DeepPCF-MVS | | 93.97 1 | 96.61 46 | 97.09 12 | 95.15 155 | 98.09 101 | 86.63 255 | 96.00 225 | 98.15 52 | 95.43 6 | 97.95 19 | 98.56 17 | 93.40 16 | 99.36 108 | 96.77 17 | 99.48 35 | 99.45 44 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 36 | 97.78 33 | 98.64 63 | 94.30 33 | 97.41 101 | 98.04 81 | 94.81 29 | 96.59 54 | 98.37 33 | 91.24 58 | 99.64 60 | 95.16 66 | 99.52 25 | 99.42 49 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 93.07 3 | 96.06 60 | 95.66 62 | 97.29 58 | 97.96 105 | 93.17 72 | 97.30 115 | 98.06 73 | 93.92 50 | 93.38 135 | 98.66 12 | 86.83 116 | 99.73 32 | 95.60 58 | 99.22 64 | 98.96 88 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 91.43 4 | 95.40 76 | 94.48 95 | 98.16 12 | 96.90 150 | 95.34 13 | 98.48 15 | 97.87 104 | 94.65 36 | 88.53 249 | 98.02 63 | 83.69 156 | 99.71 38 | 93.18 112 | 98.96 81 | 99.44 46 |
|
3Dnovator | | 91.36 5 | 95.19 85 | 94.44 97 | 97.44 52 | 96.56 167 | 93.36 68 | 98.65 6 | 98.36 16 | 94.12 46 | 89.25 234 | 98.06 60 | 82.20 189 | 99.77 29 | 93.41 108 | 99.32 53 | 99.18 66 |
|
PLC | | 91.00 6 | 94.11 111 | 93.43 119 | 96.13 111 | 98.58 67 | 91.15 135 | 96.69 172 | 97.39 162 | 87.29 250 | 91.37 173 | 96.71 135 | 88.39 94 | 99.52 89 | 87.33 223 | 97.13 133 | 97.73 165 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 90.10 7 | 92.30 173 | 91.22 189 | 95.56 138 | 98.33 81 | 89.60 173 | 96.79 163 | 97.65 126 | 81.83 310 | 91.52 170 | 97.23 114 | 87.94 98 | 98.91 149 | 71.31 331 | 98.37 97 | 98.17 145 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMM | | 89.79 8 | 92.96 149 | 92.50 147 | 94.35 189 | 96.30 182 | 88.71 206 | 97.58 87 | 97.36 167 | 91.40 133 | 90.53 189 | 96.65 141 | 79.77 229 | 98.75 162 | 91.24 150 | 91.64 214 | 95.59 233 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HY-MVS | | 89.66 9 | 93.87 119 | 92.95 129 | 96.63 78 | 97.10 141 | 92.49 89 | 95.64 241 | 96.64 229 | 89.05 193 | 93.00 143 | 95.79 188 | 85.77 132 | 99.45 98 | 89.16 188 | 94.35 178 | 97.96 152 |
|
ACMP | | 89.59 10 | 92.62 162 | 92.14 155 | 94.05 200 | 96.40 177 | 88.20 219 | 97.36 108 | 97.25 176 | 91.52 125 | 88.30 253 | 96.64 142 | 78.46 251 | 98.72 166 | 91.86 135 | 91.48 218 | 95.23 258 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 89.48 11 | 91.56 197 | 89.95 235 | 96.36 99 | 96.60 162 | 92.52 88 | 92.51 317 | 97.26 174 | 79.41 324 | 88.90 238 | 96.56 151 | 84.04 153 | 99.55 80 | 77.01 315 | 97.30 127 | 97.01 183 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS | | 89.19 12 | 92.86 155 | 91.68 170 | 96.40 94 | 95.34 224 | 92.73 82 | 98.27 26 | 98.12 57 | 84.86 283 | 85.78 292 | 97.75 82 | 78.89 247 | 99.74 31 | 87.50 220 | 98.65 91 | 96.73 194 |
|
LTVRE_ROB | | 88.41 13 | 90.99 226 | 89.92 236 | 94.19 194 | 96.18 187 | 89.55 176 | 96.31 205 | 97.09 189 | 87.88 232 | 85.67 293 | 95.91 179 | 78.79 248 | 98.57 178 | 81.50 288 | 89.98 239 | 94.44 296 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH+ | | 87.92 14 | 90.20 251 | 89.18 256 | 93.25 241 | 96.48 173 | 86.45 257 | 96.99 144 | 96.68 226 | 88.83 203 | 84.79 301 | 96.22 167 | 70.16 307 | 98.53 180 | 84.42 267 | 88.04 256 | 94.77 287 |
|
COLMAP_ROB | | 87.81 15 | 90.40 246 | 89.28 254 | 93.79 217 | 97.95 106 | 87.13 244 | 96.92 151 | 95.89 255 | 82.83 304 | 86.88 285 | 97.18 115 | 73.77 288 | 99.29 113 | 78.44 309 | 93.62 189 | 94.95 266 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH | | 87.59 16 | 90.53 243 | 89.42 251 | 93.87 213 | 96.21 184 | 87.92 226 | 97.24 119 | 96.94 203 | 88.45 215 | 83.91 310 | 96.27 166 | 71.92 293 | 98.62 174 | 84.43 266 | 89.43 244 | 95.05 264 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 87.33 17 | 89.91 256 | 88.28 267 | 94.79 174 | 95.26 234 | 87.70 232 | 95.12 262 | 93.95 318 | 89.35 186 | 87.03 280 | 92.49 302 | 70.74 302 | 99.19 119 | 89.18 187 | 81.37 319 | 97.49 178 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet | | 86.66 18 | 92.24 177 | 91.74 169 | 93.73 218 | 97.77 116 | 83.69 294 | 92.88 312 | 96.72 220 | 87.91 231 | 93.00 143 | 94.86 227 | 78.51 250 | 99.05 138 | 86.53 233 | 97.45 122 | 98.47 127 |
|
PVSNet_0 | | 82.17 19 | 85.46 299 | 83.64 301 | 90.92 296 | 95.27 231 | 79.49 324 | 90.55 327 | 95.60 264 | 83.76 297 | 83.00 313 | 89.95 320 | 71.09 299 | 97.97 234 | 82.75 281 | 60.79 341 | 95.31 251 |
|
OpenMVS_ROB | | 81.14 20 | 84.42 302 | 82.28 304 | 90.83 297 | 90.06 329 | 84.05 289 | 95.73 237 | 94.04 316 | 73.89 335 | 80.17 325 | 91.53 318 | 59.15 335 | 97.64 269 | 66.92 337 | 89.05 247 | 90.80 333 |
|
CMPMVS | | 62.92 21 | 85.62 298 | 84.92 294 | 87.74 316 | 89.14 334 | 73.12 338 | 94.17 285 | 96.80 218 | 73.98 334 | 73.65 334 | 94.93 223 | 66.36 321 | 97.61 273 | 83.95 271 | 91.28 222 | 92.48 323 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMVS | | 53.92 22 | 58.58 315 | 55.40 317 | 68.12 329 | 51.00 352 | 48.64 349 | 78.86 343 | 87.10 345 | 46.77 344 | 35.84 349 | 74.28 340 | 8.76 353 | 86.34 343 | 42.07 344 | 73.91 334 | 69.38 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 50.73 23 | 53.25 317 | 48.81 321 | 66.58 330 | 65.34 350 | 57.50 348 | 72.49 345 | 70.94 352 | 40.15 347 | 39.28 348 | 63.51 344 | 6.89 355 | 73.48 349 | 38.29 345 | 42.38 343 | 68.76 342 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
SED-MVS | | | 98.05 1 | 97.99 1 | 98.24 7 | 99.42 6 | 95.30 15 | 98.25 28 | 98.27 28 | 95.13 15 | 99.19 1 | 98.89 4 | 95.54 3 | 99.85 14 | 97.52 2 | 99.66 8 | 99.56 22 |
|
IU-MVS | | | | | | 99.42 6 | 95.39 9 | | 97.94 98 | 90.40 166 | 98.94 5 | | | | 97.41 7 | 99.66 8 | 99.74 5 |
|
OPU-MVS | | | | | 98.55 1 | 98.82 52 | 96.86 1 | 98.25 28 | | | | 98.26 50 | 96.04 1 | 99.24 116 | 95.36 63 | 99.59 15 | 99.56 22 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 15 | 98.93 6 | 98.89 4 | 94.99 8 | 99.85 14 | 97.52 2 | 99.65 10 | 99.74 5 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 15 | | 98.27 28 | 95.09 18 | 99.19 1 | 98.81 8 | 95.54 3 | 99.65 53 | | | |
|
xxxxxxxxxxxxxcwj | | | 97.36 11 | 97.20 10 | 97.83 26 | 98.91 45 | 94.28 34 | 97.02 139 | 97.22 177 | 95.35 8 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 33 |
|
SF-MVS | | | 97.39 10 | 97.13 11 | 98.17 11 | 99.02 41 | 95.28 17 | 98.23 31 | 98.27 28 | 92.37 103 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 33 |
|
ETH3D cwj APD-0.16 | | | 96.56 48 | 96.06 55 | 98.05 17 | 98.26 88 | 95.19 18 | 96.99 144 | 98.05 80 | 89.85 176 | 97.26 32 | 98.22 53 | 91.80 46 | 99.69 44 | 94.84 77 | 99.28 57 | 99.27 63 |
|
cl-mvsnet2 | | | 91.21 216 | 90.56 211 | 93.14 246 | 96.09 195 | 86.80 249 | 94.41 276 | 96.58 235 | 87.80 235 | 88.58 248 | 93.99 272 | 80.85 211 | 97.62 272 | 89.87 166 | 86.93 266 | 94.99 265 |
|
miper_ehance_all_eth | | | 91.59 194 | 91.13 192 | 92.97 251 | 95.55 212 | 86.57 256 | 94.47 272 | 96.88 211 | 87.77 237 | 88.88 240 | 94.01 270 | 86.22 124 | 97.54 278 | 89.49 175 | 86.93 266 | 94.79 284 |
|
miper_enhance_ethall | | | 91.54 199 | 91.01 193 | 93.15 245 | 95.35 223 | 87.07 245 | 93.97 290 | 96.90 208 | 86.79 259 | 89.17 235 | 93.43 292 | 86.55 119 | 97.64 269 | 89.97 163 | 86.93 266 | 94.74 288 |
|
ZNCC-MVS | | | 96.96 30 | 96.67 35 | 97.85 25 | 99.37 16 | 94.12 44 | 98.49 14 | 98.18 47 | 92.64 98 | 96.39 64 | 98.18 55 | 91.61 51 | 99.88 4 | 95.59 59 | 99.55 21 | 99.57 19 |
|
ETH3 D test6400 | | | 96.16 59 | 95.52 65 | 98.07 16 | 98.90 47 | 95.06 22 | 97.03 136 | 98.21 41 | 88.16 225 | 96.64 51 | 97.70 85 | 91.18 60 | 99.67 49 | 92.44 120 | 99.47 36 | 99.48 40 |
|
cl-mvsnet_ | | | 90.96 229 | 90.32 217 | 92.89 253 | 95.37 221 | 86.21 262 | 94.46 274 | 96.64 229 | 87.82 233 | 88.15 259 | 94.18 265 | 82.98 170 | 97.54 278 | 87.70 210 | 85.59 278 | 94.92 272 |
|
cl-mvsnet1 | | | 90.97 228 | 90.33 216 | 92.88 254 | 95.36 222 | 86.19 263 | 94.46 274 | 96.63 232 | 87.82 233 | 88.18 258 | 94.23 262 | 82.99 169 | 97.53 280 | 87.72 208 | 85.57 279 | 94.93 270 |
|
eth_miper_zixun_eth | | | 91.02 225 | 90.59 209 | 92.34 268 | 95.33 227 | 84.35 284 | 94.10 287 | 96.90 208 | 88.56 213 | 88.84 242 | 94.33 254 | 84.08 152 | 97.60 274 | 88.77 194 | 84.37 299 | 95.06 263 |
|
9.14 | | | | 96.75 31 | | 98.93 43 | | 97.73 69 | 98.23 39 | 91.28 138 | 97.88 22 | 98.44 25 | 93.00 21 | 99.65 53 | 95.76 48 | 99.47 36 | |
|
testtj | | | 96.93 33 | 96.56 40 | 98.05 17 | 99.10 34 | 94.66 27 | 97.78 64 | 98.22 40 | 92.74 94 | 97.59 24 | 98.20 54 | 91.96 43 | 99.86 8 | 94.21 89 | 99.25 61 | 99.63 11 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ETH3D-3000-0.1 | | | 97.07 22 | 96.71 33 | 98.14 13 | 98.90 47 | 95.33 14 | 97.68 76 | 98.24 35 | 91.57 124 | 97.90 21 | 98.37 33 | 92.61 29 | 99.66 52 | 95.59 59 | 99.51 29 | 99.43 48 |
|
save fliter | | | | | | 98.91 45 | 94.28 34 | 97.02 139 | 98.02 84 | 95.35 8 | | | | | | | |
|
ET-MVSNet_ETH3D | | | 91.49 201 | 90.11 229 | 95.63 134 | 96.40 177 | 91.57 116 | 95.34 251 | 93.48 321 | 90.60 161 | 75.58 332 | 95.49 206 | 80.08 223 | 96.79 312 | 94.25 88 | 89.76 242 | 98.52 119 |
|
UniMVSNet_ETH3D | | | 91.34 211 | 90.22 226 | 94.68 177 | 94.86 255 | 87.86 229 | 97.23 124 | 97.46 146 | 87.99 228 | 89.90 210 | 96.92 128 | 66.35 322 | 98.23 197 | 90.30 160 | 90.99 227 | 97.96 152 |
|
EIA-MVS | | | 95.53 75 | 95.47 67 | 95.71 131 | 97.06 145 | 89.63 171 | 97.82 60 | 97.87 104 | 93.57 60 | 93.92 123 | 95.04 220 | 90.61 70 | 98.95 145 | 94.62 85 | 98.68 89 | 98.54 117 |
|
miper_lstm_enhance | | | 90.50 245 | 90.06 233 | 91.83 278 | 95.33 227 | 83.74 290 | 93.86 292 | 96.70 225 | 87.56 244 | 87.79 265 | 93.81 278 | 83.45 160 | 96.92 309 | 87.39 221 | 84.62 295 | 94.82 279 |
|
ETV-MVS | | | 96.02 62 | 95.89 59 | 96.40 94 | 97.16 137 | 92.44 90 | 97.47 98 | 97.77 111 | 94.55 37 | 96.48 59 | 94.51 243 | 91.23 59 | 98.92 147 | 95.65 52 | 98.19 101 | 97.82 163 |
|
CS-MVS | | | 95.80 68 | 95.65 63 | 96.24 108 | 97.32 131 | 91.43 121 | 98.10 39 | 97.91 99 | 93.38 66 | 95.16 103 | 94.57 241 | 90.21 75 | 98.98 143 | 95.53 61 | 98.67 90 | 98.30 142 |
|
D2MVS | | | 91.30 213 | 90.95 194 | 92.35 267 | 94.71 262 | 85.52 271 | 96.18 216 | 98.21 41 | 88.89 200 | 86.60 286 | 93.82 277 | 79.92 227 | 97.95 240 | 89.29 181 | 90.95 228 | 93.56 312 |
|
MSP-MVS | | | 97.91 2 | 97.81 2 | 98.22 9 | 99.45 2 | 95.36 10 | 98.21 34 | 97.85 108 | 94.92 22 | 98.73 8 | 98.87 6 | 95.08 5 | 99.84 19 | 97.52 2 | 99.67 6 | 99.48 40 |
|
test_0728_THIRD | | | | | | | | | | 94.78 31 | 98.73 8 | 98.87 6 | 95.87 2 | 99.84 19 | 97.45 6 | 99.72 2 | 99.77 1 |
|
test_0728_SECOND | | | | | 98.51 2 | 99.45 2 | 95.93 3 | 98.21 34 | 98.28 26 | | | | | 99.86 8 | 97.52 2 | 99.67 6 | 99.75 3 |
|
test0726 | | | | | | 99.45 2 | 95.36 10 | 98.31 22 | 98.29 24 | 94.92 22 | 98.99 4 | 98.92 2 | 95.08 5 | | | | |
|
SR-MVS | | | 97.01 28 | 96.86 22 | 97.47 51 | 99.09 35 | 93.27 70 | 97.98 47 | 98.07 70 | 93.75 55 | 97.45 28 | 98.48 22 | 91.43 55 | 99.59 66 | 96.22 32 | 99.27 59 | 99.54 28 |
|
DPM-MVS | | | 95.69 69 | 94.92 81 | 98.01 19 | 98.08 102 | 95.71 7 | 95.27 257 | 97.62 129 | 90.43 165 | 95.55 95 | 97.07 121 | 91.72 47 | 99.50 92 | 89.62 173 | 98.94 82 | 98.82 103 |
|
GST-MVS | | | 96.85 36 | 96.52 42 | 97.82 29 | 99.36 19 | 94.14 43 | 98.29 24 | 98.13 55 | 92.72 95 | 96.70 46 | 98.06 60 | 91.35 56 | 99.86 8 | 94.83 78 | 99.28 57 | 99.47 43 |
|
test_yl | | | 94.78 98 | 94.23 99 | 96.43 92 | 97.74 117 | 91.22 126 | 96.85 156 | 97.10 187 | 91.23 140 | 95.71 87 | 96.93 125 | 84.30 148 | 99.31 111 | 93.10 113 | 95.12 166 | 98.75 105 |
|
thisisatest0530 | | | 93.03 146 | 92.21 154 | 95.49 144 | 97.07 142 | 89.11 199 | 97.49 97 | 92.19 329 | 90.16 169 | 94.09 118 | 96.41 159 | 76.43 271 | 99.05 138 | 90.38 158 | 95.68 159 | 98.31 141 |
|
Anonymous20240529 | | | 91.98 185 | 90.73 204 | 95.73 130 | 98.14 99 | 89.40 184 | 97.99 46 | 97.72 118 | 79.63 323 | 93.54 130 | 97.41 107 | 69.94 308 | 99.56 79 | 91.04 152 | 91.11 224 | 98.22 143 |
|
Anonymous202405211 | | | 92.07 183 | 90.83 201 | 95.76 125 | 98.19 96 | 88.75 205 | 97.58 87 | 95.00 290 | 86.00 269 | 93.64 127 | 97.45 105 | 66.24 324 | 99.53 85 | 90.68 156 | 92.71 197 | 99.01 84 |
|
DCV-MVSNet | | | 94.78 98 | 94.23 99 | 96.43 92 | 97.74 117 | 91.22 126 | 96.85 156 | 97.10 187 | 91.23 140 | 95.71 87 | 96.93 125 | 84.30 148 | 99.31 111 | 93.10 113 | 95.12 166 | 98.75 105 |
|
tttt0517 | | | 92.96 149 | 92.33 151 | 94.87 169 | 97.11 140 | 87.16 243 | 97.97 49 | 92.09 330 | 90.63 157 | 93.88 124 | 97.01 124 | 76.50 268 | 99.06 137 | 90.29 161 | 95.45 161 | 98.38 137 |
|
our_test_3 | | | 88.78 271 | 87.98 270 | 91.20 293 | 92.45 319 | 82.53 301 | 93.61 301 | 95.69 260 | 85.77 271 | 84.88 299 | 93.71 280 | 79.99 225 | 96.78 313 | 79.47 303 | 86.24 272 | 94.28 302 |
|
thisisatest0515 | | | 92.29 174 | 91.30 184 | 95.25 152 | 96.60 162 | 88.90 203 | 94.36 278 | 92.32 328 | 87.92 230 | 93.43 134 | 94.57 241 | 77.28 265 | 99.00 141 | 89.42 177 | 95.86 154 | 97.86 159 |
|
ppachtmachnet_test | | | 88.35 277 | 87.29 275 | 91.53 287 | 92.45 319 | 83.57 295 | 93.75 295 | 95.97 252 | 84.28 289 | 85.32 298 | 94.18 265 | 79.00 246 | 96.93 308 | 75.71 318 | 84.99 291 | 94.10 305 |
|
SMA-MVS | | | 97.35 12 | 97.03 14 | 98.30 6 | 99.06 39 | 95.42 8 | 97.94 50 | 98.18 47 | 90.57 162 | 98.85 7 | 98.94 1 | 93.33 17 | 99.83 22 | 96.72 18 | 99.68 4 | 99.63 11 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 129 |
|
DPE-MVS | | | 97.86 3 | 97.65 4 | 98.47 3 | 99.17 32 | 95.78 5 | 97.21 126 | 98.35 19 | 95.16 14 | 98.71 10 | 98.80 9 | 95.05 7 | 99.89 3 | 96.70 19 | 99.73 1 | 99.73 7 |
|
test_part2 | | | | | | 99.28 25 | 95.74 6 | | | | 98.10 17 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 98.26 33 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
thres100view900 | | | 92.43 166 | 91.58 173 | 94.98 163 | 97.92 109 | 89.37 186 | 97.71 74 | 94.66 302 | 92.20 107 | 93.31 137 | 94.90 225 | 78.06 258 | 99.08 134 | 81.40 290 | 94.08 181 | 96.48 200 |
|
tfpnnormal | | | 89.70 261 | 88.40 265 | 93.60 225 | 95.15 238 | 90.10 159 | 97.56 89 | 98.16 51 | 87.28 251 | 86.16 290 | 94.63 239 | 77.57 263 | 98.05 223 | 74.48 320 | 84.59 296 | 92.65 320 |
|
tfpn200view9 | | | 92.38 169 | 91.52 176 | 94.95 166 | 97.85 113 | 89.29 191 | 97.41 101 | 94.88 297 | 92.19 109 | 93.27 139 | 94.46 248 | 78.17 255 | 99.08 134 | 81.40 290 | 94.08 181 | 96.48 200 |
|
cl_fuxian | | | 91.38 206 | 90.89 195 | 92.88 254 | 95.58 210 | 86.30 259 | 94.68 267 | 96.84 216 | 88.17 223 | 88.83 243 | 94.23 262 | 85.65 133 | 97.47 285 | 89.36 178 | 84.63 294 | 94.89 274 |
|
CHOSEN 280x420 | | | 93.12 142 | 92.72 137 | 94.34 190 | 96.71 160 | 87.27 237 | 90.29 328 | 97.72 118 | 86.61 261 | 91.34 174 | 95.29 211 | 84.29 150 | 98.41 186 | 93.25 111 | 98.94 82 | 97.35 180 |
|
CANet | | | 96.39 53 | 96.02 56 | 97.50 50 | 97.62 123 | 93.38 66 | 97.02 139 | 97.96 96 | 95.42 7 | 94.86 106 | 97.81 78 | 87.38 110 | 99.82 25 | 96.88 12 | 99.20 66 | 99.29 59 |
|
Fast-Effi-MVS+-dtu | | | 92.29 174 | 91.99 160 | 93.21 244 | 95.27 231 | 85.52 271 | 97.03 136 | 96.63 232 | 92.09 112 | 89.11 236 | 95.14 217 | 80.33 219 | 98.08 217 | 87.54 219 | 94.74 175 | 96.03 214 |
|
Effi-MVS+-dtu | | | 93.08 143 | 93.21 125 | 92.68 261 | 96.02 196 | 83.25 297 | 97.14 133 | 96.72 220 | 93.85 52 | 91.20 184 | 93.44 290 | 83.08 166 | 98.30 194 | 91.69 140 | 95.73 157 | 96.50 199 |
|
CANet_DTU | | | 94.37 103 | 93.65 110 | 96.55 82 | 96.46 174 | 92.13 99 | 96.21 214 | 96.67 228 | 94.38 42 | 93.53 131 | 97.03 123 | 79.34 236 | 99.71 38 | 90.76 153 | 98.45 96 | 97.82 163 |
|
MVS_0304 | | | 88.79 270 | 87.57 272 | 92.46 263 | 94.65 264 | 86.15 265 | 96.40 195 | 97.17 180 | 86.44 262 | 88.02 262 | 91.71 316 | 56.68 338 | 97.03 303 | 84.47 265 | 92.58 200 | 94.19 304 |
|
MP-MVS-pluss | | | 96.70 42 | 96.27 50 | 97.98 21 | 99.23 30 | 94.71 26 | 96.96 147 | 98.06 73 | 90.67 153 | 95.55 95 | 98.78 10 | 91.07 62 | 99.86 8 | 96.58 22 | 99.55 21 | 99.38 53 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DVP-MVS | | | 97.59 7 | 97.54 5 | 97.73 38 | 99.40 11 | 93.77 57 | 98.53 9 | 98.29 24 | 95.55 5 | 98.56 12 | 97.81 78 | 93.90 12 | 99.65 53 | 96.62 20 | 99.21 65 | 99.77 1 |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 176 | | | | 98.45 129 |
|
sam_mvs | | | | | | | | | | | | | 81.94 195 | | | | |
|
IterMVS-SCA-FT | | | 90.31 247 | 89.81 241 | 91.82 279 | 95.52 213 | 84.20 287 | 94.30 281 | 96.15 248 | 90.61 159 | 87.39 273 | 94.27 259 | 75.80 274 | 96.44 315 | 87.34 222 | 86.88 270 | 94.82 279 |
|
TSAR-MVS + MP. | | | 97.42 8 | 97.33 9 | 97.69 42 | 99.25 27 | 94.24 38 | 98.07 43 | 97.85 108 | 93.72 56 | 98.57 11 | 98.35 35 | 93.69 15 | 99.40 104 | 97.06 8 | 99.46 38 | 99.44 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.01 87 | 94.76 84 | 95.75 127 | 96.58 164 | 91.71 108 | 96.25 210 | 97.35 168 | 92.99 81 | 96.70 46 | 96.63 146 | 82.67 177 | 99.44 99 | 96.22 32 | 97.46 118 | 96.11 211 |
|
OPM-MVS | | | 93.28 137 | 92.76 133 | 94.82 170 | 94.63 266 | 90.77 147 | 96.65 175 | 97.18 178 | 93.72 56 | 91.68 168 | 97.26 112 | 79.33 237 | 98.63 172 | 92.13 127 | 92.28 203 | 95.07 262 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 22 | 98.23 8 | 99.09 35 | 95.16 20 | 97.60 86 | 98.19 45 | 92.82 91 | 97.93 20 | 98.74 11 | 91.60 52 | 99.86 8 | 96.26 29 | 99.52 25 | 99.67 8 |
|
ambc | | | | | 86.56 320 | 83.60 341 | 70.00 341 | 85.69 339 | 94.97 293 | | 80.60 321 | 88.45 326 | 37.42 345 | 96.84 311 | 82.69 282 | 75.44 331 | 92.86 318 |
|
zzz-MVS | | | 97.07 22 | 96.77 30 | 97.97 22 | 99.37 16 | 94.42 31 | 97.15 132 | 98.08 65 | 95.07 19 | 96.11 71 | 98.59 15 | 90.88 67 | 99.90 1 | 96.18 38 | 99.50 32 | 99.58 17 |
|
MTGPA | | | | | | | | | 98.08 65 | | | | | | | | |
|
mvs-test1 | | | 93.63 127 | 93.69 108 | 93.46 233 | 96.02 196 | 84.61 283 | 97.24 119 | 96.72 220 | 93.85 52 | 92.30 158 | 95.76 190 | 83.08 166 | 98.89 151 | 91.69 140 | 96.54 144 | 96.87 190 |
|
Effi-MVS+ | | | 94.93 92 | 94.45 96 | 96.36 99 | 96.61 161 | 91.47 118 | 96.41 192 | 97.41 161 | 91.02 147 | 94.50 111 | 95.92 178 | 87.53 106 | 98.78 158 | 93.89 97 | 96.81 136 | 98.84 102 |
|
xiu_mvs_v2_base | | | 95.32 79 | 95.29 74 | 95.40 149 | 97.22 133 | 90.50 153 | 95.44 248 | 97.44 156 | 93.70 58 | 96.46 61 | 96.18 168 | 88.59 93 | 99.53 85 | 94.79 83 | 97.81 111 | 96.17 206 |
|
xiu_mvs_v1_base | | | 95.01 87 | 94.76 84 | 95.75 127 | 96.58 164 | 91.71 108 | 96.25 210 | 97.35 168 | 92.99 81 | 96.70 46 | 96.63 146 | 82.67 177 | 99.44 99 | 96.22 32 | 97.46 118 | 96.11 211 |
|
new-patchmatchnet | | | 83.18 304 | 81.87 305 | 87.11 318 | 86.88 340 | 75.99 334 | 93.70 296 | 95.18 283 | 85.02 281 | 77.30 330 | 88.40 327 | 65.99 325 | 93.88 335 | 74.19 324 | 70.18 337 | 91.47 332 |
|
pmmvs6 | | | 87.81 282 | 86.19 285 | 92.69 260 | 91.32 325 | 86.30 259 | 97.34 109 | 96.41 238 | 80.59 320 | 84.05 309 | 94.37 252 | 67.37 319 | 97.67 266 | 84.75 261 | 79.51 324 | 94.09 307 |
|
pmmvs5 | | | 89.86 259 | 88.87 260 | 92.82 256 | 92.86 311 | 86.23 261 | 96.26 209 | 95.39 270 | 84.24 290 | 87.12 277 | 94.51 243 | 74.27 283 | 97.36 294 | 87.61 218 | 87.57 260 | 94.86 275 |
|
test_post1 | | | | | | | | 92.81 314 | | | | 16.58 351 | 80.53 214 | 97.68 265 | 86.20 239 | | |
|
test_post | | | | | | | | | | | | 17.58 350 | 81.76 197 | 98.08 217 | | | |
|
Fast-Effi-MVS+ | | | 93.46 132 | 92.75 135 | 95.59 137 | 96.77 157 | 90.03 160 | 96.81 162 | 97.13 183 | 88.19 221 | 91.30 177 | 94.27 259 | 86.21 125 | 98.63 172 | 87.66 215 | 96.46 147 | 98.12 147 |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 319 | 82.65 180 | 98.10 212 | | | |
|
Anonymous20231211 | | | 90.63 241 | 89.42 251 | 94.27 192 | 98.24 89 | 89.19 197 | 98.05 44 | 97.89 100 | 79.95 321 | 88.25 256 | 94.96 221 | 72.56 292 | 98.13 207 | 89.70 170 | 85.14 286 | 95.49 234 |
|
pmmvs-eth3d | | | 86.22 293 | 84.45 297 | 91.53 287 | 88.34 336 | 87.25 238 | 94.47 272 | 95.01 289 | 83.47 300 | 79.51 327 | 89.61 323 | 69.75 309 | 95.71 323 | 83.13 276 | 76.73 329 | 91.64 328 |
|
GG-mvs-BLEND | | | | | 93.62 224 | 93.69 294 | 89.20 195 | 92.39 319 | 83.33 347 | | 87.98 264 | 89.84 322 | 71.00 300 | 96.87 310 | 82.08 286 | 95.40 162 | 94.80 282 |
|
xiu_mvs_v1_base_debi | | | 95.01 87 | 94.76 84 | 95.75 127 | 96.58 164 | 91.71 108 | 96.25 210 | 97.35 168 | 92.99 81 | 96.70 46 | 96.63 146 | 82.67 177 | 99.44 99 | 96.22 32 | 97.46 118 | 96.11 211 |
|
Anonymous20231206 | | | 87.09 287 | 86.14 286 | 89.93 310 | 91.22 326 | 80.35 316 | 96.11 218 | 95.35 273 | 83.57 299 | 84.16 306 | 93.02 295 | 73.54 290 | 95.61 324 | 72.16 328 | 86.14 274 | 93.84 310 |
|
MTAPA | | | 97.08 21 | 96.78 29 | 97.97 22 | 99.37 16 | 94.42 31 | 97.24 119 | 98.08 65 | 95.07 19 | 96.11 71 | 98.59 15 | 90.88 67 | 99.90 1 | 96.18 38 | 99.50 32 | 99.58 17 |
|
MTMP | | | | | | | | 97.86 55 | 82.03 348 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 306 | 78.89 329 | | | 84.82 284 | | 93.52 287 | | 98.64 171 | 87.72 208 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 80 | 99.38 48 | 99.45 44 |
|
MVP-Stereo | | | 90.74 237 | 90.08 230 | 92.71 259 | 93.19 307 | 88.20 219 | 95.86 231 | 96.27 243 | 86.07 268 | 84.86 300 | 94.76 232 | 77.84 261 | 97.75 261 | 83.88 272 | 98.01 106 | 92.17 327 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
TEST9 | | | | | | 98.70 56 | 94.19 39 | 96.41 192 | 98.02 84 | 88.17 223 | 96.03 74 | 97.56 101 | 92.74 24 | 99.59 66 | | | |
|
train_agg | | | 96.30 55 | 95.83 60 | 97.72 39 | 98.70 56 | 94.19 39 | 96.41 192 | 98.02 84 | 88.58 211 | 96.03 74 | 97.56 101 | 92.73 25 | 99.59 66 | 95.04 70 | 99.37 52 | 99.39 51 |
|
gg-mvs-nofinetune | | | 87.82 281 | 85.61 289 | 94.44 185 | 94.46 271 | 89.27 194 | 91.21 323 | 84.61 346 | 80.88 316 | 89.89 212 | 74.98 339 | 71.50 296 | 97.53 280 | 85.75 250 | 97.21 130 | 96.51 198 |
|
SCA | | | 91.84 188 | 91.18 191 | 93.83 214 | 95.59 209 | 84.95 279 | 94.72 266 | 95.58 266 | 90.82 148 | 92.25 159 | 93.69 281 | 75.80 274 | 98.10 212 | 86.20 239 | 95.98 150 | 98.45 129 |
|
Patchmatch-test | | | 89.42 263 | 87.99 269 | 93.70 221 | 95.27 231 | 85.11 275 | 88.98 335 | 94.37 310 | 81.11 314 | 87.10 279 | 93.69 281 | 82.28 187 | 97.50 283 | 74.37 322 | 94.76 173 | 98.48 126 |
|
test_8 | | | | | | 98.67 58 | 94.06 48 | 96.37 199 | 98.01 87 | 88.58 211 | 95.98 79 | 97.55 103 | 92.73 25 | 99.58 69 | | | |
|
MS-PatchMatch | | | 90.27 248 | 89.77 243 | 91.78 282 | 94.33 276 | 84.72 282 | 95.55 243 | 96.73 219 | 86.17 267 | 86.36 288 | 95.28 213 | 71.28 298 | 97.80 256 | 84.09 268 | 98.14 104 | 92.81 319 |
|
Patchmatch-RL test | | | 87.38 284 | 86.24 284 | 90.81 298 | 88.74 335 | 78.40 330 | 88.12 337 | 93.17 323 | 87.11 254 | 82.17 315 | 89.29 324 | 81.95 194 | 95.60 325 | 88.64 196 | 77.02 327 | 98.41 134 |
|
cdsmvs_eth3d_5k | | | 23.24 321 | 30.99 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 97.63 128 | 0.00 352 | 0.00 353 | 96.88 130 | 84.38 147 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 7.39 325 | 9.85 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 88.65 90 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
agg_prior1 | | | 96.22 58 | 95.77 61 | 97.56 48 | 98.67 58 | 93.79 54 | 96.28 208 | 98.00 89 | 88.76 208 | 95.68 89 | 97.55 103 | 92.70 27 | 99.57 77 | 95.01 71 | 99.32 53 | 99.32 57 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 95 | 99.38 48 | 99.50 36 |
|
agg_prior | | | | | | 98.67 58 | 93.79 54 | | 98.00 89 | | 95.68 89 | | | 99.57 77 | | | |
|
tmp_tt | | | 51.94 319 | 53.82 318 | 46.29 333 | 33.73 353 | 45.30 353 | 78.32 344 | 67.24 353 | 18.02 348 | 50.93 344 | 87.05 334 | 52.99 341 | 53.11 350 | 70.76 333 | 25.29 347 | 40.46 346 |
|
canonicalmvs | | | 96.02 62 | 95.45 68 | 97.75 37 | 97.59 126 | 95.15 21 | 98.28 25 | 97.60 130 | 94.52 38 | 96.27 67 | 96.12 171 | 87.65 103 | 99.18 121 | 96.20 37 | 94.82 172 | 98.91 94 |
|
anonymousdsp | | | 92.16 180 | 91.55 174 | 93.97 205 | 92.58 317 | 89.55 176 | 97.51 92 | 97.42 160 | 89.42 184 | 88.40 250 | 94.84 228 | 80.66 212 | 97.88 250 | 91.87 134 | 91.28 222 | 94.48 294 |
|
alignmvs | | | 95.87 67 | 95.23 75 | 97.78 33 | 97.56 128 | 95.19 18 | 97.86 55 | 97.17 180 | 94.39 41 | 96.47 60 | 96.40 160 | 85.89 129 | 99.20 118 | 96.21 36 | 95.11 168 | 98.95 90 |
|
nrg030 | | | 94.05 114 | 93.31 123 | 96.27 105 | 95.22 235 | 94.59 28 | 98.34 20 | 97.46 146 | 92.93 88 | 91.21 183 | 96.64 142 | 87.23 113 | 98.22 198 | 94.99 74 | 85.80 277 | 95.98 215 |
|
v144192 | | | 91.06 223 | 90.28 220 | 93.39 235 | 93.66 295 | 87.23 240 | 96.83 159 | 97.07 191 | 87.43 246 | 89.69 217 | 94.28 258 | 81.48 201 | 98.00 230 | 87.18 227 | 84.92 292 | 94.93 270 |
|
FIs | | | 94.09 112 | 93.70 107 | 95.27 151 | 95.70 207 | 92.03 102 | 98.10 39 | 98.68 7 | 93.36 69 | 90.39 193 | 96.70 137 | 87.63 104 | 97.94 241 | 92.25 123 | 90.50 235 | 95.84 220 |
|
v1921920 | | | 90.85 232 | 90.03 234 | 93.29 240 | 93.55 296 | 86.96 248 | 96.74 166 | 97.04 196 | 87.36 248 | 89.52 224 | 94.34 253 | 80.23 221 | 97.97 234 | 86.27 237 | 85.21 285 | 94.94 268 |
|
UA-Net | | | 95.95 65 | 95.53 64 | 97.20 66 | 97.67 120 | 92.98 77 | 97.65 80 | 98.13 55 | 94.81 29 | 96.61 52 | 98.35 35 | 88.87 86 | 99.51 90 | 90.36 159 | 97.35 125 | 99.11 75 |
|
v1192 | | | 91.07 222 | 90.23 224 | 93.58 227 | 93.70 293 | 87.82 230 | 96.73 167 | 97.07 191 | 87.77 237 | 89.58 220 | 94.32 256 | 80.90 210 | 97.97 234 | 86.52 234 | 85.48 280 | 94.95 266 |
|
FC-MVSNet-test | | | 93.94 118 | 93.57 111 | 95.04 159 | 95.48 215 | 91.45 120 | 98.12 38 | 98.71 5 | 93.37 67 | 90.23 196 | 96.70 137 | 87.66 102 | 97.85 251 | 91.49 144 | 90.39 236 | 95.83 221 |
|
v1144 | | | 91.37 208 | 90.60 208 | 93.68 223 | 93.89 288 | 88.23 218 | 96.84 158 | 97.03 198 | 88.37 217 | 89.69 217 | 94.39 250 | 82.04 191 | 97.98 231 | 87.80 207 | 85.37 282 | 94.84 276 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
HFP-MVS | | | 97.14 19 | 96.92 20 | 97.83 26 | 99.42 6 | 94.12 44 | 98.52 10 | 98.32 20 | 93.21 72 | 97.18 35 | 98.29 47 | 92.08 38 | 99.83 22 | 95.63 54 | 99.59 15 | 99.54 28 |
|
v148 | | | 90.99 226 | 90.38 215 | 92.81 257 | 93.83 290 | 85.80 267 | 96.78 165 | 96.68 226 | 89.45 183 | 88.75 245 | 93.93 274 | 82.96 172 | 97.82 255 | 87.83 206 | 83.25 310 | 94.80 282 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
AllTest | | | 90.23 250 | 88.98 258 | 93.98 203 | 97.94 107 | 86.64 252 | 96.51 187 | 95.54 267 | 85.38 274 | 85.49 295 | 96.77 133 | 70.28 305 | 99.15 124 | 80.02 299 | 92.87 194 | 96.15 208 |
|
TestCases | | | | | 93.98 203 | 97.94 107 | 86.64 252 | | 95.54 267 | 85.38 274 | 85.49 295 | 96.77 133 | 70.28 305 | 99.15 124 | 80.02 299 | 92.87 194 | 96.15 208 |
|
v7n | | | 90.76 234 | 89.86 238 | 93.45 234 | 93.54 297 | 87.60 234 | 97.70 75 | 97.37 165 | 88.85 201 | 87.65 268 | 94.08 269 | 81.08 205 | 98.10 212 | 84.68 262 | 83.79 307 | 94.66 291 |
|
region2R | | | 97.07 22 | 96.84 24 | 97.77 35 | 99.46 1 | 93.79 54 | 98.52 10 | 98.24 35 | 93.19 75 | 97.14 38 | 98.34 38 | 91.59 53 | 99.87 7 | 95.46 62 | 99.59 15 | 99.64 10 |
|
testing_2 | | | 87.33 285 | 85.03 293 | 94.22 193 | 87.77 339 | 89.32 190 | 94.97 263 | 97.11 186 | 89.22 189 | 71.64 335 | 88.73 325 | 55.16 340 | 97.94 241 | 91.95 131 | 88.73 252 | 95.41 241 |
|
RRT_MVS | | | 93.21 139 | 92.32 152 | 95.91 120 | 94.92 250 | 94.15 42 | 96.92 151 | 96.86 214 | 91.42 130 | 91.28 180 | 96.43 157 | 79.66 232 | 98.10 212 | 93.29 110 | 90.06 238 | 95.46 238 |
|
PS-MVSNAJss | | | 93.74 124 | 93.51 115 | 94.44 185 | 93.91 287 | 89.28 193 | 97.75 66 | 97.56 136 | 92.50 100 | 89.94 209 | 96.54 152 | 88.65 90 | 98.18 204 | 93.83 100 | 90.90 229 | 95.86 217 |
|
PS-MVSNAJ | | | 95.37 77 | 95.33 73 | 95.49 144 | 97.35 130 | 90.66 150 | 95.31 254 | 97.48 141 | 93.85 52 | 96.51 57 | 95.70 195 | 88.65 90 | 99.65 53 | 94.80 81 | 98.27 99 | 96.17 206 |
|
jajsoiax | | | 92.42 167 | 91.89 164 | 94.03 201 | 93.33 305 | 88.50 211 | 97.73 69 | 97.53 137 | 92.00 116 | 88.85 241 | 96.50 154 | 75.62 277 | 98.11 211 | 93.88 98 | 91.56 217 | 95.48 235 |
|
mvs_tets | | | 92.31 172 | 91.76 166 | 93.94 210 | 93.41 302 | 88.29 214 | 97.63 85 | 97.53 137 | 92.04 114 | 88.76 244 | 96.45 156 | 74.62 281 | 98.09 216 | 93.91 96 | 91.48 218 | 95.45 240 |
|
#test# | | | 97.02 26 | 96.75 31 | 97.83 26 | 99.42 6 | 94.12 44 | 98.15 37 | 98.32 20 | 92.57 99 | 97.18 35 | 98.29 47 | 92.08 38 | 99.83 22 | 95.12 68 | 99.59 15 | 99.54 28 |
|
EI-MVSNet-UG-set | | | 96.34 54 | 96.30 49 | 96.47 89 | 98.20 94 | 90.93 141 | 96.86 155 | 97.72 118 | 94.67 34 | 96.16 70 | 98.46 23 | 90.43 72 | 99.58 69 | 96.23 31 | 97.96 108 | 98.90 95 |
|
EI-MVSNet-Vis-set | | | 96.51 49 | 96.47 44 | 96.63 78 | 98.24 89 | 91.20 130 | 96.89 154 | 97.73 115 | 94.74 33 | 96.49 58 | 98.49 21 | 90.88 67 | 99.58 69 | 96.44 27 | 98.32 98 | 99.13 71 |
|
Regformer-3 | | | 96.85 36 | 96.80 28 | 97.01 70 | 98.34 79 | 92.02 103 | 96.96 147 | 97.76 112 | 95.01 21 | 97.08 43 | 98.42 28 | 91.71 48 | 99.54 82 | 96.80 14 | 99.13 71 | 99.48 40 |
|
Regformer-4 | | | 96.97 29 | 96.87 21 | 97.25 61 | 98.34 79 | 92.66 84 | 96.96 147 | 98.01 87 | 95.12 17 | 97.14 38 | 98.42 28 | 91.82 45 | 99.61 61 | 96.90 11 | 99.13 71 | 99.50 36 |
|
Regformer-1 | | | 97.10 20 | 96.96 18 | 97.54 49 | 98.32 82 | 93.48 63 | 96.83 159 | 97.99 93 | 95.20 13 | 97.46 27 | 98.25 51 | 92.48 33 | 99.58 69 | 96.79 16 | 99.29 55 | 99.55 26 |
|
Regformer-2 | | | 97.16 18 | 96.99 16 | 97.67 43 | 98.32 82 | 93.84 52 | 96.83 159 | 98.10 62 | 95.24 11 | 97.49 26 | 98.25 51 | 92.57 30 | 99.61 61 | 96.80 14 | 99.29 55 | 99.56 22 |
|
HPM-MVS++ | | | 97.34 13 | 96.97 17 | 98.47 3 | 99.08 37 | 96.16 2 | 97.55 90 | 97.97 95 | 95.59 4 | 96.61 52 | 97.89 68 | 92.57 30 | 99.84 19 | 95.95 43 | 99.51 29 | 99.40 50 |
|
test_prior4 | | | | | | | 93.66 58 | 96.42 191 | | | | | | | | | |
|
XVS | | | 97.18 16 | 96.96 18 | 97.81 30 | 99.38 14 | 94.03 49 | 98.59 7 | 98.20 43 | 94.85 24 | 96.59 54 | 98.29 47 | 91.70 49 | 99.80 27 | 95.66 49 | 99.40 45 | 99.62 13 |
|
v1240 | | | 90.70 239 | 89.85 239 | 93.23 242 | 93.51 299 | 86.80 249 | 96.61 180 | 97.02 199 | 87.16 253 | 89.58 220 | 94.31 257 | 79.55 234 | 97.98 231 | 85.52 252 | 85.44 281 | 94.90 273 |
|
test_prior3 | | | 96.46 51 | 96.20 53 | 97.23 62 | 98.67 58 | 92.99 75 | 96.35 200 | 98.00 89 | 92.80 92 | 96.03 74 | 97.59 97 | 92.01 40 | 99.41 102 | 95.01 71 | 99.38 48 | 99.29 59 |
|
pm-mvs1 | | | 90.72 238 | 89.65 249 | 93.96 206 | 94.29 279 | 89.63 171 | 97.79 63 | 96.82 217 | 89.07 192 | 86.12 291 | 95.48 207 | 78.61 249 | 97.78 258 | 86.97 230 | 81.67 317 | 94.46 295 |
|
test_prior2 | | | | | | | | 96.35 200 | | 92.80 92 | 96.03 74 | 97.59 97 | 92.01 40 | | 95.01 71 | 99.38 48 | |
|
X-MVStestdata | | | 91.71 190 | 89.67 247 | 97.81 30 | 99.38 14 | 94.03 49 | 98.59 7 | 98.20 43 | 94.85 24 | 96.59 54 | 32.69 347 | 91.70 49 | 99.80 27 | 95.66 49 | 99.40 45 | 99.62 13 |
|
test_prior | | | | | 97.23 62 | 98.67 58 | 92.99 75 | | 98.00 89 | | | | | 99.41 102 | | | 99.29 59 |
|
旧先验2 | | | | | | | | 95.94 228 | | 81.66 311 | 97.34 31 | | | 98.82 155 | 92.26 121 | | |
|
新几何2 | | | | | | | | 95.79 235 | | | | | | | | | |
|
新几何1 | | | | | 97.32 56 | 98.60 64 | 93.59 60 | | 97.75 113 | 81.58 312 | 95.75 86 | 97.85 74 | 90.04 78 | 99.67 49 | 86.50 235 | 99.13 71 | 98.69 112 |
|
旧先验1 | | | | | | 98.38 77 | 93.38 66 | | 97.75 113 | | | 98.09 58 | 92.30 37 | | | 99.01 79 | 99.16 67 |
|
无先验 | | | | | | | | 95.79 235 | 97.87 104 | 83.87 296 | | | | 99.65 53 | 87.68 213 | | 98.89 97 |
|
原ACMM2 | | | | | | | | 95.67 238 | | | | | | | | | |
|
原ACMM1 | | | | | 96.38 97 | 98.59 65 | 91.09 136 | | 97.89 100 | 87.41 247 | 95.22 101 | 97.68 87 | 90.25 73 | 99.54 82 | 87.95 204 | 99.12 74 | 98.49 124 |
|
test222 | | | | | | 98.24 89 | 92.21 95 | 95.33 252 | 97.60 130 | 79.22 325 | 95.25 100 | 97.84 77 | 88.80 88 | | | 99.15 69 | 98.72 109 |
|
testdata2 | | | | | | | | | | | | | | 99.67 49 | 85.96 247 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 22 | | | | |
|
testdata | | | | | 95.46 148 | 98.18 98 | 88.90 203 | | 97.66 124 | 82.73 305 | 97.03 44 | 98.07 59 | 90.06 77 | 98.85 153 | 89.67 171 | 98.98 80 | 98.64 114 |
|
testdata1 | | | | | | | | 95.26 259 | | 93.10 79 | | | | | | | |
|
v8 | | | 91.29 214 | 90.53 212 | 93.57 228 | 94.15 280 | 88.12 223 | 97.34 109 | 97.06 193 | 88.99 195 | 88.32 252 | 94.26 261 | 83.08 166 | 98.01 229 | 87.62 217 | 83.92 305 | 94.57 293 |
|
1314 | | | 92.81 159 | 92.03 158 | 95.14 156 | 95.33 227 | 89.52 179 | 96.04 221 | 97.44 156 | 87.72 240 | 86.25 289 | 95.33 210 | 83.84 154 | 98.79 157 | 89.26 182 | 97.05 134 | 97.11 182 |
|
1121 | | | 94.71 100 | 93.83 104 | 97.34 55 | 98.57 68 | 93.64 59 | 96.04 221 | 97.73 115 | 81.56 313 | 95.68 89 | 97.85 74 | 90.23 74 | 99.65 53 | 87.68 213 | 99.12 74 | 98.73 108 |
|
LFMVS | | | 93.60 128 | 92.63 139 | 96.52 83 | 98.13 100 | 91.27 125 | 97.94 50 | 93.39 322 | 90.57 162 | 96.29 66 | 98.31 44 | 69.00 310 | 99.16 123 | 94.18 90 | 95.87 153 | 99.12 74 |
|
VDD-MVS | | | 93.82 121 | 93.08 126 | 96.02 116 | 97.88 112 | 89.96 167 | 97.72 72 | 95.85 256 | 92.43 101 | 95.86 82 | 98.44 25 | 68.42 314 | 99.39 105 | 96.31 28 | 94.85 170 | 98.71 111 |
|
VDDNet | | | 93.05 145 | 92.07 156 | 96.02 116 | 96.84 152 | 90.39 158 | 98.08 42 | 95.85 256 | 86.22 266 | 95.79 85 | 98.46 23 | 67.59 317 | 99.19 119 | 94.92 75 | 94.85 170 | 98.47 127 |
|
v10 | | | 91.04 224 | 90.23 224 | 93.49 230 | 94.12 281 | 88.16 222 | 97.32 112 | 97.08 190 | 88.26 220 | 88.29 254 | 94.22 264 | 82.17 190 | 97.97 234 | 86.45 236 | 84.12 301 | 94.33 299 |
|
VPNet | | | 92.23 178 | 91.31 183 | 94.99 161 | 95.56 211 | 90.96 139 | 97.22 125 | 97.86 107 | 92.96 87 | 90.96 185 | 96.62 149 | 75.06 279 | 98.20 201 | 91.90 132 | 83.65 308 | 95.80 223 |
|
MVS | | | 91.71 190 | 90.44 213 | 95.51 142 | 95.20 237 | 91.59 114 | 96.04 221 | 97.45 152 | 73.44 336 | 87.36 274 | 95.60 199 | 85.42 135 | 99.10 129 | 85.97 246 | 97.46 118 | 95.83 221 |
|
v2v482 | | | 91.59 194 | 90.85 199 | 93.80 216 | 93.87 289 | 88.17 221 | 96.94 150 | 96.88 211 | 89.54 180 | 89.53 223 | 94.90 225 | 81.70 199 | 98.02 228 | 89.25 183 | 85.04 290 | 95.20 259 |
|
V42 | | | 91.58 196 | 90.87 196 | 93.73 218 | 94.05 284 | 88.50 211 | 97.32 112 | 96.97 201 | 88.80 207 | 89.71 215 | 94.33 254 | 82.54 181 | 98.05 223 | 89.01 189 | 85.07 288 | 94.64 292 |
|
SD-MVS | | | 97.41 9 | 97.53 6 | 97.06 69 | 98.57 68 | 94.46 29 | 97.92 52 | 98.14 54 | 94.82 28 | 99.01 3 | 98.55 19 | 94.18 11 | 97.41 291 | 96.94 10 | 99.64 11 | 99.32 57 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GA-MVS | | | 91.38 206 | 90.31 218 | 94.59 178 | 94.65 264 | 87.62 233 | 94.34 279 | 96.19 247 | 90.73 151 | 90.35 194 | 93.83 275 | 71.84 294 | 97.96 238 | 87.22 225 | 93.61 190 | 98.21 144 |
|
MSLP-MVS++ | | | 96.94 32 | 97.06 13 | 96.59 81 | 98.72 55 | 91.86 107 | 97.67 77 | 98.49 12 | 94.66 35 | 97.24 33 | 98.41 31 | 92.31 36 | 98.94 146 | 96.61 21 | 99.46 38 | 98.96 88 |
|
APDe-MVS | | | 97.82 4 | 97.73 3 | 98.08 15 | 99.15 33 | 94.82 25 | 98.81 2 | 98.30 23 | 94.76 32 | 98.30 13 | 98.90 3 | 93.77 14 | 99.68 47 | 97.93 1 | 99.69 3 | 99.75 3 |
|
APD-MVS_3200maxsize | | | 96.81 38 | 96.71 33 | 97.12 68 | 99.01 42 | 92.31 92 | 97.98 47 | 98.06 73 | 93.11 78 | 97.44 29 | 98.55 19 | 90.93 65 | 99.55 80 | 96.06 40 | 99.25 61 | 99.51 33 |
|
ADS-MVSNet2 | | | 89.45 262 | 88.59 263 | 92.03 273 | 95.86 199 | 82.26 305 | 90.93 324 | 94.32 312 | 83.23 302 | 91.28 180 | 91.81 314 | 79.01 244 | 95.99 319 | 79.52 301 | 91.39 220 | 97.84 160 |
|
EI-MVSNet | | | 93.03 146 | 92.88 131 | 93.48 231 | 95.77 204 | 86.98 246 | 96.44 188 | 97.12 184 | 90.66 155 | 91.30 177 | 97.64 93 | 86.56 118 | 98.05 223 | 89.91 164 | 90.55 233 | 95.41 241 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
CVMVSNet | | | 91.23 215 | 91.75 167 | 89.67 311 | 95.77 204 | 74.69 335 | 96.44 188 | 94.88 297 | 85.81 270 | 92.18 160 | 97.64 93 | 79.07 239 | 95.58 326 | 88.06 202 | 95.86 154 | 98.74 107 |
|
pmmvs4 | | | 90.93 230 | 89.85 239 | 94.17 195 | 93.34 304 | 90.79 146 | 94.60 268 | 96.02 251 | 84.62 286 | 87.45 270 | 95.15 216 | 81.88 196 | 97.45 287 | 87.70 210 | 87.87 258 | 94.27 303 |
|
EU-MVSNet | | | 88.72 272 | 88.90 259 | 88.20 314 | 93.15 308 | 74.21 336 | 96.63 179 | 94.22 314 | 85.18 277 | 87.32 275 | 95.97 175 | 76.16 272 | 94.98 330 | 85.27 255 | 86.17 273 | 95.41 241 |
|
VNet | | | 95.89 66 | 95.45 68 | 97.21 65 | 98.07 103 | 92.94 78 | 97.50 93 | 98.15 52 | 93.87 51 | 97.52 25 | 97.61 96 | 85.29 136 | 99.53 85 | 95.81 47 | 95.27 164 | 99.16 67 |
|
test-LLR | | | 91.42 204 | 91.19 190 | 92.12 271 | 94.59 267 | 80.66 312 | 94.29 282 | 92.98 324 | 91.11 144 | 90.76 187 | 92.37 304 | 79.02 242 | 98.07 220 | 88.81 192 | 96.74 138 | 97.63 169 |
|
TESTMET0.1,1 | | | 90.06 254 | 89.42 251 | 91.97 274 | 94.41 274 | 80.62 314 | 94.29 282 | 91.97 332 | 87.28 251 | 90.44 192 | 92.47 303 | 68.79 311 | 97.67 266 | 88.50 198 | 96.60 143 | 97.61 173 |
|
test-mter | | | 90.19 252 | 89.54 250 | 92.12 271 | 94.59 267 | 80.66 312 | 94.29 282 | 92.98 324 | 87.68 241 | 90.76 187 | 92.37 304 | 67.67 316 | 98.07 220 | 88.81 192 | 96.74 138 | 97.63 169 |
|
VPA-MVSNet | | | 93.24 138 | 92.48 148 | 95.51 142 | 95.70 207 | 92.39 91 | 97.86 55 | 98.66 9 | 92.30 104 | 92.09 163 | 95.37 209 | 80.49 215 | 98.40 187 | 93.95 94 | 85.86 276 | 95.75 228 |
|
ACMMPR | | | 97.07 22 | 96.84 24 | 97.79 32 | 99.44 5 | 93.88 51 | 98.52 10 | 98.31 22 | 93.21 72 | 97.15 37 | 98.33 41 | 91.35 56 | 99.86 8 | 95.63 54 | 99.59 15 | 99.62 13 |
|
testgi | | | 87.97 279 | 87.21 278 | 90.24 307 | 92.86 311 | 80.76 311 | 96.67 174 | 94.97 293 | 91.74 120 | 85.52 294 | 95.83 183 | 62.66 332 | 94.47 332 | 76.25 316 | 88.36 255 | 95.48 235 |
|
test20.03 | | | 86.14 294 | 85.40 291 | 88.35 312 | 90.12 328 | 80.06 321 | 95.90 230 | 95.20 282 | 88.59 210 | 81.29 317 | 93.62 286 | 71.43 297 | 92.65 339 | 71.26 332 | 81.17 320 | 92.34 324 |
|
thres600view7 | | | 92.49 165 | 91.60 172 | 95.18 154 | 97.91 110 | 89.47 180 | 97.65 80 | 94.66 302 | 92.18 111 | 93.33 136 | 94.91 224 | 78.06 258 | 99.10 129 | 81.61 287 | 94.06 184 | 96.98 184 |
|
ADS-MVSNet | | | 89.89 257 | 88.68 262 | 93.53 229 | 95.86 199 | 84.89 280 | 90.93 324 | 95.07 288 | 83.23 302 | 91.28 180 | 91.81 314 | 79.01 244 | 97.85 251 | 79.52 301 | 91.39 220 | 97.84 160 |
|
MP-MVS | | | 96.77 40 | 96.45 46 | 97.72 39 | 99.39 13 | 93.80 53 | 98.41 18 | 98.06 73 | 93.37 67 | 95.54 97 | 98.34 38 | 90.59 71 | 99.88 4 | 94.83 78 | 99.54 23 | 99.49 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
testmvs | | | 13.36 322 | 16.33 324 | 4.48 336 | 5.04 354 | 2.26 356 | 93.18 305 | 3.28 356 | 2.70 350 | 8.24 351 | 21.66 348 | 2.29 357 | 2.19 352 | 7.58 349 | 2.96 349 | 9.00 348 |
|
thres400 | | | 92.42 167 | 91.52 176 | 95.12 158 | 97.85 113 | 89.29 191 | 97.41 101 | 94.88 297 | 92.19 109 | 93.27 139 | 94.46 248 | 78.17 255 | 99.08 134 | 81.40 290 | 94.08 181 | 96.98 184 |
|
test123 | | | 13.04 323 | 15.66 325 | 5.18 335 | 4.51 355 | 3.45 355 | 92.50 318 | 1.81 357 | 2.50 351 | 7.58 352 | 20.15 349 | 3.67 356 | 2.18 353 | 7.13 350 | 1.07 350 | 9.90 347 |
|
thres200 | | | 92.23 178 | 91.39 179 | 94.75 176 | 97.61 124 | 89.03 200 | 96.60 182 | 95.09 287 | 92.08 113 | 93.28 138 | 94.00 271 | 78.39 253 | 99.04 140 | 81.26 294 | 94.18 180 | 96.19 205 |
|
test0.0.03 1 | | | 89.37 264 | 88.70 261 | 91.41 291 | 92.47 318 | 85.63 269 | 95.22 260 | 92.70 326 | 91.11 144 | 86.91 284 | 93.65 285 | 79.02 242 | 93.19 338 | 78.00 310 | 89.18 246 | 95.41 241 |
|
pmmvs3 | | | 79.97 308 | 77.50 311 | 87.39 317 | 82.80 342 | 79.38 326 | 92.70 315 | 90.75 338 | 70.69 337 | 78.66 328 | 87.47 333 | 51.34 342 | 93.40 336 | 73.39 326 | 69.65 338 | 89.38 336 |
|
EMVS | | | 52.08 318 | 51.31 320 | 54.39 332 | 72.62 348 | 45.39 352 | 83.84 341 | 75.51 351 | 41.13 346 | 40.77 347 | 59.65 346 | 30.08 347 | 73.60 348 | 28.31 347 | 29.90 346 | 44.18 345 |
|
E-PMN | | | 53.28 316 | 52.56 319 | 55.43 331 | 74.43 346 | 47.13 350 | 83.63 342 | 76.30 350 | 42.23 345 | 42.59 346 | 62.22 345 | 28.57 349 | 74.40 347 | 31.53 346 | 31.51 344 | 44.78 344 |
|
PGM-MVS | | | 96.81 38 | 96.53 41 | 97.65 44 | 99.35 21 | 93.53 62 | 97.65 80 | 98.98 1 | 92.22 105 | 97.14 38 | 98.44 25 | 91.17 61 | 99.85 14 | 94.35 87 | 99.46 38 | 99.57 19 |
|
LCM-MVSNet-Re | | | 92.50 163 | 92.52 146 | 92.44 264 | 96.82 155 | 81.89 306 | 96.92 151 | 93.71 319 | 92.41 102 | 84.30 304 | 94.60 240 | 85.08 139 | 97.03 303 | 91.51 143 | 97.36 124 | 98.40 135 |
|
LCM-MVSNet | | | 72.55 310 | 69.39 313 | 82.03 322 | 70.81 349 | 65.42 345 | 90.12 331 | 94.36 311 | 55.02 342 | 65.88 339 | 81.72 336 | 24.16 352 | 89.96 340 | 74.32 323 | 68.10 339 | 90.71 334 |
|
MCST-MVS | | | 97.18 16 | 96.84 24 | 98.20 10 | 99.30 24 | 95.35 12 | 97.12 134 | 98.07 70 | 93.54 64 | 96.08 73 | 97.69 86 | 93.86 13 | 99.71 38 | 96.50 24 | 99.39 47 | 99.55 26 |
|
mvs_anonymous | | | 93.82 121 | 93.74 106 | 94.06 199 | 96.44 175 | 85.41 273 | 95.81 234 | 97.05 194 | 89.85 176 | 90.09 206 | 96.36 162 | 87.44 109 | 97.75 261 | 93.97 93 | 96.69 141 | 99.02 80 |
|
MVS_Test | | | 94.89 94 | 94.62 88 | 95.68 132 | 96.83 154 | 89.55 176 | 96.70 170 | 97.17 180 | 91.17 142 | 95.60 94 | 96.11 173 | 87.87 100 | 98.76 161 | 93.01 117 | 97.17 132 | 98.72 109 |
|
MDA-MVSNet-bldmvs | | | 85.00 300 | 82.95 303 | 91.17 294 | 93.13 309 | 83.33 296 | 94.56 270 | 95.00 290 | 84.57 287 | 65.13 340 | 92.65 299 | 70.45 303 | 95.85 320 | 73.57 325 | 77.49 326 | 94.33 299 |
|
CDPH-MVS | | | 95.97 64 | 95.38 71 | 97.77 35 | 98.93 43 | 94.44 30 | 96.35 200 | 97.88 102 | 86.98 255 | 96.65 50 | 97.89 68 | 91.99 42 | 99.47 95 | 92.26 121 | 99.46 38 | 99.39 51 |
|
test12 | | | | | 97.65 44 | 98.46 70 | 94.26 36 | | 97.66 124 | | 95.52 98 | | 90.89 66 | 99.46 96 | | 99.25 61 | 99.22 64 |
|
casdiffmvs | | | 95.64 71 | 95.49 66 | 96.08 112 | 96.76 159 | 90.45 155 | 97.29 116 | 97.44 156 | 94.00 48 | 95.46 99 | 97.98 66 | 87.52 107 | 98.73 163 | 95.64 53 | 97.33 126 | 99.08 77 |
|
diffmvs | | | 95.25 81 | 95.13 78 | 95.63 134 | 96.43 176 | 89.34 187 | 95.99 226 | 97.35 168 | 92.83 90 | 96.31 65 | 97.37 108 | 86.44 121 | 98.67 169 | 96.26 29 | 97.19 131 | 98.87 99 |
|
baseline2 | | | 91.63 193 | 90.86 197 | 93.94 210 | 94.33 276 | 86.32 258 | 95.92 229 | 91.64 334 | 89.37 185 | 86.94 282 | 94.69 235 | 81.62 200 | 98.69 167 | 88.64 196 | 94.57 177 | 96.81 192 |
|
baseline1 | | | 92.82 158 | 91.90 163 | 95.55 140 | 97.20 135 | 90.77 147 | 97.19 127 | 94.58 305 | 92.20 107 | 92.36 155 | 96.34 163 | 84.16 151 | 98.21 199 | 89.20 186 | 83.90 306 | 97.68 168 |
|
YYNet1 | | | 85.87 296 | 84.23 299 | 90.78 301 | 92.38 321 | 82.46 303 | 93.17 306 | 95.14 285 | 82.12 308 | 67.69 336 | 92.36 307 | 78.16 257 | 95.50 328 | 77.31 313 | 79.73 323 | 94.39 297 |
|
PMMVS2 | | | 70.19 312 | 66.92 314 | 80.01 323 | 76.35 344 | 65.67 344 | 86.22 338 | 87.58 343 | 64.83 340 | 62.38 341 | 80.29 338 | 26.78 350 | 88.49 342 | 63.79 338 | 54.07 342 | 85.88 337 |
|
MDA-MVSNet_test_wron | | | 85.87 296 | 84.23 299 | 90.80 300 | 92.38 321 | 82.57 300 | 93.17 306 | 95.15 284 | 82.15 307 | 67.65 337 | 92.33 310 | 78.20 254 | 95.51 327 | 77.33 312 | 79.74 322 | 94.31 301 |
|
tpmvs | | | 89.83 260 | 89.15 257 | 91.89 276 | 94.92 250 | 80.30 318 | 93.11 309 | 95.46 269 | 86.28 264 | 88.08 260 | 92.65 299 | 80.44 216 | 98.52 181 | 81.47 289 | 89.92 240 | 96.84 191 |
|
PM-MVS | | | 83.48 303 | 81.86 306 | 88.31 313 | 87.83 338 | 77.59 331 | 93.43 302 | 91.75 333 | 86.91 256 | 80.63 320 | 89.91 321 | 44.42 344 | 95.84 321 | 85.17 258 | 76.73 329 | 91.50 331 |
|
HQP_MVS | | | 93.78 123 | 93.43 119 | 94.82 170 | 96.21 184 | 89.99 163 | 97.74 67 | 97.51 139 | 94.85 24 | 91.34 174 | 96.64 142 | 81.32 203 | 98.60 175 | 93.02 115 | 92.23 204 | 95.86 217 |
|
plane_prior7 | | | | | | 96.21 184 | 89.98 165 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 194 | 90.00 161 | | | | | | 81.32 203 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 139 | | | | | 98.60 175 | 93.02 115 | 92.23 204 | 95.86 217 |
|
plane_prior4 | | | | | | | | | | | | 96.64 142 | | | | | |
|
plane_prior3 | | | | | | | 90.00 161 | | | 94.46 39 | 91.34 174 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 67 | | 94.85 24 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 192 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 163 | 97.24 119 | | 94.06 47 | | | | | | 92.16 208 | |
|
PS-CasMVS | | | 91.55 198 | 90.84 200 | 93.69 222 | 94.96 247 | 88.28 215 | 97.84 59 | 98.24 35 | 91.46 128 | 88.04 261 | 95.80 185 | 79.67 231 | 97.48 284 | 87.02 229 | 84.54 297 | 95.31 251 |
|
UniMVSNet_NR-MVSNet | | | 93.37 134 | 92.67 138 | 95.47 147 | 95.34 224 | 92.83 79 | 97.17 129 | 98.58 10 | 92.98 86 | 90.13 201 | 95.80 185 | 88.37 95 | 97.85 251 | 91.71 138 | 83.93 303 | 95.73 230 |
|
PEN-MVS | | | 91.20 217 | 90.44 213 | 93.48 231 | 94.49 270 | 87.91 228 | 97.76 65 | 98.18 47 | 91.29 135 | 87.78 266 | 95.74 192 | 80.35 218 | 97.33 295 | 85.46 253 | 82.96 313 | 95.19 260 |
|
TransMVSNet (Re) | | | 88.94 266 | 87.56 273 | 93.08 248 | 94.35 275 | 88.45 213 | 97.73 69 | 95.23 281 | 87.47 245 | 84.26 305 | 95.29 211 | 79.86 228 | 97.33 295 | 79.44 305 | 74.44 333 | 93.45 315 |
|
DTE-MVSNet | | | 90.56 242 | 89.75 245 | 93.01 249 | 93.95 285 | 87.25 238 | 97.64 84 | 97.65 126 | 90.74 150 | 87.12 277 | 95.68 196 | 79.97 226 | 97.00 307 | 83.33 274 | 81.66 318 | 94.78 286 |
|
DU-MVS | | | 92.90 153 | 92.04 157 | 95.49 144 | 94.95 248 | 92.83 79 | 97.16 130 | 98.24 35 | 93.02 80 | 90.13 201 | 95.71 193 | 83.47 158 | 97.85 251 | 91.71 138 | 83.93 303 | 95.78 224 |
|
UniMVSNet (Re) | | | 93.31 136 | 92.55 143 | 95.61 136 | 95.39 218 | 93.34 69 | 97.39 105 | 98.71 5 | 93.14 77 | 90.10 205 | 94.83 229 | 87.71 101 | 98.03 227 | 91.67 142 | 83.99 302 | 95.46 238 |
|
CP-MVSNet | | | 91.89 187 | 91.24 187 | 93.82 215 | 95.05 243 | 88.57 209 | 97.82 60 | 98.19 45 | 91.70 121 | 88.21 257 | 95.76 190 | 81.96 193 | 97.52 282 | 87.86 205 | 84.65 293 | 95.37 248 |
|
WR-MVS_H | | | 92.00 184 | 91.35 180 | 93.95 207 | 95.09 242 | 89.47 180 | 98.04 45 | 98.68 7 | 91.46 128 | 88.34 251 | 94.68 236 | 85.86 130 | 97.56 276 | 85.77 249 | 84.24 300 | 94.82 279 |
|
WR-MVS | | | 92.34 170 | 91.53 175 | 94.77 175 | 95.13 240 | 90.83 144 | 96.40 195 | 97.98 94 | 91.88 118 | 89.29 231 | 95.54 204 | 82.50 182 | 97.80 256 | 89.79 168 | 85.27 284 | 95.69 231 |
|
NR-MVSNet | | | 92.34 170 | 91.27 186 | 95.53 141 | 94.95 248 | 93.05 74 | 97.39 105 | 98.07 70 | 92.65 97 | 84.46 302 | 95.71 193 | 85.00 140 | 97.77 260 | 89.71 169 | 83.52 309 | 95.78 224 |
|
Baseline_NR-MVSNet | | | 91.20 217 | 90.62 207 | 92.95 252 | 93.83 290 | 88.03 224 | 97.01 143 | 95.12 286 | 88.42 216 | 89.70 216 | 95.13 218 | 83.47 158 | 97.44 288 | 89.66 172 | 83.24 311 | 93.37 316 |
|
TranMVSNet+NR-MVSNet | | | 92.50 163 | 91.63 171 | 95.14 156 | 94.76 259 | 92.07 100 | 97.53 91 | 98.11 60 | 92.90 89 | 89.56 222 | 96.12 171 | 83.16 163 | 97.60 274 | 89.30 180 | 83.20 312 | 95.75 228 |
|
TSAR-MVS + GP. | | | 96.69 43 | 96.49 43 | 97.27 60 | 98.31 84 | 93.39 65 | 96.79 163 | 96.72 220 | 94.17 45 | 97.44 29 | 97.66 89 | 92.76 23 | 99.33 109 | 96.86 13 | 97.76 114 | 99.08 77 |
|
abl_6 | | | 96.40 52 | 96.21 52 | 96.98 72 | 98.89 50 | 92.20 97 | 97.89 53 | 98.03 83 | 93.34 70 | 97.22 34 | 98.42 28 | 87.93 99 | 99.72 35 | 95.10 69 | 99.07 76 | 99.02 80 |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
mPP-MVS | | | 96.86 35 | 96.60 37 | 97.64 46 | 99.40 11 | 93.44 64 | 98.50 13 | 98.09 64 | 93.27 71 | 95.95 80 | 98.33 41 | 91.04 63 | 99.88 4 | 95.20 65 | 99.57 20 | 99.60 16 |
|
door-mid | | | | | | | | | 91.06 337 | | | | | | | | |
|
XVG-OURS-SEG-HR | | | 93.86 120 | 93.55 112 | 94.81 172 | 97.06 145 | 88.53 210 | 95.28 255 | 97.45 152 | 91.68 122 | 94.08 119 | 97.68 87 | 82.41 185 | 98.90 150 | 93.84 99 | 92.47 201 | 96.98 184 |
|
DWT-MVSNet_test | | | 90.76 234 | 89.89 237 | 93.38 236 | 95.04 244 | 83.70 293 | 95.85 232 | 94.30 313 | 88.19 221 | 90.46 191 | 92.80 297 | 73.61 289 | 98.50 182 | 88.16 200 | 90.58 232 | 97.95 154 |
|
MVSFormer | | | 95.37 77 | 95.16 77 | 95.99 118 | 96.34 180 | 91.21 128 | 98.22 32 | 97.57 133 | 91.42 130 | 96.22 68 | 97.32 109 | 86.20 126 | 97.92 245 | 94.07 91 | 99.05 77 | 98.85 100 |
|
jason | | | 94.84 96 | 94.39 98 | 96.18 110 | 95.52 213 | 90.93 141 | 96.09 219 | 96.52 236 | 89.28 187 | 96.01 78 | 97.32 109 | 84.70 143 | 98.77 160 | 95.15 67 | 98.91 84 | 98.85 100 |
jason: jason. |
lupinMVS | | | 94.99 91 | 94.56 90 | 96.29 104 | 96.34 180 | 91.21 128 | 95.83 233 | 96.27 243 | 88.93 199 | 96.22 68 | 96.88 130 | 86.20 126 | 98.85 153 | 95.27 64 | 99.05 77 | 98.82 103 |
|
test_djsdf | | | 93.07 144 | 92.76 133 | 94.00 202 | 93.49 300 | 88.70 207 | 98.22 32 | 97.57 133 | 91.42 130 | 90.08 207 | 95.55 203 | 82.85 174 | 97.92 245 | 94.07 91 | 91.58 216 | 95.40 245 |
|
HPM-MVS_fast | | | 96.51 49 | 96.27 50 | 97.22 64 | 99.32 23 | 92.74 81 | 98.74 4 | 98.06 73 | 90.57 162 | 96.77 45 | 98.35 35 | 90.21 75 | 99.53 85 | 94.80 81 | 99.63 12 | 99.38 53 |
|
RRT_test8_iter05 | | | 91.19 220 | 90.78 202 | 92.41 266 | 95.76 206 | 83.14 298 | 97.32 112 | 97.46 146 | 91.37 134 | 89.07 237 | 95.57 200 | 70.33 304 | 98.21 199 | 93.56 102 | 86.62 271 | 95.89 216 |
|
K. test v3 | | | 87.64 283 | 86.75 282 | 90.32 306 | 93.02 310 | 79.48 325 | 96.61 180 | 92.08 331 | 90.66 155 | 80.25 324 | 94.09 268 | 67.21 320 | 96.65 314 | 85.96 247 | 80.83 321 | 94.83 277 |
|
lessismore_v0 | | | | | 90.45 304 | 91.96 324 | 79.09 328 | | 87.19 344 | | 80.32 323 | 94.39 250 | 66.31 323 | 97.55 277 | 84.00 270 | 76.84 328 | 94.70 289 |
|
SixPastTwentyTwo | | | 89.15 265 | 88.54 264 | 90.98 295 | 93.49 300 | 80.28 319 | 96.70 170 | 94.70 301 | 90.78 149 | 84.15 307 | 95.57 200 | 71.78 295 | 97.71 264 | 84.63 263 | 85.07 288 | 94.94 268 |
|
OurMVSNet-221017-0 | | | 90.51 244 | 90.19 228 | 91.44 290 | 93.41 302 | 81.25 309 | 96.98 146 | 96.28 242 | 91.68 122 | 86.55 287 | 96.30 164 | 74.20 284 | 97.98 231 | 88.96 190 | 87.40 264 | 95.09 261 |
|
HPM-MVS | | | 96.69 43 | 96.45 46 | 97.40 53 | 99.36 19 | 93.11 73 | 98.87 1 | 98.06 73 | 91.17 142 | 96.40 63 | 97.99 65 | 90.99 64 | 99.58 69 | 95.61 56 | 99.61 14 | 99.49 38 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
XVG-OURS | | | 93.72 125 | 93.35 122 | 94.80 173 | 97.07 142 | 88.61 208 | 94.79 265 | 97.46 146 | 91.97 117 | 93.99 120 | 97.86 73 | 81.74 198 | 98.88 152 | 92.64 119 | 92.67 199 | 96.92 188 |
|
XVG-ACMP-BASELINE | | | 90.93 230 | 90.21 227 | 93.09 247 | 94.31 278 | 85.89 266 | 95.33 252 | 97.26 174 | 91.06 146 | 89.38 227 | 95.44 208 | 68.61 312 | 98.60 175 | 89.46 176 | 91.05 225 | 94.79 284 |
|
LPG-MVS_test | | | 92.94 151 | 92.56 142 | 94.10 197 | 96.16 189 | 88.26 216 | 97.65 80 | 97.46 146 | 91.29 135 | 90.12 203 | 97.16 116 | 79.05 240 | 98.73 163 | 92.25 123 | 91.89 212 | 95.31 251 |
|
LGP-MVS_train | | | | | 94.10 197 | 96.16 189 | 88.26 216 | | 97.46 146 | 91.29 135 | 90.12 203 | 97.16 116 | 79.05 240 | 98.73 163 | 92.25 123 | 91.89 212 | 95.31 251 |
|
baseline | | | 95.58 73 | 95.42 70 | 96.08 112 | 96.78 156 | 90.41 157 | 97.16 130 | 97.45 152 | 93.69 59 | 95.65 93 | 97.85 74 | 87.29 111 | 98.68 168 | 95.66 49 | 97.25 129 | 99.13 71 |
|
test11 | | | | | | | | | 97.88 102 | | | | | | | | |
|
door | | | | | | | | | 91.13 336 | | | | | | | | |
|
EPNet_dtu | | | 91.71 190 | 91.28 185 | 92.99 250 | 93.76 292 | 83.71 292 | 96.69 172 | 95.28 277 | 93.15 76 | 87.02 281 | 95.95 177 | 83.37 161 | 97.38 293 | 79.46 304 | 96.84 135 | 97.88 158 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 94.15 108 | 93.51 115 | 96.06 114 | 98.27 85 | 89.38 185 | 95.18 261 | 98.48 14 | 85.60 273 | 93.76 126 | 97.11 119 | 83.15 164 | 99.61 61 | 91.33 147 | 98.72 88 | 99.19 65 |
|
EPNet | | | 95.20 84 | 94.56 90 | 97.14 67 | 92.80 313 | 92.68 83 | 97.85 58 | 94.87 300 | 96.64 1 | 92.46 151 | 97.80 80 | 86.23 123 | 99.65 53 | 93.72 101 | 98.62 92 | 99.10 76 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP5-MVS | | | | | | | 89.33 188 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 199 | | 96.65 175 | | 93.55 61 | 90.14 197 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 199 | | 96.65 175 | | 93.55 61 | 90.14 197 | | | | | | |
|
APD-MVS | | | 96.95 31 | 96.60 37 | 98.01 19 | 99.03 40 | 94.93 24 | 97.72 72 | 98.10 62 | 91.50 126 | 98.01 18 | 98.32 43 | 92.33 34 | 99.58 69 | 94.85 76 | 99.51 29 | 99.53 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
BP-MVS | | | | | | | | | | | | | | | 92.13 127 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 197 | | | 98.50 182 | | | 95.78 224 |
|
HQP3-MVS | | | | | | | | | 97.39 162 | | | | | | | 92.10 209 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 206 | | | | |
|
CNVR-MVS | | | 97.68 5 | 97.44 8 | 98.37 5 | 98.90 47 | 95.86 4 | 97.27 117 | 98.08 65 | 95.81 3 | 97.87 23 | 98.31 44 | 94.26 10 | 99.68 47 | 97.02 9 | 99.49 34 | 99.57 19 |
|
NCCC | | | 97.30 14 | 97.03 14 | 98.11 14 | 98.77 53 | 95.06 22 | 97.34 109 | 98.04 81 | 95.96 2 | 97.09 42 | 97.88 70 | 93.18 20 | 99.71 38 | 95.84 46 | 99.17 68 | 99.56 22 |
|
114514_t | | | 93.95 117 | 93.06 127 | 96.63 78 | 99.07 38 | 91.61 112 | 97.46 100 | 97.96 96 | 77.99 329 | 93.00 143 | 97.57 99 | 86.14 128 | 99.33 109 | 89.22 184 | 99.15 69 | 98.94 91 |
|
CP-MVS | | | 97.02 26 | 96.81 27 | 97.64 46 | 99.33 22 | 93.54 61 | 98.80 3 | 98.28 26 | 92.99 81 | 96.45 62 | 98.30 46 | 91.90 44 | 99.85 14 | 95.61 56 | 99.68 4 | 99.54 28 |
|
DSMNet-mixed | | | 86.34 292 | 86.12 287 | 87.00 319 | 89.88 331 | 70.43 339 | 94.93 264 | 90.08 339 | 77.97 330 | 85.42 297 | 92.78 298 | 74.44 282 | 93.96 334 | 74.43 321 | 95.14 165 | 96.62 196 |
|
tpm2 | | | 89.96 255 | 89.21 255 | 92.23 270 | 94.91 253 | 81.25 309 | 93.78 294 | 94.42 308 | 80.62 319 | 91.56 169 | 93.44 290 | 76.44 270 | 97.94 241 | 85.60 251 | 92.08 211 | 97.49 178 |
|
NP-MVS | | | | | | 95.99 198 | 89.81 170 | | | | | 95.87 180 | | | | | |
|
EG-PatchMatch MVS | | | 87.02 288 | 85.44 290 | 91.76 284 | 92.67 315 | 85.00 277 | 96.08 220 | 96.45 237 | 83.41 301 | 79.52 326 | 93.49 288 | 57.10 337 | 97.72 263 | 79.34 306 | 90.87 230 | 92.56 321 |
|
tpm cat1 | | | 88.36 276 | 87.21 278 | 91.81 280 | 95.13 240 | 80.55 315 | 92.58 316 | 95.70 259 | 74.97 333 | 87.45 270 | 91.96 312 | 78.01 260 | 98.17 205 | 80.39 298 | 88.74 251 | 96.72 195 |
|
SteuartSystems-ACMMP | | | 97.62 6 | 97.53 6 | 97.87 24 | 98.39 76 | 94.25 37 | 98.43 17 | 98.27 28 | 95.34 10 | 98.11 16 | 98.56 17 | 94.53 9 | 99.71 38 | 96.57 23 | 99.62 13 | 99.65 9 |
Skip Steuart: Steuart Systems R&D Blog. |
CostFormer | | | 91.18 221 | 90.70 205 | 92.62 262 | 94.84 256 | 81.76 307 | 94.09 288 | 94.43 307 | 84.15 291 | 92.72 150 | 93.77 279 | 79.43 235 | 98.20 201 | 90.70 155 | 92.18 207 | 97.90 156 |
|
CR-MVSNet | | | 90.82 233 | 89.77 243 | 93.95 207 | 94.45 272 | 87.19 241 | 90.23 329 | 95.68 262 | 86.89 257 | 92.40 152 | 92.36 307 | 80.91 208 | 97.05 301 | 81.09 295 | 93.95 185 | 97.60 174 |
|
JIA-IIPM | | | 88.26 278 | 87.04 280 | 91.91 275 | 93.52 298 | 81.42 308 | 89.38 334 | 94.38 309 | 80.84 317 | 90.93 186 | 80.74 337 | 79.22 238 | 97.92 245 | 82.76 280 | 91.62 215 | 96.38 202 |
|
Patchmtry | | | 88.64 273 | 87.25 276 | 92.78 258 | 94.09 282 | 86.64 252 | 89.82 332 | 95.68 262 | 80.81 318 | 87.63 269 | 92.36 307 | 80.91 208 | 97.03 303 | 78.86 307 | 85.12 287 | 94.67 290 |
|
PatchT | | | 88.87 269 | 87.42 274 | 93.22 243 | 94.08 283 | 85.10 276 | 89.51 333 | 94.64 304 | 81.92 309 | 92.36 155 | 88.15 330 | 80.05 224 | 97.01 306 | 72.43 327 | 93.65 188 | 97.54 177 |
|
tpmrst | | | 91.44 203 | 91.32 182 | 91.79 281 | 95.15 238 | 79.20 327 | 93.42 303 | 95.37 272 | 88.55 214 | 93.49 132 | 93.67 284 | 82.49 183 | 98.27 195 | 90.41 157 | 89.34 245 | 97.90 156 |
|
BH-w/o | | | 92.14 182 | 91.75 167 | 93.31 239 | 96.99 149 | 85.73 268 | 95.67 238 | 95.69 260 | 88.73 209 | 89.26 233 | 94.82 230 | 82.97 171 | 98.07 220 | 85.26 256 | 96.32 148 | 96.13 210 |
|
tpm | | | 90.25 249 | 89.74 246 | 91.76 284 | 93.92 286 | 79.73 323 | 93.98 289 | 93.54 320 | 88.28 219 | 91.99 164 | 93.25 293 | 77.51 264 | 97.44 288 | 87.30 224 | 87.94 257 | 98.12 147 |
|
DELS-MVS | | | 96.61 46 | 96.38 48 | 97.30 57 | 97.79 115 | 93.19 71 | 95.96 227 | 98.18 47 | 95.23 12 | 95.87 81 | 97.65 90 | 91.45 54 | 99.70 43 | 95.87 44 | 99.44 42 | 99.00 86 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
BH-untuned | | | 92.94 151 | 92.62 140 | 93.92 212 | 97.22 133 | 86.16 264 | 96.40 195 | 96.25 245 | 90.06 171 | 89.79 214 | 96.17 170 | 83.19 162 | 98.35 191 | 87.19 226 | 97.27 128 | 97.24 181 |
|
RPMNet | | | 88.52 274 | 86.72 283 | 93.95 207 | 94.45 272 | 87.19 241 | 90.23 329 | 94.99 292 | 77.87 331 | 92.40 152 | 87.55 332 | 80.17 222 | 97.05 301 | 68.84 335 | 93.95 185 | 97.60 174 |
|
MVSTER | | | 93.20 140 | 92.81 132 | 94.37 188 | 96.56 167 | 89.59 174 | 97.06 135 | 97.12 184 | 91.24 139 | 91.30 177 | 95.96 176 | 82.02 192 | 98.05 223 | 93.48 105 | 90.55 233 | 95.47 237 |
|
CPTT-MVS | | | 95.57 74 | 95.19 76 | 96.70 75 | 99.27 26 | 91.48 117 | 98.33 21 | 98.11 60 | 87.79 236 | 95.17 102 | 98.03 62 | 87.09 114 | 99.61 61 | 93.51 104 | 99.42 43 | 99.02 80 |
|
GBi-Net | | | 91.35 209 | 90.27 221 | 94.59 178 | 96.51 170 | 91.18 132 | 97.50 93 | 96.93 204 | 88.82 204 | 89.35 228 | 94.51 243 | 73.87 285 | 97.29 297 | 86.12 242 | 88.82 248 | 95.31 251 |
|
PVSNet_Blended_VisFu | | | 95.27 80 | 94.91 82 | 96.38 97 | 98.20 94 | 90.86 143 | 97.27 117 | 98.25 34 | 90.21 167 | 94.18 117 | 97.27 111 | 87.48 108 | 99.73 32 | 93.53 103 | 97.77 113 | 98.55 116 |
|
PVSNet_BlendedMVS | | | 94.06 113 | 93.92 102 | 94.47 184 | 98.27 85 | 89.46 182 | 96.73 167 | 98.36 16 | 90.17 168 | 94.36 113 | 95.24 214 | 88.02 96 | 99.58 69 | 93.44 106 | 90.72 231 | 94.36 298 |
|
UnsupCasMVSNet_eth | | | 85.99 295 | 84.45 297 | 90.62 302 | 89.97 330 | 82.40 304 | 93.62 300 | 97.37 165 | 89.86 174 | 78.59 329 | 92.37 304 | 65.25 328 | 95.35 329 | 82.27 285 | 70.75 336 | 94.10 305 |
|
UnsupCasMVSNet_bld | | | 82.13 307 | 79.46 309 | 90.14 308 | 88.00 337 | 82.47 302 | 90.89 326 | 96.62 234 | 78.94 326 | 75.61 331 | 84.40 335 | 56.63 339 | 96.31 317 | 77.30 314 | 66.77 340 | 91.63 329 |
|
PVSNet_Blended | | | 94.87 95 | 94.56 90 | 95.81 124 | 98.27 85 | 89.46 182 | 95.47 247 | 98.36 16 | 88.84 202 | 94.36 113 | 96.09 174 | 88.02 96 | 99.58 69 | 93.44 106 | 98.18 102 | 98.40 135 |
|
FMVSNet5 | | | 87.29 286 | 85.79 288 | 91.78 282 | 94.80 258 | 87.28 236 | 95.49 246 | 95.28 277 | 84.09 292 | 83.85 311 | 91.82 313 | 62.95 331 | 94.17 333 | 78.48 308 | 85.34 283 | 93.91 309 |
|
test1 | | | 91.35 209 | 90.27 221 | 94.59 178 | 96.51 170 | 91.18 132 | 97.50 93 | 96.93 204 | 88.82 204 | 89.35 228 | 94.51 243 | 73.87 285 | 97.29 297 | 86.12 242 | 88.82 248 | 95.31 251 |
|
new_pmnet | | | 82.89 305 | 81.12 308 | 88.18 315 | 89.63 332 | 80.18 320 | 91.77 320 | 92.57 327 | 76.79 332 | 75.56 333 | 88.23 329 | 61.22 334 | 94.48 331 | 71.43 330 | 82.92 314 | 89.87 335 |
|
FMVSNet3 | | | 91.78 189 | 90.69 206 | 95.03 160 | 96.53 169 | 92.27 94 | 97.02 139 | 96.93 204 | 89.79 179 | 89.35 228 | 94.65 238 | 77.01 266 | 97.47 285 | 86.12 242 | 88.82 248 | 95.35 249 |
|
dp | | | 88.90 268 | 88.26 268 | 90.81 298 | 94.58 269 | 76.62 332 | 92.85 313 | 94.93 295 | 85.12 279 | 90.07 208 | 93.07 294 | 75.81 273 | 98.12 210 | 80.53 297 | 87.42 263 | 97.71 166 |
|
FMVSNet2 | | | 91.31 212 | 90.08 230 | 94.99 161 | 96.51 170 | 92.21 95 | 97.41 101 | 96.95 202 | 88.82 204 | 88.62 246 | 94.75 233 | 73.87 285 | 97.42 290 | 85.20 257 | 88.55 254 | 95.35 249 |
|
FMVSNet1 | | | 89.88 258 | 88.31 266 | 94.59 178 | 95.41 217 | 91.18 132 | 97.50 93 | 96.93 204 | 86.62 260 | 87.41 272 | 94.51 243 | 65.94 326 | 97.29 297 | 83.04 277 | 87.43 262 | 95.31 251 |
|
N_pmnet | | | 78.73 309 | 78.71 310 | 78.79 324 | 92.80 313 | 46.50 351 | 94.14 286 | 43.71 354 | 78.61 327 | 80.83 318 | 91.66 317 | 74.94 280 | 96.36 316 | 67.24 336 | 84.45 298 | 93.50 313 |
|
cascas | | | 91.20 217 | 90.08 230 | 94.58 182 | 94.97 246 | 89.16 198 | 93.65 299 | 97.59 132 | 79.90 322 | 89.40 226 | 92.92 296 | 75.36 278 | 98.36 190 | 92.14 126 | 94.75 174 | 96.23 203 |
|
BH-RMVSNet | | | 92.72 161 | 91.97 161 | 94.97 164 | 97.16 137 | 87.99 225 | 96.15 217 | 95.60 264 | 90.62 158 | 91.87 166 | 97.15 118 | 78.41 252 | 98.57 178 | 83.16 275 | 97.60 116 | 98.36 139 |
|
UGNet | | | 94.04 115 | 93.28 124 | 96.31 101 | 96.85 151 | 91.19 131 | 97.88 54 | 97.68 123 | 94.40 40 | 93.00 143 | 96.18 168 | 73.39 291 | 99.61 61 | 91.72 137 | 98.46 95 | 98.13 146 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WTY-MVS | | | 94.71 100 | 94.02 101 | 96.79 74 | 97.71 119 | 92.05 101 | 96.59 183 | 97.35 168 | 90.61 159 | 94.64 109 | 96.93 125 | 86.41 122 | 99.39 105 | 91.20 151 | 94.71 176 | 98.94 91 |
|
XXY-MVS | | | 92.16 180 | 91.23 188 | 94.95 166 | 94.75 260 | 90.94 140 | 97.47 98 | 97.43 159 | 89.14 191 | 88.90 238 | 96.43 157 | 79.71 230 | 98.24 196 | 89.56 174 | 87.68 259 | 95.67 232 |
|
sss | | | 94.51 102 | 93.80 105 | 96.64 76 | 97.07 142 | 91.97 105 | 96.32 204 | 98.06 73 | 88.94 198 | 94.50 111 | 96.78 132 | 84.60 144 | 99.27 114 | 91.90 132 | 96.02 149 | 98.68 113 |
|
Test_1112_low_res | | | 92.84 157 | 91.84 165 | 95.85 123 | 97.04 148 | 89.97 166 | 95.53 245 | 96.64 229 | 85.38 274 | 89.65 219 | 95.18 215 | 85.86 130 | 99.10 129 | 87.70 210 | 93.58 192 | 98.49 124 |
|
1112_ss | | | 93.37 134 | 92.42 149 | 96.21 109 | 97.05 147 | 90.99 137 | 96.31 205 | 96.72 220 | 86.87 258 | 89.83 213 | 96.69 139 | 86.51 120 | 99.14 126 | 88.12 201 | 93.67 187 | 98.50 122 |
|
ab-mvs-re | | | 8.06 324 | 10.74 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 96.69 139 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs | | | 93.57 130 | 92.55 143 | 96.64 76 | 97.28 132 | 91.96 106 | 95.40 249 | 97.45 152 | 89.81 178 | 93.22 141 | 96.28 165 | 79.62 233 | 99.46 96 | 90.74 154 | 93.11 193 | 98.50 122 |
|
TR-MVS | | | 91.48 202 | 90.59 209 | 94.16 196 | 96.40 177 | 87.33 235 | 95.67 238 | 95.34 276 | 87.68 241 | 91.46 171 | 95.52 205 | 76.77 267 | 98.35 191 | 82.85 279 | 93.61 190 | 96.79 193 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 340 | 93.10 310 | | 83.88 295 | 93.55 129 | | 82.47 184 | | 86.25 238 | | 98.38 137 |
|
MDTV_nov1_ep13 | | | | 90.76 203 | | 95.22 235 | 80.33 317 | 93.03 311 | 95.28 277 | 88.14 226 | 92.84 149 | 93.83 275 | 81.34 202 | 98.08 217 | 82.86 278 | 94.34 179 | |
|
MIMVSNet1 | | | 84.93 301 | 83.05 302 | 90.56 303 | 89.56 333 | 84.84 281 | 95.40 249 | 95.35 273 | 83.91 293 | 80.38 322 | 92.21 311 | 57.23 336 | 93.34 337 | 70.69 334 | 82.75 316 | 93.50 313 |
|
MIMVSNet | | | 88.50 275 | 86.76 281 | 93.72 220 | 94.84 256 | 87.77 231 | 91.39 321 | 94.05 315 | 86.41 263 | 87.99 263 | 92.59 301 | 63.27 330 | 95.82 322 | 77.44 311 | 92.84 196 | 97.57 176 |
|
IterMVS-LS | | | 92.29 174 | 91.94 162 | 93.34 238 | 96.25 183 | 86.97 247 | 96.57 186 | 97.05 194 | 90.67 153 | 89.50 225 | 94.80 231 | 86.59 117 | 97.64 269 | 89.91 164 | 86.11 275 | 95.40 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 94.14 110 | 93.54 113 | 95.93 119 | 96.18 187 | 91.46 119 | 96.33 203 | 97.04 196 | 88.97 197 | 93.56 128 | 96.51 153 | 87.55 105 | 97.89 249 | 89.80 167 | 95.95 151 | 98.44 132 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 237 | |
|
IterMVS | | | 90.15 253 | 89.67 247 | 91.61 286 | 95.48 215 | 83.72 291 | 94.33 280 | 96.12 249 | 89.99 172 | 87.31 276 | 94.15 267 | 75.78 276 | 96.27 318 | 86.97 230 | 86.89 269 | 94.83 277 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 95.68 70 | 95.12 79 | 97.37 54 | 99.19 31 | 94.19 39 | 97.03 136 | 98.08 65 | 88.35 218 | 95.09 104 | 97.65 90 | 89.97 79 | 99.48 94 | 92.08 130 | 98.59 93 | 98.44 132 |
|
MVS_111021_LR | | | 96.24 57 | 96.19 54 | 96.39 96 | 98.23 93 | 91.35 123 | 96.24 213 | 98.79 4 | 93.99 49 | 95.80 84 | 97.65 90 | 89.92 80 | 99.24 116 | 95.87 44 | 99.20 66 | 98.58 115 |
|
DP-MVS | | | 92.76 160 | 91.51 178 | 96.52 83 | 98.77 53 | 90.99 137 | 97.38 107 | 96.08 250 | 82.38 306 | 89.29 231 | 97.87 71 | 83.77 155 | 99.69 44 | 81.37 293 | 96.69 141 | 98.89 97 |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 226 | |
|
HQP-MVS | | | 93.19 141 | 92.74 136 | 94.54 183 | 95.86 199 | 89.33 188 | 96.65 175 | 97.39 162 | 93.55 61 | 90.14 197 | 95.87 180 | 80.95 206 | 98.50 182 | 92.13 127 | 92.10 209 | 95.78 224 |
|
QAPM | | | 93.45 133 | 92.27 153 | 96.98 72 | 96.77 157 | 92.62 85 | 98.39 19 | 98.12 57 | 84.50 288 | 88.27 255 | 97.77 81 | 82.39 186 | 99.81 26 | 85.40 254 | 98.81 85 | 98.51 121 |
|
Vis-MVSNet | | | 95.23 82 | 94.81 83 | 96.51 86 | 97.18 136 | 91.58 115 | 98.26 27 | 98.12 57 | 94.38 42 | 94.90 105 | 98.15 56 | 82.28 187 | 98.92 147 | 91.45 146 | 98.58 94 | 99.01 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS-HIRNet | | | 82.47 306 | 81.21 307 | 86.26 321 | 95.38 219 | 69.21 342 | 88.96 336 | 89.49 340 | 66.28 338 | 80.79 319 | 74.08 341 | 68.48 313 | 97.39 292 | 71.93 329 | 95.47 160 | 92.18 326 |
|
IS-MVSNet | | | 94.90 93 | 94.52 93 | 96.05 115 | 97.67 120 | 90.56 151 | 98.44 16 | 96.22 246 | 93.21 72 | 93.99 120 | 97.74 83 | 85.55 134 | 98.45 185 | 89.98 162 | 97.86 109 | 99.14 70 |
|
HyFIR lowres test | | | 93.66 126 | 92.92 130 | 95.87 122 | 98.24 89 | 89.88 168 | 94.58 269 | 98.49 12 | 85.06 280 | 93.78 125 | 95.78 189 | 82.86 173 | 98.67 169 | 91.77 136 | 95.71 158 | 99.07 79 |
|
EPMVS | | | 90.70 239 | 89.81 241 | 93.37 237 | 94.73 261 | 84.21 286 | 93.67 298 | 88.02 341 | 89.50 182 | 92.38 154 | 93.49 288 | 77.82 262 | 97.78 258 | 86.03 245 | 92.68 198 | 98.11 150 |
|
PAPM_NR | | | 95.01 87 | 94.59 89 | 96.26 106 | 98.89 50 | 90.68 149 | 97.24 119 | 97.73 115 | 91.80 119 | 92.93 148 | 96.62 149 | 89.13 84 | 99.14 126 | 89.21 185 | 97.78 112 | 98.97 87 |
|
TAMVS | | | 94.01 116 | 93.46 117 | 95.64 133 | 96.16 189 | 90.45 155 | 96.71 169 | 96.89 210 | 89.27 188 | 93.46 133 | 96.92 128 | 87.29 111 | 97.94 241 | 88.70 195 | 95.74 156 | 98.53 118 |
|
PAPR | | | 94.18 107 | 93.42 121 | 96.48 88 | 97.64 122 | 91.42 122 | 95.55 243 | 97.71 122 | 88.99 195 | 92.34 157 | 95.82 184 | 89.19 82 | 99.11 128 | 86.14 241 | 97.38 123 | 98.90 95 |
|
RPSCF | | | 90.75 236 | 90.86 197 | 90.42 305 | 96.84 152 | 76.29 333 | 95.61 242 | 96.34 240 | 83.89 294 | 91.38 172 | 97.87 71 | 76.45 269 | 98.78 158 | 87.16 228 | 92.23 204 | 96.20 204 |
|
Vis-MVSNet (Re-imp) | | | 94.15 108 | 93.88 103 | 94.95 166 | 97.61 124 | 87.92 226 | 98.10 39 | 95.80 258 | 92.22 105 | 93.02 142 | 97.45 105 | 84.53 146 | 97.91 248 | 88.24 199 | 97.97 107 | 99.02 80 |
|
test_0402 | | | 86.46 291 | 84.79 295 | 91.45 289 | 95.02 245 | 85.55 270 | 96.29 207 | 94.89 296 | 80.90 315 | 82.21 314 | 93.97 273 | 68.21 315 | 97.29 297 | 62.98 339 | 88.68 253 | 91.51 330 |
|
MVS_111021_HR | | | 96.68 45 | 96.58 39 | 96.99 71 | 98.46 70 | 92.31 92 | 96.20 215 | 98.90 2 | 94.30 44 | 95.86 82 | 97.74 83 | 92.33 34 | 99.38 107 | 96.04 41 | 99.42 43 | 99.28 62 |
|
CSCG | | | 96.05 61 | 95.91 58 | 96.46 91 | 99.24 28 | 90.47 154 | 98.30 23 | 98.57 11 | 89.01 194 | 93.97 122 | 97.57 99 | 92.62 28 | 99.76 30 | 94.66 84 | 99.27 59 | 99.15 69 |
|
PatchMatch-RL | | | 92.90 153 | 92.02 159 | 95.56 138 | 98.19 96 | 90.80 145 | 95.27 257 | 97.18 178 | 87.96 229 | 91.86 167 | 95.68 196 | 80.44 216 | 98.99 142 | 84.01 269 | 97.54 117 | 96.89 189 |
|
API-MVS | | | 94.84 96 | 94.49 94 | 95.90 121 | 97.90 111 | 92.00 104 | 97.80 62 | 97.48 141 | 89.19 190 | 94.81 107 | 96.71 135 | 88.84 87 | 99.17 122 | 88.91 191 | 98.76 87 | 96.53 197 |
|
Test By Simon | | | | | | | | | | | | | 88.73 89 | | | | |
|
TDRefinement | | | 86.53 290 | 84.76 296 | 91.85 277 | 82.23 343 | 84.25 285 | 96.38 198 | 95.35 273 | 84.97 282 | 84.09 308 | 94.94 222 | 65.76 327 | 98.34 193 | 84.60 264 | 74.52 332 | 92.97 317 |
|
USDC | | | 88.94 266 | 87.83 271 | 92.27 269 | 94.66 263 | 84.96 278 | 93.86 292 | 95.90 254 | 87.34 249 | 83.40 312 | 95.56 202 | 67.43 318 | 98.19 203 | 82.64 283 | 89.67 243 | 93.66 311 |
|
EPP-MVSNet | | | 95.22 83 | 95.04 80 | 95.76 125 | 97.49 129 | 89.56 175 | 98.67 5 | 97.00 200 | 90.69 152 | 94.24 116 | 97.62 95 | 89.79 81 | 98.81 156 | 93.39 109 | 96.49 145 | 98.92 93 |
|
PMMVS | | | 92.86 155 | 92.34 150 | 94.42 187 | 94.92 250 | 86.73 251 | 94.53 271 | 96.38 239 | 84.78 285 | 94.27 115 | 95.12 219 | 83.13 165 | 98.40 187 | 91.47 145 | 96.49 145 | 98.12 147 |
|
PAPM | | | 91.52 200 | 90.30 219 | 95.20 153 | 95.30 230 | 89.83 169 | 93.38 304 | 96.85 215 | 86.26 265 | 88.59 247 | 95.80 185 | 84.88 141 | 98.15 206 | 75.67 319 | 95.93 152 | 97.63 169 |
|
ACMMP | | | 96.27 56 | 95.93 57 | 97.28 59 | 99.24 28 | 92.62 85 | 98.25 28 | 98.81 3 | 92.99 81 | 94.56 110 | 98.39 32 | 88.96 85 | 99.85 14 | 94.57 86 | 97.63 115 | 99.36 55 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 94.28 105 | 93.53 114 | 96.52 83 | 98.38 77 | 92.55 87 | 96.59 183 | 96.88 211 | 90.13 170 | 91.91 165 | 97.24 113 | 85.21 137 | 99.09 132 | 87.64 216 | 97.83 110 | 97.92 155 |
|
PatchmatchNet | | | 91.91 186 | 91.35 180 | 93.59 226 | 95.38 219 | 84.11 288 | 93.15 308 | 95.39 270 | 89.54 180 | 92.10 162 | 93.68 283 | 82.82 175 | 98.13 207 | 84.81 260 | 95.32 163 | 98.52 119 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 96.77 40 | 96.46 45 | 97.71 41 | 98.40 74 | 94.07 47 | 98.21 34 | 98.45 15 | 89.86 174 | 97.11 41 | 98.01 64 | 92.52 32 | 99.69 44 | 96.03 42 | 99.53 24 | 99.36 55 |
|
F-COLMAP | | | 93.58 129 | 92.98 128 | 95.37 150 | 98.40 74 | 88.98 201 | 97.18 128 | 97.29 173 | 87.75 239 | 90.49 190 | 97.10 120 | 85.21 137 | 99.50 92 | 86.70 232 | 96.72 140 | 97.63 169 |
|
ANet_high | | | 63.94 314 | 59.58 316 | 77.02 325 | 61.24 351 | 66.06 343 | 85.66 340 | 87.93 342 | 78.53 328 | 42.94 345 | 71.04 342 | 25.42 351 | 80.71 345 | 52.60 342 | 30.83 345 | 84.28 338 |
|
wuyk23d | | | 25.11 320 | 24.57 323 | 26.74 334 | 73.98 347 | 39.89 354 | 57.88 347 | 9.80 355 | 12.27 349 | 10.39 350 | 6.97 352 | 7.03 354 | 36.44 351 | 25.43 348 | 17.39 348 | 3.89 349 |
|
OMC-MVS | | | 95.09 86 | 94.70 87 | 96.25 107 | 98.46 70 | 91.28 124 | 96.43 190 | 97.57 133 | 92.04 114 | 94.77 108 | 97.96 67 | 87.01 115 | 99.09 132 | 91.31 148 | 96.77 137 | 98.36 139 |
|
MG-MVS | | | 95.61 72 | 95.38 71 | 96.31 101 | 98.42 73 | 90.53 152 | 96.04 221 | 97.48 141 | 93.47 65 | 95.67 92 | 98.10 57 | 89.17 83 | 99.25 115 | 91.27 149 | 98.77 86 | 99.13 71 |
|
AdaColmap | | | 94.34 104 | 93.68 109 | 96.31 101 | 98.59 65 | 91.68 111 | 96.59 183 | 97.81 110 | 89.87 173 | 92.15 161 | 97.06 122 | 83.62 157 | 99.54 82 | 89.34 179 | 98.07 105 | 97.70 167 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ITE_SJBPF | | | | | 92.43 265 | 95.34 224 | 85.37 274 | | 95.92 253 | 91.47 127 | 87.75 267 | 96.39 161 | 71.00 300 | 97.96 238 | 82.36 284 | 89.86 241 | 93.97 308 |
|
DeepMVS_CX | | | | | 74.68 328 | 90.84 327 | 64.34 346 | | 81.61 349 | 65.34 339 | 67.47 338 | 88.01 331 | 48.60 343 | 80.13 346 | 62.33 340 | 73.68 335 | 79.58 340 |
|
TinyColmap | | | 86.82 289 | 85.35 292 | 91.21 292 | 94.91 253 | 82.99 299 | 93.94 291 | 94.02 317 | 83.58 298 | 81.56 316 | 94.68 236 | 62.34 333 | 98.13 207 | 75.78 317 | 87.35 265 | 92.52 322 |
|
MAR-MVS | | | 94.22 106 | 93.46 117 | 96.51 86 | 98.00 104 | 92.19 98 | 97.67 77 | 97.47 144 | 88.13 227 | 93.00 143 | 95.84 182 | 84.86 142 | 99.51 90 | 87.99 203 | 98.17 103 | 97.83 162 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LF4IMVS | | | 87.94 280 | 87.25 276 | 89.98 309 | 92.38 321 | 80.05 322 | 94.38 277 | 95.25 280 | 87.59 243 | 84.34 303 | 94.74 234 | 64.31 329 | 97.66 268 | 84.83 259 | 87.45 261 | 92.23 325 |
|
MSDG | | | 91.42 204 | 90.24 223 | 94.96 165 | 97.15 139 | 88.91 202 | 93.69 297 | 96.32 241 | 85.72 272 | 86.93 283 | 96.47 155 | 80.24 220 | 98.98 143 | 80.57 296 | 95.05 169 | 96.98 184 |
|
LS3D | | | 93.57 130 | 92.61 141 | 96.47 89 | 97.59 126 | 91.61 112 | 97.67 77 | 97.72 118 | 85.17 278 | 90.29 195 | 98.34 38 | 84.60 144 | 99.73 32 | 83.85 273 | 98.27 99 | 98.06 151 |
|
CLD-MVS | | | 92.98 148 | 92.53 145 | 94.32 191 | 96.12 193 | 89.20 195 | 95.28 255 | 97.47 144 | 92.66 96 | 89.90 210 | 95.62 198 | 80.58 213 | 98.40 187 | 92.73 118 | 92.40 202 | 95.38 247 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FPMVS | | | 71.27 311 | 69.85 312 | 75.50 326 | 74.64 345 | 59.03 347 | 91.30 322 | 91.50 335 | 58.80 341 | 57.92 342 | 88.28 328 | 29.98 348 | 85.53 344 | 53.43 341 | 82.84 315 | 81.95 339 |
|
Gipuma | | | 67.86 313 | 65.41 315 | 75.18 327 | 92.66 316 | 73.45 337 | 66.50 346 | 94.52 306 | 53.33 343 | 57.80 343 | 66.07 343 | 30.81 346 | 89.20 341 | 48.15 343 | 78.88 325 | 62.90 343 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |