This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1799.86 199.85 2
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8998.60 6799.13 6496.05 3299.94 397.77 5499.86 199.77 20
CHOSEN 280x42097.18 10897.18 9197.20 17798.81 12693.27 26195.78 33699.15 1895.25 12496.79 15898.11 18292.29 11799.07 18998.56 1099.85 399.25 127
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8298.85 6497.28 3199.72 399.39 1496.63 1597.60 32398.17 3199.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 698.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 598.82 7094.46 16298.94 3999.20 5295.16 6999.74 10797.58 6999.85 399.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5499.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6599.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15598.61 6698.97 8795.13 7099.77 10197.65 6499.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6098.87 5597.65 999.73 199.48 697.53 499.94 398.43 2099.81 1099.70 48
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2699.81 1099.83 5
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9598.31 8499.10 6995.46 5199.93 1597.57 7299.81 1099.74 33
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 7098.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1799.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 7098.88 4999.94 398.47 1799.81 1099.84 4
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7498.80 8793.67 20099.37 1399.52 396.52 1799.89 3598.06 3699.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8199.23 4595.46 5199.94 397.42 7899.81 1099.77 20
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 2099.80 1799.83 5
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17298.78 9594.10 17097.69 12099.42 1295.25 6699.92 2198.09 3599.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15698.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8298.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 8098.94 3999.17 5695.91 3999.94 397.55 7399.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8598.93 4399.19 5595.70 4499.94 397.62 6699.79 1999.78 13
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8598.94 3999.17 5696.06 3099.92 2197.62 6699.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6998.96 3295.65 10298.94 3999.17 5696.06 3099.92 2197.21 8599.78 2399.75 28
MP-MVScopyleft98.33 5098.01 5399.28 3599.75 398.18 5399.22 2798.79 9296.13 8297.92 10899.23 4594.54 8499.94 396.74 11399.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6699.49 595.43 11299.03 3399.32 3395.56 4799.94 396.80 10999.77 2699.78 13
APD-MVScopyleft98.35 4698.00 5499.42 1599.51 3998.72 1798.80 10898.82 7094.52 15999.23 2099.25 4395.54 4999.80 8096.52 11999.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 11796.27 13098.92 6999.50 4197.63 7898.85 9498.90 4484.80 34497.77 11399.11 6792.84 10999.66 12394.85 17199.77 2699.47 98
CPTT-MVS97.72 7497.32 8698.92 6999.64 2897.10 10199.12 4398.81 7692.34 24998.09 8899.08 7693.01 10899.92 2196.06 13499.77 2699.75 28
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24799.00 11089.54 31797.43 27098.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2899.77 2699.72 40
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16398.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7399.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10298.40 17698.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17698.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25398.89 4697.71 898.33 8298.97 8794.97 7499.88 4398.42 2299.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23799.58 397.20 3998.33 8299.00 8595.99 3599.64 12698.05 3899.76 3299.69 51
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21398.83 4899.10 6996.54 1699.83 5697.70 6299.76 3299.59 80
DeepC-MVS95.98 397.88 6697.58 6998.77 7599.25 8696.93 10698.83 9898.75 10296.96 5196.89 15299.50 490.46 16199.87 4497.84 5199.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 10198.81 7695.80 9499.16 2699.47 895.37 5799.92 2197.89 4699.75 3899.79 10
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10897.95 23399.58 397.14 4398.44 7699.01 8495.03 7399.62 13197.91 4399.75 3899.50 91
3Dnovator94.51 597.46 8996.93 10299.07 6097.78 20497.64 7799.35 1199.06 2297.02 4993.75 25199.16 6189.25 18299.92 2197.22 8499.75 3899.64 70
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7299.20 5295.90 4099.89 3597.85 4999.74 4199.78 13
X-MVStestdata94.06 26792.30 28799.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7243.50 36495.90 4099.89 3597.85 4999.74 4199.78 13
OPU-MVS99.37 2099.24 9299.05 1099.02 6099.16 6197.81 299.37 15797.24 8399.73 4399.70 48
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 20198.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 13199.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
ETH3D-3000-0.198.35 4698.00 5499.38 1799.47 4898.68 2198.67 13698.84 6594.66 15499.11 2899.25 4395.46 5199.81 7196.80 10999.73 4399.63 73
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2799.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17898.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2299.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17898.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2499.73 4399.75 28
9.1498.06 4999.47 4898.71 12698.82 7094.36 16499.16 2699.29 3996.05 3299.81 7197.00 9099.71 50
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11298.71 12699.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1599.70 5199.47 98
ETH3 D test640097.59 8397.01 9899.34 2399.40 5998.56 2598.20 20498.81 7691.63 27298.44 7698.85 10593.98 9999.82 6494.11 19999.69 5299.64 70
CDPH-MVS97.94 6397.49 7799.28 3599.47 4898.44 3197.91 23798.67 12992.57 24198.77 5198.85 10595.93 3899.72 10995.56 15499.69 5299.68 57
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12598.66 13297.51 1698.15 8598.83 10895.70 4499.92 2197.53 7599.67 5499.66 65
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5699.67 5499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8199.26 1899.37 2293.33 10499.93 1596.96 9499.67 5499.69 51
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16698.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3699.66 5799.69 51
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5799.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5799.65 5899.71 44
CANet98.05 5797.76 6398.90 7198.73 13097.27 9198.35 18198.78 9597.37 2897.72 11898.96 9391.53 14099.92 2198.79 299.65 5899.51 89
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12798.30 19298.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6799.05 3299.34 3195.34 5999.82 6497.86 4899.64 6299.73 36
CSCG97.85 6897.74 6498.20 11599.67 2695.16 18499.22 2799.32 793.04 22497.02 14598.92 9995.36 5899.91 3097.43 7799.64 6299.52 85
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6299.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9898.73 5599.06 7895.27 6499.93 1597.07 8999.63 6499.72 40
QAPM96.29 14095.40 15898.96 6797.85 20197.60 8099.23 2398.93 3789.76 31493.11 27499.02 8089.11 18799.93 1591.99 26099.62 6699.34 112
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17598.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4299.61 6799.74 33
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24998.84 6596.12 8397.89 11098.69 12295.96 3699.70 11596.89 9999.60 6899.65 67
test_prior297.80 24996.12 8397.89 11098.69 12295.96 3696.89 9999.60 68
jason97.32 10197.08 9598.06 12797.45 23395.59 16797.87 24397.91 26394.79 14698.55 6998.83 10891.12 14899.23 16797.58 6999.60 6899.34 112
jason: jason.
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5399.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVSFormer97.57 8597.49 7797.84 13898.07 18595.76 16499.47 398.40 18394.98 13898.79 4998.83 10892.34 11598.41 26996.91 9699.59 7199.34 112
lupinMVS97.44 9397.22 9098.12 12298.07 18595.76 16497.68 25797.76 26894.50 16098.79 4998.61 13092.34 11599.30 16197.58 6999.59 7199.31 118
ZD-MVS99.46 5198.70 1998.79 9293.21 21798.67 5998.97 8795.70 4499.83 5696.07 13199.58 74
test9_res96.39 12599.57 7599.69 51
train_agg97.97 5897.52 7499.33 2799.31 7098.50 2997.92 23598.73 10892.98 22697.74 11698.68 12496.20 2399.80 8096.59 11599.57 7599.68 57
agg_prior295.87 14199.57 7599.68 57
3Dnovator+94.38 697.43 9496.78 10999.38 1797.83 20298.52 2799.37 898.71 11497.09 4792.99 27799.13 6489.36 17999.89 3596.97 9299.57 7599.71 44
LS3D97.16 10996.66 11898.68 7998.53 14997.19 9898.93 7998.90 4492.83 23495.99 18699.37 2292.12 12499.87 4493.67 21299.57 7598.97 159
agg_prior197.95 6297.51 7699.28 3599.30 7598.38 3597.81 24898.72 11093.16 22097.57 12998.66 12796.14 2699.81 7196.63 11499.56 8099.66 65
test1299.18 4799.16 9998.19 5298.53 15698.07 8995.13 7099.72 10999.56 8099.63 73
CHOSEN 1792x268897.12 11196.80 10698.08 12599.30 7594.56 21798.05 22499.71 193.57 20497.09 13998.91 10088.17 21199.89 3596.87 10599.56 8099.81 8
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3199.05 10598.52 2798.33 18498.68 12193.18 21898.68 5799.13 6494.62 8199.83 5696.45 12199.55 8399.52 85
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13598.28 19598.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 999.54 8499.73 36
testtj98.33 5097.95 5699.47 1199.49 4598.70 1998.83 9898.86 6195.48 10998.91 4599.17 5695.48 5099.93 1595.80 14499.53 8599.76 26
test22299.23 9397.17 10097.40 27198.66 13288.68 32598.05 9098.96 9394.14 9599.53 8599.61 75
MG-MVS97.81 6997.60 6898.44 9899.12 10395.97 15097.75 25398.78 9596.89 5298.46 7299.22 4793.90 10099.68 12194.81 17499.52 8799.67 61
UGNet96.78 12396.30 12998.19 11798.24 17095.89 16098.88 8998.93 3797.39 2596.81 15697.84 20782.60 29999.90 3396.53 11899.49 8898.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 9697.25 8897.91 13598.70 13596.80 11298.82 10198.69 11894.53 15798.11 8798.28 16894.50 8899.57 13594.12 19899.49 8897.37 224
DROMVSNet98.12 5698.02 5298.42 10198.25 16997.23 9699.49 298.42 17996.55 6698.68 5798.70 12193.82 10199.01 20098.79 299.48 9099.03 152
新几何199.16 5099.34 6298.01 6298.69 11890.06 30998.13 8698.95 9594.60 8299.89 3591.97 26199.47 9199.59 80
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9199.61 75
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10797.18 25297.32 8899.21 3098.97 3089.96 31091.14 31199.05 7986.64 24399.92 2193.38 21899.47 9197.73 214
原ACMM198.65 8199.32 6896.62 11898.67 12993.27 21697.81 11298.97 8795.18 6899.83 5693.84 20699.46 9499.50 91
112197.37 9996.77 11399.16 5099.34 6297.99 6598.19 20898.68 12190.14 30898.01 9898.97 8794.80 7999.87 4493.36 22099.46 9499.61 75
testdata98.26 11199.20 9795.36 17798.68 12191.89 26498.60 6799.10 6994.44 9199.82 6494.27 19399.44 9699.58 82
CS-MVS97.94 6397.90 5998.06 12798.04 18996.85 11199.04 5498.39 18596.17 7998.50 7198.29 16794.60 8299.02 19798.61 899.43 9798.30 197
DP-MVS Recon97.86 6797.46 7999.06 6199.53 3698.35 4398.33 18498.89 4692.62 23898.05 9098.94 9695.34 5999.65 12496.04 13599.42 9899.19 133
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16798.76 9997.82 598.45 7598.93 9796.65 1499.83 5697.38 8099.41 9999.71 44
TAPA-MVS93.98 795.35 18594.56 20097.74 14899.13 10294.83 20398.33 18498.64 13786.62 33396.29 17898.61 13094.00 9899.29 16280.00 34899.41 9999.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended97.38 9897.12 9298.14 11899.25 8695.35 17997.28 28499.26 893.13 22197.94 10598.21 17592.74 11199.81 7196.88 10299.40 10199.27 125
MS-PatchMatch93.84 27193.63 25994.46 31096.18 30189.45 31897.76 25298.27 20892.23 25592.13 30197.49 23779.50 31898.69 23489.75 29599.38 10295.25 332
CANet_DTU96.96 11696.55 12198.21 11498.17 18096.07 14497.98 23198.21 21597.24 3797.13 13898.93 9786.88 24099.91 3095.00 16999.37 10398.66 180
DPM-MVS97.55 8796.99 10099.23 4299.04 10798.55 2697.17 29298.35 19394.85 14597.93 10798.58 13595.07 7299.71 11492.60 24199.34 10499.43 106
MVP-Stereo94.28 25293.92 23895.35 28194.95 33292.60 27297.97 23297.65 27391.61 27390.68 31697.09 26486.32 25098.42 26289.70 29799.34 10495.02 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 9297.03 9798.73 7699.05 10597.44 8698.07 22298.53 15695.32 12096.80 15798.53 13993.32 10599.72 10994.31 19299.31 10699.02 154
AdaColmapbinary97.15 11096.70 11498.48 9599.16 9996.69 11798.01 22898.89 4694.44 16396.83 15398.68 12490.69 15899.76 10394.36 18899.29 10798.98 158
CS-MVS-test97.78 7197.68 6698.09 12497.94 19597.19 9898.95 7498.37 18995.98 8797.99 10197.84 20794.50 8899.11 18298.30 2899.28 10897.97 207
Vis-MVSNetpermissive97.42 9597.11 9398.34 10698.66 13996.23 13899.22 2799.00 2796.63 6298.04 9299.21 4888.05 21699.35 15896.01 13799.21 10999.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7297.58 6998.27 10998.38 15696.44 12999.01 6298.60 14095.88 9197.26 13497.53 23594.97 7499.33 16097.38 8099.20 11099.05 151
EPNet97.28 10296.87 10598.51 9294.98 33196.14 14298.90 8297.02 31498.28 195.99 18699.11 6791.36 14299.89 3596.98 9199.19 11199.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 7397.77 6297.62 15998.68 13895.58 16897.34 27998.51 16197.29 3098.66 6397.88 20294.51 8599.90 3397.87 4799.17 11297.39 222
PVSNet_Blended_VisFu97.70 7597.46 7998.44 9899.27 8395.91 15898.63 14299.16 1794.48 16197.67 12198.88 10292.80 11099.91 3097.11 8799.12 11399.50 91
BH-RMVSNet95.92 15595.32 16797.69 15398.32 16694.64 20998.19 20897.45 29394.56 15696.03 18498.61 13085.02 26999.12 17990.68 28199.06 11499.30 121
PVSNet91.96 1896.35 13896.15 13496.96 19399.17 9892.05 27896.08 32998.68 12193.69 19697.75 11597.80 21488.86 19699.69 12094.26 19499.01 11599.15 139
PatchMatch-RL96.59 12996.03 13998.27 10999.31 7096.51 12697.91 23799.06 2293.72 19296.92 15098.06 18588.50 20599.65 12491.77 26599.00 11698.66 180
PCF-MVS93.45 1194.68 22393.43 26798.42 10198.62 14396.77 11495.48 34198.20 21784.63 34593.34 26598.32 16488.55 20399.81 7184.80 33598.96 11798.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 11896.40 12698.45 9798.69 13796.90 10898.66 13998.68 12192.40 24897.07 14297.96 19491.54 13999.75 10593.68 21098.92 11898.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 11396.80 10697.97 13299.45 5594.95 19898.55 15698.62 13993.02 22596.17 18198.58 13594.01 9799.81 7193.95 20398.90 11999.14 141
ETV-MVS97.96 5997.81 6198.40 10398.42 15497.27 9198.73 12198.55 15296.84 5398.38 7997.44 24295.39 5599.35 15897.62 6698.89 12098.58 186
DP-MVS96.59 12995.93 14198.57 8599.34 6296.19 14198.70 13098.39 18589.45 31994.52 21199.35 2891.85 13099.85 5092.89 23798.88 12199.68 57
OMC-MVS97.55 8797.34 8598.20 11599.33 6595.92 15798.28 19598.59 14295.52 10897.97 10299.10 6993.28 10699.49 14695.09 16798.88 12199.19 133
PAPM_NR97.46 8997.11 9398.50 9399.50 4196.41 13198.63 14298.60 14095.18 12797.06 14398.06 18594.26 9499.57 13593.80 20898.87 12399.52 85
ACMMPcopyleft98.23 5497.95 5699.09 5999.74 797.62 7999.03 5799.41 695.98 8797.60 12899.36 2694.45 9099.93 1597.14 8698.85 12499.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 5997.62 6798.98 6598.86 12197.47 8498.89 8699.08 2196.67 6098.72 5699.54 193.15 10799.81 7194.87 17098.83 12599.65 67
MSDG95.93 15495.30 16997.83 13998.90 11795.36 17796.83 31698.37 18991.32 28394.43 21898.73 11990.27 16599.60 13290.05 29098.82 12698.52 187
EPNet_dtu95.21 19394.95 18595.99 25796.17 30290.45 30898.16 21497.27 30396.77 5593.14 27398.33 16390.34 16398.42 26285.57 32898.81 12799.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 10796.78 10998.44 9899.29 7896.31 13798.14 21598.76 9992.41 24796.39 17698.31 16594.92 7699.78 9694.06 20198.77 12899.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
MVS-HIRNet89.46 31788.40 31692.64 32797.58 21882.15 35494.16 35293.05 36075.73 35590.90 31382.52 35779.42 31998.33 27783.53 34098.68 12997.43 219
xiu_mvs_v2_base97.66 7797.70 6597.56 16398.61 14495.46 17497.44 26898.46 17197.15 4298.65 6498.15 17994.33 9299.80 8097.84 5198.66 13397.41 220
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 13998.73 13095.46 17499.20 3198.30 20594.96 14096.60 16498.87 10390.05 16798.59 24693.67 21298.60 13499.46 102
IS-MVSNet97.22 10496.88 10498.25 11298.85 12396.36 13399.19 3397.97 25795.39 11497.23 13598.99 8691.11 14998.93 21194.60 18098.59 13599.47 98
PAPR96.84 12196.24 13298.65 8198.72 13496.92 10797.36 27798.57 14893.33 21296.67 16097.57 23294.30 9399.56 13791.05 27698.59 13599.47 98
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 22098.29 20797.19 4098.99 3899.02 8096.22 2099.67 12298.52 1598.56 13799.51 89
diffmvs97.58 8497.40 8398.13 12098.32 16695.81 16398.06 22398.37 18996.20 7898.74 5398.89 10191.31 14599.25 16498.16 3298.52 13899.34 112
BH-untuned95.95 15395.72 14696.65 21398.55 14892.26 27498.23 19997.79 26793.73 19194.62 20898.01 18988.97 19499.00 20193.04 23098.51 13998.68 177
test-LLR95.10 19994.87 18895.80 26796.77 27489.70 31496.91 30695.21 34395.11 13294.83 20395.72 32687.71 22398.97 20293.06 22898.50 14098.72 173
TESTMET0.1,194.18 25893.69 25795.63 27396.92 26689.12 32396.91 30694.78 34893.17 21994.88 20096.45 30778.52 32498.92 21293.09 22798.50 14098.85 166
test-mter94.08 26593.51 26495.80 26796.77 27489.70 31496.91 30695.21 34392.89 23194.83 20395.72 32677.69 33198.97 20293.06 22898.50 14098.72 173
131496.25 14495.73 14597.79 14397.13 25595.55 17198.19 20898.59 14293.47 20792.03 30397.82 21291.33 14499.49 14694.62 17998.44 14398.32 196
LCM-MVSNet-Re95.22 19295.32 16794.91 29398.18 17887.85 34198.75 11495.66 34095.11 13288.96 32996.85 29190.26 16697.65 32195.65 15298.44 14399.22 129
EPP-MVSNet97.46 8997.28 8797.99 13198.64 14195.38 17699.33 1598.31 19993.61 20397.19 13699.07 7794.05 9699.23 16796.89 9998.43 14599.37 111
casdiffmvs97.63 7997.41 8298.28 10898.33 16496.14 14298.82 10198.32 19796.38 7397.95 10399.21 4891.23 14799.23 16798.12 3398.37 14699.48 96
PatchmatchNetpermissive95.71 16495.52 15696.29 24897.58 21890.72 30496.84 31597.52 28694.06 17197.08 14096.96 28289.24 18398.90 21692.03 25998.37 14699.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 22693.54 26398.08 12596.88 27096.56 12498.19 20898.50 16678.05 35392.69 28598.02 18791.07 15199.63 12990.09 28798.36 14898.04 204
gg-mvs-nofinetune92.21 29490.58 30197.13 18296.75 27795.09 18995.85 33489.40 36485.43 34394.50 21281.98 35880.80 31298.40 27592.16 25398.33 14997.88 208
SCA95.46 17495.13 17596.46 23797.67 21191.29 29597.33 28097.60 27794.68 15196.92 15097.10 26083.97 29098.89 21792.59 24398.32 15099.20 130
baseline97.64 7897.44 8198.25 11298.35 15896.20 13999.00 6498.32 19796.33 7598.03 9399.17 5691.35 14399.16 17398.10 3498.29 15199.39 109
MVS_Test97.28 10297.00 9998.13 12098.33 16495.97 15098.74 11798.07 24794.27 16698.44 7698.07 18492.48 11399.26 16396.43 12398.19 15299.16 138
sss97.39 9796.98 10198.61 8398.60 14596.61 12098.22 20098.93 3793.97 17898.01 9898.48 14491.98 12899.85 5096.45 12198.15 15399.39 109
Patchmatch-test94.42 24393.68 25896.63 21697.60 21691.76 28394.83 34797.49 29089.45 31994.14 23397.10 26088.99 19098.83 22585.37 33198.13 15499.29 123
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20899.29 7893.24 26398.58 14898.11 23689.92 31193.57 25599.10 6986.37 24999.79 9290.78 27998.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE96.58 13196.07 13698.10 12398.35 15895.89 16099.34 1298.12 23393.12 22296.09 18298.87 10389.71 17398.97 20292.95 23398.08 15699.43 106
mvs-test196.60 12796.68 11796.37 24297.89 19991.81 28198.56 15498.10 23896.57 6496.52 17197.94 19690.81 15399.45 15395.72 14798.01 15797.86 210
Effi-MVS+-dtu96.29 14096.56 12095.51 27597.89 19990.22 31098.80 10898.10 23896.57 6496.45 17596.66 29890.81 15398.91 21395.72 14797.99 15897.40 221
Fast-Effi-MVS+96.28 14295.70 15098.03 12998.29 16895.97 15098.58 14898.25 21391.74 26795.29 19497.23 25491.03 15299.15 17692.90 23597.96 15998.97 159
mvs_anonymous96.70 12596.53 12397.18 17998.19 17693.78 23998.31 19098.19 21894.01 17594.47 21398.27 17192.08 12698.46 25797.39 7997.91 16099.31 118
PMMVS96.60 12796.33 12897.41 16997.90 19893.93 23597.35 27898.41 18192.84 23397.76 11497.45 24191.10 15099.20 17096.26 12797.91 16099.11 144
AllTest95.24 19194.65 19696.99 18999.25 8693.21 26498.59 14698.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
TestCases96.99 18999.25 8693.21 26498.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
TAMVS97.02 11496.79 10897.70 15298.06 18795.31 18198.52 15898.31 19993.95 17997.05 14498.61 13093.49 10398.52 25295.33 15997.81 16499.29 123
Effi-MVS+97.12 11196.69 11598.39 10498.19 17696.72 11697.37 27598.43 17893.71 19397.65 12498.02 18792.20 12299.25 16496.87 10597.79 16599.19 133
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26297.74 20891.74 28598.69 13298.15 22995.56 10594.92 19997.68 22388.98 19398.79 22993.19 22597.78 16697.20 228
DSMNet-mixed92.52 29292.58 28392.33 32994.15 34082.65 35398.30 19294.26 35489.08 32392.65 28695.73 32485.01 27095.76 34886.24 32397.76 16798.59 184
CDS-MVSNet96.99 11596.69 11597.90 13698.05 18895.98 14598.20 20498.33 19693.67 20096.95 14698.49 14393.54 10298.42 26295.24 16597.74 16899.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 17294.89 18797.76 14698.15 18195.15 18696.77 31794.41 35192.95 22897.18 13797.43 24384.78 27499.45 15394.63 17797.73 16998.68 177
thisisatest053096.01 15095.36 16397.97 13298.38 15695.52 17298.88 8994.19 35594.04 17297.64 12598.31 16583.82 29599.46 15295.29 16297.70 17098.93 163
BH-w/o95.38 18195.08 17896.26 24998.34 16391.79 28297.70 25697.43 29592.87 23294.24 22897.22 25588.66 19998.84 22391.55 26997.70 17098.16 202
PAPM94.95 20994.00 23397.78 14497.04 26095.65 16696.03 33298.25 21391.23 28894.19 23197.80 21491.27 14698.86 22282.61 34297.61 17298.84 168
tttt051796.07 14795.51 15797.78 14498.41 15594.84 20199.28 1894.33 35394.26 16797.64 12598.64 12984.05 28899.47 15195.34 15897.60 17399.03 152
HyFIR lowres test96.90 11996.49 12498.14 11899.33 6595.56 16997.38 27399.65 292.34 24997.61 12798.20 17689.29 18199.10 18696.97 9297.60 17399.77 20
CVMVSNet95.43 17796.04 13893.57 31897.93 19683.62 35098.12 21898.59 14295.68 9996.56 16599.02 8087.51 22797.51 32793.56 21697.44 17599.60 78
MDTV_nov1_ep1395.40 15897.48 22788.34 33596.85 31497.29 30193.74 19097.48 13297.26 25189.18 18499.05 19091.92 26297.43 176
baseline295.11 19894.52 20296.87 20096.65 28393.56 24898.27 19794.10 35793.45 20892.02 30497.43 24387.45 23199.19 17193.88 20597.41 17797.87 209
EPMVS94.99 20594.48 20496.52 23097.22 24691.75 28497.23 28691.66 36194.11 16997.28 13396.81 29385.70 25998.84 22393.04 23097.28 17898.97 159
LFMVS95.86 15794.98 18398.47 9698.87 12096.32 13598.84 9796.02 33493.40 21098.62 6599.20 5274.99 34499.63 12997.72 5797.20 17999.46 102
ADS-MVSNet294.58 23294.40 21295.11 28898.00 19088.74 32996.04 33097.30 30090.15 30696.47 17396.64 30187.89 21997.56 32590.08 28897.06 18099.02 154
ADS-MVSNet95.00 20494.45 20896.63 21698.00 19091.91 28096.04 33097.74 27090.15 30696.47 17396.64 30187.89 21998.96 20690.08 28897.06 18099.02 154
GG-mvs-BLEND96.59 22196.34 29694.98 19596.51 32688.58 36593.10 27594.34 34280.34 31598.05 30389.53 30096.99 18296.74 264
cascas94.63 22893.86 24396.93 19596.91 26894.27 22796.00 33398.51 16185.55 34294.54 21096.23 31484.20 28698.87 22095.80 14496.98 18397.66 217
WTY-MVS97.37 9996.92 10398.72 7798.86 12196.89 11098.31 19098.71 11495.26 12397.67 12198.56 13892.21 12199.78 9695.89 13996.85 18499.48 96
VDD-MVS95.82 16095.23 17197.61 16098.84 12493.98 23498.68 13397.40 29795.02 13797.95 10399.34 3174.37 34899.78 9698.64 496.80 18599.08 149
test_yl97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
DCV-MVSNet97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
PatchT93.06 28691.97 29196.35 24496.69 28092.67 27194.48 34997.08 30886.62 33397.08 14092.23 35087.94 21897.90 31378.89 35296.69 18898.49 188
VNet97.79 7097.40 8398.96 6798.88 11997.55 8198.63 14298.93 3796.74 5799.02 3498.84 10790.33 16499.83 5698.53 1196.66 18999.50 91
CR-MVSNet94.76 22094.15 22496.59 22197.00 26193.43 25494.96 34397.56 27992.46 24296.93 14896.24 31288.15 21297.88 31787.38 31796.65 19098.46 189
RPMNet92.81 28891.34 29697.24 17597.00 26193.43 25494.96 34398.80 8782.27 34896.93 14892.12 35186.98 23899.82 6476.32 35696.65 19098.46 189
VDDNet95.36 18494.53 20197.86 13798.10 18495.13 18898.85 9497.75 26990.46 30098.36 8099.39 1473.27 35099.64 12697.98 3996.58 19298.81 169
alignmvs97.56 8697.07 9699.01 6298.66 13998.37 4198.83 9898.06 25296.74 5798.00 10097.65 22490.80 15599.48 15098.37 2596.56 19399.19 133
HY-MVS93.96 896.82 12296.23 13398.57 8598.46 15397.00 10398.14 21598.21 21593.95 17996.72 15997.99 19191.58 13599.76 10394.51 18596.54 19498.95 162
1112_ss96.63 12696.00 14098.50 9398.56 14696.37 13298.18 21298.10 23892.92 22994.84 20198.43 14892.14 12399.58 13494.35 18996.51 19599.56 84
thres20095.25 19094.57 19997.28 17498.81 12694.92 19998.20 20497.11 30795.24 12696.54 16996.22 31684.58 27899.53 14387.93 31596.50 19697.39 222
Test_1112_low_res96.34 13995.66 15398.36 10598.56 14695.94 15397.71 25598.07 24792.10 25994.79 20597.29 25091.75 13299.56 13794.17 19696.50 19699.58 82
tpmrst95.63 16995.69 15195.44 27997.54 22388.54 33296.97 30197.56 27993.50 20697.52 13196.93 28689.49 17599.16 17395.25 16496.42 19898.64 182
ab-mvs96.42 13695.71 14998.55 8798.63 14296.75 11597.88 24298.74 10493.84 18496.54 16998.18 17885.34 26699.75 10595.93 13896.35 19999.15 139
thres600view795.49 17394.77 19097.67 15598.98 11395.02 19198.85 9496.90 32095.38 11596.63 16296.90 28784.29 28199.59 13388.65 31096.33 20098.40 191
RPSCF94.87 21495.40 15893.26 32498.89 11882.06 35598.33 18498.06 25290.30 30596.56 16599.26 4287.09 23599.49 14693.82 20796.32 20198.24 198
thres100view90095.38 18194.70 19497.41 16998.98 11394.92 19998.87 9196.90 32095.38 11596.61 16396.88 28884.29 28199.56 13788.11 31196.29 20297.76 211
tfpn200view995.32 18894.62 19797.43 16898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20297.76 211
thres40095.38 18194.62 19797.65 15898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20298.40 191
canonicalmvs97.67 7697.23 8998.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 12197.40 24592.26 11899.49 14698.28 3096.28 20599.08 149
XVG-OURS96.55 13296.41 12596.99 18998.75 12993.76 24097.50 26798.52 15895.67 10096.83 15399.30 3888.95 19599.53 14395.88 14096.26 20697.69 216
GA-MVS94.81 21794.03 22997.14 18197.15 25493.86 23796.76 31897.58 27894.00 17694.76 20697.04 27380.91 30998.48 25491.79 26496.25 20799.09 146
tpm294.19 25693.76 25295.46 27897.23 24589.04 32597.31 28296.85 32687.08 33296.21 18096.79 29483.75 29698.74 23292.43 25196.23 20898.59 184
MIMVSNet93.26 28192.21 28896.41 24097.73 20993.13 26695.65 33897.03 31291.27 28794.04 23896.06 31975.33 34297.19 33186.56 32196.23 20898.92 164
TR-MVS94.94 21194.20 21997.17 18097.75 20594.14 23197.59 26397.02 31492.28 25495.75 18997.64 22683.88 29298.96 20689.77 29496.15 21098.40 191
MVS_030492.81 28892.01 29095.23 28397.46 22991.33 29398.17 21398.81 7691.13 29293.80 24995.68 32966.08 35798.06 30290.79 27896.13 21196.32 312
CostFormer94.95 20994.73 19395.60 27497.28 24289.06 32497.53 26696.89 32289.66 31696.82 15596.72 29686.05 25498.95 21095.53 15596.13 21198.79 170
tpmvs94.60 22994.36 21395.33 28297.46 22988.60 33196.88 31297.68 27191.29 28593.80 24996.42 30988.58 20099.24 16691.06 27496.04 21398.17 201
tpm cat193.36 27692.80 27895.07 29097.58 21887.97 33996.76 31897.86 26582.17 34993.53 25696.04 32086.13 25299.13 17889.24 30595.87 21498.10 203
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18898.77 12893.76 24097.79 25198.50 16695.45 11196.94 14799.09 7487.87 22199.55 14296.76 11295.83 21597.74 213
DWT-MVSNet_test94.82 21594.36 21396.20 25197.35 23990.79 30298.34 18296.57 33392.91 23095.33 19396.44 30882.00 30199.12 17994.52 18495.78 21698.70 175
JIA-IIPM93.35 27792.49 28495.92 26196.48 29190.65 30595.01 34296.96 31685.93 33996.08 18387.33 35587.70 22598.78 23091.35 27195.58 21798.34 194
Anonymous20240521195.28 18994.49 20397.67 15599.00 11093.75 24298.70 13097.04 31190.66 29696.49 17298.80 11178.13 32899.83 5696.21 12995.36 21899.44 105
Anonymous2024052995.10 19994.22 21897.75 14799.01 10994.26 22898.87 9198.83 6885.79 34196.64 16198.97 8778.73 32399.85 5096.27 12694.89 21999.12 143
CLD-MVS95.62 17095.34 16496.46 23797.52 22693.75 24297.27 28598.46 17195.53 10694.42 21998.00 19086.21 25198.97 20296.25 12894.37 22096.66 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 25993.90 24094.90 29497.31 24186.82 34696.97 30197.19 30691.22 28996.02 18596.61 30385.51 26299.02 19790.00 29294.30 22198.85 166
HQP_MVS96.14 14695.90 14296.85 20197.42 23494.60 21598.80 10898.56 15097.28 3195.34 19198.28 16887.09 23599.03 19496.07 13194.27 22296.92 240
plane_prior598.56 15099.03 19496.07 13194.27 22296.92 240
plane_prior94.60 21598.44 17096.74 5794.22 224
OPM-MVS95.69 16795.33 16696.76 20596.16 30494.63 21098.43 17298.39 18596.64 6195.02 19798.78 11385.15 26899.05 19095.21 16694.20 22596.60 282
HQP3-MVS98.46 17194.18 226
HQP-MVS95.72 16395.40 15896.69 21197.20 24894.25 22998.05 22498.46 17196.43 7094.45 21497.73 21786.75 24198.96 20695.30 16094.18 22696.86 253
LPG-MVS_test95.62 17095.34 16496.47 23497.46 22993.54 24998.99 6698.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
LGP-MVS_train96.47 23497.46 22993.54 24998.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
test_djsdf96.00 15195.69 15196.93 19595.72 31795.49 17399.47 398.40 18394.98 13894.58 20997.86 20489.16 18598.41 26996.91 9694.12 23096.88 249
jajsoiax95.45 17695.03 18096.73 20795.42 32894.63 21099.14 3898.52 15895.74 9693.22 26898.36 15783.87 29398.65 24096.95 9594.04 23196.91 245
anonymousdsp95.42 17894.91 18696.94 19495.10 33095.90 15999.14 3898.41 18193.75 18893.16 27097.46 23987.50 22998.41 26995.63 15394.03 23296.50 301
mvs_tets95.41 18095.00 18196.65 21395.58 32194.42 22199.00 6498.55 15295.73 9793.21 26998.38 15583.45 29798.63 24197.09 8894.00 23396.91 245
ACMP93.49 1095.34 18694.98 18396.43 23997.67 21193.48 25398.73 12198.44 17594.94 14392.53 29098.53 13984.50 28099.14 17795.48 15794.00 23396.66 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 16795.38 16296.61 21897.61 21593.84 23898.91 8198.44 17595.25 12494.28 22598.47 14586.04 25699.12 17995.50 15693.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 25393.33 26996.97 19297.19 25193.38 25898.74 11798.57 14891.21 29093.81 24898.58 13572.85 35198.77 23195.05 16893.93 23698.77 172
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27096.55 28691.65 28798.11 22098.44 17594.96 14094.22 22997.90 19979.18 32199.11 18294.05 20293.85 23796.48 303
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 33689.00 32698.13 21797.81 26689.22 32285.32 34696.46 30667.71 35498.42 26287.89 31693.82 23895.08 337
testgi93.06 28692.45 28594.88 29596.43 29389.90 31198.75 11497.54 28595.60 10391.63 30897.91 19874.46 34797.02 33386.10 32493.67 23997.72 215
test0.0.03 194.08 26593.51 26495.80 26795.53 32392.89 27097.38 27395.97 33695.11 13292.51 29296.66 29887.71 22396.94 33587.03 31993.67 23997.57 218
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33493.19 34776.56 35797.00 30098.35 19380.97 35081.57 35197.75 21674.75 34598.61 24289.85 29393.63 24194.17 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 242
D2MVS95.18 19595.08 17895.48 27697.10 25792.07 27798.30 19299.13 1994.02 17492.90 27896.73 29589.48 17698.73 23394.48 18693.60 24395.65 328
EI-MVSNet95.96 15295.83 14496.36 24397.93 19693.70 24698.12 21898.27 20893.70 19595.07 19599.02 8092.23 12098.54 25094.68 17693.46 24496.84 254
MVSTER96.06 14895.72 14697.08 18698.23 17195.93 15698.73 12198.27 20894.86 14495.07 19598.09 18388.21 20998.54 25096.59 11593.46 24496.79 258
PS-MVSNAJss96.43 13596.26 13196.92 19895.84 31595.08 19099.16 3698.50 16695.87 9293.84 24798.34 16294.51 8598.61 24296.88 10293.45 24697.06 231
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21297.41 23794.42 22198.52 15898.59 14291.69 27091.21 31098.35 15884.87 27299.04 19391.06 27493.44 24796.60 282
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 27997.42 23491.32 29497.50 28895.09 13593.59 25398.35 15881.70 30498.88 21989.71 29693.39 24896.12 317
PVSNet_BlendedMVS96.73 12496.60 11997.12 18399.25 8695.35 17998.26 19899.26 894.28 16597.94 10597.46 23992.74 11199.81 7196.88 10293.32 24996.20 315
ACMH92.88 1694.55 23493.95 23796.34 24597.63 21493.26 26298.81 10798.49 17093.43 20989.74 32398.53 13981.91 30399.08 18893.69 20993.30 25096.70 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31793.08 34889.42 31997.91 23796.89 32278.58 35285.86 34394.69 33769.48 35398.29 28577.13 35593.29 25193.36 352
USDC93.33 27992.71 28095.21 28496.83 27390.83 30196.91 30697.50 28893.84 18490.72 31598.14 18077.69 33198.82 22689.51 30193.21 25295.97 321
RRT_MVS96.04 14995.53 15597.56 16397.07 25997.32 8898.57 15398.09 24395.15 12995.02 19798.44 14788.20 21098.58 24896.17 13093.09 25396.79 258
ACMMP++_ref92.97 254
test_040291.32 29990.27 30494.48 30896.60 28491.12 29798.50 16397.22 30586.10 33888.30 33496.98 27977.65 33397.99 30878.13 35492.94 25594.34 343
FIs96.51 13396.12 13597.67 15597.13 25597.54 8299.36 999.22 1495.89 9094.03 23998.35 15891.98 12898.44 26096.40 12492.76 25697.01 233
FC-MVSNet-test96.42 13696.05 13797.53 16596.95 26497.27 9199.36 999.23 1295.83 9393.93 24198.37 15692.00 12798.32 27896.02 13692.72 25797.00 234
TinyColmap92.31 29391.53 29494.65 30396.92 26689.75 31396.92 30496.68 33090.45 30189.62 32497.85 20676.06 34098.81 22786.74 32092.51 25895.41 330
ACMH+92.99 1494.30 24993.77 25095.88 26597.81 20392.04 27998.71 12698.37 18993.99 17790.60 31798.47 14580.86 31199.05 19092.75 23992.40 25996.55 290
GBi-Net94.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
test194.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
FMVSNet394.97 20894.26 21797.11 18498.18 17896.62 11898.56 15498.26 21293.67 20094.09 23597.10 26084.25 28398.01 30592.08 25592.14 26096.70 271
FMVSNet294.47 24193.61 26097.04 18798.21 17396.43 13098.79 11298.27 20892.46 24293.50 26097.09 26481.16 30698.00 30791.09 27291.93 26396.70 271
LF4IMVS93.14 28592.79 27994.20 31395.88 31388.67 33097.66 25997.07 30993.81 18791.71 30697.65 22477.96 33098.81 22791.47 27091.92 26495.12 335
OurMVSNet-221017-094.21 25494.00 23394.85 29695.60 32089.22 32298.89 8697.43 29595.29 12192.18 30098.52 14282.86 29898.59 24693.46 21791.76 26596.74 264
pmmvs494.69 22193.99 23596.81 20395.74 31695.94 15397.40 27197.67 27290.42 30293.37 26497.59 23089.08 18898.20 29092.97 23291.67 26696.30 313
tpm94.13 26093.80 24795.12 28796.50 28987.91 34097.44 26895.89 33992.62 23896.37 17796.30 31184.13 28798.30 28293.24 22391.66 26799.14 141
our_test_393.65 27493.30 27094.69 30195.45 32689.68 31696.91 30697.65 27391.97 26291.66 30796.88 28889.67 17497.93 31288.02 31491.49 26896.48 303
bset_n11_16_dypcd94.89 21394.27 21696.76 20594.41 33895.15 18695.67 33795.64 34195.53 10694.65 20797.52 23687.10 23498.29 28596.58 11791.35 26996.83 256
IterMVS94.09 26493.85 24494.80 29997.99 19290.35 30997.18 29098.12 23393.68 19892.46 29597.34 24684.05 28897.41 32892.51 24891.33 27096.62 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26293.87 24294.85 29697.98 19490.56 30797.18 29098.11 23693.75 18892.58 28897.48 23883.97 29097.41 32892.48 25091.30 27196.58 284
FMVSNet193.19 28492.07 28996.56 22597.54 22395.00 19298.82 10198.18 22190.38 30392.27 29897.07 26773.68 34997.95 30989.36 30491.30 27196.72 267
XXY-MVS95.20 19494.45 20897.46 16696.75 27796.56 12498.86 9398.65 13693.30 21593.27 26798.27 17184.85 27398.87 22094.82 17391.26 27396.96 237
cl-mvsnet294.68 22394.19 22096.13 25498.11 18393.60 24796.94 30398.31 19992.43 24693.32 26696.87 29086.51 24498.28 28794.10 20091.16 27496.51 299
miper_ehance_all_eth95.01 20394.69 19595.97 25997.70 21093.31 26097.02 29998.07 24792.23 25593.51 25996.96 28291.85 13098.15 29393.68 21091.16 27496.44 306
miper_enhance_ethall95.10 19994.75 19296.12 25597.53 22593.73 24496.61 32398.08 24592.20 25893.89 24396.65 30092.44 11498.30 28294.21 19591.16 27496.34 309
RRT_test8_iter0594.56 23394.19 22095.67 27297.60 21691.34 29198.93 7998.42 17994.75 14793.39 26397.87 20379.00 32298.61 24296.78 11190.99 27797.07 230
pmmvs593.65 27492.97 27695.68 27195.49 32492.37 27398.20 20497.28 30289.66 31692.58 28897.26 25182.14 30098.09 29993.18 22690.95 27896.58 284
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16198.22 17296.20 13997.31 28295.37 34294.53 15779.56 35397.63 22886.51 24497.53 32696.91 9690.74 27999.02 154
SixPastTwentyTwo93.34 27892.86 27794.75 30095.67 31889.41 32098.75 11496.67 33193.89 18190.15 32198.25 17380.87 31098.27 28890.90 27790.64 28096.57 286
N_pmnet87.12 32287.77 32185.17 33995.46 32561.92 36497.37 27570.66 37085.83 34088.73 33396.04 32085.33 26797.76 32080.02 34790.48 28195.84 323
ppachtmachnet_test93.22 28292.63 28294.97 29295.45 32690.84 30096.88 31297.88 26490.60 29792.08 30297.26 25188.08 21597.86 31885.12 33290.33 28296.22 314
cl-mvsnet194.52 23794.03 22995.99 25797.57 22293.38 25897.05 29797.94 26091.74 26792.81 28097.10 26089.12 18698.07 30192.60 24190.30 28396.53 293
cl-mvsnet____94.51 23894.01 23296.02 25697.58 21893.40 25797.05 29797.96 25991.73 26992.76 28297.08 26689.06 18998.13 29592.61 24090.29 28496.52 296
IterMVS-LS95.46 17495.21 17296.22 25098.12 18293.72 24598.32 18998.13 23293.71 19394.26 22697.31 24992.24 11998.10 29794.63 17790.12 28596.84 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 28292.35 28695.84 26696.77 27493.09 26894.66 34897.56 27987.37 33192.90 27896.24 31288.15 21297.90 31387.37 31890.10 28696.53 293
EU-MVSNet93.66 27294.14 22592.25 33095.96 31183.38 35198.52 15898.12 23394.69 15092.61 28798.13 18187.36 23296.39 34691.82 26390.00 28796.98 235
Anonymous2023120691.66 29791.10 29793.33 32294.02 34487.35 34398.58 14897.26 30490.48 29990.16 32096.31 31083.83 29496.53 34479.36 35089.90 28896.12 317
eth_miper_zixun_eth94.68 22394.41 21195.47 27797.64 21391.71 28696.73 32098.07 24792.71 23693.64 25297.21 25690.54 16098.17 29293.38 21889.76 28996.54 291
FMVSNet591.81 29590.92 29894.49 30797.21 24792.09 27698.00 23097.55 28489.31 32190.86 31495.61 33074.48 34695.32 35185.57 32889.70 29096.07 319
miper_lstm_enhance94.33 24794.07 22895.11 28897.75 20590.97 29997.22 28798.03 25491.67 27192.76 28296.97 28090.03 16897.78 31992.51 24889.64 29196.56 288
v119294.32 24893.58 26196.53 22996.10 30594.45 21998.50 16398.17 22691.54 27494.19 23197.06 27086.95 23998.43 26190.14 28689.57 29296.70 271
v114494.59 23193.92 23896.60 22096.21 29994.78 20798.59 14698.14 23191.86 26694.21 23097.02 27587.97 21798.41 26991.72 26689.57 29296.61 281
Anonymous2024052191.18 30190.44 30293.42 31993.70 34588.47 33398.94 7797.56 27988.46 32689.56 32695.08 33577.15 33796.97 33483.92 33889.55 29494.82 341
VPA-MVSNet95.75 16295.11 17797.69 15397.24 24497.27 9198.94 7799.23 1295.13 13095.51 19097.32 24885.73 25898.91 21397.33 8289.55 29496.89 248
v124094.06 26793.29 27196.34 24596.03 30993.90 23698.44 17098.17 22691.18 29194.13 23497.01 27786.05 25498.42 26289.13 30789.50 29696.70 271
K. test v392.55 29191.91 29394.48 30895.64 31989.24 32199.07 5194.88 34794.04 17286.78 33997.59 23077.64 33497.64 32292.08 25589.43 29796.57 286
v192192094.20 25593.47 26696.40 24195.98 31094.08 23298.52 15898.15 22991.33 28294.25 22797.20 25786.41 24898.42 26290.04 29189.39 29896.69 276
new_pmnet90.06 31189.00 31593.22 32594.18 33988.32 33696.42 32896.89 32286.19 33685.67 34593.62 34477.18 33697.10 33281.61 34489.29 29994.23 344
cl_fuxian94.79 21894.43 21095.89 26497.75 20593.12 26797.16 29398.03 25492.23 25593.46 26297.05 27291.39 14198.01 30593.58 21589.21 30096.53 293
v14419294.39 24593.70 25696.48 23396.06 30794.35 22598.58 14898.16 22891.45 27694.33 22397.02 27587.50 22998.45 25891.08 27389.11 30196.63 279
nrg03096.28 14295.72 14697.96 13496.90 26998.15 5699.39 698.31 19995.47 11094.42 21998.35 15892.09 12598.69 23497.50 7689.05 30297.04 232
DeepMVS_CXcopyleft86.78 33697.09 25872.30 36095.17 34675.92 35484.34 34895.19 33270.58 35295.35 34979.98 34989.04 30392.68 353
tfpnnormal93.66 27292.70 28196.55 22896.94 26595.94 15398.97 7099.19 1591.04 29391.38 30997.34 24684.94 27198.61 24285.45 33089.02 30495.11 336
Anonymous2023121194.10 26393.26 27296.61 21899.11 10494.28 22699.01 6298.88 4986.43 33592.81 28097.57 23281.66 30598.68 23794.83 17289.02 30496.88 249
v2v48294.69 22194.03 22996.65 21396.17 30294.79 20698.67 13698.08 24592.72 23594.00 24097.16 25887.69 22698.45 25892.91 23488.87 30696.72 267
V4294.78 21994.14 22596.70 21096.33 29795.22 18398.97 7098.09 24392.32 25194.31 22497.06 27088.39 20698.55 24992.90 23588.87 30696.34 309
WR-MVS95.15 19694.46 20697.22 17696.67 28296.45 12898.21 20198.81 7694.15 16893.16 27097.69 22087.51 22798.30 28295.29 16288.62 30896.90 247
FPMVS77.62 32877.14 32879.05 34379.25 36460.97 36595.79 33595.94 33765.96 35767.93 36094.40 33937.73 36688.88 36168.83 35888.46 30987.29 355
v1094.29 25093.55 26296.51 23196.39 29494.80 20598.99 6698.19 21891.35 28193.02 27696.99 27888.09 21498.41 26990.50 28388.41 31096.33 311
test_part194.82 21593.82 24597.82 14198.84 12497.82 7299.03 5798.81 7692.31 25392.51 29297.89 20181.96 30298.67 23894.80 17588.24 31196.98 235
CP-MVSNet94.94 21194.30 21596.83 20296.72 27995.56 16999.11 4498.95 3493.89 18192.42 29697.90 19987.19 23398.12 29694.32 19188.21 31296.82 257
MIMVSNet189.67 31488.28 31893.82 31692.81 35091.08 29898.01 22897.45 29387.95 32887.90 33695.87 32267.63 35594.56 35578.73 35388.18 31395.83 324
PS-CasMVS94.67 22693.99 23596.71 20896.68 28195.26 18299.13 4199.03 2593.68 19892.33 29797.95 19585.35 26598.10 29793.59 21488.16 31496.79 258
WR-MVS_H95.05 20294.46 20696.81 20396.86 27195.82 16299.24 2299.24 1093.87 18392.53 29096.84 29290.37 16298.24 28993.24 22387.93 31596.38 308
v894.47 24193.77 25096.57 22496.36 29594.83 20399.05 5398.19 21891.92 26393.16 27096.97 28088.82 19898.48 25491.69 26787.79 31696.39 307
v7n94.19 25693.43 26796.47 23495.90 31294.38 22499.26 2098.34 19591.99 26192.76 28297.13 25988.31 20798.52 25289.48 30287.70 31796.52 296
UniMVSNet (Re)95.78 16195.19 17397.58 16196.99 26397.47 8498.79 11299.18 1695.60 10393.92 24297.04 27391.68 13398.48 25495.80 14487.66 31896.79 258
baseline195.84 15895.12 17698.01 13098.49 15295.98 14598.73 12197.03 31295.37 11796.22 17998.19 17789.96 16999.16 17394.60 18087.48 31998.90 165
Gipumacopyleft78.40 32676.75 32983.38 34095.54 32280.43 35679.42 36297.40 29764.67 35873.46 35680.82 35945.65 36393.14 35766.32 35987.43 32076.56 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 20794.16 22397.44 16796.53 28797.22 9798.74 11798.95 3494.96 14089.25 32897.69 22089.32 18098.18 29194.59 18287.40 32196.92 240
VPNet94.99 20594.19 22097.40 17197.16 25396.57 12398.71 12698.97 3095.67 10094.84 20198.24 17480.36 31498.67 23896.46 12087.32 32296.96 237
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17196.84 27296.97 10498.74 11799.24 1095.16 12893.88 24497.72 21991.68 13398.31 28095.81 14287.25 32396.92 240
DU-MVS95.42 17894.76 19197.40 17196.53 28796.97 10498.66 13998.99 2995.43 11293.88 24497.69 22088.57 20198.31 28095.81 14287.25 32396.92 240
v14894.29 25093.76 25295.91 26296.10 30592.93 26998.58 14897.97 25792.59 24093.47 26196.95 28488.53 20498.32 27892.56 24587.06 32596.49 302
Baseline_NR-MVSNet94.35 24693.81 24695.96 26096.20 30094.05 23398.61 14596.67 33191.44 27793.85 24697.60 22988.57 20198.14 29494.39 18786.93 32695.68 327
PEN-MVS94.42 24393.73 25496.49 23296.28 29894.84 20199.17 3599.00 2793.51 20592.23 29997.83 21186.10 25397.90 31392.55 24686.92 32796.74 264
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18496.45 29296.36 13399.03 5799.03 2595.04 13693.58 25497.93 19788.27 20898.03 30494.13 19786.90 32896.95 239
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 33490.78 30397.19 28997.46 29187.60 32972.41 35895.72 32686.51 24496.71 34185.92 32686.80 32996.56 288
YYNet190.70 30789.39 31094.62 30494.79 33590.65 30597.20 28897.46 29187.54 33072.54 35795.74 32386.51 24496.66 34286.00 32586.76 33096.54 291
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 32991.34 29197.64 26097.51 28788.36 32771.17 35996.13 31879.22 32096.63 34383.65 33986.27 33196.52 296
test20.0390.89 30590.38 30392.43 32893.48 34688.14 33898.33 18497.56 27993.40 21087.96 33596.71 29780.69 31394.13 35679.15 35186.17 33295.01 340
DTE-MVSNet93.98 26993.26 27296.14 25396.06 30794.39 22399.20 3198.86 6193.06 22391.78 30597.81 21385.87 25797.58 32490.53 28286.17 33296.46 305
pm-mvs193.94 27093.06 27496.59 22196.49 29095.16 18498.95 7498.03 25492.32 25191.08 31297.84 20784.54 27998.41 26992.16 25386.13 33496.19 316
lessismore_v094.45 31194.93 33388.44 33491.03 36286.77 34097.64 22676.23 33998.42 26290.31 28585.64 33596.51 299
pmmvs691.77 29690.63 30095.17 28694.69 33791.24 29698.67 13697.92 26286.14 33789.62 32497.56 23475.79 34198.34 27690.75 28084.56 33695.94 322
IB-MVS91.98 1793.27 28091.97 29197.19 17897.47 22893.41 25697.09 29695.99 33593.32 21392.47 29495.73 32478.06 32999.53 14394.59 18282.98 33798.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 33586.66 35875.78 35892.66 35496.72 32886.55 34192.50 34946.01 36297.90 31390.32 28482.09 33894.80 342
Patchmatch-RL test91.49 29890.85 29993.41 32091.37 35384.40 34892.81 35395.93 33891.87 26587.25 33794.87 33688.99 19096.53 34492.54 24782.00 33999.30 121
PM-MVS87.77 32086.55 32491.40 33391.03 35583.36 35296.92 30495.18 34591.28 28686.48 34293.42 34553.27 36196.74 33889.43 30381.97 34094.11 346
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 35492.12 27597.63 26296.95 31788.86 32484.91 34793.13 34678.32 32596.74 33888.70 30981.81 34194.09 347
hse-mvs396.17 14595.62 15497.81 14299.03 10894.45 21998.64 14198.75 10297.48 1898.67 5998.72 12089.76 17199.86 4997.95 4081.59 34299.11 144
TransMVSNet (Re)92.67 29091.51 29596.15 25296.58 28594.65 20898.90 8296.73 32790.86 29589.46 32797.86 20485.62 26098.09 29986.45 32281.12 34395.71 326
PMVScopyleft61.03 2365.95 33163.57 33573.09 34657.90 36951.22 37085.05 36093.93 35854.45 36044.32 36683.57 35613.22 37089.15 36058.68 36181.00 34478.91 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 23693.73 25496.92 19898.50 15093.52 25298.34 18298.10 23893.83 18695.94 18897.98 19385.59 26199.03 19494.35 18980.94 34598.22 199
hse-mvs295.71 16495.30 16996.93 19598.50 15093.53 25198.36 18098.10 23897.48 1898.67 5997.99 19189.76 17199.02 19797.95 4080.91 34698.22 199
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34189.83 31297.13 29598.67 12993.69 19685.83 34496.19 31775.15 34396.74 33889.14 30679.41 34796.00 320
test_method79.03 32478.17 32781.63 34186.06 35954.40 36982.75 36196.89 32239.54 36480.98 35295.57 33158.37 36094.73 35484.74 33678.61 34895.75 325
TDRefinement91.06 30389.68 30895.21 28485.35 36091.49 29098.51 16297.07 30991.47 27588.83 33297.84 20777.31 33599.09 18792.79 23877.98 34995.04 338
new-patchmatchnet88.50 31987.45 32291.67 33290.31 35685.89 34797.16 29397.33 29989.47 31883.63 34992.77 34776.38 33895.06 35382.70 34177.29 35094.06 348
DIV-MVS_2432*160090.38 30889.38 31193.40 32192.85 34988.94 32797.95 23397.94 26090.35 30490.25 31993.96 34379.82 31695.94 34784.62 33776.69 35195.33 331
pmmvs386.67 32384.86 32692.11 33188.16 35787.19 34596.63 32294.75 34979.88 35187.22 33892.75 34866.56 35695.20 35281.24 34576.56 35293.96 349
CL-MVSNet_2432*160090.11 31089.14 31393.02 32691.86 35288.23 33796.51 32698.07 24790.49 29890.49 31894.41 33884.75 27595.34 35080.79 34674.95 35395.50 329
LCM-MVSNet78.70 32576.24 33086.08 33777.26 36671.99 36194.34 35096.72 32861.62 35976.53 35489.33 35333.91 36892.78 35881.85 34374.60 35493.46 351
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32391.94 35188.77 32894.92 34598.30 20584.30 34682.30 35090.04 35263.96 35997.25 33085.85 32774.47 35593.93 350
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19287.29 34494.84 34698.50 16692.06 26089.86 32295.19 33279.81 31799.39 15692.27 25269.79 35698.33 195
KD-MVS_2432*160089.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
miper_refine_blended89.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
PMMVS277.95 32775.44 33185.46 33882.54 36174.95 35994.23 35193.08 35972.80 35674.68 35587.38 35436.36 36791.56 35973.95 35763.94 35989.87 354
MVEpermissive62.14 2263.28 33459.38 33774.99 34474.33 36765.47 36385.55 35980.50 36952.02 36251.10 36475.00 36310.91 37380.50 36351.60 36253.40 36078.99 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 33264.25 33467.02 34782.28 36259.36 36791.83 35685.63 36652.69 36160.22 36277.28 36141.06 36580.12 36446.15 36341.14 36161.57 362
EMVS64.07 33363.26 33666.53 34881.73 36358.81 36891.85 35584.75 36751.93 36359.09 36375.13 36243.32 36479.09 36542.03 36439.47 36261.69 361
ANet_high69.08 32965.37 33380.22 34265.99 36871.96 36290.91 35790.09 36382.62 34749.93 36578.39 36029.36 36981.75 36262.49 36038.52 36386.95 357
tmp_tt68.90 33066.97 33274.68 34550.78 37059.95 36687.13 35883.47 36838.80 36562.21 36196.23 31464.70 35876.91 36688.91 30830.49 36487.19 356
wuyk23d30.17 33530.18 33930.16 34978.61 36543.29 37166.79 36314.21 37117.31 36614.82 36911.93 36911.55 37241.43 36737.08 36519.30 3655.76 365
testmvs21.48 33724.95 34011.09 35114.89 3716.47 37396.56 3249.87 3727.55 36717.93 36739.02 3659.43 3745.90 36916.56 36712.72 36620.91 364
test12320.95 33823.72 34112.64 35013.54 3728.19 37296.55 3256.13 3737.48 36816.74 36837.98 36612.97 3716.05 36816.69 3665.43 36723.68 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3520.00 3730.00 3740.00 36498.59 1420.00 3690.00 37098.61 13090.60 1590.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37094.51 850.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.20 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.43 1480.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
save fliter99.46 5198.38 3598.21 20198.71 11497.95 3
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 130
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17799.20 130
sam_mvs88.99 190
MTGPAbinary98.74 104
test_post196.68 32130.43 36887.85 22298.69 23492.59 243
test_post31.83 36788.83 19798.91 213
patchmatchnet-post95.10 33489.42 17898.89 217
MTMP98.89 8694.14 356
gm-plane-assit95.88 31387.47 34289.74 31596.94 28599.19 17193.32 222
TEST999.31 7098.50 2997.92 23598.73 10892.63 23797.74 11698.68 12496.20 2399.80 80
test_899.29 7898.44 3197.89 24198.72 11092.98 22697.70 11998.66 12796.20 2399.80 80
agg_prior99.30 7598.38 3598.72 11097.57 12999.81 71
test_prior498.01 6297.86 244
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
旧先验297.57 26591.30 28498.67 5999.80 8095.70 151
新几何297.64 260
无先验97.58 26498.72 11091.38 27899.87 4493.36 22099.60 78
原ACMM297.67 258
testdata299.89 3591.65 268
segment_acmp96.85 11
testdata197.32 28196.34 74
plane_prior797.42 23494.63 210
plane_prior697.35 23994.61 21387.09 235
plane_prior498.28 168
plane_prior394.61 21397.02 4995.34 191
plane_prior298.80 10897.28 31
plane_prior197.37 238
n20.00 374
nn0.00 374
door-mid94.37 352
test1198.66 132
door94.64 350
HQP5-MVS94.25 229
HQP-NCC97.20 24898.05 22496.43 7094.45 214
ACMP_Plane97.20 24898.05 22496.43 7094.45 214
BP-MVS95.30 160
HQP4-MVS94.45 21498.96 20696.87 251
HQP2-MVS86.75 241
NP-MVS97.28 24294.51 21897.73 217
MDTV_nov1_ep13_2view84.26 34996.89 31190.97 29497.90 10989.89 17093.91 20499.18 137
Test By Simon94.64 80