This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17198.79 9297.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26292.30 28299.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17398.76 9997.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9997.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19798.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test9_res96.39 12199.57 7599.69 51
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9597.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
agg_prior295.87 13799.57 7599.68 57
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12698.39 18489.45 31494.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9594.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24798.78 9596.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8498.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26798.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19997.64 7799.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
旧先验199.29 7897.48 8398.70 11699.09 7495.56 4799.47 9099.61 75
test22299.23 9397.17 9897.40 26598.66 13188.68 32098.05 8698.96 9394.14 9499.53 8599.61 75
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30398.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
无先验97.58 25898.72 10991.38 27399.87 4493.36 21699.60 78
CVMVSNet95.43 17296.04 13593.57 31397.93 19183.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
新几何199.16 5099.34 6298.01 6298.69 11790.06 30498.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
testdata98.26 11199.20 9795.36 17498.68 12091.89 25998.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14595.94 15197.71 24998.07 24292.10 25494.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
1112_ss96.63 12496.00 13798.50 9398.56 14596.37 13098.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9498.75 10296.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 5697.76 6198.90 7198.73 12997.27 9198.35 17598.78 9597.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
原ACMM198.65 8199.32 6896.62 11698.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
VNet97.79 6997.40 8198.96 6798.88 11897.55 8198.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
EPNet97.28 10096.87 10398.51 9294.98 32696.14 14098.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
casdiffmvs97.63 7797.41 8098.28 10898.33 16296.14 14098.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10998.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9098.90 4484.80 33897.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13199.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17698.59 13399.47 98
PAPR96.84 11996.24 13098.65 8198.72 13396.92 10697.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13398.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12995.46 17199.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13896.23 13699.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521195.28 18494.49 19897.67 15199.00 10993.75 23898.70 12697.04 30590.66 29196.49 16898.80 11078.13 32399.83 5596.21 12595.36 21599.44 105
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7697.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 7697.44 7998.25 11298.35 15796.20 13799.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
sss97.39 9596.98 9998.61 8398.60 14496.61 11898.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14095.38 17399.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
test_yl97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
diffmvs97.58 8297.40 8198.13 12098.32 16495.81 16098.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
MVSFormer97.57 8397.49 7597.84 13598.07 18295.76 16199.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
jason97.32 9997.08 9398.06 12597.45 22895.59 16497.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
QAPM96.29 13795.40 15498.96 6797.85 19697.60 8099.23 2198.93 3789.76 30993.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
mvs_anonymous96.70 12396.53 12197.18 17598.19 17393.78 23598.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
lupinMVS97.44 9197.22 8898.12 12298.07 18295.76 16197.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18595.98 14398.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 26087.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
BH-RMVSNet95.92 15195.32 16397.69 14998.32 16494.64 20698.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
Patchmatch-test94.42 23893.68 25396.63 21197.60 21191.76 27894.83 34197.49 28489.45 31494.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
TAMVS97.02 11296.79 10697.70 14898.06 18495.31 17898.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21390.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 10697.18 8997.20 17398.81 12593.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 20998.76 9992.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17587.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
GSMVS99.20 129
sam_mvs189.45 17299.20 129
SCA95.46 16995.13 17096.46 23297.67 20691.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
Effi-MVS+97.12 10996.69 11398.39 10498.19 17396.72 11497.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
alignmvs97.56 8497.07 9499.01 6298.66 13898.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28997.90 10489.89 16893.91 20099.18 136
MVS_Test97.28 10097.00 9798.13 12098.33 16295.97 14898.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
ab-mvs96.42 13395.71 14698.55 8798.63 14196.75 11397.88 23698.74 10393.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
PVSNet91.96 1896.35 13596.15 13296.96 18999.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20888.86 19199.69 11994.26 19099.01 11399.15 138
tpm94.13 25593.80 24295.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
Anonymous2024052995.10 19494.22 21397.75 14399.01 10894.26 22498.87 8798.83 6885.79 33596.64 15798.97 8778.73 31899.85 4996.27 12294.89 21699.12 142
PMMVS96.60 12596.33 12697.41 16597.90 19393.93 23197.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
GA-MVS94.81 21294.03 22497.14 17797.15 24993.86 23396.76 31297.58 27394.00 17294.76 20197.04 26880.91 30498.48 24991.79 25996.25 20499.09 144
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 18094.56 19597.74 14499.13 10294.83 20098.33 17898.64 13686.62 32796.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 7497.23 8798.98 6598.70 13498.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
VDD-MVS95.82 15695.23 16697.61 15698.84 12393.98 23098.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
EIA-MVS97.75 7097.58 6798.27 10998.38 15596.44 12799.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
tttt051796.07 14395.51 15397.78 14098.41 15494.84 19899.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
ET-MVSNet_ETH3D94.13 25592.98 27097.58 15798.22 16996.20 13797.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
ADS-MVSNet294.58 22794.40 20795.11 28398.00 18688.74 32496.04 32497.30 29490.15 30196.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21198.00 18691.91 27596.04 32497.74 26590.15 30196.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16695.97 14898.58 14398.25 21091.74 26295.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
EPMVS94.99 20094.48 19996.52 22597.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
LS3D97.16 10796.66 11698.68 7998.53 14897.19 9798.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15297.00 10298.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18196.54 19198.95 159
thisisatest053096.01 14695.36 15997.97 12998.38 15595.52 16998.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
MIMVSNet93.26 27692.21 28396.41 23597.73 20493.13 26195.65 33297.03 30691.27 28294.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
baseline195.84 15495.12 17198.01 12798.49 15195.98 14398.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17687.48 31598.90 162
TESTMET0.1,194.18 25393.69 25295.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31998.92 20793.09 22398.50 13898.85 163
dp94.15 25493.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28496.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
PAPM94.95 20494.00 22897.78 14097.04 25595.65 16396.03 32698.25 21091.23 28394.19 22697.80 20891.27 14498.86 21782.61 33597.61 16998.84 165
VDDNet95.36 17994.53 19697.86 13498.10 18195.13 18598.85 9097.75 26490.46 29598.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31196.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
UGNet96.78 12196.30 12798.19 11798.24 16795.89 15898.88 8598.93 3797.39 2396.81 15297.84 20282.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D94.24 24893.33 26496.97 18897.19 24693.38 25398.74 11398.57 14791.21 28593.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 26093.51 25995.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32698.97 19893.06 22498.50 13898.72 170
CS-MVS97.81 6797.61 6598.41 10298.52 14997.15 9999.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 18095.78 21398.70 172
MAR-MVS96.91 11696.40 12498.45 9798.69 13696.90 10798.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 16794.89 18297.76 14298.15 17895.15 18396.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17397.73 16698.68 175
BH-untuned95.95 14995.72 14396.65 20898.55 14792.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
PCF-MVS93.45 1194.68 21893.43 26298.42 10198.62 14296.77 11295.48 33598.20 21484.63 33993.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 11496.55 11998.21 11498.17 17796.07 14297.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
IB-MVS91.98 1793.27 27591.97 28697.19 17497.47 22393.41 25197.09 29095.99 32893.32 20992.47 28995.73 31978.06 32499.53 14294.59 17882.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 28792.58 27892.33 32394.15 33582.65 34798.30 18694.26 34789.08 31892.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
tpm294.19 25193.76 24795.46 27397.23 24089.04 32097.31 27696.85 31987.08 32696.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
ETV-MVS97.96 5897.81 5998.40 10398.42 15397.27 9198.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27894.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
PatchT93.06 28191.97 28696.35 23996.69 27592.67 26694.48 34397.08 30286.62 32797.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
CR-MVSNet94.76 21594.15 21996.59 21697.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28391.34 29197.24 17197.00 25693.43 24994.96 33798.80 8782.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
thres600view795.49 16894.77 18597.67 15198.98 11295.02 18898.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
thres40095.38 17694.62 19297.65 15498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
TR-MVS94.94 20694.20 21497.17 17697.75 20094.14 22797.59 25797.02 30892.28 24995.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
JIA-IIPM93.35 27292.49 27995.92 25696.48 28690.65 30095.01 33696.96 31085.93 33396.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18887.29 33894.84 34098.50 16692.06 25589.86 31795.19 32679.81 31299.39 15592.27 24769.79 34998.33 193
131496.25 14195.73 14297.79 13997.13 25095.55 16898.19 20298.59 14193.47 20392.03 29897.82 20691.33 14299.49 14594.62 17598.44 14198.32 194
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 30096.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
AUN-MVS94.53 23193.73 24996.92 19398.50 15093.52 24798.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
tpmvs94.60 22494.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 28093.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
BH-w/o95.38 17695.08 17396.26 24498.34 16191.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
tpm cat193.36 27192.80 27395.07 28597.58 21387.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
MVS94.67 22193.54 25898.08 12396.88 26596.56 12298.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
AllTest95.24 18694.65 19196.99 18599.25 8693.21 25998.59 14198.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
TestCases96.99 18599.25 8693.21 25998.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
gg-mvs-nofinetune92.21 28990.58 29697.13 17896.75 27295.09 18695.85 32889.40 35785.43 33794.50 20781.98 35180.80 30798.40 27092.16 24898.33 14797.88 203
baseline295.11 19394.52 19796.87 19596.65 27893.56 24498.27 19194.10 35093.45 20492.02 29997.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
mvs-test196.60 12596.68 11596.37 23797.89 19491.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
thres100view90095.38 17694.70 18997.41 16598.98 11294.92 19698.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
tfpn200view995.32 18394.62 19297.43 16498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18498.77 12793.76 23697.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8899.21 2898.97 3089.96 30591.14 30699.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
testgi93.06 28192.45 28094.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30397.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
XVG-OURS96.55 12996.41 12396.99 18598.75 12893.76 23697.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
cascas94.63 22393.86 23896.93 19196.91 26394.27 22396.00 32798.51 16185.55 33694.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
test0.0.03 194.08 26093.51 25995.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21382.15 34894.16 34693.05 35375.73 34990.90 30882.52 35079.42 31498.33 27283.53 33398.68 12797.43 214
xiu_mvs_v2_base97.66 7597.70 6397.56 15998.61 14395.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19490.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
PS-MVSNAJ97.73 7197.77 6097.62 15598.68 13795.58 16597.34 27398.51 16197.29 2898.66 6097.88 19794.51 8599.90 3397.87 4299.17 10997.39 217
thres20095.25 18594.57 19497.28 17098.81 12594.92 19698.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
API-MVS97.41 9497.25 8697.91 13298.70 13496.80 11098.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20391.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20399.29 7893.24 25898.58 14398.11 23289.92 30693.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0594.56 22894.19 21595.67 26797.60 21191.34 28698.93 7598.42 17994.75 14393.39 25897.87 19879.00 31798.61 23796.78 10790.99 27497.07 225
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18799.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23796.88 9893.45 24397.06 226
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
FIs96.51 13096.12 13397.67 15197.13 25097.54 8299.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
FC-MVSNet-test96.42 13396.05 13497.53 16196.95 25997.27 9199.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
test_part194.82 21093.82 24097.82 13898.84 12397.82 7299.03 5598.81 7692.31 24892.51 28797.89 19681.96 29798.67 23394.80 17188.24 30796.98 230
EU-MVSNet93.66 26794.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
VPNet94.99 20094.19 21597.40 16797.16 24896.57 12198.71 12298.97 3095.67 9694.84 19698.24 17080.36 30998.67 23396.46 11687.32 31896.96 232
XXY-MVS95.20 18994.45 20397.46 16296.75 27296.56 12298.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 232
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 18096.45 28796.36 13199.03 5599.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 234
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21298.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 235
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 235
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16796.84 26796.97 10398.74 11399.24 1095.16 12493.88 23997.72 21391.68 13198.31 27595.81 13887.25 31996.92 235
DU-MVS95.42 17394.76 18697.40 16796.53 28296.97 10398.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 235
NR-MVSNet94.98 20294.16 21897.44 16396.53 28297.22 9698.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17887.40 31796.92 235
jajsoiax95.45 17195.03 17596.73 20295.42 32394.63 20799.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23596.95 9194.04 22896.91 240
mvs_tets95.41 17595.00 17696.65 20895.58 31694.42 21799.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23697.09 8494.00 23096.91 240
WR-MVS95.15 19194.46 20197.22 17296.67 27796.45 12698.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 242
VPA-MVSNet95.75 15895.11 17297.69 14997.24 23997.27 9198.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 243
Anonymous2023121194.10 25893.26 26796.61 21399.11 10494.28 22299.01 6098.88 4986.43 32992.81 27597.57 22681.66 30098.68 23294.83 16889.02 30096.88 244
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13494.58 20497.86 19989.16 18098.41 26496.91 9294.12 22796.88 244
HQP4-MVS94.45 20998.96 20196.87 246
ACMM93.85 995.69 16295.38 15896.61 21397.61 21093.84 23498.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS95.72 15995.40 15496.69 20697.20 24394.25 22598.05 21898.46 17196.43 6794.45 20997.73 21186.75 23698.96 20195.30 15694.18 22396.86 248
EI-MVSNet95.96 14895.83 14196.36 23897.93 19193.70 24298.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17293.46 24196.84 249
IterMVS-LS95.46 16995.21 16796.22 24598.12 17993.72 24198.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17390.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bset_n11_16_dypcd94.89 20894.27 21196.76 20094.41 33395.15 18395.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17792.42 29197.90 19487.19 22898.12 29194.32 18788.21 30896.82 252
RRT_MVS96.04 14595.53 15197.56 15997.07 25497.32 8898.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
PS-CasMVS94.67 22193.99 23096.71 20396.68 27695.26 17999.13 3999.03 2593.68 19492.33 29297.95 19085.35 26098.10 29293.59 21088.16 31096.79 253
UniMVSNet (Re)95.78 15795.19 16897.58 15796.99 25897.47 8498.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31496.79 253
MVSTER96.06 14495.72 14397.08 18298.23 16895.93 15498.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
LPG-MVS_test95.62 16595.34 16096.47 22997.46 22493.54 24598.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
LGP-MVS_train96.47 22997.46 22493.54 24598.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
GG-mvs-BLEND96.59 21696.34 29194.98 19296.51 32088.58 35893.10 27094.34 33580.34 31098.05 29889.53 29596.99 17996.74 259
PEN-MVS94.42 23893.73 24996.49 22796.28 29394.84 19899.17 3399.00 2793.51 20192.23 29497.83 20586.10 24897.90 30892.55 24186.92 32396.74 259
OurMVSNet-221017-094.21 24994.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29598.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
v2v48294.69 21694.03 22496.65 20896.17 29794.79 20398.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
GBi-Net94.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
test194.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
FMVSNet193.19 27992.07 28496.56 22097.54 21895.00 18998.82 9798.18 21890.38 29892.27 29397.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
v119294.32 24393.58 25696.53 22496.10 30094.45 21698.50 15898.17 22391.54 26994.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
v124094.06 26293.29 26696.34 24096.03 30493.90 23298.44 16598.17 22391.18 28694.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
FMVSNet394.97 20394.26 21297.11 18098.18 17596.62 11698.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
FMVSNet294.47 23693.61 25597.04 18398.21 17096.43 12898.79 10898.27 20592.46 23793.50 25597.09 25981.16 30198.00 30291.09 26791.93 26096.70 266
ACMH92.88 1694.55 22993.95 23296.34 24097.63 20993.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29899.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 25093.47 26196.40 23695.98 30594.08 22898.52 15398.15 22691.33 27794.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
ACMP93.49 1095.34 18194.98 17896.43 23497.67 20693.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 16595.34 16096.46 23297.52 22193.75 23897.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 24093.70 25196.48 22896.06 30294.35 22198.58 14398.16 22591.45 27194.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
IterMVS94.09 25993.85 23994.80 29497.99 18890.35 30497.18 28498.12 23093.68 19492.46 29097.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 22693.92 23396.60 21596.21 29494.78 20498.59 14198.14 22891.86 26194.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20798.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
LTVRE_ROB92.95 1594.60 22493.90 23596.68 20797.41 23294.42 21798.52 15398.59 14191.69 26591.21 30598.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 25793.87 23794.85 29197.98 19090.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
pmmvs593.65 26992.97 27195.68 26695.49 31992.37 26898.20 19897.28 29689.66 31192.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
K. test v392.55 28691.91 28894.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32997.64 31792.08 25089.43 29396.57 281
SixPastTwentyTwo93.34 27392.86 27294.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30598.27 28390.90 27290.64 27796.57 281
miper_lstm_enhance94.33 24294.07 22395.11 28397.75 20090.97 29497.22 28198.03 24991.67 26692.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32372.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
ACMH+92.99 1494.30 24493.77 24595.88 26097.81 19892.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30699.05 18992.75 23492.40 25696.55 285
eth_miper_zixun_eth94.68 21894.41 20695.47 27297.64 20891.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32472.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
cl-mvsnet194.52 23294.03 22495.99 25297.57 21793.38 25397.05 29197.94 25591.74 26292.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
cl_fuxian94.79 21394.43 20595.89 25997.75 20093.12 26297.16 28798.03 24992.23 25093.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
Patchmtry93.22 27792.35 28195.84 26196.77 26993.09 26394.66 34297.56 27487.37 32592.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
cl-mvsnet_94.51 23394.01 22796.02 25197.58 21393.40 25297.05 29197.96 25491.73 26492.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
v7n94.19 25193.43 26296.47 22995.90 30794.38 22099.26 1898.34 19291.99 25692.76 27797.13 25488.31 20298.52 24789.48 29787.70 31396.52 291
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32171.17 35296.13 31379.22 31596.63 33783.65 33286.27 32796.52 291
cl-mvsnet294.68 21894.19 21596.13 24998.11 18093.60 24396.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15799.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
v14894.29 24593.76 24795.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
our_test_393.65 26993.30 26594.69 29695.45 32189.68 31196.91 30097.65 26891.97 25791.66 30296.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
XVG-ACMP-BASELINE94.54 23094.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31699.11 18294.05 19893.85 23496.48 298
DTE-MVSNet93.98 26493.26 26796.14 24896.06 30294.39 21999.20 2998.86 6193.06 21891.78 30097.81 20785.87 25297.58 31990.53 27786.17 32896.46 300
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20593.31 25597.02 29398.07 24292.23 25093.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
v894.47 23693.77 24596.57 21996.36 29094.83 20099.05 5298.19 21591.92 25893.16 26596.97 27588.82 19398.48 24991.69 26287.79 31296.39 302
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15999.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31196.38 303
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 24096.61 31798.08 24092.20 25393.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
V4294.78 21494.14 22096.70 20596.33 29295.22 18098.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
v1094.29 24593.55 25796.51 22696.39 28994.80 20298.99 6498.19 21591.35 27693.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
MVS_030492.81 28392.01 28595.23 27897.46 22491.33 28898.17 20798.81 7691.13 28793.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
pmmvs494.69 21693.99 23096.81 19895.74 31195.94 15197.40 26597.67 26790.42 29793.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
ppachtmachnet_test93.22 27792.63 27794.97 28795.45 32190.84 29596.88 30697.88 25990.60 29292.08 29797.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
PVSNet_BlendedMVS96.73 12296.60 11797.12 17999.25 8695.35 17698.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
pm-mvs193.94 26593.06 26996.59 21696.49 28595.16 18198.95 7298.03 24992.32 24691.08 30797.84 20284.54 27498.41 26492.16 24886.13 33096.19 311
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29490.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29998.88 21489.71 29193.39 24596.12 312
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31690.86 30995.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
USDC93.33 27492.71 27595.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32698.82 22189.51 29693.21 24995.97 316
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33189.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33488.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32287.90 33095.87 31767.63 34994.56 34878.73 34688.18 30995.83 319
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20598.90 7896.73 32090.86 29089.46 32197.86 19985.62 25598.09 29486.45 31781.12 33895.71 320
Baseline_NR-MVSNet94.35 24193.81 24195.96 25596.20 29594.05 22998.61 14096.67 32491.44 27293.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18293.60 24095.65 322
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29390.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29689.62 31997.85 20176.06 33498.81 22286.74 31592.51 25595.41 324
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29990.25 31493.96 33679.82 31195.94 34184.62 33176.69 34495.33 325
MS-PatchMatch93.84 26693.63 25494.46 30596.18 29689.45 31397.76 24698.27 20592.23 25092.13 29697.49 23179.50 31398.69 22989.75 29099.38 10095.25 326
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
LF4IMVS93.14 28092.79 27494.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30197.65 21877.96 32598.81 22291.47 26591.92 26195.12 329
tfpnnormal93.66 26792.70 27696.55 22396.94 26095.94 15198.97 6899.19 1591.04 28891.38 30497.34 24084.94 26698.61 23785.45 32589.02 30095.11 330
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31785.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 27088.83 32697.84 20277.31 33099.09 18692.79 23377.98 34295.04 332
MVP-Stereo94.28 24793.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26890.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30894.13 34979.15 34486.17 32895.01 334
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33288.30 32896.98 27477.65 32897.99 30378.13 34792.94 25294.34 336
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 33085.67 33993.62 33777.18 33197.10 32781.61 33789.29 29594.23 337
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 21074.75 33998.61 23789.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28186.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31984.91 34193.13 33978.32 32096.74 33288.70 30481.81 33794.09 340
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31383.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 34082.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31676.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.46 5198.70 1998.79 9293.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
test_part299.63 2999.18 899.27 17
sam_mvs88.99 185
MTGPAbinary98.74 103
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32889.42 17398.89 212
MTMP98.89 8294.14 349
gm-plane-assit95.88 30887.47 33689.74 31096.94 28099.19 17193.32 218
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 238
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
旧先验297.57 25991.30 27998.67 5899.80 7995.70 147
新几何297.64 254
原ACMM297.67 252
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata197.32 27596.34 71
plane_prior797.42 22994.63 207
plane_prior697.35 23494.61 21087.09 230
plane_prior498.28 164
plane_prior394.61 21097.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior197.37 233
plane_prior94.60 21298.44 16596.74 5594.22 221
n20.00 367
nn0.00 367
door-mid94.37 345
test1198.66 131
door94.64 343
HQP5-MVS94.25 225
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
BP-MVS95.30 156
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21597.73 211
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80