This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10397.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10899.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10598.91 4599.17 5695.48 5099.93 1595.80 14099.53 8599.76 26
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
QAPM96.29 13795.40 15498.96 6797.85 19697.60 8099.23 2198.93 3789.76 30993.11 26999.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.05 5697.76 6198.90 7198.73 12997.27 9198.35 17598.78 9597.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9594.10 16697.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 13099.77 2699.75 28
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19997.64 7799.35 1099.06 2297.02 4793.75 24699.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8899.21 2898.97 3089.96 30591.14 30699.05 7986.64 23899.92 2193.38 21499.47 9097.73 209
CANet_DTU96.96 11496.55 11998.21 11498.17 17796.07 14297.98 22598.21 21297.24 3597.13 13498.93 9786.88 23599.91 3095.00 16599.37 10198.66 178
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13799.16 1794.48 15797.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21997.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
PS-MVSNAJ97.73 7197.77 6097.62 15598.68 13795.58 16597.34 27398.51 16197.29 2898.66 6097.88 19794.51 8599.90 3397.87 4299.17 10997.39 217
UGNet96.78 12196.30 12798.19 11798.24 16795.89 15898.88 8598.93 3797.39 2396.81 15297.84 20282.60 29499.90 3396.53 11499.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19699.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26292.30 28299.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
新几何199.16 5099.34 6298.01 6298.69 11790.06 30498.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
testdata299.89 3591.65 263
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 21899.71 193.57 20097.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
EPNet97.28 10096.87 10398.51 9294.98 32696.14 14098.90 7897.02 30898.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19798.52 2799.37 798.71 11397.09 4592.99 27299.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7697.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
无先验97.58 25898.72 10991.38 27399.87 4493.36 21699.60 78
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30398.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9498.75 10296.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D97.16 10796.66 11698.68 7998.53 14897.19 9798.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
Anonymous2024052995.10 19494.22 21397.75 14399.01 10894.26 22498.87 8798.83 6885.79 33596.64 15798.97 8778.73 31899.85 4996.27 12294.89 21699.12 142
sss97.39 9596.98 9998.61 8398.60 14496.61 11898.22 19498.93 3793.97 17498.01 9498.48 14191.98 12699.85 4996.45 11798.15 15199.39 108
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12698.39 18489.45 31494.52 20699.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12799.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
ZD-MVS99.46 5198.70 1998.79 9293.21 21398.67 5898.97 8795.70 4499.83 5596.07 12799.58 74
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21498.68 5799.13 6494.62 8199.83 5596.45 11799.55 8399.52 85
Anonymous20240521195.28 18494.49 19897.67 15199.00 10993.75 23898.70 12697.04 30590.66 29196.49 16898.80 11078.13 32399.83 5596.21 12595.36 21599.44 105
原ACMM198.65 8199.32 6896.62 11698.67 12893.27 21297.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
VNet97.79 6997.40 8198.96 6798.88 11897.55 8198.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9997.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20998.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26798.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
testdata98.26 11199.20 9795.36 17498.68 12091.89 25998.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
RPMNet92.81 28391.34 29197.24 17197.00 25693.43 24994.96 33798.80 8782.27 34296.93 14492.12 34486.98 23399.82 6376.32 34996.65 18798.46 187
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9597.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1498.06 4999.47 4898.71 12298.82 7094.36 16099.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 15099.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21697.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8498.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
PVSNet_BlendedMVS96.73 12296.60 11797.12 17999.25 8695.35 17698.26 19299.26 894.28 16197.94 10097.46 23392.74 10999.81 7096.88 9893.32 24696.20 310
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21797.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15198.62 13893.02 22096.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
PCF-MVS93.45 1194.68 21893.43 26298.42 10198.62 14296.77 11295.48 33598.20 21484.63 33993.34 26098.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v2_base97.66 7597.70 6397.56 15998.61 14395.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
xiu_mvs_v1_base97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14598.35 15795.98 14397.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17198.79 9297.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
旧先验297.57 25991.30 27998.67 5899.80 7995.70 147
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15599.23 2099.25 4395.54 4999.80 7996.52 11599.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17398.76 9997.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20399.29 7893.24 25898.58 14398.11 23289.92 30693.57 25099.10 6986.37 24499.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
VDD-MVS95.82 15695.23 16697.61 15698.84 12393.98 23098.68 12997.40 29195.02 13397.95 9899.34 3174.37 34299.78 9598.64 396.80 18299.08 147
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10998.31 18498.71 11395.26 11997.67 11698.56 13592.21 11999.78 9595.89 13596.85 18199.48 96
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 20998.76 9992.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15198.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15297.00 10298.14 20998.21 21293.95 17596.72 15597.99 18791.58 13399.76 10294.51 18196.54 19198.95 159
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22298.89 4694.44 15996.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
ab-mvs96.42 13395.71 14698.55 8798.63 14196.75 11397.88 23698.74 10393.84 18096.54 16598.18 17485.34 26199.75 10495.93 13496.35 19699.15 138
MAR-MVS96.91 11696.40 12498.45 9798.69 13696.90 10798.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15898.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
AllTest95.24 18694.65 19196.99 18599.25 8693.21 25998.59 14198.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
TestCases96.99 18599.25 8693.21 25998.18 21891.36 27493.52 25298.77 11484.67 27199.72 10889.70 29297.87 15998.02 201
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 15099.69 5299.68 57
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21698.53 15695.32 11696.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14197.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
test_yl97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12996.60 11998.45 16298.31 19694.70 14498.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
PVSNet91.96 1896.35 13596.15 13296.96 18999.17 9892.05 27396.08 32398.68 12093.69 19297.75 11097.80 20888.86 19199.69 11994.26 19099.01 11399.15 138
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24798.78 9596.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9098.90 4484.80 33897.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13199.42 9699.19 132
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23199.06 2293.72 18896.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
VDDNet95.36 17994.53 19697.86 13498.10 18195.13 18598.85 9097.75 26490.46 29598.36 7699.39 1473.27 34499.64 12597.98 3696.58 18998.81 166
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13398.84 9396.02 32793.40 20698.62 6299.20 5274.99 33899.63 12897.72 5297.20 17699.46 102
MVS94.67 22193.54 25898.08 12396.88 26596.56 12298.19 20298.50 16678.05 34792.69 28098.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27894.43 21398.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
thres600view795.49 16894.77 18597.67 15198.98 11295.02 18898.85 9096.90 31495.38 11196.63 15896.90 28284.29 27699.59 13288.65 30596.33 19798.40 189
1112_ss96.63 12496.00 13798.50 9398.56 14596.37 13098.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13798.60 13995.18 12397.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
API-MVS97.41 9497.25 8697.91 13298.70 13496.80 11098.82 9798.69 11794.53 15398.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
thres100view90095.38 17694.70 18997.41 16598.98 11294.92 19698.87 8796.90 31495.38 11196.61 15996.88 28384.29 27699.56 13688.11 30696.29 19997.76 206
tfpn200view995.32 18394.62 19297.43 16498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15498.94 11494.98 19298.68 12996.93 31295.33 11496.55 16396.53 29984.23 27999.56 13688.11 30696.29 19998.40 189
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14595.94 15197.71 24998.07 24292.10 25494.79 20097.29 24491.75 13099.56 13694.17 19296.50 19399.58 82
PAPR96.84 11996.24 13098.65 8198.72 13396.92 10697.36 27198.57 14793.33 20896.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18498.77 12793.76 23697.79 24598.50 16695.45 10796.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
thres20095.25 18594.57 19497.28 17098.81 12594.92 19698.20 19897.11 30195.24 12296.54 16596.22 31184.58 27399.53 14287.93 31096.50 19397.39 217
XVG-OURS96.55 12996.41 12396.99 18598.75 12893.76 23697.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13696.26 20397.69 211
IB-MVS91.98 1793.27 27591.97 28697.19 17497.47 22393.41 25197.09 29095.99 32893.32 20992.47 28995.73 31978.06 32499.53 14294.59 17882.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
canonicalmvs97.67 7497.23 8798.98 6598.70 13498.38 3599.34 1198.39 18496.76 5497.67 11697.40 23992.26 11699.49 14598.28 2796.28 20299.08 147
131496.25 14195.73 14297.79 13997.13 25095.55 16898.19 20298.59 14193.47 20392.03 29897.82 20691.33 14299.49 14594.62 17598.44 14198.32 194
RPSCF94.87 20995.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 30096.56 16199.26 4287.09 23099.49 14593.82 20396.32 19898.24 195
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 18998.59 14195.52 10497.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
alignmvs97.56 8497.07 9499.01 6298.66 13898.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
tttt051796.07 14395.51 15397.78 14098.41 15494.84 19899.28 1694.33 34694.26 16397.64 12098.64 12684.05 28399.47 15095.34 15497.60 17099.03 150
thisisatest053096.01 14695.36 15997.97 12998.38 15595.52 16998.88 8594.19 34894.04 16897.64 12098.31 16283.82 29099.46 15195.29 15897.70 16798.93 160
thisisatest051595.61 16794.89 18297.76 14298.15 17895.15 18396.77 31194.41 34492.95 22397.18 13397.43 23784.78 26999.45 15294.63 17397.73 16698.68 175
mvs-test196.60 12596.68 11596.37 23797.89 19491.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14398.01 15497.86 205
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
CS-MVS97.81 6797.61 6598.41 10298.52 14997.15 9999.09 4698.55 15196.18 7697.61 12297.20 25194.59 8399.39 15597.62 6199.10 11198.70 172
PVSNet_088.72 1991.28 29590.03 30095.00 28697.99 18887.29 33894.84 34098.50 16692.06 25589.86 31795.19 32679.81 31299.39 15592.27 24769.79 34998.33 193
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
ETV-MVS97.96 5897.81 5998.40 10398.42 15397.27 9198.73 11798.55 15196.84 5198.38 7597.44 23695.39 5599.35 15897.62 6198.89 11898.58 184
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13896.23 13699.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13399.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7097.58 6798.27 10998.38 15596.44 12799.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
lupinMVS97.44 9197.22 8898.12 12298.07 18295.76 16197.68 25197.76 26394.50 15698.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
TAPA-MVS93.98 795.35 18094.56 19597.74 14499.13 10294.83 20098.33 17898.64 13686.62 32796.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test97.28 10097.00 9798.13 12098.33 16295.97 14898.74 11398.07 24294.27 16298.44 7298.07 18092.48 11199.26 16396.43 11998.19 15099.16 137
Effi-MVS+97.12 10996.69 11398.39 10498.19 17396.72 11497.37 26998.43 17893.71 18997.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
diffmvs97.58 8297.40 8198.13 12098.32 16495.81 16098.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
tpmvs94.60 22494.36 20895.33 27797.46 22488.60 32696.88 30697.68 26691.29 28093.80 24496.42 30488.58 19599.24 16691.06 26996.04 21098.17 197
casdiffmvs97.63 7797.41 8098.28 10898.33 16296.14 14098.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
jason97.32 9997.08 9398.06 12597.45 22895.59 16497.87 23797.91 25894.79 14298.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14095.38 17399.33 1398.31 19693.61 19997.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
PMMVS96.60 12596.33 12697.41 16597.90 19393.93 23197.35 27298.41 18092.84 22897.76 10997.45 23591.10 14899.20 17096.26 12397.91 15799.11 143
gm-plane-assit95.88 30887.47 33689.74 31096.94 28099.19 17193.32 218
baseline295.11 19394.52 19796.87 19596.65 27893.56 24498.27 19194.10 35093.45 20492.02 29997.43 23787.45 22699.19 17193.88 20197.41 17497.87 204
baseline195.84 15495.12 17198.01 12798.49 15195.98 14398.73 11797.03 30695.37 11396.22 17598.19 17389.96 16799.16 17394.60 17687.48 31598.90 162
baseline97.64 7697.44 7998.25 11298.35 15796.20 13799.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29597.56 27493.50 20297.52 12796.93 28189.49 17099.16 17395.25 16096.42 19598.64 180
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16695.97 14898.58 14398.25 21091.74 26295.29 18997.23 24891.03 15099.15 17692.90 23097.96 15698.97 156
ACMP93.49 1095.34 18194.98 17896.43 23497.67 20693.48 24898.73 11798.44 17594.94 13992.53 28598.53 13684.50 27599.14 17795.48 15394.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm cat193.36 27192.80 27395.07 28597.58 21387.97 33396.76 31297.86 26082.17 34393.53 25196.04 31586.13 24799.13 17889.24 30095.87 21198.10 199
DWT-MVSNet_test94.82 21094.36 20896.20 24697.35 23490.79 29798.34 17696.57 32692.91 22595.33 18896.44 30382.00 29699.12 17994.52 18095.78 21398.70 172
BH-RMVSNet95.92 15195.32 16397.69 14998.32 16494.64 20698.19 20297.45 28794.56 15296.03 17998.61 12785.02 26499.12 17990.68 27699.06 11299.30 120
ACMM93.85 995.69 16295.38 15896.61 21397.61 21093.84 23498.91 7798.44 17595.25 12094.28 22098.47 14286.04 25199.12 17995.50 15293.95 23296.87 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 23094.14 22095.75 26596.55 28191.65 28298.11 21498.44 17594.96 13694.22 22497.90 19479.18 31699.11 18294.05 19893.85 23496.48 298
LPG-MVS_test95.62 16595.34 16096.47 22997.46 22493.54 24598.99 6498.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
LGP-MVS_train96.47 22997.46 22493.54 24598.54 15494.67 14894.36 21698.77 11485.39 25899.11 18295.71 14594.15 22596.76 257
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
TDRefinement91.06 29789.68 30295.21 27985.35 35391.49 28598.51 15797.07 30391.47 27088.83 32697.84 20277.31 33099.09 18692.79 23377.98 34295.04 332
ACMH92.88 1694.55 22993.95 23296.34 24097.63 20993.26 25798.81 10398.49 17093.43 20589.74 31898.53 13681.91 29899.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42097.18 10697.18 8997.20 17398.81 12593.27 25695.78 33099.15 1895.25 12096.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20798.43 16798.39 18496.64 5995.02 19298.78 11285.15 26399.05 18995.21 16294.20 22296.60 277
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30897.29 29593.74 18697.48 12897.26 24589.18 17999.05 18991.92 25797.43 173
ACMH+92.99 1494.30 24493.77 24595.88 26097.81 19892.04 27498.71 12298.37 18793.99 17390.60 31298.47 14280.86 30699.05 18992.75 23492.40 25696.55 285
LTVRE_ROB92.95 1594.60 22493.90 23596.68 20797.41 23294.42 21798.52 15398.59 14191.69 26591.21 30598.35 15584.87 26799.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS94.53 23193.73 24996.92 19398.50 15093.52 24798.34 17698.10 23493.83 18295.94 18397.98 18885.59 25699.03 19394.35 18580.94 34098.22 196
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21298.80 10498.56 14997.28 2995.34 18698.28 16487.09 23099.03 19396.07 12794.27 21996.92 235
plane_prior598.56 14999.03 19396.07 12794.27 21996.92 235
dp94.15 25493.90 23594.90 28997.31 23686.82 34096.97 29597.19 30091.22 28496.02 18096.61 29885.51 25799.02 19690.00 28794.30 21898.85 163
BH-untuned95.95 14995.72 14396.65 20898.55 14792.26 26998.23 19397.79 26293.73 18794.62 20398.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30095.21 33695.11 12894.83 19895.72 32187.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 26093.51 25995.80 26296.77 26989.70 30996.91 30095.21 33692.89 22694.83 19895.72 32177.69 32698.97 19893.06 22498.50 13898.72 170
CLD-MVS95.62 16595.34 16096.46 23297.52 22193.75 23897.27 27998.46 17195.53 10294.42 21498.00 18686.21 24698.97 19896.25 12494.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet95.00 19994.45 20396.63 21198.00 18691.91 27596.04 32497.74 26590.15 30196.47 16996.64 29687.89 21498.96 20190.08 28397.06 17799.02 151
HQP4-MVS94.45 20998.96 20196.87 246
TR-MVS94.94 20694.20 21497.17 17697.75 20094.14 22797.59 25797.02 30892.28 24995.75 18497.64 22083.88 28798.96 20189.77 28996.15 20798.40 189
HQP-MVS95.72 15995.40 15496.69 20697.20 24394.25 22598.05 21898.46 17196.43 6794.45 20997.73 21186.75 23698.96 20195.30 15694.18 22396.86 248
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26096.89 31689.66 31196.82 15196.72 29186.05 24998.95 20595.53 15196.13 20898.79 167
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13199.19 3197.97 25295.39 11097.23 13198.99 8691.11 14798.93 20694.60 17698.59 13399.47 98
TESTMET0.1,194.18 25393.69 25295.63 26896.92 26189.12 31896.91 30094.78 34193.17 21594.88 19596.45 30278.52 31998.92 20793.09 22398.50 13898.85 163
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19490.22 30598.80 10498.10 23496.57 6296.45 17196.66 29390.81 15198.91 20895.72 14397.99 15597.40 216
test_post31.83 36088.83 19298.91 208
VPA-MVSNet95.75 15895.11 17297.69 14997.24 23997.27 9198.94 7499.23 1295.13 12695.51 18597.32 24285.73 25398.91 20897.33 7889.55 29196.89 243
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21390.72 29996.84 30997.52 28094.06 16797.08 13696.96 27789.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post95.10 32889.42 17398.89 212
SCA95.46 16995.13 17096.46 23297.67 20691.29 29097.33 27497.60 27294.68 14796.92 14697.10 25583.97 28598.89 21292.59 23898.32 14899.20 129
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28295.09 13193.59 24898.35 15581.70 29998.88 21489.71 29193.39 24596.12 312
cascas94.63 22393.86 23896.93 19196.91 26394.27 22396.00 32798.51 16185.55 33694.54 20596.23 30984.20 28198.87 21595.80 14096.98 18097.66 212
XXY-MVS95.20 18994.45 20397.46 16296.75 27296.56 12298.86 8998.65 13593.30 21193.27 26298.27 16784.85 26898.87 21594.82 16991.26 27096.96 232
PAPM94.95 20494.00 22897.78 14097.04 25595.65 16396.03 32698.25 21091.23 28394.19 22697.80 20891.27 14498.86 21782.61 33597.61 16998.84 165
BH-w/o95.38 17695.08 17396.26 24498.34 16191.79 27797.70 25097.43 28992.87 22794.24 22397.22 24988.66 19498.84 21891.55 26497.70 16798.16 198
EPMVS94.99 20094.48 19996.52 22597.22 24191.75 27997.23 28091.66 35494.11 16597.28 12996.81 28885.70 25498.84 21893.04 22697.28 17598.97 156
Patchmatch-test94.42 23893.68 25396.63 21197.60 21191.76 27894.83 34197.49 28489.45 31494.14 22897.10 25588.99 18598.83 22085.37 32698.13 15299.29 122
USDC93.33 27492.71 27595.21 27996.83 26890.83 29696.91 30097.50 28293.84 18090.72 31098.14 17677.69 32698.82 22189.51 29693.21 24995.97 316
TinyColmap92.31 28891.53 28994.65 29896.92 26189.75 30896.92 29896.68 32390.45 29689.62 31997.85 20176.06 33498.81 22286.74 31592.51 25595.41 324
LF4IMVS93.14 28092.79 27494.20 30895.88 30888.67 32597.66 25397.07 30393.81 18391.71 30197.65 21877.96 32598.81 22291.47 26591.92 26195.12 329
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20391.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
JIA-IIPM93.35 27292.49 27995.92 25696.48 28690.65 30095.01 33696.96 31085.93 33396.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
UniMVSNet_ETH3D94.24 24893.33 26496.97 18897.19 24693.38 25398.74 11398.57 14791.21 28593.81 24398.58 13272.85 34598.77 22695.05 16493.93 23398.77 169
tpm294.19 25193.76 24795.46 27397.23 24089.04 32097.31 27696.85 31987.08 32696.21 17696.79 28983.75 29198.74 22792.43 24696.23 20598.59 182
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 17092.90 27396.73 29089.48 17198.73 22894.48 18293.60 24095.65 322
test_post196.68 31530.43 36187.85 21798.69 22992.59 238
MS-PatchMatch93.84 26693.63 25494.46 30596.18 29689.45 31397.76 24698.27 20592.23 25092.13 29697.49 23179.50 31398.69 22989.75 29099.38 10095.25 326
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10694.42 21498.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
Anonymous2023121194.10 25893.26 26796.61 21399.11 10494.28 22299.01 6098.88 4986.43 32992.81 27597.57 22681.66 30098.68 23294.83 16889.02 30096.88 244
test_part194.82 21093.82 24097.82 13898.84 12397.82 7299.03 5598.81 7692.31 24892.51 28797.89 19681.96 29798.67 23394.80 17188.24 30796.98 230
VPNet94.99 20094.19 21597.40 16797.16 24896.57 12198.71 12298.97 3095.67 9694.84 19698.24 17080.36 30998.67 23396.46 11687.32 31896.96 232
jajsoiax95.45 17195.03 17596.73 20295.42 32394.63 20799.14 3698.52 15895.74 9293.22 26398.36 15483.87 28898.65 23596.95 9194.04 22896.91 240
mvs_tets95.41 17595.00 17696.65 20895.58 31694.42 21799.00 6298.55 15195.73 9393.21 26498.38 15283.45 29298.63 23697.09 8494.00 23096.91 240
tfpnnormal93.66 26792.70 27696.55 22396.94 26095.94 15198.97 6899.19 1591.04 28891.38 30497.34 24084.94 26698.61 23785.45 32589.02 30095.11 330
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18799.16 3498.50 16695.87 8893.84 24298.34 15994.51 8598.61 23796.88 9893.45 24397.06 226
RRT_test8_iter0594.56 22894.19 21595.67 26797.60 21191.34 28698.93 7598.42 17994.75 14393.39 25897.87 19879.00 31798.61 23796.78 10790.99 27497.07 225
CMPMVSbinary66.06 2189.70 30789.67 30389.78 32893.19 34176.56 35197.00 29498.35 19080.97 34481.57 34597.75 21074.75 33998.61 23789.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-094.21 24994.00 22894.85 29195.60 31589.22 31798.89 8297.43 28995.29 11792.18 29598.52 13982.86 29398.59 24193.46 21391.76 26296.74 259
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12995.46 17199.20 2998.30 20294.96 13696.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
RRT_MVS96.04 14595.53 15197.56 15997.07 25497.32 8898.57 14898.09 23895.15 12595.02 19298.44 14488.20 20598.58 24396.17 12693.09 25096.79 253
V4294.78 21494.14 22096.70 20596.33 29295.22 18098.97 6898.09 23892.32 24694.31 21997.06 26588.39 20198.55 24492.90 23088.87 30296.34 304
EI-MVSNet95.96 14895.83 14196.36 23897.93 19193.70 24298.12 21298.27 20593.70 19195.07 19099.02 8092.23 11898.54 24594.68 17293.46 24196.84 249
MVSTER96.06 14495.72 14397.08 18298.23 16895.93 15498.73 11798.27 20594.86 14095.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
v7n94.19 25193.43 26296.47 22995.90 30794.38 22099.26 1898.34 19291.99 25692.76 27797.13 25488.31 20298.52 24789.48 29787.70 31396.52 291
TAMVS97.02 11296.79 10697.70 14898.06 18495.31 17898.52 15398.31 19693.95 17597.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
v894.47 23693.77 24596.57 21996.36 29094.83 20099.05 5298.19 21591.92 25893.16 26596.97 27588.82 19398.48 24991.69 26287.79 31296.39 302
GA-MVS94.81 21294.03 22497.14 17797.15 24993.86 23396.76 31297.58 27394.00 17294.76 20197.04 26880.91 30498.48 24991.79 25996.25 20499.09 144
UniMVSNet (Re)95.78 15795.19 16897.58 15796.99 25897.47 8498.79 10899.18 1695.60 9993.92 23797.04 26891.68 13198.48 24995.80 14087.66 31496.79 253
mvs_anonymous96.70 12396.53 12197.18 17598.19 17393.78 23598.31 18498.19 21594.01 17194.47 20898.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
v14419294.39 24093.70 25196.48 22896.06 30294.35 22198.58 14398.16 22591.45 27194.33 21897.02 27087.50 22498.45 25391.08 26889.11 29796.63 274
v2v48294.69 21694.03 22496.65 20896.17 29794.79 20398.67 13298.08 24092.72 23094.00 23597.16 25387.69 22198.45 25392.91 22988.87 30296.72 262
FIs96.51 13096.12 13397.67 15197.13 25097.54 8299.36 899.22 1495.89 8694.03 23498.35 15591.98 12698.44 25596.40 12092.76 25397.01 228
v119294.32 24393.58 25696.53 22496.10 30094.45 21698.50 15898.17 22391.54 26994.19 22697.06 26586.95 23498.43 25690.14 28189.57 28996.70 266
MVP-Stereo94.28 24793.92 23395.35 27694.95 32792.60 26797.97 22697.65 26891.61 26890.68 31197.09 25986.32 24598.42 25789.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v192192094.20 25093.47 26196.40 23695.98 30594.08 22898.52 15398.15 22691.33 27794.25 22297.20 25186.41 24398.42 25790.04 28689.39 29496.69 271
v124094.06 26293.29 26696.34 24096.03 30493.90 23298.44 16598.17 22391.18 28694.13 22997.01 27286.05 24998.42 25789.13 30289.50 29296.70 266
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33497.64 22076.23 33398.42 25790.31 28085.64 33196.51 294
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29796.77 5393.14 26898.33 16090.34 16198.42 25785.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS91.13 29690.12 29994.17 31094.73 33189.00 32198.13 21197.81 26189.22 31785.32 34096.46 30167.71 34898.42 25787.89 31193.82 23595.08 331
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18595.98 14398.20 19898.33 19393.67 19696.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15799.14 3698.41 18093.75 18493.16 26597.46 23387.50 22498.41 26495.63 14994.03 22996.50 296
v114494.59 22693.92 23396.60 21596.21 29494.78 20498.59 14198.14 22891.86 26194.21 22597.02 27087.97 21298.41 26491.72 26189.57 28996.61 276
pm-mvs193.94 26593.06 26996.59 21696.49 28595.16 18198.95 7298.03 24992.32 24691.08 30797.84 20284.54 27498.41 26492.16 24886.13 33096.19 311
v1094.29 24593.55 25796.51 22696.39 28994.80 20298.99 6498.19 21591.35 27693.02 27196.99 27388.09 20998.41 26490.50 27888.41 30696.33 306
MVSFormer97.57 8397.49 7597.84 13598.07 18295.76 16199.47 298.40 18294.98 13498.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13494.58 20497.86 19989.16 18098.41 26496.91 9294.12 22796.88 244
gg-mvs-nofinetune92.21 28990.58 29697.13 17896.75 27295.09 18695.85 32889.40 35785.43 33794.50 20781.98 35180.80 30798.40 27092.16 24898.33 14797.88 203
pmmvs691.77 29190.63 29595.17 28194.69 33291.24 29198.67 13297.92 25786.14 33189.62 31997.56 22875.79 33598.34 27190.75 27584.56 33295.94 317
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21382.15 34894.16 34693.05 35375.73 34990.90 30882.52 35079.42 31498.33 27283.53 33398.68 12797.43 214
FC-MVSNet-test96.42 13396.05 13497.53 16196.95 25997.27 9199.36 899.23 1295.83 8993.93 23698.37 15392.00 12598.32 27396.02 13292.72 25497.00 229
v14894.29 24593.76 24795.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25696.95 27988.53 19998.32 27392.56 24087.06 32196.49 297
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16796.84 26796.97 10398.74 11399.24 1095.16 12493.88 23997.72 21391.68 13198.31 27595.81 13887.25 31996.92 235
DU-MVS95.42 17394.76 18697.40 16796.53 28296.97 10398.66 13598.99 2995.43 10893.88 23997.69 21488.57 19698.31 27595.81 13887.25 31996.92 235
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 24096.61 31798.08 24092.20 25393.89 23896.65 29592.44 11298.30 27794.21 19191.16 27196.34 304
WR-MVS95.15 19194.46 20197.22 17296.67 27796.45 12698.21 19598.81 7694.15 16493.16 26597.69 21487.51 22298.30 27795.29 15888.62 30496.90 242
tpm94.13 25593.80 24295.12 28296.50 28487.91 33497.44 26295.89 33292.62 23396.37 17396.30 30684.13 28298.30 27793.24 21991.66 26499.14 140
bset_n11_16_dypcd94.89 20894.27 21196.76 20094.41 33395.15 18395.67 33195.64 33495.53 10294.65 20297.52 23087.10 22998.29 28096.58 11391.35 26696.83 251
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34289.42 31497.91 23196.89 31678.58 34685.86 33794.69 33069.48 34798.29 28077.13 34893.29 24893.36 345
cl-mvsnet294.68 21894.19 21596.13 24998.11 18093.60 24396.94 29798.31 19692.43 24193.32 26196.87 28586.51 23998.28 28294.10 19691.16 27196.51 294
SixPastTwentyTwo93.34 27392.86 27294.75 29595.67 31389.41 31598.75 11096.67 32493.89 17790.15 31698.25 16980.87 30598.27 28390.90 27290.64 27796.57 281
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15999.24 2099.24 1093.87 17992.53 28596.84 28790.37 16098.24 28493.24 21987.93 31196.38 303
pmmvs494.69 21693.99 23096.81 19895.74 31195.94 15197.40 26597.67 26790.42 29793.37 25997.59 22489.08 18398.20 28592.97 22891.67 26396.30 308
NR-MVSNet94.98 20294.16 21897.44 16396.53 28297.22 9698.74 11398.95 3494.96 13689.25 32297.69 21489.32 17598.18 28694.59 17887.40 31796.92 235
eth_miper_zixun_eth94.68 21894.41 20695.47 27297.64 20891.71 28196.73 31498.07 24292.71 23193.64 24797.21 25090.54 15898.17 28793.38 21489.76 28696.54 286
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20593.31 25597.02 29398.07 24292.23 25093.51 25496.96 27791.85 12898.15 28893.68 20691.16 27196.44 301
Baseline_NR-MVSNet94.35 24193.81 24195.96 25596.20 29594.05 22998.61 14096.67 32491.44 27293.85 24197.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
cl-mvsnet_94.51 23394.01 22796.02 25197.58 21393.40 25297.05 29197.96 25491.73 26492.76 27797.08 26189.06 18498.13 29092.61 23590.29 28196.52 291
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17792.42 29197.90 19487.19 22898.12 29194.32 18788.21 30896.82 252
PS-CasMVS94.67 22193.99 23096.71 20396.68 27695.26 17999.13 3999.03 2593.68 19492.33 29297.95 19085.35 26098.10 29293.59 21088.16 31096.79 253
IterMVS-LS95.46 16995.21 16796.22 24598.12 17993.72 24198.32 18398.13 22993.71 18994.26 22197.31 24392.24 11798.10 29294.63 17390.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs593.65 26992.97 27195.68 26695.49 31992.37 26898.20 19897.28 29689.66 31192.58 28397.26 24582.14 29598.09 29493.18 22290.95 27596.58 279
TransMVSNet (Re)92.67 28591.51 29096.15 24796.58 28094.65 20598.90 7896.73 32090.86 29089.46 32197.86 19985.62 25598.09 29486.45 31781.12 33895.71 320
cl-mvsnet194.52 23294.03 22495.99 25297.57 21793.38 25397.05 29197.94 25591.74 26292.81 27597.10 25589.12 18198.07 29692.60 23690.30 28096.53 288
MVS_030492.81 28392.01 28595.23 27897.46 22491.33 28898.17 20798.81 7691.13 28793.80 24495.68 32466.08 35198.06 29790.79 27396.13 20896.32 307
GG-mvs-BLEND96.59 21696.34 29194.98 19296.51 32088.58 35893.10 27094.34 33580.34 31098.05 29889.53 29596.99 17996.74 259
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 18096.45 28796.36 13199.03 5599.03 2595.04 13293.58 24997.93 19288.27 20398.03 29994.13 19386.90 32496.95 234
cl_fuxian94.79 21394.43 20595.89 25997.75 20093.12 26297.16 28798.03 24992.23 25093.46 25797.05 26791.39 13998.01 30093.58 21189.21 29696.53 288
FMVSNet394.97 20394.26 21297.11 18098.18 17596.62 11698.56 14998.26 20993.67 19694.09 23097.10 25584.25 27898.01 30092.08 25092.14 25796.70 266
FMVSNet294.47 23693.61 25597.04 18398.21 17096.43 12898.79 10898.27 20592.46 23793.50 25597.09 25981.16 30198.00 30291.09 26791.93 26096.70 266
test_040291.32 29490.27 29894.48 30396.60 27991.12 29298.50 15897.22 29986.10 33288.30 32896.98 27477.65 32897.99 30378.13 34792.94 25294.34 336
GBi-Net94.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
test194.49 23493.80 24296.56 22098.21 17095.00 18998.82 9798.18 21892.46 23794.09 23097.07 26281.16 30197.95 30492.08 25092.14 25796.72 262
FMVSNet193.19 27992.07 28496.56 22097.54 21895.00 18998.82 9798.18 21890.38 29892.27 29397.07 26273.68 34397.95 30489.36 29991.30 26896.72 262
our_test_393.65 26993.30 26594.69 29695.45 32189.68 31196.91 30097.65 26891.97 25791.66 30296.88 28389.67 16997.93 30788.02 30991.49 26596.48 298
ambc89.49 32986.66 35275.78 35292.66 34896.72 32186.55 33592.50 34246.01 35597.90 30890.32 27982.09 33494.80 335
PEN-MVS94.42 23893.73 24996.49 22796.28 29394.84 19899.17 3399.00 2793.51 20192.23 29497.83 20586.10 24897.90 30892.55 24186.92 32396.74 259
Patchmtry93.22 27792.35 28195.84 26196.77 26993.09 26394.66 34297.56 27487.37 32592.90 27396.24 30788.15 20797.90 30887.37 31390.10 28396.53 288
PatchT93.06 28191.97 28696.35 23996.69 27592.67 26694.48 34397.08 30286.62 32797.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
CR-MVSNet94.76 21594.15 21996.59 21697.00 25693.43 24994.96 33797.56 27492.46 23796.93 14496.24 30788.15 20797.88 31287.38 31296.65 18798.46 187
ppachtmachnet_test93.22 27792.63 27794.97 28795.45 32190.84 29596.88 30697.88 25990.60 29292.08 29797.26 24588.08 21097.86 31385.12 32790.33 27996.22 309
miper_lstm_enhance94.33 24294.07 22395.11 28397.75 20090.97 29497.22 28198.03 24991.67 26692.76 27796.97 27590.03 16697.78 31492.51 24389.64 28896.56 283
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 26970.66 36385.83 33488.73 32796.04 31585.33 26297.76 31580.02 34090.48 27895.84 318
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17587.85 33598.75 11095.66 33395.11 12888.96 32396.85 28690.26 16497.65 31695.65 14898.44 14199.22 128
K. test v392.55 28691.91 28894.48 30395.64 31489.24 31699.07 5094.88 34094.04 16886.78 33397.59 22477.64 32997.64 31792.08 25089.43 29396.57 281
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DTE-MVSNet93.98 26493.26 26796.14 24896.06 30294.39 21999.20 2998.86 6193.06 21891.78 30097.81 20785.87 25297.58 31990.53 27786.17 32896.46 300
ADS-MVSNet294.58 22794.40 20795.11 28398.00 18688.74 32496.04 32497.30 29490.15 30196.47 16996.64 29687.89 21497.56 32090.08 28397.06 17799.02 151
ET-MVSNet_ETH3D94.13 25592.98 27097.58 15798.22 16996.20 13797.31 27695.37 33594.53 15379.56 34697.63 22286.51 23997.53 32196.91 9290.74 27699.02 151
CVMVSNet95.43 17296.04 13593.57 31397.93 19183.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
IterMVS-SCA-FT94.11 25793.87 23794.85 29197.98 19090.56 30297.18 28498.11 23293.75 18492.58 28397.48 23283.97 28597.41 32392.48 24591.30 26896.58 279
IterMVS94.09 25993.85 23994.80 29497.99 18890.35 30497.18 28498.12 23093.68 19492.46 29097.34 24084.05 28397.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34588.77 32394.92 33998.30 20284.30 34082.30 34490.04 34563.96 35397.25 32585.85 32274.47 34893.93 343
MIMVSNet93.26 27692.21 28396.41 23597.73 20493.13 26195.65 33297.03 30691.27 28294.04 23396.06 31475.33 33697.19 32686.56 31696.23 20598.92 161
new_pmnet90.06 30589.00 30993.22 31994.18 33488.32 33096.42 32296.89 31686.19 33085.67 33993.62 33777.18 33197.10 32781.61 33789.29 29594.23 337
testgi93.06 28192.45 28094.88 29096.43 28889.90 30698.75 11097.54 27995.60 9991.63 30397.91 19374.46 34197.02 32886.10 31993.67 23697.72 210
test0.0.03 194.08 26093.51 25995.80 26295.53 31892.89 26597.38 26795.97 32995.11 12892.51 28796.66 29387.71 21896.94 32987.03 31493.67 23697.57 213
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33791.59 28395.59 33397.63 27089.87 30788.95 32494.38 33378.28 32196.82 33084.83 32868.05 35095.21 327
pmmvs-eth3d90.36 30389.05 30894.32 30791.10 34892.12 27097.63 25696.95 31188.86 31984.91 34193.13 33978.32 32096.74 33288.70 30481.81 33794.09 340
PM-MVS87.77 31486.55 31891.40 32791.03 34983.36 34696.92 29895.18 33891.28 28186.48 33693.42 33853.27 35496.74 33289.43 29881.97 33694.11 339
UnsupCasMVSNet_eth90.99 29889.92 30194.19 30994.08 33689.83 30797.13 28998.67 12893.69 19285.83 33896.19 31275.15 33796.74 33289.14 30179.41 34196.00 315
MDA-MVSNet_test_wron90.71 30089.38 30594.68 29794.83 32990.78 29897.19 28397.46 28587.60 32372.41 35195.72 32186.51 23996.71 33585.92 32186.80 32596.56 283
YYNet190.70 30189.39 30494.62 29994.79 33090.65 30097.20 28297.46 28587.54 32472.54 35095.74 31886.51 23996.66 33686.00 32086.76 32696.54 286
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25497.51 28188.36 32171.17 35296.13 31379.22 31596.63 33783.65 33286.27 32796.52 291
Anonymous2023120691.66 29291.10 29293.33 31694.02 33987.35 33798.58 14397.26 29890.48 29490.16 31596.31 30583.83 28996.53 33879.36 34389.90 28596.12 312
Patchmatch-RL test91.49 29390.85 29493.41 31491.37 34784.40 34292.81 34795.93 33191.87 26087.25 33194.87 32988.99 18596.53 33892.54 24282.00 33599.30 120
EU-MVSNet93.66 26794.14 22092.25 32495.96 30683.38 34598.52 15398.12 23094.69 14692.61 28298.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
DIV-MVS_2432*160090.38 30289.38 30593.40 31592.85 34388.94 32297.95 22797.94 25590.35 29990.25 31493.96 33679.82 31195.94 34184.62 33176.69 34495.33 325
DSMNet-mixed92.52 28792.58 27892.33 32394.15 33582.65 34798.30 18694.26 34789.08 31892.65 28195.73 31985.01 26595.76 34286.24 31897.76 16498.59 182
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34295.19 32670.58 34695.35 34379.98 34289.04 29992.68 346
CL-MVSNet_2432*160090.11 30489.14 30793.02 32091.86 34688.23 33196.51 32098.07 24290.49 29390.49 31394.41 33184.75 27095.34 34480.79 33974.95 34695.50 323
FMVSNet591.81 29090.92 29394.49 30297.21 24292.09 27198.00 22497.55 27889.31 31690.86 30995.61 32574.48 34095.32 34585.57 32389.70 28796.07 314
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31694.75 34279.88 34587.22 33292.75 34166.56 35095.20 34681.24 33876.56 34593.96 342
new-patchmatchnet88.50 31387.45 31691.67 32690.31 35085.89 34197.16 28797.33 29389.47 31383.63 34392.77 34076.38 33295.06 34782.70 33477.29 34394.06 341
MIMVSNet189.67 30888.28 31293.82 31192.81 34491.08 29398.01 22297.45 28787.95 32287.90 33095.87 31767.63 34994.56 34878.73 34688.18 30995.83 319
test20.0390.89 29990.38 29792.43 32293.48 34088.14 33298.33 17897.56 27493.40 20687.96 32996.71 29280.69 30894.13 34979.15 34486.17 32895.01 334
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29164.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31676.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32161.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 32995.94 33065.96 35167.93 35394.40 33237.73 35988.88 35468.83 35188.46 30587.29 348
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30964.70 35276.91 35988.91 30330.49 35787.19 349
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3196.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3189.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
IU-MVS99.71 2099.23 698.64 13695.28 11899.63 498.35 2499.81 1099.83 5
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 103
MTMP98.89 8294.14 349
test9_res96.39 12199.57 7599.69 51
agg_prior295.87 13799.57 7599.68 57
test_prior498.01 6297.86 238
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
新几何297.64 254
旧先验199.29 7897.48 8398.70 11699.09 7495.56 4799.47 9099.61 75
原ACMM297.67 252
test22299.23 9397.17 9897.40 26598.66 13188.68 32098.05 8698.96 9394.14 9499.53 8599.61 75
segment_acmp96.85 11
testdata197.32 27596.34 71
plane_prior797.42 22994.63 207
plane_prior697.35 23494.61 21087.09 230
plane_prior498.28 164
plane_prior394.61 21097.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior197.37 233
plane_prior94.60 21298.44 16596.74 5594.22 221
n20.00 367
nn0.00 367
door-mid94.37 345
test1198.66 131
door94.64 343
HQP5-MVS94.25 225
HQP-NCC97.20 24398.05 21896.43 6794.45 209
ACMP_Plane97.20 24398.05 21896.43 6794.45 209
BP-MVS95.30 156
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 236
NP-MVS97.28 23794.51 21597.73 211
MDTV_nov1_ep13_2view84.26 34396.89 30590.97 28997.90 10489.89 16893.91 20099.18 136
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80