This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
QAPM93.45 13592.27 15696.98 7496.77 16192.62 8698.39 1998.12 5684.50 29288.27 25997.77 8582.39 19099.81 2685.40 25998.81 8998.51 124
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19289.67 25097.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35291.70 5099.80 2795.66 5299.40 4599.62 13
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17193.36 6998.65 698.36 1694.12 4689.25 23898.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19893.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22892.73 8398.27 2698.12 5684.86 28785.78 29797.75 8678.89 25199.74 3187.50 22598.65 9596.73 197
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28290.29 19998.34 4184.60 14899.73 3283.85 27898.27 10398.06 154
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
CANet_DTU94.37 10593.65 11396.55 8496.46 17892.13 10396.21 21896.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15798.45 10097.82 166
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15495.34 1398.48 1597.87 10894.65 3688.53 25398.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23198.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25582.38 31089.29 23597.87 7583.77 15999.69 4481.37 29896.69 14598.89 100
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 22996.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
新几何197.32 5698.60 6893.59 6197.75 11781.58 31695.75 9097.85 7890.04 8299.67 4986.50 24099.13 7598.69 115
testdata299.67 4985.96 252
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
ZD-MVS99.05 4194.59 2898.08 6489.22 19297.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25897.48 14693.85 5296.51 6195.70 19988.65 9499.65 5394.80 8498.27 10396.17 209
无先验95.79 23997.87 10883.87 30099.65 5387.68 21898.89 100
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22597.73 11981.56 31795.68 9397.85 7890.23 7899.65 5387.68 21899.12 7898.73 111
EPNet95.20 8694.56 9397.14 6892.80 31892.68 8497.85 6294.87 30496.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26598.48 1485.60 27793.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24095.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
UGNet94.04 11793.28 12796.31 10396.85 15591.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29599.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
TEST998.70 6094.19 4096.41 19698.02 8888.17 22796.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19698.02 8888.58 21596.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_898.67 6294.06 4996.37 20398.01 9188.58 21595.98 8397.55 10792.73 2599.58 70
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_BlendedMVS94.06 11593.92 10594.47 18798.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21888.02 10099.58 7093.44 11090.72 23594.36 302
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25198.36 1688.84 20694.36 11796.09 17888.02 10099.58 7093.44 11098.18 10698.40 138
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21298.00 9388.76 21295.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
Anonymous2024052991.98 18790.73 20795.73 13298.14 10389.40 18997.99 4797.72 12279.63 32793.54 13497.41 11169.94 31299.56 8091.04 15691.11 22898.22 146
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
PCF-MVS89.48 1191.56 19989.95 23896.36 10196.60 16692.52 8992.51 32197.26 17979.41 32888.90 24296.56 15584.04 15799.55 8377.01 32097.30 13197.01 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25195.22 10597.68 9190.25 7799.54 8587.95 20999.12 7898.49 127
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18797.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18498.07 10997.70 170
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29586.00 27393.64 13197.45 10966.24 32999.53 8890.68 16092.71 20199.01 87
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25297.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 209
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25491.37 17796.71 13988.39 9899.52 9287.33 22897.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16397.35 12999.11 78
RPMNet88.98 26987.05 28494.77 17794.45 27787.19 24690.23 33398.03 8477.87 33692.40 15687.55 33780.17 22699.51 9368.84 34093.95 18997.60 177
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23193.00 14795.84 18684.86 14699.51 9387.99 20898.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26197.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17898.94 8698.82 106
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24390.49 19497.10 12485.21 14199.50 9686.70 23796.72 14497.63 172
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22295.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20497.88 10686.98 25996.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25397.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15893.11 19798.50 125
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24596.64 23489.05 19793.00 14795.79 19285.77 13699.45 10289.16 19394.35 18297.96 155
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20498.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26192.43 10495.86 8698.44 2868.42 31999.39 10996.31 2894.85 17498.71 114
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18797.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 21998.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26096.00 22998.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33493.00 14797.57 10386.14 13299.33 11389.22 18999.15 7398.94 94
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
COLMAP_ROBcopyleft87.81 1590.40 24889.28 25793.79 22097.95 11087.13 24996.92 15595.89 26082.83 30886.88 28997.18 11973.77 29299.29 11778.44 31493.62 19394.95 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20898.06 7388.94 20294.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22597.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21798.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
VDDNet93.05 14792.07 15996.02 11896.84 15690.39 16298.08 4295.85 26186.22 27095.79 8998.46 2667.59 32299.19 12394.92 7894.85 17498.47 130
IB-MVS87.33 1789.91 25888.28 27094.79 17695.26 23987.70 23795.12 26693.95 32289.35 18987.03 28492.49 30770.74 30699.19 12389.18 19281.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19494.81 11196.71 13988.84 9199.17 12688.91 19698.76 9196.53 200
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32690.57 16596.29 7098.31 4769.00 31599.16 12794.18 9495.87 15799.12 77
AllTest90.23 25288.98 26193.98 20797.94 11186.64 25796.51 19195.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
TestCases93.98 20797.94 11186.64 25795.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 20996.72 22586.87 26289.83 21796.69 14386.51 12499.14 13088.12 20693.67 19198.50 125
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19097.78 11698.97 90
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24797.71 12688.99 19992.34 16195.82 18889.19 8699.11 13286.14 24697.38 12798.90 98
MVS91.71 19290.44 21695.51 14495.20 24291.59 11896.04 22597.45 15773.44 34187.36 27895.60 20385.42 13999.10 13385.97 25197.46 12295.83 224
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30692.18 11493.33 14094.91 22878.06 26299.10 13381.61 29294.06 18896.98 187
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 24996.64 23485.38 27889.65 22395.18 21985.86 13499.10 13387.70 21593.58 19698.49 127
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18796.88 21690.13 17391.91 16997.24 11785.21 14199.09 13687.64 22197.83 11497.92 158
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19497.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30692.20 11093.31 14194.90 22978.06 26299.08 13881.40 29594.08 18596.48 203
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.48 203
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.98 187
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24897.97 5292.09 33490.63 16093.88 12897.01 12876.50 27299.06 14190.29 16595.45 16598.38 140
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33390.16 17294.09 12296.41 16376.43 27599.05 14290.38 16295.68 16398.31 144
PVSNet86.66 1892.24 17991.74 17293.73 22197.77 12083.69 29992.88 31696.72 22587.91 23593.00 14794.86 23178.51 25499.05 14286.53 23897.45 12698.47 130
thres20092.23 18091.39 18294.75 17997.61 12889.03 20596.60 18695.09 29292.08 11693.28 14294.00 27678.39 25799.04 14481.26 29994.18 18496.19 208
thisisatest051592.29 17691.30 18795.25 15496.60 16688.90 20894.36 28292.32 33287.92 23493.43 13894.57 24677.28 26999.00 14589.42 18295.86 15897.86 162
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26197.18 18387.96 23391.86 17195.68 20080.44 22098.99 14684.01 27497.54 12196.89 192
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24690.21 7998.98 14795.53 6498.67 9498.30 145
MSDG91.42 20690.24 22694.96 16797.15 14388.91 20793.69 30196.32 24685.72 27686.93 28796.47 15980.24 22498.98 14780.57 30195.05 17396.98 187
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22490.61 7498.95 14994.62 8898.68 9398.54 120
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24891.23 6298.92 15195.65 5598.19 10597.82 166
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31491.52 17497.23 11887.94 10298.91 15371.31 33698.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21595.28 25997.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 187
mvs-test193.63 12993.69 11193.46 23696.02 20084.61 28897.24 12396.72 22593.85 5292.30 16295.76 19483.08 17098.89 15591.69 14496.54 14896.87 193
XVG-OURS93.72 12793.35 12594.80 17597.07 14688.61 21394.79 26997.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 191
testdata95.46 15098.18 10288.90 20897.66 12882.73 30997.03 4798.07 6390.06 8198.85 15789.67 17698.98 8498.64 117
lupinMVS94.99 9394.56 9396.29 10696.34 18491.21 13295.83 23796.27 24888.93 20396.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
旧先验295.94 23281.66 31597.34 3498.82 15992.26 125
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
131492.81 16192.03 16195.14 15895.33 23189.52 18396.04 22597.44 16187.72 24486.25 29395.33 21483.84 15898.79 16189.26 18797.05 13897.11 185
Effi-MVS+94.93 9494.45 9996.36 10196.61 16591.47 12296.41 19697.41 16691.02 15094.50 11595.92 18287.53 11098.78 16293.89 10196.81 14098.84 105
RPSCF90.75 23890.86 20090.42 30896.84 15676.29 33895.61 24696.34 24583.89 29891.38 17697.87 7576.45 27398.78 16287.16 23392.23 20896.20 207
jason94.84 9894.39 10196.18 11295.52 21790.93 14596.09 22396.52 24189.28 19096.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
MVS_Test94.89 9694.62 9195.68 13496.83 15889.55 18096.70 17497.17 18591.17 14595.60 9896.11 17787.87 10498.76 16593.01 12197.17 13698.72 112
ACMM89.79 892.96 15192.50 15094.35 19296.30 18688.71 21197.58 9197.36 17291.40 13690.53 19396.65 14579.77 23398.75 16691.24 15491.64 21895.59 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs95.64 7395.49 6996.08 11496.76 16390.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
LPG-MVS_test92.94 15392.56 14594.10 20196.16 19388.26 22197.65 8497.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
LGP-MVS_train94.10 20196.16 19388.26 22197.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
ACMP89.59 1092.62 16492.14 15894.05 20496.40 18188.20 22497.36 11297.25 18191.52 12888.30 25796.64 14678.46 25598.72 17091.86 13991.48 22295.23 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline291.63 19590.86 20093.94 21394.33 28186.32 26395.92 23391.64 33889.37 18886.94 28694.69 23981.62 20498.69 17188.64 20194.57 18196.81 195
baseline95.58 7595.42 7396.08 11496.78 16090.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
diffmvs95.25 8395.13 8195.63 13696.43 18089.34 19295.99 23097.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27398.49 1285.06 28493.78 12995.78 19382.86 17798.67 17391.77 14095.71 16299.07 82
gm-plane-assit93.22 31178.89 33484.82 28893.52 29298.64 17587.72 213
OPM-MVS93.28 13992.76 13694.82 17294.63 27190.77 15196.65 17997.18 18393.72 5791.68 17297.26 11679.33 24198.63 17692.13 13192.28 20795.07 266
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16190.03 16496.81 16697.13 18888.19 22591.30 18194.27 26486.21 12998.63 17687.66 22096.46 15198.12 150
ACMH87.59 1690.53 24589.42 25493.87 21696.21 18887.92 23197.24 12396.94 20888.45 21983.91 31596.27 17071.92 29798.62 17884.43 27189.43 24895.05 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS93.78 12593.43 12294.82 17296.21 18889.99 16797.74 7197.51 14494.85 2491.34 17896.64 14681.32 20798.60 17993.02 11992.23 20895.86 220
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 220
XVG-ACMP-BASELINE90.93 23290.21 23093.09 25094.31 28385.89 27195.33 25697.26 17991.06 14989.38 23195.44 21268.61 31798.60 17989.46 18191.05 22994.79 288
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23096.15 22195.60 26990.62 16191.87 17097.15 12278.41 25698.57 18283.16 28097.60 12098.36 142
LTVRE_ROB88.41 1390.99 22889.92 23994.19 19896.18 19189.55 18096.31 20997.09 19487.88 23685.67 29895.91 18378.79 25298.57 18281.50 29389.98 24394.44 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 25389.18 25993.25 24496.48 17786.45 26296.99 14896.68 23188.83 20784.79 30696.22 17170.16 31198.53 18484.42 27288.04 26094.77 291
tpmvs89.83 26289.15 26091.89 27994.92 25580.30 32393.11 31395.46 27486.28 26888.08 26492.65 30480.44 22098.52 18581.47 29489.92 24496.84 194
DWT-MVSNet_test90.76 23689.89 24093.38 23995.04 24983.70 29895.85 23694.30 31788.19 22590.46 19592.80 30273.61 29398.50 18688.16 20590.58 23697.95 157
HQP4-MVS90.14 20198.50 18695.78 227
HQP-MVS93.19 14392.74 13994.54 18695.86 20389.33 19396.65 17997.39 16793.55 6290.14 20195.87 18480.95 21098.50 18692.13 13192.10 21395.78 227
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25193.21 7593.99 12497.74 8785.55 13898.45 18989.98 16697.86 11399.14 73
CHOSEN 280x42093.12 14492.72 14094.34 19396.71 16487.27 24290.29 33297.72 12286.61 26591.34 17895.29 21584.29 15498.41 19093.25 11598.94 8697.35 183
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21192.39 9297.86 5998.66 992.30 10792.09 16795.37 21380.49 21998.40 19193.95 9885.86 28095.75 231
PMMVS92.86 15792.34 15394.42 19094.92 25586.73 25694.53 27596.38 24484.78 28994.27 11995.12 22383.13 16998.40 19191.47 14996.49 14998.12 150
CLD-MVS92.98 15092.53 14894.32 19496.12 19789.20 20095.28 25997.47 14992.66 9989.90 21495.62 20280.58 21798.40 19192.73 12292.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.20 21990.08 23394.58 18594.97 25189.16 20393.65 30397.59 13679.90 32689.40 23092.92 30175.36 28298.36 19492.14 13094.75 17896.23 206
BH-untuned92.94 15392.62 14393.92 21597.22 13786.16 26996.40 19996.25 25090.06 17489.79 21896.17 17483.19 16698.35 19587.19 23197.27 13297.24 184
TR-MVS91.48 20490.59 21294.16 20096.40 18187.33 24095.67 24295.34 28187.68 24591.46 17595.52 20976.77 27198.35 19582.85 28493.61 19496.79 196
TDRefinement86.53 29384.76 30091.85 28082.23 34884.25 29096.38 20295.35 27884.97 28684.09 31394.94 22665.76 33298.34 19784.60 26974.52 33792.97 321
Effi-MVS+-dtu93.08 14593.21 12892.68 26496.02 20083.25 30297.14 13796.72 22593.85 5291.20 18893.44 29583.08 17098.30 19891.69 14495.73 16196.50 202
tpmrst91.44 20591.32 18591.79 28495.15 24379.20 33293.42 30795.37 27788.55 21893.49 13693.67 28982.49 18798.27 19990.41 16189.34 24997.90 159
XXY-MVS92.16 18291.23 19194.95 16894.75 26590.94 14497.47 10297.43 16489.14 19588.90 24296.43 16179.71 23498.24 20089.56 17987.68 26395.67 235
UniMVSNet_ETH3D91.34 21390.22 22994.68 18094.86 26087.86 23497.23 12897.46 15187.99 23289.90 21496.92 13266.35 32798.23 20190.30 16490.99 23197.96 155
nrg03094.05 11693.31 12696.27 10795.22 24094.59 2898.34 2097.46 15192.93 9191.21 18796.64 14687.23 11798.22 20294.99 7785.80 28195.98 218
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 30992.20 11092.36 15996.34 16784.16 15598.21 20389.20 19183.90 31097.68 171
RRT_test8_iter0591.19 22290.78 20592.41 26995.76 21083.14 30397.32 11697.46 15191.37 13789.07 24195.57 20470.33 30898.21 20393.56 10686.62 27595.89 219
VPNet92.23 18091.31 18694.99 16395.56 21590.96 14397.22 12997.86 11192.96 9090.96 18996.62 15375.06 28398.20 20591.90 13683.65 31295.80 226
CostFormer91.18 22390.70 20892.62 26594.84 26181.76 31294.09 29294.43 31184.15 29592.72 15493.77 28479.43 23998.20 20590.70 15992.18 21197.90 159
USDC88.94 27087.83 27592.27 27294.66 26884.96 28393.86 29695.90 25987.34 25383.40 31795.56 20667.43 32398.19 20782.64 28889.67 24793.66 315
PS-MVSNAJss93.74 12693.51 11894.44 18893.91 29289.28 19897.75 7097.56 14192.50 10389.94 21396.54 15688.65 9498.18 20893.83 10490.90 23395.86 220
tpm cat188.36 27987.21 28291.81 28395.13 24580.55 32092.58 32095.70 26474.97 33887.45 27491.96 31778.01 26498.17 20980.39 30388.74 25596.72 198
PAPM91.52 20290.30 22295.20 15595.30 23589.83 17393.38 30896.85 22086.26 26988.59 25195.80 18984.88 14598.15 21075.67 32495.93 15697.63 172
Anonymous2023121190.63 24389.42 25494.27 19598.24 9389.19 20298.05 4497.89 10479.95 32588.25 26094.96 22572.56 29698.13 21189.70 17585.14 29095.49 237
PatchmatchNetpermissive91.91 18891.35 18393.59 22995.38 22384.11 29393.15 31295.39 27589.54 18392.10 16693.68 28882.82 17998.13 21184.81 26595.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap86.82 29285.35 29691.21 29594.91 25882.99 30493.94 29594.02 32183.58 30281.56 32194.68 24062.34 33898.13 21175.78 32287.35 26992.52 326
dp88.90 27288.26 27190.81 30194.58 27476.62 33792.85 31794.93 29985.12 28390.07 21293.07 29975.81 27798.12 21480.53 30287.42 26797.71 169
jajsoiax92.42 16991.89 16794.03 20593.33 31088.50 21697.73 7397.53 14292.00 11988.85 24596.50 15875.62 28198.11 21593.88 10291.56 22195.48 238
patchmatchnet-post90.45 32482.65 18498.10 216
SCA91.84 19091.18 19493.83 21795.59 21384.95 28494.72 27095.58 27190.82 15192.25 16393.69 28675.80 27898.10 21686.20 24495.98 15498.45 132
v7n90.76 23689.86 24193.45 23793.54 30287.60 23997.70 7997.37 17088.85 20587.65 27294.08 27481.08 20998.10 21684.68 26783.79 31194.66 295
RRT_MVS93.21 14192.32 15595.91 12294.92 25594.15 4396.92 15596.86 21991.42 13391.28 18496.43 16179.66 23698.10 21693.29 11490.06 24295.46 241
mvs_tets92.31 17491.76 16993.94 21393.41 30788.29 21997.63 8997.53 14292.04 11788.76 24896.45 16074.62 28598.09 22093.91 10091.48 22295.45 243
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24795.27 23685.52 27697.03 14096.63 23792.09 11589.11 24095.14 22180.33 22398.08 22187.54 22494.74 17996.03 217
test_post17.58 35581.76 20198.08 221
MDTV_nov1_ep1390.76 20695.22 24080.33 32293.03 31595.28 28288.14 23092.84 15393.83 28081.34 20698.08 22182.86 28394.34 183
test-LLR91.42 20691.19 19392.12 27494.59 27280.66 31794.29 28692.98 32891.11 14790.76 19192.37 30979.02 24698.07 22488.81 19796.74 14297.63 172
test-mter90.19 25489.54 25392.12 27494.59 27280.66 31794.29 28692.98 32887.68 24590.76 19192.37 30967.67 32198.07 22488.81 19796.74 14297.63 172
BH-w/o92.14 18491.75 17093.31 24296.99 15385.73 27395.67 24295.69 26588.73 21389.26 23794.82 23482.97 17598.07 22485.26 26196.32 15296.13 213
tfpnnormal89.70 26388.40 26893.60 22895.15 24390.10 16397.56 9398.16 5087.28 25586.16 29494.63 24377.57 26798.05 22774.48 32584.59 30092.65 324
V4291.58 19890.87 19993.73 22194.05 28988.50 21697.32 11696.97 20688.80 21189.71 21994.33 25982.54 18598.05 22789.01 19485.07 29294.64 296
EI-MVSNet93.03 14892.88 13493.48 23495.77 20886.98 25196.44 19297.12 18990.66 15891.30 18197.64 9786.56 12298.05 22789.91 16890.55 23795.41 244
MVSTER93.20 14292.81 13594.37 19196.56 17189.59 17897.06 13997.12 18991.24 14291.30 18195.96 18082.02 19698.05 22793.48 10990.55 23795.47 240
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22293.34 7097.39 10998.71 593.14 8090.10 20994.83 23387.71 10598.03 23191.67 14683.99 30695.46 241
v2v48291.59 19690.85 20293.80 21993.87 29488.17 22696.94 15496.88 21689.54 18389.53 22794.90 22981.70 20398.02 23289.25 18885.04 29495.20 263
test_part189.59 26488.03 27294.27 19595.32 23489.42 18898.03 4697.58 13778.01 33386.10 29694.59 24569.87 31398.01 23389.88 17082.85 31995.40 248
v891.29 21690.53 21593.57 23194.15 28588.12 22897.34 11397.06 19888.99 19988.32 25694.26 26683.08 17098.01 23387.62 22283.92 30994.57 297
v14419291.06 22590.28 22393.39 23893.66 30087.23 24596.83 16397.07 19687.43 25089.69 22194.28 26381.48 20598.00 23587.18 23284.92 29694.93 274
v114491.37 21090.60 21193.68 22693.89 29388.23 22396.84 16297.03 20388.37 22189.69 22194.39 25582.04 19597.98 23687.80 21285.37 28694.84 280
v124090.70 24189.85 24293.23 24593.51 30486.80 25496.61 18497.02 20487.16 25789.58 22494.31 26279.55 23897.98 23685.52 25785.44 28594.90 277
OurMVSNet-221017-090.51 24690.19 23191.44 29393.41 30781.25 31496.98 15096.28 24791.68 12586.55 29196.30 16874.20 28897.98 23688.96 19587.40 26895.09 265
v192192090.85 23490.03 23793.29 24393.55 30186.96 25396.74 17097.04 20187.36 25289.52 22894.34 25880.23 22597.97 23986.27 24285.21 28994.94 272
v119291.07 22490.23 22793.58 23093.70 29887.82 23596.73 17197.07 19687.77 24189.58 22494.32 26180.90 21497.97 23986.52 23985.48 28494.95 270
v1091.04 22690.23 22793.49 23394.12 28688.16 22797.32 11697.08 19588.26 22488.29 25894.22 26982.17 19497.97 23986.45 24184.12 30594.33 303
PVSNet_082.17 1985.46 30283.64 30590.92 29995.27 23679.49 32990.55 33195.60 26983.76 30183.00 31889.95 32571.09 30397.97 23982.75 28660.79 34695.31 255
GA-MVS91.38 20890.31 22194.59 18194.65 26987.62 23894.34 28396.19 25290.73 15490.35 19893.83 28071.84 29897.96 24387.22 23093.61 19498.21 147
ITE_SJBPF92.43 26895.34 22885.37 27995.92 25891.47 13087.75 27196.39 16571.00 30497.96 24382.36 28989.86 24593.97 312
D2MVS91.30 21590.95 19792.35 27094.71 26785.52 27696.18 22098.21 4088.89 20486.60 29093.82 28279.92 23197.95 24589.29 18690.95 23293.56 316
FIs94.09 11493.70 11095.27 15395.70 21192.03 10698.10 3998.68 793.36 7290.39 19796.70 14187.63 10897.94 24692.25 12790.50 23995.84 223
testing_287.33 28885.03 29794.22 19787.77 34489.32 19594.97 26797.11 19189.22 19271.64 34088.73 33055.16 34597.94 24691.95 13588.73 25695.41 244
tpm289.96 25789.21 25892.23 27394.91 25881.25 31493.78 29894.42 31280.62 32391.56 17393.44 29576.44 27497.94 24685.60 25692.08 21597.49 181
TAMVS94.01 11893.46 12095.64 13596.16 19390.45 15996.71 17396.89 21589.27 19193.46 13796.92 13287.29 11597.94 24688.70 20095.74 16098.53 121
MVSFormer95.37 7995.16 8095.99 12096.34 18491.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25094.07 9599.05 8198.85 103
test_djsdf93.07 14692.76 13694.00 20693.49 30588.70 21298.22 3297.57 13891.42 13390.08 21195.55 20782.85 17897.92 25094.07 9591.58 22095.40 248
JIA-IIPM88.26 28187.04 28591.91 27893.52 30381.42 31389.38 33894.38 31380.84 32190.93 19080.74 34279.22 24297.92 25082.76 28591.62 21996.38 205
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23198.10 3995.80 26392.22 10893.02 14697.45 10984.53 15097.91 25388.24 20497.97 11199.02 83
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19191.46 12396.33 20797.04 20188.97 20193.56 13296.51 15787.55 10997.89 25489.80 17295.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp92.16 18291.55 17793.97 20992.58 32289.55 18097.51 9697.42 16589.42 18788.40 25494.84 23280.66 21697.88 25591.87 13891.28 22694.48 298
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 21991.45 12498.12 3898.71 593.37 7090.23 20096.70 14187.66 10697.85 25691.49 14890.39 24095.83 224
ADS-MVSNet89.89 25988.68 26593.53 23295.86 20384.89 28590.93 32895.07 29383.23 30691.28 18491.81 31979.01 24897.85 25679.52 30691.39 22497.84 163
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22892.83 8097.17 13398.58 1092.98 8990.13 20595.80 18988.37 9997.85 25691.71 14283.93 30795.73 233
DU-MVS92.90 15592.04 16095.49 14694.95 25392.83 8097.16 13498.24 3493.02 8390.13 20595.71 19783.47 16297.85 25691.71 14283.93 30795.78 227
v14890.99 22890.38 21892.81 26093.83 29585.80 27296.78 16996.68 23189.45 18688.75 24993.93 27982.96 17697.82 26087.83 21183.25 31494.80 286
MS-PatchMatch90.27 25089.77 24691.78 28594.33 28184.72 28795.55 24796.73 22486.17 27186.36 29295.28 21771.28 30297.80 26184.09 27398.14 10892.81 323
WR-MVS92.34 17291.53 17894.77 17795.13 24590.83 14896.40 19997.98 9891.88 12189.29 23595.54 20882.50 18697.80 26189.79 17385.27 28895.69 234
pm-mvs190.72 24089.65 25293.96 21094.29 28489.63 17597.79 6796.82 22289.07 19686.12 29595.48 21178.61 25397.78 26386.97 23581.67 32294.46 299
EPMVS90.70 24189.81 24493.37 24094.73 26684.21 29193.67 30288.02 34589.50 18592.38 15893.49 29377.82 26697.78 26386.03 25092.68 20298.11 153
NR-MVSNet92.34 17291.27 18995.53 14394.95 25393.05 7597.39 10998.07 7092.65 10084.46 30795.71 19785.00 14497.77 26589.71 17483.52 31395.78 227
MVP-Stereo90.74 23990.08 23392.71 26293.19 31288.20 22495.86 23596.27 24886.07 27284.86 30594.76 23677.84 26597.75 26683.88 27798.01 11092.17 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous93.82 12393.74 10994.06 20396.44 17985.41 27895.81 23897.05 19989.85 17990.09 21096.36 16687.44 11397.75 26693.97 9796.69 14599.02 83
EG-PatchMatch MVS87.02 29185.44 29491.76 28792.67 32085.00 28296.08 22496.45 24283.41 30579.52 33193.49 29357.10 34297.72 26879.34 31190.87 23492.56 325
SixPastTwentyTwo89.15 26888.54 26790.98 29893.49 30580.28 32496.70 17494.70 30590.78 15284.15 31295.57 20471.78 29997.71 26984.63 26885.07 29294.94 272
test_post192.81 31816.58 35680.53 21897.68 27086.20 244
pmmvs687.81 28586.19 28992.69 26391.32 33086.30 26497.34 11396.41 24380.59 32484.05 31494.37 25767.37 32497.67 27184.75 26679.51 32994.09 311
TESTMET0.1,190.06 25689.42 25491.97 27794.41 27980.62 31994.29 28691.97 33687.28 25590.44 19692.47 30868.79 31697.67 27188.50 20396.60 14797.61 176
LF4IMVS87.94 28387.25 28089.98 31292.38 32680.05 32794.38 28195.25 28587.59 24784.34 30894.74 23864.31 33497.66 27384.83 26487.45 26592.23 329
miper_enhance_ethall91.54 20191.01 19693.15 24895.35 22787.07 25093.97 29496.90 21386.79 26389.17 23993.43 29786.55 12397.64 27489.97 16786.93 27094.74 292
IterMVS-LS92.29 17691.94 16593.34 24196.25 18786.97 25296.57 19097.05 19990.67 15689.50 22994.80 23586.59 12197.64 27489.91 16886.11 27995.40 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 30582.28 30890.83 30090.06 33484.05 29495.73 24194.04 32073.89 34080.17 33091.53 32359.15 34097.64 27466.92 34289.05 25190.80 337
cl-mvsnet291.21 21890.56 21493.14 24996.09 19986.80 25494.41 28096.58 24087.80 23988.58 25293.99 27780.85 21597.62 27789.87 17186.93 27094.99 269
CMPMVSbinary62.92 2185.62 30184.92 29887.74 31989.14 33973.12 34394.17 28996.80 22373.98 33973.65 33994.93 22766.36 32697.61 27883.95 27691.28 22692.48 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth91.02 22790.59 21292.34 27195.33 23184.35 28994.10 29196.90 21388.56 21788.84 24694.33 25984.08 15697.60 27988.77 19984.37 30395.06 267
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26492.07 10497.53 9598.11 5992.90 9289.56 22696.12 17583.16 16797.60 27989.30 18583.20 31695.75 231
WR-MVS_H92.00 18691.35 18393.95 21195.09 24789.47 18498.04 4598.68 791.46 13188.34 25594.68 24085.86 13497.56 28185.77 25484.24 30494.82 283
lessismore_v090.45 30791.96 32979.09 33387.19 34880.32 32894.39 25566.31 32897.55 28284.00 27576.84 33394.70 293
miper_ehance_all_eth91.59 19691.13 19592.97 25495.55 21686.57 26194.47 27696.88 21687.77 24188.88 24494.01 27586.22 12897.54 28389.49 18086.93 27094.79 288
cl-mvsnet_90.96 23190.32 22092.89 25695.37 22586.21 26794.46 27896.64 23487.82 23788.15 26394.18 27082.98 17497.54 28387.70 21585.59 28294.92 276
cl-mvsnet190.97 23090.33 21992.88 25795.36 22686.19 26894.46 27896.63 23787.82 23788.18 26294.23 26782.99 17397.53 28587.72 21385.57 28394.93 274
gg-mvs-nofinetune87.82 28485.61 29394.44 18894.46 27689.27 19991.21 32784.61 35080.88 32089.89 21674.98 34471.50 30097.53 28585.75 25597.21 13496.51 201
CP-MVSNet91.89 18991.24 19093.82 21895.05 24888.57 21497.82 6498.19 4491.70 12488.21 26195.76 19481.96 19797.52 28787.86 21084.65 29795.37 252
Patchmatch-test89.42 26687.99 27393.70 22495.27 23685.11 28088.98 33994.37 31481.11 31887.10 28393.69 28682.28 19197.50 28874.37 32794.76 17798.48 129
PS-CasMVS91.55 20090.84 20393.69 22594.96 25288.28 22097.84 6398.24 3491.46 13188.04 26595.80 18979.67 23597.48 28987.02 23484.54 30195.31 255
cl_fuxian91.38 20890.89 19892.88 25795.58 21486.30 26494.68 27196.84 22188.17 22788.83 24794.23 26785.65 13797.47 29089.36 18384.63 29894.89 278
FMVSNet391.78 19190.69 20995.03 16296.53 17392.27 9897.02 14396.93 20989.79 18289.35 23294.65 24277.01 27097.47 29086.12 24788.82 25295.35 253
pmmvs490.93 23289.85 24294.17 19993.34 30990.79 15094.60 27296.02 25684.62 29087.45 27495.15 22081.88 20097.45 29287.70 21587.87 26294.27 307
Baseline_NR-MVSNet91.20 21990.62 21092.95 25593.83 29588.03 22997.01 14795.12 29188.42 22089.70 22095.13 22283.47 16297.44 29389.66 17783.24 31593.37 320
tpm90.25 25189.74 24991.76 28793.92 29179.73 32893.98 29393.54 32488.28 22391.99 16893.25 29877.51 26897.44 29387.30 22987.94 26198.12 150
FMVSNet291.31 21490.08 23394.99 16396.51 17492.21 9997.41 10596.95 20788.82 20888.62 25094.75 23773.87 28997.42 29585.20 26288.55 25895.35 253
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29696.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS-HIRNet82.47 30981.21 31186.26 32495.38 22369.21 34788.96 34089.49 34466.28 34380.79 32474.08 34668.48 31897.39 29771.93 33495.47 16492.18 330
EPNet_dtu91.71 19291.28 18892.99 25393.76 29783.71 29796.69 17695.28 28293.15 7987.02 28595.95 18183.37 16597.38 29879.46 30996.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs589.86 26188.87 26392.82 25992.86 31686.23 26696.26 21395.39 27584.24 29487.12 28194.51 24874.27 28797.36 29987.61 22387.57 26494.86 279
PEN-MVS91.20 21990.44 21693.48 23494.49 27587.91 23397.76 6998.18 4691.29 13887.78 27095.74 19680.35 22297.33 30085.46 25882.96 31795.19 264
TransMVSNet (Re)88.94 27087.56 27793.08 25194.35 28088.45 21897.73 7395.23 28687.47 24984.26 31095.29 21579.86 23297.33 30079.44 31074.44 33893.45 319
GBi-Net91.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
test191.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
FMVSNet189.88 26088.31 26994.59 18195.41 22191.18 13697.50 9796.93 20986.62 26487.41 27694.51 24865.94 33197.29 30283.04 28287.43 26695.31 255
test_040286.46 29484.79 29991.45 29295.02 25085.55 27596.29 21194.89 30080.90 31982.21 31993.97 27868.21 32097.29 30262.98 34488.68 25791.51 334
CR-MVSNet90.82 23589.77 24693.95 21194.45 27787.19 24690.23 33395.68 26786.89 26192.40 15692.36 31280.91 21297.05 30681.09 30093.95 18997.60 177
MVS_030488.79 27487.57 27692.46 26694.65 26986.15 27096.40 19997.17 18586.44 26688.02 26691.71 32156.68 34397.03 30784.47 27092.58 20494.19 308
LCM-MVSNet-Re92.50 16592.52 14992.44 26796.82 15981.89 31196.92 15593.71 32392.41 10584.30 30994.60 24485.08 14397.03 30791.51 14797.36 12898.40 138
Patchmtry88.64 27787.25 28092.78 26194.09 28786.64 25789.82 33695.68 26780.81 32287.63 27392.36 31280.91 21297.03 30778.86 31285.12 29194.67 294
PatchT88.87 27387.42 27893.22 24694.08 28885.10 28189.51 33794.64 30881.92 31392.36 15988.15 33580.05 22897.01 31072.43 33293.65 19297.54 180
DTE-MVSNet90.56 24489.75 24893.01 25293.95 29087.25 24397.64 8897.65 13090.74 15387.12 28195.68 20079.97 23097.00 31183.33 27981.66 32394.78 290
ppachtmachnet_test88.35 28087.29 27991.53 29092.45 32483.57 30093.75 29995.97 25784.28 29385.32 30394.18 27079.00 25096.93 31275.71 32384.99 29594.10 309
miper_lstm_enhance90.50 24790.06 23691.83 28195.33 23183.74 29593.86 29696.70 23087.56 24887.79 26993.81 28383.45 16496.92 31387.39 22684.62 29994.82 283
GG-mvs-BLEND93.62 22793.69 29989.20 20092.39 32383.33 35187.98 26889.84 32771.00 30496.87 31482.08 29195.40 16694.80 286
ambc86.56 32383.60 34670.00 34685.69 34394.97 29780.60 32688.45 33137.42 35096.84 31582.69 28775.44 33692.86 322
ET-MVSNet_ETH3D91.49 20390.11 23295.63 13696.40 18191.57 12095.34 25593.48 32590.60 16475.58 33795.49 21080.08 22796.79 31694.25 9289.76 24698.52 122
our_test_388.78 27587.98 27491.20 29692.45 32482.53 30693.61 30595.69 26585.77 27584.88 30493.71 28579.99 22996.78 31779.47 30886.24 27694.28 306
K. test v387.64 28686.75 28790.32 30993.02 31579.48 33096.61 18492.08 33590.66 15880.25 32994.09 27367.21 32596.65 31885.96 25280.83 32694.83 281
IterMVS-SCA-FT90.31 24989.81 24491.82 28295.52 21784.20 29294.30 28596.15 25390.61 16287.39 27794.27 26475.80 27896.44 31987.34 22786.88 27494.82 283
N_pmnet78.73 31278.71 31478.79 32792.80 31846.50 35694.14 29043.71 35878.61 33180.83 32391.66 32274.94 28496.36 32067.24 34184.45 30293.50 317
UnsupCasMVSNet_bld82.13 31079.46 31390.14 31188.00 34282.47 30790.89 33096.62 23978.94 33075.61 33684.40 34056.63 34496.31 32177.30 31966.77 34591.63 333
IterMVS90.15 25589.67 25091.61 28995.48 21983.72 29694.33 28496.12 25489.99 17587.31 28094.15 27275.78 28096.27 32286.97 23586.89 27394.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet289.45 26588.59 26692.03 27695.86 20382.26 31090.93 32894.32 31683.23 30691.28 18491.81 31979.01 24895.99 32379.52 30691.39 22497.84 163
MDA-MVSNet-bldmvs85.00 30382.95 30791.17 29793.13 31483.33 30194.56 27495.00 29584.57 29165.13 34592.65 30470.45 30795.85 32473.57 33077.49 33194.33 303
PM-MVS83.48 30681.86 31088.31 31687.83 34377.59 33693.43 30691.75 33786.91 26080.63 32589.91 32644.42 34995.84 32585.17 26376.73 33491.50 335
MIMVSNet88.50 27886.76 28693.72 22394.84 26187.77 23691.39 32594.05 31986.41 26787.99 26792.59 30663.27 33595.82 32677.44 31692.84 20097.57 179
pmmvs-eth3d86.22 29684.45 30191.53 29088.34 34187.25 24394.47 27695.01 29483.47 30479.51 33289.61 32869.75 31495.71 32783.13 28176.73 33491.64 332
Anonymous2023120687.09 29086.14 29089.93 31391.22 33180.35 32196.11 22295.35 27883.57 30384.16 31193.02 30073.54 29495.61 32872.16 33386.14 27893.84 314
Patchmatch-RL test87.38 28786.24 28890.81 30188.74 34078.40 33588.12 34193.17 32787.11 25882.17 32089.29 32981.95 19895.60 32988.64 20177.02 33298.41 137
CVMVSNet91.23 21791.75 17089.67 31495.77 20874.69 34096.44 19294.88 30185.81 27492.18 16497.64 9779.07 24395.58 33088.06 20795.86 15898.74 110
MDA-MVSNet_test_wron85.87 29984.23 30390.80 30392.38 32682.57 30593.17 31095.15 28982.15 31167.65 34292.33 31578.20 25895.51 33177.33 31779.74 32794.31 305
YYNet185.87 29984.23 30390.78 30492.38 32682.46 30893.17 31095.14 29082.12 31267.69 34192.36 31278.16 26195.50 33277.31 31879.73 32894.39 301
UnsupCasMVSNet_eth85.99 29884.45 30190.62 30589.97 33582.40 30993.62 30497.37 17089.86 17778.59 33492.37 30965.25 33395.35 33382.27 29070.75 34194.10 309
EU-MVSNet88.72 27688.90 26288.20 31793.15 31374.21 34196.63 18394.22 31885.18 28187.32 27995.97 17976.16 27694.98 33485.27 26086.17 27795.41 244
new_pmnet82.89 30881.12 31288.18 31889.63 33780.18 32591.77 32492.57 33176.79 33775.56 33888.23 33461.22 33994.48 33571.43 33582.92 31889.87 339
testgi87.97 28287.21 28290.24 31092.86 31680.76 31696.67 17894.97 29791.74 12385.52 29995.83 18762.66 33794.47 33676.25 32188.36 25995.48 238
FMVSNet587.29 28985.79 29291.78 28594.80 26387.28 24195.49 25095.28 28284.09 29683.85 31691.82 31862.95 33694.17 33778.48 31385.34 28793.91 313
DSMNet-mixed86.34 29586.12 29187.00 32289.88 33670.43 34494.93 26890.08 34377.97 33585.42 30292.78 30374.44 28693.96 33874.43 32695.14 16996.62 199
new-patchmatchnet83.18 30781.87 30987.11 32186.88 34575.99 33993.70 30095.18 28885.02 28577.30 33588.40 33265.99 33093.88 33974.19 32970.18 34291.47 336
pmmvs379.97 31177.50 31587.39 32082.80 34779.38 33192.70 31990.75 34270.69 34278.66 33387.47 33851.34 34793.40 34073.39 33169.65 34389.38 340
MIMVSNet184.93 30483.05 30690.56 30689.56 33884.84 28695.40 25395.35 27883.91 29780.38 32792.21 31657.23 34193.34 34170.69 33982.75 32193.50 317
test0.0.03 189.37 26788.70 26491.41 29492.47 32385.63 27495.22 26492.70 33091.11 14786.91 28893.65 29079.02 24693.19 34278.00 31589.18 25095.41 244
test20.0386.14 29785.40 29588.35 31590.12 33380.06 32695.90 23495.20 28788.59 21481.29 32293.62 29171.43 30192.65 34371.26 33781.17 32592.34 328
LCM-MVSNet72.55 31369.39 31782.03 32570.81 35465.42 35090.12 33594.36 31555.02 34765.88 34481.72 34124.16 35789.96 34474.32 32868.10 34490.71 338
Gipumacopyleft67.86 31665.41 31975.18 33092.66 32173.45 34266.50 35094.52 31053.33 34857.80 34866.07 34830.81 35189.20 34548.15 34878.88 33062.90 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS270.19 31566.92 31880.01 32676.35 34965.67 34986.22 34287.58 34764.83 34562.38 34680.29 34326.78 35588.49 34663.79 34354.07 34785.88 341
PMVScopyleft53.92 2258.58 31855.40 32168.12 33251.00 35748.64 35478.86 34787.10 34946.77 34935.84 35474.28 3458.76 35886.34 34742.07 34973.91 33969.38 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS71.27 31469.85 31675.50 32974.64 35059.03 35291.30 32691.50 33958.80 34657.92 34788.28 33329.98 35385.53 34853.43 34682.84 32081.95 343
ANet_high63.94 31759.58 32077.02 32861.24 35666.06 34885.66 34487.93 34678.53 33242.94 35071.04 34725.42 35680.71 34952.60 34730.83 35084.28 342
DeepMVS_CXcopyleft74.68 33190.84 33264.34 35181.61 35365.34 34467.47 34388.01 33648.60 34880.13 35062.33 34573.68 34079.58 344
E-PMN53.28 31952.56 32355.43 33474.43 35147.13 35583.63 34676.30 35442.23 35042.59 35162.22 35028.57 35474.40 35131.53 35131.51 34944.78 348
EMVS52.08 32151.31 32454.39 33572.62 35345.39 35783.84 34575.51 35541.13 35140.77 35259.65 35130.08 35273.60 35228.31 35229.90 35144.18 349
MVEpermissive50.73 2353.25 32048.81 32566.58 33365.34 35557.50 35372.49 34970.94 35640.15 35239.28 35363.51 3496.89 36073.48 35338.29 35042.38 34868.76 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 32253.82 32246.29 33633.73 35845.30 35878.32 34867.24 35718.02 35350.93 34987.05 33952.99 34653.11 35470.76 33825.29 35240.46 350
wuyk23d25.11 32324.57 32726.74 33773.98 35239.89 35957.88 3519.80 35912.27 35410.39 3556.97 3577.03 35936.44 35525.43 35317.39 3533.89 353
testmvs13.36 32516.33 3284.48 3395.04 3592.26 36193.18 3093.28 3602.70 3558.24 35621.66 3532.29 3622.19 3567.58 3542.96 3549.00 352
test12313.04 32615.66 3295.18 3384.51 3603.45 36092.50 3221.81 3612.50 3567.58 35720.15 3543.67 3612.18 3577.13 3551.07 3559.90 351
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.24 32430.99 3260.00 3400.00 3610.00 3620.00 35297.63 1320.00 3570.00 35896.88 13484.38 1510.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.39 3289.85 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35888.65 940.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.06 32710.74 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35896.69 1430.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
MTGPAbinary98.08 64
MTMP97.86 5982.03 352
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 9999.38 4899.50 37
test_prior493.66 5996.42 195
test_prior296.35 20492.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
新几何295.79 239
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
原ACMM295.67 242
test22298.24 9392.21 9995.33 25697.60 13479.22 32995.25 10497.84 8188.80 9299.15 7398.72 112
segment_acmp92.89 22
testdata195.26 26393.10 82
plane_prior796.21 18889.98 169
plane_prior696.10 19890.00 16581.32 207
plane_prior496.64 146
plane_prior390.00 16594.46 3991.34 178
plane_prior297.74 7194.85 24
plane_prior196.14 196
plane_prior89.99 16797.24 12394.06 4792.16 212
n20.00 362
nn0.00 362
door-mid91.06 341
test1197.88 106
door91.13 340
HQP5-MVS89.33 193
HQP-NCC95.86 20396.65 17993.55 6290.14 201
ACMP_Plane95.86 20396.65 17993.55 6290.14 201
BP-MVS92.13 131
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20289.81 17495.87 184
MDTV_nov1_ep13_2view70.35 34593.10 31483.88 29993.55 13382.47 18886.25 24398.38 140
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93