This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
DVP-MVS98.74 898.55 1099.29 3199.75 398.23 4899.26 1898.88 4997.52 1599.41 1198.78 10896.00 3499.79 8797.79 4799.59 6899.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6498.88 4999.94 398.47 1599.81 1099.84 4
IU-MVS99.71 2099.23 698.64 13195.28 11499.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16598.91 4397.58 1499.54 799.46 997.10 999.94 397.64 5799.84 899.83 5
CHOSEN 1792x268897.12 10796.80 10198.08 12199.30 7194.56 20998.05 21399.71 193.57 19597.09 13198.91 9688.17 20299.89 3596.87 9899.56 7699.81 8
EI-MVSNet-Vis-set98.47 3698.39 1998.69 7699.46 4896.49 12098.30 18198.69 11297.21 3698.84 4399.36 2695.41 5399.78 9198.62 599.65 5899.80 9
ACMMP_NAP98.61 1798.30 3199.55 699.62 3098.95 1398.82 9398.81 7695.80 8799.16 2499.47 895.37 5699.92 2197.89 4199.75 3899.79 10
Regformer-498.64 1498.53 1198.99 6199.43 5397.37 8298.40 16798.79 8897.46 1999.09 2899.31 3295.86 4299.80 7598.64 399.76 3299.79 10
HPM-MVScopyleft98.36 4398.10 4599.13 5399.74 797.82 6899.53 198.80 8694.63 14798.61 5998.97 8495.13 6699.77 9697.65 5699.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1798.38 2099.29 3199.74 798.16 5499.23 2198.93 3796.15 7498.94 3699.17 5395.91 3999.94 397.55 6699.79 1999.78 13
Regformer-398.59 2098.50 1498.86 7199.43 5397.05 9698.40 16798.68 11597.43 2099.06 2999.31 3295.80 4399.77 9698.62 599.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6499.20 4995.90 4099.89 3597.85 4399.74 4199.78 13
X-MVStestdata94.06 25792.30 27699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6443.50 34795.90 4099.89 3597.85 4399.74 4199.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5599.23 2198.95 3496.10 7998.93 4099.19 5295.70 4499.94 397.62 5899.79 1999.78 13
PGM-MVS98.49 3498.23 3999.27 3899.72 1298.08 5898.99 6099.49 595.43 10499.03 3099.32 3095.56 4699.94 396.80 10299.77 2699.78 13
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9098.43 3299.10 4398.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4899.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.55 2998.25 3599.46 1299.76 198.64 2198.55 14798.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3299.46 1299.76 198.64 2198.90 7498.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
mPP-MVS98.51 3398.26 3499.25 3999.75 398.04 5999.28 1698.81 7696.24 7098.35 7399.23 4295.46 5099.94 397.42 7199.81 1099.77 20
HPM-MVS_fast98.38 4198.13 4399.12 5599.75 397.86 6699.44 498.82 7094.46 15498.94 3699.20 4995.16 6599.74 10297.58 6299.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6699.34 1198.87 5595.96 8298.60 6099.13 6196.05 3299.94 397.77 4899.86 199.77 20
HyFIR lowres test96.90 11596.49 11998.14 11699.33 6195.56 16297.38 26299.65 292.34 23997.61 11898.20 16889.29 17299.10 18196.97 8597.60 16699.77 20
testtj98.33 4897.95 5299.47 1199.49 4498.70 1998.83 9098.86 6195.48 10198.91 4299.17 5395.48 4999.93 1595.80 13599.53 8199.76 26
SMA-MVS98.58 2398.25 3599.56 599.51 3899.04 1198.95 6898.80 8693.67 19199.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4599.23 2198.96 3296.10 7998.94 3699.17 5396.06 3099.92 2197.62 5899.78 2399.75 28
#test#98.54 3198.27 3399.32 2899.72 1298.29 4598.98 6398.96 3295.65 9598.94 3699.17 5396.06 3099.92 2197.21 7899.78 2399.75 28
Regformer-198.66 1298.51 1399.12 5599.35 5697.81 6998.37 16998.76 9497.49 1799.20 2299.21 4596.08 2999.79 8798.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 5698.01 6198.37 16998.81 7697.48 1899.21 2199.21 4596.13 2799.80 7598.40 2299.73 4399.75 28
CPTT-MVS97.72 7097.32 8198.92 6799.64 2897.10 9599.12 4198.81 7692.34 23998.09 8099.08 7393.01 10299.92 2196.06 12599.77 2699.75 28
ZNCC-MVS98.49 3498.20 4199.35 2299.73 1198.39 3399.19 3198.86 6195.77 8898.31 7699.10 6695.46 5099.93 1597.57 6599.81 1099.74 33
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 16698.68 11597.04 4698.52 6398.80 10696.78 1299.83 5597.93 3799.61 6499.74 33
APD-MVScopyleft98.35 4498.00 5099.42 1599.51 3898.72 1798.80 10098.82 7094.52 15199.23 2099.25 4095.54 4899.80 7596.52 11199.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4799.14 3698.66 12696.84 5199.56 599.31 3296.34 1999.70 11098.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 3998.34 2698.61 8199.45 5196.32 12898.28 18498.68 11597.17 3998.74 5099.37 2295.25 6299.79 8798.57 799.54 8099.73 36
MP-MVScopyleft98.33 4898.01 4999.28 3599.75 398.18 5299.22 2598.79 8896.13 7697.92 9999.23 4294.54 8099.94 396.74 10699.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5299.09 4498.82 7096.58 6199.10 2799.32 3095.39 5499.82 6297.70 5499.63 6199.72 39
GST-MVS98.43 3898.12 4499.34 2399.72 1298.38 3499.09 4498.82 7095.71 9198.73 5299.06 7595.27 6099.93 1597.07 8299.63 6199.72 39
APD-MVS_3200maxsize98.53 3298.33 2999.15 5299.50 4097.92 6599.15 3598.81 7696.24 7099.20 2299.37 2295.30 5999.80 7597.73 5099.67 5499.72 39
DeepPCF-MVS96.37 297.93 6198.48 1796.30 23899.00 10589.54 30497.43 25998.87 5598.16 299.26 1899.38 2196.12 2899.64 12198.30 2699.77 2699.72 39
NCCC98.61 1798.35 2499.38 1799.28 7898.61 2398.45 15898.76 9497.82 598.45 6798.93 9396.65 1499.83 5597.38 7399.41 9399.71 43
3Dnovator+94.38 697.43 9096.78 10499.38 1797.83 19198.52 2699.37 798.71 10897.09 4592.99 26699.13 6189.36 17099.89 3596.97 8599.57 7199.71 43
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5498.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 45
OPU-MVS99.37 2099.24 8899.05 1099.02 5499.16 5897.81 299.37 15397.24 7699.73 4399.70 45
ACMMPcopyleft98.23 5297.95 5299.09 5799.74 797.62 7499.03 5299.41 695.98 8197.60 12099.36 2694.45 8599.93 1597.14 7998.85 11899.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6498.58 14197.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 48
test9_res96.39 11799.57 7199.69 48
abl_698.30 5198.03 4899.13 5399.56 3497.76 7099.13 3998.82 7096.14 7599.26 1899.37 2293.33 9899.93 1596.96 8799.67 5499.69 48
CNVR-MVS98.78 698.56 999.45 1499.32 6498.87 1598.47 15798.81 7697.72 698.76 4999.16 5897.05 1099.78 9198.06 3399.66 5799.69 48
MVS_111021_HR98.47 3698.34 2698.88 7099.22 9097.32 8397.91 22599.58 397.20 3798.33 7499.00 8295.99 3599.64 12198.05 3599.76 3299.69 48
DeepC-MVS_fast96.70 198.55 2998.34 2699.18 4799.25 8298.04 5998.50 15498.78 9097.72 698.92 4199.28 3795.27 6099.82 6297.55 6699.77 2699.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 5597.52 6999.33 2799.31 6698.50 2897.92 22398.73 10292.98 21697.74 10798.68 11796.20 2399.80 7596.59 10899.57 7199.68 54
agg_prior295.87 13299.57 7199.68 54
CDPH-MVS97.94 6097.49 7299.28 3599.47 4598.44 3097.91 22598.67 12392.57 23198.77 4898.85 10095.93 3899.72 10495.56 14599.69 5299.68 54
DP-MVS96.59 12595.93 13598.57 8399.34 5896.19 13498.70 12298.39 17989.45 30494.52 20099.35 2891.85 12499.85 4992.89 22698.88 11599.68 54
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 4898.38 3498.21 19098.52 15397.95 399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
SF-MVS98.59 2098.32 3099.41 1699.54 3598.71 1899.04 5098.81 7695.12 12399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
MP-MVS-pluss98.31 5097.92 5499.49 999.72 1298.88 1498.43 16398.78 9094.10 16297.69 11199.42 1295.25 6299.92 2198.09 3299.80 1799.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 6597.60 6398.44 9699.12 9995.97 14397.75 24198.78 9096.89 5098.46 6499.22 4493.90 9599.68 11694.81 16699.52 8399.67 58
agg_prior197.95 5997.51 7199.28 3599.30 7198.38 3497.81 23698.72 10493.16 21097.57 12198.66 12096.14 2699.81 6696.63 10799.56 7699.66 62
HPM-MVS++copyleft98.58 2398.25 3599.55 699.50 4099.08 998.72 11798.66 12697.51 1698.15 7798.83 10395.70 4499.92 2197.53 6899.67 5499.66 62
UA-Net97.96 5697.62 6198.98 6398.86 11697.47 7998.89 7899.08 2196.67 5898.72 5399.54 193.15 10199.81 6694.87 16298.83 11999.65 64
test_prior398.22 5397.90 5599.19 4399.31 6698.22 4997.80 23798.84 6596.12 7797.89 10198.69 11595.96 3699.70 11096.89 9299.60 6599.65 64
test_prior99.19 4399.31 6698.22 4998.84 6599.70 11099.65 64
ETH3 D test640097.59 7997.01 9399.34 2399.40 5598.56 2498.20 19398.81 7691.63 26198.44 6898.85 10093.98 9499.82 6294.11 18999.69 5299.64 67
SD-MVS98.64 1498.68 598.53 8999.33 6198.36 4198.90 7498.85 6497.28 2999.72 399.39 1496.63 1597.60 31398.17 2899.85 399.64 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 8596.93 9799.07 5897.78 19397.64 7299.35 1099.06 2297.02 4793.75 24099.16 5889.25 17399.92 2197.22 7799.75 3899.64 67
ETH3D-3000-0.198.35 4498.00 5099.38 1799.47 4598.68 2098.67 12898.84 6594.66 14699.11 2699.25 4095.46 5099.81 6696.80 10299.73 4399.63 70
test1299.18 4799.16 9598.19 5198.53 15198.07 8195.13 6699.72 10499.56 7699.63 70
旧先验199.29 7497.48 7898.70 11199.09 7195.56 4699.47 8699.61 72
test22299.23 8997.17 9397.40 26098.66 12688.68 31098.05 8298.96 8994.14 9099.53 8199.61 72
112197.37 9596.77 10899.16 5099.34 5897.99 6498.19 19798.68 11590.14 29598.01 9098.97 8494.80 7599.87 4493.36 21099.46 8999.61 72
无先验97.58 25398.72 10491.38 26799.87 4493.36 21099.60 75
CVMVSNet95.43 17096.04 13293.57 30797.93 18583.62 33498.12 20798.59 13695.68 9296.56 15799.02 7787.51 21897.51 31793.56 20697.44 16899.60 75
新几何199.16 5099.34 5898.01 6198.69 11290.06 29698.13 7898.95 9194.60 7899.89 3591.97 25099.47 8699.59 77
PHI-MVS98.34 4698.06 4699.18 4799.15 9798.12 5799.04 5099.09 2093.32 20498.83 4599.10 6696.54 1699.83 5597.70 5499.76 3299.59 77
testdata98.26 10999.20 9395.36 17098.68 11591.89 25398.60 6099.10 6694.44 8699.82 6294.27 18399.44 9199.58 79
Test_1112_low_res96.34 13495.66 14798.36 10398.56 14095.94 14697.71 24398.07 23692.10 24894.79 19597.29 23791.75 12699.56 13294.17 18696.50 18999.58 79
1112_ss96.63 12296.00 13498.50 9198.56 14096.37 12598.18 20198.10 22992.92 21994.84 19198.43 14192.14 11799.58 12994.35 18096.51 18899.56 81
ETH3D cwj APD-0.1697.96 5697.52 6999.29 3199.05 10198.52 2698.33 17398.68 11593.18 20898.68 5499.13 6194.62 7799.83 5596.45 11399.55 7999.52 82
PAPM_NR97.46 8597.11 8898.50 9199.50 4096.41 12498.63 13398.60 13495.18 11997.06 13598.06 17794.26 8999.57 13093.80 19898.87 11799.52 82
CSCG97.85 6497.74 5998.20 11399.67 2695.16 17799.22 2599.32 793.04 21397.02 13798.92 9595.36 5799.91 3097.43 7099.64 6099.52 82
DeepC-MVS95.98 397.88 6297.58 6498.77 7399.25 8296.93 10098.83 9098.75 9796.96 4996.89 14499.50 490.46 15599.87 4497.84 4599.76 3299.52 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 5497.76 5898.90 6998.73 12497.27 8698.35 17198.78 9097.37 2697.72 10998.96 8991.53 13499.92 2198.79 299.65 5899.51 86
TSAR-MVS + GP.98.38 4198.24 3898.81 7299.22 9097.25 9098.11 20998.29 19997.19 3898.99 3599.02 7796.22 2099.67 11798.52 1398.56 13199.51 86
原ACMM198.65 7999.32 6496.62 11198.67 12393.27 20797.81 10398.97 8495.18 6499.83 5593.84 19699.46 8999.50 88
VNet97.79 6797.40 7898.96 6598.88 11497.55 7698.63 13398.93 3796.74 5599.02 3198.84 10290.33 15899.83 5598.53 996.66 18299.50 88
EPNet97.28 9896.87 10098.51 9094.98 32096.14 13598.90 7497.02 30098.28 195.99 17799.11 6491.36 13699.89 3596.98 8499.19 10499.50 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 7197.46 7498.44 9699.27 7995.91 15198.63 13399.16 1794.48 15397.67 11298.88 9892.80 10499.91 3097.11 8099.12 10699.50 88
MVS_111021_LR98.34 4698.23 3998.67 7899.27 7996.90 10297.95 22299.58 397.14 4198.44 6899.01 8195.03 6999.62 12697.91 3899.75 3899.50 88
casdiffmvs97.63 7597.41 7798.28 10698.33 15696.14 13598.82 9398.32 18996.38 6797.95 9499.21 4591.23 14199.23 16398.12 3098.37 14099.48 93
WTY-MVS97.37 9596.92 9898.72 7598.86 11696.89 10498.31 17998.71 10895.26 11597.67 11298.56 13192.21 11599.78 9195.89 13096.85 17799.48 93
MSLP-MVS++98.56 2898.57 898.55 8599.26 8196.80 10598.71 11899.05 2497.28 2998.84 4399.28 3796.47 1899.40 15098.52 1399.70 5199.47 95
114514_t96.93 11396.27 12598.92 6799.50 4097.63 7398.85 8698.90 4484.80 32897.77 10499.11 6492.84 10399.66 11894.85 16399.77 2699.47 95
IS-MVSNet97.22 10096.88 9998.25 11098.85 11896.36 12699.19 3197.97 24695.39 10697.23 12798.99 8391.11 14398.93 20194.60 17198.59 12999.47 95
PAPR96.84 11796.24 12798.65 7998.72 12896.92 10197.36 26698.57 14293.33 20396.67 15297.57 22094.30 8899.56 13291.05 26598.59 12999.47 95
LFMVS95.86 15194.98 17598.47 9498.87 11596.32 12898.84 8996.02 31993.40 20198.62 5899.20 4974.99 32799.63 12497.72 5197.20 17299.46 99
Vis-MVSNet (Re-imp)96.87 11696.55 11697.83 13498.73 12495.46 16799.20 2998.30 19794.96 13296.60 15698.87 9990.05 16198.59 23593.67 20298.60 12899.46 99
Vis-MVSNetpermissive97.42 9197.11 8898.34 10498.66 13396.23 13199.22 2599.00 2796.63 6098.04 8499.21 4588.05 20799.35 15496.01 12899.21 10299.45 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521195.28 18294.49 19597.67 14899.00 10593.75 23398.70 12297.04 29790.66 28596.49 16498.80 10678.13 31299.83 5596.21 12195.36 21199.44 102
DPM-MVS97.55 8396.99 9599.23 4299.04 10398.55 2597.17 28198.35 18594.85 13797.93 9898.58 12895.07 6899.71 10992.60 23099.34 9899.43 103
DELS-MVS98.40 4098.20 4198.99 6199.00 10597.66 7197.75 24198.89 4697.71 898.33 7498.97 8494.97 7099.88 4398.42 2099.76 3299.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 7497.44 7698.25 11098.35 15196.20 13299.00 5898.32 18996.33 6998.03 8599.17 5391.35 13799.16 16998.10 3198.29 14599.39 105
sss97.39 9396.98 9698.61 8198.60 13996.61 11398.22 18998.93 3793.97 17098.01 9098.48 13791.98 12299.85 4996.45 11398.15 14799.39 105
EPP-MVSNet97.46 8597.28 8297.99 12698.64 13595.38 16999.33 1398.31 19193.61 19497.19 12899.07 7494.05 9199.23 16396.89 9298.43 13999.37 107
test_yl97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
DCV-MVSNet97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
diffmvs97.58 8097.40 7898.13 11898.32 15895.81 15598.06 21298.37 18296.20 7298.74 5098.89 9791.31 13999.25 16098.16 2998.52 13299.34 108
MVSFormer97.57 8197.49 7297.84 13398.07 17695.76 15699.47 298.40 17794.98 13098.79 4698.83 10392.34 10998.41 25996.91 8999.59 6899.34 108
jason97.32 9797.08 9098.06 12397.45 22295.59 15997.87 23197.91 25194.79 13898.55 6298.83 10391.12 14299.23 16397.58 6299.60 6599.34 108
jason: jason.
QAPM96.29 13595.40 15198.96 6597.85 19097.60 7599.23 2198.93 3789.76 29993.11 26399.02 7789.11 17899.93 1591.99 24999.62 6399.34 108
mvs_anonymous96.70 12196.53 11897.18 17198.19 16793.78 23098.31 17998.19 21094.01 16794.47 20298.27 16392.08 12098.46 24697.39 7297.91 15399.31 114
lupinMVS97.44 8997.22 8598.12 12098.07 17695.76 15697.68 24697.76 25694.50 15298.79 4698.61 12392.34 10999.30 15797.58 6299.59 6899.31 114
CDS-MVSNet96.99 11196.69 11097.90 13198.05 17995.98 13898.20 19398.33 18893.67 19196.95 13898.49 13693.54 9698.42 25295.24 15797.74 16199.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 28890.85 28893.41 30891.37 33684.40 33292.81 33895.93 32391.87 25487.25 32094.87 32288.99 18196.53 33192.54 23682.00 33099.30 117
BH-RMVSNet95.92 14995.32 16097.69 14698.32 15894.64 20198.19 19797.45 27894.56 14896.03 17598.61 12385.02 25899.12 17590.68 27099.06 10899.30 117
Patchmatch-test94.42 23393.68 24796.63 20697.60 20591.76 27294.83 33297.49 27589.45 30494.14 22297.10 24888.99 18198.83 21585.37 32098.13 14899.29 119
TAMVS97.02 11096.79 10397.70 14598.06 17895.31 17498.52 14998.31 19193.95 17197.05 13698.61 12393.49 9798.52 24195.33 15197.81 15799.29 119
PVSNet_Blended97.38 9497.12 8798.14 11699.25 8295.35 17297.28 27399.26 893.13 21197.94 9698.21 16792.74 10599.81 6696.88 9599.40 9599.27 121
PatchmatchNetpermissive95.71 15895.52 14996.29 23997.58 20790.72 29196.84 30497.52 27194.06 16397.08 13296.96 27089.24 17498.90 20692.03 24898.37 14099.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 10497.18 8697.20 16998.81 12093.27 25095.78 32499.15 1895.25 11696.79 15098.11 17492.29 11199.07 18498.56 899.85 399.25 123
PLCcopyleft95.07 497.20 10396.78 10498.44 9699.29 7496.31 13098.14 20498.76 9492.41 23796.39 16898.31 15894.92 7299.78 9194.06 19198.77 12299.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 18595.32 16094.91 28498.18 16987.85 32598.75 10695.66 32595.11 12488.96 31496.85 27990.26 16097.65 31195.65 14398.44 13799.22 125
GSMVS99.20 126
sam_mvs189.45 16899.20 126
SCA95.46 16795.13 16796.46 22897.67 20091.29 28297.33 26997.60 26394.68 14396.92 14297.10 24883.97 27898.89 20792.59 23298.32 14499.20 126
Effi-MVS+97.12 10796.69 11098.39 10298.19 16796.72 10997.37 26498.43 17393.71 18497.65 11598.02 17992.20 11699.25 16096.87 9897.79 15899.19 129
alignmvs97.56 8297.07 9199.01 6098.66 13398.37 4098.83 9098.06 24096.74 5598.00 9297.65 21290.80 14999.48 14598.37 2396.56 18699.19 129
DP-MVS Recon97.86 6397.46 7499.06 5999.53 3698.35 4298.33 17398.89 4692.62 22898.05 8298.94 9295.34 5899.65 11996.04 12699.42 9299.19 129
OMC-MVS97.55 8397.34 8098.20 11399.33 6195.92 15098.28 18498.59 13695.52 10097.97 9399.10 6693.28 10099.49 14195.09 15998.88 11599.19 129
MDTV_nov1_ep13_2view84.26 33396.89 30090.97 28397.90 10089.89 16493.91 19499.18 133
MVS_Test97.28 9897.00 9498.13 11898.33 15695.97 14398.74 10998.07 23694.27 15898.44 6898.07 17692.48 10799.26 15996.43 11598.19 14699.16 134
ab-mvs96.42 13195.71 14398.55 8598.63 13696.75 10897.88 23098.74 9893.84 17696.54 16198.18 17085.34 25599.75 10095.93 12996.35 19299.15 135
PVSNet91.96 1896.35 13396.15 12996.96 18599.17 9492.05 26796.08 31798.68 11593.69 18797.75 10697.80 20288.86 18799.69 11594.26 18499.01 10999.15 135
tpm94.13 25093.80 23795.12 27896.50 27887.91 32497.44 25795.89 32492.62 22896.37 16996.30 29984.13 27598.30 27293.24 21391.66 26199.14 137
F-COLMAP97.09 10996.80 10197.97 12799.45 5194.95 19098.55 14798.62 13393.02 21496.17 17398.58 12894.01 9299.81 6693.95 19398.90 11399.14 137
Anonymous2024052995.10 19294.22 20997.75 14099.01 10494.26 21998.87 8398.83 6985.79 32596.64 15398.97 8478.73 30999.85 4996.27 11894.89 21299.12 139
PMMVS96.60 12396.33 12397.41 16297.90 18793.93 22697.35 26798.41 17592.84 22397.76 10597.45 22891.10 14499.20 16696.26 11997.91 15399.11 140
GA-MVS94.81 20894.03 22097.14 17397.15 24393.86 22896.76 30797.58 26494.00 16894.76 19697.04 26180.91 29698.48 24391.79 25396.25 20099.09 141
EPNet_dtu95.21 18694.95 17795.99 24896.17 29190.45 29598.16 20397.27 28896.77 5393.14 26298.33 15690.34 15798.42 25285.57 31798.81 12199.09 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 17894.56 19297.74 14199.13 9894.83 19598.33 17398.64 13186.62 31796.29 17098.61 12394.00 9399.29 15880.00 33199.41 9399.09 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 7297.23 8498.98 6398.70 12998.38 3499.34 1198.39 17996.76 5497.67 11297.40 23292.26 11299.49 14198.28 2796.28 19899.08 144
VDD-MVS95.82 15495.23 16397.61 15398.84 11993.98 22598.68 12597.40 28295.02 12997.95 9499.34 2974.37 33199.78 9198.64 396.80 17899.08 144
EIA-MVS97.75 6897.58 6498.27 10798.38 14996.44 12299.01 5698.60 13495.88 8497.26 12697.53 22394.97 7099.33 15697.38 7399.20 10399.05 146
tttt051796.07 14195.51 15097.78 13798.41 14894.84 19399.28 1694.33 33794.26 15997.64 11698.64 12284.05 27699.47 14695.34 15097.60 16699.03 147
ET-MVSNet_ETH3D94.13 25092.98 26497.58 15498.22 16396.20 13297.31 27195.37 32694.53 14979.56 33597.63 21686.51 23497.53 31696.91 8990.74 27299.02 148
ADS-MVSNet294.58 22394.40 20495.11 27998.00 18088.74 31596.04 31897.30 28590.15 29396.47 16596.64 28987.89 21097.56 31590.08 27797.06 17399.02 148
ADS-MVSNet95.00 19794.45 20096.63 20698.00 18091.91 26996.04 31897.74 25890.15 29396.47 16596.64 28987.89 21098.96 19690.08 27797.06 17399.02 148
CNLPA97.45 8897.03 9298.73 7499.05 10197.44 8198.07 21198.53 15195.32 11296.80 14998.53 13293.32 9999.72 10494.31 18299.31 10099.02 148
AdaColmapbinary97.15 10696.70 10998.48 9399.16 9596.69 11098.01 21798.89 4694.44 15596.83 14598.68 11790.69 15299.76 9894.36 17999.29 10198.98 152
Fast-Effi-MVS+96.28 13795.70 14498.03 12498.29 16095.97 14398.58 13998.25 20591.74 25695.29 18497.23 24191.03 14699.15 17292.90 22497.96 15298.97 153
EPMVS94.99 19894.48 19696.52 22197.22 23591.75 27397.23 27591.66 34594.11 16197.28 12596.81 28185.70 24998.84 21393.04 22097.28 17198.97 153
LS3D97.16 10596.66 11398.68 7798.53 14397.19 9298.93 7198.90 4492.83 22495.99 17799.37 2292.12 11899.87 4493.67 20299.57 7198.97 153
HY-MVS93.96 896.82 11896.23 12898.57 8398.46 14697.00 9798.14 20498.21 20793.95 17196.72 15197.99 18391.58 12999.76 9894.51 17696.54 18798.95 156
thisisatest053096.01 14495.36 15697.97 12798.38 14995.52 16598.88 8194.19 33994.04 16497.64 11698.31 15883.82 28399.46 14795.29 15497.70 16398.93 157
MIMVSNet93.26 27192.21 27796.41 23197.73 19893.13 25595.65 32597.03 29891.27 27694.04 22796.06 30775.33 32597.19 32186.56 31096.23 20198.92 158
baseline195.84 15295.12 16898.01 12598.49 14595.98 13898.73 11397.03 29895.37 10996.22 17198.19 16989.96 16399.16 16994.60 17187.48 31098.90 159
TESTMET0.1,194.18 24893.69 24695.63 26496.92 25589.12 31096.91 29594.78 33293.17 20994.88 19096.45 29578.52 31098.92 20293.09 21798.50 13498.85 160
dp94.15 24993.90 23194.90 28597.31 23086.82 33096.97 29097.19 29291.22 27896.02 17696.61 29185.51 25199.02 19190.00 28194.30 21498.85 160
PAPM94.95 20294.00 22497.78 13797.04 24995.65 15896.03 32098.25 20591.23 27794.19 22097.80 20291.27 14098.86 21282.61 32697.61 16598.84 162
VDDNet95.36 17794.53 19397.86 13298.10 17595.13 18098.85 8697.75 25790.46 28898.36 7299.39 1473.27 33399.64 12197.98 3696.58 18598.81 163
CostFormer94.95 20294.73 18595.60 26597.28 23189.06 31197.53 25596.89 30889.66 30196.82 14796.72 28486.05 24498.95 20095.53 14696.13 20498.79 164
UGNet96.78 11996.30 12498.19 11598.24 16195.89 15398.88 8198.93 3797.39 2396.81 14897.84 19682.60 28799.90 3396.53 11099.49 8498.79 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D94.24 24393.33 25896.97 18497.19 24093.38 24798.74 10998.57 14291.21 27993.81 23798.58 12872.85 33498.77 22195.05 16093.93 22998.77 166
test-LLR95.10 19294.87 18095.80 25896.77 26389.70 30196.91 29595.21 32795.11 12494.83 19395.72 31487.71 21498.97 19393.06 21898.50 13498.72 167
test-mter94.08 25593.51 25395.80 25896.77 26389.70 30196.91 29595.21 32792.89 22194.83 19395.72 31477.69 31598.97 19393.06 21898.50 13498.72 167
CS-MVS97.81 6597.61 6298.41 10098.52 14497.15 9499.09 4498.55 14696.18 7397.61 11897.20 24494.59 7999.39 15197.62 5899.10 10798.70 169
DWT-MVSNet_test94.82 20794.36 20596.20 24297.35 22890.79 28998.34 17296.57 31892.91 22095.33 18396.44 29682.00 28999.12 17594.52 17595.78 20998.70 169
MAR-MVS96.91 11496.40 12198.45 9598.69 13196.90 10298.66 13198.68 11592.40 23897.07 13497.96 18491.54 13399.75 10093.68 20098.92 11298.69 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 16594.89 17997.76 13998.15 17295.15 17996.77 30694.41 33592.95 21897.18 12997.43 23084.78 26399.45 14894.63 16897.73 16298.68 172
BH-untuned95.95 14795.72 14096.65 20398.55 14292.26 26398.23 18897.79 25593.73 18294.62 19798.01 18188.97 18599.00 19293.04 22098.51 13398.68 172
PCF-MVS93.45 1194.68 21493.43 25698.42 9998.62 13796.77 10795.48 32698.20 20984.63 32993.34 25498.32 15788.55 19499.81 6684.80 32298.96 11198.68 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 11296.55 11698.21 11298.17 17196.07 13797.98 22098.21 20797.24 3597.13 13098.93 9386.88 23099.91 3095.00 16199.37 9798.66 175
PatchMatch-RL96.59 12596.03 13398.27 10799.31 6696.51 11997.91 22599.06 2293.72 18396.92 14298.06 17788.50 19699.65 11991.77 25499.00 11098.66 175
tpmrst95.63 16295.69 14595.44 27097.54 21288.54 31896.97 29097.56 26593.50 19797.52 12396.93 27489.49 16699.16 16995.25 15696.42 19198.64 177
IB-MVS91.98 1793.27 27091.97 28097.19 17097.47 21793.41 24597.09 28595.99 32093.32 20492.47 28295.73 31278.06 31399.53 13894.59 17382.98 32898.62 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 28192.58 27292.33 31594.15 32882.65 33798.30 18194.26 33889.08 30892.65 27595.73 31285.01 25995.76 33486.24 31297.76 16098.59 179
tpm294.19 24693.76 24295.46 26997.23 23489.04 31297.31 27196.85 31187.08 31696.21 17296.79 28283.75 28498.74 22292.43 24096.23 20198.59 179
ETV-MVS97.96 5697.81 5698.40 10198.42 14797.27 8698.73 11398.55 14696.84 5198.38 7197.44 22995.39 5499.35 15497.62 5898.89 11498.58 181
MSDG95.93 14895.30 16297.83 13498.90 11295.36 17096.83 30598.37 18291.32 27294.43 20798.73 11490.27 15999.60 12790.05 27998.82 12098.52 182
PatchT93.06 27691.97 28096.35 23596.69 26992.67 26094.48 33497.08 29486.62 31797.08 13292.23 33387.94 20997.90 30278.89 33596.69 18198.49 183
CR-MVSNet94.76 21194.15 21596.59 21197.00 25093.43 24394.96 32897.56 26592.46 23296.93 14096.24 30088.15 20397.88 30687.38 30696.65 18398.46 184
RPMNet92.52 28191.17 28596.59 21197.00 25093.43 24394.96 32897.26 28982.27 33296.93 14092.12 33486.98 22897.88 30676.32 33996.65 18398.46 184
thres600view795.49 16694.77 18297.67 14898.98 10895.02 18398.85 8696.90 30695.38 10796.63 15496.90 27584.29 26999.59 12888.65 29996.33 19398.40 186
thres40095.38 17494.62 18997.65 15198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19598.40 186
TR-MVS94.94 20494.20 21097.17 17297.75 19494.14 22297.59 25297.02 30092.28 24395.75 17997.64 21483.88 28098.96 19689.77 28396.15 20398.40 186
JIA-IIPM93.35 26792.49 27395.92 25296.48 28090.65 29295.01 32796.96 30285.93 32396.08 17487.33 33887.70 21698.78 22091.35 26095.58 21098.34 189
PVSNet_088.72 1991.28 29090.03 29495.00 28297.99 18287.29 32894.84 33198.50 16192.06 24989.86 30895.19 31979.81 30399.39 15192.27 24169.79 34198.33 190
131496.25 13995.73 13997.79 13697.13 24495.55 16498.19 19798.59 13693.47 19892.03 29197.82 20091.33 13899.49 14194.62 17098.44 13798.32 191
RPSCF94.87 20695.40 15193.26 31198.89 11382.06 33998.33 17398.06 24090.30 29296.56 15799.26 3987.09 22599.49 14193.82 19796.32 19498.24 192
tpmvs94.60 22094.36 20595.33 27397.46 21888.60 31796.88 30197.68 25991.29 27493.80 23896.42 29788.58 19199.24 16291.06 26396.04 20698.17 193
BH-w/o95.38 17495.08 17096.26 24098.34 15591.79 27197.70 24497.43 28092.87 22294.24 21797.22 24288.66 19098.84 21391.55 25897.70 16398.16 194
tpm cat193.36 26692.80 26795.07 28197.58 20787.97 32396.76 30797.86 25382.17 33393.53 24596.04 30886.13 24299.13 17489.24 29495.87 20798.10 195
MVS94.67 21793.54 25298.08 12196.88 25996.56 11798.19 19798.50 16178.05 33792.69 27498.02 17991.07 14599.63 12490.09 27698.36 14298.04 196
AllTest95.24 18494.65 18896.99 18199.25 8293.21 25398.59 13798.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
TestCases96.99 18199.25 8293.21 25398.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
gg-mvs-nofinetune92.21 28490.58 29097.13 17496.75 26695.09 18195.85 32289.40 34885.43 32794.50 20181.98 34180.80 29998.40 26592.16 24298.33 14397.88 199
baseline295.11 19194.52 19496.87 19196.65 27293.56 23998.27 18694.10 34193.45 19992.02 29297.43 23087.45 22299.19 16793.88 19597.41 17097.87 200
mvs-test196.60 12396.68 11296.37 23397.89 18891.81 27098.56 14598.10 22996.57 6296.52 16397.94 18690.81 14799.45 14895.72 13898.01 15097.86 201
thres100view90095.38 17494.70 18697.41 16298.98 10894.92 19198.87 8396.90 30695.38 10796.61 15596.88 27684.29 26999.56 13288.11 30096.29 19597.76 202
tfpn200view995.32 18194.62 18997.43 16198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19597.76 202
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18098.77 12293.76 23197.79 23998.50 16195.45 10396.94 13999.09 7187.87 21299.55 13796.76 10595.83 20897.74 204
OpenMVScopyleft93.04 1395.83 15395.00 17398.32 10597.18 24197.32 8399.21 2898.97 3089.96 29791.14 29999.05 7686.64 23399.92 2193.38 20899.47 8697.73 205
testgi93.06 27692.45 27494.88 28696.43 28289.90 29898.75 10697.54 27095.60 9691.63 29697.91 18874.46 33097.02 32386.10 31393.67 23297.72 206
XVG-OURS96.55 12796.41 12096.99 18198.75 12393.76 23197.50 25698.52 15395.67 9396.83 14599.30 3588.95 18699.53 13895.88 13196.26 19997.69 207
cascas94.63 21993.86 23496.93 18896.91 25794.27 21896.00 32198.51 15685.55 32694.54 19996.23 30284.20 27498.87 21095.80 13596.98 17697.66 208
test0.0.03 194.08 25593.51 25395.80 25895.53 31292.89 25997.38 26295.97 32195.11 12492.51 28196.66 28687.71 21496.94 32487.03 30893.67 23297.57 209
MVS-HIRNet89.46 30388.40 30392.64 31397.58 20782.15 33894.16 33793.05 34475.73 33990.90 30182.52 34079.42 30598.33 26783.53 32498.68 12397.43 210
xiu_mvs_v2_base97.66 7397.70 6097.56 15698.61 13895.46 16797.44 25798.46 16697.15 4098.65 5798.15 17194.33 8799.80 7597.84 4598.66 12797.41 211
Effi-MVS+-dtu96.29 13596.56 11595.51 26697.89 18890.22 29798.80 10098.10 22996.57 6296.45 16796.66 28690.81 14798.91 20395.72 13897.99 15197.40 212
PS-MVSNAJ97.73 6997.77 5797.62 15298.68 13295.58 16097.34 26898.51 15697.29 2898.66 5697.88 19194.51 8199.90 3397.87 4299.17 10597.39 213
thres20095.25 18394.57 19197.28 16798.81 12094.92 19198.20 19397.11 29395.24 11896.54 16196.22 30484.58 26699.53 13887.93 30496.50 18997.39 213
xiu_mvs_v1_base_debu97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base_debi97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
API-MVS97.41 9297.25 8397.91 13098.70 12996.80 10598.82 9398.69 11294.53 14998.11 7998.28 16094.50 8499.57 13094.12 18899.49 8497.37 215
Fast-Effi-MVS+-dtu95.87 15095.85 13795.91 25397.74 19791.74 27498.69 12498.15 22195.56 9894.92 18997.68 21188.98 18498.79 21993.19 21597.78 15997.20 219
COLMAP_ROBcopyleft93.27 1295.33 18094.87 18096.71 19899.29 7493.24 25298.58 13998.11 22789.92 29893.57 24499.10 6686.37 23999.79 8790.78 26898.10 14997.09 220
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0594.56 22494.19 21195.67 26397.60 20591.34 27898.93 7198.42 17494.75 13993.39 25297.87 19279.00 30898.61 23196.78 10490.99 27097.07 221
PS-MVSNAJss96.43 13096.26 12696.92 19095.84 30495.08 18299.16 3498.50 16195.87 8593.84 23698.34 15594.51 8198.61 23196.88 9593.45 23997.06 222
nrg03096.28 13795.72 14097.96 12996.90 25898.15 5599.39 598.31 19195.47 10294.42 20898.35 15192.09 11998.69 22497.50 6989.05 29497.04 223
FIs96.51 12896.12 13097.67 14897.13 24497.54 7799.36 899.22 1495.89 8394.03 22898.35 15191.98 12298.44 24996.40 11692.76 24997.01 224
FC-MVSNet-test96.42 13196.05 13197.53 15896.95 25397.27 8699.36 899.23 1295.83 8693.93 23098.37 14992.00 12198.32 26896.02 12792.72 25097.00 225
EU-MVSNet93.66 26294.14 21692.25 31695.96 30083.38 33598.52 14998.12 22594.69 14292.61 27698.13 17387.36 22396.39 33391.82 25290.00 28096.98 226
VPNet94.99 19894.19 21197.40 16497.16 24296.57 11698.71 11898.97 3095.67 9394.84 19198.24 16680.36 30198.67 22896.46 11287.32 31396.96 227
XXY-MVS95.20 18794.45 20097.46 15996.75 26696.56 11798.86 8598.65 13093.30 20693.27 25698.27 16384.85 26298.87 21094.82 16591.26 26696.96 227
TranMVSNet+NR-MVSNet95.14 19094.48 19697.11 17696.45 28196.36 12699.03 5299.03 2595.04 12893.58 24397.93 18788.27 19998.03 29394.13 18786.90 31996.95 229
HQP_MVS96.14 14095.90 13696.85 19297.42 22394.60 20798.80 10098.56 14497.28 2995.34 18198.28 16087.09 22599.03 18996.07 12394.27 21596.92 230
plane_prior598.56 14499.03 18996.07 12394.27 21596.92 230
UniMVSNet_NR-MVSNet95.71 15895.15 16697.40 16496.84 26196.97 9898.74 10999.24 1095.16 12093.88 23397.72 20791.68 12798.31 27095.81 13387.25 31496.92 230
DU-MVS95.42 17194.76 18397.40 16496.53 27696.97 9898.66 13198.99 2995.43 10493.88 23397.69 20888.57 19298.31 27095.81 13387.25 31496.92 230
NR-MVSNet94.98 20094.16 21497.44 16096.53 27697.22 9198.74 10998.95 3494.96 13289.25 31397.69 20889.32 17198.18 28094.59 17387.40 31296.92 230
jajsoiax95.45 16995.03 17296.73 19795.42 31794.63 20299.14 3698.52 15395.74 8993.22 25798.36 15083.87 28198.65 22996.95 8894.04 22496.91 235
mvs_tets95.41 17395.00 17396.65 20395.58 31094.42 21299.00 5898.55 14695.73 9093.21 25898.38 14883.45 28598.63 23097.09 8194.00 22696.91 235
WR-MVS95.15 18994.46 19897.22 16896.67 27196.45 12198.21 19098.81 7694.15 16093.16 25997.69 20887.51 21898.30 27295.29 15488.62 30096.90 237
VPA-MVSNet95.75 15695.11 16997.69 14697.24 23397.27 8698.94 7099.23 1295.13 12295.51 18097.32 23585.73 24898.91 20397.33 7589.55 28796.89 238
Anonymous2023121194.10 25393.26 26196.61 20899.11 10094.28 21799.01 5698.88 4986.43 31992.81 26997.57 22081.66 29298.68 22794.83 16489.02 29696.88 239
test_djsdf96.00 14595.69 14596.93 18895.72 30695.49 16699.47 298.40 17794.98 13094.58 19897.86 19389.16 17698.41 25996.91 8994.12 22396.88 239
HQP4-MVS94.45 20398.96 19696.87 241
ACMM93.85 995.69 16095.38 15596.61 20897.61 20493.84 22998.91 7398.44 17095.25 11694.28 21498.47 13886.04 24699.12 17595.50 14793.95 22896.87 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS95.72 15795.40 15196.69 20197.20 23794.25 22098.05 21398.46 16696.43 6494.45 20397.73 20586.75 23198.96 19695.30 15294.18 21996.86 243
testing_290.61 29788.50 30296.95 18690.08 34095.57 16197.69 24598.06 24093.02 21476.55 33692.48 33261.18 34398.44 24995.45 14991.98 25696.84 244
EI-MVSNet95.96 14695.83 13896.36 23497.93 18593.70 23798.12 20798.27 20093.70 18695.07 18599.02 7792.23 11498.54 23994.68 16793.46 23796.84 244
IterMVS-LS95.46 16795.21 16496.22 24198.12 17393.72 23698.32 17898.13 22493.71 18494.26 21597.31 23692.24 11398.10 28694.63 16890.12 27896.84 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 20494.30 20796.83 19396.72 26895.56 16299.11 4298.95 3493.89 17392.42 28497.90 18987.19 22498.12 28594.32 18188.21 30396.82 247
RRT_MVS96.04 14395.53 14897.56 15697.07 24897.32 8398.57 14498.09 23295.15 12195.02 18798.44 14088.20 20198.58 23796.17 12293.09 24696.79 248
PS-CasMVS94.67 21793.99 22696.71 19896.68 27095.26 17599.13 3999.03 2593.68 18992.33 28597.95 18585.35 25498.10 28693.59 20488.16 30596.79 248
UniMVSNet (Re)95.78 15595.19 16597.58 15496.99 25297.47 7998.79 10499.18 1695.60 9693.92 23197.04 26191.68 12798.48 24395.80 13587.66 30996.79 248
MVSTER96.06 14295.72 14097.08 17898.23 16295.93 14998.73 11398.27 20094.86 13695.07 18598.09 17588.21 20098.54 23996.59 10893.46 23796.79 248
LPG-MVS_test95.62 16395.34 15796.47 22597.46 21893.54 24098.99 6098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
LGP-MVS_train96.47 22597.46 21893.54 24098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
GG-mvs-BLEND96.59 21196.34 28594.98 18796.51 31588.58 34993.10 26494.34 32580.34 30298.05 29289.53 28996.99 17596.74 254
PEN-MVS94.42 23393.73 24496.49 22396.28 28794.84 19399.17 3399.00 2793.51 19692.23 28797.83 19986.10 24397.90 30292.55 23586.92 31896.74 254
OurMVSNet-221017-094.21 24494.00 22494.85 28795.60 30989.22 30998.89 7897.43 28095.29 11392.18 28898.52 13582.86 28698.59 23593.46 20791.76 25996.74 254
v2v48294.69 21294.03 22096.65 20396.17 29194.79 19898.67 12898.08 23492.72 22594.00 22997.16 24687.69 21798.45 24792.91 22388.87 29896.72 257
GBi-Net94.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
test194.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
FMVSNet193.19 27492.07 27896.56 21697.54 21295.00 18498.82 9398.18 21390.38 29192.27 28697.07 25573.68 33297.95 29889.36 29391.30 26496.72 257
v119294.32 23893.58 25096.53 22096.10 29494.45 21198.50 15498.17 21891.54 26394.19 22097.06 25886.95 22998.43 25190.14 27589.57 28596.70 261
v124094.06 25793.29 26096.34 23696.03 29893.90 22798.44 16198.17 21891.18 28094.13 22397.01 26586.05 24498.42 25289.13 29689.50 28896.70 261
FMVSNet394.97 20194.26 20897.11 17698.18 16996.62 11198.56 14598.26 20493.67 19194.09 22497.10 24884.25 27198.01 29492.08 24492.14 25396.70 261
FMVSNet294.47 23193.61 24997.04 17998.21 16496.43 12398.79 10498.27 20092.46 23293.50 24997.09 25281.16 29398.00 29691.09 26191.93 25796.70 261
ACMH92.88 1694.55 22593.95 22896.34 23697.63 20393.26 25198.81 9998.49 16593.43 20089.74 30998.53 13281.91 29099.08 18393.69 19993.30 24396.70 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 24593.47 25596.40 23295.98 29994.08 22398.52 14998.15 22191.33 27194.25 21697.20 24486.41 23898.42 25290.04 28089.39 29096.69 266
ACMP93.49 1095.34 17994.98 17596.43 23097.67 20093.48 24298.73 11398.44 17094.94 13592.53 27998.53 13284.50 26899.14 17395.48 14894.00 22696.66 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 16395.34 15796.46 22897.52 21593.75 23397.27 27498.46 16695.53 9994.42 20898.00 18286.21 24198.97 19396.25 12094.37 21396.66 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 23593.70 24596.48 22496.06 29694.35 21698.58 13998.16 22091.45 26594.33 21297.02 26387.50 22098.45 24791.08 26289.11 29396.63 269
IterMVS94.09 25493.85 23594.80 29097.99 18290.35 29697.18 27998.12 22593.68 18992.46 28397.34 23384.05 27697.41 31892.51 23791.33 26396.62 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 22293.92 22996.60 21096.21 28894.78 19998.59 13798.14 22391.86 25594.21 21997.02 26387.97 20898.41 25991.72 25589.57 28596.61 271
OPM-MVS95.69 16095.33 15996.76 19696.16 29394.63 20298.43 16398.39 17996.64 5995.02 18798.78 10885.15 25799.05 18595.21 15894.20 21896.60 272
LTVRE_ROB92.95 1594.60 22093.90 23196.68 20297.41 22694.42 21298.52 14998.59 13691.69 25991.21 29898.35 15184.87 26199.04 18891.06 26393.44 24096.60 272
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 25293.87 23394.85 28797.98 18490.56 29497.18 27998.11 22793.75 17992.58 27797.48 22583.97 27897.41 31892.48 23991.30 26496.58 274
pmmvs593.65 26492.97 26595.68 26295.49 31392.37 26298.20 19397.28 28789.66 30192.58 27797.26 23882.14 28898.09 28893.18 21690.95 27196.58 274
K. test v392.55 28091.91 28294.48 29795.64 30889.24 30899.07 4794.88 33194.04 16486.78 32297.59 21877.64 31897.64 31292.08 24489.43 28996.57 276
SixPastTwentyTwo93.34 26892.86 26694.75 29195.67 30789.41 30798.75 10696.67 31693.89 17390.15 30798.25 16580.87 29798.27 27790.90 26690.64 27396.57 276
miper_lstm_enhance94.33 23794.07 21995.11 27997.75 19490.97 28697.22 27698.03 24391.67 26092.76 27196.97 26890.03 16297.78 30992.51 23789.64 28496.56 278
MDA-MVSNet_test_wron90.71 29589.38 29994.68 29394.83 32390.78 29097.19 27897.46 27687.60 31372.41 34195.72 31486.51 23496.71 32885.92 31586.80 32096.56 278
ACMH+92.99 1494.30 23993.77 24095.88 25697.81 19292.04 26898.71 11898.37 18293.99 16990.60 30598.47 13880.86 29899.05 18592.75 22892.40 25296.55 280
eth_miper_zixun_eth94.68 21494.41 20395.47 26897.64 20291.71 27596.73 30998.07 23692.71 22693.64 24197.21 24390.54 15498.17 28193.38 20889.76 28296.54 281
YYNet190.70 29689.39 29894.62 29594.79 32490.65 29297.20 27797.46 27687.54 31472.54 34095.74 31186.51 23496.66 32986.00 31486.76 32196.54 281
cl-mvsnet194.52 22794.03 22095.99 24897.57 21193.38 24797.05 28697.94 24991.74 25692.81 26997.10 24889.12 17798.07 29092.60 23090.30 27696.53 283
cl_fuxian94.79 20994.43 20295.89 25597.75 19493.12 25697.16 28298.03 24392.23 24493.46 25197.05 26091.39 13598.01 29493.58 20589.21 29296.53 283
Patchmtry93.22 27292.35 27595.84 25796.77 26393.09 25794.66 33397.56 26587.37 31592.90 26796.24 30088.15 20397.90 30287.37 30790.10 27996.53 283
cl-mvsnet_94.51 22894.01 22396.02 24797.58 20793.40 24697.05 28697.96 24891.73 25892.76 27197.08 25489.06 18098.13 28492.61 22990.29 27796.52 286
v7n94.19 24693.43 25696.47 22595.90 30194.38 21599.26 1898.34 18791.99 25092.76 27197.13 24788.31 19898.52 24189.48 29187.70 30896.52 286
MDA-MVSNet-bldmvs89.97 30088.35 30494.83 28995.21 31891.34 27897.64 24997.51 27288.36 31171.17 34296.13 30679.22 30696.63 33083.65 32386.27 32296.52 286
cl-mvsnet294.68 21494.19 21196.13 24598.11 17493.60 23896.94 29298.31 19192.43 23693.32 25596.87 27886.51 23498.28 27694.10 19091.16 26796.51 289
lessismore_v094.45 30094.93 32288.44 31991.03 34686.77 32397.64 21476.23 32298.42 25290.31 27485.64 32696.51 289
anonymousdsp95.42 17194.91 17896.94 18795.10 31995.90 15299.14 3698.41 17593.75 17993.16 25997.46 22687.50 22098.41 25995.63 14494.03 22596.50 291
v14894.29 24093.76 24295.91 25396.10 29492.93 25898.58 13997.97 24692.59 23093.47 25096.95 27288.53 19598.32 26892.56 23487.06 31696.49 292
our_test_393.65 26493.30 25994.69 29295.45 31589.68 30396.91 29597.65 26191.97 25191.66 29596.88 27689.67 16597.93 30188.02 30391.49 26296.48 293
XVG-ACMP-BASELINE94.54 22694.14 21695.75 26196.55 27591.65 27698.11 20998.44 17094.96 13294.22 21897.90 18979.18 30799.11 17894.05 19293.85 23096.48 293
DTE-MVSNet93.98 25993.26 26196.14 24496.06 29694.39 21499.20 2998.86 6193.06 21291.78 29397.81 20185.87 24797.58 31490.53 27186.17 32396.46 295
miper_ehance_all_eth95.01 19694.69 18795.97 25097.70 19993.31 24997.02 28898.07 23692.23 24493.51 24896.96 27091.85 12498.15 28293.68 20091.16 26796.44 296
v894.47 23193.77 24096.57 21596.36 28494.83 19599.05 4998.19 21091.92 25293.16 25996.97 26888.82 18998.48 24391.69 25687.79 30796.39 297
WR-MVS_H95.05 19594.46 19896.81 19496.86 26095.82 15499.24 2099.24 1093.87 17592.53 27996.84 28090.37 15698.24 27893.24 21387.93 30696.38 298
miper_enhance_ethall95.10 19294.75 18496.12 24697.53 21493.73 23596.61 31298.08 23492.20 24793.89 23296.65 28892.44 10898.30 27294.21 18591.16 26796.34 299
V4294.78 21094.14 21696.70 20096.33 28695.22 17698.97 6498.09 23292.32 24194.31 21397.06 25888.39 19798.55 23892.90 22488.87 29896.34 299
v1094.29 24093.55 25196.51 22296.39 28394.80 19798.99 6098.19 21091.35 27093.02 26596.99 26688.09 20598.41 25990.50 27288.41 30296.33 301
MVS_030492.81 27892.01 27995.23 27497.46 21891.33 28098.17 20298.81 7691.13 28193.80 23895.68 31766.08 34098.06 29190.79 26796.13 20496.32 302
pmmvs494.69 21293.99 22696.81 19495.74 30595.94 14697.40 26097.67 26090.42 29093.37 25397.59 21889.08 17998.20 27992.97 22291.67 26096.30 303
ppachtmachnet_test93.22 27292.63 27194.97 28395.45 31590.84 28796.88 30197.88 25290.60 28692.08 29097.26 23888.08 20697.86 30885.12 32190.33 27596.22 304
PVSNet_BlendedMVS96.73 12096.60 11497.12 17599.25 8295.35 17298.26 18799.26 894.28 15797.94 9697.46 22692.74 10599.81 6696.88 9593.32 24296.20 305
pm-mvs193.94 26093.06 26396.59 21196.49 27995.16 17798.95 6898.03 24392.32 24191.08 30097.84 19684.54 26798.41 25992.16 24286.13 32596.19 306
Anonymous2023120691.66 28791.10 28693.33 30994.02 33087.35 32798.58 13997.26 28990.48 28790.16 30696.31 29883.83 28296.53 33179.36 33389.90 28196.12 307
ITE_SJBPF95.44 27097.42 22391.32 28197.50 27395.09 12793.59 24298.35 15181.70 29198.88 20989.71 28593.39 24196.12 307
FMVSNet591.81 28590.92 28794.49 29697.21 23692.09 26598.00 21997.55 26989.31 30690.86 30295.61 31874.48 32995.32 33685.57 31789.70 28396.07 309
UnsupCasMVSNet_eth90.99 29389.92 29594.19 30394.08 32989.83 29997.13 28498.67 12393.69 18785.83 32796.19 30575.15 32696.74 32589.14 29579.41 33596.00 310
USDC93.33 26992.71 26995.21 27596.83 26290.83 28896.91 29597.50 27393.84 17690.72 30398.14 17277.69 31598.82 21689.51 29093.21 24595.97 311
pmmvs691.77 28690.63 28995.17 27794.69 32691.24 28398.67 12897.92 25086.14 32189.62 31097.56 22275.79 32498.34 26690.75 26984.56 32795.94 312
N_pmnet87.12 30887.77 30685.17 32595.46 31461.92 34897.37 26470.66 35485.83 32488.73 31696.04 30885.33 25697.76 31080.02 33090.48 27495.84 313
MIMVSNet189.67 30288.28 30593.82 30592.81 33491.08 28598.01 21797.45 27887.95 31287.90 31995.87 31067.63 33894.56 33978.73 33688.18 30495.83 314
TransMVSNet (Re)92.67 27991.51 28496.15 24396.58 27494.65 20098.90 7496.73 31290.86 28489.46 31297.86 19385.62 25098.09 28886.45 31181.12 33395.71 315
Baseline_NR-MVSNet94.35 23693.81 23695.96 25196.20 28994.05 22498.61 13696.67 31691.44 26693.85 23597.60 21788.57 19298.14 28394.39 17886.93 31795.68 316
D2MVS95.18 18895.08 17095.48 26797.10 24692.07 26698.30 18199.13 1994.02 16692.90 26796.73 28389.48 16798.73 22394.48 17793.60 23695.65 317
TinyColmap92.31 28391.53 28394.65 29496.92 25589.75 30096.92 29396.68 31590.45 28989.62 31097.85 19576.06 32398.81 21786.74 30992.51 25195.41 318
MS-PatchMatch93.84 26193.63 24894.46 29996.18 29089.45 30597.76 24098.27 20092.23 24492.13 28997.49 22479.50 30498.69 22489.75 28499.38 9695.25 319
LF4IMVS93.14 27592.79 26894.20 30295.88 30288.67 31697.66 24897.07 29593.81 17891.71 29497.65 21277.96 31498.81 21791.47 25991.92 25895.12 320
tfpnnormal93.66 26292.70 27096.55 21996.94 25495.94 14698.97 6499.19 1591.04 28291.38 29797.34 23384.94 26098.61 23185.45 31989.02 29695.11 321
EG-PatchMatch MVS91.13 29190.12 29394.17 30494.73 32589.00 31398.13 20697.81 25489.22 30785.32 32996.46 29467.71 33798.42 25287.89 30593.82 23195.08 322
TDRefinement91.06 29289.68 29695.21 27585.35 34391.49 27798.51 15397.07 29591.47 26488.83 31597.84 19677.31 31999.09 18292.79 22777.98 33695.04 323
MVP-Stereo94.28 24293.92 22995.35 27294.95 32192.60 26197.97 22197.65 26191.61 26290.68 30497.09 25286.32 24098.42 25289.70 28699.34 9895.02 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 29490.38 29192.43 31493.48 33188.14 32298.33 17397.56 26593.40 20187.96 31896.71 28580.69 30094.13 34079.15 33486.17 32395.01 325
ambc89.49 32186.66 34275.78 34292.66 33996.72 31386.55 32492.50 33146.01 34597.90 30290.32 27382.09 32994.80 326
test_040291.32 28990.27 29294.48 29796.60 27391.12 28498.50 15497.22 29186.10 32288.30 31796.98 26777.65 31797.99 29778.13 33792.94 24894.34 327
new_pmnet90.06 29989.00 30193.22 31294.18 32788.32 32196.42 31696.89 30886.19 32085.67 32893.62 32677.18 32097.10 32281.61 32889.29 29194.23 328
CMPMVSbinary66.06 2189.70 30189.67 29789.78 32093.19 33276.56 34197.00 28998.35 18580.97 33481.57 33497.75 20474.75 32898.61 23189.85 28293.63 23494.17 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 30686.55 30991.40 31991.03 33883.36 33696.92 29395.18 32991.28 27586.48 32593.42 32753.27 34496.74 32589.43 29281.97 33194.11 330
pmmvs-eth3d90.36 29889.05 30094.32 30191.10 33792.12 26497.63 25196.95 30388.86 30984.91 33093.13 32878.32 31196.74 32588.70 29881.81 33294.09 331
new-patchmatchnet88.50 30587.45 30791.67 31890.31 33985.89 33197.16 28297.33 28489.47 30383.63 33292.77 32976.38 32195.06 33882.70 32577.29 33794.06 332
pmmvs386.67 30984.86 31192.11 31788.16 34187.19 32996.63 31194.75 33379.88 33587.22 32192.75 33066.56 33995.20 33781.24 32976.56 33893.96 333
UnsupCasMVSNet_bld87.17 30785.12 31093.31 31091.94 33588.77 31494.92 33098.30 19784.30 33082.30 33390.04 33563.96 34297.25 32085.85 31674.47 34093.93 334
LCM-MVSNet78.70 31076.24 31486.08 32377.26 34971.99 34594.34 33596.72 31361.62 34376.53 33789.33 33633.91 35192.78 34281.85 32774.60 33993.46 335
OpenMVS_ROBcopyleft86.42 2089.00 30487.43 30893.69 30693.08 33389.42 30697.91 22596.89 30878.58 33685.86 32694.69 32369.48 33698.29 27577.13 33893.29 24493.36 336
DeepMVS_CXcopyleft86.78 32297.09 24772.30 34495.17 33075.92 33884.34 33195.19 31970.58 33595.35 33579.98 33289.04 29592.68 337
PMMVS277.95 31275.44 31585.46 32482.54 34474.95 34394.23 33693.08 34372.80 34074.68 33887.38 33736.36 35091.56 34373.95 34063.94 34289.87 338
FPMVS77.62 31377.14 31279.05 32879.25 34760.97 34995.79 32395.94 32265.96 34167.93 34394.40 32437.73 34988.88 34568.83 34188.46 30187.29 339
tmp_tt68.90 31566.97 31674.68 33050.78 35359.95 35087.13 34383.47 35238.80 34862.21 34496.23 30264.70 34176.91 35088.91 29730.49 34787.19 340
ANet_high69.08 31465.37 31780.22 32765.99 35171.96 34690.91 34290.09 34782.62 33149.93 34878.39 34329.36 35281.75 34662.49 34338.52 34686.95 341
MVEpermissive62.14 2263.28 31959.38 32174.99 32974.33 35065.47 34785.55 34480.50 35352.02 34651.10 34775.00 34610.91 35680.50 34751.60 34553.40 34378.99 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 31663.57 31973.09 33157.90 35251.22 35385.05 34593.93 34254.45 34444.32 34983.57 33913.22 35389.15 34458.68 34481.00 33478.91 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 31176.75 31383.38 32695.54 31180.43 34079.42 34697.40 28264.67 34273.46 33980.82 34245.65 34693.14 34166.32 34287.43 31176.56 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 31863.26 32066.53 33381.73 34658.81 35291.85 34084.75 35151.93 34759.09 34675.13 34543.32 34779.09 34942.03 34739.47 34561.69 345
E-PMN64.94 31764.25 31867.02 33282.28 34559.36 35191.83 34185.63 35052.69 34560.22 34577.28 34441.06 34880.12 34846.15 34641.14 34461.57 346
test12320.95 32323.72 32512.64 33513.54 3558.19 35596.55 3146.13 3577.48 35116.74 35137.98 34912.97 3546.05 35216.69 3495.43 35023.68 347
testmvs21.48 32224.95 32411.09 33614.89 3546.47 35696.56 3139.87 3567.55 35017.93 35039.02 3489.43 3575.90 35316.56 35012.72 34920.91 348
wuyk23d30.17 32030.18 32330.16 33478.61 34843.29 35466.79 34714.21 35517.31 34914.82 35211.93 35211.55 35541.43 35137.08 34819.30 3485.76 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.84 650.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.98 32131.98 3220.00 3370.00 3560.00 3570.00 34898.59 1360.00 3520.00 35398.61 12390.60 1530.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.88 32510.50 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35394.51 810.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.20 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.43 1410.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 102
9.1498.06 4699.47 4598.71 11898.82 7094.36 15699.16 2499.29 3696.05 3299.81 6697.00 8399.71 50
save fliter99.46 4898.38 3498.21 19098.71 10897.95 3
test072699.72 1299.25 299.06 4898.88 4997.62 1199.56 599.50 497.42 6
test_part299.63 2999.18 899.27 17
sam_mvs88.99 181
MTGPAbinary98.74 98
test_post196.68 31030.43 35187.85 21398.69 22492.59 232
test_post31.83 35088.83 18898.91 203
patchmatchnet-post95.10 32189.42 16998.89 207
MTMP98.89 7894.14 340
gm-plane-assit95.88 30287.47 32689.74 30096.94 27399.19 16793.32 212
TEST999.31 6698.50 2897.92 22398.73 10292.63 22797.74 10798.68 11796.20 2399.80 75
test_899.29 7498.44 3097.89 22998.72 10492.98 21697.70 11098.66 12096.20 2399.80 75
agg_prior99.30 7198.38 3498.72 10497.57 12199.81 66
test_prior498.01 6197.86 232
test_prior297.80 23796.12 7797.89 10198.69 11595.96 3696.89 9299.60 65
旧先验297.57 25491.30 27398.67 5599.80 7595.70 142
新几何297.64 249
原ACMM297.67 247
testdata299.89 3591.65 257
segment_acmp96.85 11
testdata197.32 27096.34 68
plane_prior797.42 22394.63 202
plane_prior697.35 22894.61 20587.09 225
plane_prior498.28 160
plane_prior394.61 20597.02 4795.34 181
plane_prior298.80 10097.28 29
plane_prior197.37 227
plane_prior94.60 20798.44 16196.74 5594.22 217
n20.00 358
nn0.00 358
door-mid94.37 336
test1198.66 126
door94.64 334
HQP5-MVS94.25 220
HQP-NCC97.20 23798.05 21396.43 6494.45 203
ACMP_Plane97.20 23798.05 21396.43 6494.45 203
BP-MVS95.30 152
HQP3-MVS98.46 16694.18 219
HQP2-MVS86.75 231
NP-MVS97.28 23194.51 21097.73 205
MDTV_nov1_ep1395.40 15197.48 21688.34 32096.85 30397.29 28693.74 18197.48 12497.26 23889.18 17599.05 18591.92 25197.43 169
ACMMP++_ref92.97 247
ACMMP++93.61 235
Test By Simon94.64 76