OPU-MVS | | | | | 96.21 1 | 98.00 44 | 90.85 1 | 97.13 9 | | | | 97.08 40 | 92.59 1 | 98.94 83 | 92.25 45 | 98.99 10 | 98.84 8 |
|
HPM-MVS++ | | | 95.14 9 | 94.91 11 | 95.83 2 | 98.25 29 | 89.65 2 | 95.92 59 | 96.96 52 | 91.75 7 | 94.02 35 | 96.83 51 | 88.12 21 | 99.55 12 | 93.41 24 | 98.94 12 | 98.28 45 |
|
DPM-MVS | | | 92.58 69 | 91.74 77 | 95.08 12 | 96.19 98 | 89.31 3 | 92.66 227 | 96.56 93 | 83.44 186 | 91.68 92 | 95.04 116 | 86.60 42 | 98.99 76 | 85.60 137 | 97.92 69 | 96.93 116 |
|
3Dnovator+ | | 87.14 4 | 92.42 72 | 91.37 80 | 95.55 4 | 95.63 120 | 88.73 4 | 97.07 13 | 96.77 72 | 90.84 16 | 84.02 232 | 96.62 63 | 75.95 156 | 99.34 33 | 87.77 111 | 97.68 75 | 98.59 18 |
|
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 5 | 98.11 37 | 88.51 5 | 95.29 86 | 96.96 52 | 92.09 3 | 95.32 19 | 97.08 40 | 89.49 12 | 99.33 36 | 95.10 8 | 98.85 15 | 98.66 14 |
|
SMA-MVS | | | 95.20 7 | 95.07 9 | 95.59 3 | 98.14 36 | 88.48 6 | 96.26 40 | 97.28 28 | 85.90 133 | 97.67 3 | 98.10 2 | 88.41 17 | 99.56 7 | 94.66 10 | 99.19 1 | 98.71 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ETH3D cwj APD-0.16 | | | 93.91 41 | 93.53 49 | 95.06 13 | 96.76 81 | 87.78 7 | 94.92 111 | 97.21 34 | 84.33 168 | 93.89 38 | 97.09 39 | 87.20 33 | 99.29 41 | 91.90 61 | 98.44 51 | 98.12 59 |
|
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 8 | 97.84 50 | 87.76 8 | 96.65 28 | 97.48 7 | 87.76 94 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 11 | 97.70 55 | 87.71 9 | 95.98 56 | 97.44 12 | 86.67 120 | 95.25 21 | 97.31 25 | 87.73 25 | 99.24 44 | 93.11 31 | 98.76 26 | 98.40 35 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 6 | 98.02 43 | 87.70 10 | 95.68 68 | 97.34 19 | 88.28 79 | 95.30 20 | 97.67 13 | 85.90 49 | 99.54 16 | 93.91 17 | 98.95 11 | 98.60 17 |
|
canonicalmvs | | | 93.27 58 | 92.75 64 | 94.85 27 | 95.70 118 | 87.66 11 | 96.33 35 | 96.41 99 | 90.00 34 | 94.09 33 | 94.60 133 | 82.33 88 | 98.62 105 | 92.40 41 | 92.86 157 | 98.27 47 |
|
alignmvs | | | 93.08 62 | 92.50 69 | 94.81 32 | 95.62 121 | 87.61 12 | 95.99 54 | 96.07 122 | 89.77 38 | 94.12 32 | 94.87 121 | 80.56 106 | 98.66 101 | 92.42 40 | 93.10 152 | 98.15 56 |
|
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 9 | 98.46 18 | 87.50 13 | 95.00 106 | 97.12 40 | 87.13 107 | 92.51 73 | 96.30 74 | 89.24 14 | 99.34 33 | 93.46 21 | 98.62 44 | 98.73 11 |
|
NCCC | | | 94.81 13 | 94.69 15 | 95.17 10 | 97.83 51 | 87.46 14 | 95.66 70 | 96.93 55 | 92.34 2 | 93.94 36 | 96.58 65 | 87.74 24 | 99.44 27 | 92.83 33 | 98.40 53 | 98.62 16 |
|
DPE-MVS | | | 95.57 3 | 95.67 3 | 95.25 7 | 98.36 25 | 87.28 15 | 95.56 75 | 97.51 4 | 89.13 55 | 97.14 7 | 97.91 9 | 91.64 5 | 99.62 1 | 94.61 11 | 99.17 2 | 98.86 7 |
|
test_part2 | | | | | | 98.55 11 | 87.22 16 | | | | 96.40 11 | | | | | | |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 14 | 98.52 14 | 86.96 17 | 96.85 23 | 97.32 24 | 88.24 80 | 93.15 55 | 97.04 42 | 86.17 44 | 99.62 1 | 92.40 41 | 98.81 18 | 98.52 20 |
|
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 16 | 98.42 20 | 86.95 18 | 95.06 104 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 16 | 98.42 20 | 86.95 18 | 94.36 154 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
nrg030 | | | 91.08 93 | 90.39 95 | 93.17 79 | 93.07 214 | 86.91 20 | 96.41 33 | 96.26 107 | 88.30 78 | 88.37 132 | 94.85 124 | 82.19 92 | 97.64 172 | 91.09 74 | 82.95 263 | 94.96 180 |
|
APD-MVS | | | 94.24 30 | 94.07 34 | 94.75 36 | 98.06 41 | 86.90 21 | 95.88 60 | 96.94 54 | 85.68 139 | 95.05 23 | 97.18 35 | 87.31 31 | 99.07 58 | 91.90 61 | 98.61 45 | 98.28 45 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ETH3 D test6400 | | | 93.64 49 | 93.22 54 | 94.92 20 | 97.79 52 | 86.84 22 | 95.31 81 | 97.26 29 | 82.67 205 | 93.81 39 | 96.29 75 | 87.29 32 | 99.27 42 | 89.87 89 | 98.67 37 | 98.65 15 |
|
GST-MVS | | | 94.21 33 | 93.97 38 | 94.90 24 | 98.41 22 | 86.82 23 | 96.54 30 | 97.19 35 | 88.24 80 | 93.26 51 | 96.83 51 | 85.48 53 | 99.59 4 | 91.43 71 | 98.40 53 | 98.30 41 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 25 | 98.61 9 | 86.81 24 | 96.94 15 | 97.34 19 | 88.63 68 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 92.35 43 | 98.77 24 | 98.30 41 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 25 | 98.61 9 | 86.81 24 | 96.43 31 | 97.34 19 | 87.51 100 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 91.68 65 | 98.77 24 | 98.30 41 |
|
TSAR-MVS + GP. | | | 93.66 48 | 93.41 51 | 94.41 52 | 96.59 86 | 86.78 26 | 94.40 146 | 93.93 238 | 89.77 38 | 94.21 29 | 95.59 102 | 87.35 30 | 98.61 106 | 92.72 36 | 96.15 103 | 97.83 81 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 42 | 94.80 33 | 97.48 62 | 86.78 26 | 95.65 72 | 96.89 58 | 89.40 47 | 92.81 62 | 96.97 45 | 85.37 55 | 99.24 44 | 90.87 81 | 98.69 33 | 98.38 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 94.39 25 | 94.18 29 | 95.00 16 | 98.24 31 | 86.77 28 | 96.16 44 | 97.23 32 | 87.28 105 | 94.85 24 | 97.04 42 | 86.99 37 | 99.52 20 | 91.54 67 | 98.33 56 | 98.71 12 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 38 | 95.54 123 | 86.75 29 | 94.57 134 | 96.70 81 | 91.84 6 | 94.41 25 | 96.56 67 | 87.19 34 | 99.13 54 | 93.50 20 | 97.65 77 | 98.16 55 |
|
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 62 | 97.25 73 | 86.69 30 | 96.19 43 | 97.11 42 | 90.42 25 | 96.95 10 | 97.27 27 | 89.53 11 | 96.91 234 | 94.38 13 | 98.85 15 | 98.03 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 22 | 98.63 8 | 86.69 30 | 96.94 15 | 97.32 24 | 88.63 68 | 93.53 50 | 97.26 29 | 85.04 59 | 99.54 16 | 92.35 43 | 98.78 21 | 98.50 22 |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 20 | 98.65 7 | 86.67 32 | 96.92 19 | 97.23 32 | 88.60 70 | 93.58 47 | 97.27 27 | 85.22 56 | 99.54 16 | 92.21 46 | 98.74 29 | 98.56 19 |
|
MP-MVS-pluss | | | 94.21 33 | 94.00 37 | 94.85 27 | 98.17 34 | 86.65 33 | 94.82 118 | 97.17 38 | 86.26 127 | 92.83 61 | 97.87 10 | 85.57 52 | 99.56 7 | 94.37 14 | 98.92 13 | 98.34 38 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 37 | 98.39 23 | 86.64 34 | 97.60 1 | 97.24 30 | 88.53 72 | 92.73 66 | 97.23 30 | 85.20 57 | 99.32 37 | 92.15 49 | 98.83 17 | 98.25 50 |
|
ZD-MVS | | | | | | 98.15 35 | 86.62 35 | | 97.07 44 | 83.63 180 | 94.19 30 | 96.91 48 | 87.57 29 | 99.26 43 | 91.99 53 | 98.44 51 | |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 59 | 97.16 37 | 85.02 60 | 99.49 23 | 91.99 53 | 98.56 47 | 98.47 28 |
|
X-MVStestdata | | | 88.31 159 | 86.13 201 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 59 | 23.41 353 | 85.02 60 | 99.49 23 | 91.99 53 | 98.56 47 | 98.47 28 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 19 | 98.49 16 | 86.52 38 | 96.91 20 | 97.47 8 | 91.73 8 | 96.10 13 | 96.69 58 | 89.90 9 | 99.30 39 | 94.70 9 | 98.04 64 | 99.13 1 |
|
TEST9 | | | | | | 97.53 58 | 86.49 39 | 94.07 171 | 96.78 70 | 81.61 231 | 92.77 63 | 96.20 80 | 87.71 26 | 99.12 55 | | | |
|
train_agg | | | 93.44 53 | 93.08 57 | 94.52 45 | 97.53 58 | 86.49 39 | 94.07 171 | 96.78 70 | 81.86 224 | 92.77 63 | 96.20 80 | 87.63 27 | 99.12 55 | 92.14 50 | 98.69 33 | 97.94 72 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 41 | 97.09 11 | 97.49 5 | | | | | 99.61 3 | 95.62 5 | 99.08 7 | 98.99 5 |
|
PHI-MVS | | | 93.89 43 | 93.65 47 | 94.62 42 | 96.84 79 | 86.43 41 | 96.69 27 | 97.49 5 | 85.15 154 | 93.56 49 | 96.28 76 | 85.60 51 | 99.31 38 | 92.45 38 | 98.79 19 | 98.12 59 |
|
3Dnovator | | 86.66 5 | 91.73 81 | 90.82 92 | 94.44 48 | 94.59 161 | 86.37 43 | 97.18 7 | 97.02 46 | 89.20 52 | 84.31 227 | 96.66 61 | 73.74 189 | 99.17 50 | 86.74 126 | 97.96 67 | 97.79 83 |
|
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 46 | 95.54 123 | 86.36 44 | 94.57 134 | 96.44 96 | 91.69 9 | 94.32 28 | 96.56 67 | 87.05 36 | 99.03 64 | 93.35 25 | 97.65 77 | 98.15 56 |
|
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 43 | 98.25 29 | 86.33 45 | 96.11 49 | 96.62 88 | 88.14 85 | 96.10 13 | 96.96 46 | 89.09 15 | 98.94 83 | 94.48 12 | 98.68 35 | 98.48 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 27 | 96.99 76 | 86.33 45 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 18 | 97.46 17 | 88.98 16 | 99.40 28 | 94.12 15 | 98.89 14 | 98.82 10 |
Skip Steuart: Steuart Systems R&D Blog. |
MP-MVS | | | 94.25 29 | 94.07 34 | 94.77 35 | 98.47 17 | 86.31 47 | 96.71 26 | 96.98 48 | 89.04 57 | 91.98 82 | 97.19 34 | 85.43 54 | 99.56 7 | 92.06 52 | 98.79 19 | 98.44 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test_8 | | | | | | 97.49 61 | 86.30 48 | 94.02 176 | 96.76 73 | 81.86 224 | 92.70 67 | 96.20 80 | 87.63 27 | 99.02 68 | | | |
|
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 22 | 98.26 28 | 86.29 49 | 97.46 2 | 97.40 17 | 89.03 58 | 96.20 12 | 98.10 2 | 89.39 13 | 99.34 33 | 95.88 1 | 99.03 9 | 99.10 3 |
|
PGM-MVS | | | 93.96 40 | 93.72 45 | 94.68 38 | 98.43 19 | 86.22 50 | 95.30 84 | 97.78 1 | 87.45 103 | 93.26 51 | 97.33 24 | 84.62 65 | 99.51 21 | 90.75 83 | 98.57 46 | 98.32 40 |
|
test12 | | | | | 94.34 53 | 97.13 74 | 86.15 51 | | 96.29 105 | | 91.04 103 | | 85.08 58 | 99.01 70 | | 98.13 61 | 97.86 79 |
|
CDPH-MVS | | | 92.83 64 | 92.30 71 | 94.44 48 | 97.79 52 | 86.11 52 | 94.06 173 | 96.66 85 | 80.09 250 | 92.77 63 | 96.63 62 | 86.62 39 | 99.04 63 | 87.40 116 | 98.66 40 | 98.17 54 |
|
RRT_MVS | | | 88.86 145 | 87.68 155 | 92.39 116 | 92.02 242 | 86.09 53 | 94.38 152 | 94.94 199 | 85.45 146 | 87.14 154 | 93.84 164 | 65.88 278 | 97.11 220 | 88.73 100 | 86.77 235 | 93.98 227 |
|
IU-MVS | | | | | | 98.77 4 | 86.00 54 | | 96.84 63 | 81.26 238 | 97.26 6 | | | | 95.50 7 | 99.13 3 | 99.03 4 |
|
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 33 | 98.77 4 | 85.99 55 | 97.13 9 | 97.44 12 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 2 | 99.58 5 | 95.66 2 | 99.13 3 | 98.84 8 |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 55 | | 97.44 12 | 90.26 30 | 97.71 1 | 97.96 8 | 92.31 2 | 99.38 29 | | | |
|
test_prior4 | | | | | | | 85.96 57 | 94.11 166 | | | | | | | | | |
|
DVP-MVS | | | 95.67 2 | 96.02 2 | 94.64 40 | 98.78 2 | 85.93 58 | 97.09 11 | 96.73 77 | 90.27 28 | 97.04 8 | 98.05 6 | 91.47 6 | 99.55 12 | 95.62 5 | 99.08 7 | 98.45 32 |
|
test0726 | | | | | | 98.78 2 | 85.93 58 | 97.19 6 | 97.47 8 | 90.27 28 | 97.64 4 | 98.13 1 | 91.47 6 | | | | |
|
agg_prior1 | | | 93.29 57 | 92.97 61 | 94.26 55 | 97.38 64 | 85.92 60 | 93.92 181 | 96.72 79 | 81.96 218 | 92.16 78 | 96.23 78 | 87.85 22 | 98.97 79 | 91.95 57 | 98.55 49 | 97.90 76 |
|
agg_prior | | | | | | 97.38 64 | 85.92 60 | | 96.72 79 | | 92.16 78 | | | 98.97 79 | | | |
|
DP-MVS Recon | | | 91.95 76 | 91.28 82 | 93.96 60 | 98.33 27 | 85.92 60 | 94.66 129 | 96.66 85 | 82.69 204 | 90.03 113 | 95.82 95 | 82.30 89 | 99.03 64 | 84.57 149 | 96.48 100 | 96.91 117 |
|
mPP-MVS | | | 93.99 38 | 93.78 43 | 94.63 41 | 98.50 15 | 85.90 63 | 96.87 21 | 96.91 56 | 88.70 66 | 91.83 88 | 97.17 36 | 83.96 74 | 99.55 12 | 91.44 70 | 98.64 43 | 98.43 34 |
|
DeepC-MVS | | 88.79 3 | 93.31 56 | 92.99 60 | 94.26 55 | 96.07 105 | 85.83 64 | 94.89 113 | 96.99 47 | 89.02 59 | 89.56 115 | 97.37 23 | 82.51 85 | 99.38 29 | 92.20 47 | 98.30 57 | 97.57 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 50 | 98.21 33 | 85.78 65 | 96.40 34 | 96.90 57 | 88.20 83 | 94.33 27 | 97.40 21 | 84.75 64 | 99.03 64 | 93.35 25 | 97.99 65 | 98.48 24 |
|
HPM-MVS | | | 94.02 37 | 93.88 39 | 94.43 50 | 98.39 23 | 85.78 65 | 97.25 5 | 97.07 44 | 86.90 115 | 92.62 70 | 96.80 55 | 84.85 63 | 99.17 50 | 92.43 39 | 98.65 42 | 98.33 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CANet | | | 93.54 51 | 93.20 56 | 94.55 44 | 95.65 119 | 85.73 67 | 94.94 109 | 96.69 83 | 91.89 5 | 90.69 105 | 95.88 93 | 81.99 97 | 99.54 16 | 93.14 30 | 97.95 68 | 98.39 36 |
|
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 47 | 97.85 48 | 85.63 68 | 95.21 92 | 95.47 169 | 89.44 44 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
save fliter | | | | | | 97.85 48 | 85.63 68 | 95.21 92 | 96.82 67 | 89.44 44 | | | | | | | |
|
Regformer-4 | | | 93.91 41 | 93.81 41 | 94.19 57 | 95.36 127 | 85.47 70 | 94.68 126 | 96.41 99 | 91.60 10 | 93.75 40 | 96.71 56 | 85.95 48 | 99.10 57 | 93.21 29 | 96.65 94 | 98.01 69 |
|
OpenMVS | | 83.78 11 | 88.74 149 | 87.29 164 | 93.08 82 | 92.70 225 | 85.39 71 | 96.57 29 | 96.43 98 | 78.74 267 | 80.85 278 | 96.07 87 | 69.64 237 | 99.01 70 | 78.01 243 | 96.65 94 | 94.83 187 |
|
ACMMP | | | 93.24 59 | 92.88 63 | 94.30 54 | 98.09 40 | 85.33 72 | 96.86 22 | 97.45 11 | 88.33 76 | 90.15 111 | 97.03 44 | 81.44 100 | 99.51 21 | 90.85 82 | 95.74 106 | 98.04 66 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EPNet | | | 91.79 78 | 91.02 88 | 94.10 58 | 90.10 306 | 85.25 73 | 96.03 53 | 92.05 273 | 92.83 1 | 87.39 151 | 95.78 96 | 79.39 122 | 99.01 70 | 88.13 108 | 97.48 79 | 98.05 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 93.43 54 | 93.25 53 | 93.97 59 | 95.42 126 | 85.04 74 | 93.06 218 | 97.13 39 | 90.74 20 | 91.84 86 | 95.09 115 | 86.32 43 | 99.21 47 | 91.22 73 | 98.45 50 | 97.65 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 93.45 52 | 93.31 52 | 93.84 63 | 96.99 76 | 84.84 75 | 93.24 211 | 97.24 30 | 88.76 64 | 91.60 93 | 95.85 94 | 86.07 47 | 98.66 101 | 91.91 58 | 98.16 60 | 98.03 67 |
|
HPM-MVS_fast | | | 93.40 55 | 93.22 54 | 93.94 61 | 98.36 25 | 84.83 76 | 97.15 8 | 96.80 69 | 85.77 136 | 92.47 74 | 97.13 38 | 82.38 86 | 99.07 58 | 90.51 85 | 98.40 53 | 97.92 75 |
|
CNLPA | | | 89.07 139 | 87.98 149 | 92.34 118 | 96.87 78 | 84.78 77 | 94.08 170 | 93.24 250 | 81.41 234 | 84.46 217 | 95.13 114 | 75.57 162 | 96.62 244 | 77.21 250 | 93.84 137 | 95.61 161 |
|
UA-Net | | | 92.83 64 | 92.54 68 | 93.68 70 | 96.10 103 | 84.71 78 | 95.66 70 | 96.39 101 | 91.92 4 | 93.22 53 | 96.49 69 | 83.16 78 | 98.87 87 | 84.47 151 | 95.47 111 | 97.45 95 |
|
Regformer-3 | | | 93.68 47 | 93.64 48 | 93.81 67 | 95.36 127 | 84.61 79 | 94.68 126 | 95.83 142 | 91.27 12 | 93.60 46 | 96.71 56 | 85.75 50 | 98.86 90 | 92.87 32 | 96.65 94 | 97.96 71 |
|
QAPM | | | 89.51 125 | 88.15 146 | 93.59 72 | 94.92 146 | 84.58 80 | 96.82 24 | 96.70 81 | 78.43 270 | 83.41 248 | 96.19 83 | 73.18 197 | 99.30 39 | 77.11 252 | 96.54 97 | 96.89 118 |
|
SR-MVS-dyc-post | | | 93.82 44 | 93.82 40 | 93.82 64 | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 73 | 87.46 101 | 93.75 40 | 97.43 18 | 84.24 69 | 99.01 70 | 92.73 34 | 97.80 72 | 97.88 77 |
|
RE-MVS-def | | | | 93.68 46 | | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 73 | 87.46 101 | 93.75 40 | 97.43 18 | 82.94 80 | | 92.73 34 | 97.80 72 | 97.88 77 |
|
API-MVS | | | 90.66 100 | 90.07 102 | 92.45 112 | 96.36 94 | 84.57 81 | 96.06 52 | 95.22 188 | 82.39 207 | 89.13 121 | 94.27 145 | 80.32 108 | 98.46 115 | 80.16 220 | 96.71 92 | 94.33 210 |
|
UniMVSNet (Re) | | | 89.80 119 | 89.07 123 | 92.01 127 | 93.60 200 | 84.52 84 | 94.78 121 | 97.47 8 | 89.26 50 | 86.44 169 | 92.32 209 | 82.10 93 | 97.39 199 | 84.81 146 | 80.84 295 | 94.12 218 |
|
test_prior3 | | | 93.60 50 | 93.53 49 | 93.82 64 | 97.29 69 | 84.49 85 | 94.12 164 | 96.88 59 | 87.67 97 | 92.63 68 | 96.39 72 | 86.62 39 | 98.87 87 | 91.50 68 | 98.67 37 | 98.11 61 |
|
test_prior | | | | | 93.82 64 | 97.29 69 | 84.49 85 | | 96.88 59 | | | | | 98.87 87 | | | 98.11 61 |
|
MAR-MVS | | | 90.30 107 | 89.37 116 | 93.07 84 | 96.61 85 | 84.48 87 | 95.68 68 | 95.67 153 | 82.36 209 | 87.85 140 | 92.85 192 | 76.63 150 | 98.80 97 | 80.01 221 | 96.68 93 | 95.91 149 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
xiu_mvs_v1_base_debu | | | 90.64 101 | 90.05 103 | 92.40 113 | 93.97 187 | 84.46 88 | 93.32 201 | 95.46 170 | 85.17 151 | 92.25 75 | 94.03 148 | 70.59 223 | 98.57 108 | 90.97 76 | 94.67 122 | 94.18 213 |
|
xiu_mvs_v1_base | | | 90.64 101 | 90.05 103 | 92.40 113 | 93.97 187 | 84.46 88 | 93.32 201 | 95.46 170 | 85.17 151 | 92.25 75 | 94.03 148 | 70.59 223 | 98.57 108 | 90.97 76 | 94.67 122 | 94.18 213 |
|
xiu_mvs_v1_base_debi | | | 90.64 101 | 90.05 103 | 92.40 113 | 93.97 187 | 84.46 88 | 93.32 201 | 95.46 170 | 85.17 151 | 92.25 75 | 94.03 148 | 70.59 223 | 98.57 108 | 90.97 76 | 94.67 122 | 94.18 213 |
|
1121 | | | 90.42 106 | 89.49 112 | 93.20 77 | 97.27 71 | 84.46 88 | 92.63 228 | 95.51 167 | 71.01 330 | 91.20 101 | 96.21 79 | 82.92 81 | 99.05 60 | 80.56 213 | 98.07 63 | 96.10 142 |
|
MVS_111021_LR | | | 92.47 71 | 92.29 72 | 92.98 87 | 95.99 108 | 84.43 92 | 93.08 216 | 96.09 120 | 88.20 83 | 91.12 102 | 95.72 99 | 81.33 102 | 97.76 163 | 91.74 63 | 97.37 82 | 96.75 121 |
|
PCF-MVS | | 84.11 10 | 87.74 174 | 86.08 205 | 92.70 101 | 94.02 181 | 84.43 92 | 89.27 294 | 95.87 139 | 73.62 312 | 84.43 219 | 94.33 139 | 78.48 134 | 98.86 90 | 70.27 293 | 94.45 130 | 94.81 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
新几何1 | | | | | 93.10 81 | 97.30 68 | 84.35 94 | | 95.56 162 | 71.09 329 | 91.26 100 | 96.24 77 | 82.87 82 | 98.86 90 | 79.19 232 | 98.10 62 | 96.07 144 |
|
abl_6 | | | 93.18 61 | 93.05 58 | 93.57 73 | 97.52 60 | 84.27 95 | 95.53 76 | 96.67 84 | 87.85 91 | 93.20 54 | 97.22 31 | 80.35 107 | 99.18 49 | 91.91 58 | 97.21 83 | 97.26 100 |
|
APD-MVS_3200maxsize | | | 93.78 45 | 93.77 44 | 93.80 68 | 97.92 45 | 84.19 96 | 96.30 36 | 96.87 61 | 86.96 111 | 93.92 37 | 97.47 16 | 83.88 75 | 98.96 82 | 92.71 37 | 97.87 70 | 98.26 49 |
|
NR-MVSNet | | | 88.58 154 | 87.47 160 | 91.93 134 | 93.04 216 | 84.16 97 | 94.77 122 | 96.25 109 | 89.05 56 | 80.04 292 | 93.29 178 | 79.02 125 | 97.05 226 | 81.71 196 | 80.05 305 | 94.59 196 |
|
CSCG | | | 93.23 60 | 93.05 58 | 93.76 69 | 98.04 42 | 84.07 98 | 96.22 42 | 97.37 18 | 84.15 170 | 90.05 112 | 95.66 100 | 87.77 23 | 99.15 53 | 89.91 88 | 98.27 58 | 98.07 63 |
|
OMC-MVS | | | 91.23 89 | 90.62 94 | 93.08 82 | 96.27 96 | 84.07 98 | 93.52 196 | 95.93 132 | 86.95 112 | 89.51 116 | 96.13 86 | 78.50 133 | 98.35 124 | 85.84 135 | 92.90 156 | 96.83 119 |
|
ETV-MVS | | | 92.74 66 | 92.66 65 | 92.97 88 | 95.20 135 | 84.04 100 | 95.07 101 | 96.51 94 | 90.73 21 | 92.96 58 | 91.19 249 | 84.06 72 | 98.34 125 | 91.72 64 | 96.54 97 | 96.54 128 |
|
ET-MVSNet_ETH3D | | | 87.51 187 | 85.91 212 | 92.32 119 | 93.70 198 | 83.93 101 | 92.33 238 | 90.94 304 | 84.16 169 | 72.09 331 | 92.52 203 | 69.90 232 | 95.85 286 | 89.20 95 | 88.36 214 | 97.17 105 |
|
OPM-MVS | | | 90.12 110 | 89.56 111 | 91.82 140 | 93.14 211 | 83.90 102 | 94.16 162 | 95.74 149 | 88.96 60 | 87.86 139 | 95.43 105 | 72.48 205 | 97.91 158 | 88.10 109 | 90.18 183 | 93.65 248 |
|
MVSFormer | | | 91.68 83 | 91.30 81 | 92.80 94 | 93.86 190 | 83.88 103 | 95.96 57 | 95.90 136 | 84.66 164 | 91.76 89 | 94.91 119 | 77.92 138 | 97.30 202 | 89.64 91 | 97.11 84 | 97.24 101 |
|
lupinMVS | | | 90.92 94 | 90.21 98 | 93.03 85 | 93.86 190 | 83.88 103 | 92.81 224 | 93.86 240 | 79.84 253 | 91.76 89 | 94.29 142 | 77.92 138 | 98.04 148 | 90.48 86 | 97.11 84 | 97.17 105 |
|
Vis-MVSNet | | | 91.75 80 | 91.23 83 | 93.29 74 | 95.32 130 | 83.78 105 | 96.14 46 | 95.98 128 | 89.89 35 | 90.45 107 | 96.58 65 | 75.09 166 | 98.31 129 | 84.75 147 | 96.90 88 | 97.78 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 89.92 117 | 89.29 118 | 91.81 142 | 93.39 205 | 83.72 106 | 94.43 144 | 97.12 40 | 89.80 37 | 86.46 166 | 93.32 175 | 83.16 78 | 97.23 212 | 84.92 143 | 81.02 291 | 94.49 205 |
|
DU-MVS | | | 89.34 135 | 88.50 135 | 91.85 139 | 93.04 216 | 83.72 106 | 94.47 141 | 96.59 90 | 89.50 43 | 86.46 166 | 93.29 178 | 77.25 142 | 97.23 212 | 84.92 143 | 81.02 291 | 94.59 196 |
|
FMVSNet2 | | | 87.19 202 | 85.82 214 | 91.30 158 | 94.01 182 | 83.67 108 | 94.79 120 | 94.94 199 | 83.57 181 | 83.88 235 | 92.05 224 | 66.59 270 | 96.51 255 | 77.56 247 | 85.01 245 | 93.73 245 |
|
FMVSNet3 | | | 87.40 192 | 86.11 203 | 91.30 158 | 93.79 195 | 83.64 109 | 94.20 161 | 94.81 212 | 83.89 175 | 84.37 220 | 91.87 229 | 68.45 255 | 96.56 252 | 78.23 240 | 85.36 242 | 93.70 247 |
|
MVS | | | 87.44 190 | 86.10 204 | 91.44 154 | 92.61 228 | 83.62 110 | 92.63 228 | 95.66 155 | 67.26 336 | 81.47 270 | 92.15 215 | 77.95 137 | 98.22 133 | 79.71 224 | 95.48 110 | 92.47 288 |
|
CDS-MVSNet | | | 89.45 128 | 88.51 134 | 92.29 122 | 93.62 199 | 83.61 111 | 93.01 219 | 94.68 217 | 81.95 219 | 87.82 142 | 93.24 180 | 78.69 129 | 96.99 229 | 80.34 217 | 93.23 150 | 96.28 133 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
jason | | | 90.80 95 | 90.10 101 | 92.90 91 | 93.04 216 | 83.53 112 | 93.08 216 | 94.15 232 | 80.22 247 | 91.41 97 | 94.91 119 | 76.87 144 | 97.93 157 | 90.28 87 | 96.90 88 | 97.24 101 |
jason: jason. |
EI-MVSNet-Vis-set | | | 93.01 63 | 92.92 62 | 93.29 74 | 95.01 139 | 83.51 113 | 94.48 138 | 95.77 146 | 90.87 15 | 92.52 72 | 96.67 60 | 84.50 66 | 99.00 75 | 91.99 53 | 94.44 131 | 97.36 96 |
|
test1172 | | | 93.97 39 | 94.07 34 | 93.66 71 | 98.11 37 | 83.45 114 | 96.26 40 | 96.84 63 | 88.33 76 | 94.19 30 | 97.43 18 | 84.24 69 | 99.01 70 | 93.26 27 | 97.98 66 | 98.52 20 |
|
MSLP-MVS++ | | | 93.72 46 | 94.08 33 | 92.65 103 | 97.31 67 | 83.43 115 | 95.79 63 | 97.33 22 | 90.03 33 | 93.58 47 | 96.96 46 | 84.87 62 | 97.76 163 | 92.19 48 | 98.66 40 | 96.76 120 |
|
VNet | | | 92.24 74 | 91.91 75 | 93.24 76 | 96.59 86 | 83.43 115 | 94.84 117 | 96.44 96 | 89.19 53 | 94.08 34 | 95.90 92 | 77.85 141 | 98.17 135 | 88.90 98 | 93.38 146 | 98.13 58 |
|
Effi-MVS+ | | | 91.59 84 | 91.11 85 | 93.01 86 | 94.35 174 | 83.39 117 | 94.60 131 | 95.10 193 | 87.10 108 | 90.57 106 | 93.10 186 | 81.43 101 | 98.07 146 | 89.29 94 | 94.48 129 | 97.59 89 |
|
UGNet | | | 89.95 115 | 88.95 126 | 92.95 89 | 94.51 164 | 83.31 118 | 95.70 67 | 95.23 186 | 89.37 48 | 87.58 146 | 93.94 156 | 64.00 286 | 98.78 98 | 83.92 157 | 96.31 102 | 96.74 122 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DP-MVS | | | 87.25 197 | 85.36 226 | 92.90 91 | 97.65 56 | 83.24 119 | 94.81 119 | 92.00 275 | 74.99 300 | 81.92 268 | 95.00 117 | 72.66 202 | 99.05 60 | 66.92 315 | 92.33 164 | 96.40 129 |
|
EI-MVSNet-UG-set | | | 92.74 66 | 92.62 66 | 93.12 80 | 94.86 150 | 83.20 120 | 94.40 146 | 95.74 149 | 90.71 22 | 92.05 81 | 96.60 64 | 84.00 73 | 98.99 76 | 91.55 66 | 93.63 139 | 97.17 105 |
|
PVSNet_Blended_VisFu | | | 91.38 86 | 90.91 90 | 92.80 94 | 96.39 93 | 83.17 121 | 94.87 115 | 96.66 85 | 83.29 190 | 89.27 120 | 94.46 137 | 80.29 109 | 99.17 50 | 87.57 114 | 95.37 114 | 96.05 146 |
|
GBi-Net | | | 87.26 195 | 85.98 208 | 91.08 167 | 94.01 182 | 83.10 122 | 95.14 98 | 94.94 199 | 83.57 181 | 84.37 220 | 91.64 233 | 66.59 270 | 96.34 267 | 78.23 240 | 85.36 242 | 93.79 238 |
|
test1 | | | 87.26 195 | 85.98 208 | 91.08 167 | 94.01 182 | 83.10 122 | 95.14 98 | 94.94 199 | 83.57 181 | 84.37 220 | 91.64 233 | 66.59 270 | 96.34 267 | 78.23 240 | 85.36 242 | 93.79 238 |
|
FMVSNet1 | | | 85.85 234 | 84.11 247 | 91.08 167 | 92.81 223 | 83.10 122 | 95.14 98 | 94.94 199 | 81.64 229 | 82.68 257 | 91.64 233 | 59.01 317 | 96.34 267 | 75.37 267 | 83.78 253 | 93.79 238 |
|
AdaColmap | | | 89.89 118 | 89.07 123 | 92.37 117 | 97.41 63 | 83.03 125 | 94.42 145 | 95.92 133 | 82.81 202 | 86.34 171 | 94.65 131 | 73.89 185 | 99.02 68 | 80.69 210 | 95.51 109 | 95.05 175 |
|
VDD-MVS | | | 90.74 96 | 89.92 108 | 93.20 77 | 96.27 96 | 83.02 126 | 95.73 65 | 93.86 240 | 88.42 75 | 92.53 71 | 96.84 50 | 62.09 295 | 98.64 103 | 90.95 79 | 92.62 160 | 97.93 74 |
|
CANet_DTU | | | 90.26 109 | 89.41 115 | 92.81 93 | 93.46 204 | 83.01 127 | 93.48 197 | 94.47 220 | 89.43 46 | 87.76 144 | 94.23 146 | 70.54 227 | 99.03 64 | 84.97 142 | 96.39 101 | 96.38 130 |
|
TranMVSNet+NR-MVSNet | | | 88.84 146 | 87.95 150 | 91.49 150 | 92.68 226 | 83.01 127 | 94.92 111 | 96.31 104 | 89.88 36 | 85.53 186 | 93.85 163 | 76.63 150 | 96.96 230 | 81.91 189 | 79.87 308 | 94.50 203 |
|
pmmvs4 | | | 85.43 240 | 83.86 251 | 90.16 202 | 90.02 309 | 82.97 129 | 90.27 277 | 92.67 261 | 75.93 292 | 80.73 279 | 91.74 232 | 71.05 216 | 95.73 292 | 78.85 234 | 83.46 260 | 91.78 301 |
|
LS3D | | | 87.89 169 | 86.32 196 | 92.59 105 | 96.07 105 | 82.92 130 | 95.23 90 | 94.92 204 | 75.66 293 | 82.89 255 | 95.98 89 | 72.48 205 | 99.21 47 | 68.43 307 | 95.23 119 | 95.64 160 |
|
VPA-MVSNet | | | 89.62 121 | 88.96 125 | 91.60 148 | 93.86 190 | 82.89 131 | 95.46 77 | 97.33 22 | 87.91 88 | 88.43 131 | 93.31 176 | 74.17 180 | 97.40 196 | 87.32 119 | 82.86 268 | 94.52 201 |
|
test_part1 | | | 86.16 228 | 84.40 244 | 91.46 153 | 92.63 227 | 82.80 132 | 96.42 32 | 96.05 125 | 73.47 313 | 82.06 264 | 91.43 242 | 63.89 288 | 97.43 187 | 84.51 150 | 79.11 314 | 94.14 216 |
|
HY-MVS | | 83.01 12 | 89.03 141 | 87.94 151 | 92.29 122 | 94.86 150 | 82.77 133 | 92.08 248 | 94.49 219 | 81.52 233 | 86.93 157 | 92.79 198 | 78.32 136 | 98.23 131 | 79.93 222 | 90.55 178 | 95.88 151 |
|
plane_prior6 | | | | | | 94.52 163 | 82.75 134 | | | | | | 74.23 177 | | | | |
|
plane_prior3 | | | | | | | 82.75 134 | | | 90.26 30 | 86.91 159 | | | | | | |
|
plane_prior7 | | | | | | 94.70 157 | 82.74 136 | | | | | | | | | | |
|
HQP_MVS | | | 90.60 104 | 90.19 99 | 91.82 140 | 94.70 157 | 82.73 137 | 95.85 61 | 96.22 112 | 90.81 17 | 86.91 159 | 94.86 122 | 74.23 177 | 98.12 136 | 88.15 106 | 89.99 184 | 94.63 192 |
|
plane_prior | | | | | | | 82.73 137 | 95.21 92 | | 89.66 41 | | | | | | 89.88 189 | |
|
PatchMatch-RL | | | 86.77 215 | 85.54 220 | 90.47 191 | 95.88 111 | 82.71 139 | 90.54 274 | 92.31 266 | 79.82 254 | 84.32 225 | 91.57 240 | 68.77 251 | 96.39 263 | 73.16 283 | 93.48 144 | 92.32 294 |
|
PLC | | 84.53 7 | 89.06 140 | 88.03 148 | 92.15 125 | 97.27 71 | 82.69 140 | 94.29 156 | 95.44 175 | 79.71 255 | 84.01 233 | 94.18 147 | 76.68 149 | 98.75 99 | 77.28 249 | 93.41 145 | 95.02 176 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ab-mvs | | | 89.41 131 | 88.35 139 | 92.60 104 | 95.15 137 | 82.65 141 | 92.20 243 | 95.60 160 | 83.97 174 | 88.55 128 | 93.70 170 | 74.16 181 | 98.21 134 | 82.46 179 | 89.37 196 | 96.94 115 |
|
TAMVS | | | 89.21 136 | 88.29 143 | 91.96 132 | 93.71 196 | 82.62 142 | 93.30 205 | 94.19 230 | 82.22 211 | 87.78 143 | 93.94 156 | 78.83 126 | 96.95 231 | 77.70 245 | 92.98 155 | 96.32 131 |
|
PS-MVSNAJ | | | 91.18 91 | 90.92 89 | 91.96 132 | 95.26 133 | 82.60 143 | 92.09 247 | 95.70 151 | 86.27 126 | 91.84 86 | 92.46 204 | 79.70 117 | 98.99 76 | 89.08 96 | 95.86 105 | 94.29 211 |
|
xiu_mvs_v2_base | | | 91.13 92 | 90.89 91 | 91.86 137 | 94.97 142 | 82.42 144 | 92.24 241 | 95.64 158 | 86.11 132 | 91.74 91 | 93.14 184 | 79.67 120 | 98.89 86 | 89.06 97 | 95.46 112 | 94.28 212 |
|
NP-MVS | | | | | | 94.37 171 | 82.42 144 | | | | | 93.98 154 | | | | | |
|
test_yl | | | 90.69 98 | 90.02 106 | 92.71 99 | 95.72 116 | 82.41 146 | 94.11 166 | 95.12 191 | 85.63 140 | 91.49 94 | 94.70 127 | 74.75 170 | 98.42 120 | 86.13 133 | 92.53 161 | 97.31 98 |
|
DCV-MVSNet | | | 90.69 98 | 90.02 106 | 92.71 99 | 95.72 116 | 82.41 146 | 94.11 166 | 95.12 191 | 85.63 140 | 91.49 94 | 94.70 127 | 74.75 170 | 98.42 120 | 86.13 133 | 92.53 161 | 97.31 98 |
|
CS-MVS | | | 92.60 68 | 92.56 67 | 92.73 98 | 95.55 122 | 82.35 148 | 96.14 46 | 96.85 62 | 88.71 65 | 91.44 96 | 91.51 241 | 84.13 71 | 98.48 112 | 91.27 72 | 97.47 80 | 97.34 97 |
|
LFMVS | | | 90.08 111 | 89.13 122 | 92.95 89 | 96.71 82 | 82.32 149 | 96.08 50 | 89.91 322 | 86.79 116 | 92.15 80 | 96.81 53 | 62.60 292 | 98.34 125 | 87.18 120 | 93.90 135 | 98.19 53 |
|
MVP-Stereo | | | 85.97 231 | 84.86 236 | 89.32 233 | 90.92 284 | 82.19 150 | 92.11 246 | 94.19 230 | 78.76 266 | 78.77 301 | 91.63 236 | 68.38 256 | 96.56 252 | 75.01 272 | 93.95 134 | 89.20 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
VDDNet | | | 89.56 124 | 88.49 137 | 92.76 96 | 95.07 138 | 82.09 151 | 96.30 36 | 93.19 251 | 81.05 242 | 91.88 84 | 96.86 49 | 61.16 305 | 98.33 127 | 88.43 104 | 92.49 163 | 97.84 80 |
|
CLD-MVS | | | 89.47 127 | 88.90 128 | 91.18 162 | 94.22 175 | 82.07 152 | 92.13 245 | 96.09 120 | 87.90 89 | 85.37 201 | 92.45 205 | 74.38 175 | 97.56 176 | 87.15 121 | 90.43 179 | 93.93 228 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
114514_t | | | 89.51 125 | 88.50 135 | 92.54 108 | 98.11 37 | 81.99 153 | 95.16 97 | 96.36 103 | 70.19 332 | 85.81 178 | 95.25 109 | 76.70 148 | 98.63 104 | 82.07 185 | 96.86 90 | 97.00 113 |
|
casdiffmvs | | | 92.51 70 | 92.43 70 | 92.74 97 | 94.41 170 | 81.98 154 | 94.54 136 | 96.23 111 | 89.57 42 | 91.96 83 | 96.17 84 | 82.58 84 | 98.01 150 | 90.95 79 | 95.45 113 | 98.23 51 |
|
CPTT-MVS | | | 91.99 75 | 91.80 76 | 92.55 107 | 98.24 31 | 81.98 154 | 96.76 25 | 96.49 95 | 81.89 223 | 90.24 109 | 96.44 71 | 78.59 131 | 98.61 106 | 89.68 90 | 97.85 71 | 97.06 109 |
|
Anonymous20240529 | | | 88.09 165 | 86.59 186 | 92.58 106 | 96.53 89 | 81.92 156 | 95.99 54 | 95.84 141 | 74.11 308 | 89.06 124 | 95.21 111 | 61.44 300 | 98.81 96 | 83.67 162 | 87.47 225 | 97.01 112 |
|
旧先验1 | | | | | | 96.79 80 | 81.81 157 | | 95.67 153 | | | 96.81 53 | 86.69 38 | | | 97.66 76 | 96.97 114 |
|
baseline | | | 92.39 73 | 92.29 72 | 92.69 102 | 94.46 167 | 81.77 158 | 94.14 163 | 96.27 106 | 89.22 51 | 91.88 84 | 96.00 88 | 82.35 87 | 97.99 152 | 91.05 75 | 95.27 118 | 98.30 41 |
|
test222 | | | | | | 96.55 88 | 81.70 159 | 92.22 242 | 95.01 196 | 68.36 335 | 90.20 110 | 96.14 85 | 80.26 110 | | | 97.80 72 | 96.05 146 |
|
HQP5-MVS | | | | | | | 81.56 160 | | | | | | | | | | |
|
HQP-MVS | | | 89.80 119 | 89.28 119 | 91.34 157 | 94.17 176 | 81.56 160 | 94.39 148 | 96.04 126 | 88.81 61 | 85.43 195 | 93.97 155 | 73.83 187 | 97.96 154 | 87.11 123 | 89.77 191 | 94.50 203 |
|
Anonymous20231211 | | | 86.59 219 | 85.13 229 | 90.98 176 | 96.52 90 | 81.50 162 | 96.14 46 | 96.16 116 | 73.78 310 | 83.65 242 | 92.15 215 | 63.26 290 | 97.37 200 | 82.82 173 | 81.74 281 | 94.06 223 |
|
LTVRE_ROB | | 82.13 13 | 86.26 227 | 84.90 235 | 90.34 198 | 94.44 169 | 81.50 162 | 92.31 240 | 94.89 205 | 83.03 195 | 79.63 296 | 92.67 199 | 69.69 236 | 97.79 161 | 71.20 289 | 86.26 236 | 91.72 302 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPG-MVS_test | | | 89.45 128 | 88.90 128 | 91.12 163 | 94.47 165 | 81.49 164 | 95.30 84 | 96.14 117 | 86.73 118 | 85.45 192 | 95.16 112 | 69.89 233 | 98.10 138 | 87.70 112 | 89.23 200 | 93.77 242 |
|
LGP-MVS_train | | | | | 91.12 163 | 94.47 165 | 81.49 164 | | 96.14 117 | 86.73 118 | 85.45 192 | 95.16 112 | 69.89 233 | 98.10 138 | 87.70 112 | 89.23 200 | 93.77 242 |
|
XVG-OURS | | | 89.40 133 | 88.70 131 | 91.52 149 | 94.06 179 | 81.46 166 | 91.27 264 | 96.07 122 | 86.14 130 | 88.89 126 | 95.77 97 | 68.73 252 | 97.26 208 | 87.39 117 | 89.96 186 | 95.83 154 |
|
PAPM_NR | | | 91.22 90 | 90.78 93 | 92.52 109 | 97.60 57 | 81.46 166 | 94.37 153 | 96.24 110 | 86.39 125 | 87.41 148 | 94.80 126 | 82.06 95 | 98.48 112 | 82.80 174 | 95.37 114 | 97.61 87 |
|
CHOSEN 1792x2688 | | | 88.84 146 | 87.69 154 | 92.30 121 | 96.14 99 | 81.42 168 | 90.01 284 | 95.86 140 | 74.52 305 | 87.41 148 | 93.94 156 | 75.46 163 | 98.36 122 | 80.36 216 | 95.53 108 | 97.12 108 |
|
IS-MVSNet | | | 91.43 85 | 91.09 87 | 92.46 111 | 95.87 113 | 81.38 169 | 96.95 14 | 93.69 245 | 89.72 40 | 89.50 117 | 95.98 89 | 78.57 132 | 97.77 162 | 83.02 168 | 96.50 99 | 98.22 52 |
|
ACMP | | 84.23 8 | 89.01 143 | 88.35 139 | 90.99 174 | 94.73 154 | 81.27 170 | 95.07 101 | 95.89 138 | 86.48 122 | 83.67 241 | 94.30 141 | 69.33 241 | 97.99 152 | 87.10 125 | 88.55 207 | 93.72 246 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet_BlendedMVS | | | 89.98 113 | 89.70 109 | 90.82 178 | 96.12 100 | 81.25 171 | 93.92 181 | 96.83 65 | 83.49 185 | 89.10 122 | 92.26 212 | 81.04 104 | 98.85 93 | 86.72 129 | 87.86 223 | 92.35 293 |
|
PVSNet_Blended | | | 90.73 97 | 90.32 97 | 91.98 130 | 96.12 100 | 81.25 171 | 92.55 232 | 96.83 65 | 82.04 216 | 89.10 122 | 92.56 202 | 81.04 104 | 98.85 93 | 86.72 129 | 95.91 104 | 95.84 153 |
|
ACMM | | 84.12 9 | 89.14 137 | 88.48 138 | 91.12 163 | 94.65 160 | 81.22 173 | 95.31 81 | 96.12 119 | 85.31 150 | 85.92 177 | 94.34 138 | 70.19 231 | 98.06 147 | 85.65 136 | 88.86 205 | 94.08 222 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-OURS-SEG-HR | | | 89.95 115 | 89.45 113 | 91.47 152 | 94.00 185 | 81.21 174 | 91.87 250 | 96.06 124 | 85.78 135 | 88.55 128 | 95.73 98 | 74.67 173 | 97.27 206 | 88.71 101 | 89.64 193 | 95.91 149 |
|
WTY-MVS | | | 89.60 122 | 88.92 127 | 91.67 146 | 95.47 125 | 81.15 175 | 92.38 236 | 94.78 214 | 83.11 193 | 89.06 124 | 94.32 140 | 78.67 130 | 96.61 247 | 81.57 197 | 90.89 177 | 97.24 101 |
|
AUN-MVS | | | 87.78 173 | 86.54 188 | 91.48 151 | 94.82 152 | 81.05 176 | 93.91 184 | 93.93 238 | 83.00 196 | 86.93 157 | 93.53 171 | 69.50 239 | 97.67 169 | 86.14 132 | 77.12 323 | 95.73 158 |
|
原ACMM1 | | | | | 92.01 127 | 97.34 66 | 81.05 176 | | 96.81 68 | 78.89 262 | 90.45 107 | 95.92 91 | 82.65 83 | 98.84 95 | 80.68 211 | 98.26 59 | 96.14 137 |
|
FIs | | | 90.51 105 | 90.35 96 | 90.99 174 | 93.99 186 | 80.98 178 | 95.73 65 | 97.54 3 | 89.15 54 | 86.72 163 | 94.68 129 | 81.83 99 | 97.24 210 | 85.18 140 | 88.31 215 | 94.76 190 |
|
1112_ss | | | 88.42 155 | 87.33 163 | 91.72 144 | 94.92 146 | 80.98 178 | 92.97 221 | 94.54 218 | 78.16 275 | 83.82 237 | 93.88 161 | 78.78 128 | 97.91 158 | 79.45 227 | 89.41 195 | 96.26 134 |
|
PAPR | | | 90.02 112 | 89.27 120 | 92.29 122 | 95.78 114 | 80.95 180 | 92.68 226 | 96.22 112 | 81.91 221 | 86.66 164 | 93.75 169 | 82.23 90 | 98.44 119 | 79.40 231 | 94.79 121 | 97.48 93 |
|
cascas | | | 86.43 225 | 84.98 232 | 90.80 179 | 92.10 239 | 80.92 181 | 90.24 278 | 95.91 135 | 73.10 317 | 83.57 245 | 88.39 302 | 65.15 281 | 97.46 183 | 84.90 145 | 91.43 169 | 94.03 225 |
|
F-COLMAP | | | 87.95 168 | 86.80 176 | 91.40 155 | 96.35 95 | 80.88 182 | 94.73 124 | 95.45 173 | 79.65 256 | 82.04 266 | 94.61 132 | 71.13 215 | 98.50 111 | 76.24 260 | 91.05 175 | 94.80 189 |
|
PS-MVSNAJss | | | 89.97 114 | 89.62 110 | 91.02 171 | 91.90 245 | 80.85 183 | 95.26 89 | 95.98 128 | 86.26 127 | 86.21 173 | 94.29 142 | 79.70 117 | 97.65 170 | 88.87 99 | 88.10 217 | 94.57 198 |
|
Fast-Effi-MVS+ | | | 89.41 131 | 88.64 132 | 91.71 145 | 94.74 153 | 80.81 184 | 93.54 195 | 95.10 193 | 83.11 193 | 86.82 162 | 90.67 266 | 79.74 116 | 97.75 166 | 80.51 215 | 93.55 140 | 96.57 126 |
|
sss | | | 88.93 144 | 88.26 145 | 90.94 177 | 94.05 180 | 80.78 185 | 91.71 255 | 95.38 179 | 81.55 232 | 88.63 127 | 93.91 160 | 75.04 167 | 95.47 302 | 82.47 178 | 91.61 168 | 96.57 126 |
|
Anonymous202405211 | | | 87.68 175 | 86.13 201 | 92.31 120 | 96.66 83 | 80.74 186 | 94.87 115 | 91.49 290 | 80.47 246 | 89.46 118 | 95.44 103 | 54.72 329 | 98.23 131 | 82.19 183 | 89.89 188 | 97.97 70 |
|
TAPA-MVS | | 84.62 6 | 88.16 163 | 87.01 171 | 91.62 147 | 96.64 84 | 80.65 187 | 94.39 148 | 96.21 115 | 76.38 286 | 86.19 174 | 95.44 103 | 79.75 115 | 98.08 145 | 62.75 330 | 95.29 116 | 96.13 138 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
HyFIR lowres test | | | 88.09 165 | 86.81 175 | 91.93 134 | 96.00 107 | 80.63 188 | 90.01 284 | 95.79 145 | 73.42 314 | 87.68 145 | 92.10 220 | 73.86 186 | 97.96 154 | 80.75 209 | 91.70 167 | 97.19 104 |
|
ACMH | | 80.38 17 | 85.36 241 | 83.68 253 | 90.39 193 | 94.45 168 | 80.63 188 | 94.73 124 | 94.85 208 | 82.09 213 | 77.24 309 | 92.65 200 | 60.01 312 | 97.58 174 | 72.25 286 | 84.87 246 | 92.96 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XXY-MVS | | | 87.65 177 | 86.85 174 | 90.03 209 | 92.14 236 | 80.60 190 | 93.76 187 | 95.23 186 | 82.94 198 | 84.60 212 | 94.02 151 | 74.27 176 | 95.49 301 | 81.04 202 | 83.68 256 | 94.01 226 |
|
anonymousdsp | | | 87.84 170 | 87.09 168 | 90.12 205 | 89.13 316 | 80.54 191 | 94.67 128 | 95.55 163 | 82.05 214 | 83.82 237 | 92.12 217 | 71.47 213 | 97.15 216 | 87.15 121 | 87.80 224 | 92.67 282 |
|
testing_2 | | | 83.40 269 | 81.02 276 | 90.56 184 | 85.06 338 | 80.51 192 | 91.37 262 | 95.57 161 | 82.92 199 | 67.06 339 | 85.54 326 | 49.47 339 | 97.24 210 | 86.74 126 | 85.44 241 | 93.93 228 |
|
EPP-MVSNet | | | 91.70 82 | 91.56 79 | 92.13 126 | 95.88 111 | 80.50 193 | 97.33 3 | 95.25 185 | 86.15 129 | 89.76 114 | 95.60 101 | 83.42 77 | 98.32 128 | 87.37 118 | 93.25 149 | 97.56 91 |
|
MVSTER | | | 88.84 146 | 88.29 143 | 90.51 188 | 92.95 221 | 80.44 194 | 93.73 188 | 95.01 196 | 84.66 164 | 87.15 152 | 93.12 185 | 72.79 201 | 97.21 214 | 87.86 110 | 87.36 228 | 93.87 233 |
|
diffmvs | | | 91.37 87 | 91.23 83 | 91.77 143 | 93.09 213 | 80.27 195 | 92.36 237 | 95.52 166 | 87.03 110 | 91.40 98 | 94.93 118 | 80.08 111 | 97.44 186 | 92.13 51 | 94.56 127 | 97.61 87 |
|
pm-mvs1 | | | 86.61 217 | 85.54 220 | 89.82 217 | 91.44 258 | 80.18 196 | 95.28 88 | 94.85 208 | 83.84 176 | 81.66 269 | 92.62 201 | 72.45 207 | 96.48 257 | 79.67 225 | 78.06 317 | 92.82 280 |
|
WR-MVS | | | 88.38 156 | 87.67 156 | 90.52 187 | 93.30 208 | 80.18 196 | 93.26 208 | 95.96 130 | 88.57 71 | 85.47 191 | 92.81 196 | 76.12 152 | 96.91 234 | 81.24 200 | 82.29 271 | 94.47 208 |
|
jajsoiax | | | 88.24 161 | 87.50 158 | 90.48 190 | 90.89 286 | 80.14 198 | 95.31 81 | 95.65 157 | 84.97 158 | 84.24 229 | 94.02 151 | 65.31 280 | 97.42 189 | 88.56 102 | 88.52 209 | 93.89 230 |
|
V42 | | | 87.68 175 | 86.86 173 | 90.15 203 | 90.58 297 | 80.14 198 | 94.24 159 | 95.28 184 | 83.66 179 | 85.67 181 | 91.33 244 | 74.73 172 | 97.41 194 | 84.43 152 | 81.83 278 | 92.89 277 |
|
MVS_Test | | | 91.31 88 | 91.11 85 | 91.93 134 | 94.37 171 | 80.14 198 | 93.46 199 | 95.80 144 | 86.46 123 | 91.35 99 | 93.77 167 | 82.21 91 | 98.09 144 | 87.57 114 | 94.95 120 | 97.55 92 |
|
thisisatest0530 | | | 88.67 150 | 87.61 157 | 91.86 137 | 94.87 149 | 80.07 201 | 94.63 130 | 89.90 323 | 84.00 173 | 88.46 130 | 93.78 166 | 66.88 265 | 98.46 115 | 83.30 164 | 92.65 159 | 97.06 109 |
|
baseline1 | | | 88.10 164 | 87.28 165 | 90.57 182 | 94.96 143 | 80.07 201 | 94.27 157 | 91.29 295 | 86.74 117 | 87.41 148 | 94.00 153 | 76.77 147 | 96.20 271 | 80.77 208 | 79.31 313 | 95.44 165 |
|
tfpnnormal | | | 84.72 255 | 83.23 259 | 89.20 236 | 92.79 224 | 80.05 203 | 94.48 138 | 95.81 143 | 82.38 208 | 81.08 276 | 91.21 248 | 69.01 248 | 96.95 231 | 61.69 332 | 80.59 298 | 90.58 322 |
|
MSDG | | | 84.86 253 | 83.09 260 | 90.14 204 | 93.80 193 | 80.05 203 | 89.18 297 | 93.09 252 | 78.89 262 | 78.19 302 | 91.91 227 | 65.86 279 | 97.27 206 | 68.47 306 | 88.45 211 | 93.11 269 |
|
MG-MVS | | | 91.77 79 | 91.70 78 | 92.00 129 | 97.08 75 | 80.03 205 | 93.60 194 | 95.18 189 | 87.85 91 | 90.89 104 | 96.47 70 | 82.06 95 | 98.36 122 | 85.07 141 | 97.04 87 | 97.62 86 |
|
EIA-MVS | | | 91.95 76 | 91.94 74 | 91.98 130 | 95.16 136 | 80.01 206 | 95.36 78 | 96.73 77 | 88.44 73 | 89.34 119 | 92.16 214 | 83.82 76 | 98.45 118 | 89.35 93 | 97.06 86 | 97.48 93 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 110 | 96.52 90 | 80.00 207 | 94.00 178 | 97.08 43 | 90.05 32 | 95.65 17 | 97.29 26 | 89.66 10 | 98.97 79 | 93.95 16 | 98.71 30 | 98.50 22 |
|
pmmvs-eth3d | | | 80.97 292 | 78.72 299 | 87.74 271 | 84.99 339 | 79.97 208 | 90.11 283 | 91.65 285 | 75.36 295 | 73.51 326 | 86.03 323 | 59.45 315 | 93.96 319 | 75.17 269 | 72.21 331 | 89.29 327 |
|
mvs_tets | | | 88.06 167 | 87.28 165 | 90.38 195 | 90.94 282 | 79.88 209 | 95.22 91 | 95.66 155 | 85.10 155 | 84.21 230 | 93.94 156 | 63.53 289 | 97.40 196 | 88.50 103 | 88.40 213 | 93.87 233 |
|
IB-MVS | | 80.51 15 | 85.24 246 | 83.26 258 | 91.19 161 | 92.13 237 | 79.86 210 | 91.75 253 | 91.29 295 | 83.28 191 | 80.66 281 | 88.49 301 | 61.28 301 | 98.46 115 | 80.99 205 | 79.46 311 | 95.25 171 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
FC-MVSNet-test | | | 90.27 108 | 90.18 100 | 90.53 185 | 93.71 196 | 79.85 211 | 95.77 64 | 97.59 2 | 89.31 49 | 86.27 172 | 94.67 130 | 81.93 98 | 97.01 228 | 84.26 153 | 88.09 219 | 94.71 191 |
|
COLMAP_ROB | | 80.39 16 | 83.96 261 | 82.04 268 | 89.74 221 | 95.28 131 | 79.75 212 | 94.25 158 | 92.28 267 | 75.17 298 | 78.02 305 | 93.77 167 | 58.60 318 | 97.84 160 | 65.06 323 | 85.92 237 | 91.63 304 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
1314 | | | 87.51 187 | 86.57 187 | 90.34 198 | 92.42 231 | 79.74 213 | 92.63 228 | 95.35 183 | 78.35 271 | 80.14 289 | 91.62 237 | 74.05 182 | 97.15 216 | 81.05 201 | 93.53 141 | 94.12 218 |
|
thisisatest0515 | | | 87.33 193 | 85.99 207 | 91.37 156 | 93.49 202 | 79.55 214 | 90.63 273 | 89.56 329 | 80.17 248 | 87.56 147 | 90.86 260 | 67.07 262 | 98.28 130 | 81.50 198 | 93.02 154 | 96.29 132 |
|
v10 | | | 87.25 197 | 86.38 191 | 89.85 215 | 91.19 270 | 79.50 215 | 94.48 138 | 95.45 173 | 83.79 177 | 83.62 243 | 91.19 249 | 75.13 165 | 97.42 189 | 81.94 188 | 80.60 297 | 92.63 284 |
|
VPNet | | | 88.20 162 | 87.47 160 | 90.39 193 | 93.56 201 | 79.46 216 | 94.04 174 | 95.54 165 | 88.67 67 | 86.96 156 | 94.58 135 | 69.33 241 | 97.15 216 | 84.05 156 | 80.53 300 | 94.56 199 |
|
BH-RMVSNet | | | 88.37 157 | 87.48 159 | 91.02 171 | 95.28 131 | 79.45 217 | 92.89 223 | 93.07 253 | 85.45 146 | 86.91 159 | 94.84 125 | 70.35 228 | 97.76 163 | 73.97 278 | 94.59 126 | 95.85 152 |
|
v8 | | | 87.50 189 | 86.71 179 | 89.89 214 | 91.37 264 | 79.40 218 | 94.50 137 | 95.38 179 | 84.81 161 | 83.60 244 | 91.33 244 | 76.05 153 | 97.42 189 | 82.84 172 | 80.51 302 | 92.84 279 |
|
ACMH+ | | 81.04 14 | 85.05 249 | 83.46 257 | 89.82 217 | 94.66 159 | 79.37 219 | 94.44 143 | 94.12 235 | 82.19 212 | 78.04 304 | 92.82 195 | 58.23 319 | 97.54 177 | 73.77 280 | 82.90 267 | 92.54 285 |
|
EG-PatchMatch MVS | | | 82.37 276 | 80.34 281 | 88.46 255 | 90.27 303 | 79.35 220 | 92.80 225 | 94.33 225 | 77.14 282 | 73.26 328 | 90.18 274 | 47.47 344 | 96.72 239 | 70.25 294 | 87.32 230 | 89.30 326 |
|
v1144 | | | 87.61 183 | 86.79 177 | 90.06 208 | 91.01 277 | 79.34 221 | 93.95 180 | 95.42 178 | 83.36 189 | 85.66 182 | 91.31 247 | 74.98 168 | 97.42 189 | 83.37 163 | 82.06 274 | 93.42 257 |
|
CR-MVSNet | | | 85.35 242 | 83.76 252 | 90.12 205 | 90.58 297 | 79.34 221 | 85.24 328 | 91.96 279 | 78.27 272 | 85.55 184 | 87.87 312 | 71.03 217 | 95.61 293 | 73.96 279 | 89.36 197 | 95.40 167 |
|
RPMNet | | | 83.95 262 | 81.53 272 | 91.21 160 | 90.58 297 | 79.34 221 | 85.24 328 | 96.76 73 | 71.44 327 | 85.55 184 | 82.97 334 | 70.87 219 | 98.91 85 | 61.01 334 | 89.36 197 | 95.40 167 |
|
PAPM | | | 86.68 216 | 85.39 224 | 90.53 185 | 93.05 215 | 79.33 224 | 89.79 287 | 94.77 215 | 78.82 264 | 81.95 267 | 93.24 180 | 76.81 145 | 97.30 202 | 66.94 313 | 93.16 151 | 94.95 183 |
|
test_djsdf | | | 89.03 141 | 88.64 132 | 90.21 200 | 90.74 292 | 79.28 225 | 95.96 57 | 95.90 136 | 84.66 164 | 85.33 203 | 92.94 190 | 74.02 183 | 97.30 202 | 89.64 91 | 88.53 208 | 94.05 224 |
|
Test_1112_low_res | | | 87.65 177 | 86.51 189 | 91.08 167 | 94.94 145 | 79.28 225 | 91.77 252 | 94.30 226 | 76.04 291 | 83.51 246 | 92.37 207 | 77.86 140 | 97.73 167 | 78.69 236 | 89.13 202 | 96.22 135 |
|
v7n | | | 86.81 210 | 85.76 218 | 89.95 213 | 90.72 293 | 79.25 227 | 95.07 101 | 95.92 133 | 84.45 167 | 82.29 260 | 90.86 260 | 72.60 204 | 97.53 178 | 79.42 230 | 80.52 301 | 93.08 271 |
|
v2v482 | | | 87.84 170 | 87.06 169 | 90.17 201 | 90.99 278 | 79.23 228 | 94.00 178 | 95.13 190 | 84.87 159 | 85.53 186 | 92.07 223 | 74.45 174 | 97.45 184 | 84.71 148 | 81.75 280 | 93.85 236 |
|
v1192 | | | 87.25 197 | 86.33 195 | 90.00 212 | 90.76 291 | 79.04 229 | 93.80 185 | 95.48 168 | 82.57 206 | 85.48 190 | 91.18 251 | 73.38 196 | 97.42 189 | 82.30 181 | 82.06 274 | 93.53 251 |
|
UniMVSNet_ETH3D | | | 87.53 186 | 86.37 192 | 91.00 173 | 92.44 230 | 78.96 230 | 94.74 123 | 95.61 159 | 84.07 172 | 85.36 202 | 94.52 136 | 59.78 314 | 97.34 201 | 82.93 169 | 87.88 222 | 96.71 123 |
|
thres600view7 | | | 87.65 177 | 86.67 181 | 90.59 181 | 96.08 104 | 78.72 231 | 94.88 114 | 91.58 286 | 87.06 109 | 88.08 135 | 92.30 210 | 68.91 249 | 98.10 138 | 70.05 300 | 91.10 171 | 94.96 180 |
|
GA-MVS | | | 86.61 217 | 85.27 227 | 90.66 180 | 91.33 267 | 78.71 232 | 90.40 276 | 93.81 243 | 85.34 149 | 85.12 205 | 89.57 287 | 61.25 302 | 97.11 220 | 80.99 205 | 89.59 194 | 96.15 136 |
|
tfpn200view9 | | | 87.58 184 | 86.64 182 | 90.41 192 | 95.99 108 | 78.64 233 | 94.58 132 | 91.98 277 | 86.94 113 | 88.09 133 | 91.77 230 | 69.18 246 | 98.10 138 | 70.13 297 | 91.10 171 | 94.48 206 |
|
thres400 | | | 87.62 182 | 86.64 182 | 90.57 182 | 95.99 108 | 78.64 233 | 94.58 132 | 91.98 277 | 86.94 113 | 88.09 133 | 91.77 230 | 69.18 246 | 98.10 138 | 70.13 297 | 91.10 171 | 94.96 180 |
|
thres100view900 | | | 87.63 180 | 86.71 179 | 90.38 195 | 96.12 100 | 78.55 235 | 95.03 105 | 91.58 286 | 87.15 106 | 88.06 136 | 92.29 211 | 68.91 249 | 98.10 138 | 70.13 297 | 91.10 171 | 94.48 206 |
|
thres200 | | | 87.21 201 | 86.24 199 | 90.12 205 | 95.36 127 | 78.53 236 | 93.26 208 | 92.10 271 | 86.42 124 | 88.00 138 | 91.11 255 | 69.24 245 | 98.00 151 | 69.58 301 | 91.04 176 | 93.83 237 |
|
MS-PatchMatch | | | 85.05 249 | 84.16 246 | 87.73 272 | 91.42 262 | 78.51 237 | 91.25 265 | 93.53 246 | 77.50 277 | 80.15 288 | 91.58 238 | 61.99 296 | 95.51 298 | 75.69 264 | 94.35 132 | 89.16 329 |
|
BH-untuned | | | 88.60 153 | 88.13 147 | 90.01 211 | 95.24 134 | 78.50 238 | 93.29 206 | 94.15 232 | 84.75 162 | 84.46 217 | 93.40 172 | 75.76 157 | 97.40 196 | 77.59 246 | 94.52 128 | 94.12 218 |
|
TransMVSNet (Re) | | | 84.43 258 | 83.06 261 | 88.54 253 | 91.72 251 | 78.44 239 | 95.18 95 | 92.82 257 | 82.73 203 | 79.67 295 | 92.12 217 | 73.49 191 | 95.96 281 | 71.10 292 | 68.73 338 | 91.21 313 |
|
TR-MVS | | | 86.78 212 | 85.76 218 | 89.82 217 | 94.37 171 | 78.41 240 | 92.47 233 | 92.83 256 | 81.11 241 | 86.36 170 | 92.40 206 | 68.73 252 | 97.48 181 | 73.75 281 | 89.85 190 | 93.57 250 |
|
CHOSEN 280x420 | | | 85.15 247 | 83.99 249 | 88.65 251 | 92.47 229 | 78.40 241 | 79.68 343 | 92.76 258 | 74.90 302 | 81.41 272 | 89.59 286 | 69.85 235 | 95.51 298 | 79.92 223 | 95.29 116 | 92.03 298 |
|
MIMVSNet | | | 82.59 274 | 80.53 279 | 88.76 246 | 91.51 257 | 78.32 242 | 86.57 321 | 90.13 316 | 79.32 257 | 80.70 280 | 88.69 300 | 52.98 334 | 93.07 329 | 66.03 318 | 88.86 205 | 94.90 184 |
|
EI-MVSNet | | | 89.10 138 | 88.86 130 | 89.80 220 | 91.84 247 | 78.30 243 | 93.70 191 | 95.01 196 | 85.73 137 | 87.15 152 | 95.28 107 | 79.87 114 | 97.21 214 | 83.81 159 | 87.36 228 | 93.88 232 |
|
IterMVS-LS | | | 88.36 158 | 87.91 152 | 89.70 224 | 93.80 193 | 78.29 244 | 93.73 188 | 95.08 195 | 85.73 137 | 84.75 210 | 91.90 228 | 79.88 113 | 96.92 233 | 83.83 158 | 82.51 269 | 93.89 230 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 87.19 202 | 86.35 194 | 89.74 221 | 90.64 295 | 78.24 245 | 93.92 181 | 95.43 176 | 81.93 220 | 85.51 188 | 91.05 257 | 74.21 179 | 97.45 184 | 82.86 171 | 81.56 282 | 93.53 251 |
|
test_0402 | | | 81.30 289 | 79.17 295 | 87.67 273 | 93.19 210 | 78.17 246 | 92.98 220 | 91.71 282 | 75.25 297 | 76.02 316 | 90.31 272 | 59.23 316 | 96.37 264 | 50.22 344 | 83.63 257 | 88.47 335 |
|
WR-MVS_H | | | 87.80 172 | 87.37 162 | 89.10 239 | 93.23 209 | 78.12 247 | 95.61 73 | 97.30 26 | 87.90 89 | 83.72 239 | 92.01 225 | 79.65 121 | 96.01 279 | 76.36 257 | 80.54 299 | 93.16 267 |
|
v1921920 | | | 86.97 207 | 86.06 206 | 89.69 225 | 90.53 300 | 78.11 248 | 93.80 185 | 95.43 176 | 81.90 222 | 85.33 203 | 91.05 257 | 72.66 202 | 97.41 194 | 82.05 186 | 81.80 279 | 93.53 251 |
|
XVG-ACMP-BASELINE | | | 86.00 230 | 84.84 237 | 89.45 232 | 91.20 269 | 78.00 249 | 91.70 256 | 95.55 163 | 85.05 157 | 82.97 254 | 92.25 213 | 54.49 330 | 97.48 181 | 82.93 169 | 87.45 227 | 92.89 277 |
|
FMVSNet5 | | | 81.52 285 | 79.60 291 | 87.27 282 | 91.17 271 | 77.95 250 | 91.49 260 | 92.26 268 | 76.87 283 | 76.16 313 | 87.91 311 | 51.67 335 | 92.34 331 | 67.74 312 | 81.16 285 | 91.52 305 |
|
GG-mvs-BLEND | | | | | 87.94 270 | 89.73 314 | 77.91 251 | 87.80 311 | 78.23 351 | | 80.58 282 | 83.86 329 | 59.88 313 | 95.33 304 | 71.20 289 | 92.22 165 | 90.60 321 |
|
BH-w/o | | | 87.57 185 | 87.05 170 | 89.12 238 | 94.90 148 | 77.90 252 | 92.41 234 | 93.51 247 | 82.89 201 | 83.70 240 | 91.34 243 | 75.75 158 | 97.07 224 | 75.49 265 | 93.49 142 | 92.39 291 |
|
testdata | | | | | 90.49 189 | 96.40 92 | 77.89 253 | | 95.37 181 | 72.51 322 | 93.63 45 | 96.69 58 | 82.08 94 | 97.65 170 | 83.08 166 | 97.39 81 | 95.94 148 |
|
pmmvs6 | | | 83.42 267 | 81.60 271 | 88.87 244 | 88.01 329 | 77.87 254 | 94.96 107 | 94.24 229 | 74.67 304 | 78.80 300 | 91.09 256 | 60.17 311 | 96.49 256 | 77.06 254 | 75.40 326 | 92.23 296 |
|
Baseline_NR-MVSNet | | | 87.07 205 | 86.63 184 | 88.40 256 | 91.44 258 | 77.87 254 | 94.23 160 | 92.57 263 | 84.12 171 | 85.74 180 | 92.08 221 | 77.25 142 | 96.04 276 | 82.29 182 | 79.94 306 | 91.30 310 |
|
tttt0517 | | | 88.61 152 | 87.78 153 | 91.11 166 | 94.96 143 | 77.81 256 | 95.35 79 | 89.69 326 | 85.09 156 | 88.05 137 | 94.59 134 | 66.93 263 | 98.48 112 | 83.27 165 | 92.13 166 | 97.03 111 |
|
AllTest | | | 83.42 267 | 81.39 273 | 89.52 229 | 95.01 139 | 77.79 257 | 93.12 213 | 90.89 306 | 77.41 278 | 76.12 314 | 93.34 173 | 54.08 332 | 97.51 179 | 68.31 308 | 84.27 250 | 93.26 260 |
|
TestCases | | | | | 89.52 229 | 95.01 139 | 77.79 257 | | 90.89 306 | 77.41 278 | 76.12 314 | 93.34 173 | 54.08 332 | 97.51 179 | 68.31 308 | 84.27 250 | 93.26 260 |
|
v1240 | | | 86.78 212 | 85.85 213 | 89.56 227 | 90.45 301 | 77.79 257 | 93.61 193 | 95.37 181 | 81.65 228 | 85.43 195 | 91.15 253 | 71.50 212 | 97.43 187 | 81.47 199 | 82.05 276 | 93.47 255 |
|
gg-mvs-nofinetune | | | 81.77 280 | 79.37 292 | 88.99 243 | 90.85 288 | 77.73 260 | 86.29 322 | 79.63 349 | 74.88 303 | 83.19 253 | 69.05 344 | 60.34 309 | 96.11 275 | 75.46 266 | 94.64 125 | 93.11 269 |
|
Fast-Effi-MVS+-dtu | | | 87.44 190 | 86.72 178 | 89.63 226 | 92.04 240 | 77.68 261 | 94.03 175 | 93.94 237 | 85.81 134 | 82.42 259 | 91.32 246 | 70.33 229 | 97.06 225 | 80.33 218 | 90.23 182 | 94.14 216 |
|
mvs-test1 | | | 89.45 128 | 89.14 121 | 90.38 195 | 93.33 206 | 77.63 262 | 94.95 108 | 94.36 223 | 87.70 95 | 87.10 155 | 92.81 196 | 73.45 192 | 98.03 149 | 85.57 138 | 93.04 153 | 95.48 163 |
|
cl-mvsnet2 | | | 86.78 212 | 85.98 208 | 89.18 237 | 92.34 232 | 77.62 263 | 90.84 270 | 94.13 234 | 81.33 236 | 83.97 234 | 90.15 275 | 73.96 184 | 96.60 249 | 84.19 154 | 82.94 264 | 93.33 258 |
|
miper_enhance_ethall | | | 86.90 208 | 86.18 200 | 89.06 240 | 91.66 255 | 77.58 264 | 90.22 280 | 94.82 211 | 79.16 259 | 84.48 216 | 89.10 291 | 79.19 124 | 96.66 242 | 84.06 155 | 82.94 264 | 92.94 275 |
|
MVS_0304 | | | 83.46 266 | 81.92 269 | 88.10 266 | 90.63 296 | 77.49 265 | 93.26 208 | 93.75 244 | 80.04 251 | 80.44 285 | 87.24 318 | 47.94 342 | 95.55 295 | 75.79 263 | 88.16 216 | 91.26 311 |
|
D2MVS | | | 85.90 232 | 85.09 230 | 88.35 258 | 90.79 289 | 77.42 266 | 91.83 251 | 95.70 151 | 80.77 244 | 80.08 291 | 90.02 278 | 66.74 268 | 96.37 264 | 81.88 190 | 87.97 221 | 91.26 311 |
|
miper_ehance_all_eth | | | 87.22 200 | 86.62 185 | 89.02 242 | 92.13 237 | 77.40 267 | 90.91 269 | 94.81 212 | 81.28 237 | 84.32 225 | 90.08 277 | 79.26 123 | 96.62 244 | 83.81 159 | 82.94 264 | 93.04 272 |
|
cl_fuxian | | | 87.14 204 | 86.50 190 | 89.04 241 | 92.20 234 | 77.26 268 | 91.22 266 | 94.70 216 | 82.01 217 | 84.34 224 | 90.43 270 | 78.81 127 | 96.61 247 | 83.70 161 | 81.09 288 | 93.25 262 |
|
v148 | | | 87.04 206 | 86.32 196 | 89.21 235 | 90.94 282 | 77.26 268 | 93.71 190 | 94.43 221 | 84.84 160 | 84.36 223 | 90.80 263 | 76.04 154 | 97.05 226 | 82.12 184 | 79.60 310 | 93.31 259 |
|
PMMVS | | | 85.71 237 | 84.96 233 | 87.95 269 | 88.90 319 | 77.09 270 | 88.68 303 | 90.06 318 | 72.32 323 | 86.47 165 | 90.76 265 | 72.15 208 | 94.40 313 | 81.78 193 | 93.49 142 | 92.36 292 |
|
ITE_SJBPF | | | | | 88.24 262 | 91.88 246 | 77.05 271 | | 92.92 254 | 85.54 143 | 80.13 290 | 93.30 177 | 57.29 321 | 96.20 271 | 72.46 285 | 84.71 247 | 91.49 306 |
|
pmmvs5 | | | 84.21 259 | 82.84 265 | 88.34 259 | 88.95 318 | 76.94 272 | 92.41 234 | 91.91 281 | 75.63 294 | 80.28 286 | 91.18 251 | 64.59 284 | 95.57 294 | 77.09 253 | 83.47 259 | 92.53 286 |
|
IterMVS-SCA-FT | | | 85.45 239 | 84.53 243 | 88.18 264 | 91.71 252 | 76.87 273 | 90.19 281 | 92.65 262 | 85.40 148 | 81.44 271 | 90.54 267 | 66.79 266 | 95.00 310 | 81.04 202 | 81.05 289 | 92.66 283 |
|
baseline2 | | | 86.50 222 | 85.39 224 | 89.84 216 | 91.12 274 | 76.70 274 | 91.88 249 | 88.58 331 | 82.35 210 | 79.95 293 | 90.95 259 | 73.42 194 | 97.63 173 | 80.27 219 | 89.95 187 | 95.19 172 |
|
SCA | | | 86.32 226 | 85.18 228 | 89.73 223 | 92.15 235 | 76.60 275 | 91.12 267 | 91.69 284 | 83.53 184 | 85.50 189 | 88.81 295 | 66.79 266 | 96.48 257 | 76.65 255 | 90.35 181 | 96.12 139 |
|
CP-MVSNet | | | 87.63 180 | 87.26 167 | 88.74 249 | 93.12 212 | 76.59 276 | 95.29 86 | 96.58 91 | 88.43 74 | 83.49 247 | 92.98 189 | 75.28 164 | 95.83 287 | 78.97 233 | 81.15 287 | 93.79 238 |
|
cl-mvsnet_ | | | 86.52 221 | 85.78 215 | 88.75 247 | 92.03 241 | 76.46 277 | 90.74 271 | 94.30 226 | 81.83 226 | 83.34 250 | 90.78 264 | 75.74 160 | 96.57 250 | 81.74 194 | 81.54 283 | 93.22 264 |
|
cl-mvsnet1 | | | 86.53 220 | 85.78 215 | 88.75 247 | 92.02 242 | 76.45 278 | 90.74 271 | 94.30 226 | 81.83 226 | 83.34 250 | 90.82 262 | 75.75 158 | 96.57 250 | 81.73 195 | 81.52 284 | 93.24 263 |
|
Effi-MVS+-dtu | | | 88.65 151 | 88.35 139 | 89.54 228 | 93.33 206 | 76.39 279 | 94.47 141 | 94.36 223 | 87.70 95 | 85.43 195 | 89.56 288 | 73.45 192 | 97.26 208 | 85.57 138 | 91.28 170 | 94.97 177 |
|
Patchmtry | | | 82.71 272 | 80.93 278 | 88.06 267 | 90.05 308 | 76.37 280 | 84.74 330 | 91.96 279 | 72.28 324 | 81.32 274 | 87.87 312 | 71.03 217 | 95.50 300 | 68.97 303 | 80.15 304 | 92.32 294 |
|
PS-CasMVS | | | 87.32 194 | 86.88 172 | 88.63 252 | 92.99 220 | 76.33 281 | 95.33 80 | 96.61 89 | 88.22 82 | 83.30 252 | 93.07 187 | 73.03 199 | 95.79 290 | 78.36 238 | 81.00 293 | 93.75 244 |
|
OpenMVS_ROB | | 74.94 19 | 79.51 300 | 77.03 306 | 86.93 291 | 87.00 332 | 76.23 282 | 92.33 238 | 90.74 309 | 68.93 334 | 74.52 322 | 88.23 306 | 49.58 338 | 96.62 244 | 57.64 340 | 84.29 249 | 87.94 337 |
|
IterMVS | | | 84.88 252 | 83.98 250 | 87.60 274 | 91.44 258 | 76.03 283 | 90.18 282 | 92.41 265 | 83.24 192 | 81.06 277 | 90.42 271 | 66.60 269 | 94.28 316 | 79.46 226 | 80.98 294 | 92.48 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Vis-MVSNet (Re-imp) | | | 89.59 123 | 89.44 114 | 90.03 209 | 95.74 115 | 75.85 284 | 95.61 73 | 90.80 308 | 87.66 99 | 87.83 141 | 95.40 106 | 76.79 146 | 96.46 260 | 78.37 237 | 96.73 91 | 97.80 82 |
|
eth_miper_zixun_eth | | | 86.50 222 | 85.77 217 | 88.68 250 | 91.94 244 | 75.81 285 | 90.47 275 | 94.89 205 | 82.05 214 | 84.05 231 | 90.46 269 | 75.96 155 | 96.77 238 | 82.76 175 | 79.36 312 | 93.46 256 |
|
PEN-MVS | | | 86.80 211 | 86.27 198 | 88.40 256 | 92.32 233 | 75.71 286 | 95.18 95 | 96.38 102 | 87.97 86 | 82.82 256 | 93.15 183 | 73.39 195 | 95.92 282 | 76.15 261 | 79.03 316 | 93.59 249 |
|
PatchmatchNet | | | 85.85 234 | 84.70 239 | 89.29 234 | 91.76 250 | 75.54 287 | 88.49 305 | 91.30 294 | 81.63 230 | 85.05 206 | 88.70 299 | 71.71 209 | 96.24 270 | 74.61 275 | 89.05 203 | 96.08 143 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TDRefinement | | | 79.81 298 | 77.34 302 | 87.22 287 | 79.24 347 | 75.48 288 | 93.12 213 | 92.03 274 | 76.45 285 | 75.01 319 | 91.58 238 | 49.19 340 | 96.44 261 | 70.22 296 | 69.18 335 | 89.75 325 |
|
DTE-MVSNet | | | 86.11 229 | 85.48 222 | 87.98 268 | 91.65 256 | 74.92 289 | 94.93 110 | 95.75 148 | 87.36 104 | 82.26 261 | 93.04 188 | 72.85 200 | 95.82 288 | 74.04 277 | 77.46 321 | 93.20 265 |
|
miper_lstm_enhance | | | 85.27 245 | 84.59 242 | 87.31 281 | 91.28 268 | 74.63 290 | 87.69 314 | 94.09 236 | 81.20 240 | 81.36 273 | 89.85 283 | 74.97 169 | 94.30 315 | 81.03 204 | 79.84 309 | 93.01 273 |
|
USDC | | | 82.76 271 | 81.26 275 | 87.26 283 | 91.17 271 | 74.55 291 | 89.27 294 | 93.39 249 | 78.26 273 | 75.30 318 | 92.08 221 | 54.43 331 | 96.63 243 | 71.64 287 | 85.79 240 | 90.61 319 |
|
ppachtmachnet_test | | | 81.84 279 | 80.07 286 | 87.15 289 | 88.46 323 | 74.43 292 | 89.04 299 | 92.16 270 | 75.33 296 | 77.75 306 | 88.99 292 | 66.20 274 | 95.37 303 | 65.12 322 | 77.60 319 | 91.65 303 |
|
mvs_anonymous | | | 89.37 134 | 89.32 117 | 89.51 231 | 93.47 203 | 74.22 293 | 91.65 258 | 94.83 210 | 82.91 200 | 85.45 192 | 93.79 165 | 81.23 103 | 96.36 266 | 86.47 131 | 94.09 133 | 97.94 72 |
|
ADS-MVSNet2 | | | 81.66 282 | 79.71 290 | 87.50 277 | 91.35 265 | 74.19 294 | 83.33 335 | 88.48 332 | 72.90 319 | 82.24 262 | 85.77 324 | 64.98 282 | 93.20 327 | 64.57 324 | 83.74 254 | 95.12 173 |
|
Patchmatch-test | | | 81.37 287 | 79.30 293 | 87.58 275 | 90.92 284 | 74.16 295 | 80.99 341 | 87.68 336 | 70.52 331 | 76.63 312 | 88.81 295 | 71.21 214 | 92.76 330 | 60.01 338 | 86.93 234 | 95.83 154 |
|
MDA-MVSNet-bldmvs | | | 78.85 304 | 76.31 307 | 86.46 297 | 89.76 313 | 73.88 296 | 88.79 301 | 90.42 311 | 79.16 259 | 59.18 344 | 88.33 304 | 60.20 310 | 94.04 318 | 62.00 331 | 68.96 336 | 91.48 307 |
|
DWT-MVSNet_test | | | 84.95 251 | 83.68 253 | 88.77 245 | 91.43 261 | 73.75 297 | 91.74 254 | 90.98 302 | 80.66 245 | 83.84 236 | 87.36 316 | 62.44 293 | 97.11 220 | 78.84 235 | 85.81 238 | 95.46 164 |
|
MIMVSNet1 | | | 79.38 301 | 77.28 303 | 85.69 304 | 86.35 334 | 73.67 298 | 91.61 259 | 92.75 259 | 78.11 276 | 72.64 330 | 88.12 307 | 48.16 341 | 91.97 335 | 60.32 335 | 77.49 320 | 91.43 308 |
|
our_test_3 | | | 81.93 278 | 80.46 280 | 86.33 300 | 88.46 323 | 73.48 299 | 88.46 306 | 91.11 297 | 76.46 284 | 76.69 311 | 88.25 305 | 66.89 264 | 94.36 314 | 68.75 304 | 79.08 315 | 91.14 315 |
|
JIA-IIPM | | | 81.04 290 | 78.98 298 | 87.25 284 | 88.64 320 | 73.48 299 | 81.75 340 | 89.61 328 | 73.19 316 | 82.05 265 | 73.71 341 | 66.07 277 | 95.87 285 | 71.18 291 | 84.60 248 | 92.41 290 |
|
RRT_test8_iter05 | | | 86.90 208 | 86.36 193 | 88.52 254 | 93.00 219 | 73.27 301 | 94.32 155 | 95.96 130 | 85.50 145 | 84.26 228 | 92.86 191 | 60.76 307 | 97.70 168 | 88.32 105 | 82.29 271 | 94.60 195 |
|
TinyColmap | | | 79.76 299 | 77.69 301 | 85.97 302 | 91.71 252 | 73.12 302 | 89.55 288 | 90.36 313 | 75.03 299 | 72.03 332 | 90.19 273 | 46.22 345 | 96.19 273 | 63.11 328 | 81.03 290 | 88.59 334 |
|
UnsupCasMVSNet_bld | | | 76.23 309 | 73.27 312 | 85.09 309 | 83.79 341 | 72.92 303 | 85.65 327 | 93.47 248 | 71.52 326 | 68.84 337 | 79.08 339 | 49.77 337 | 93.21 326 | 66.81 317 | 60.52 345 | 89.13 331 |
|
test0.0.03 1 | | | 82.41 275 | 81.69 270 | 84.59 311 | 88.23 326 | 72.89 304 | 90.24 278 | 87.83 334 | 83.41 187 | 79.86 294 | 89.78 284 | 67.25 259 | 88.99 342 | 65.18 321 | 83.42 261 | 91.90 300 |
|
EPNet_dtu | | | 86.49 224 | 85.94 211 | 88.14 265 | 90.24 304 | 72.82 305 | 94.11 166 | 92.20 269 | 86.66 121 | 79.42 298 | 92.36 208 | 73.52 190 | 95.81 289 | 71.26 288 | 93.66 138 | 95.80 156 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MDA-MVSNet_test_wron | | | 79.21 303 | 77.19 305 | 85.29 306 | 88.22 327 | 72.77 306 | 85.87 324 | 90.06 318 | 74.34 306 | 62.62 343 | 87.56 315 | 66.14 275 | 91.99 334 | 66.90 316 | 73.01 328 | 91.10 317 |
|
EPMVS | | | 83.90 264 | 82.70 266 | 87.51 276 | 90.23 305 | 72.67 307 | 88.62 304 | 81.96 346 | 81.37 235 | 85.01 207 | 88.34 303 | 66.31 273 | 94.45 312 | 75.30 268 | 87.12 231 | 95.43 166 |
|
YYNet1 | | | 79.22 302 | 77.20 304 | 85.28 307 | 88.20 328 | 72.66 308 | 85.87 324 | 90.05 320 | 74.33 307 | 62.70 342 | 87.61 314 | 66.09 276 | 92.03 333 | 66.94 313 | 72.97 329 | 91.15 314 |
|
UnsupCasMVSNet_eth | | | 80.07 296 | 78.27 300 | 85.46 305 | 85.24 337 | 72.63 309 | 88.45 307 | 94.87 207 | 82.99 197 | 71.64 334 | 88.07 308 | 56.34 323 | 91.75 336 | 73.48 282 | 63.36 343 | 92.01 299 |
|
OurMVSNet-221017-0 | | | 85.35 242 | 84.64 241 | 87.49 278 | 90.77 290 | 72.59 310 | 94.01 177 | 94.40 222 | 84.72 163 | 79.62 297 | 93.17 182 | 61.91 297 | 96.72 239 | 81.99 187 | 81.16 285 | 93.16 267 |
|
CostFormer | | | 85.77 236 | 84.94 234 | 88.26 261 | 91.16 273 | 72.58 311 | 89.47 292 | 91.04 301 | 76.26 289 | 86.45 168 | 89.97 280 | 70.74 221 | 96.86 237 | 82.35 180 | 87.07 233 | 95.34 170 |
|
LCM-MVSNet-Re | | | 88.30 160 | 88.32 142 | 88.27 260 | 94.71 156 | 72.41 312 | 93.15 212 | 90.98 302 | 87.77 93 | 79.25 299 | 91.96 226 | 78.35 135 | 95.75 291 | 83.04 167 | 95.62 107 | 96.65 124 |
|
PVSNet | | 78.82 18 | 85.55 238 | 84.65 240 | 88.23 263 | 94.72 155 | 71.93 313 | 87.12 318 | 92.75 259 | 78.80 265 | 84.95 208 | 90.53 268 | 64.43 285 | 96.71 241 | 74.74 273 | 93.86 136 | 96.06 145 |
|
ADS-MVSNet | | | 81.56 284 | 79.78 288 | 86.90 293 | 91.35 265 | 71.82 314 | 83.33 335 | 89.16 330 | 72.90 319 | 82.24 262 | 85.77 324 | 64.98 282 | 93.76 320 | 64.57 324 | 83.74 254 | 95.12 173 |
|
test-LLR | | | 85.87 233 | 85.41 223 | 87.25 284 | 90.95 280 | 71.67 315 | 89.55 288 | 89.88 324 | 83.41 187 | 84.54 214 | 87.95 309 | 67.25 259 | 95.11 307 | 81.82 191 | 93.37 147 | 94.97 177 |
|
test-mter | | | 84.54 257 | 83.64 255 | 87.25 284 | 90.95 280 | 71.67 315 | 89.55 288 | 89.88 324 | 79.17 258 | 84.54 214 | 87.95 309 | 55.56 325 | 95.11 307 | 81.82 191 | 93.37 147 | 94.97 177 |
|
tpm2 | | | 84.08 260 | 82.94 262 | 87.48 279 | 91.39 263 | 71.27 317 | 89.23 296 | 90.37 312 | 71.95 325 | 84.64 211 | 89.33 289 | 67.30 258 | 96.55 254 | 75.17 269 | 87.09 232 | 94.63 192 |
|
Patchmatch-RL test | | | 81.67 281 | 79.96 287 | 86.81 296 | 85.42 336 | 71.23 318 | 82.17 339 | 87.50 337 | 78.47 269 | 77.19 310 | 82.50 335 | 70.81 220 | 93.48 323 | 82.66 176 | 72.89 330 | 95.71 159 |
|
TESTMET0.1,1 | | | 83.74 265 | 82.85 264 | 86.42 299 | 89.96 310 | 71.21 319 | 89.55 288 | 87.88 333 | 77.41 278 | 83.37 249 | 87.31 317 | 56.71 322 | 93.65 322 | 80.62 212 | 92.85 158 | 94.40 209 |
|
PVSNet_0 | | 73.20 20 | 77.22 306 | 74.83 311 | 84.37 313 | 90.70 294 | 71.10 320 | 83.09 337 | 89.67 327 | 72.81 321 | 73.93 325 | 83.13 333 | 60.79 306 | 93.70 321 | 68.54 305 | 50.84 347 | 88.30 336 |
|
tpm cat1 | | | 81.96 277 | 80.27 282 | 87.01 290 | 91.09 275 | 71.02 321 | 87.38 317 | 91.53 289 | 66.25 337 | 80.17 287 | 86.35 322 | 68.22 257 | 96.15 274 | 69.16 302 | 82.29 271 | 93.86 235 |
|
tpmvs | | | 83.35 270 | 82.07 267 | 87.20 288 | 91.07 276 | 71.00 322 | 88.31 308 | 91.70 283 | 78.91 261 | 80.49 284 | 87.18 319 | 69.30 244 | 97.08 223 | 68.12 311 | 83.56 258 | 93.51 254 |
|
PatchT | | | 82.68 273 | 81.27 274 | 86.89 294 | 90.09 307 | 70.94 323 | 84.06 332 | 90.15 315 | 74.91 301 | 85.63 183 | 83.57 331 | 69.37 240 | 94.87 311 | 65.19 320 | 88.50 210 | 94.84 186 |
|
SixPastTwentyTwo | | | 83.91 263 | 82.90 263 | 86.92 292 | 90.99 278 | 70.67 324 | 93.48 197 | 91.99 276 | 85.54 143 | 77.62 308 | 92.11 219 | 60.59 308 | 96.87 236 | 76.05 262 | 77.75 318 | 93.20 265 |
|
RPSCF | | | 85.07 248 | 84.27 245 | 87.48 279 | 92.91 222 | 70.62 325 | 91.69 257 | 92.46 264 | 76.20 290 | 82.67 258 | 95.22 110 | 63.94 287 | 97.29 205 | 77.51 248 | 85.80 239 | 94.53 200 |
|
pmmvs3 | | | 71.81 312 | 68.71 315 | 81.11 321 | 75.86 348 | 70.42 326 | 86.74 319 | 83.66 343 | 58.95 343 | 68.64 338 | 80.89 337 | 36.93 348 | 89.52 341 | 63.10 329 | 63.59 342 | 83.39 339 |
|
Anonymous20231206 | | | 81.03 291 | 79.77 289 | 84.82 310 | 87.85 331 | 70.26 327 | 91.42 261 | 92.08 272 | 73.67 311 | 77.75 306 | 89.25 290 | 62.43 294 | 93.08 328 | 61.50 333 | 82.00 277 | 91.12 316 |
|
PM-MVS | | | 78.11 305 | 76.12 309 | 84.09 316 | 83.54 342 | 70.08 328 | 88.97 300 | 85.27 341 | 79.93 252 | 74.73 321 | 86.43 321 | 34.70 349 | 93.48 323 | 79.43 229 | 72.06 332 | 88.72 332 |
|
MDTV_nov1_ep13 | | | | 83.56 256 | | 91.69 254 | 69.93 329 | 87.75 313 | 91.54 288 | 78.60 268 | 84.86 209 | 88.90 294 | 69.54 238 | 96.03 277 | 70.25 294 | 88.93 204 | |
|
LF4IMVS | | | 80.37 295 | 79.07 297 | 84.27 315 | 86.64 333 | 69.87 330 | 89.39 293 | 91.05 300 | 76.38 286 | 74.97 320 | 90.00 279 | 47.85 343 | 94.25 317 | 74.55 276 | 80.82 296 | 88.69 333 |
|
K. test v3 | | | 81.59 283 | 80.15 285 | 85.91 303 | 89.89 312 | 69.42 331 | 92.57 231 | 87.71 335 | 85.56 142 | 73.44 327 | 89.71 285 | 55.58 324 | 95.52 297 | 77.17 251 | 69.76 334 | 92.78 281 |
|
tpm | | | 84.73 254 | 84.02 248 | 86.87 295 | 90.33 302 | 68.90 332 | 89.06 298 | 89.94 321 | 80.85 243 | 85.75 179 | 89.86 282 | 68.54 254 | 95.97 280 | 77.76 244 | 84.05 252 | 95.75 157 |
|
lessismore_v0 | | | | | 86.04 301 | 88.46 323 | 68.78 333 | | 80.59 347 | | 73.01 329 | 90.11 276 | 55.39 326 | 96.43 262 | 75.06 271 | 65.06 340 | 92.90 276 |
|
gm-plane-assit | | | | | | 89.60 315 | 68.00 334 | | | 77.28 281 | | 88.99 292 | | 97.57 175 | 79.44 228 | | |
|
tpmrst | | | 85.35 242 | 84.99 231 | 86.43 298 | 90.88 287 | 67.88 335 | 88.71 302 | 91.43 292 | 80.13 249 | 86.08 176 | 88.80 297 | 73.05 198 | 96.02 278 | 82.48 177 | 83.40 262 | 95.40 167 |
|
test20.03 | | | 79.95 297 | 79.08 296 | 82.55 319 | 85.79 335 | 67.74 336 | 91.09 268 | 91.08 298 | 81.23 239 | 74.48 323 | 89.96 281 | 61.63 298 | 90.15 340 | 60.08 336 | 76.38 324 | 89.76 324 |
|
CMPMVS | | 59.16 21 | 80.52 294 | 79.20 294 | 84.48 312 | 83.98 340 | 67.63 337 | 89.95 286 | 93.84 242 | 64.79 339 | 66.81 340 | 91.14 254 | 57.93 320 | 95.17 305 | 76.25 259 | 88.10 217 | 90.65 318 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
testgi | | | 80.94 293 | 80.20 284 | 83.18 317 | 87.96 330 | 66.29 338 | 91.28 263 | 90.70 310 | 83.70 178 | 78.12 303 | 92.84 193 | 51.37 336 | 90.82 339 | 63.34 327 | 82.46 270 | 92.43 289 |
|
new_pmnet | | | 72.15 311 | 70.13 314 | 78.20 324 | 82.95 344 | 65.68 339 | 83.91 333 | 82.40 345 | 62.94 341 | 64.47 341 | 79.82 338 | 42.85 347 | 86.26 345 | 57.41 341 | 74.44 327 | 82.65 341 |
|
Gipuma | | | 57.99 318 | 54.91 320 | 67.24 331 | 88.51 321 | 65.59 340 | 52.21 351 | 90.33 314 | 43.58 349 | 42.84 349 | 51.18 350 | 20.29 355 | 85.07 346 | 34.77 349 | 70.45 333 | 51.05 348 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
dp | | | 81.47 286 | 80.23 283 | 85.17 308 | 89.92 311 | 65.49 341 | 86.74 319 | 90.10 317 | 76.30 288 | 81.10 275 | 87.12 320 | 62.81 291 | 95.92 282 | 68.13 310 | 79.88 307 | 94.09 221 |
|
CVMVSNet | | | 84.69 256 | 84.79 238 | 84.37 313 | 91.84 247 | 64.92 342 | 93.70 191 | 91.47 291 | 66.19 338 | 86.16 175 | 95.28 107 | 67.18 261 | 93.33 325 | 80.89 207 | 90.42 180 | 94.88 185 |
|
EU-MVSNet | | | 81.32 288 | 80.95 277 | 82.42 320 | 88.50 322 | 63.67 343 | 93.32 201 | 91.33 293 | 64.02 340 | 80.57 283 | 92.83 194 | 61.21 304 | 92.27 332 | 76.34 258 | 80.38 303 | 91.32 309 |
|
ambc | | | | | 83.06 318 | 79.99 346 | 63.51 344 | 77.47 344 | 92.86 255 | | 74.34 324 | 84.45 328 | 28.74 350 | 95.06 309 | 73.06 284 | 68.89 337 | 90.61 319 |
|
new-patchmatchnet | | | 76.41 308 | 75.17 310 | 80.13 322 | 82.65 345 | 59.61 345 | 87.66 315 | 91.08 298 | 78.23 274 | 69.85 335 | 83.22 332 | 54.76 328 | 91.63 338 | 64.14 326 | 64.89 341 | 89.16 329 |
|
LCM-MVSNet | | | 66.00 314 | 62.16 318 | 77.51 326 | 64.51 354 | 58.29 346 | 83.87 334 | 90.90 305 | 48.17 347 | 54.69 345 | 73.31 342 | 16.83 358 | 86.75 344 | 65.47 319 | 61.67 344 | 87.48 338 |
|
FPMVS | | | 64.63 315 | 62.55 317 | 70.88 328 | 70.80 350 | 56.71 347 | 84.42 331 | 84.42 342 | 51.78 346 | 49.57 346 | 81.61 336 | 23.49 352 | 81.48 348 | 40.61 348 | 76.25 325 | 74.46 344 |
|
ANet_high | | | 58.88 317 | 54.22 321 | 72.86 327 | 56.50 357 | 56.67 348 | 80.75 342 | 86.00 338 | 73.09 318 | 37.39 350 | 64.63 347 | 22.17 353 | 79.49 350 | 43.51 346 | 23.96 351 | 82.43 342 |
|
MVS-HIRNet | | | 73.70 310 | 72.20 313 | 78.18 325 | 91.81 249 | 56.42 349 | 82.94 338 | 82.58 344 | 55.24 344 | 68.88 336 | 66.48 345 | 55.32 327 | 95.13 306 | 58.12 339 | 88.42 212 | 83.01 340 |
|
DSMNet-mixed | | | 76.94 307 | 76.29 308 | 78.89 323 | 83.10 343 | 56.11 350 | 87.78 312 | 79.77 348 | 60.65 342 | 75.64 317 | 88.71 298 | 61.56 299 | 88.34 343 | 60.07 337 | 89.29 199 | 92.21 297 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 351 | 87.62 316 | | 73.32 315 | 84.59 213 | | 70.33 229 | | 74.65 274 | | 95.50 162 |
|
DeepMVS_CX | | | | | 56.31 334 | 74.23 349 | 51.81 352 | | 56.67 357 | 44.85 348 | 48.54 348 | 75.16 340 | 27.87 351 | 58.74 354 | 40.92 347 | 52.22 346 | 58.39 347 |
|
MVE | | 39.65 23 | 43.39 320 | 38.59 326 | 57.77 333 | 56.52 356 | 48.77 353 | 55.38 350 | 58.64 356 | 29.33 353 | 28.96 353 | 52.65 349 | 4.68 360 | 64.62 353 | 28.11 351 | 33.07 349 | 59.93 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 59.60 316 | 56.40 319 | 69.21 330 | 68.83 351 | 46.58 354 | 73.02 348 | 77.48 352 | 55.07 345 | 49.21 347 | 72.95 343 | 17.43 357 | 80.04 349 | 49.32 345 | 44.33 348 | 80.99 343 |
|
PMVS | | 47.18 22 | 52.22 319 | 48.46 322 | 63.48 332 | 45.72 358 | 46.20 355 | 73.41 347 | 78.31 350 | 41.03 350 | 30.06 352 | 65.68 346 | 6.05 359 | 83.43 347 | 30.04 350 | 65.86 339 | 60.80 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 43.23 321 | 42.29 323 | 46.03 335 | 65.58 353 | 37.41 356 | 73.51 346 | 64.62 353 | 33.99 351 | 28.47 354 | 47.87 351 | 19.90 356 | 67.91 351 | 22.23 352 | 24.45 350 | 32.77 349 |
|
wuyk23d | | | 21.27 325 | 20.48 328 | 23.63 338 | 68.59 352 | 36.41 357 | 49.57 352 | 6.85 360 | 9.37 354 | 7.89 356 | 4.46 358 | 4.03 361 | 31.37 355 | 17.47 354 | 16.07 354 | 3.12 352 |
|
EMVS | | | 42.07 322 | 41.12 324 | 44.92 336 | 63.45 355 | 35.56 358 | 73.65 345 | 63.48 354 | 33.05 352 | 26.88 355 | 45.45 352 | 21.27 354 | 67.14 352 | 19.80 353 | 23.02 352 | 32.06 350 |
|
N_pmnet | | | 68.89 313 | 68.44 316 | 70.23 329 | 89.07 317 | 28.79 359 | 88.06 309 | 19.50 359 | 69.47 333 | 71.86 333 | 84.93 327 | 61.24 303 | 91.75 336 | 54.70 342 | 77.15 322 | 90.15 323 |
|
tmp_tt | | | 35.64 323 | 39.24 325 | 24.84 337 | 14.87 359 | 23.90 360 | 62.71 349 | 51.51 358 | 6.58 355 | 36.66 351 | 62.08 348 | 44.37 346 | 30.34 356 | 52.40 343 | 22.00 353 | 20.27 351 |
|
test123 | | | 8.76 327 | 11.22 330 | 1.39 339 | 0.85 361 | 0.97 361 | 85.76 326 | 0.35 362 | 0.54 357 | 2.45 358 | 8.14 357 | 0.60 362 | 0.48 357 | 2.16 356 | 0.17 356 | 2.71 353 |
|
testmvs | | | 8.92 326 | 11.52 329 | 1.12 340 | 1.06 360 | 0.46 362 | 86.02 323 | 0.65 361 | 0.62 356 | 2.74 357 | 9.52 356 | 0.31 363 | 0.45 358 | 2.38 355 | 0.39 355 | 2.46 354 |
|
uanet_test | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
cdsmvs_eth3d_5k | | | 22.14 324 | 29.52 327 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 95.76 147 | 0.00 358 | 0.00 359 | 94.29 142 | 75.66 161 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
pcd_1.5k_mvsjas | | | 6.64 329 | 8.86 332 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 79.70 117 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet-low-res | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uncertanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
Regformer | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
ab-mvs-re | | | 7.82 328 | 10.43 331 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 93.88 161 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
test_241102_TWO | | | | | | | | | 97.44 12 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 8 | 99.58 5 | 95.66 2 | 99.12 6 | 98.98 6 |
|
9.14 | | | | 94.47 17 | | 97.79 52 | | 96.08 50 | 97.44 12 | 86.13 131 | 95.10 22 | 97.40 21 | 88.34 18 | 99.22 46 | 93.25 28 | 98.70 32 | |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 8 | 98.05 6 | 92.09 4 | 99.55 12 | 95.64 4 | 99.13 3 | 99.13 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 139 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 210 | | | | 96.12 139 |
|
sam_mvs | | | | | | | | | | | | | 70.60 222 | | | | |
|
MTGPA | | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 310 | | | | 9.81 355 | 69.31 243 | 95.53 296 | 76.65 255 | | |
|
test_post | | | | | | | | | | | | 10.29 354 | 70.57 226 | 95.91 284 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 330 | 71.53 211 | 96.48 257 | | | |
|
MTMP | | | | | | | | 96.16 44 | 60.64 355 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 58 | 98.71 30 | 98.07 63 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 84 | 98.68 35 | 98.27 47 |
|
test_prior2 | | | | | | | | 94.12 164 | | 87.67 97 | 92.63 68 | 96.39 72 | 86.62 39 | | 91.50 68 | 98.67 37 | |
|
旧先验2 | | | | | | | | 93.36 200 | | 71.25 328 | 94.37 26 | | | 97.13 219 | 86.74 126 | | |
|
新几何2 | | | | | | | | 93.11 215 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 207 | 96.26 107 | 73.95 309 | | | | 99.05 60 | 80.56 213 | | 96.59 125 |
|
原ACMM2 | | | | | | | | 92.94 222 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 99 | 78.30 239 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 35 | | | | |
|
testdata1 | | | | | | | | 92.15 244 | | 87.94 87 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 112 | | | | | 98.12 136 | 88.15 106 | 89.99 184 | 94.63 192 |
|
plane_prior4 | | | | | | | | | | | | 94.86 122 | | | | | |
|
plane_prior2 | | | | | | | | 95.85 61 | | 90.81 17 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 161 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 363 | | | | | | | | |
|
nn | | | | | | | | | 0.00 363 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 339 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
door | | | | | | | | | 85.33 340 | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 176 | | 94.39 148 | | 88.81 61 | 85.43 195 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 176 | | 94.39 148 | | 88.81 61 | 85.43 195 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 123 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 195 | | | 97.96 154 | | | 94.51 202 |
|
HQP3-MVS | | | | | | | | | 96.04 126 | | | | | | | 89.77 191 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 187 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 225 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 220 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 112 | | | | |
|