This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6098.87 5597.65 999.73 199.48 697.53 499.94 398.43 2099.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8298.85 6497.28 3199.72 399.39 1496.63 1597.60 32398.17 3199.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2699.81 1099.83 5
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2799.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6599.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 2099.80 1799.83 5
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 7098.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1799.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1799.86 199.85 2
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5399.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 698.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7498.80 8793.67 20099.37 1399.52 396.52 1799.89 3598.06 3699.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5499.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 20198.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 13199.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
test_part299.63 2999.18 899.27 17
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8199.26 1899.37 2293.33 10499.93 1596.96 9499.67 5499.69 51
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24799.00 11089.54 31797.43 27098.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2899.77 2699.72 40
APD-MVScopyleft98.35 4698.00 5499.42 1599.51 3998.72 1798.80 10898.82 7094.52 15999.23 2099.25 4395.54 4999.80 8096.52 11999.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17898.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2499.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17898.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2299.73 4399.75 28
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5699.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5799.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5799.65 5899.71 44
9.1498.06 4999.47 4898.71 12698.82 7094.36 16499.16 2699.29 3996.05 3299.81 7197.00 9099.71 50
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 10198.81 7695.80 9499.16 2699.47 895.37 5799.92 2197.89 4699.75 3899.79 10
ETH3D-3000-0.198.35 4698.00 5499.38 1799.47 4898.68 2198.67 13698.84 6594.66 15499.11 2899.25 4395.46 5199.81 7196.80 10999.73 4399.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6299.63 6499.72 40
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17698.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10298.40 17698.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6799.05 3299.34 3195.34 5999.82 6497.86 4899.64 6299.73 36
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6699.49 595.43 11299.03 3399.32 3395.56 4799.94 396.80 10999.77 2699.78 13
VNet97.79 7097.40 8398.96 6798.88 11997.55 8198.63 14298.93 3796.74 5799.02 3498.84 10790.33 16499.83 5698.53 1196.66 18999.50 91
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 22098.29 20797.19 4098.99 3899.02 8096.22 2099.67 12298.52 1598.56 13799.51 89
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8598.94 3999.17 5696.06 3099.92 2197.62 6699.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 8098.94 3999.17 5695.91 3999.94 397.55 7399.79 1999.78 13
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6998.96 3295.65 10298.94 3999.17 5696.06 3099.92 2197.21 8599.78 2399.75 28
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 598.82 7094.46 16298.94 3999.20 5295.16 6999.74 10797.58 6999.85 399.77 20
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8598.93 4399.19 5595.70 4499.94 397.62 6699.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16398.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7399.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.33 5097.95 5699.47 1199.49 4598.70 1998.83 9898.86 6195.48 10998.91 4599.17 5695.48 5099.93 1595.80 14499.53 8599.76 26
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12798.30 19298.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11298.71 12699.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1599.70 5199.47 98
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21398.83 4899.10 6996.54 1699.83 5697.70 6299.76 3299.59 80
MVSFormer97.57 8597.49 7797.84 13898.07 18595.76 16499.47 398.40 18394.98 13898.79 4998.83 10892.34 11598.41 26996.91 9699.59 7199.34 112
lupinMVS97.44 9397.22 9098.12 12298.07 18595.76 16497.68 25797.76 26894.50 16098.79 4998.61 13092.34 11599.30 16197.58 6999.59 7199.31 118
CDPH-MVS97.94 6397.49 7799.28 3599.47 4898.44 3197.91 23798.67 12992.57 24198.77 5198.85 10595.93 3899.72 10995.56 15499.69 5299.68 57
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16698.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3699.66 5799.69 51
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13598.28 19598.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 999.54 8499.73 36
diffmvs97.58 8497.40 8398.13 12098.32 16695.81 16398.06 22398.37 18996.20 7898.74 5398.89 10191.31 14599.25 16498.16 3298.52 13899.34 112
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9898.73 5599.06 7895.27 6499.93 1597.07 8999.63 6499.72 40
UA-Net97.96 5997.62 6798.98 6598.86 12197.47 8498.89 8699.08 2196.67 6098.72 5699.54 193.15 10799.81 7194.87 17098.83 12599.65 67
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3199.05 10598.52 2798.33 18498.68 12193.18 21898.68 5799.13 6494.62 8199.83 5696.45 12199.55 8399.52 85
DROMVSNet98.12 5698.02 5298.42 10198.25 16997.23 9699.49 298.42 17996.55 6698.68 5798.70 12193.82 10199.01 20098.79 299.48 9099.03 152
hse-mvs396.17 14595.62 15497.81 14299.03 10894.45 21998.64 14198.75 10297.48 1898.67 5998.72 12089.76 17199.86 4997.95 4081.59 34299.11 144
hse-mvs295.71 16495.30 16996.93 19598.50 15093.53 25198.36 18098.10 23897.48 1898.67 5997.99 19189.76 17199.02 19797.95 4080.91 34698.22 199
ZD-MVS99.46 5198.70 1998.79 9293.21 21798.67 5998.97 8795.70 4499.83 5696.07 13199.58 74
旧先验297.57 26591.30 28498.67 5999.80 8095.70 151
PS-MVSNAJ97.73 7397.77 6297.62 15998.68 13895.58 16897.34 27998.51 16197.29 3098.66 6397.88 20294.51 8599.90 3397.87 4799.17 11297.39 222
xiu_mvs_v2_base97.66 7797.70 6597.56 16398.61 14495.46 17497.44 26898.46 17197.15 4298.65 6498.15 17994.33 9299.80 8097.84 5198.66 13397.41 220
LFMVS95.86 15794.98 18398.47 9698.87 12096.32 13598.84 9796.02 33493.40 21098.62 6599.20 5274.99 34499.63 12997.72 5797.20 17999.46 102
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15598.61 6698.97 8795.13 7099.77 10197.65 6499.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 11199.20 9795.36 17798.68 12191.89 26498.60 6799.10 6994.44 9199.82 6494.27 19399.44 9699.58 82
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8998.60 6799.13 6496.05 3299.94 397.77 5499.86 199.77 20
jason97.32 10197.08 9598.06 12797.45 23395.59 16797.87 24397.91 26394.79 14698.55 6998.83 10891.12 14899.23 16797.58 6999.60 6899.34 112
jason: jason.
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17598.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4299.61 6799.74 33
CS-MVS97.94 6397.90 5998.06 12798.04 18996.85 11199.04 5498.39 18596.17 7998.50 7198.29 16794.60 8299.02 19798.61 899.43 9798.30 197
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7299.20 5295.90 4099.89 3597.85 4999.74 4199.78 13
X-MVStestdata94.06 26792.30 28799.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7243.50 36495.90 4099.89 3597.85 4999.74 4199.78 13
MG-MVS97.81 6997.60 6898.44 9899.12 10395.97 15097.75 25398.78 9596.89 5298.46 7299.22 4793.90 10099.68 12194.81 17499.52 8799.67 61
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16798.76 9997.82 598.45 7598.93 9796.65 1499.83 5697.38 8099.41 9999.71 44
ETH3 D test640097.59 8397.01 9899.34 2399.40 5998.56 2598.20 20498.81 7691.63 27298.44 7698.85 10593.98 9999.82 6494.11 19999.69 5299.64 70
MVS_Test97.28 10297.00 9998.13 12098.33 16495.97 15098.74 11798.07 24794.27 16698.44 7698.07 18492.48 11399.26 16396.43 12398.19 15299.16 138
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10897.95 23399.58 397.14 4398.44 7699.01 8495.03 7399.62 13197.91 4399.75 3899.50 91
ETV-MVS97.96 5997.81 6198.40 10398.42 15497.27 9198.73 12198.55 15296.84 5398.38 7997.44 24295.39 5599.35 15897.62 6698.89 12098.58 186
VDDNet95.36 18494.53 20197.86 13798.10 18495.13 18898.85 9497.75 26990.46 30098.36 8099.39 1473.27 35099.64 12697.98 3996.58 19298.81 169
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8199.23 4595.46 5199.94 397.42 7899.81 1099.77 20
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25398.89 4697.71 898.33 8298.97 8794.97 7499.88 4398.42 2299.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23799.58 397.20 3998.33 8299.00 8595.99 3599.64 12698.05 3899.76 3299.69 51
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9598.31 8499.10 6995.46 5199.93 1597.57 7299.81 1099.74 33
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12598.66 13297.51 1698.15 8598.83 10895.70 4499.92 2197.53 7599.67 5499.66 65
新几何199.16 5099.34 6298.01 6298.69 11890.06 30998.13 8698.95 9594.60 8299.89 3591.97 26199.47 9199.59 80
API-MVS97.41 9697.25 8897.91 13598.70 13596.80 11298.82 10198.69 11894.53 15798.11 8798.28 16894.50 8899.57 13594.12 19899.49 8897.37 224
CPTT-MVS97.72 7497.32 8698.92 6999.64 2897.10 10199.12 4398.81 7692.34 24998.09 8899.08 7693.01 10899.92 2196.06 13499.77 2699.75 28
test1299.18 4799.16 9998.19 5298.53 15698.07 8995.13 7099.72 10999.56 8099.63 73
test22299.23 9397.17 10097.40 27198.66 13288.68 32598.05 9098.96 9394.14 9599.53 8599.61 75
DP-MVS Recon97.86 6797.46 7999.06 6199.53 3698.35 4398.33 18498.89 4692.62 23898.05 9098.94 9695.34 5999.65 12496.04 13599.42 9899.19 133
Vis-MVSNetpermissive97.42 9597.11 9398.34 10698.66 13996.23 13899.22 2799.00 2796.63 6298.04 9299.21 4888.05 21699.35 15896.01 13799.21 10999.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline97.64 7897.44 8198.25 11298.35 15896.20 13999.00 6498.32 19796.33 7598.03 9399.17 5691.35 14399.16 17398.10 3498.29 15199.39 109
test_yl97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
DCV-MVSNet97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15698.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8298.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
112197.37 9996.77 11399.16 5099.34 6297.99 6598.19 20898.68 12190.14 30898.01 9898.97 8794.80 7999.87 4493.36 22099.46 9499.61 75
sss97.39 9796.98 10198.61 8398.60 14596.61 12098.22 20098.93 3793.97 17898.01 9898.48 14491.98 12899.85 5096.45 12198.15 15399.39 109
alignmvs97.56 8697.07 9699.01 6298.66 13998.37 4198.83 9898.06 25296.74 5798.00 10097.65 22490.80 15599.48 15098.37 2596.56 19399.19 133
CS-MVS-test97.78 7197.68 6698.09 12497.94 19597.19 9898.95 7498.37 18995.98 8797.99 10197.84 20794.50 8899.11 18298.30 2899.28 10897.97 207
OMC-MVS97.55 8797.34 8598.20 11599.33 6595.92 15798.28 19598.59 14295.52 10897.97 10299.10 6993.28 10699.49 14695.09 16798.88 12199.19 133
VDD-MVS95.82 16095.23 17197.61 16098.84 12493.98 23498.68 13397.40 29795.02 13797.95 10399.34 3174.37 34899.78 9698.64 496.80 18599.08 149
casdiffmvs97.63 7997.41 8298.28 10898.33 16496.14 14298.82 10198.32 19796.38 7397.95 10399.21 4891.23 14799.23 16798.12 3398.37 14699.48 96
PVSNet_BlendedMVS96.73 12496.60 11997.12 18399.25 8695.35 17998.26 19899.26 894.28 16597.94 10597.46 23992.74 11199.81 7196.88 10293.32 24996.20 315
PVSNet_Blended97.38 9897.12 9298.14 11899.25 8695.35 17997.28 28499.26 893.13 22197.94 10598.21 17592.74 11199.81 7196.88 10299.40 10199.27 125
DPM-MVS97.55 8796.99 10099.23 4299.04 10798.55 2697.17 29298.35 19394.85 14597.93 10798.58 13595.07 7299.71 11492.60 24199.34 10499.43 106
MP-MVScopyleft98.33 5098.01 5399.28 3599.75 398.18 5399.22 2798.79 9296.13 8297.92 10899.23 4594.54 8499.94 396.74 11399.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 34996.89 31190.97 29497.90 10989.89 17093.91 20499.18 137
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24998.84 6596.12 8397.89 11098.69 12295.96 3699.70 11596.89 9999.60 6899.65 67
test_prior297.80 24996.12 8397.89 11098.69 12295.96 3696.89 9999.60 68
原ACMM198.65 8199.32 6896.62 11898.67 12993.27 21697.81 11298.97 8795.18 6899.83 5693.84 20699.46 9499.50 91
114514_t96.93 11796.27 13098.92 6999.50 4197.63 7898.85 9498.90 4484.80 34497.77 11399.11 6792.84 10999.66 12394.85 17199.77 2699.47 98
PMMVS96.60 12796.33 12897.41 16997.90 19893.93 23597.35 27898.41 18192.84 23397.76 11497.45 24191.10 15099.20 17096.26 12797.91 16099.11 144
PVSNet91.96 1896.35 13896.15 13496.96 19399.17 9892.05 27896.08 32998.68 12193.69 19697.75 11597.80 21488.86 19699.69 12094.26 19499.01 11599.15 139
TEST999.31 7098.50 2997.92 23598.73 10892.63 23797.74 11698.68 12496.20 2399.80 80
train_agg97.97 5897.52 7499.33 2799.31 7098.50 2997.92 23598.73 10892.98 22697.74 11698.68 12496.20 2399.80 8096.59 11599.57 7599.68 57
CANet98.05 5797.76 6398.90 7198.73 13097.27 9198.35 18198.78 9597.37 2897.72 11898.96 9391.53 14099.92 2198.79 299.65 5899.51 89
test_899.29 7898.44 3197.89 24198.72 11092.98 22697.70 11998.66 12796.20 2399.80 80
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17298.78 9594.10 17097.69 12099.42 1295.25 6699.92 2198.09 3599.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7697.23 8998.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 12197.40 24592.26 11899.49 14698.28 3096.28 20599.08 149
PVSNet_Blended_VisFu97.70 7597.46 7998.44 9899.27 8395.91 15898.63 14299.16 1794.48 16197.67 12198.88 10292.80 11099.91 3097.11 8799.12 11399.50 91
WTY-MVS97.37 9996.92 10398.72 7798.86 12196.89 11098.31 19098.71 11495.26 12397.67 12198.56 13892.21 12199.78 9695.89 13996.85 18499.48 96
Effi-MVS+97.12 11196.69 11598.39 10498.19 17696.72 11697.37 27598.43 17893.71 19397.65 12498.02 18792.20 12299.25 16496.87 10597.79 16599.19 133
thisisatest053096.01 15095.36 16397.97 13298.38 15695.52 17298.88 8994.19 35594.04 17297.64 12598.31 16583.82 29599.46 15295.29 16297.70 17098.93 163
tttt051796.07 14795.51 15797.78 14498.41 15594.84 20199.28 1894.33 35394.26 16797.64 12598.64 12984.05 28899.47 15195.34 15897.60 17399.03 152
HyFIR lowres test96.90 11996.49 12498.14 11899.33 6595.56 16997.38 27399.65 292.34 24997.61 12798.20 17689.29 18199.10 18696.97 9297.60 17399.77 20
ACMMPcopyleft98.23 5497.95 5699.09 5999.74 797.62 7999.03 5799.41 695.98 8797.60 12899.36 2694.45 9099.93 1597.14 8698.85 12499.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior197.95 6297.51 7699.28 3599.30 7598.38 3597.81 24898.72 11093.16 22097.57 12998.66 12796.14 2699.81 7196.63 11499.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12999.81 71
tpmrst95.63 16995.69 15195.44 27997.54 22388.54 33296.97 30197.56 27993.50 20697.52 13196.93 28689.49 17599.16 17395.25 16496.42 19898.64 182
MDTV_nov1_ep1395.40 15897.48 22788.34 33596.85 31497.29 30193.74 19097.48 13297.26 25189.18 18499.05 19091.92 26297.43 176
EPMVS94.99 20594.48 20496.52 23097.22 24691.75 28497.23 28691.66 36194.11 16997.28 13396.81 29385.70 25998.84 22393.04 23097.28 17898.97 159
EIA-MVS97.75 7297.58 6998.27 10998.38 15696.44 12999.01 6298.60 14095.88 9197.26 13497.53 23594.97 7499.33 16097.38 8099.20 11099.05 151
IS-MVSNet97.22 10496.88 10498.25 11298.85 12396.36 13399.19 3397.97 25795.39 11497.23 13598.99 8691.11 14998.93 21194.60 18098.59 13599.47 98
EPP-MVSNet97.46 8997.28 8797.99 13198.64 14195.38 17699.33 1598.31 19993.61 20397.19 13699.07 7794.05 9699.23 16796.89 9998.43 14599.37 111
thisisatest051595.61 17294.89 18797.76 14698.15 18195.15 18696.77 31794.41 35192.95 22897.18 13797.43 24384.78 27499.45 15394.63 17797.73 16998.68 177
CANet_DTU96.96 11696.55 12198.21 11498.17 18096.07 14497.98 23198.21 21597.24 3797.13 13898.93 9786.88 24099.91 3095.00 16999.37 10398.66 180
CHOSEN 1792x268897.12 11196.80 10698.08 12599.30 7594.56 21798.05 22499.71 193.57 20497.09 13998.91 10088.17 21199.89 3596.87 10599.56 8099.81 8
PatchT93.06 28691.97 29196.35 24496.69 28092.67 27194.48 34997.08 30886.62 33397.08 14092.23 35087.94 21897.90 31378.89 35296.69 18898.49 188
PatchmatchNetpermissive95.71 16495.52 15696.29 24897.58 21890.72 30496.84 31597.52 28694.06 17197.08 14096.96 28289.24 18398.90 21692.03 25998.37 14699.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 11896.40 12698.45 9798.69 13796.90 10898.66 13998.68 12192.40 24897.07 14297.96 19491.54 13999.75 10593.68 21098.92 11898.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 8997.11 9398.50 9399.50 4196.41 13198.63 14298.60 14095.18 12797.06 14398.06 18594.26 9499.57 13593.80 20898.87 12399.52 85
TAMVS97.02 11496.79 10897.70 15298.06 18795.31 18198.52 15898.31 19993.95 17997.05 14498.61 13093.49 10398.52 25295.33 15997.81 16499.29 123
CSCG97.85 6897.74 6498.20 11599.67 2695.16 18499.22 2799.32 793.04 22497.02 14598.92 9995.36 5899.91 3097.43 7799.64 6299.52 85
CDS-MVSNet96.99 11596.69 11597.90 13698.05 18895.98 14598.20 20498.33 19693.67 20096.95 14698.49 14393.54 10298.42 26295.24 16597.74 16899.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18898.77 12893.76 24097.79 25198.50 16695.45 11196.94 14799.09 7487.87 22199.55 14296.76 11295.83 21597.74 213
CR-MVSNet94.76 22094.15 22496.59 22197.00 26193.43 25494.96 34397.56 27992.46 24296.93 14896.24 31288.15 21297.88 31787.38 31796.65 19098.46 189
RPMNet92.81 28891.34 29697.24 17597.00 26193.43 25494.96 34398.80 8782.27 34896.93 14892.12 35186.98 23899.82 6476.32 35696.65 19098.46 189
SCA95.46 17495.13 17596.46 23797.67 21191.29 29597.33 28097.60 27794.68 15196.92 15097.10 26083.97 29098.89 21792.59 24398.32 15099.20 130
PatchMatch-RL96.59 12996.03 13998.27 10999.31 7096.51 12697.91 23799.06 2293.72 19296.92 15098.06 18588.50 20599.65 12491.77 26599.00 11698.66 180
DeepC-MVS95.98 397.88 6697.58 6998.77 7599.25 8696.93 10698.83 9898.75 10296.96 5196.89 15299.50 490.46 16199.87 4497.84 5199.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 13296.41 12596.99 18998.75 12993.76 24097.50 26798.52 15895.67 10096.83 15399.30 3888.95 19599.53 14395.88 14096.26 20697.69 216
AdaColmapbinary97.15 11096.70 11498.48 9599.16 9996.69 11798.01 22898.89 4694.44 16396.83 15398.68 12490.69 15899.76 10394.36 18899.29 10798.98 158
CostFormer94.95 20994.73 19395.60 27497.28 24289.06 32497.53 26696.89 32289.66 31696.82 15596.72 29686.05 25498.95 21095.53 15596.13 21198.79 170
UGNet96.78 12396.30 12998.19 11798.24 17095.89 16098.88 8998.93 3797.39 2596.81 15697.84 20782.60 29999.90 3396.53 11899.49 8898.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 9297.03 9798.73 7699.05 10597.44 8698.07 22298.53 15695.32 12096.80 15798.53 13993.32 10599.72 10994.31 19299.31 10699.02 154
CHOSEN 280x42097.18 10897.18 9197.20 17798.81 12693.27 26195.78 33699.15 1895.25 12496.79 15898.11 18292.29 11799.07 18998.56 1099.85 399.25 127
HY-MVS93.96 896.82 12296.23 13398.57 8598.46 15397.00 10398.14 21598.21 21593.95 17996.72 15997.99 19191.58 13599.76 10394.51 18596.54 19498.95 162
PAPR96.84 12196.24 13298.65 8198.72 13496.92 10797.36 27798.57 14893.33 21296.67 16097.57 23294.30 9399.56 13791.05 27698.59 13599.47 98
Anonymous2024052995.10 19994.22 21897.75 14799.01 10994.26 22898.87 9198.83 6885.79 34196.64 16198.97 8778.73 32399.85 5096.27 12694.89 21999.12 143
thres600view795.49 17394.77 19097.67 15598.98 11395.02 19198.85 9496.90 32095.38 11596.63 16296.90 28784.29 28199.59 13388.65 31096.33 20098.40 191
thres100view90095.38 18194.70 19497.41 16998.98 11394.92 19998.87 9196.90 32095.38 11596.61 16396.88 28884.29 28199.56 13788.11 31196.29 20297.76 211
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 13998.73 13095.46 17499.20 3198.30 20594.96 14096.60 16498.87 10390.05 16798.59 24693.67 21298.60 13499.46 102
CVMVSNet95.43 17796.04 13893.57 31897.93 19683.62 35098.12 21898.59 14295.68 9996.56 16599.02 8087.51 22797.51 32793.56 21697.44 17599.60 78
RPSCF94.87 21495.40 15893.26 32498.89 11882.06 35598.33 18498.06 25290.30 30596.56 16599.26 4287.09 23599.49 14693.82 20796.32 20198.24 198
tfpn200view995.32 18894.62 19797.43 16898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20297.76 211
thres40095.38 18194.62 19797.65 15898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20298.40 191
thres20095.25 19094.57 19997.28 17498.81 12694.92 19998.20 20497.11 30795.24 12696.54 16996.22 31684.58 27899.53 14387.93 31596.50 19697.39 222
ab-mvs96.42 13695.71 14998.55 8798.63 14296.75 11597.88 24298.74 10493.84 18496.54 16998.18 17885.34 26699.75 10595.93 13896.35 19999.15 139
mvs-test196.60 12796.68 11796.37 24297.89 19991.81 28198.56 15498.10 23896.57 6496.52 17197.94 19690.81 15399.45 15395.72 14798.01 15797.86 210
Anonymous20240521195.28 18994.49 20397.67 15599.00 11093.75 24298.70 13097.04 31190.66 29696.49 17298.80 11178.13 32899.83 5696.21 12995.36 21899.44 105
ADS-MVSNet294.58 23294.40 21295.11 28898.00 19088.74 32996.04 33097.30 30090.15 30696.47 17396.64 30187.89 21997.56 32590.08 28897.06 18099.02 154
ADS-MVSNet95.00 20494.45 20896.63 21698.00 19091.91 28096.04 33097.74 27090.15 30696.47 17396.64 30187.89 21998.96 20690.08 28897.06 18099.02 154
Effi-MVS+-dtu96.29 14096.56 12095.51 27597.89 19990.22 31098.80 10898.10 23896.57 6496.45 17596.66 29890.81 15398.91 21395.72 14797.99 15897.40 221
PLCcopyleft95.07 497.20 10796.78 10998.44 9899.29 7896.31 13798.14 21598.76 9992.41 24796.39 17698.31 16594.92 7699.78 9694.06 20198.77 12899.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 26093.80 24795.12 28796.50 28987.91 34097.44 26895.89 33992.62 23896.37 17796.30 31184.13 28798.30 28293.24 22391.66 26799.14 141
TAPA-MVS93.98 795.35 18594.56 20097.74 14899.13 10294.83 20398.33 18498.64 13786.62 33396.29 17898.61 13094.00 9899.29 16280.00 34899.41 9999.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 15895.12 17698.01 13098.49 15295.98 14598.73 12197.03 31295.37 11796.22 17998.19 17789.96 16999.16 17394.60 18087.48 31998.90 165
tpm294.19 25693.76 25295.46 27897.23 24589.04 32597.31 28296.85 32687.08 33296.21 18096.79 29483.75 29698.74 23292.43 25196.23 20898.59 184
F-COLMAP97.09 11396.80 10697.97 13299.45 5594.95 19898.55 15698.62 13993.02 22596.17 18198.58 13594.01 9799.81 7193.95 20398.90 11999.14 141
GeoE96.58 13196.07 13698.10 12398.35 15895.89 16099.34 1298.12 23393.12 22296.09 18298.87 10389.71 17398.97 20292.95 23398.08 15699.43 106
JIA-IIPM93.35 27792.49 28495.92 26196.48 29190.65 30595.01 34296.96 31685.93 33996.08 18387.33 35587.70 22598.78 23091.35 27195.58 21798.34 194
BH-RMVSNet95.92 15595.32 16797.69 15398.32 16694.64 20998.19 20897.45 29394.56 15696.03 18498.61 13085.02 26999.12 17990.68 28199.06 11499.30 121
dp94.15 25993.90 24094.90 29497.31 24186.82 34696.97 30197.19 30691.22 28996.02 18596.61 30385.51 26299.02 19790.00 29294.30 22198.85 166
EPNet97.28 10296.87 10598.51 9294.98 33196.14 14298.90 8297.02 31498.28 195.99 18699.11 6791.36 14299.89 3596.98 9199.19 11199.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 10996.66 11898.68 7998.53 14997.19 9898.93 7998.90 4492.83 23495.99 18699.37 2292.12 12499.87 4493.67 21299.57 7598.97 159
AUN-MVS94.53 23693.73 25496.92 19898.50 15093.52 25298.34 18298.10 23893.83 18695.94 18897.98 19385.59 26199.03 19494.35 18980.94 34598.22 199
TR-MVS94.94 21194.20 21997.17 18097.75 20594.14 23197.59 26397.02 31492.28 25495.75 18997.64 22683.88 29298.96 20689.77 29496.15 21098.40 191
VPA-MVSNet95.75 16295.11 17797.69 15397.24 24497.27 9198.94 7799.23 1295.13 13095.51 19097.32 24885.73 25898.91 21397.33 8289.55 29496.89 248
HQP_MVS96.14 14695.90 14296.85 20197.42 23494.60 21598.80 10898.56 15097.28 3195.34 19198.28 16887.09 23599.03 19496.07 13194.27 22296.92 240
plane_prior394.61 21397.02 4995.34 191
DWT-MVSNet_test94.82 21594.36 21396.20 25197.35 23990.79 30298.34 18296.57 33392.91 23095.33 19396.44 30882.00 30199.12 17994.52 18495.78 21698.70 175
Fast-Effi-MVS+96.28 14295.70 15098.03 12998.29 16895.97 15098.58 14898.25 21391.74 26795.29 19497.23 25491.03 15299.15 17692.90 23597.96 15998.97 159
EI-MVSNet95.96 15295.83 14496.36 24397.93 19693.70 24698.12 21898.27 20893.70 19595.07 19599.02 8092.23 12098.54 25094.68 17693.46 24496.84 254
MVSTER96.06 14895.72 14697.08 18698.23 17195.93 15698.73 12198.27 20894.86 14495.07 19598.09 18388.21 20998.54 25096.59 11593.46 24496.79 258
OPM-MVS95.69 16795.33 16696.76 20596.16 30494.63 21098.43 17298.39 18596.64 6195.02 19798.78 11385.15 26899.05 19095.21 16694.20 22596.60 282
RRT_MVS96.04 14995.53 15597.56 16397.07 25997.32 8898.57 15398.09 24395.15 12995.02 19798.44 14788.20 21098.58 24896.17 13093.09 25396.79 258
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26297.74 20891.74 28598.69 13298.15 22995.56 10594.92 19997.68 22388.98 19398.79 22993.19 22597.78 16697.20 228
TESTMET0.1,194.18 25893.69 25795.63 27396.92 26689.12 32396.91 30694.78 34893.17 21994.88 20096.45 30778.52 32498.92 21293.09 22798.50 14098.85 166
VPNet94.99 20594.19 22097.40 17197.16 25396.57 12398.71 12698.97 3095.67 10094.84 20198.24 17480.36 31498.67 23896.46 12087.32 32296.96 237
1112_ss96.63 12696.00 14098.50 9398.56 14696.37 13298.18 21298.10 23892.92 22994.84 20198.43 14892.14 12399.58 13494.35 18996.51 19599.56 84
test-LLR95.10 19994.87 18895.80 26796.77 27489.70 31496.91 30695.21 34395.11 13294.83 20395.72 32687.71 22398.97 20293.06 22898.50 14098.72 173
test-mter94.08 26593.51 26495.80 26796.77 27489.70 31496.91 30695.21 34392.89 23194.83 20395.72 32677.69 33198.97 20293.06 22898.50 14098.72 173
Test_1112_low_res96.34 13995.66 15398.36 10598.56 14695.94 15397.71 25598.07 24792.10 25994.79 20597.29 25091.75 13299.56 13794.17 19696.50 19699.58 82
GA-MVS94.81 21794.03 22997.14 18197.15 25493.86 23796.76 31897.58 27894.00 17694.76 20697.04 27380.91 30998.48 25491.79 26496.25 20799.09 146
bset_n11_16_dypcd94.89 21394.27 21696.76 20594.41 33895.15 18695.67 33795.64 34195.53 10694.65 20797.52 23687.10 23498.29 28596.58 11791.35 26996.83 256
BH-untuned95.95 15395.72 14696.65 21398.55 14892.26 27498.23 19997.79 26793.73 19194.62 20898.01 18988.97 19499.00 20193.04 23098.51 13998.68 177
test_djsdf96.00 15195.69 15196.93 19595.72 31795.49 17399.47 398.40 18394.98 13894.58 20997.86 20489.16 18598.41 26996.91 9694.12 23096.88 249
cascas94.63 22893.86 24396.93 19596.91 26894.27 22796.00 33398.51 16185.55 34294.54 21096.23 31484.20 28698.87 22095.80 14496.98 18397.66 217
DP-MVS96.59 12995.93 14198.57 8599.34 6296.19 14198.70 13098.39 18589.45 31994.52 21199.35 2891.85 13099.85 5092.89 23798.88 12199.68 57
gg-mvs-nofinetune92.21 29490.58 30197.13 18296.75 27795.09 18995.85 33489.40 36485.43 34394.50 21281.98 35880.80 31298.40 27592.16 25398.33 14997.88 208
mvs_anonymous96.70 12596.53 12397.18 17998.19 17693.78 23998.31 19098.19 21894.01 17594.47 21398.27 17192.08 12698.46 25797.39 7997.91 16099.31 118
HQP-NCC97.20 24898.05 22496.43 7094.45 214
ACMP_Plane97.20 24898.05 22496.43 7094.45 214
HQP4-MVS94.45 21498.96 20696.87 251
HQP-MVS95.72 16395.40 15896.69 21197.20 24894.25 22998.05 22498.46 17196.43 7094.45 21497.73 21786.75 24198.96 20695.30 16094.18 22696.86 253
MSDG95.93 15495.30 16997.83 13998.90 11795.36 17796.83 31698.37 18991.32 28394.43 21898.73 11990.27 16599.60 13290.05 29098.82 12698.52 187
nrg03096.28 14295.72 14697.96 13496.90 26998.15 5699.39 698.31 19995.47 11094.42 21998.35 15892.09 12598.69 23497.50 7689.05 30297.04 232
CLD-MVS95.62 17095.34 16496.46 23797.52 22693.75 24297.27 28598.46 17195.53 10694.42 21998.00 19086.21 25198.97 20296.25 12894.37 22096.66 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 17095.34 16496.47 23497.46 22993.54 24998.99 6698.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
LGP-MVS_train96.47 23497.46 22993.54 24998.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
v14419294.39 24593.70 25696.48 23396.06 30794.35 22598.58 14898.16 22891.45 27694.33 22397.02 27587.50 22998.45 25891.08 27389.11 30196.63 279
V4294.78 21994.14 22596.70 21096.33 29795.22 18398.97 7098.09 24392.32 25194.31 22497.06 27088.39 20698.55 24992.90 23588.87 30696.34 309
ACMM93.85 995.69 16795.38 16296.61 21897.61 21593.84 23898.91 8198.44 17595.25 12494.28 22598.47 14586.04 25699.12 17995.50 15693.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 17495.21 17296.22 25098.12 18293.72 24598.32 18998.13 23293.71 19394.26 22697.31 24992.24 11998.10 29794.63 17790.12 28596.84 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 25593.47 26696.40 24195.98 31094.08 23298.52 15898.15 22991.33 28294.25 22797.20 25786.41 24898.42 26290.04 29189.39 29896.69 276
BH-w/o95.38 18195.08 17896.26 24998.34 16391.79 28297.70 25697.43 29592.87 23294.24 22897.22 25588.66 19998.84 22391.55 26997.70 17098.16 202
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27096.55 28691.65 28798.11 22098.44 17594.96 14094.22 22997.90 19979.18 32199.11 18294.05 20293.85 23796.48 303
v114494.59 23193.92 23896.60 22096.21 29994.78 20798.59 14698.14 23191.86 26694.21 23097.02 27587.97 21798.41 26991.72 26689.57 29296.61 281
v119294.32 24893.58 26196.53 22996.10 30594.45 21998.50 16398.17 22691.54 27494.19 23197.06 27086.95 23998.43 26190.14 28689.57 29296.70 271
PAPM94.95 20994.00 23397.78 14497.04 26095.65 16696.03 33298.25 21391.23 28894.19 23197.80 21491.27 14698.86 22282.61 34297.61 17298.84 168
Patchmatch-test94.42 24393.68 25896.63 21697.60 21691.76 28394.83 34797.49 29089.45 31994.14 23397.10 26088.99 19098.83 22585.37 33198.13 15499.29 123
v124094.06 26793.29 27196.34 24596.03 30993.90 23698.44 17098.17 22691.18 29194.13 23497.01 27786.05 25498.42 26289.13 30789.50 29696.70 271
GBi-Net94.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
test194.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
FMVSNet394.97 20894.26 21797.11 18498.18 17896.62 11898.56 15498.26 21293.67 20094.09 23597.10 26084.25 28398.01 30592.08 25592.14 26096.70 271
MIMVSNet93.26 28192.21 28896.41 24097.73 20993.13 26695.65 33897.03 31291.27 28794.04 23896.06 31975.33 34297.19 33186.56 32196.23 20898.92 164
FIs96.51 13396.12 13597.67 15597.13 25597.54 8299.36 999.22 1495.89 9094.03 23998.35 15891.98 12898.44 26096.40 12492.76 25697.01 233
v2v48294.69 22194.03 22996.65 21396.17 30294.79 20698.67 13698.08 24592.72 23594.00 24097.16 25887.69 22698.45 25892.91 23488.87 30696.72 267
FC-MVSNet-test96.42 13696.05 13797.53 16596.95 26497.27 9199.36 999.23 1295.83 9393.93 24198.37 15692.00 12798.32 27896.02 13692.72 25797.00 234
UniMVSNet (Re)95.78 16195.19 17397.58 16196.99 26397.47 8498.79 11299.18 1695.60 10393.92 24297.04 27391.68 13398.48 25495.80 14487.66 31896.79 258
miper_enhance_ethall95.10 19994.75 19296.12 25597.53 22593.73 24496.61 32398.08 24592.20 25893.89 24396.65 30092.44 11498.30 28294.21 19591.16 27496.34 309
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17196.84 27296.97 10498.74 11799.24 1095.16 12893.88 24497.72 21991.68 13398.31 28095.81 14287.25 32396.92 240
DU-MVS95.42 17894.76 19197.40 17196.53 28796.97 10498.66 13998.99 2995.43 11293.88 24497.69 22088.57 20198.31 28095.81 14287.25 32396.92 240
Baseline_NR-MVSNet94.35 24693.81 24695.96 26096.20 30094.05 23398.61 14596.67 33191.44 27793.85 24697.60 22988.57 20198.14 29494.39 18786.93 32695.68 327
PS-MVSNAJss96.43 13596.26 13196.92 19895.84 31595.08 19099.16 3698.50 16695.87 9293.84 24798.34 16294.51 8598.61 24296.88 10293.45 24697.06 231
UniMVSNet_ETH3D94.24 25393.33 26996.97 19297.19 25193.38 25898.74 11798.57 14891.21 29093.81 24898.58 13572.85 35198.77 23195.05 16893.93 23698.77 172
MVS_030492.81 28892.01 29095.23 28397.46 22991.33 29398.17 21398.81 7691.13 29293.80 24995.68 32966.08 35798.06 30290.79 27896.13 21196.32 312
tpmvs94.60 22994.36 21395.33 28297.46 22988.60 33196.88 31297.68 27191.29 28593.80 24996.42 30988.58 20099.24 16691.06 27496.04 21398.17 201
3Dnovator94.51 597.46 8996.93 10299.07 6097.78 20497.64 7799.35 1199.06 2297.02 4993.75 25199.16 6189.25 18299.92 2197.22 8499.75 3899.64 70
eth_miper_zixun_eth94.68 22394.41 21195.47 27797.64 21391.71 28696.73 32098.07 24792.71 23693.64 25297.21 25690.54 16098.17 29293.38 21889.76 28996.54 291
ITE_SJBPF95.44 27997.42 23491.32 29497.50 28895.09 13593.59 25398.35 15881.70 30498.88 21989.71 29693.39 24896.12 317
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18496.45 29296.36 13399.03 5799.03 2595.04 13693.58 25497.93 19788.27 20898.03 30494.13 19786.90 32896.95 239
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20899.29 7893.24 26398.58 14898.11 23689.92 31193.57 25599.10 6986.37 24999.79 9290.78 27998.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 27692.80 27895.07 29097.58 21887.97 33996.76 31897.86 26582.17 34993.53 25696.04 32086.13 25299.13 17889.24 30595.87 21498.10 203
AllTest95.24 19194.65 19696.99 18999.25 8693.21 26498.59 14698.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
TestCases96.99 18999.25 8693.21 26498.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
miper_ehance_all_eth95.01 20394.69 19595.97 25997.70 21093.31 26097.02 29998.07 24792.23 25593.51 25996.96 28291.85 13098.15 29393.68 21091.16 27496.44 306
FMVSNet294.47 24193.61 26097.04 18798.21 17396.43 13098.79 11298.27 20892.46 24293.50 26097.09 26481.16 30698.00 30791.09 27291.93 26396.70 271
v14894.29 25093.76 25295.91 26296.10 30592.93 26998.58 14897.97 25792.59 24093.47 26196.95 28488.53 20498.32 27892.56 24587.06 32596.49 302
cl_fuxian94.79 21894.43 21095.89 26497.75 20593.12 26797.16 29398.03 25492.23 25593.46 26297.05 27291.39 14198.01 30593.58 21589.21 30096.53 293
RRT_test8_iter0594.56 23394.19 22095.67 27297.60 21691.34 29198.93 7998.42 17994.75 14793.39 26397.87 20379.00 32298.61 24296.78 11190.99 27797.07 230
pmmvs494.69 22193.99 23596.81 20395.74 31695.94 15397.40 27197.67 27290.42 30293.37 26497.59 23089.08 18898.20 29092.97 23291.67 26696.30 313
PCF-MVS93.45 1194.68 22393.43 26798.42 10198.62 14396.77 11495.48 34198.20 21784.63 34593.34 26598.32 16488.55 20399.81 7184.80 33598.96 11798.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet294.68 22394.19 22096.13 25498.11 18393.60 24796.94 30398.31 19992.43 24693.32 26696.87 29086.51 24498.28 28794.10 20091.16 27496.51 299
XXY-MVS95.20 19494.45 20897.46 16696.75 27796.56 12498.86 9398.65 13693.30 21593.27 26798.27 17184.85 27398.87 22094.82 17391.26 27396.96 237
jajsoiax95.45 17695.03 18096.73 20795.42 32894.63 21099.14 3898.52 15895.74 9693.22 26898.36 15783.87 29398.65 24096.95 9594.04 23196.91 245
mvs_tets95.41 18095.00 18196.65 21395.58 32194.42 22199.00 6498.55 15295.73 9793.21 26998.38 15583.45 29798.63 24197.09 8894.00 23396.91 245
anonymousdsp95.42 17894.91 18696.94 19495.10 33095.90 15999.14 3898.41 18193.75 18893.16 27097.46 23987.50 22998.41 26995.63 15394.03 23296.50 301
v894.47 24193.77 25096.57 22496.36 29594.83 20399.05 5398.19 21891.92 26393.16 27096.97 28088.82 19898.48 25491.69 26787.79 31696.39 307
WR-MVS95.15 19694.46 20697.22 17696.67 28296.45 12898.21 20198.81 7694.15 16893.16 27097.69 22087.51 22798.30 28295.29 16288.62 30896.90 247
EPNet_dtu95.21 19394.95 18595.99 25796.17 30290.45 30898.16 21497.27 30396.77 5593.14 27398.33 16390.34 16398.42 26285.57 32898.81 12799.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 14095.40 15898.96 6797.85 20197.60 8099.23 2398.93 3789.76 31493.11 27499.02 8089.11 18799.93 1591.99 26099.62 6699.34 112
GG-mvs-BLEND96.59 22196.34 29694.98 19596.51 32688.58 36593.10 27594.34 34280.34 31598.05 30389.53 30096.99 18296.74 264
v1094.29 25093.55 26296.51 23196.39 29494.80 20598.99 6698.19 21891.35 28193.02 27696.99 27888.09 21498.41 26990.50 28388.41 31096.33 311
3Dnovator+94.38 697.43 9496.78 10999.38 1797.83 20298.52 2799.37 898.71 11497.09 4792.99 27799.13 6489.36 17999.89 3596.97 9299.57 7599.71 44
D2MVS95.18 19595.08 17895.48 27697.10 25792.07 27798.30 19299.13 1994.02 17492.90 27896.73 29589.48 17698.73 23394.48 18693.60 24395.65 328
Patchmtry93.22 28292.35 28695.84 26696.77 27493.09 26894.66 34897.56 27987.37 33192.90 27896.24 31288.15 21297.90 31387.37 31890.10 28696.53 293
cl-mvsnet194.52 23794.03 22995.99 25797.57 22293.38 25897.05 29797.94 26091.74 26792.81 28097.10 26089.12 18698.07 30192.60 24190.30 28396.53 293
Anonymous2023121194.10 26393.26 27296.61 21899.11 10494.28 22699.01 6298.88 4986.43 33592.81 28097.57 23281.66 30598.68 23794.83 17289.02 30496.88 249
cl-mvsnet____94.51 23894.01 23296.02 25697.58 21893.40 25797.05 29797.96 25991.73 26992.76 28297.08 26689.06 18998.13 29592.61 24090.29 28496.52 296
miper_lstm_enhance94.33 24794.07 22895.11 28897.75 20590.97 29997.22 28798.03 25491.67 27192.76 28296.97 28090.03 16897.78 31992.51 24889.64 29196.56 288
v7n94.19 25693.43 26796.47 23495.90 31294.38 22499.26 2098.34 19591.99 26192.76 28297.13 25988.31 20798.52 25289.48 30287.70 31796.52 296
MVS94.67 22693.54 26398.08 12596.88 27096.56 12498.19 20898.50 16678.05 35392.69 28598.02 18791.07 15199.63 12990.09 28798.36 14898.04 204
DSMNet-mixed92.52 29292.58 28392.33 32994.15 34082.65 35398.30 19294.26 35489.08 32392.65 28695.73 32485.01 27095.76 34886.24 32397.76 16798.59 184
EU-MVSNet93.66 27294.14 22592.25 33095.96 31183.38 35198.52 15898.12 23394.69 15092.61 28798.13 18187.36 23296.39 34691.82 26390.00 28796.98 235
IterMVS-SCA-FT94.11 26293.87 24294.85 29697.98 19490.56 30797.18 29098.11 23693.75 18892.58 28897.48 23883.97 29097.41 32892.48 25091.30 27196.58 284
pmmvs593.65 27492.97 27695.68 27195.49 32492.37 27398.20 20497.28 30289.66 31692.58 28897.26 25182.14 30098.09 29993.18 22690.95 27896.58 284
WR-MVS_H95.05 20294.46 20696.81 20396.86 27195.82 16299.24 2299.24 1093.87 18392.53 29096.84 29290.37 16298.24 28993.24 22387.93 31596.38 308
ACMP93.49 1095.34 18694.98 18396.43 23997.67 21193.48 25398.73 12198.44 17594.94 14392.53 29098.53 13984.50 28099.14 17795.48 15794.00 23396.66 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part194.82 21593.82 24597.82 14198.84 12497.82 7299.03 5798.81 7692.31 25392.51 29297.89 20181.96 30298.67 23894.80 17588.24 31196.98 235
test0.0.03 194.08 26593.51 26495.80 26795.53 32392.89 27097.38 27395.97 33695.11 13292.51 29296.66 29887.71 22396.94 33587.03 31993.67 23997.57 218
IB-MVS91.98 1793.27 28091.97 29197.19 17897.47 22893.41 25697.09 29695.99 33593.32 21392.47 29495.73 32478.06 32999.53 14394.59 18282.98 33798.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 26493.85 24494.80 29997.99 19290.35 30997.18 29098.12 23393.68 19892.46 29597.34 24684.05 28897.41 32892.51 24891.33 27096.62 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 21194.30 21596.83 20296.72 27995.56 16999.11 4498.95 3493.89 18192.42 29697.90 19987.19 23398.12 29694.32 19188.21 31296.82 257
PS-CasMVS94.67 22693.99 23596.71 20896.68 28195.26 18299.13 4199.03 2593.68 19892.33 29797.95 19585.35 26598.10 29793.59 21488.16 31496.79 258
FMVSNet193.19 28492.07 28996.56 22597.54 22395.00 19298.82 10198.18 22190.38 30392.27 29897.07 26773.68 34997.95 30989.36 30491.30 27196.72 267
PEN-MVS94.42 24393.73 25496.49 23296.28 29894.84 20199.17 3599.00 2793.51 20592.23 29997.83 21186.10 25397.90 31392.55 24686.92 32796.74 264
OurMVSNet-221017-094.21 25494.00 23394.85 29695.60 32089.22 32298.89 8697.43 29595.29 12192.18 30098.52 14282.86 29898.59 24693.46 21791.76 26596.74 264
MS-PatchMatch93.84 27193.63 25994.46 31096.18 30189.45 31897.76 25298.27 20892.23 25592.13 30197.49 23779.50 31898.69 23489.75 29599.38 10295.25 332
ppachtmachnet_test93.22 28292.63 28294.97 29295.45 32690.84 30096.88 31297.88 26490.60 29792.08 30297.26 25188.08 21597.86 31885.12 33290.33 28296.22 314
131496.25 14495.73 14597.79 14397.13 25595.55 17198.19 20898.59 14293.47 20792.03 30397.82 21291.33 14499.49 14694.62 17998.44 14398.32 196
baseline295.11 19894.52 20296.87 20096.65 28393.56 24898.27 19794.10 35793.45 20892.02 30497.43 24387.45 23199.19 17193.88 20597.41 17797.87 209
DTE-MVSNet93.98 26993.26 27296.14 25396.06 30794.39 22399.20 3198.86 6193.06 22391.78 30597.81 21385.87 25797.58 32490.53 28286.17 33296.46 305
LF4IMVS93.14 28592.79 27994.20 31395.88 31388.67 33097.66 25997.07 30993.81 18791.71 30697.65 22477.96 33098.81 22791.47 27091.92 26495.12 335
our_test_393.65 27493.30 27094.69 30195.45 32689.68 31696.91 30697.65 27391.97 26291.66 30796.88 28889.67 17497.93 31288.02 31491.49 26896.48 303
testgi93.06 28692.45 28594.88 29596.43 29389.90 31198.75 11497.54 28595.60 10391.63 30897.91 19874.46 34797.02 33386.10 32493.67 23997.72 215
tfpnnormal93.66 27292.70 28196.55 22896.94 26595.94 15398.97 7099.19 1591.04 29391.38 30997.34 24684.94 27198.61 24285.45 33089.02 30495.11 336
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21297.41 23794.42 22198.52 15898.59 14291.69 27091.21 31098.35 15884.87 27299.04 19391.06 27493.44 24796.60 282
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10797.18 25297.32 8899.21 3098.97 3089.96 31091.14 31199.05 7986.64 24399.92 2193.38 21899.47 9197.73 214
pm-mvs193.94 27093.06 27496.59 22196.49 29095.16 18498.95 7498.03 25492.32 25191.08 31297.84 20784.54 27998.41 26992.16 25386.13 33496.19 316
MVS-HIRNet89.46 31788.40 31692.64 32797.58 21882.15 35494.16 35293.05 36075.73 35590.90 31382.52 35779.42 31998.33 27783.53 34098.68 12997.43 219
FMVSNet591.81 29590.92 29894.49 30797.21 24792.09 27698.00 23097.55 28489.31 32190.86 31495.61 33074.48 34695.32 35185.57 32889.70 29096.07 319
USDC93.33 27992.71 28095.21 28496.83 27390.83 30196.91 30697.50 28893.84 18490.72 31598.14 18077.69 33198.82 22689.51 30193.21 25295.97 321
MVP-Stereo94.28 25293.92 23895.35 28194.95 33292.60 27297.97 23297.65 27391.61 27390.68 31697.09 26486.32 25098.42 26289.70 29799.34 10495.02 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 24993.77 25095.88 26597.81 20392.04 27998.71 12698.37 18993.99 17790.60 31798.47 14580.86 31199.05 19092.75 23992.40 25996.55 290
CL-MVSNet_2432*160090.11 31089.14 31393.02 32691.86 35288.23 33796.51 32698.07 24790.49 29890.49 31894.41 33884.75 27595.34 35080.79 34674.95 35395.50 329
DIV-MVS_2432*160090.38 30889.38 31193.40 32192.85 34988.94 32797.95 23397.94 26090.35 30490.25 31993.96 34379.82 31695.94 34784.62 33776.69 35195.33 331
Anonymous2023120691.66 29791.10 29793.33 32294.02 34487.35 34398.58 14897.26 30490.48 29990.16 32096.31 31083.83 29496.53 34479.36 35089.90 28896.12 317
SixPastTwentyTwo93.34 27892.86 27794.75 30095.67 31889.41 32098.75 11496.67 33193.89 18190.15 32198.25 17380.87 31098.27 28890.90 27790.64 28096.57 286
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19287.29 34494.84 34698.50 16692.06 26089.86 32295.19 33279.81 31799.39 15692.27 25269.79 35698.33 195
ACMH92.88 1694.55 23493.95 23796.34 24597.63 21493.26 26298.81 10798.49 17093.43 20989.74 32398.53 13981.91 30399.08 18893.69 20993.30 25096.70 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 29690.63 30095.17 28694.69 33791.24 29698.67 13697.92 26286.14 33789.62 32497.56 23475.79 34198.34 27690.75 28084.56 33695.94 322
TinyColmap92.31 29391.53 29494.65 30396.92 26689.75 31396.92 30496.68 33090.45 30189.62 32497.85 20676.06 34098.81 22786.74 32092.51 25895.41 330
Anonymous2024052191.18 30190.44 30293.42 31993.70 34588.47 33398.94 7797.56 27988.46 32689.56 32695.08 33577.15 33796.97 33483.92 33889.55 29494.82 341
TransMVSNet (Re)92.67 29091.51 29596.15 25296.58 28594.65 20898.90 8296.73 32790.86 29589.46 32797.86 20485.62 26098.09 29986.45 32281.12 34395.71 326
NR-MVSNet94.98 20794.16 22397.44 16796.53 28797.22 9798.74 11798.95 3494.96 14089.25 32897.69 22089.32 18098.18 29194.59 18287.40 32196.92 240
LCM-MVSNet-Re95.22 19295.32 16794.91 29398.18 17887.85 34198.75 11495.66 34095.11 13288.96 32996.85 29190.26 16697.65 32195.65 15298.44 14399.22 129
KD-MVS_2432*160089.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
miper_refine_blended89.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
TDRefinement91.06 30389.68 30895.21 28485.35 36091.49 29098.51 16297.07 30991.47 27588.83 33297.84 20777.31 33599.09 18792.79 23877.98 34995.04 338
N_pmnet87.12 32287.77 32185.17 33995.46 32561.92 36497.37 27570.66 37085.83 34088.73 33396.04 32085.33 26797.76 32080.02 34790.48 28195.84 323
test_040291.32 29990.27 30494.48 30896.60 28491.12 29798.50 16397.22 30586.10 33888.30 33496.98 27977.65 33397.99 30878.13 35492.94 25594.34 343
test20.0390.89 30590.38 30392.43 32893.48 34688.14 33898.33 18497.56 27993.40 21087.96 33596.71 29780.69 31394.13 35679.15 35186.17 33295.01 340
MIMVSNet189.67 31488.28 31893.82 31692.81 35091.08 29898.01 22897.45 29387.95 32887.90 33695.87 32267.63 35594.56 35578.73 35388.18 31395.83 324
Patchmatch-RL test91.49 29890.85 29993.41 32091.37 35384.40 34892.81 35395.93 33891.87 26587.25 33794.87 33688.99 19096.53 34492.54 24782.00 33999.30 121
pmmvs386.67 32384.86 32692.11 33188.16 35787.19 34596.63 32294.75 34979.88 35187.22 33892.75 34866.56 35695.20 35281.24 34576.56 35293.96 349
K. test v392.55 29191.91 29394.48 30895.64 31989.24 32199.07 5194.88 34794.04 17286.78 33997.59 23077.64 33497.64 32292.08 25589.43 29796.57 286
lessismore_v094.45 31194.93 33388.44 33491.03 36286.77 34097.64 22676.23 33998.42 26290.31 28585.64 33596.51 299
ambc89.49 33586.66 35875.78 35892.66 35496.72 32886.55 34192.50 34946.01 36297.90 31390.32 28482.09 33894.80 342
PM-MVS87.77 32086.55 32491.40 33391.03 35583.36 35296.92 30495.18 34591.28 28686.48 34293.42 34553.27 36196.74 33889.43 30381.97 34094.11 346
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31793.08 34889.42 31997.91 23796.89 32278.58 35285.86 34394.69 33769.48 35398.29 28577.13 35593.29 25193.36 352
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34189.83 31297.13 29598.67 12993.69 19685.83 34496.19 31775.15 34396.74 33889.14 30679.41 34796.00 320
new_pmnet90.06 31189.00 31593.22 32594.18 33988.32 33696.42 32896.89 32286.19 33685.67 34593.62 34477.18 33697.10 33281.61 34489.29 29994.23 344
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 33689.00 32698.13 21797.81 26689.22 32285.32 34696.46 30667.71 35498.42 26287.89 31693.82 23895.08 337
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 35492.12 27597.63 26296.95 31788.86 32484.91 34793.13 34678.32 32596.74 33888.70 30981.81 34194.09 347
DeepMVS_CXcopyleft86.78 33697.09 25872.30 36095.17 34675.92 35484.34 34895.19 33270.58 35295.35 34979.98 34989.04 30392.68 353
new-patchmatchnet88.50 31987.45 32291.67 33290.31 35685.89 34797.16 29397.33 29989.47 31883.63 34992.77 34776.38 33895.06 35382.70 34177.29 35094.06 348
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32391.94 35188.77 32894.92 34598.30 20584.30 34682.30 35090.04 35263.96 35997.25 33085.85 32774.47 35593.93 350
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33493.19 34776.56 35797.00 30098.35 19380.97 35081.57 35197.75 21674.75 34598.61 24289.85 29393.63 24194.17 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_method79.03 32478.17 32781.63 34186.06 35954.40 36982.75 36196.89 32239.54 36480.98 35295.57 33158.37 36094.73 35484.74 33678.61 34895.75 325
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16198.22 17296.20 13997.31 28295.37 34294.53 15779.56 35397.63 22886.51 24497.53 32696.91 9690.74 27999.02 154
LCM-MVSNet78.70 32576.24 33086.08 33777.26 36671.99 36194.34 35096.72 32861.62 35976.53 35489.33 35333.91 36892.78 35881.85 34374.60 35493.46 351
PMMVS277.95 32775.44 33185.46 33882.54 36174.95 35994.23 35193.08 35972.80 35674.68 35587.38 35436.36 36791.56 35973.95 35763.94 35989.87 354
Gipumacopyleft78.40 32676.75 32983.38 34095.54 32280.43 35679.42 36297.40 29764.67 35873.46 35680.82 35945.65 36393.14 35766.32 35987.43 32076.56 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 30789.39 31094.62 30494.79 33590.65 30597.20 28897.46 29187.54 33072.54 35795.74 32386.51 24496.66 34286.00 32586.76 33096.54 291
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 33490.78 30397.19 28997.46 29187.60 32972.41 35895.72 32686.51 24496.71 34185.92 32686.80 32996.56 288
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 32991.34 29197.64 26097.51 28788.36 32771.17 35996.13 31879.22 32096.63 34383.65 33986.27 33196.52 296
FPMVS77.62 32877.14 32879.05 34379.25 36460.97 36595.79 33595.94 33765.96 35767.93 36094.40 33937.73 36688.88 36168.83 35888.46 30987.29 355
tmp_tt68.90 33066.97 33274.68 34550.78 37059.95 36687.13 35883.47 36838.80 36562.21 36196.23 31464.70 35876.91 36688.91 30830.49 36487.19 356
E-PMN64.94 33264.25 33467.02 34782.28 36259.36 36791.83 35685.63 36652.69 36160.22 36277.28 36141.06 36580.12 36446.15 36341.14 36161.57 362
EMVS64.07 33363.26 33666.53 34881.73 36358.81 36891.85 35584.75 36751.93 36359.09 36375.13 36243.32 36479.09 36542.03 36439.47 36261.69 361
MVEpermissive62.14 2263.28 33459.38 33774.99 34474.33 36765.47 36385.55 35980.50 36952.02 36251.10 36475.00 36310.91 37380.50 36351.60 36253.40 36078.99 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 32965.37 33380.22 34265.99 36871.96 36290.91 35790.09 36382.62 34749.93 36578.39 36029.36 36981.75 36262.49 36038.52 36386.95 357
PMVScopyleft61.03 2365.95 33163.57 33573.09 34657.90 36951.22 37085.05 36093.93 35854.45 36044.32 36683.57 35613.22 37089.15 36058.68 36181.00 34478.91 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 33724.95 34011.09 35114.89 3716.47 37396.56 3249.87 3727.55 36717.93 36739.02 3659.43 3745.90 36916.56 36712.72 36620.91 364
test12320.95 33823.72 34112.64 35013.54 3728.19 37296.55 3256.13 3737.48 36816.74 36837.98 36612.97 3716.05 36816.69 3665.43 36723.68 363
wuyk23d30.17 33530.18 33930.16 34978.61 36543.29 37166.79 36314.21 37117.31 36614.82 36911.93 36911.55 37241.43 36737.08 36519.30 3655.76 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3520.00 3730.00 3740.00 36498.59 1420.00 3690.00 37098.61 13090.60 1590.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37094.51 850.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.20 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.43 1480.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.37 2099.24 9299.05 1099.02 6099.16 6197.81 299.37 15797.24 8399.73 4399.70 48
save fliter99.46 5198.38 3598.21 20198.71 11497.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 7098.88 4999.94 398.47 1799.81 1099.84 4
GSMVS99.20 130
sam_mvs189.45 17799.20 130
sam_mvs88.99 190
MTGPAbinary98.74 104
test_post196.68 32130.43 36887.85 22298.69 23492.59 243
test_post31.83 36788.83 19798.91 213
patchmatchnet-post95.10 33489.42 17898.89 217
MTMP98.89 8694.14 356
gm-plane-assit95.88 31387.47 34289.74 31596.94 28599.19 17193.32 222
test9_res96.39 12599.57 7599.69 51
agg_prior295.87 14199.57 7599.68 57
test_prior498.01 6297.86 244
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
新几何297.64 260
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9199.61 75
无先验97.58 26498.72 11091.38 27899.87 4493.36 22099.60 78
原ACMM297.67 258
testdata299.89 3591.65 268
segment_acmp96.85 11
testdata197.32 28196.34 74
plane_prior797.42 23494.63 210
plane_prior697.35 23994.61 21387.09 235
plane_prior598.56 15099.03 19496.07 13194.27 22296.92 240
plane_prior498.28 168
plane_prior298.80 10897.28 31
plane_prior197.37 238
plane_prior94.60 21598.44 17096.74 5794.22 224
n20.00 374
nn0.00 374
door-mid94.37 352
test1198.66 132
door94.64 350
HQP5-MVS94.25 229
BP-MVS95.30 160
HQP3-MVS98.46 17194.18 226
HQP2-MVS86.75 241
NP-MVS97.28 24294.51 21897.73 217
ACMMP++_ref92.97 254
ACMMP++93.61 242
Test By Simon94.64 80