92 29397.37 18699.37 12899.58 18494.90 19499.70 19597.43 22699.21 14399.54 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test97.49 26597.45 23897.61 29598.62 30995.24 30898.80 30299.46 16296.11 28798.22 28799.62 17196.45 14698.97 31493.77 31495.97 27498.61 284
USDC97.34 26997.20 26797.75 29199.07 25295.20 30998.51 32599.04 28297.99 12298.31 28399.86 2389.02 31299.55 22195.67 28997.36 24398.49 295
ADS-MVSNet298.02 19498.07 17497.87 28499.33 19095.19 31099.23 22599.08 27696.24 27599.10 18699.67 14794.11 22998.93 31696.81 26099.05 15899.48 154
MDTV_nov1_ep13_2view95.18 31199.35 19396.84 23199.58 8295.19 18997.82 18699.46 161
new_pmnet96.38 28796.03 28697.41 30198.13 32495.16 31299.05 25999.20 26493.94 31397.39 30898.79 31291.61 28899.04 29790.43 33095.77 27798.05 321
tpm97.67 25197.55 22598.03 27299.02 26195.01 31399.43 15498.54 32396.44 26299.12 18199.34 25791.83 27999.60 21697.75 19396.46 26099.48 154
our_test_397.65 25397.68 21497.55 29898.62 30994.97 31498.84 29899.30 24996.83 23298.19 28899.34 25797.01 12899.02 30195.00 30296.01 26998.64 265
MVS_030496.79 27996.52 27997.59 29699.22 22094.92 31599.04 26499.59 4296.49 25598.43 27598.99 30280.48 34199.39 23997.15 24399.27 14098.47 298
DWT-MVSNet_test97.53 25997.40 24997.93 28099.03 26094.86 31699.57 8598.63 31996.59 25198.36 28098.79 31289.32 31099.74 17298.14 16198.16 20799.20 182
tpmrst98.33 16198.48 14597.90 28399.16 23794.78 31799.31 20099.11 27297.27 19499.45 10499.59 18195.33 18399.84 13298.48 13098.61 18099.09 191
tpmvs97.98 20198.02 17897.84 28699.04 25894.73 31899.31 20099.20 26496.10 29198.76 24199.42 23594.94 19299.81 15296.97 25298.45 19198.97 205
pmmvs394.09 30793.25 30896.60 31494.76 34094.49 31998.92 29098.18 32989.66 33296.48 31998.06 32786.28 32997.33 33789.68 33287.20 33797.97 325
MDTV_nov1_ep1398.32 15599.11 24494.44 32099.27 21298.74 31097.51 17299.40 12199.62 17194.78 20099.76 16997.59 20698.81 176
tpm297.44 26797.34 25897.74 29299.15 24094.36 32199.45 14498.94 29093.45 32198.90 22199.44 23091.35 29199.59 21797.31 22998.07 21099.29 177
PVSNet_094.43 1996.09 29295.47 29497.94 27999.31 19894.34 32297.81 33999.70 1597.12 20897.46 30698.75 31589.71 30799.79 16097.69 20081.69 34199.68 99
Anonymous2023120696.22 28896.03 28696.79 31297.31 33394.14 32399.63 5799.08 27696.17 28197.04 31499.06 29793.94 23497.76 33486.96 33995.06 29498.47 298
CostFormer97.72 24197.73 21097.71 29399.15 24094.02 32499.54 10399.02 28394.67 30799.04 19899.35 25492.35 27499.77 16698.50 12997.94 21299.34 174
UnsupCasMVSNet_bld93.53 30892.51 31096.58 31597.38 33093.82 32598.24 33399.48 13391.10 33093.10 33396.66 33574.89 34298.37 32494.03 31387.71 33697.56 333
tpm cat197.39 26897.36 25397.50 30099.17 23593.73 32699.43 15499.31 24591.27 32898.71 24599.08 29494.31 22399.77 16696.41 27598.50 18999.00 201
dp97.75 23697.80 19897.59 29699.10 24793.71 32799.32 19898.88 30096.48 25999.08 19199.55 19492.67 26299.82 14896.52 27198.58 18399.24 179
MVS-HIRNet95.75 29595.16 29897.51 29999.30 19993.69 32898.88 29495.78 34585.09 33898.78 23992.65 34191.29 29299.37 24494.85 30399.85 5899.46 161
DSMNet-mixed97.25 27297.35 25596.95 30897.84 32693.61 32999.57 8596.63 34396.13 28698.87 22698.61 32094.59 21297.70 33595.08 30098.86 17299.55 136
MS-PatchMatch97.24 27397.32 26196.99 30698.45 31993.51 33098.82 30099.32 24297.41 18398.13 29199.30 26788.99 31399.56 21995.68 28899.80 8297.90 329
OpenMVS_ROBcopyleft92.34 2094.38 30593.70 30796.41 31697.38 33093.17 33199.06 25798.75 30786.58 33694.84 32998.26 32681.53 34099.32 25789.01 33397.87 21496.76 335
gm-plane-assit98.54 31692.96 33294.65 30899.15 28899.64 20897.56 212
EG-PatchMatch MVS95.97 29395.69 29296.81 31197.78 32792.79 33399.16 23698.93 29196.16 28294.08 33099.22 28082.72 33799.47 22595.67 28997.50 23198.17 317
new-patchmatchnet94.48 30394.08 30595.67 31895.08 33992.41 33499.18 23499.28 25594.55 31093.49 33297.37 33287.86 32697.01 33991.57 32788.36 33597.61 331
LCM-MVSNet-Re97.83 22298.15 16396.87 31099.30 19992.25 33599.59 7398.26 32597.43 18096.20 32199.13 29096.27 15298.73 32298.17 15898.99 16399.64 115
DeepPCF-MVS98.18 398.81 12899.37 1997.12 30599.60 12891.75 33698.61 31899.44 18299.35 199.83 1799.85 2998.70 6199.81 15299.02 5499.91 1699.81 41
RPSCF98.22 16898.62 13596.99 30699.82 3791.58 33799.72 2999.44 18296.61 24699.66 6199.89 1095.92 16399.82 14897.46 22299.10 15499.57 134
Patchmatch-RL test95.84 29495.81 29195.95 31795.61 33690.57 33898.24 33398.39 32495.10 30295.20 32698.67 31794.78 20097.77 33396.28 27790.02 33299.51 149
Gipumacopyleft90.99 31090.15 31293.51 32098.73 29790.12 33993.98 34499.45 17479.32 34192.28 33494.91 33869.61 34497.98 32987.42 33795.67 28192.45 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 30992.23 31195.14 31995.61 33689.98 34099.37 18498.21 32794.80 30595.04 32897.69 32865.06 34597.90 33194.30 30889.98 33397.54 334
PMMVS286.87 31185.37 31491.35 32690.21 34583.80 34198.89 29397.45 33883.13 34091.67 33695.03 33748.49 35094.70 34485.86 34177.62 34295.54 338
ambc93.06 32292.68 34282.36 34298.47 32698.73 31595.09 32797.41 33055.55 34899.10 29396.42 27491.32 32997.71 330
DeepMVS_CXcopyleft93.34 32199.29 20382.27 34399.22 26285.15 33796.33 32099.05 29890.97 29699.73 17993.57 31697.77 21698.01 323
LCM-MVSNet86.80 31285.22 31591.53 32587.81 34780.96 34498.23 33598.99 28571.05 34390.13 33796.51 33648.45 35196.88 34090.51 32985.30 33996.76 335
CMPMVSbinary69.68 2394.13 30694.90 30091.84 32497.24 33480.01 34598.52 32499.48 13389.01 33391.99 33599.67 14785.67 33299.13 28695.44 29297.03 25196.39 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet94.95 30295.83 29092.31 32398.47 31879.33 34699.12 24492.81 35393.87 31497.68 30599.13 29093.87 23699.01 30391.38 32896.19 26698.59 288
ANet_high77.30 31774.86 32084.62 32975.88 35177.61 34797.63 34193.15 35288.81 33464.27 34889.29 34536.51 35283.93 35075.89 34452.31 34692.33 342
EMVS80.02 31679.22 31882.43 33291.19 34376.40 34897.55 34292.49 35466.36 34783.01 34291.27 34364.63 34685.79 34965.82 34760.65 34585.08 345
E-PMN80.61 31579.88 31782.81 33090.75 34476.38 34997.69 34095.76 34666.44 34683.52 34092.25 34262.54 34787.16 34868.53 34661.40 34484.89 346
MVEpermissive76.82 2176.91 31874.31 32184.70 32885.38 35076.05 35096.88 34393.17 35167.39 34571.28 34789.01 34621.66 35787.69 34771.74 34572.29 34390.35 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.80 31481.52 31686.66 32766.61 35368.44 35192.79 34697.92 33168.96 34480.04 34699.85 2985.77 33196.15 34397.86 18243.89 34795.39 339
FPMVS84.93 31385.65 31382.75 33186.77 34863.39 35298.35 33098.92 29374.11 34283.39 34198.98 30550.85 34992.40 34684.54 34294.97 29692.46 340
PMVScopyleft70.75 2275.98 31974.97 31979.01 33370.98 35255.18 35393.37 34598.21 32765.08 34861.78 34993.83 34021.74 35692.53 34578.59 34391.12 33089.34 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 32041.29 32436.84 33486.18 34949.12 35479.73 34722.81 35627.64 34925.46 35228.45 35221.98 35548.89 35155.80 34823.56 35012.51 349
test12339.01 32242.50 32328.53 33539.17 35420.91 35598.75 30719.17 35719.83 35138.57 35066.67 34833.16 35315.42 35237.50 35029.66 34949.26 347
testmvs39.17 32143.78 32225.37 33636.04 35516.84 35698.36 32926.56 35520.06 35038.51 35167.32 34729.64 35415.30 35337.59 34939.90 34843.98 348
uanet_test0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34899.48 1330.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.64 32332.85 3250.00 3370.00 3560.00 3570.00 34899.51 960.00 3520.00 35399.56 19196.58 1410.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.27 32511.03 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 35399.01 160.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.30 32411.06 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.58 1840.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO99.48 13399.08 1199.88 599.81 6098.94 3199.96 1898.91 6799.84 6599.88 5
9.1499.10 6699.72 7799.40 17299.51 9697.53 17099.64 6699.78 9298.84 4299.91 8697.63 20399.82 78
test_0728_THIRD98.99 2599.81 2299.80 7499.09 1299.96 1898.85 7999.90 2399.88 5
GSMVS99.52 143
sam_mvs194.86 19699.52 143
sam_mvs94.72 207
MTGPAbinary99.47 152
test_post199.23 22565.14 35094.18 22899.71 18997.58 207
test_post65.99 34994.65 21199.73 179
patchmatchnet-post98.70 31694.79 19999.74 172
MTMP99.54 10398.88 300
test9_res97.49 21899.72 9999.75 66
agg_prior297.21 23599.73 9899.75 66
test_prior298.96 28398.34 7899.01 20199.52 20598.68 6297.96 17499.74 95
旧先验298.96 28396.70 23899.47 10199.94 4998.19 154
新几何299.01 273
无先验98.99 27599.51 9696.89 22899.93 6497.53 21599.72 83
原ACMM298.95 287
testdata299.95 4196.67 268
segment_acmp98.96 25
testdata198.85 29798.32 82
plane_prior599.47 15299.69 19897.78 18997.63 21898.67 253
plane_prior499.61 175
plane_prior299.39 17698.97 30
plane_prior199.26 210
n20.00 358
nn0.00 358
door-mid98.05 330
test1199.35 223
door97.92 331
HQP-NCC99.19 22698.98 27998.24 8798.66 254
ACMP_Plane99.19 22698.98 27998.24 8798.66 254
BP-MVS97.19 239
HQP4-MVS98.66 25499.64 20898.64 265
HQP3-MVS99.39 20397.58 223
HQP2-MVS92.47 268
ACMMP++_ref97.19 247
ACMMP++97.43 239
Test By Simon98.75 56