This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
test_part299.63 2999.18 899.27 17
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17398.76 9997.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17198.79 9297.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
VNet97.79 6997.40 8198.96 6798.88 11897.55 8198.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9597.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
MVSFormer97.57 8397.49 7597.84 13598.07 18295.76 16199.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18295.76 16197.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
diffmvs97.58 8297.40 8198.13 12098.32 16495.81 16098.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8498.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
ZD-MVS99.46 5198.70 1998.79 9293.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
旧先验297.57 25991.30 27998.67 5899.80 7995.70 147
PS-MVSNAJ97.73 7197.77 6097.62 15598.68 13795.58 16597.34 27398.51 16197.29 2898.66 6097.88 19794.51 8599.90 3397.87 4299.17 10997.39 217
xiu_mvs_v2_base97.66 7597.70 6397.56 15998.61 14395.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13398.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 11199.20 9795.36 17498.68 12091.89 25998.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
jason97.32 9997.08 9398.06 12597.45 22895.59 16497.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26292.30 28299.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24798.78 9596.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9997.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26798.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
MVS_Test97.28 10097.00 9798.13 12098.33 16295.97 14898.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
ETV-MVS97.96 5897.81 5998.40 10398.42 15397.27 9198.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
VDDNet95.36 17994.53 19697.86 13498.10 18195.13 18598.85 9097.75 26490.46 29598.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7697.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
新几何199.16 5099.34 6298.01 6298.69 11790.06 30498.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
API-MVS97.41 9497.25 8697.91 13298.70 13496.80 11098.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
test22299.23 9397.17 9897.40 26598.66 13188.68 32098.05 8698.96 9394.14 9499.53 8599.61 75
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13896.23 13699.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline97.64 7697.44 7998.25 11298.35 15796.20 13799.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
test_yl97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30398.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
sss97.39 9596.98 9998.61 8398.60 14496.61 11898.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
alignmvs97.56 8497.07 9499.01 6298.66 13898.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
VDD-MVS95.82 15695.23 16697.61 15698.84 12393.98 23098.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
casdiffmvs97.63 7797.41 8098.28 10898.33 16296.14 14098.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
PVSNet_BlendedMVS96.73 12296.60 11797.12 17999.25 8695.35 17698.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28997.90 10489.89 16893.91 20099.18 136
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
原ACMM198.65 8199.32 6896.62 11698.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9098.90 4484.80 33897.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PMMVS96.60 12596.33 12697.41 16597.90 19393.93 23197.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
PVSNet91.96 1896.35 13596.15 13296.96 18999.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20888.86 19199.69 11994.26 19099.01 11399.15 138
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
CANet98.05 5697.76 6198.90 7198.73 12997.27 9198.35 17598.78 9597.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9594.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7497.23 8798.98 6598.70 13498.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10998.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
Effi-MVS+97.12 10996.69 11398.39 10498.19 17396.72 11497.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
thisisatest053096.01 14695.36 15997.97 12998.38 15595.52 16998.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
tttt051796.07 14395.51 15397.78 14098.41 15494.84 19899.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
CS-MVS97.81 6797.61 6598.41 10298.52 14997.15 9999.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
EPMVS94.99 20094.48 19996.52 22597.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
EIA-MVS97.75 7097.58 6798.27 10998.38 15596.44 12799.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13199.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17698.59 13399.47 98
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14095.38 17399.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
thisisatest051595.61 16794.89 18297.76 14298.15 17895.15 18396.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17397.73 16698.68 175
CANet_DTU96.96 11496.55 11998.21 11498.17 17796.07 14297.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
PatchT93.06 28191.97 28696.35 23996.69 27592.67 26694.48 34397.08 30286.62 32797.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21390.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 11696.40 12498.45 9798.69 13696.90 10798.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
TAMVS97.02 11296.79 10697.70 14898.06 18495.31 17898.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18595.98 14398.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18498.77 12793.76 23697.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
CR-MVSNet94.76 21594.15 21996.59 21697.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28391.34 29197.24 17197.00 25693.43 24994.96 33798.80 8782.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
SCA95.46 16995.13 17096.46 23297.67 20691.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9498.75 10296.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 12996.41 12396.99 18598.75 12893.76 23697.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31196.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
UGNet96.78 12196.30 12798.19 11798.24 16795.89 15898.88 8598.93 3797.39 2396.81 15297.84 20282.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
CHOSEN 280x42097.18 10697.18 8997.20 17398.81 12593.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15297.00 10298.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18196.54 19198.95 159
PAPR96.84 11996.24 13098.65 8198.72 13396.92 10697.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
Anonymous2024052995.10 19494.22 21397.75 14399.01 10894.26 22498.87 8798.83 6885.79 33596.64 15798.97 8778.73 31899.85 4996.27 12294.89 21699.12 142
thres600view795.49 16894.77 18597.67 15198.98 11295.02 18898.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
thres100view90095.38 17694.70 18997.41 16598.98 11294.92 19698.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12995.46 17199.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
CVMVSNet95.43 17296.04 13593.57 31397.93 19183.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 30096.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
tfpn200view995.32 18394.62 19297.43 16498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
thres20095.25 18594.57 19497.28 17098.81 12594.92 19698.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
ab-mvs96.42 13395.71 14698.55 8798.63 14196.75 11397.88 23698.74 10393.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
mvs-test196.60 12596.68 11596.37 23797.89 19491.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
Anonymous20240521195.28 18494.49 19897.67 15199.00 10993.75 23898.70 12697.04 30590.66 29196.49 16898.80 11078.13 32399.83 5596.21 12595.36 21599.44 105
ADS-MVSNet294.58 22794.40 20795.11 28398.00 18688.74 32496.04 32497.30 29490.15 30196.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21198.00 18691.91 27596.04 32497.74 26590.15 30196.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19490.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 20998.76 9992.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 25593.80 24295.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
TAPA-MVS93.98 795.35 18094.56 19597.74 14499.13 10294.83 20098.33 17898.64 13686.62 32796.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 15495.12 17198.01 12798.49 15195.98 14398.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17687.48 31598.90 162
tpm294.19 25193.76 24795.46 27397.23 24089.04 32097.31 27696.85 31987.08 32696.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
JIA-IIPM93.35 27292.49 27995.92 25696.48 28690.65 30095.01 33696.96 31085.93 33396.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
BH-RMVSNet95.92 15195.32 16397.69 14998.32 16494.64 20698.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
dp94.15 25493.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28496.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
EPNet97.28 10096.87 10398.51 9294.98 32696.14 14098.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 10796.66 11698.68 7998.53 14897.19 9798.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
AUN-MVS94.53 23193.73 24996.92 19398.50 15093.52 24798.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
TR-MVS94.94 20694.20 21497.17 17697.75 20094.14 22797.59 25797.02 30892.28 24995.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
VPA-MVSNet95.75 15895.11 17297.69 14997.24 23997.27 9198.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 243
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21298.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 235
plane_prior394.61 21097.02 4795.34 186
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 18095.78 21398.70 172
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16695.97 14898.58 14398.25 21091.74 26295.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
EI-MVSNet95.96 14895.83 14196.36 23897.93 19193.70 24298.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17293.46 24196.84 249
MVSTER96.06 14495.72 14397.08 18298.23 16895.93 15498.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20798.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
RRT_MVS96.04 14595.53 15197.56 15997.07 25497.32 8898.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20391.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
TESTMET0.1,194.18 25393.69 25295.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31998.92 20793.09 22398.50 13898.85 163
VPNet94.99 20094.19 21597.40 16797.16 24896.57 12198.71 12298.97 3095.67 9694.84 19698.24 17080.36 30998.67 23396.46 11687.32 31896.96 232
1112_ss96.63 12496.00 13798.50 9398.56 14596.37 13098.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 26093.51 25995.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32698.97 19893.06 22498.50 13898.72 170
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14595.94 15197.71 24998.07 24292.10 25494.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
GA-MVS94.81 21294.03 22497.14 17797.15 24993.86 23396.76 31297.58 27394.00 17294.76 20197.04 26880.91 30498.48 24991.79 25996.25 20499.09 144
bset_n11_16_dypcd94.89 20894.27 21196.76 20094.41 33395.15 18395.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
BH-untuned95.95 14995.72 14396.65 20898.55 14792.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13494.58 20497.86 19989.16 18098.41 26496.91 9294.12 22796.88 244
cascas94.63 22393.86 23896.93 19196.91 26394.27 22396.00 32798.51 16185.55 33694.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12698.39 18489.45 31494.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
gg-mvs-nofinetune92.21 28990.58 29697.13 17896.75 27295.09 18695.85 32889.40 35785.43 33794.50 20781.98 35180.80 30798.40 27092.16 24898.33 14797.88 203
mvs_anonymous96.70 12396.53 12197.18 17598.19 17393.78 23598.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
HQP4-MVS94.45 20998.96 20196.87 246
HQP-MVS95.72 15995.40 15496.69 20697.20 24394.25 22598.05 21898.46 17196.43 6794.45 20997.73 21186.75 23698.96 20195.30 15694.18 22396.86 248
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27894.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
CLD-MVS95.62 16595.34 16096.46 23297.52 22193.75 23897.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 16595.34 16096.47 22997.46 22493.54 24598.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
LGP-MVS_train96.47 22997.46 22493.54 24598.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
v14419294.39 24093.70 25196.48 22896.06 30294.35 22198.58 14398.16 22591.45 27194.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
V4294.78 21494.14 22096.70 20596.33 29295.22 18098.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
ACMM93.85 995.69 16295.38 15896.61 21397.61 21093.84 23498.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 16995.21 16796.22 24598.12 17993.72 24198.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17390.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 25093.47 26196.40 23695.98 30594.08 22898.52 15398.15 22691.33 27794.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
BH-w/o95.38 17695.08 17396.26 24498.34 16191.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
XVG-ACMP-BASELINE94.54 23094.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31699.11 18294.05 19893.85 23496.48 298
v114494.59 22693.92 23396.60 21596.21 29494.78 20498.59 14198.14 22891.86 26194.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
v119294.32 24393.58 25696.53 22496.10 30094.45 21698.50 15898.17 22391.54 26994.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
PAPM94.95 20494.00 22897.78 14097.04 25595.65 16396.03 32698.25 21091.23 28394.19 22697.80 20891.27 14498.86 21782.61 33597.61 16998.84 165
Patchmatch-test94.42 23893.68 25396.63 21197.60 21191.76 27894.83 34197.49 28489.45 31494.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
v124094.06 26293.29 26696.34 24096.03 30493.90 23298.44 16598.17 22391.18 28694.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
GBi-Net94.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
test194.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
FMVSNet394.97 20394.26 21297.11 18098.18 17596.62 11698.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
MIMVSNet93.26 27692.21 28396.41 23597.73 20493.13 26195.65 33297.03 30691.27 28294.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
FIs96.51 13096.12 13397.67 15197.13 25097.54 8299.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
v2v48294.69 21694.03 22496.65 20896.17 29794.79 20398.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
FC-MVSNet-test96.42 13396.05 13497.53 16196.95 25997.27 9199.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
UniMVSNet (Re)95.78 15795.19 16897.58 15796.99 25897.47 8498.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31496.79 253
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 24096.61 31798.08 24092.20 25393.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16796.84 26796.97 10398.74 11399.24 1095.16 12493.88 23997.72 21391.68 13198.31 27595.81 13887.25 31996.92 235
DU-MVS95.42 17394.76 18697.40 16796.53 28296.97 10398.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 235
Baseline_NR-MVSNet94.35 24193.81 24195.96 25596.20 29594.05 22998.61 14096.67 32491.44 27293.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18799.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23796.88 9893.45 24397.06 226
UniMVSNet_ETH3D94.24 24893.33 26496.97 18897.19 24693.38 25398.74 11398.57 14791.21 28593.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
MVS_030492.81 28392.01 28595.23 27897.46 22491.33 28898.17 20798.81 7691.13 28793.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
tpmvs94.60 22494.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 28093.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19997.64 7799.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
eth_miper_zixun_eth94.68 21894.41 20695.47 27297.64 20891.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29998.88 21489.71 29193.39 24596.12 312
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 18096.45 28796.36 13199.03 5599.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 234
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20399.29 7893.24 25898.58 14398.11 23289.92 30693.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 27192.80 27395.07 28597.58 21387.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
AllTest95.24 18694.65 19196.99 18599.25 8693.21 25998.59 14198.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
TestCases96.99 18599.25 8693.21 25998.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20593.31 25597.02 29398.07 24292.23 25093.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
FMVSNet294.47 23693.61 25597.04 18398.21 17096.43 12898.79 10898.27 20592.46 23793.50 25597.09 25981.16 30198.00 30291.09 26791.93 26096.70 266
v14894.29 24593.76 24795.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
cl_fuxian94.79 21394.43 20595.89 25997.75 20093.12 26297.16 28798.03 24992.23 25093.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
RRT_test8_iter0594.56 22894.19 21595.67 26797.60 21191.34 28698.93 7598.42 17994.75 14393.39 25897.87 19879.00 31798.61 23796.78 10790.99 27497.07 225
pmmvs494.69 21693.99 23096.81 19895.74 31195.94 15197.40 26597.67 26790.42 29793.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
PCF-MVS93.45 1194.68 21893.43 26298.42 10198.62 14296.77 11295.48 33598.20 21484.63 33993.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet294.68 21894.19 21596.13 24998.11 18093.60 24396.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
XXY-MVS95.20 18994.45 20397.46 16296.75 27296.56 12298.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 232
jajsoiax95.45 17195.03 17596.73 20295.42 32394.63 20799.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23596.95 9194.04 22896.91 240
mvs_tets95.41 17595.00 17696.65 20895.58 31694.42 21799.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23697.09 8494.00 23096.91 240
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15799.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
v894.47 23693.77 24596.57 21996.36 29094.83 20099.05 5298.19 21591.92 25893.16 26596.97 27588.82 19398.48 24991.69 26287.79 31296.39 302
WR-MVS95.15 19194.46 20197.22 17296.67 27796.45 12698.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 242
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 13795.40 15498.96 6797.85 19697.60 8099.23 2198.93 3789.76 30993.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
GG-mvs-BLEND96.59 21696.34 29194.98 19296.51 32088.58 35893.10 27094.34 33580.34 31098.05 29889.53 29596.99 17996.74 259
v1094.29 24593.55 25796.51 22696.39 28994.80 20298.99 6498.19 21591.35 27693.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19798.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18293.60 24095.65 322
Patchmtry93.22 27792.35 28195.84 26196.77 26993.09 26394.66 34297.56 27487.37 32592.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
cl-mvsnet194.52 23294.03 22495.99 25297.57 21793.38 25397.05 29197.94 25591.74 26292.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
Anonymous2023121194.10 25893.26 26796.61 21399.11 10494.28 22299.01 6098.88 4986.43 32992.81 27597.57 22681.66 30098.68 23294.83 16889.02 30096.88 244
cl-mvsnet_94.51 23394.01 22796.02 25197.58 21393.40 25297.05 29197.96 25491.73 26492.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
miper_lstm_enhance94.33 24294.07 22395.11 28397.75 20090.97 29497.22 28198.03 24991.67 26692.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
v7n94.19 25193.43 26296.47 22995.90 30794.38 22099.26 1898.34 19291.99 25692.76 27797.13 25488.31 20298.52 24789.48 29787.70 31396.52 291
MVS94.67 22193.54 25898.08 12396.88 26596.56 12298.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
DSMNet-mixed92.52 28792.58 27892.33 32394.15 33582.65 34798.30 18694.26 34789.08 31892.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
EU-MVSNet93.66 26794.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
IterMVS-SCA-FT94.11 25793.87 23794.85 29197.98 19090.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
pmmvs593.65 26992.97 27195.68 26695.49 31992.37 26898.20 19897.28 29689.66 31192.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15999.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31196.38 303
ACMP93.49 1095.34 18194.98 17896.43 23497.67 20693.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part194.82 21093.82 24097.82 13898.84 12397.82 7299.03 5598.81 7692.31 24892.51 28797.89 19681.96 29798.67 23394.80 17188.24 30796.98 230
test0.0.03 194.08 26093.51 25995.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
IB-MVS91.98 1793.27 27591.97 28697.19 17497.47 22393.41 25197.09 29095.99 32893.32 20992.47 28995.73 31978.06 32499.53 14294.59 17882.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 25993.85 23994.80 29497.99 18890.35 30497.18 28498.12 23093.68 19492.46 29097.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17792.42 29197.90 19487.19 22898.12 29194.32 18788.21 30896.82 252
PS-CasMVS94.67 22193.99 23096.71 20396.68 27695.26 17999.13 3999.03 2593.68 19492.33 29297.95 19085.35 26098.10 29293.59 21088.16 31096.79 253
FMVSNet193.19 27992.07 28496.56 22097.54 21895.00 18998.82 9798.18 21890.38 29892.27 29397.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
PEN-MVS94.42 23893.73 24996.49 22796.28 29394.84 19899.17 3399.00 2793.51 20192.23 29497.83 20586.10 24897.90 30892.55 24186.92 32396.74 259
OurMVSNet-221017-094.21 24994.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29598.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
MS-PatchMatch93.84 26693.63 25494.46 30596.18 29689.45 31397.76 24698.27 20592.23 25092.13 29697.49 23179.50 31398.69 22989.75 29099.38 10095.25 326
ppachtmachnet_test93.22 27792.63 27794.97 28795.45 32190.84 29596.88 30697.88 25990.60 29292.08 29797.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
131496.25 14195.73 14297.79 13997.13 25095.55 16898.19 20298.59 14193.47 20392.03 29897.82 20691.33 14299.49 14594.62 17598.44 14198.32 194
baseline295.11 19394.52 19796.87 19596.65 27893.56 24498.27 19194.10 35093.45 20492.02 29997.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
DTE-MVSNet93.98 26493.26 26796.14 24896.06 30294.39 21999.20 2998.86 6193.06 21891.78 30097.81 20785.87 25297.58 31990.53 27786.17 32896.46 300
LF4IMVS93.14 28092.79 27494.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30197.65 21877.96 32598.81 22291.47 26591.92 26195.12 329
our_test_393.65 26993.30 26594.69 29695.45 32189.68 31196.91 30097.65 26891.97 25791.66 30296.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
testgi93.06 28192.45 28094.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30397.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
tfpnnormal93.66 26792.70 27696.55 22396.94 26095.94 15198.97 6899.19 1591.04 28891.38 30497.34 24084.94 26698.61 23785.45 32589.02 30095.11 330
LTVRE_ROB92.95 1594.60 22493.90 23596.68 20797.41 23294.42 21798.52 15398.59 14191.69 26591.21 30598.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8899.21 2898.97 3089.96 30591.14 30699.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
pm-mvs193.94 26593.06 26996.59 21696.49 28595.16 18198.95 7298.03 24992.32 24691.08 30797.84 20284.54 27498.41 26492.16 24886.13 33096.19 311
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21382.15 34894.16 34693.05 35375.73 34990.90 30882.52 35079.42 31498.33 27283.53 33398.68 12797.43 214
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31690.86 30995.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
USDC93.33 27492.71 27595.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32698.82 22189.51 29693.21 24995.97 316
MVP-Stereo94.28 24793.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26890.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 24493.77 24595.88 26097.81 19892.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30699.05 18992.75 23492.40 25696.55 285
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29390.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29990.25 31493.96 33679.82 31195.94 34184.62 33176.69 34495.33 325
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29490.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
SixPastTwentyTwo93.34 27392.86 27294.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30598.27 28390.90 27290.64 27796.57 281
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18887.29 33894.84 34098.50 16692.06 25589.86 31795.19 32679.81 31299.39 15592.27 24769.79 34998.33 193
ACMH92.88 1694.55 22993.95 23296.34 24097.63 20993.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29899.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33189.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29689.62 31997.85 20176.06 33498.81 22286.74 31592.51 25595.41 324
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20598.90 7896.73 32090.86 29089.46 32197.86 19985.62 25598.09 29486.45 31781.12 33895.71 320
NR-MVSNet94.98 20294.16 21897.44 16396.53 28297.22 9698.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17887.40 31796.92 235
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17587.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 27088.83 32697.84 20277.31 33099.09 18692.79 23377.98 34295.04 332
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33488.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33288.30 32896.98 27477.65 32897.99 30378.13 34792.94 25294.34 336
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30894.13 34979.15 34486.17 32895.01 334
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32287.90 33095.87 31767.63 34994.56 34878.73 34688.18 30995.83 319
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 26087.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
K. test v392.55 28691.91 28894.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32997.64 31792.08 25089.43 29396.57 281
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28186.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 33085.67 33993.62 33777.18 33197.10 32781.61 33789.29 29594.23 337
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31785.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31984.91 34193.13 33978.32 32096.74 33288.70 30481.81 33794.09 340
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31383.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 34082.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 21074.75 33998.61 23789.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ET-MVSNet_ETH3D94.13 25592.98 27097.58 15798.22 16996.20 13797.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31676.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32472.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32372.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32171.17 35296.13 31379.22 31596.63 33783.65 33286.27 32796.52 291
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 103
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32889.42 17398.89 212
MTMP98.89 8294.14 349
gm-plane-assit95.88 30887.47 33689.74 31096.94 28099.19 17193.32 218
test9_res96.39 12199.57 7599.69 51
agg_prior295.87 13799.57 7599.68 57
test_prior498.01 6297.86 238
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
新几何297.64 254
旧先验199.29 7897.48 8398.70 11699.09 7495.56 4799.47 9099.61 75
无先验97.58 25898.72 10991.38 27399.87 4493.36 21699.60 78
原ACMM297.67 252
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata197.32 27596.34 71
plane_prior797.42 22994.63 207
plane_prior697.35 23494.61 21087.09 230
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 235
plane_prior498.28 164
plane_prior298.80 10497.28 29
plane_prior197.37 233
plane_prior94.60 21298.44 16596.74 5594.22 221
n20.00 367
nn0.00 367
door-mid94.37 345
test1198.66 131
door94.64 343
HQP5-MVS94.25 225
BP-MVS95.30 156
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21597.73 211
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80