This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet97.28 10096.87 10398.51 9294.98 32696.14 13998.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26192.30 28199.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
UGNet96.78 12196.30 12798.19 11798.24 16695.89 15798.88 8598.93 3797.39 2396.81 15297.84 20182.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27398.51 16197.29 2898.66 6097.88 19694.51 8599.90 3397.87 4299.17 10997.39 217
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
HQP_MVS96.14 14295.90 13996.85 19597.42 22994.60 21198.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 234
plane_prior298.80 10497.28 29
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
CANet_DTU96.96 11496.55 11998.21 11498.17 17696.07 14197.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17097.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19698.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
plane_prior394.61 20997.02 4795.34 186
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19897.64 7699.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24798.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
ETV-MVS97.96 5897.81 5998.40 10398.42 15297.27 9098.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
plane_prior94.60 21198.44 16596.74 5594.22 221
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
OPM-MVS95.69 16295.33 16296.76 19996.16 29994.63 20698.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19390.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
mvs-test196.60 12596.68 11596.37 23697.89 19391.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
HQP-MVS95.72 15995.40 15496.69 20597.20 24394.25 22498.05 21898.46 17196.43 6794.45 20997.73 21086.75 23698.96 20195.30 15694.18 22396.86 247
casdiffmvs97.63 7797.41 8098.28 10898.33 16196.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
testdata197.32 27596.34 71
baseline97.64 7697.44 7998.25 11298.35 15696.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
diffmvs97.58 8297.40 8198.13 12098.32 16395.81 15998.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
FIs96.51 13096.12 13397.67 15097.13 25097.54 8199.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
EIA-MVS97.75 7097.58 6798.27 10998.38 15496.44 12699.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
PS-MVSNAJss96.43 13296.26 12996.92 19295.84 31095.08 18699.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23696.88 9893.45 24397.06 226
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25997.27 9099.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
jajsoiax95.45 17195.03 17596.73 20195.42 32394.63 20699.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23496.95 9194.04 22896.91 239
mvs_tets95.41 17595.00 17696.65 20795.58 31694.42 21699.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23597.09 8494.00 23096.91 239
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
CVMVSNet95.43 17296.04 13593.57 31397.93 19083.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
VPNet94.99 20094.19 21597.40 16697.16 24896.57 12098.71 12298.97 3095.67 9694.84 19698.24 17080.36 30898.67 23396.46 11687.32 31796.96 231
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
testgi93.06 28092.45 27994.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30297.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25897.47 8398.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31396.79 253
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20291.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
bset_n11_16_dypcd94.89 20894.27 21196.76 19994.41 33395.15 18295.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
CLD-MVS95.62 16595.34 16096.46 23197.52 22193.75 23797.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
DU-MVS95.42 17394.76 18697.40 16696.53 28296.97 10298.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 234
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17598.59 13399.47 98
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
baseline195.84 15495.12 17198.01 12798.49 15095.98 14298.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
OurMVSNet-221017-094.21 24894.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29498.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
ACMM93.85 995.69 16295.38 15896.61 21297.61 20993.84 23398.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26796.97 10298.74 11399.24 1095.16 12493.88 23997.72 21291.68 13198.31 27595.81 13887.25 31996.92 234
RRT_MVS96.04 14595.53 15197.56 15897.07 25497.32 8798.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23997.27 9098.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 242
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
test0.0.03 194.08 25993.51 25895.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17487.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29898.88 21489.71 29193.39 24596.12 312
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28796.36 13099.03 5699.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 233
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
MVSFormer97.57 8397.49 7597.84 13598.07 18195.76 16099.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
test_djsdf96.00 14795.69 14896.93 19095.72 31295.49 16999.47 298.40 18294.98 13494.58 20497.86 19889.16 18098.41 26496.91 9294.12 22796.88 243
NR-MVSNet94.98 20294.16 21897.44 16296.53 28297.22 9598.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17787.40 31696.92 234
XVG-ACMP-BASELINE94.54 22994.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31599.11 18294.05 19893.85 23496.48 298
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17099.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
ACMP93.49 1095.34 18194.98 17896.43 23397.67 20593.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSTER96.06 14495.72 14397.08 18198.23 16795.93 15398.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
jason97.32 9997.08 9398.06 12597.45 22895.59 16397.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
RRT_test8_iter0594.56 22794.19 21595.67 26797.60 21091.34 28698.93 7598.42 17994.75 14393.39 25897.87 19779.00 31698.61 23696.78 10790.99 27497.07 225
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
EU-MVSNet93.66 26694.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
SCA95.46 16995.13 17096.46 23197.67 20591.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
LPG-MVS_test95.62 16595.34 16096.47 22897.46 22493.54 24498.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
LGP-MVS_train96.47 22897.46 22493.54 24498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16394.64 20598.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
ET-MVSNet_ETH3D94.13 25492.98 26997.58 15698.22 16896.20 13697.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS97.44 9197.22 8898.12 12298.07 18195.76 16097.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17598.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
MVS_Test97.28 10097.00 9798.13 12098.33 16195.97 14798.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
tttt051796.07 14395.51 15397.78 13998.41 15394.84 19799.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
WR-MVS95.15 19194.46 20197.22 17196.67 27796.45 12598.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 241
EPMVS94.99 20094.48 19996.52 22497.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21290.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053096.01 14695.36 15997.97 12998.38 15495.52 16898.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
K. test v392.55 28691.91 28794.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32897.64 31792.08 25089.43 29396.57 281
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18193.60 24095.65 322
mvs_anonymous96.70 12396.53 12197.18 17498.19 17293.78 23498.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
GA-MVS94.81 21194.03 22497.14 17697.15 24993.86 23296.76 31297.58 27394.00 17294.76 20197.04 26880.91 30398.48 24991.79 25996.25 20499.09 144
ACMH+92.99 1494.30 24393.77 24495.88 26097.81 19792.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30599.05 18992.75 23492.40 25696.55 285
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15197.00 10198.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
TAMVS97.02 11296.79 10697.70 14798.06 18395.31 17798.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
CP-MVSNet94.94 20694.30 21096.83 19696.72 27495.56 16599.11 4298.95 3493.89 17792.42 29097.90 19487.19 22898.12 29194.32 18788.21 30796.82 252
SixPastTwentyTwo93.34 27292.86 27194.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30498.27 28390.90 27290.64 27796.57 281
WR-MVS_H95.05 19794.46 20196.81 19796.86 26695.82 15899.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31096.38 303
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23698.74 10293.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
USDC93.33 27392.71 27495.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32598.82 22189.51 29693.21 24995.97 316
AUN-MVS94.53 23093.73 24896.92 19298.50 14993.52 24698.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
LF4IMVS93.14 27992.79 27394.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30097.65 21877.96 32498.81 22291.47 26591.92 26195.12 329
IterMVS-SCA-FT94.11 25693.87 23794.85 29197.98 18990.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
anonymousdsp95.42 17394.91 18196.94 18995.10 32595.90 15699.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
BH-untuned95.95 14995.72 14396.65 20798.55 14692.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
Effi-MVS+97.12 10996.69 11398.39 10498.19 17296.72 11397.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
IterMVS-LS95.46 16995.21 16796.22 24598.12 17893.72 24098.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17290.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14895.83 14196.36 23797.93 19093.70 24198.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17193.46 24196.84 249
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20788.86 19199.69 11994.26 19099.01 11399.15 138
PS-CasMVS94.67 22093.99 23096.71 20296.68 27695.26 17899.13 3999.03 2593.68 19492.33 29197.95 19085.35 26098.10 29293.59 21088.16 30996.79 253
IterMVS94.09 25893.85 23994.80 29497.99 18790.35 30497.18 28498.12 23093.68 19492.46 28997.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FMVSNet394.97 20394.26 21297.11 17998.18 17496.62 11598.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18495.98 14298.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17299.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
PEN-MVS94.42 23793.73 24896.49 22696.28 29394.84 19799.17 3399.00 2793.51 20192.23 29397.83 20486.10 24897.90 30892.55 24186.92 32396.74 259
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
131496.25 14195.73 14297.79 13897.13 25095.55 16798.19 20298.59 14193.47 20392.03 29797.82 20591.33 14299.49 14594.62 17498.44 14198.32 194
baseline295.11 19394.52 19796.87 19496.65 27893.56 24398.27 19194.10 35093.45 20492.02 29897.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
ACMH92.88 1694.55 22893.95 23296.34 23997.63 20893.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29799.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30794.13 34979.15 34486.17 32895.01 334
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
IB-MVS91.98 1793.27 27491.97 28597.19 17397.47 22393.41 25197.09 29095.99 32893.32 20992.47 28895.73 31978.06 32399.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
XXY-MVS95.20 18994.45 20397.46 16196.75 27296.56 12198.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 231
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
ZD-MVS99.46 5198.70 1998.79 9193.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
TESTMET0.1,194.18 25293.69 25195.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31898.92 20793.09 22398.50 13898.85 163
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17597.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
DTE-MVSNet93.98 26393.26 26696.14 24896.06 30294.39 21899.20 2998.86 6193.06 21891.78 29997.81 20685.87 25297.58 31990.53 27786.17 32896.46 300
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18099.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
thisisatest051595.61 16794.89 18297.76 14198.15 17795.15 18296.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17297.73 16698.68 175
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 17995.78 21398.70 172
test-mter94.08 25993.51 25895.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32598.97 19893.06 22498.50 13898.72 170
BH-w/o95.38 17695.08 17396.26 24498.34 16091.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
PMMVS96.60 12596.33 12697.41 16497.90 19293.93 23097.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
v2v48294.69 21594.03 22496.65 20796.17 29794.79 20298.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
eth_miper_zixun_eth94.68 21794.41 20695.47 27297.64 20791.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
tpm94.13 25493.80 24195.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
v14894.29 24493.76 24695.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
CR-MVSNet94.76 21494.15 21996.59 21597.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
GBi-Net94.49 23393.80 24196.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 23097.07 26281.16 30097.95 30492.08 25092.14 25796.72 262
test194.49 23393.80 24196.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 23097.07 26281.16 30097.95 30492.08 25092.14 25796.72 262
FMVSNet294.47 23593.61 25497.04 18298.21 16996.43 12798.79 10898.27 20592.46 23793.50 25597.09 25981.16 30098.00 30291.09 26791.93 26096.70 266
cl-mvsnet294.68 21794.19 21596.13 24998.11 17993.60 24296.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20998.76 9892.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16597.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
pm-mvs193.94 26493.06 26896.59 21596.49 28595.16 18098.95 7298.03 24992.32 24691.08 30697.84 20184.54 27498.41 26492.16 24886.13 33096.19 311
V4294.78 21394.14 22096.70 20496.33 29295.22 17998.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
TR-MVS94.94 20694.20 21497.17 17597.75 19994.14 22697.59 25797.02 30892.28 24895.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20493.31 25597.02 29398.07 24292.23 24993.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
cl_fuxian94.79 21294.43 20595.89 25997.75 19993.12 26297.16 28798.03 24992.23 24993.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
MS-PatchMatch93.84 26593.63 25394.46 30596.18 29689.45 31397.76 24698.27 20592.23 24992.13 29597.49 23179.50 31298.69 22989.75 29099.38 10095.25 326
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 23996.61 31798.08 24092.20 25293.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24998.07 24292.10 25394.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18787.29 33894.84 34098.50 16692.06 25489.86 31795.19 32679.81 31199.39 15592.27 24769.79 34998.33 193
v7n94.19 25093.43 26196.47 22895.90 30794.38 21999.26 1898.34 19291.99 25592.76 27797.13 25488.31 20298.52 24789.48 29787.70 31296.52 291
our_test_393.65 26893.30 26494.69 29695.45 32189.68 31196.91 30097.65 26891.97 25691.66 30196.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
v894.47 23593.77 24496.57 21896.36 29094.83 19999.05 5298.19 21591.92 25793.16 26596.97 27588.82 19398.48 24991.69 26287.79 31196.39 302
testdata98.26 11199.20 9795.36 17398.68 12091.89 25898.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 25987.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
v114494.59 22593.92 23396.60 21496.21 29494.78 20398.59 14198.14 22891.86 26094.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
cl-mvsnet194.52 23194.03 22495.99 25297.57 21693.38 25397.05 29197.94 25591.74 26192.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16595.97 14798.58 14398.25 21091.74 26195.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
cl-mvsnet_94.51 23294.01 22796.02 25197.58 21293.40 25297.05 29197.96 25491.73 26392.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
LTVRE_ROB92.95 1594.60 22393.90 23596.68 20697.41 23294.42 21698.52 15398.59 14191.69 26491.21 30498.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance94.33 24194.07 22395.11 28397.75 19990.97 29497.22 28198.03 24991.67 26592.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26698.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
MVP-Stereo94.28 24693.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26790.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119294.32 24293.58 25596.53 22396.10 30094.45 21598.50 15898.17 22391.54 26894.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 26988.83 32697.84 20177.31 32999.09 18692.79 23377.98 34295.04 332
v14419294.39 23993.70 25096.48 22796.06 30294.35 22098.58 14398.16 22591.45 27094.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
Baseline_NR-MVSNet94.35 24093.81 24095.96 25596.20 29594.05 22898.61 14096.67 32491.44 27193.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
无先验97.58 25898.72 10991.38 27299.87 4493.36 21699.60 78
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25998.59 14198.18 21891.36 27393.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
TestCases96.99 18499.25 8693.21 25998.18 21891.36 27393.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
v1094.29 24493.55 25696.51 22596.39 28994.80 20198.99 6498.19 21591.35 27593.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
v192192094.20 24993.47 26096.40 23595.98 30594.08 22798.52 15398.15 22691.33 27694.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17396.83 31098.37 18791.32 27794.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
旧先验297.57 25991.30 27898.67 5899.80 7995.70 147
tpmvs94.60 22394.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 27993.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28086.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
MIMVSNet93.26 27592.21 28296.41 23497.73 20393.13 26195.65 33297.03 30691.27 28194.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
PAPM94.95 20494.00 22897.78 13997.04 25595.65 16296.03 32698.25 21091.23 28294.19 22697.80 20791.27 14498.86 21782.61 33597.61 16998.84 165
dp94.15 25393.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28396.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
UniMVSNet_ETH3D94.24 24793.33 26396.97 18797.19 24693.38 25398.74 11398.57 14791.21 28493.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
v124094.06 26193.29 26596.34 23996.03 30493.90 23198.44 16598.17 22391.18 28594.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
MVS_030492.81 28392.01 28495.23 27897.46 22491.33 28898.17 20798.81 7691.13 28693.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
tfpnnormal93.66 26692.70 27596.55 22296.94 26095.94 15098.97 6899.19 1591.04 28791.38 30397.34 24084.94 26698.61 23685.45 32589.02 30095.11 330
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28897.90 10489.89 16893.91 20099.18 136
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20498.90 7896.73 32090.86 28989.46 32197.86 19885.62 25598.09 29486.45 31781.12 33895.71 320
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30590.66 29096.49 16898.80 11078.13 32299.83 5596.21 12595.36 21599.44 105
ppachtmachnet_test93.22 27692.63 27694.97 28795.45 32190.84 29596.88 30697.88 25990.60 29192.08 29697.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29290.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29390.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
VDDNet95.36 17994.53 19697.86 13498.10 18095.13 18498.85 9097.75 26490.46 29498.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29589.62 31997.85 20076.06 33498.81 22286.74 31592.51 25595.41 324
pmmvs494.69 21593.99 23096.81 19795.74 31195.94 15097.40 26597.67 26790.42 29693.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
FMVSNet193.19 27892.07 28396.56 21997.54 21895.00 18898.82 9798.18 21890.38 29792.27 29297.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29890.25 31493.96 33679.82 31095.94 34184.62 33176.69 34495.33 325
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 29996.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
ADS-MVSNet294.58 22694.40 20795.11 28398.00 18588.74 32496.04 32497.30 29490.15 30096.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21098.00 18591.91 27596.04 32497.74 26590.15 30096.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30298.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
新几何199.16 5099.34 6298.01 6298.69 11790.06 30398.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8799.21 2898.97 3089.96 30491.14 30599.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20299.29 7893.24 25898.58 14398.11 23289.92 30593.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30688.95 32494.38 33378.28 32096.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30688.95 32494.38 33378.28 32096.82 33084.83 32868.05 35095.21 327
QAPM96.29 13795.40 15498.96 6797.85 19597.60 7999.23 2198.93 3789.76 30893.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
gm-plane-assit95.88 30887.47 33689.74 30996.94 28099.19 17193.32 218
pmmvs593.65 26892.97 27095.68 26695.49 31992.37 26898.20 19897.28 29689.66 31092.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31096.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31283.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
Patchmatch-test94.42 23793.68 25296.63 21097.60 21091.76 27894.83 34197.49 28489.45 31394.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 31394.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31590.86 30895.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31685.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
DSMNet-mixed92.52 28792.58 27792.33 32394.15 33582.65 34798.30 18694.26 34789.08 31792.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31884.91 34193.13 33978.32 31996.74 33288.70 30481.81 33794.09 340
test22299.23 9397.17 9797.40 26598.66 13188.68 31998.05 8698.96 9394.14 9499.53 8599.61 75
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32071.17 35296.13 31379.22 31496.63 33783.65 33286.27 32796.52 291
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32187.90 33095.87 31767.63 34994.56 34878.73 34688.18 30895.83 319
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32272.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32372.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
Patchmtry93.22 27692.35 28095.84 26196.77 26993.09 26394.66 34297.56 27487.37 32492.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
tpm294.19 25093.76 24695.46 27397.23 24089.04 32097.31 27696.85 31987.08 32596.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
PatchT93.06 28091.97 28596.35 23896.69 27592.67 26694.48 34397.08 30286.62 32697.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17898.64 13686.62 32696.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121194.10 25793.26 26696.61 21299.11 10494.28 22199.01 6098.88 4986.43 32892.81 27597.57 22681.66 29998.68 23294.83 16889.02 30096.88 243
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 32985.67 33993.62 33777.18 33097.10 32781.61 33789.29 29594.23 337
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33089.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33188.30 32896.98 27477.65 32797.99 30378.13 34792.94 25294.34 336
JIA-IIPM93.35 27192.49 27895.92 25696.48 28690.65 30095.01 33696.96 31085.93 33296.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33388.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
Anonymous2024052995.10 19494.22 21397.75 14299.01 10894.26 22398.87 8798.83 6885.79 33496.64 15798.97 8778.73 31799.85 4996.27 12294.89 21699.12 142
cascas94.63 22293.86 23896.93 19096.91 26394.27 22296.00 32798.51 16185.55 33594.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
gg-mvs-nofinetune92.21 28990.58 29697.13 17796.75 27295.09 18595.85 32889.40 35785.43 33694.50 20781.98 35180.80 30698.40 27092.16 24898.33 14797.88 203
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33797.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PCF-MVS93.45 1194.68 21793.43 26198.42 10198.62 14196.77 11195.48 33598.20 21484.63 33893.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 33982.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
test_part192.87 28291.72 28896.32 24197.55 21793.50 24799.04 5398.74 10283.31 34090.81 30997.70 21376.61 33198.60 24094.43 18287.30 31896.85 248
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
RPMNet92.81 28391.34 29197.24 17097.00 25693.43 24994.96 33798.80 8682.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
tpm cat193.36 27092.80 27295.07 28597.58 21287.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 20974.75 33998.61 23689.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
MVS94.67 22093.54 25798.08 12396.88 26596.56 12198.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21282.15 34894.16 34693.05 35375.73 34990.90 30782.52 35079.42 31398.33 27283.53 33398.68 12797.43 214
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31576.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
MTGPAbinary98.74 102
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32889.42 17398.89 212
GG-mvs-BLEND96.59 21596.34 29194.98 19196.51 32088.58 35893.10 27094.34 33580.34 30998.05 29889.53 29596.99 17996.74 259
MTMP98.89 8294.14 349
test9_res96.39 12199.57 7599.69 51
agg_prior295.87 13799.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 238
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
新几何297.64 254
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
原ACMM297.67 252
testdata299.89 3591.65 263
segment_acmp96.85 11
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22994.63 206
plane_prior697.35 23494.61 20987.09 230
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 234
plane_prior498.28 164
plane_prior197.37 233
n20.00 367
nn0.00 367
door-mid94.37 345
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
test1198.66 131
door94.64 343
HQP5-MVS94.25 224
BP-MVS95.30 156
HQP4-MVS94.45 20998.96 20196.87 245
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21497.73 210
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80