This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22796.56 9383.44 18691.68 9295.04 11686.60 4298.99 7685.60 13797.92 6996.93 116
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12088.73 497.07 1396.77 7290.84 1684.02 23296.62 6375.95 15699.34 3387.77 11197.68 7598.59 18
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13397.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 16893.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
canonicalmvs93.27 5892.75 6494.85 2795.70 11887.66 1196.33 3596.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
alignmvs93.08 6292.50 6994.81 3295.62 12187.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
test_part298.55 1187.22 1696.40 11
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
nrg03091.08 9390.39 9593.17 7993.07 21486.91 2096.41 3396.26 10788.30 7888.37 13294.85 12482.19 9297.64 17291.09 7482.95 26394.96 180
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 13995.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20593.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23889.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
Regformer-294.33 2794.22 2594.68 3895.54 12386.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23494.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12792.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
ZD-MVS98.15 3586.62 3597.07 4483.63 18094.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 15986.13 20194.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35385.02 6099.49 2391.99 5398.56 4798.47 28
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
TEST997.53 5886.49 3994.07 17196.78 7081.61 23192.77 6396.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22492.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15493.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16186.37 4397.18 797.02 4689.20 5284.31 22796.66 6173.74 18999.17 5086.74 12697.96 6797.79 83
Regformer-194.22 3294.13 3294.51 4695.54 12386.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_897.49 6186.30 4894.02 17696.76 7381.86 22492.70 6796.20 8087.63 2799.02 68
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 25092.77 6396.63 6286.62 3999.04 6387.40 11698.66 4098.17 54
RRT_MVS88.86 14587.68 15592.39 11692.02 24286.09 5394.38 15294.94 19985.45 14687.14 15493.84 16465.88 27897.11 22088.73 10086.77 23593.98 227
IU-MVS98.77 486.00 5496.84 6381.26 23897.26 695.50 799.13 399.03 4
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
test_prior485.96 5794.11 166
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21892.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20490.03 11395.82 9582.30 8999.03 6484.57 14996.48 10096.91 117
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CANet93.54 5193.20 5694.55 4495.65 11985.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16989.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
Regformer-493.91 4193.81 4194.19 5795.36 12785.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
OpenMVScopyleft83.78 1188.74 14987.29 16493.08 8292.70 22585.39 7196.57 2996.43 9878.74 26780.85 27896.07 8769.64 23799.01 7078.01 24396.65 9494.83 187
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPNet91.79 7891.02 8894.10 5890.10 30685.25 7396.03 5392.05 27392.83 187.39 15195.78 9679.39 12299.01 7088.13 10897.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.43 5493.25 5393.97 5995.42 12685.04 7493.06 21897.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21197.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13692.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
CNLPA89.07 13987.98 14992.34 11896.87 7884.78 7794.08 17093.24 25081.41 23484.46 21795.13 11475.57 16296.62 24477.21 25093.84 13795.61 161
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15195.47 11197.45 95
Regformer-393.68 4793.64 4893.81 6795.36 12784.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
QAPM89.51 12588.15 14693.59 7294.92 14684.58 8096.82 2496.70 8178.43 27083.41 24896.19 8373.18 19799.30 3977.11 25296.54 9796.89 118
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18882.39 20789.13 12194.27 14580.32 10898.46 11580.16 22096.71 9294.33 210
UniMVSNet (Re)89.80 11989.07 12392.01 12793.60 20084.52 8494.78 12197.47 889.26 5086.44 16992.32 20982.10 9397.39 19984.81 14680.84 29594.12 218
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 20987.85 14092.85 19276.63 15098.80 9780.01 22196.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18784.46 8893.32 20195.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 213
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22895.51 16771.01 33091.20 10196.21 7982.92 8199.05 6080.56 21398.07 6396.10 142
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21696.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
PCF-MVS84.11 1087.74 17486.08 20592.70 10194.02 18184.43 9289.27 29495.87 13973.62 31284.43 21994.33 13978.48 13498.86 9070.27 29394.45 13094.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何193.10 8197.30 6884.35 9495.56 16271.09 32991.26 10096.24 7782.87 8298.86 9079.19 23298.10 6296.07 144
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
NR-MVSNet88.58 15487.47 16091.93 13493.04 21684.16 9794.77 12296.25 10989.05 5680.04 29293.29 17879.02 12597.05 22681.71 19680.05 30594.59 196
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4297.37 1884.15 17090.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19695.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13592.90 15696.83 119
ETV-MVS92.74 6692.66 6592.97 8895.20 13584.04 10095.07 10196.51 9490.73 2192.96 5891.19 24984.06 7298.34 12591.72 6496.54 9796.54 128
ET-MVSNet_ETH3D87.51 18785.91 21292.32 11993.70 19883.93 10192.33 23890.94 30484.16 16972.09 33192.52 20369.90 23295.85 28689.20 9588.36 21497.17 105
OPM-MVS90.12 11089.56 11191.82 14093.14 21183.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 10990.18 18393.65 248
MVSFormer91.68 8391.30 8192.80 9493.86 19083.88 10395.96 5795.90 13684.66 16491.76 8994.91 11977.92 13897.30 20289.64 9197.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 19083.88 10392.81 22493.86 24079.84 25391.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13083.78 10596.14 4695.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14796.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14293.39 20583.72 10694.43 14497.12 4089.80 3786.46 16693.32 17583.16 7897.23 21284.92 14381.02 29194.49 205
DU-MVS89.34 13588.50 13591.85 13993.04 21683.72 10694.47 14196.59 9089.50 4386.46 16693.29 17877.25 14297.23 21284.92 14381.02 29194.59 196
FMVSNet287.19 20285.82 21491.30 15894.01 18283.67 10894.79 12094.94 19983.57 18183.88 23592.05 22466.59 27096.51 25577.56 24785.01 24593.73 245
FMVSNet387.40 19286.11 20391.30 15893.79 19583.64 10994.20 16194.81 21283.89 17584.37 22091.87 22968.45 25596.56 25278.23 24085.36 24293.70 247
MVS87.44 19086.10 20491.44 15492.61 22883.62 11092.63 22895.66 15567.26 33681.47 27092.15 21577.95 13798.22 13379.71 22495.48 11092.47 288
CDS-MVSNet89.45 12888.51 13492.29 12293.62 19983.61 11193.01 21994.68 21781.95 21987.82 14293.24 18078.69 12996.99 22980.34 21793.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason90.80 9590.10 10192.90 9193.04 21683.53 11293.08 21694.15 23280.22 24791.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 13983.51 11394.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
test117293.97 3994.07 3493.66 7198.11 3783.45 11496.26 4096.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11595.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
VNet92.24 7491.91 7593.24 7696.59 8683.43 11594.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9893.38 14698.13 58
Effi-MVS+91.59 8491.11 8593.01 8694.35 17483.39 11794.60 13195.10 19387.10 10890.57 10693.10 18681.43 10198.07 14689.29 9494.48 12997.59 89
UGNet89.95 11588.95 12692.95 8994.51 16483.31 11895.70 6795.23 18689.37 4887.58 14693.94 15664.00 28698.78 9883.92 15796.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DP-MVS87.25 19785.36 22692.90 9197.65 5683.24 11994.81 11992.00 27574.99 30081.92 26895.00 11772.66 20299.05 6066.92 31592.33 16496.40 129
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15083.20 12094.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12194.87 11596.66 8583.29 19089.27 12094.46 13780.29 10999.17 5087.57 11495.37 11496.05 146
GBi-Net87.26 19585.98 20891.08 16794.01 18283.10 12295.14 9894.94 19983.57 18184.37 22091.64 23366.59 27096.34 26778.23 24085.36 24293.79 238
test187.26 19585.98 20891.08 16794.01 18283.10 12295.14 9894.94 19983.57 18184.37 22091.64 23366.59 27096.34 26778.23 24085.36 24293.79 238
FMVSNet185.85 23484.11 24791.08 16792.81 22383.10 12295.14 9894.94 19981.64 22982.68 25791.64 23359.01 31796.34 26775.37 26783.78 25393.79 238
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12594.42 14595.92 13382.81 20286.34 17194.65 13173.89 18599.02 6880.69 21095.51 10995.05 175
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12695.73 6593.86 24088.42 7592.53 7196.84 5062.09 29598.64 10390.95 7992.62 16097.93 74
CANet_DTU90.26 10989.41 11592.81 9393.46 20483.01 12793.48 19794.47 22089.43 4687.76 14494.23 14670.54 22799.03 6484.97 14296.39 10196.38 130
TranMVSNet+NR-MVSNet88.84 14687.95 15091.49 15092.68 22683.01 12794.92 11196.31 10489.88 3685.53 18693.85 16376.63 15096.96 23081.91 18979.87 30894.50 203
pmmvs485.43 24083.86 25190.16 20290.02 30982.97 12990.27 27792.67 26175.93 29280.73 27991.74 23271.05 21695.73 29278.85 23483.46 26091.78 301
LS3D87.89 16986.32 19692.59 10596.07 10582.92 13095.23 9094.92 20475.66 29382.89 25595.98 8972.48 20599.21 4768.43 30795.23 11995.64 160
VPA-MVSNet89.62 12188.96 12591.60 14893.86 19082.89 13195.46 7797.33 2287.91 8888.43 13193.31 17674.17 18097.40 19687.32 11982.86 26894.52 201
test_part186.16 22884.40 24491.46 15392.63 22782.80 13296.42 3296.05 12573.47 31382.06 26491.43 24263.89 28897.43 18784.51 15079.11 31494.14 216
HY-MVS83.01 1289.03 14187.94 15192.29 12294.86 15082.77 13392.08 24894.49 21981.52 23386.93 15792.79 19878.32 13698.23 13179.93 22290.55 17895.88 151
plane_prior694.52 16382.75 13474.23 177
plane_prior382.75 13490.26 3086.91 159
plane_prior794.70 15782.74 136
HQP_MVS90.60 10490.19 9991.82 14094.70 15782.73 13795.85 6196.22 11290.81 1786.91 15994.86 12274.23 17798.12 13688.15 10689.99 18494.63 192
plane_prior82.73 13795.21 9289.66 4189.88 189
PatchMatch-RL86.77 21585.54 22090.47 19195.88 11182.71 13990.54 27492.31 26679.82 25484.32 22591.57 24068.77 25196.39 26373.16 28393.48 14492.32 294
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17579.71 25584.01 23394.18 14776.68 14998.75 9977.28 24993.41 14595.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ab-mvs89.41 13188.35 13992.60 10495.15 13782.65 14192.20 24395.60 16083.97 17488.55 12893.70 17074.16 18198.21 13482.46 17989.37 19696.94 115
TAMVS89.21 13688.29 14391.96 13293.71 19682.62 14293.30 20594.19 23082.22 21187.78 14393.94 15678.83 12696.95 23177.70 24592.98 15596.32 131
PS-MVSNAJ91.18 9190.92 8991.96 13295.26 13382.60 14392.09 24795.70 15186.27 12691.84 8692.46 20479.70 11798.99 7689.08 9695.86 10594.29 211
xiu_mvs_v2_base91.13 9290.89 9191.86 13794.97 14282.42 14492.24 24195.64 15886.11 13291.74 9193.14 18479.67 12098.89 8689.06 9795.46 11294.28 212
NP-MVS94.37 17182.42 14493.98 154
test_yl90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
CS-MVS92.60 6892.56 6792.73 9895.55 12282.35 14896.14 4696.85 6288.71 6591.44 9691.51 24184.13 7198.48 11291.27 7297.47 8097.34 97
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32286.79 11692.15 8096.81 5362.60 29298.34 12587.18 12093.90 13598.19 53
MVP-Stereo85.97 23184.86 23689.32 23390.92 28482.19 15092.11 24694.19 23078.76 26678.77 30191.63 23668.38 25696.56 25275.01 27293.95 13489.20 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDDNet89.56 12488.49 13792.76 9695.07 13882.09 15196.30 3693.19 25181.05 24291.88 8496.86 4961.16 30598.33 12788.43 10492.49 16397.84 80
CLD-MVS89.47 12788.90 12891.18 16294.22 17582.07 15292.13 24596.09 12087.90 8985.37 20192.45 20574.38 17597.56 17687.15 12190.43 17993.93 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33285.81 17895.25 10976.70 14898.63 10482.07 18596.86 9097.00 113
casdiffmvs92.51 7092.43 7092.74 9794.41 17081.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22390.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
Anonymous2024052988.09 16586.59 18692.58 10696.53 8981.92 15695.99 5495.84 14174.11 30889.06 12495.21 11161.44 30098.81 9683.67 16287.47 22597.01 112
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
baseline92.39 7392.29 7292.69 10294.46 16781.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
test22296.55 8881.70 15992.22 24295.01 19668.36 33590.20 11096.14 8580.26 11097.80 7296.05 146
HQP5-MVS81.56 160
HQP-MVS89.80 11989.28 11991.34 15794.17 17681.56 16094.39 14896.04 12688.81 6185.43 19593.97 15573.83 18797.96 15487.11 12389.77 19194.50 203
Anonymous2023121186.59 21985.13 22990.98 17696.52 9081.50 16296.14 4696.16 11673.78 31083.65 24292.15 21563.26 29097.37 20082.82 17381.74 28194.06 223
LTVRE_ROB82.13 1386.26 22784.90 23590.34 19894.44 16981.50 16292.31 24094.89 20583.03 19579.63 29692.67 19969.69 23697.79 16171.20 28986.26 23691.72 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test89.45 12888.90 12891.12 16394.47 16581.49 16495.30 8496.14 11786.73 11885.45 19295.16 11269.89 23398.10 13887.70 11289.23 20093.77 242
LGP-MVS_train91.12 16394.47 16581.49 16496.14 11786.73 11885.45 19295.16 11269.89 23398.10 13887.70 11289.23 20093.77 242
XVG-OURS89.40 13388.70 13191.52 14994.06 17981.46 16691.27 26496.07 12286.14 13088.89 12695.77 9768.73 25297.26 20887.39 11789.96 18695.83 154
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16694.37 15396.24 11086.39 12587.41 14894.80 12682.06 9598.48 11282.80 17495.37 11497.61 87
CHOSEN 1792x268888.84 14687.69 15492.30 12196.14 9981.42 16890.01 28495.86 14074.52 30587.41 14893.94 15675.46 16398.36 12280.36 21695.53 10897.12 108
IS-MVSNet91.43 8591.09 8792.46 11195.87 11381.38 16996.95 1493.69 24589.72 4089.50 11795.98 8978.57 13297.77 16283.02 16896.50 9998.22 52
ACMP84.23 889.01 14388.35 13990.99 17494.73 15481.27 17095.07 10195.89 13886.48 12283.67 24194.30 14169.33 24197.99 15287.10 12588.55 20793.72 246
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS89.98 11389.70 10990.82 17896.12 10081.25 17193.92 18196.83 6583.49 18589.10 12292.26 21281.04 10498.85 9386.72 12987.86 22392.35 293
PVSNet_Blended90.73 9790.32 9791.98 13096.12 10081.25 17192.55 23296.83 6582.04 21689.10 12292.56 20281.04 10498.85 9386.72 12995.91 10495.84 153
ACMM84.12 989.14 13788.48 13891.12 16394.65 16081.22 17395.31 8196.12 11985.31 15085.92 17794.34 13870.19 23198.06 14785.65 13688.86 20594.08 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15294.00 18581.21 17491.87 25096.06 12485.78 13588.55 12895.73 9874.67 17397.27 20688.71 10189.64 19395.91 149
WTY-MVS89.60 12288.92 12791.67 14695.47 12581.15 17592.38 23694.78 21483.11 19389.06 12494.32 14078.67 13096.61 24781.57 19790.89 17797.24 101
AUN-MVS87.78 17386.54 18891.48 15194.82 15281.05 17693.91 18493.93 23883.00 19686.93 15793.53 17169.50 23997.67 16986.14 13277.12 32395.73 158
原ACMM192.01 12797.34 6681.05 17696.81 6878.89 26290.45 10795.92 9182.65 8398.84 9580.68 21198.26 5996.14 137
FIs90.51 10590.35 9690.99 17493.99 18680.98 17895.73 6597.54 389.15 5486.72 16394.68 12981.83 9997.24 21085.18 14088.31 21594.76 190
1112_ss88.42 15587.33 16391.72 14494.92 14680.98 17892.97 22194.54 21878.16 27583.82 23793.88 16178.78 12897.91 15879.45 22789.41 19596.26 134
PAPR90.02 11289.27 12092.29 12295.78 11480.95 18092.68 22696.22 11281.91 22186.66 16493.75 16982.23 9098.44 11979.40 23194.79 12197.48 93
cascas86.43 22584.98 23290.80 17992.10 23980.92 18190.24 27895.91 13573.10 31783.57 24588.39 30265.15 28197.46 18384.90 14591.43 16994.03 225
F-COLMAP87.95 16886.80 17691.40 15596.35 9580.88 18294.73 12495.45 17379.65 25682.04 26694.61 13271.13 21598.50 11176.24 26091.05 17594.80 189
PS-MVSNAJss89.97 11489.62 11091.02 17191.90 24580.85 18395.26 8995.98 12886.26 12786.21 17394.29 14279.70 11797.65 17088.87 9988.10 21794.57 198
Fast-Effi-MVS+89.41 13188.64 13291.71 14594.74 15380.81 18493.54 19595.10 19383.11 19386.82 16290.67 26679.74 11697.75 16680.51 21593.55 14096.57 126
sss88.93 14488.26 14590.94 17794.05 18080.78 18591.71 25595.38 17981.55 23288.63 12793.91 16075.04 16795.47 30282.47 17891.61 16896.57 126
Anonymous20240521187.68 17586.13 20192.31 12096.66 8380.74 18694.87 11591.49 29080.47 24689.46 11895.44 10354.72 32998.23 13182.19 18389.89 18897.97 70
TAPA-MVS84.62 688.16 16387.01 17191.62 14796.64 8480.65 18794.39 14896.21 11576.38 28686.19 17495.44 10379.75 11598.08 14562.75 33095.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HyFIR lowres test88.09 16586.81 17591.93 13496.00 10780.63 18890.01 28495.79 14573.42 31487.68 14592.10 22073.86 18697.96 15480.75 20991.70 16797.19 104
ACMH80.38 1785.36 24183.68 25390.39 19394.45 16880.63 18894.73 12494.85 20882.09 21377.24 30992.65 20060.01 31297.58 17472.25 28684.87 24692.96 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS87.65 17786.85 17490.03 20992.14 23680.60 19093.76 18795.23 18682.94 19884.60 21294.02 15174.27 17695.49 30181.04 20283.68 25694.01 226
anonymousdsp87.84 17087.09 16890.12 20589.13 31680.54 19194.67 12895.55 16382.05 21483.82 23792.12 21771.47 21397.15 21687.15 12187.80 22492.67 282
testing_283.40 26981.02 27690.56 18485.06 33880.51 19291.37 26295.57 16182.92 19967.06 33985.54 32649.47 33997.24 21086.74 12685.44 24193.93 228
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11180.50 19397.33 395.25 18586.15 12989.76 11495.60 10183.42 7798.32 12887.37 11893.25 14997.56 91
MVSTER88.84 14688.29 14390.51 18892.95 22180.44 19493.73 18895.01 19684.66 16487.15 15293.12 18572.79 20197.21 21487.86 11087.36 22893.87 233
diffmvs91.37 8791.23 8391.77 14393.09 21380.27 19592.36 23795.52 16687.03 11091.40 9894.93 11880.08 11197.44 18692.13 5194.56 12797.61 87
pm-mvs186.61 21785.54 22089.82 21791.44 25880.18 19695.28 8894.85 20883.84 17681.66 26992.62 20172.45 20796.48 25779.67 22578.06 31792.82 280
WR-MVS88.38 15687.67 15690.52 18793.30 20880.18 19693.26 20895.96 13088.57 7185.47 19192.81 19676.12 15296.91 23481.24 20082.29 27194.47 208
jajsoiax88.24 16187.50 15890.48 19090.89 28680.14 19895.31 8195.65 15784.97 15884.24 22994.02 15165.31 28097.42 18988.56 10288.52 20993.89 230
V4287.68 17586.86 17390.15 20390.58 29780.14 19894.24 15995.28 18483.66 17985.67 18191.33 24474.73 17297.41 19484.43 15281.83 27892.89 277
MVS_Test91.31 8891.11 8591.93 13494.37 17180.14 19893.46 19995.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11494.95 12097.55 92
thisisatest053088.67 15087.61 15791.86 13794.87 14980.07 20194.63 13089.90 32384.00 17388.46 13093.78 16666.88 26598.46 11583.30 16492.65 15997.06 109
baseline188.10 16487.28 16590.57 18294.96 14380.07 20194.27 15791.29 29586.74 11787.41 14894.00 15376.77 14796.20 27180.77 20879.31 31395.44 165
tfpnnormal84.72 25583.23 25989.20 23692.79 22480.05 20394.48 13895.81 14382.38 20881.08 27691.21 24869.01 24896.95 23161.69 33280.59 29890.58 322
MSDG84.86 25383.09 26090.14 20493.80 19380.05 20389.18 29793.09 25278.89 26278.19 30291.91 22765.86 27997.27 20668.47 30688.45 21193.11 269
MG-MVS91.77 7991.70 7892.00 12997.08 7580.03 20593.60 19495.18 18987.85 9190.89 10496.47 7082.06 9598.36 12285.07 14197.04 8797.62 86
EIA-MVS91.95 7691.94 7491.98 13095.16 13680.01 20695.36 7896.73 7788.44 7389.34 11992.16 21483.82 7698.45 11889.35 9397.06 8697.48 93
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20794.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
pmmvs-eth3d80.97 29278.72 29987.74 27184.99 33979.97 20890.11 28391.65 28575.36 29573.51 32686.03 32359.45 31593.96 31975.17 26972.21 33189.29 327
mvs_tets88.06 16787.28 16590.38 19590.94 28279.88 20995.22 9195.66 15585.10 15584.21 23093.94 15663.53 28997.40 19688.50 10388.40 21393.87 233
IB-MVS80.51 1585.24 24683.26 25891.19 16192.13 23779.86 21091.75 25391.29 29583.28 19180.66 28188.49 30161.28 30198.46 11580.99 20579.46 31195.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test90.27 10890.18 10090.53 18593.71 19679.85 21195.77 6497.59 289.31 4986.27 17294.67 13081.93 9897.01 22884.26 15388.09 21994.71 191
COLMAP_ROBcopyleft80.39 1683.96 26182.04 26889.74 22195.28 13179.75 21294.25 15892.28 26775.17 29878.02 30593.77 16758.60 31897.84 16065.06 32385.92 23791.63 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131487.51 18786.57 18790.34 19892.42 23179.74 21392.63 22895.35 18378.35 27180.14 28991.62 23774.05 18297.15 21681.05 20193.53 14194.12 218
thisisatest051587.33 19385.99 20791.37 15693.49 20279.55 21490.63 27389.56 32980.17 24887.56 14790.86 26067.07 26298.28 13081.50 19893.02 15496.29 132
v1087.25 19786.38 19189.85 21591.19 27079.50 21594.48 13895.45 17383.79 17783.62 24391.19 24975.13 16597.42 18981.94 18880.60 29792.63 284
VPNet88.20 16287.47 16090.39 19393.56 20179.46 21694.04 17495.54 16588.67 6786.96 15694.58 13569.33 24197.15 21684.05 15680.53 30094.56 199
BH-RMVSNet88.37 15787.48 15991.02 17195.28 13179.45 21792.89 22393.07 25385.45 14686.91 15994.84 12570.35 22897.76 16373.97 27894.59 12695.85 152
v887.50 18986.71 17989.89 21491.37 26479.40 21894.50 13795.38 17984.81 16183.60 24491.33 24476.05 15397.42 18982.84 17280.51 30292.84 279
ACMH+81.04 1485.05 24983.46 25789.82 21794.66 15979.37 21994.44 14394.12 23582.19 21278.04 30492.82 19558.23 31997.54 17773.77 28082.90 26792.54 285
EG-PatchMatch MVS82.37 27680.34 28188.46 25590.27 30379.35 22092.80 22594.33 22577.14 28273.26 32890.18 27447.47 34496.72 23970.25 29487.32 23089.30 326
v114487.61 18386.79 17790.06 20891.01 27779.34 22193.95 18095.42 17883.36 18985.66 18291.31 24774.98 16897.42 18983.37 16382.06 27493.42 257
CR-MVSNet85.35 24283.76 25290.12 20590.58 29779.34 22185.24 32891.96 27978.27 27285.55 18487.87 31271.03 21795.61 29373.96 27989.36 19795.40 167
RPMNet83.95 26281.53 27291.21 16090.58 29779.34 22185.24 32896.76 7371.44 32785.55 18482.97 33470.87 21998.91 8561.01 33489.36 19795.40 167
PAPM86.68 21685.39 22490.53 18593.05 21579.33 22489.79 28794.77 21578.82 26481.95 26793.24 18076.81 14597.30 20266.94 31393.16 15194.95 183
test_djsdf89.03 14188.64 13290.21 20090.74 29279.28 22595.96 5795.90 13684.66 16485.33 20392.94 19074.02 18397.30 20289.64 9188.53 20894.05 224
Test_1112_low_res87.65 17786.51 18991.08 16794.94 14579.28 22591.77 25294.30 22676.04 29183.51 24692.37 20777.86 14097.73 16778.69 23689.13 20296.22 135
v7n86.81 21085.76 21889.95 21390.72 29379.25 22795.07 10195.92 13384.45 16782.29 26090.86 26072.60 20497.53 17879.42 23080.52 30193.08 271
v2v48287.84 17087.06 16990.17 20190.99 27879.23 22894.00 17895.13 19084.87 15985.53 18692.07 22374.45 17497.45 18484.71 14881.75 28093.85 236
v119287.25 19786.33 19590.00 21290.76 29179.04 22993.80 18595.48 16882.57 20685.48 19091.18 25173.38 19697.42 18982.30 18182.06 27493.53 251
UniMVSNet_ETH3D87.53 18686.37 19291.00 17392.44 23078.96 23094.74 12395.61 15984.07 17285.36 20294.52 13659.78 31497.34 20182.93 16987.88 22296.71 123
thres600view787.65 17786.67 18190.59 18196.08 10478.72 23194.88 11491.58 28687.06 10988.08 13592.30 21068.91 24998.10 13870.05 30091.10 17194.96 180
GA-MVS86.61 21785.27 22790.66 18091.33 26778.71 23290.40 27693.81 24385.34 14985.12 20589.57 28761.25 30297.11 22080.99 20589.59 19496.15 136
tfpn200view987.58 18486.64 18290.41 19295.99 10878.64 23394.58 13291.98 27786.94 11388.09 13391.77 23069.18 24698.10 13870.13 29791.10 17194.48 206
thres40087.62 18286.64 18290.57 18295.99 10878.64 23394.58 13291.98 27786.94 11388.09 13391.77 23069.18 24698.10 13870.13 29791.10 17194.96 180
thres100view90087.63 18086.71 17990.38 19596.12 10078.55 23595.03 10591.58 28687.15 10688.06 13692.29 21168.91 24998.10 13870.13 29791.10 17194.48 206
thres20087.21 20186.24 19990.12 20595.36 12778.53 23693.26 20892.10 27186.42 12488.00 13891.11 25569.24 24598.00 15169.58 30191.04 17693.83 237
MS-PatchMatch85.05 24984.16 24687.73 27291.42 26278.51 23791.25 26593.53 24677.50 27780.15 28891.58 23861.99 29695.51 29875.69 26494.35 13289.16 329
BH-untuned88.60 15388.13 14790.01 21195.24 13478.50 23893.29 20694.15 23284.75 16284.46 21793.40 17275.76 15797.40 19677.59 24694.52 12894.12 218
TransMVSNet (Re)84.43 25883.06 26188.54 25391.72 25178.44 23995.18 9592.82 25782.73 20379.67 29592.12 21773.49 19195.96 28171.10 29268.73 33891.21 313
TR-MVS86.78 21285.76 21889.82 21794.37 17178.41 24092.47 23392.83 25681.11 24186.36 17092.40 20668.73 25297.48 18173.75 28189.85 19093.57 250
CHOSEN 280x42085.15 24783.99 24988.65 25192.47 22978.40 24179.68 34392.76 25874.90 30281.41 27289.59 28669.85 23595.51 29879.92 22395.29 11692.03 298
MIMVSNet82.59 27480.53 27988.76 24691.51 25778.32 24286.57 32190.13 31679.32 25780.70 28088.69 30052.98 33493.07 32966.03 31888.86 20594.90 184
EI-MVSNet89.10 13888.86 13089.80 22091.84 24778.30 24393.70 19195.01 19685.73 13787.15 15295.28 10779.87 11497.21 21483.81 15987.36 22893.88 232
IterMVS-LS88.36 15887.91 15289.70 22493.80 19378.29 24493.73 18895.08 19585.73 13784.75 21091.90 22879.88 11396.92 23383.83 15882.51 26993.89 230
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419287.19 20286.35 19489.74 22190.64 29578.24 24593.92 18195.43 17681.93 22085.51 18891.05 25774.21 17997.45 18482.86 17181.56 28293.53 251
test_040281.30 28979.17 29587.67 27393.19 21078.17 24692.98 22091.71 28275.25 29776.02 31690.31 27259.23 31696.37 26450.22 34483.63 25788.47 335
WR-MVS_H87.80 17287.37 16289.10 23993.23 20978.12 24795.61 7397.30 2687.90 8983.72 23992.01 22579.65 12196.01 27976.36 25780.54 29993.16 267
v192192086.97 20786.06 20689.69 22590.53 30078.11 24893.80 18595.43 17681.90 22285.33 20391.05 25772.66 20297.41 19482.05 18681.80 27993.53 251
XVG-ACMP-BASELINE86.00 23084.84 23789.45 23291.20 26978.00 24991.70 25695.55 16385.05 15782.97 25492.25 21354.49 33097.48 18182.93 16987.45 22792.89 277
FMVSNet581.52 28579.60 29187.27 28291.17 27177.95 25091.49 26092.26 26876.87 28376.16 31387.91 31151.67 33592.34 33167.74 31281.16 28591.52 305
GG-mvs-BLEND87.94 27089.73 31477.91 25187.80 31178.23 35180.58 28283.86 32959.88 31395.33 30471.20 28992.22 16590.60 321
BH-w/o87.57 18587.05 17089.12 23894.90 14877.90 25292.41 23493.51 24782.89 20183.70 24091.34 24375.75 15897.07 22475.49 26593.49 14292.39 291
testdata90.49 18996.40 9277.89 25395.37 18172.51 32293.63 4596.69 5882.08 9497.65 17083.08 16697.39 8195.94 148
pmmvs683.42 26781.60 27188.87 24488.01 32977.87 25494.96 10794.24 22974.67 30478.80 30091.09 25660.17 31196.49 25677.06 25475.40 32692.23 296
Baseline_NR-MVSNet87.07 20586.63 18488.40 25691.44 25877.87 25494.23 16092.57 26384.12 17185.74 18092.08 22177.25 14296.04 27682.29 18279.94 30691.30 310
tttt051788.61 15287.78 15391.11 16694.96 14377.81 25695.35 7989.69 32685.09 15688.05 13794.59 13466.93 26398.48 11283.27 16592.13 16697.03 111
AllTest83.42 26781.39 27389.52 22995.01 13977.79 25793.12 21390.89 30677.41 27876.12 31493.34 17354.08 33297.51 17968.31 30884.27 25093.26 260
TestCases89.52 22995.01 13977.79 25790.89 30677.41 27876.12 31493.34 17354.08 33297.51 17968.31 30884.27 25093.26 260
v124086.78 21285.85 21389.56 22790.45 30177.79 25793.61 19395.37 18181.65 22885.43 19591.15 25371.50 21297.43 18781.47 19982.05 27693.47 255
gg-mvs-nofinetune81.77 28079.37 29288.99 24390.85 28877.73 26086.29 32279.63 34974.88 30383.19 25369.05 34460.34 30996.11 27575.46 26694.64 12593.11 269
Fast-Effi-MVS+-dtu87.44 19086.72 17889.63 22692.04 24077.68 26194.03 17593.94 23785.81 13482.42 25991.32 24670.33 22997.06 22580.33 21890.23 18294.14 216
mvs-test189.45 12889.14 12190.38 19593.33 20677.63 26294.95 10894.36 22387.70 9587.10 15592.81 19673.45 19298.03 14985.57 13893.04 15395.48 163
cl-mvsnet286.78 21285.98 20889.18 23792.34 23277.62 26390.84 27094.13 23481.33 23683.97 23490.15 27573.96 18496.60 24984.19 15482.94 26493.33 258
miper_enhance_ethall86.90 20886.18 20089.06 24091.66 25577.58 26490.22 28094.82 21179.16 25984.48 21689.10 29179.19 12496.66 24284.06 15582.94 26492.94 275
MVS_030483.46 26681.92 26988.10 26690.63 29677.49 26593.26 20893.75 24480.04 25180.44 28587.24 31847.94 34295.55 29575.79 26388.16 21691.26 311
D2MVS85.90 23285.09 23088.35 25890.79 28977.42 26691.83 25195.70 15180.77 24480.08 29190.02 27866.74 26896.37 26481.88 19087.97 22191.26 311
miper_ehance_all_eth87.22 20086.62 18589.02 24292.13 23777.40 26790.91 26994.81 21281.28 23784.32 22590.08 27779.26 12396.62 24483.81 15982.94 26493.04 272
cl_fuxian87.14 20486.50 19089.04 24192.20 23477.26 26891.22 26694.70 21682.01 21784.34 22490.43 27078.81 12796.61 24783.70 16181.09 28893.25 262
v14887.04 20686.32 19689.21 23590.94 28277.26 26893.71 19094.43 22184.84 16084.36 22390.80 26376.04 15497.05 22682.12 18479.60 31093.31 259
PMMVS85.71 23784.96 23387.95 26988.90 31977.09 27088.68 30390.06 31872.32 32386.47 16590.76 26572.15 20894.40 31381.78 19393.49 14292.36 292
ITE_SJBPF88.24 26291.88 24677.05 27192.92 25485.54 14380.13 29093.30 17757.29 32196.20 27172.46 28584.71 24791.49 306
pmmvs584.21 25982.84 26588.34 25988.95 31876.94 27292.41 23491.91 28175.63 29480.28 28691.18 25164.59 28495.57 29477.09 25383.47 25992.53 286
IterMVS-SCA-FT85.45 23984.53 24388.18 26491.71 25276.87 27390.19 28192.65 26285.40 14881.44 27190.54 26766.79 26695.00 31081.04 20281.05 28992.66 283
baseline286.50 22285.39 22489.84 21691.12 27476.70 27491.88 24988.58 33182.35 21079.95 29390.95 25973.42 19497.63 17380.27 21989.95 18795.19 172
SCA86.32 22685.18 22889.73 22392.15 23576.60 27591.12 26791.69 28483.53 18485.50 18988.81 29566.79 26696.48 25776.65 25590.35 18196.12 139
CP-MVSNet87.63 18087.26 16788.74 24993.12 21276.59 27695.29 8696.58 9188.43 7483.49 24792.98 18975.28 16495.83 28778.97 23381.15 28793.79 238
cl-mvsnet_86.52 22185.78 21588.75 24792.03 24176.46 27790.74 27194.30 22681.83 22683.34 25090.78 26475.74 16096.57 25081.74 19481.54 28393.22 264
cl-mvsnet186.53 22085.78 21588.75 24792.02 24276.45 27890.74 27194.30 22681.83 22683.34 25090.82 26275.75 15896.57 25081.73 19581.52 28493.24 263
Effi-MVS+-dtu88.65 15188.35 13989.54 22893.33 20676.39 27994.47 14194.36 22387.70 9585.43 19589.56 28873.45 19297.26 20885.57 13891.28 17094.97 177
Patchmtry82.71 27280.93 27888.06 26790.05 30876.37 28084.74 33091.96 27972.28 32481.32 27487.87 31271.03 21795.50 30068.97 30380.15 30492.32 294
PS-CasMVS87.32 19486.88 17288.63 25292.99 22076.33 28195.33 8096.61 8988.22 8283.30 25293.07 18773.03 19995.79 29078.36 23881.00 29393.75 244
OpenMVS_ROBcopyleft74.94 1979.51 30077.03 30686.93 29187.00 33276.23 28292.33 23890.74 30968.93 33474.52 32288.23 30649.58 33896.62 24457.64 34084.29 24987.94 337
IterMVS84.88 25283.98 25087.60 27491.44 25876.03 28390.18 28292.41 26583.24 19281.06 27790.42 27166.60 26994.28 31679.46 22680.98 29492.48 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20995.74 11575.85 28495.61 7390.80 30887.66 9987.83 14195.40 10676.79 14696.46 26078.37 23796.73 9197.80 82
eth_miper_zixun_eth86.50 22285.77 21788.68 25091.94 24475.81 28590.47 27594.89 20582.05 21484.05 23190.46 26975.96 15596.77 23882.76 17579.36 31293.46 256
PEN-MVS86.80 21186.27 19888.40 25692.32 23375.71 28695.18 9596.38 10287.97 8682.82 25693.15 18373.39 19595.92 28276.15 26179.03 31693.59 249
PatchmatchNetpermissive85.85 23484.70 23989.29 23491.76 25075.54 28788.49 30591.30 29481.63 23085.05 20688.70 29971.71 20996.24 27074.61 27589.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TDRefinement79.81 29877.34 30287.22 28779.24 34775.48 28893.12 21392.03 27476.45 28575.01 31991.58 23849.19 34096.44 26170.22 29669.18 33589.75 325
DTE-MVSNet86.11 22985.48 22287.98 26891.65 25674.92 28994.93 11095.75 14887.36 10482.26 26193.04 18872.85 20095.82 28874.04 27777.46 32193.20 265
miper_lstm_enhance85.27 24584.59 24287.31 28191.28 26874.63 29087.69 31494.09 23681.20 24081.36 27389.85 28374.97 16994.30 31581.03 20479.84 30993.01 273
USDC82.76 27181.26 27587.26 28391.17 27174.55 29189.27 29493.39 24978.26 27375.30 31892.08 22154.43 33196.63 24371.64 28785.79 24090.61 319
ppachtmachnet_test81.84 27980.07 28687.15 28988.46 32374.43 29289.04 29992.16 27075.33 29677.75 30688.99 29266.20 27495.37 30365.12 32277.60 31991.65 303
mvs_anonymous89.37 13489.32 11789.51 23193.47 20374.22 29391.65 25894.83 21082.91 20085.45 19293.79 16581.23 10396.36 26686.47 13194.09 13397.94 72
ADS-MVSNet281.66 28279.71 29087.50 27791.35 26574.19 29483.33 33588.48 33272.90 31982.24 26285.77 32464.98 28293.20 32764.57 32483.74 25495.12 173
Patchmatch-test81.37 28779.30 29387.58 27590.92 28474.16 29580.99 34187.68 33670.52 33176.63 31288.81 29571.21 21492.76 33060.01 33886.93 23495.83 154
MDA-MVSNet-bldmvs78.85 30476.31 30786.46 29789.76 31373.88 29688.79 30190.42 31179.16 25959.18 34488.33 30460.20 31094.04 31862.00 33168.96 33691.48 307
DWT-MVSNet_test84.95 25183.68 25388.77 24591.43 26173.75 29791.74 25490.98 30280.66 24583.84 23687.36 31662.44 29397.11 22078.84 23585.81 23895.46 164
MIMVSNet179.38 30177.28 30385.69 30486.35 33473.67 29891.61 25992.75 25978.11 27672.64 33088.12 30748.16 34191.97 33560.32 33577.49 32091.43 308
our_test_381.93 27880.46 28086.33 30088.46 32373.48 29988.46 30691.11 29776.46 28476.69 31188.25 30566.89 26494.36 31468.75 30479.08 31591.14 315
JIA-IIPM81.04 29078.98 29887.25 28488.64 32073.48 29981.75 34089.61 32873.19 31682.05 26573.71 34166.07 27795.87 28571.18 29184.60 24892.41 290
RRT_test8_iter0586.90 20886.36 19388.52 25493.00 21973.27 30194.32 15595.96 13085.50 14584.26 22892.86 19160.76 30797.70 16888.32 10582.29 27194.60 195
TinyColmap79.76 29977.69 30185.97 30291.71 25273.12 30289.55 28890.36 31375.03 29972.03 33290.19 27346.22 34596.19 27363.11 32881.03 29088.59 334
UnsupCasMVSNet_bld76.23 30973.27 31285.09 30983.79 34172.92 30385.65 32793.47 24871.52 32668.84 33779.08 33949.77 33793.21 32666.81 31760.52 34589.13 331
test0.0.03 182.41 27581.69 27084.59 31188.23 32672.89 30490.24 27887.83 33483.41 18779.86 29489.78 28467.25 25988.99 34265.18 32183.42 26191.90 300
EPNet_dtu86.49 22485.94 21188.14 26590.24 30472.82 30594.11 16692.20 26986.66 12179.42 29892.36 20873.52 19095.81 28971.26 28893.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron79.21 30377.19 30585.29 30688.22 32772.77 30685.87 32490.06 31874.34 30662.62 34387.56 31566.14 27591.99 33466.90 31673.01 32891.10 317
EPMVS83.90 26482.70 26687.51 27690.23 30572.67 30788.62 30481.96 34681.37 23585.01 20788.34 30366.31 27394.45 31275.30 26887.12 23195.43 166
YYNet179.22 30277.20 30485.28 30788.20 32872.66 30885.87 32490.05 32074.33 30762.70 34287.61 31466.09 27692.03 33366.94 31372.97 32991.15 314
UnsupCasMVSNet_eth80.07 29678.27 30085.46 30585.24 33772.63 30988.45 30794.87 20782.99 19771.64 33488.07 30856.34 32391.75 33673.48 28263.36 34392.01 299
OurMVSNet-221017-085.35 24284.64 24187.49 27890.77 29072.59 31094.01 17794.40 22284.72 16379.62 29793.17 18261.91 29796.72 23981.99 18781.16 28593.16 267
CostFormer85.77 23684.94 23488.26 26191.16 27372.58 31189.47 29291.04 30176.26 28986.45 16889.97 28070.74 22196.86 23782.35 18087.07 23395.34 170
LCM-MVSNet-Re88.30 16088.32 14288.27 26094.71 15672.41 31293.15 21290.98 30287.77 9379.25 29991.96 22678.35 13595.75 29183.04 16795.62 10796.65 124
PVSNet78.82 1885.55 23884.65 24088.23 26394.72 15571.93 31387.12 31892.75 25978.80 26584.95 20890.53 26864.43 28596.71 24174.74 27393.86 13696.06 145
ADS-MVSNet81.56 28479.78 28886.90 29391.35 26571.82 31483.33 33589.16 33072.90 31982.24 26285.77 32464.98 28293.76 32064.57 32483.74 25495.12 173
test-LLR85.87 23385.41 22387.25 28490.95 28071.67 31589.55 28889.88 32483.41 18784.54 21487.95 30967.25 25995.11 30781.82 19193.37 14794.97 177
test-mter84.54 25783.64 25587.25 28490.95 28071.67 31589.55 28889.88 32479.17 25884.54 21487.95 30955.56 32595.11 30781.82 19193.37 14794.97 177
tpm284.08 26082.94 26287.48 27991.39 26371.27 31789.23 29690.37 31271.95 32584.64 21189.33 28967.30 25896.55 25475.17 26987.09 23294.63 192
Patchmatch-RL test81.67 28179.96 28786.81 29685.42 33671.23 31882.17 33987.50 33778.47 26977.19 31082.50 33570.81 22093.48 32382.66 17672.89 33095.71 159
TESTMET0.1,183.74 26582.85 26486.42 29989.96 31071.21 31989.55 28887.88 33377.41 27883.37 24987.31 31756.71 32293.65 32280.62 21292.85 15894.40 209
PVSNet_073.20 2077.22 30674.83 31184.37 31390.70 29471.10 32083.09 33789.67 32772.81 32173.93 32583.13 33360.79 30693.70 32168.54 30550.84 34788.30 336
tpm cat181.96 27780.27 28287.01 29091.09 27571.02 32187.38 31791.53 28966.25 33780.17 28786.35 32268.22 25796.15 27469.16 30282.29 27193.86 235
tpmvs83.35 27082.07 26787.20 28891.07 27671.00 32288.31 30891.70 28378.91 26180.49 28487.18 31969.30 24497.08 22368.12 31183.56 25893.51 254
PatchT82.68 27381.27 27486.89 29490.09 30770.94 32384.06 33290.15 31574.91 30185.63 18383.57 33169.37 24094.87 31165.19 32088.50 21094.84 186
SixPastTwentyTwo83.91 26382.90 26386.92 29290.99 27870.67 32493.48 19791.99 27685.54 14377.62 30892.11 21960.59 30896.87 23676.05 26277.75 31893.20 265
RPSCF85.07 24884.27 24587.48 27992.91 22270.62 32591.69 25792.46 26476.20 29082.67 25895.22 11063.94 28797.29 20577.51 24885.80 23994.53 200
pmmvs371.81 31268.71 31581.11 32175.86 34870.42 32686.74 31983.66 34358.95 34368.64 33880.89 33736.93 34889.52 34163.10 32963.59 34283.39 339
Anonymous2023120681.03 29179.77 28984.82 31087.85 33170.26 32791.42 26192.08 27273.67 31177.75 30689.25 29062.43 29493.08 32861.50 33382.00 27791.12 316
PM-MVS78.11 30576.12 30984.09 31683.54 34270.08 32888.97 30085.27 34179.93 25274.73 32186.43 32134.70 34993.48 32379.43 22972.06 33288.72 332
MDTV_nov1_ep1383.56 25691.69 25469.93 32987.75 31391.54 28878.60 26884.86 20988.90 29469.54 23896.03 27770.25 29488.93 204
LF4IMVS80.37 29579.07 29784.27 31586.64 33369.87 33089.39 29391.05 30076.38 28674.97 32090.00 27947.85 34394.25 31774.55 27680.82 29688.69 333
K. test v381.59 28380.15 28585.91 30389.89 31269.42 33192.57 23187.71 33585.56 14273.44 32789.71 28555.58 32495.52 29777.17 25169.76 33492.78 281
tpm84.73 25484.02 24886.87 29590.33 30268.90 33289.06 29889.94 32180.85 24385.75 17989.86 28268.54 25495.97 28077.76 24484.05 25295.75 157
lessismore_v086.04 30188.46 32368.78 33380.59 34773.01 32990.11 27655.39 32696.43 26275.06 27165.06 34092.90 276
gm-plane-assit89.60 31568.00 33477.28 28188.99 29297.57 17579.44 228
tpmrst85.35 24284.99 23186.43 29890.88 28767.88 33588.71 30291.43 29280.13 24986.08 17688.80 29773.05 19896.02 27882.48 17783.40 26295.40 167
test20.0379.95 29779.08 29682.55 31985.79 33567.74 33691.09 26891.08 29881.23 23974.48 32389.96 28161.63 29890.15 34060.08 33676.38 32489.76 324
CMPMVSbinary59.16 2180.52 29479.20 29484.48 31283.98 34067.63 33789.95 28693.84 24264.79 33966.81 34091.14 25457.93 32095.17 30576.25 25988.10 21790.65 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi80.94 29380.20 28483.18 31787.96 33066.29 33891.28 26390.70 31083.70 17878.12 30392.84 19351.37 33690.82 33963.34 32782.46 27092.43 289
new_pmnet72.15 31170.13 31478.20 32482.95 34465.68 33983.91 33382.40 34562.94 34164.47 34179.82 33842.85 34786.26 34557.41 34174.44 32782.65 341
Gipumacopyleft57.99 31854.91 32067.24 33188.51 32165.59 34052.21 35190.33 31443.58 34942.84 34951.18 35020.29 35585.07 34634.77 34970.45 33351.05 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dp81.47 28680.23 28385.17 30889.92 31165.49 34186.74 31990.10 31776.30 28881.10 27587.12 32062.81 29195.92 28268.13 31079.88 30794.09 221
CVMVSNet84.69 25684.79 23884.37 31391.84 24764.92 34293.70 19191.47 29166.19 33886.16 17595.28 10767.18 26193.33 32580.89 20790.42 18094.88 185
EU-MVSNet81.32 28880.95 27782.42 32088.50 32263.67 34393.32 20191.33 29364.02 34080.57 28392.83 19461.21 30492.27 33276.34 25880.38 30391.32 309
ambc83.06 31879.99 34663.51 34477.47 34492.86 25574.34 32484.45 32828.74 35095.06 30973.06 28468.89 33790.61 319
new-patchmatchnet76.41 30875.17 31080.13 32282.65 34559.61 34587.66 31591.08 29878.23 27469.85 33583.22 33254.76 32891.63 33864.14 32664.89 34189.16 329
LCM-MVSNet66.00 31462.16 31877.51 32664.51 35458.29 34683.87 33490.90 30548.17 34754.69 34573.31 34216.83 35886.75 34465.47 31961.67 34487.48 338
FPMVS64.63 31562.55 31770.88 32870.80 35056.71 34784.42 33184.42 34251.78 34649.57 34681.61 33623.49 35281.48 34840.61 34876.25 32574.46 344
ANet_high58.88 31754.22 32172.86 32756.50 35756.67 34880.75 34286.00 33873.09 31837.39 35064.63 34722.17 35379.49 35043.51 34623.96 35182.43 342
MVS-HIRNet73.70 31072.20 31378.18 32591.81 24956.42 34982.94 33882.58 34455.24 34468.88 33666.48 34555.32 32795.13 30658.12 33988.42 21283.01 340
DSMNet-mixed76.94 30776.29 30878.89 32383.10 34356.11 35087.78 31279.77 34860.65 34275.64 31788.71 29861.56 29988.34 34360.07 33789.29 19992.21 297
MDTV_nov1_ep13_2view55.91 35187.62 31673.32 31584.59 21370.33 22974.65 27495.50 162
DeepMVS_CXcopyleft56.31 33474.23 34951.81 35256.67 35744.85 34848.54 34875.16 34027.87 35158.74 35440.92 34752.22 34658.39 347
MVEpermissive39.65 2343.39 32038.59 32657.77 33356.52 35648.77 35355.38 35058.64 35629.33 35328.96 35352.65 3494.68 36064.62 35328.11 35133.07 34959.93 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS259.60 31656.40 31969.21 33068.83 35146.58 35473.02 34877.48 35255.07 34549.21 34772.95 34317.43 35780.04 34949.32 34544.33 34880.99 343
PMVScopyleft47.18 2252.22 31948.46 32263.48 33245.72 35846.20 35573.41 34778.31 35041.03 35030.06 35265.68 3466.05 35983.43 34730.04 35065.86 33960.80 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 32142.29 32346.03 33565.58 35337.41 35673.51 34664.62 35333.99 35128.47 35447.87 35119.90 35667.91 35122.23 35224.45 35032.77 349
wuyk23d21.27 32520.48 32823.63 33868.59 35236.41 35749.57 3526.85 3609.37 3547.89 3564.46 3584.03 36131.37 35517.47 35416.07 3543.12 352
EMVS42.07 32241.12 32444.92 33663.45 35535.56 35873.65 34563.48 35433.05 35226.88 35545.45 35221.27 35467.14 35219.80 35323.02 35232.06 350
N_pmnet68.89 31368.44 31670.23 32989.07 31728.79 35988.06 30919.50 35969.47 33371.86 33384.93 32761.24 30391.75 33654.70 34277.15 32290.15 323
tmp_tt35.64 32339.24 32524.84 33714.87 35923.90 36062.71 34951.51 3586.58 35536.66 35162.08 34844.37 34630.34 35652.40 34322.00 35320.27 351
test1238.76 32711.22 3301.39 3390.85 3610.97 36185.76 3260.35 3620.54 3572.45 3588.14 3570.60 3620.48 3572.16 3560.17 3562.71 353
testmvs8.92 32611.52 3291.12 3401.06 3600.46 36286.02 3230.65 3610.62 3562.74 3579.52 3560.31 3630.45 3582.38 3550.39 3552.46 354
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
cdsmvs_eth3d_5k22.14 32429.52 3270.00 3410.00 3620.00 3630.00 35395.76 1470.00 3580.00 35994.29 14275.66 1610.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas6.64 3298.86 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35979.70 1170.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re7.82 32810.43 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35993.88 1610.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
9.1494.47 1797.79 5296.08 5097.44 1286.13 13195.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 139
sam_mvs171.70 21096.12 139
sam_mvs70.60 222
MTGPAbinary96.97 49
test_post188.00 3109.81 35569.31 24395.53 29676.65 255
test_post10.29 35470.57 22695.91 284
patchmatchnet-post83.76 33071.53 21196.48 257
MTMP96.16 4460.64 355
test9_res91.91 5898.71 3098.07 63
agg_prior290.54 8498.68 3598.27 47
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
旧先验293.36 20071.25 32894.37 2697.13 21986.74 126
新几何293.11 215
无先验93.28 20796.26 10773.95 30999.05 6080.56 21396.59 125
原ACMM292.94 222
testdata298.75 9978.30 239
segment_acmp87.16 35
testdata192.15 24487.94 87
plane_prior596.22 11298.12 13688.15 10689.99 18494.63 192
plane_prior494.86 122
plane_prior295.85 6190.81 17
plane_prior194.59 161
n20.00 363
nn0.00 363
door-mid85.49 339
test1196.57 92
door85.33 340
HQP-NCC94.17 17694.39 14888.81 6185.43 195
ACMP_Plane94.17 17694.39 14888.81 6185.43 195
BP-MVS87.11 123
HQP4-MVS85.43 19597.96 15494.51 202
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 187
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112