This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 7098.88 4999.94 398.47 1799.81 1099.84 4
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 7098.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1799.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6098.87 5597.65 999.73 199.48 697.53 499.94 398.43 2099.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2699.81 1099.83 5
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6599.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 899.27 17
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12598.66 13297.51 1698.15 8598.83 10895.70 4499.92 2197.53 7599.67 5499.66 65
OPU-MVS99.37 2099.24 9299.05 1099.02 6099.16 6197.81 299.37 15797.24 8399.73 4399.70 48
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7498.80 8793.67 20099.37 1399.52 396.52 1799.89 3598.06 3699.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 698.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 10198.81 7695.80 9499.16 2699.47 895.37 5799.92 2197.89 4699.75 3899.79 10
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17298.78 9594.10 17097.69 12099.42 1295.25 6699.92 2198.09 3599.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17598.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4299.61 6799.74 33
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16698.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3699.66 5799.69 51
APD-MVScopyleft98.35 4698.00 5499.42 1599.51 3998.72 1798.80 10898.82 7094.52 15999.23 2099.25 4395.54 4999.80 8096.52 11999.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 13199.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
ZD-MVS99.46 5198.70 1998.79 9293.21 21798.67 5998.97 8795.70 4499.83 5696.07 13199.58 74
testtj98.33 5097.95 5699.47 1199.49 4598.70 1998.83 9898.86 6195.48 10998.91 4599.17 5695.48 5099.93 1595.80 14499.53 8599.76 26
ETH3D-3000-0.198.35 4698.00 5499.38 1799.47 4898.68 2198.67 13698.84 6594.66 15499.11 2899.25 4395.46 5199.81 7196.80 10999.73 4399.63 73
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15698.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8298.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16798.76 9997.82 598.45 7598.93 9796.65 1499.83 5697.38 8099.41 9999.71 44
ETH3 D test640097.59 8397.01 9899.34 2399.40 5998.56 2598.20 20498.81 7691.63 27298.44 7698.85 10593.98 9999.82 6494.11 19999.69 5299.64 70
DPM-MVS97.55 8796.99 10099.23 4299.04 10798.55 2697.17 29298.35 19394.85 14597.93 10798.58 13595.07 7299.71 11492.60 24199.34 10499.43 106
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3199.05 10598.52 2798.33 18498.68 12193.18 21898.68 5799.13 6494.62 8199.83 5696.45 12199.55 8399.52 85
3Dnovator+94.38 697.43 9496.78 10999.38 1797.83 20298.52 2799.37 898.71 11497.09 4792.99 27799.13 6489.36 17999.89 3596.97 9299.57 7599.71 44
TEST999.31 7098.50 2997.92 23598.73 10892.63 23797.74 11698.68 12496.20 2399.80 80
train_agg97.97 5897.52 7499.33 2799.31 7098.50 2997.92 23598.73 10892.98 22697.74 11698.68 12496.20 2399.80 8096.59 11599.57 7599.68 57
test_899.29 7898.44 3197.89 24198.72 11092.98 22697.70 11998.66 12796.20 2399.80 80
CDPH-MVS97.94 6397.49 7799.28 3599.47 4898.44 3197.91 23798.67 12992.57 24198.77 5198.85 10595.93 3899.72 10995.56 15499.69 5299.68 57
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5499.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9598.31 8499.10 6995.46 5199.93 1597.57 7299.81 1099.74 33
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 20198.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
save fliter99.46 5198.38 3598.21 20198.71 11497.95 3
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9898.73 5599.06 7895.27 6499.93 1597.07 8999.63 6499.72 40
agg_prior197.95 6297.51 7699.28 3599.30 7598.38 3597.81 24898.72 11093.16 22097.57 12998.66 12796.14 2699.81 7196.63 11499.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12999.81 71
canonicalmvs97.67 7697.23 8998.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 12197.40 24592.26 11899.49 14698.28 3096.28 20599.08 149
alignmvs97.56 8697.07 9699.01 6298.66 13998.37 4198.83 9898.06 25296.74 5798.00 10097.65 22490.80 15599.48 15098.37 2596.56 19399.19 133
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8298.85 6497.28 3199.72 399.39 1496.63 1597.60 32398.17 3199.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7299.20 5295.90 4099.89 3597.85 4999.74 4199.78 13
X-MVStestdata94.06 26792.30 28799.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7243.50 36495.90 4099.89 3597.85 4999.74 4199.78 13
DP-MVS Recon97.86 6797.46 7999.06 6199.53 3698.35 4398.33 18498.89 4692.62 23898.05 9098.94 9695.34 5999.65 12496.04 13599.42 9899.19 133
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8598.94 3999.17 5696.06 3099.92 2197.62 6699.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6998.96 3295.65 10298.94 3999.17 5696.06 3099.92 2197.21 8599.78 2399.75 28
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2799.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5399.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24998.84 6596.12 8397.89 11098.69 12295.96 3699.70 11596.89 9999.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
test1299.18 4799.16 9998.19 5298.53 15698.07 8995.13 7099.72 10999.56 8099.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6299.63 6499.72 40
MP-MVScopyleft98.33 5098.01 5399.28 3599.75 398.18 5399.22 2798.79 9296.13 8297.92 10899.23 4594.54 8499.94 396.74 11399.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 8098.94 3999.17 5695.91 3999.94 397.55 7399.79 1999.78 13
nrg03096.28 14295.72 14697.96 13496.90 26998.15 5699.39 698.31 19995.47 11094.42 21998.35 15892.09 12598.69 23497.50 7689.05 30297.04 232
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8598.93 4399.19 5595.70 4499.94 397.62 6699.79 1999.78 13
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21398.83 4899.10 6996.54 1699.83 5697.70 6299.76 3299.59 80
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6699.49 595.43 11299.03 3399.32 3395.56 4799.94 396.80 10999.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8199.23 4595.46 5199.94 397.42 7899.81 1099.77 20
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16398.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7399.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17898.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2499.73 4399.75 28
test_prior498.01 6297.86 244
新几何199.16 5099.34 6298.01 6298.69 11890.06 30998.13 8698.95 9594.60 8299.89 3591.97 26199.47 9199.59 80
112197.37 9996.77 11399.16 5099.34 6297.99 6598.19 20898.68 12190.14 30898.01 9898.97 8794.80 7999.87 4493.36 22099.46 9499.61 75
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6799.05 3299.34 3195.34 5999.82 6497.86 4899.64 6299.73 36
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5699.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5799.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5799.65 5899.71 44
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 598.82 7094.46 16298.94 3999.20 5295.16 6999.74 10797.58 6999.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8998.60 6799.13 6496.05 3299.94 397.77 5499.86 199.77 20
test_part194.82 21593.82 24597.82 14198.84 12497.82 7299.03 5798.81 7692.31 25392.51 29297.89 20181.96 30298.67 23894.80 17588.24 31196.98 235
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15598.61 6698.97 8795.13 7099.77 10197.65 6499.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17898.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2299.73 4399.75 28
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8199.26 1899.37 2293.33 10499.93 1596.96 9499.67 5499.69 51
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25398.89 4697.71 898.33 8298.97 8794.97 7499.88 4398.42 2299.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 8996.93 10299.07 6097.78 20497.64 7799.35 1199.06 2297.02 4993.75 25199.16 6189.25 18299.92 2197.22 8499.75 3899.64 70
114514_t96.93 11796.27 13098.92 6999.50 4197.63 7898.85 9498.90 4484.80 34497.77 11399.11 6792.84 10999.66 12394.85 17199.77 2699.47 98
ACMMPcopyleft98.23 5497.95 5699.09 5999.74 797.62 7999.03 5799.41 695.98 8797.60 12899.36 2694.45 9099.93 1597.14 8698.85 12499.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 14095.40 15898.96 6797.85 20197.60 8099.23 2398.93 3789.76 31493.11 27499.02 8089.11 18799.93 1591.99 26099.62 6699.34 112
VNet97.79 7097.40 8398.96 6798.88 11997.55 8198.63 14298.93 3796.74 5799.02 3498.84 10790.33 16499.83 5698.53 1196.66 18999.50 91
FIs96.51 13396.12 13597.67 15597.13 25597.54 8299.36 999.22 1495.89 9094.03 23998.35 15891.98 12898.44 26096.40 12492.76 25697.01 233
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9199.61 75
UA-Net97.96 5997.62 6798.98 6598.86 12197.47 8498.89 8699.08 2196.67 6098.72 5699.54 193.15 10799.81 7194.87 17098.83 12599.65 67
UniMVSNet (Re)95.78 16195.19 17397.58 16196.99 26397.47 8498.79 11299.18 1695.60 10393.92 24297.04 27391.68 13398.48 25495.80 14487.66 31896.79 258
CNLPA97.45 9297.03 9798.73 7699.05 10597.44 8698.07 22298.53 15695.32 12096.80 15798.53 13993.32 10599.72 10994.31 19299.31 10699.02 154
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17698.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
RRT_MVS96.04 14995.53 15597.56 16397.07 25997.32 8898.57 15398.09 24395.15 12995.02 19798.44 14788.20 21098.58 24896.17 13093.09 25396.79 258
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23799.58 397.20 3998.33 8299.00 8595.99 3599.64 12698.05 3899.76 3299.69 51
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10797.18 25297.32 8899.21 3098.97 3089.96 31091.14 31199.05 7986.64 24399.92 2193.38 21899.47 9197.73 214
ETV-MVS97.96 5997.81 6198.40 10398.42 15497.27 9198.73 12198.55 15296.84 5398.38 7997.44 24295.39 5599.35 15897.62 6698.89 12098.58 186
CANet98.05 5797.76 6398.90 7198.73 13097.27 9198.35 18198.78 9597.37 2897.72 11898.96 9391.53 14099.92 2198.79 299.65 5899.51 89
FC-MVSNet-test96.42 13696.05 13797.53 16596.95 26497.27 9199.36 999.23 1295.83 9393.93 24198.37 15692.00 12798.32 27896.02 13692.72 25797.00 234
VPA-MVSNet95.75 16295.11 17797.69 15397.24 24497.27 9198.94 7799.23 1295.13 13095.51 19097.32 24885.73 25898.91 21397.33 8289.55 29496.89 248
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 22098.29 20797.19 4098.99 3899.02 8096.22 2099.67 12298.52 1598.56 13799.51 89
DROMVSNet98.12 5698.02 5298.42 10198.25 16997.23 9699.49 298.42 17996.55 6698.68 5798.70 12193.82 10199.01 20098.79 299.48 9099.03 152
NR-MVSNet94.98 20794.16 22397.44 16796.53 28797.22 9798.74 11798.95 3494.96 14089.25 32897.69 22089.32 18098.18 29194.59 18287.40 32196.92 240
CS-MVS-test97.78 7197.68 6698.09 12497.94 19597.19 9898.95 7498.37 18995.98 8797.99 10197.84 20794.50 8899.11 18298.30 2899.28 10897.97 207
LS3D97.16 10996.66 11898.68 7998.53 14997.19 9898.93 7998.90 4492.83 23495.99 18699.37 2292.12 12499.87 4493.67 21299.57 7598.97 159
test22299.23 9397.17 10097.40 27198.66 13288.68 32598.05 9098.96 9394.14 9599.53 8599.61 75
CPTT-MVS97.72 7497.32 8698.92 6999.64 2897.10 10199.12 4398.81 7692.34 24998.09 8899.08 7693.01 10899.92 2196.06 13499.77 2699.75 28
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10298.40 17698.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
HY-MVS93.96 896.82 12296.23 13398.57 8598.46 15397.00 10398.14 21598.21 21593.95 17996.72 15997.99 19191.58 13599.76 10394.51 18596.54 19498.95 162
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17196.84 27296.97 10498.74 11799.24 1095.16 12893.88 24497.72 21991.68 13398.31 28095.81 14287.25 32396.92 240
DU-MVS95.42 17894.76 19197.40 17196.53 28796.97 10498.66 13998.99 2995.43 11293.88 24497.69 22088.57 20198.31 28095.81 14287.25 32396.92 240
DeepC-MVS95.98 397.88 6697.58 6998.77 7599.25 8696.93 10698.83 9898.75 10296.96 5196.89 15299.50 490.46 16199.87 4497.84 5199.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 12196.24 13298.65 8198.72 13496.92 10797.36 27798.57 14893.33 21296.67 16097.57 23294.30 9399.56 13791.05 27698.59 13599.47 98
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10897.95 23399.58 397.14 4398.44 7699.01 8495.03 7399.62 13197.91 4399.75 3899.50 91
MAR-MVS96.91 11896.40 12698.45 9798.69 13796.90 10898.66 13998.68 12192.40 24897.07 14297.96 19491.54 13999.75 10593.68 21098.92 11898.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 9996.92 10398.72 7798.86 12196.89 11098.31 19098.71 11495.26 12397.67 12198.56 13892.21 12199.78 9695.89 13996.85 18499.48 96
CS-MVS97.94 6397.90 5998.06 12798.04 18996.85 11199.04 5498.39 18596.17 7998.50 7198.29 16794.60 8299.02 19798.61 899.43 9798.30 197
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11298.71 12699.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1599.70 5199.47 98
API-MVS97.41 9697.25 8897.91 13598.70 13596.80 11298.82 10198.69 11894.53 15798.11 8798.28 16894.50 8899.57 13594.12 19899.49 8897.37 224
PCF-MVS93.45 1194.68 22393.43 26798.42 10198.62 14396.77 11495.48 34198.20 21784.63 34593.34 26598.32 16488.55 20399.81 7184.80 33598.96 11798.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 13695.71 14998.55 8798.63 14296.75 11597.88 24298.74 10493.84 18496.54 16998.18 17885.34 26699.75 10595.93 13896.35 19999.15 139
Effi-MVS+97.12 11196.69 11598.39 10498.19 17696.72 11697.37 27598.43 17893.71 19397.65 12498.02 18792.20 12299.25 16496.87 10597.79 16599.19 133
AdaColmapbinary97.15 11096.70 11498.48 9599.16 9996.69 11798.01 22898.89 4694.44 16396.83 15398.68 12490.69 15899.76 10394.36 18899.29 10798.98 158
原ACMM198.65 8199.32 6896.62 11898.67 12993.27 21697.81 11298.97 8795.18 6899.83 5693.84 20699.46 9499.50 91
FMVSNet394.97 20894.26 21797.11 18498.18 17896.62 11898.56 15498.26 21293.67 20094.09 23597.10 26084.25 28398.01 30592.08 25592.14 26096.70 271
sss97.39 9796.98 10198.61 8398.60 14596.61 12098.22 20098.93 3793.97 17898.01 9898.48 14491.98 12899.85 5096.45 12198.15 15399.39 109
test_yl97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
DCV-MVSNet97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
VPNet94.99 20594.19 22097.40 17197.16 25396.57 12398.71 12698.97 3095.67 10094.84 20198.24 17480.36 31498.67 23896.46 12087.32 32296.96 237
MVS94.67 22693.54 26398.08 12596.88 27096.56 12498.19 20898.50 16678.05 35392.69 28598.02 18791.07 15199.63 12990.09 28798.36 14898.04 204
XXY-MVS95.20 19494.45 20897.46 16696.75 27796.56 12498.86 9398.65 13693.30 21593.27 26798.27 17184.85 27398.87 22094.82 17391.26 27396.96 237
PatchMatch-RL96.59 12996.03 13998.27 10999.31 7096.51 12697.91 23799.06 2293.72 19296.92 15098.06 18588.50 20599.65 12491.77 26599.00 11698.66 180
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12798.30 19298.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
WR-MVS95.15 19694.46 20697.22 17696.67 28296.45 12898.21 20198.81 7694.15 16893.16 27097.69 22087.51 22798.30 28295.29 16288.62 30896.90 247
EIA-MVS97.75 7297.58 6998.27 10998.38 15696.44 12999.01 6298.60 14095.88 9197.26 13497.53 23594.97 7499.33 16097.38 8099.20 11099.05 151
FMVSNet294.47 24193.61 26097.04 18798.21 17396.43 13098.79 11298.27 20892.46 24293.50 26097.09 26481.16 30698.00 30791.09 27291.93 26396.70 271
PAPM_NR97.46 8997.11 9398.50 9399.50 4196.41 13198.63 14298.60 14095.18 12797.06 14398.06 18594.26 9499.57 13593.80 20898.87 12399.52 85
1112_ss96.63 12696.00 14098.50 9398.56 14696.37 13298.18 21298.10 23892.92 22994.84 20198.43 14892.14 12399.58 13494.35 18996.51 19599.56 84
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18496.45 29296.36 13399.03 5799.03 2595.04 13693.58 25497.93 19788.27 20898.03 30494.13 19786.90 32896.95 239
IS-MVSNet97.22 10496.88 10498.25 11298.85 12396.36 13399.19 3397.97 25795.39 11497.23 13598.99 8691.11 14998.93 21194.60 18098.59 13599.47 98
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13598.28 19598.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 999.54 8499.73 36
LFMVS95.86 15794.98 18398.47 9698.87 12096.32 13598.84 9796.02 33493.40 21098.62 6599.20 5274.99 34499.63 12997.72 5797.20 17999.46 102
PLCcopyleft95.07 497.20 10796.78 10998.44 9899.29 7896.31 13798.14 21598.76 9992.41 24796.39 17698.31 16594.92 7699.78 9694.06 20198.77 12899.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 9597.11 9398.34 10698.66 13996.23 13899.22 2799.00 2796.63 6298.04 9299.21 4888.05 21699.35 15896.01 13799.21 10999.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16198.22 17296.20 13997.31 28295.37 34294.53 15779.56 35397.63 22886.51 24497.53 32696.91 9690.74 27999.02 154
baseline97.64 7897.44 8198.25 11298.35 15896.20 13999.00 6498.32 19796.33 7598.03 9399.17 5691.35 14399.16 17398.10 3498.29 15199.39 109
DP-MVS96.59 12995.93 14198.57 8599.34 6296.19 14198.70 13098.39 18589.45 31994.52 21199.35 2891.85 13099.85 5092.89 23798.88 12199.68 57
casdiffmvs97.63 7997.41 8298.28 10898.33 16496.14 14298.82 10198.32 19796.38 7397.95 10399.21 4891.23 14799.23 16798.12 3398.37 14699.48 96
EPNet97.28 10296.87 10598.51 9294.98 33196.14 14298.90 8297.02 31498.28 195.99 18699.11 6791.36 14299.89 3596.98 9199.19 11199.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 11696.55 12198.21 11498.17 18096.07 14497.98 23198.21 21597.24 3797.13 13898.93 9786.88 24099.91 3095.00 16999.37 10398.66 180
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
baseline195.84 15895.12 17698.01 13098.49 15295.98 14598.73 12197.03 31295.37 11796.22 17998.19 17789.96 16999.16 17394.60 18087.48 31998.90 165
CDS-MVSNet96.99 11596.69 11597.90 13698.05 18895.98 14598.20 20498.33 19693.67 20096.95 14698.49 14393.54 10298.42 26295.24 16597.74 16899.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 14295.70 15098.03 12998.29 16895.97 15098.58 14898.25 21391.74 26795.29 19497.23 25491.03 15299.15 17692.90 23597.96 15998.97 159
MVS_Test97.28 10297.00 9998.13 12098.33 16495.97 15098.74 11798.07 24794.27 16698.44 7698.07 18492.48 11399.26 16396.43 12398.19 15299.16 138
MG-MVS97.81 6997.60 6898.44 9899.12 10395.97 15097.75 25398.78 9596.89 5298.46 7299.22 4793.90 10099.68 12194.81 17499.52 8799.67 61
tfpnnormal93.66 27292.70 28196.55 22896.94 26595.94 15398.97 7099.19 1591.04 29391.38 30997.34 24684.94 27198.61 24285.45 33089.02 30495.11 336
pmmvs494.69 22193.99 23596.81 20395.74 31695.94 15397.40 27197.67 27290.42 30293.37 26497.59 23089.08 18898.20 29092.97 23291.67 26696.30 313
Test_1112_low_res96.34 13995.66 15398.36 10598.56 14695.94 15397.71 25598.07 24792.10 25994.79 20597.29 25091.75 13299.56 13794.17 19696.50 19699.58 82
MVSTER96.06 14895.72 14697.08 18698.23 17195.93 15698.73 12198.27 20894.86 14495.07 19598.09 18388.21 20998.54 25096.59 11593.46 24496.79 258
OMC-MVS97.55 8797.34 8598.20 11599.33 6595.92 15798.28 19598.59 14295.52 10897.97 10299.10 6993.28 10699.49 14695.09 16798.88 12199.19 133
PVSNet_Blended_VisFu97.70 7597.46 7998.44 9899.27 8395.91 15898.63 14299.16 1794.48 16197.67 12198.88 10292.80 11099.91 3097.11 8799.12 11399.50 91
anonymousdsp95.42 17894.91 18696.94 19495.10 33095.90 15999.14 3898.41 18193.75 18893.16 27097.46 23987.50 22998.41 26995.63 15394.03 23296.50 301
GeoE96.58 13196.07 13698.10 12398.35 15895.89 16099.34 1298.12 23393.12 22296.09 18298.87 10389.71 17398.97 20292.95 23398.08 15699.43 106
UGNet96.78 12396.30 12998.19 11798.24 17095.89 16098.88 8998.93 3797.39 2596.81 15697.84 20782.60 29999.90 3396.53 11899.49 8898.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H95.05 20294.46 20696.81 20396.86 27195.82 16299.24 2299.24 1093.87 18392.53 29096.84 29290.37 16298.24 28993.24 22387.93 31596.38 308
diffmvs97.58 8497.40 8398.13 12098.32 16695.81 16398.06 22398.37 18996.20 7898.74 5398.89 10191.31 14599.25 16498.16 3298.52 13899.34 112
MVSFormer97.57 8597.49 7797.84 13898.07 18595.76 16499.47 398.40 18394.98 13898.79 4998.83 10892.34 11598.41 26996.91 9699.59 7199.34 112
lupinMVS97.44 9397.22 9098.12 12298.07 18595.76 16497.68 25797.76 26894.50 16098.79 4998.61 13092.34 11599.30 16197.58 6999.59 7199.31 118
PAPM94.95 20994.00 23397.78 14497.04 26095.65 16696.03 33298.25 21391.23 28894.19 23197.80 21491.27 14698.86 22282.61 34297.61 17298.84 168
jason97.32 10197.08 9598.06 12797.45 23395.59 16797.87 24397.91 26394.79 14698.55 6998.83 10891.12 14899.23 16797.58 6999.60 6899.34 112
jason: jason.
PS-MVSNAJ97.73 7397.77 6297.62 15998.68 13895.58 16897.34 27998.51 16197.29 3098.66 6397.88 20294.51 8599.90 3397.87 4799.17 11297.39 222
CP-MVSNet94.94 21194.30 21596.83 20296.72 27995.56 16999.11 4498.95 3493.89 18192.42 29697.90 19987.19 23398.12 29694.32 19188.21 31296.82 257
HyFIR lowres test96.90 11996.49 12498.14 11899.33 6595.56 16997.38 27399.65 292.34 24997.61 12798.20 17689.29 18199.10 18696.97 9297.60 17399.77 20
131496.25 14495.73 14597.79 14397.13 25595.55 17198.19 20898.59 14293.47 20792.03 30397.82 21291.33 14499.49 14694.62 17998.44 14398.32 196
thisisatest053096.01 15095.36 16397.97 13298.38 15695.52 17298.88 8994.19 35594.04 17297.64 12598.31 16583.82 29599.46 15295.29 16297.70 17098.93 163
test_djsdf96.00 15195.69 15196.93 19595.72 31795.49 17399.47 398.40 18394.98 13894.58 20997.86 20489.16 18598.41 26996.91 9694.12 23096.88 249
xiu_mvs_v2_base97.66 7797.70 6597.56 16398.61 14495.46 17497.44 26898.46 17197.15 4298.65 6498.15 17994.33 9299.80 8097.84 5198.66 13397.41 220
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 13998.73 13095.46 17499.20 3198.30 20594.96 14096.60 16498.87 10390.05 16798.59 24693.67 21298.60 13499.46 102
EPP-MVSNet97.46 8997.28 8797.99 13198.64 14195.38 17699.33 1598.31 19993.61 20397.19 13699.07 7794.05 9699.23 16796.89 9998.43 14599.37 111
testdata98.26 11199.20 9795.36 17798.68 12191.89 26498.60 6799.10 6994.44 9199.82 6494.27 19399.44 9699.58 82
MSDG95.93 15495.30 16997.83 13998.90 11795.36 17796.83 31698.37 18991.32 28394.43 21898.73 11990.27 16599.60 13290.05 29098.82 12698.52 187
PVSNet_BlendedMVS96.73 12496.60 11997.12 18399.25 8695.35 17998.26 19899.26 894.28 16597.94 10597.46 23992.74 11199.81 7196.88 10293.32 24996.20 315
PVSNet_Blended97.38 9897.12 9298.14 11899.25 8695.35 17997.28 28499.26 893.13 22197.94 10598.21 17592.74 11199.81 7196.88 10299.40 10199.27 125
TAMVS97.02 11496.79 10897.70 15298.06 18795.31 18198.52 15898.31 19993.95 17997.05 14498.61 13093.49 10398.52 25295.33 15997.81 16499.29 123
PS-CasMVS94.67 22693.99 23596.71 20896.68 28195.26 18299.13 4199.03 2593.68 19892.33 29797.95 19585.35 26598.10 29793.59 21488.16 31496.79 258
V4294.78 21994.14 22596.70 21096.33 29795.22 18398.97 7098.09 24392.32 25194.31 22497.06 27088.39 20698.55 24992.90 23588.87 30696.34 309
pm-mvs193.94 27093.06 27496.59 22196.49 29095.16 18498.95 7498.03 25492.32 25191.08 31297.84 20784.54 27998.41 26992.16 25386.13 33496.19 316
CSCG97.85 6897.74 6498.20 11599.67 2695.16 18499.22 2799.32 793.04 22497.02 14598.92 9995.36 5899.91 3097.43 7799.64 6299.52 85
thisisatest051595.61 17294.89 18797.76 14698.15 18195.15 18696.77 31794.41 35192.95 22897.18 13797.43 24384.78 27499.45 15394.63 17797.73 16998.68 177
bset_n11_16_dypcd94.89 21394.27 21696.76 20594.41 33895.15 18695.67 33795.64 34195.53 10694.65 20797.52 23687.10 23498.29 28596.58 11791.35 26996.83 256
VDDNet95.36 18494.53 20197.86 13798.10 18495.13 18898.85 9497.75 26990.46 30098.36 8099.39 1473.27 35099.64 12697.98 3996.58 19298.81 169
gg-mvs-nofinetune92.21 29490.58 30197.13 18296.75 27795.09 18995.85 33489.40 36485.43 34394.50 21281.98 35880.80 31298.40 27592.16 25398.33 14997.88 208
PS-MVSNAJss96.43 13596.26 13196.92 19895.84 31595.08 19099.16 3698.50 16695.87 9293.84 24798.34 16294.51 8598.61 24296.88 10293.45 24697.06 231
thres600view795.49 17394.77 19097.67 15598.98 11395.02 19198.85 9496.90 32095.38 11596.63 16296.90 28784.29 28199.59 13388.65 31096.33 20098.40 191
GBi-Net94.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
test194.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
FMVSNet193.19 28492.07 28996.56 22597.54 22395.00 19298.82 10198.18 22190.38 30392.27 29897.07 26773.68 34997.95 30989.36 30491.30 27196.72 267
tfpn200view995.32 18894.62 19797.43 16898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20297.76 211
GG-mvs-BLEND96.59 22196.34 29694.98 19596.51 32688.58 36593.10 27594.34 34280.34 31598.05 30389.53 30096.99 18296.74 264
thres40095.38 18194.62 19797.65 15898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20298.40 191
F-COLMAP97.09 11396.80 10697.97 13299.45 5594.95 19898.55 15698.62 13993.02 22596.17 18198.58 13594.01 9799.81 7193.95 20398.90 11999.14 141
thres100view90095.38 18194.70 19497.41 16998.98 11394.92 19998.87 9196.90 32095.38 11596.61 16396.88 28884.29 28199.56 13788.11 31196.29 20297.76 211
thres20095.25 19094.57 19997.28 17498.81 12694.92 19998.20 20497.11 30795.24 12696.54 16996.22 31684.58 27899.53 14387.93 31596.50 19697.39 222
tttt051796.07 14795.51 15797.78 14498.41 15594.84 20199.28 1894.33 35394.26 16797.64 12598.64 12984.05 28899.47 15195.34 15897.60 17399.03 152
PEN-MVS94.42 24393.73 25496.49 23296.28 29894.84 20199.17 3599.00 2793.51 20592.23 29997.83 21186.10 25397.90 31392.55 24686.92 32796.74 264
v894.47 24193.77 25096.57 22496.36 29594.83 20399.05 5398.19 21891.92 26393.16 27096.97 28088.82 19898.48 25491.69 26787.79 31696.39 307
TAPA-MVS93.98 795.35 18594.56 20097.74 14899.13 10294.83 20398.33 18498.64 13786.62 33396.29 17898.61 13094.00 9899.29 16280.00 34899.41 9999.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 25093.55 26296.51 23196.39 29494.80 20598.99 6698.19 21891.35 28193.02 27696.99 27888.09 21498.41 26990.50 28388.41 31096.33 311
v2v48294.69 22194.03 22996.65 21396.17 30294.79 20698.67 13698.08 24592.72 23594.00 24097.16 25887.69 22698.45 25892.91 23488.87 30696.72 267
v114494.59 23193.92 23896.60 22096.21 29994.78 20798.59 14698.14 23191.86 26694.21 23097.02 27587.97 21798.41 26991.72 26689.57 29296.61 281
TransMVSNet (Re)92.67 29091.51 29596.15 25296.58 28594.65 20898.90 8296.73 32790.86 29589.46 32797.86 20485.62 26098.09 29986.45 32281.12 34395.71 326
BH-RMVSNet95.92 15595.32 16797.69 15398.32 16694.64 20998.19 20897.45 29394.56 15696.03 18498.61 13085.02 26999.12 17990.68 28199.06 11499.30 121
OPM-MVS95.69 16795.33 16696.76 20596.16 30494.63 21098.43 17298.39 18596.64 6195.02 19798.78 11385.15 26899.05 19095.21 16694.20 22596.60 282
jajsoiax95.45 17695.03 18096.73 20795.42 32894.63 21099.14 3898.52 15895.74 9693.22 26898.36 15783.87 29398.65 24096.95 9594.04 23196.91 245
plane_prior797.42 23494.63 210
plane_prior697.35 23994.61 21387.09 235
plane_prior394.61 21397.02 4995.34 191
HQP_MVS96.14 14695.90 14296.85 20197.42 23494.60 21598.80 10898.56 15097.28 3195.34 19198.28 16887.09 23599.03 19496.07 13194.27 22296.92 240
plane_prior94.60 21598.44 17096.74 5794.22 224
CHOSEN 1792x268897.12 11196.80 10698.08 12599.30 7594.56 21798.05 22499.71 193.57 20497.09 13998.91 10088.17 21199.89 3596.87 10599.56 8099.81 8
NP-MVS97.28 24294.51 21897.73 217
hse-mvs396.17 14595.62 15497.81 14299.03 10894.45 21998.64 14198.75 10297.48 1898.67 5998.72 12089.76 17199.86 4997.95 4081.59 34299.11 144
v119294.32 24893.58 26196.53 22996.10 30594.45 21998.50 16398.17 22691.54 27494.19 23197.06 27086.95 23998.43 26190.14 28689.57 29296.70 271
mvs_tets95.41 18095.00 18196.65 21395.58 32194.42 22199.00 6498.55 15295.73 9793.21 26998.38 15583.45 29798.63 24197.09 8894.00 23396.91 245
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21297.41 23794.42 22198.52 15898.59 14291.69 27091.21 31098.35 15884.87 27299.04 19391.06 27493.44 24796.60 282
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 26993.26 27296.14 25396.06 30794.39 22399.20 3198.86 6193.06 22391.78 30597.81 21385.87 25797.58 32490.53 28286.17 33296.46 305
v7n94.19 25693.43 26796.47 23495.90 31294.38 22499.26 2098.34 19591.99 26192.76 28297.13 25988.31 20798.52 25289.48 30287.70 31796.52 296
v14419294.39 24593.70 25696.48 23396.06 30794.35 22598.58 14898.16 22891.45 27694.33 22397.02 27587.50 22998.45 25891.08 27389.11 30196.63 279
Anonymous2023121194.10 26393.26 27296.61 21899.11 10494.28 22699.01 6298.88 4986.43 33592.81 28097.57 23281.66 30598.68 23794.83 17289.02 30496.88 249
cascas94.63 22893.86 24396.93 19596.91 26894.27 22796.00 33398.51 16185.55 34294.54 21096.23 31484.20 28698.87 22095.80 14496.98 18397.66 217
Anonymous2024052995.10 19994.22 21897.75 14799.01 10994.26 22898.87 9198.83 6885.79 34196.64 16198.97 8778.73 32399.85 5096.27 12694.89 21999.12 143
HQP5-MVS94.25 229
HQP-MVS95.72 16395.40 15896.69 21197.20 24894.25 22998.05 22498.46 17196.43 7094.45 21497.73 21786.75 24198.96 20695.30 16094.18 22696.86 253
TR-MVS94.94 21194.20 21997.17 18097.75 20594.14 23197.59 26397.02 31492.28 25495.75 18997.64 22683.88 29298.96 20689.77 29496.15 21098.40 191
v192192094.20 25593.47 26696.40 24195.98 31094.08 23298.52 15898.15 22991.33 28294.25 22797.20 25786.41 24898.42 26290.04 29189.39 29896.69 276
Baseline_NR-MVSNet94.35 24693.81 24695.96 26096.20 30094.05 23398.61 14596.67 33191.44 27793.85 24697.60 22988.57 20198.14 29494.39 18786.93 32695.68 327
VDD-MVS95.82 16095.23 17197.61 16098.84 12493.98 23498.68 13397.40 29795.02 13797.95 10399.34 3174.37 34899.78 9698.64 496.80 18599.08 149
PMMVS96.60 12796.33 12897.41 16997.90 19893.93 23597.35 27898.41 18192.84 23397.76 11497.45 24191.10 15099.20 17096.26 12797.91 16099.11 144
v124094.06 26793.29 27196.34 24596.03 30993.90 23698.44 17098.17 22691.18 29194.13 23497.01 27786.05 25498.42 26289.13 30789.50 29696.70 271
GA-MVS94.81 21794.03 22997.14 18197.15 25493.86 23796.76 31897.58 27894.00 17694.76 20697.04 27380.91 30998.48 25491.79 26496.25 20799.09 146
ACMM93.85 995.69 16795.38 16296.61 21897.61 21593.84 23898.91 8198.44 17595.25 12494.28 22598.47 14586.04 25699.12 17995.50 15693.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 12596.53 12397.18 17998.19 17693.78 23998.31 19098.19 21894.01 17594.47 21398.27 17192.08 12698.46 25797.39 7997.91 16099.31 118
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18898.77 12893.76 24097.79 25198.50 16695.45 11196.94 14799.09 7487.87 22199.55 14296.76 11295.83 21597.74 213
XVG-OURS96.55 13296.41 12596.99 18998.75 12993.76 24097.50 26798.52 15895.67 10096.83 15399.30 3888.95 19599.53 14395.88 14096.26 20697.69 216
Anonymous20240521195.28 18994.49 20397.67 15599.00 11093.75 24298.70 13097.04 31190.66 29696.49 17298.80 11178.13 32899.83 5696.21 12995.36 21899.44 105
CLD-MVS95.62 17095.34 16496.46 23797.52 22693.75 24297.27 28598.46 17195.53 10694.42 21998.00 19086.21 25198.97 20296.25 12894.37 22096.66 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 19994.75 19296.12 25597.53 22593.73 24496.61 32398.08 24592.20 25893.89 24396.65 30092.44 11498.30 28294.21 19591.16 27496.34 309
IterMVS-LS95.46 17495.21 17296.22 25098.12 18293.72 24598.32 18998.13 23293.71 19394.26 22697.31 24992.24 11998.10 29794.63 17790.12 28596.84 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15295.83 14496.36 24397.93 19693.70 24698.12 21898.27 20893.70 19595.07 19599.02 8092.23 12098.54 25094.68 17693.46 24496.84 254
cl-mvsnet294.68 22394.19 22096.13 25498.11 18393.60 24796.94 30398.31 19992.43 24693.32 26696.87 29086.51 24498.28 28794.10 20091.16 27496.51 299
baseline295.11 19894.52 20296.87 20096.65 28393.56 24898.27 19794.10 35793.45 20892.02 30497.43 24387.45 23199.19 17193.88 20597.41 17797.87 209
LPG-MVS_test95.62 17095.34 16496.47 23497.46 22993.54 24998.99 6698.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
LGP-MVS_train96.47 23497.46 22993.54 24998.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
hse-mvs295.71 16495.30 16996.93 19598.50 15093.53 25198.36 18098.10 23897.48 1898.67 5997.99 19189.76 17199.02 19797.95 4080.91 34698.22 199
AUN-MVS94.53 23693.73 25496.92 19898.50 15093.52 25298.34 18298.10 23893.83 18695.94 18897.98 19385.59 26199.03 19494.35 18980.94 34598.22 199
ACMP93.49 1095.34 18694.98 18396.43 23997.67 21193.48 25398.73 12198.44 17594.94 14392.53 29098.53 13984.50 28099.14 17795.48 15794.00 23396.66 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 22094.15 22496.59 22197.00 26193.43 25494.96 34397.56 27992.46 24296.93 14896.24 31288.15 21297.88 31787.38 31796.65 19098.46 189
RPMNet92.81 28891.34 29697.24 17597.00 26193.43 25494.96 34398.80 8782.27 34896.93 14892.12 35186.98 23899.82 6476.32 35696.65 19098.46 189
IB-MVS91.98 1793.27 28091.97 29197.19 17897.47 22893.41 25697.09 29695.99 33593.32 21392.47 29495.73 32478.06 32999.53 14394.59 18282.98 33798.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet____94.51 23894.01 23296.02 25697.58 21893.40 25797.05 29797.96 25991.73 26992.76 28297.08 26689.06 18998.13 29592.61 24090.29 28496.52 296
cl-mvsnet194.52 23794.03 22995.99 25797.57 22293.38 25897.05 29797.94 26091.74 26792.81 28097.10 26089.12 18698.07 30192.60 24190.30 28396.53 293
UniMVSNet_ETH3D94.24 25393.33 26996.97 19297.19 25193.38 25898.74 11798.57 14891.21 29093.81 24898.58 13572.85 35198.77 23195.05 16893.93 23698.77 172
miper_ehance_all_eth95.01 20394.69 19595.97 25997.70 21093.31 26097.02 29998.07 24792.23 25593.51 25996.96 28291.85 13098.15 29393.68 21091.16 27496.44 306
CHOSEN 280x42097.18 10897.18 9197.20 17798.81 12693.27 26195.78 33699.15 1895.25 12496.79 15898.11 18292.29 11799.07 18998.56 1099.85 399.25 127
ACMH92.88 1694.55 23493.95 23796.34 24597.63 21493.26 26298.81 10798.49 17093.43 20989.74 32398.53 13981.91 30399.08 18893.69 20993.30 25096.70 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20899.29 7893.24 26398.58 14898.11 23689.92 31193.57 25599.10 6986.37 24999.79 9290.78 27998.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 19194.65 19696.99 18999.25 8693.21 26498.59 14698.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
TestCases96.99 18999.25 8693.21 26498.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
MIMVSNet93.26 28192.21 28896.41 24097.73 20993.13 26695.65 33897.03 31291.27 28794.04 23896.06 31975.33 34297.19 33186.56 32196.23 20898.92 164
cl_fuxian94.79 21894.43 21095.89 26497.75 20593.12 26797.16 29398.03 25492.23 25593.46 26297.05 27291.39 14198.01 30593.58 21589.21 30096.53 293
Patchmtry93.22 28292.35 28695.84 26696.77 27493.09 26894.66 34897.56 27987.37 33192.90 27896.24 31288.15 21297.90 31387.37 31890.10 28696.53 293
v14894.29 25093.76 25295.91 26296.10 30592.93 26998.58 14897.97 25792.59 24093.47 26196.95 28488.53 20498.32 27892.56 24587.06 32596.49 302
test0.0.03 194.08 26593.51 26495.80 26795.53 32392.89 27097.38 27395.97 33695.11 13292.51 29296.66 29887.71 22396.94 33587.03 31993.67 23997.57 218
PatchT93.06 28691.97 29196.35 24496.69 28092.67 27194.48 34997.08 30886.62 33397.08 14092.23 35087.94 21897.90 31378.89 35296.69 18898.49 188
MVP-Stereo94.28 25293.92 23895.35 28194.95 33292.60 27297.97 23297.65 27391.61 27390.68 31697.09 26486.32 25098.42 26289.70 29799.34 10495.02 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 27492.97 27695.68 27195.49 32492.37 27398.20 20497.28 30289.66 31692.58 28897.26 25182.14 30098.09 29993.18 22690.95 27896.58 284
BH-untuned95.95 15395.72 14696.65 21398.55 14892.26 27498.23 19997.79 26793.73 19194.62 20898.01 18988.97 19499.00 20193.04 23098.51 13998.68 177
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 35492.12 27597.63 26296.95 31788.86 32484.91 34793.13 34678.32 32596.74 33888.70 30981.81 34194.09 347
FMVSNet591.81 29590.92 29894.49 30797.21 24792.09 27698.00 23097.55 28489.31 32190.86 31495.61 33074.48 34695.32 35185.57 32889.70 29096.07 319
D2MVS95.18 19595.08 17895.48 27697.10 25792.07 27798.30 19299.13 1994.02 17492.90 27896.73 29589.48 17698.73 23394.48 18693.60 24395.65 328
PVSNet91.96 1896.35 13896.15 13496.96 19399.17 9892.05 27896.08 32998.68 12193.69 19697.75 11597.80 21488.86 19699.69 12094.26 19499.01 11599.15 139
ACMH+92.99 1494.30 24993.77 25095.88 26597.81 20392.04 27998.71 12698.37 18993.99 17790.60 31798.47 14580.86 31199.05 19092.75 23992.40 25996.55 290
ADS-MVSNet95.00 20494.45 20896.63 21698.00 19091.91 28096.04 33097.74 27090.15 30696.47 17396.64 30187.89 21998.96 20690.08 28897.06 18099.02 154
mvs-test196.60 12796.68 11796.37 24297.89 19991.81 28198.56 15498.10 23896.57 6496.52 17197.94 19690.81 15399.45 15395.72 14798.01 15797.86 210
BH-w/o95.38 18195.08 17896.26 24998.34 16391.79 28297.70 25697.43 29592.87 23294.24 22897.22 25588.66 19998.84 22391.55 26997.70 17098.16 202
Patchmatch-test94.42 24393.68 25896.63 21697.60 21691.76 28394.83 34797.49 29089.45 31994.14 23397.10 26088.99 19098.83 22585.37 33198.13 15499.29 123
EPMVS94.99 20594.48 20496.52 23097.22 24691.75 28497.23 28691.66 36194.11 16997.28 13396.81 29385.70 25998.84 22393.04 23097.28 17898.97 159
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26297.74 20891.74 28598.69 13298.15 22995.56 10594.92 19997.68 22388.98 19398.79 22993.19 22597.78 16697.20 228
eth_miper_zixun_eth94.68 22394.41 21195.47 27797.64 21391.71 28696.73 32098.07 24792.71 23693.64 25297.21 25690.54 16098.17 29293.38 21889.76 28996.54 291
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27096.55 28691.65 28798.11 22098.44 17594.96 14094.22 22997.90 19979.18 32199.11 18294.05 20293.85 23796.48 303
KD-MVS_2432*160089.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
miper_refine_blended89.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
TDRefinement91.06 30389.68 30895.21 28485.35 36091.49 29098.51 16297.07 30991.47 27588.83 33297.84 20777.31 33599.09 18792.79 23877.98 34995.04 338
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 32991.34 29197.64 26097.51 28788.36 32771.17 35996.13 31879.22 32096.63 34383.65 33986.27 33196.52 296
RRT_test8_iter0594.56 23394.19 22095.67 27297.60 21691.34 29198.93 7998.42 17994.75 14793.39 26397.87 20379.00 32298.61 24296.78 11190.99 27797.07 230
MVS_030492.81 28892.01 29095.23 28397.46 22991.33 29398.17 21398.81 7691.13 29293.80 24995.68 32966.08 35798.06 30290.79 27896.13 21196.32 312
ITE_SJBPF95.44 27997.42 23491.32 29497.50 28895.09 13593.59 25398.35 15881.70 30498.88 21989.71 29693.39 24896.12 317
SCA95.46 17495.13 17596.46 23797.67 21191.29 29597.33 28097.60 27794.68 15196.92 15097.10 26083.97 29098.89 21792.59 24398.32 15099.20 130
pmmvs691.77 29690.63 30095.17 28694.69 33791.24 29698.67 13697.92 26286.14 33789.62 32497.56 23475.79 34198.34 27690.75 28084.56 33695.94 322
test_040291.32 29990.27 30494.48 30896.60 28491.12 29798.50 16397.22 30586.10 33888.30 33496.98 27977.65 33397.99 30878.13 35492.94 25594.34 343
MIMVSNet189.67 31488.28 31893.82 31692.81 35091.08 29898.01 22897.45 29387.95 32887.90 33695.87 32267.63 35594.56 35578.73 35388.18 31395.83 324
miper_lstm_enhance94.33 24794.07 22895.11 28897.75 20590.97 29997.22 28798.03 25491.67 27192.76 28296.97 28090.03 16897.78 31992.51 24889.64 29196.56 288
ppachtmachnet_test93.22 28292.63 28294.97 29295.45 32690.84 30096.88 31297.88 26490.60 29792.08 30297.26 25188.08 21597.86 31885.12 33290.33 28296.22 314
USDC93.33 27992.71 28095.21 28496.83 27390.83 30196.91 30697.50 28893.84 18490.72 31598.14 18077.69 33198.82 22689.51 30193.21 25295.97 321
DWT-MVSNet_test94.82 21594.36 21396.20 25197.35 23990.79 30298.34 18296.57 33392.91 23095.33 19396.44 30882.00 30199.12 17994.52 18495.78 21698.70 175
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 33490.78 30397.19 28997.46 29187.60 32972.41 35895.72 32686.51 24496.71 34185.92 32686.80 32996.56 288
PatchmatchNetpermissive95.71 16495.52 15696.29 24897.58 21890.72 30496.84 31597.52 28694.06 17197.08 14096.96 28289.24 18398.90 21692.03 25998.37 14699.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
YYNet190.70 30789.39 31094.62 30494.79 33590.65 30597.20 28897.46 29187.54 33072.54 35795.74 32386.51 24496.66 34286.00 32586.76 33096.54 291
JIA-IIPM93.35 27792.49 28495.92 26196.48 29190.65 30595.01 34296.96 31685.93 33996.08 18387.33 35587.70 22598.78 23091.35 27195.58 21798.34 194
IterMVS-SCA-FT94.11 26293.87 24294.85 29697.98 19490.56 30797.18 29098.11 23693.75 18892.58 28897.48 23883.97 29097.41 32892.48 25091.30 27196.58 284
EPNet_dtu95.21 19394.95 18595.99 25796.17 30290.45 30898.16 21497.27 30396.77 5593.14 27398.33 16390.34 16398.42 26285.57 32898.81 12799.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS94.09 26493.85 24494.80 29997.99 19290.35 30997.18 29098.12 23393.68 19892.46 29597.34 24684.05 28897.41 32892.51 24891.33 27096.62 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu96.29 14096.56 12095.51 27597.89 19990.22 31098.80 10898.10 23896.57 6496.45 17596.66 29890.81 15398.91 21395.72 14797.99 15897.40 221
testgi93.06 28692.45 28594.88 29596.43 29389.90 31198.75 11497.54 28595.60 10391.63 30897.91 19874.46 34797.02 33386.10 32493.67 23997.72 215
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34189.83 31297.13 29598.67 12993.69 19685.83 34496.19 31775.15 34396.74 33889.14 30679.41 34796.00 320
TinyColmap92.31 29391.53 29494.65 30396.92 26689.75 31396.92 30496.68 33090.45 30189.62 32497.85 20676.06 34098.81 22786.74 32092.51 25895.41 330
test-LLR95.10 19994.87 18895.80 26796.77 27489.70 31496.91 30695.21 34395.11 13294.83 20395.72 32687.71 22398.97 20293.06 22898.50 14098.72 173
test-mter94.08 26593.51 26495.80 26796.77 27489.70 31496.91 30695.21 34392.89 23194.83 20395.72 32677.69 33198.97 20293.06 22898.50 14098.72 173
our_test_393.65 27493.30 27094.69 30195.45 32689.68 31696.91 30697.65 27391.97 26291.66 30796.88 28889.67 17497.93 31288.02 31491.49 26896.48 303
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24799.00 11089.54 31797.43 27098.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2899.77 2699.72 40
MS-PatchMatch93.84 27193.63 25994.46 31096.18 30189.45 31897.76 25298.27 20892.23 25592.13 30197.49 23779.50 31898.69 23489.75 29599.38 10295.25 332
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31793.08 34889.42 31997.91 23796.89 32278.58 35285.86 34394.69 33769.48 35398.29 28577.13 35593.29 25193.36 352
SixPastTwentyTwo93.34 27892.86 27794.75 30095.67 31889.41 32098.75 11496.67 33193.89 18190.15 32198.25 17380.87 31098.27 28890.90 27790.64 28096.57 286
K. test v392.55 29191.91 29394.48 30895.64 31989.24 32199.07 5194.88 34794.04 17286.78 33997.59 23077.64 33497.64 32292.08 25589.43 29796.57 286
OurMVSNet-221017-094.21 25494.00 23394.85 29695.60 32089.22 32298.89 8697.43 29595.29 12192.18 30098.52 14282.86 29898.59 24693.46 21791.76 26596.74 264
TESTMET0.1,194.18 25893.69 25795.63 27396.92 26689.12 32396.91 30694.78 34893.17 21994.88 20096.45 30778.52 32498.92 21293.09 22798.50 14098.85 166
CostFormer94.95 20994.73 19395.60 27497.28 24289.06 32497.53 26696.89 32289.66 31696.82 15596.72 29686.05 25498.95 21095.53 15596.13 21198.79 170
tpm294.19 25693.76 25295.46 27897.23 24589.04 32597.31 28296.85 32687.08 33296.21 18096.79 29483.75 29698.74 23292.43 25196.23 20898.59 184
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 33689.00 32698.13 21797.81 26689.22 32285.32 34696.46 30667.71 35498.42 26287.89 31693.82 23895.08 337
DIV-MVS_2432*160090.38 30889.38 31193.40 32192.85 34988.94 32797.95 23397.94 26090.35 30490.25 31993.96 34379.82 31695.94 34784.62 33776.69 35195.33 331
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32391.94 35188.77 32894.92 34598.30 20584.30 34682.30 35090.04 35263.96 35997.25 33085.85 32774.47 35593.93 350
ADS-MVSNet294.58 23294.40 21295.11 28898.00 19088.74 32996.04 33097.30 30090.15 30696.47 17396.64 30187.89 21997.56 32590.08 28897.06 18099.02 154
LF4IMVS93.14 28592.79 27994.20 31395.88 31388.67 33097.66 25997.07 30993.81 18791.71 30697.65 22477.96 33098.81 22791.47 27091.92 26495.12 335
tpmvs94.60 22994.36 21395.33 28297.46 22988.60 33196.88 31297.68 27191.29 28593.80 24996.42 30988.58 20099.24 16691.06 27496.04 21398.17 201
tpmrst95.63 16995.69 15195.44 27997.54 22388.54 33296.97 30197.56 27993.50 20697.52 13196.93 28689.49 17599.16 17395.25 16496.42 19898.64 182
Anonymous2024052191.18 30190.44 30293.42 31993.70 34588.47 33398.94 7797.56 27988.46 32689.56 32695.08 33577.15 33796.97 33483.92 33889.55 29494.82 341
lessismore_v094.45 31194.93 33388.44 33491.03 36286.77 34097.64 22676.23 33998.42 26290.31 28585.64 33596.51 299
MDTV_nov1_ep1395.40 15897.48 22788.34 33596.85 31497.29 30193.74 19097.48 13297.26 25189.18 18499.05 19091.92 26297.43 176
new_pmnet90.06 31189.00 31593.22 32594.18 33988.32 33696.42 32896.89 32286.19 33685.67 34593.62 34477.18 33697.10 33281.61 34489.29 29994.23 344
CL-MVSNet_2432*160090.11 31089.14 31393.02 32691.86 35288.23 33796.51 32698.07 24790.49 29890.49 31894.41 33884.75 27595.34 35080.79 34674.95 35395.50 329
test20.0390.89 30590.38 30392.43 32893.48 34688.14 33898.33 18497.56 27993.40 21087.96 33596.71 29780.69 31394.13 35679.15 35186.17 33295.01 340
tpm cat193.36 27692.80 27895.07 29097.58 21887.97 33996.76 31897.86 26582.17 34993.53 25696.04 32086.13 25299.13 17889.24 30595.87 21498.10 203
tpm94.13 26093.80 24795.12 28796.50 28987.91 34097.44 26895.89 33992.62 23896.37 17796.30 31184.13 28798.30 28293.24 22391.66 26799.14 141
LCM-MVSNet-Re95.22 19295.32 16794.91 29398.18 17887.85 34198.75 11495.66 34095.11 13288.96 32996.85 29190.26 16697.65 32195.65 15298.44 14399.22 129
gm-plane-assit95.88 31387.47 34289.74 31596.94 28599.19 17193.32 222
Anonymous2023120691.66 29791.10 29793.33 32294.02 34487.35 34398.58 14897.26 30490.48 29990.16 32096.31 31083.83 29496.53 34479.36 35089.90 28896.12 317
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19287.29 34494.84 34698.50 16692.06 26089.86 32295.19 33279.81 31799.39 15692.27 25269.79 35698.33 195
pmmvs386.67 32384.86 32692.11 33188.16 35787.19 34596.63 32294.75 34979.88 35187.22 33892.75 34866.56 35695.20 35281.24 34576.56 35293.96 349
dp94.15 25993.90 24094.90 29497.31 24186.82 34696.97 30197.19 30691.22 28996.02 18596.61 30385.51 26299.02 19790.00 29294.30 22198.85 166
new-patchmatchnet88.50 31987.45 32291.67 33290.31 35685.89 34797.16 29397.33 29989.47 31883.63 34992.77 34776.38 33895.06 35382.70 34177.29 35094.06 348
Patchmatch-RL test91.49 29890.85 29993.41 32091.37 35384.40 34892.81 35395.93 33891.87 26587.25 33794.87 33688.99 19096.53 34492.54 24782.00 33999.30 121
MDTV_nov1_ep13_2view84.26 34996.89 31190.97 29497.90 10989.89 17093.91 20499.18 137
CVMVSNet95.43 17796.04 13893.57 31897.93 19683.62 35098.12 21898.59 14295.68 9996.56 16599.02 8087.51 22797.51 32793.56 21697.44 17599.60 78
EU-MVSNet93.66 27294.14 22592.25 33095.96 31183.38 35198.52 15898.12 23394.69 15092.61 28798.13 18187.36 23296.39 34691.82 26390.00 28796.98 235
PM-MVS87.77 32086.55 32491.40 33391.03 35583.36 35296.92 30495.18 34591.28 28686.48 34293.42 34553.27 36196.74 33889.43 30381.97 34094.11 346
DSMNet-mixed92.52 29292.58 28392.33 32994.15 34082.65 35398.30 19294.26 35489.08 32392.65 28695.73 32485.01 27095.76 34886.24 32397.76 16798.59 184
MVS-HIRNet89.46 31788.40 31692.64 32797.58 21882.15 35494.16 35293.05 36075.73 35590.90 31382.52 35779.42 31998.33 27783.53 34098.68 12997.43 219
RPSCF94.87 21495.40 15893.26 32498.89 11882.06 35598.33 18498.06 25290.30 30596.56 16599.26 4287.09 23599.49 14693.82 20796.32 20198.24 198
Gipumacopyleft78.40 32676.75 32983.38 34095.54 32280.43 35679.42 36297.40 29764.67 35873.46 35680.82 35945.65 36393.14 35766.32 35987.43 32076.56 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33493.19 34776.56 35797.00 30098.35 19380.97 35081.57 35197.75 21674.75 34598.61 24289.85 29393.63 24194.17 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 33586.66 35875.78 35892.66 35496.72 32886.55 34192.50 34946.01 36297.90 31390.32 28482.09 33894.80 342
PMMVS277.95 32775.44 33185.46 33882.54 36174.95 35994.23 35193.08 35972.80 35674.68 35587.38 35436.36 36791.56 35973.95 35763.94 35989.87 354
DeepMVS_CXcopyleft86.78 33697.09 25872.30 36095.17 34675.92 35484.34 34895.19 33270.58 35295.35 34979.98 34989.04 30392.68 353
LCM-MVSNet78.70 32576.24 33086.08 33777.26 36671.99 36194.34 35096.72 32861.62 35976.53 35489.33 35333.91 36892.78 35881.85 34374.60 35493.46 351
ANet_high69.08 32965.37 33380.22 34265.99 36871.96 36290.91 35790.09 36382.62 34749.93 36578.39 36029.36 36981.75 36262.49 36038.52 36386.95 357
MVEpermissive62.14 2263.28 33459.38 33774.99 34474.33 36765.47 36385.55 35980.50 36952.02 36251.10 36475.00 36310.91 37380.50 36351.60 36253.40 36078.99 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet87.12 32287.77 32185.17 33995.46 32561.92 36497.37 27570.66 37085.83 34088.73 33396.04 32085.33 26797.76 32080.02 34790.48 28195.84 323
FPMVS77.62 32877.14 32879.05 34379.25 36460.97 36595.79 33595.94 33765.96 35767.93 36094.40 33937.73 36688.88 36168.83 35888.46 30987.29 355
tmp_tt68.90 33066.97 33274.68 34550.78 37059.95 36687.13 35883.47 36838.80 36562.21 36196.23 31464.70 35876.91 36688.91 30830.49 36487.19 356
E-PMN64.94 33264.25 33467.02 34782.28 36259.36 36791.83 35685.63 36652.69 36160.22 36277.28 36141.06 36580.12 36446.15 36341.14 36161.57 362
EMVS64.07 33363.26 33666.53 34881.73 36358.81 36891.85 35584.75 36751.93 36359.09 36375.13 36243.32 36479.09 36542.03 36439.47 36261.69 361
test_method79.03 32478.17 32781.63 34186.06 35954.40 36982.75 36196.89 32239.54 36480.98 35295.57 33158.37 36094.73 35484.74 33678.61 34895.75 325
PMVScopyleft61.03 2365.95 33163.57 33573.09 34657.90 36951.22 37085.05 36093.93 35854.45 36044.32 36683.57 35613.22 37089.15 36058.68 36181.00 34478.91 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 33530.18 33930.16 34978.61 36543.29 37166.79 36314.21 37117.31 36614.82 36911.93 36911.55 37241.43 36737.08 36519.30 3655.76 365
test12320.95 33823.72 34112.64 35013.54 3728.19 37296.55 3256.13 3737.48 36816.74 36837.98 36612.97 3716.05 36816.69 3665.43 36723.68 363
testmvs21.48 33724.95 34011.09 35114.89 3716.47 37396.56 3249.87 3727.55 36717.93 36739.02 3659.43 3745.90 36916.56 36712.72 36620.91 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3520.00 3730.00 3740.00 36498.59 1420.00 3690.00 37098.61 13090.60 1590.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37094.51 850.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.20 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.43 1480.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 2099.80 1799.83 5
9.1498.06 4999.47 4898.71 12698.82 7094.36 16499.16 2699.29 3996.05 3299.81 7197.00 9099.71 50
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1799.86 199.85 2
GSMVS99.20 130
sam_mvs189.45 17799.20 130
sam_mvs88.99 190
MTGPAbinary98.74 104
test_post196.68 32130.43 36887.85 22298.69 23492.59 243
test_post31.83 36788.83 19798.91 213
patchmatchnet-post95.10 33489.42 17898.89 217
MTMP98.89 8694.14 356
test9_res96.39 12599.57 7599.69 51
agg_prior295.87 14199.57 7599.68 57
test_prior297.80 24996.12 8397.89 11098.69 12295.96 3696.89 9999.60 68
旧先验297.57 26591.30 28498.67 5999.80 8095.70 151
新几何297.64 260
无先验97.58 26498.72 11091.38 27899.87 4493.36 22099.60 78
原ACMM297.67 258
testdata299.89 3591.65 268
segment_acmp96.85 11
testdata197.32 28196.34 74
plane_prior598.56 15099.03 19496.07 13194.27 22296.92 240
plane_prior498.28 168
plane_prior298.80 10897.28 31
plane_prior197.37 238
n20.00 374
nn0.00 374
door-mid94.37 352
test1198.66 132
door94.64 350
HQP-NCC97.20 24898.05 22496.43 7094.45 214
ACMP_Plane97.20 24898.05 22496.43 7094.45 214
BP-MVS95.30 160
HQP4-MVS94.45 21498.96 20696.87 251
HQP3-MVS98.46 17194.18 226
HQP2-MVS86.75 241
ACMMP++_ref92.97 254
ACMMP++93.61 242
Test By Simon94.64 80