This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15898.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16698.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
9.1496.75 3398.93 4797.73 7398.23 3891.28 14297.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
segment_acmp92.89 22
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22494.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
TEST998.70 6094.19 4096.41 19798.02 8888.17 22996.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21796.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_898.67 6294.06 4996.37 20498.01 9188.58 21795.98 8397.55 10792.73 2599.58 70
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21495.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20093.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12897.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
ZD-MVS99.05 4194.59 2898.08 6489.22 19597.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17897.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13098.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26196.65 5497.89 7291.99 4399.47 9992.26 12699.46 3899.39 54
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 18097.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13490.43 16995.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19489.67 25397.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35791.70 5099.80 2795.66 5299.40 4599.62 13
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
DELS-MVS96.61 4896.38 5197.30 5797.79 12093.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 6495.89 6296.40 9697.16 14292.44 9297.47 10297.77 11594.55 3796.48 6394.51 25091.23 6298.92 15195.65 5598.19 10597.82 166
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23196.64 5597.70 8991.18 6399.67 4992.44 12599.47 3699.48 41
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10997.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15795.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14696.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
test1297.65 4498.46 7494.26 3797.66 12995.52 10290.89 6999.46 10099.25 6599.22 67
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
EIA-MVS95.53 7795.47 7095.71 13397.06 15089.63 17797.82 6497.87 10893.57 6193.92 12795.04 22690.61 7498.95 14994.62 8898.68 9398.54 120
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25395.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 32395.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
CS-MVS95.80 7095.65 6696.24 11097.32 13691.43 12698.10 3997.91 10393.38 6995.16 10794.57 24890.21 7998.98 14795.53 6498.67 9498.30 145
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16696.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
testdata95.46 15198.18 10288.90 20897.66 12982.73 31597.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
新几何197.32 5698.60 6893.59 6197.75 11781.58 32295.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22495.09 10897.65 9489.97 8399.48 9892.08 13598.59 9798.44 135
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13489.56 18198.67 597.00 20490.69 15694.24 12097.62 9989.79 8598.81 16093.39 11496.49 14998.92 96
PAPR94.18 10993.42 12496.48 9097.64 12791.42 12795.55 24897.71 12688.99 20192.34 16195.82 19089.19 8699.11 13286.14 24797.38 12798.90 98
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12397.73 11991.80 12392.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6795.53 6797.20 6697.67 12592.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16597.35 12999.11 78
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10997.80 6697.48 14689.19 19694.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
test22298.24 9392.21 10095.33 25797.60 13579.22 33595.25 10497.84 8188.80 9299.15 7398.72 112
Test By Simon88.73 93
pcd_1.5k_mvsjas7.39 3339.85 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36388.65 940.00 3630.00 3610.00 3610.00 359
PS-MVSNAJss93.74 12693.51 11894.44 19093.91 29389.28 19897.75 7097.56 14192.50 10389.94 21596.54 15688.65 9498.18 20993.83 10590.90 23395.86 221
PS-MVSNAJ95.37 7995.33 7695.49 14797.35 13590.66 15595.31 25997.48 14693.85 5296.51 6195.70 20188.65 9499.65 5394.80 8498.27 10396.17 210
xiu_mvs_v2_base95.32 8195.29 7795.40 15297.22 13890.50 15895.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 14096.69 17697.39 16787.29 25691.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 15095.34 23092.83 8097.17 13398.58 1092.98 8990.13 20795.80 19188.37 9997.85 25691.71 14283.93 30895.73 234
PVSNet_BlendedMVS94.06 11593.92 10594.47 18998.27 8989.46 18896.73 17198.36 1690.17 17294.36 11795.24 22088.02 10099.58 7093.44 11190.72 23594.36 303
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18895.47 25298.36 1688.84 20894.36 11796.09 17988.02 10099.58 7093.44 11198.18 10698.40 138
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17996.79 16797.65 13181.83 32091.52 17597.23 11887.94 10298.91 15371.31 34198.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
MVS_Test94.89 9694.62 9195.68 13496.83 16089.55 18296.70 17497.17 18591.17 14695.60 9896.11 17887.87 10498.76 16593.01 12297.17 13698.72 112
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22493.34 7097.39 10998.71 593.14 8090.10 21194.83 23587.71 10598.03 23391.67 14683.99 30795.46 243
FC-MVSNet-test93.94 12093.57 11495.04 16295.48 22191.45 12598.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25691.49 14890.39 24095.83 225
canonicalmvs96.02 6495.45 7197.75 3797.59 13195.15 2198.28 2597.60 13594.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
FIs94.09 11493.70 11095.27 15495.70 21392.03 10798.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12890.50 23995.84 224
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19391.46 12496.33 20897.04 20088.97 20393.56 13296.51 15787.55 10997.89 25489.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9494.45 9996.36 10196.61 16791.47 12396.41 19797.41 16691.02 15194.50 11595.92 18487.53 11098.78 16293.89 10296.81 14098.84 105
casdiffmvs95.64 7395.49 6996.08 11496.76 16590.45 16097.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12198.25 3390.21 17194.18 12197.27 11587.48 11299.73 3293.53 10897.77 11798.55 119
mvs_anonymous93.82 12393.74 10994.06 20496.44 18185.41 27995.81 23997.05 19889.85 18090.09 21296.36 16687.44 11397.75 26793.97 9896.69 14599.02 83
CANet96.39 5596.02 5997.50 5097.62 12893.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
baseline95.58 7595.42 7396.08 11496.78 16290.41 16297.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
TAMVS94.01 11893.46 12095.64 13596.16 19590.45 16096.71 17396.89 21489.27 19493.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24295.17 10698.03 6687.09 11899.61 6293.51 10999.42 4399.02 83
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19597.57 13892.04 11894.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 17691.94 16593.34 24296.25 18986.97 25396.57 19197.05 19890.67 15789.50 23194.80 23786.59 12197.64 27589.91 17086.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14892.88 13493.48 23595.77 21086.98 25296.44 19397.12 18990.66 15991.30 18297.64 9786.56 12298.05 22989.91 17090.55 23795.41 246
miper_enhance_ethall91.54 20491.01 19793.15 24995.35 22987.07 25193.97 29596.90 21286.79 26589.17 24193.43 29986.55 12397.64 27589.97 16986.93 27094.74 293
1112_ss93.37 13692.42 15296.21 11197.05 15290.99 14296.31 21096.72 22486.87 26489.83 21996.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
diffmvs95.25 8395.13 8195.63 13696.43 18289.34 19395.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
WTY-MVS94.71 10294.02 10496.79 7697.71 12492.05 10696.59 18897.35 17390.61 16394.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30896.64 192.46 15597.80 8486.23 12799.65 5393.72 10698.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19891.13 19592.97 25595.55 21886.57 26294.47 27796.88 21587.77 24388.88 24694.01 27786.22 12897.54 28489.49 18186.93 27094.79 289
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16390.03 16696.81 16697.13 18888.19 22791.30 18294.27 26686.21 12998.63 17687.66 22196.46 15198.12 150
MVSFormer95.37 7995.16 8095.99 12096.34 18691.21 13398.22 3297.57 13891.42 13496.22 7297.32 11386.20 13097.92 25094.07 9699.05 8198.85 103
lupinMVS94.99 9394.56 9396.29 10696.34 18691.21 13395.83 23896.27 24988.93 20596.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11797.46 10497.96 10077.99 33993.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
alignmvs95.87 6995.23 7897.78 3397.56 13395.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
WR-MVS_H92.00 18791.35 18393.95 21295.09 24889.47 18698.04 4598.68 791.46 13288.34 25894.68 24385.86 13497.56 28285.77 25584.24 30494.82 284
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15389.97 17295.53 25096.64 23385.38 28489.65 22595.18 22185.86 13499.10 13387.70 21693.58 19698.49 127
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14692.49 9195.64 24696.64 23389.05 19993.00 14795.79 19485.77 13699.45 10289.16 19494.35 18297.96 155
cl_fuxian91.38 21190.89 19992.88 25895.58 21686.30 26594.68 27296.84 22088.17 22988.83 24994.23 26985.65 13797.47 29189.36 18484.63 29894.89 279
IS-MVSNet94.90 9594.52 9696.05 11797.67 12590.56 15698.44 1696.22 25293.21 7593.99 12497.74 8785.55 13898.45 19089.98 16897.86 11399.14 73
MVS91.71 19490.44 21995.51 14495.20 24391.59 11996.04 22697.45 15773.44 34687.36 28195.60 20585.42 13999.10 13385.97 25297.46 12295.83 225
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 18896.88 21590.13 17491.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
F-COLMAP93.58 13192.98 13195.37 15398.40 7888.98 20697.18 13297.29 17887.75 24590.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16181.89 31496.92 15593.71 32792.41 10584.30 31294.60 24785.08 14397.03 30891.51 14797.36 12898.40 138
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 31095.71 19985.00 14497.77 26689.71 17583.52 31495.78 228
PAPM91.52 20590.30 22595.20 15695.30 23689.83 17593.38 31096.85 21986.26 27288.59 25495.80 19184.88 14598.15 21275.67 32895.93 15697.63 172
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10397.67 8197.47 14988.13 23393.00 14795.84 18884.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 9894.39 10196.18 11295.52 21990.93 14696.09 22496.52 24089.28 19396.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 20998.06 7388.94 20494.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
LS3D93.57 13292.61 14496.47 9197.59 13191.61 11797.67 8197.72 12285.17 28890.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16997.61 12987.92 23298.10 3995.80 26592.22 10993.02 14697.45 10984.53 15097.91 25388.24 20597.97 11199.02 83
cdsmvs_eth3d_5k23.24 32930.99 3310.00 3450.00 3660.00 3670.00 35797.63 1330.00 3620.00 36396.88 13484.38 1510.00 3630.00 3610.00 3610.00 359
test_yl94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
CHOSEN 280x42093.12 14492.72 14094.34 19696.71 16687.27 24390.29 33797.72 12286.61 26891.34 17995.29 21784.29 15498.41 19193.25 11698.94 8697.35 184
baseline192.82 16091.90 16695.55 14297.20 14090.77 15297.19 13194.58 31392.20 11192.36 15996.34 16784.16 15598.21 20489.20 19283.90 31197.68 171
eth_miper_zixun_eth91.02 23090.59 21492.34 27295.33 23384.35 29294.10 29296.90 21288.56 21988.84 24894.33 26184.08 15697.60 28088.77 20084.37 30395.06 268
PCF-MVS89.48 1191.56 20189.95 24196.36 10196.60 16892.52 9092.51 32497.26 17979.41 33488.90 24496.56 15584.04 15799.55 8377.01 32497.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16192.03 16195.14 15995.33 23389.52 18596.04 22697.44 16187.72 24686.25 29695.33 21683.84 15898.79 16189.26 18897.05 13897.11 186
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14297.38 11196.08 25782.38 31689.29 23797.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15695.34 1398.48 1597.87 10894.65 3688.53 25698.02 6783.69 16099.71 3893.18 11798.96 8599.44 47
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 18897.81 11489.87 17792.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
DU-MVS92.90 15592.04 16095.49 14794.95 25492.83 8097.16 13498.24 3493.02 8390.13 20795.71 19983.47 16297.85 25691.71 14283.93 30895.78 228
Baseline_NR-MVSNet91.20 22290.62 21292.95 25693.83 29688.03 23097.01 14795.12 29588.42 22289.70 22295.13 22483.47 16297.44 29489.66 17883.24 31693.37 321
miper_lstm_enhance90.50 25090.06 23991.83 28295.33 23383.74 29893.86 29896.70 22987.56 25087.79 27293.81 28583.45 16496.92 31487.39 22784.62 29994.82 284
EPNet_dtu91.71 19491.28 18892.99 25493.76 29883.71 30096.69 17695.28 28693.15 7987.02 28895.95 18383.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 15392.62 14393.92 21697.22 13886.16 27096.40 20096.25 25190.06 17589.79 22096.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15994.76 26592.07 10597.53 9598.11 5992.90 9289.56 22896.12 17583.16 16797.60 28089.30 18683.20 31795.75 232
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19195.18 26698.48 1485.60 28193.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
PMMVS92.86 15792.34 15394.42 19394.92 25686.73 25794.53 27696.38 24584.78 29594.27 11995.12 22583.13 16998.40 19291.47 14996.49 14998.12 150
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20283.25 30597.14 13796.72 22493.85 5291.20 18993.44 29783.08 17098.30 19991.69 14495.73 16196.50 203
mvs-test193.63 12993.69 11193.46 23796.02 20284.61 29197.24 12396.72 22493.85 5292.30 16295.76 19683.08 17098.89 15591.69 14496.54 14896.87 194
v891.29 21990.53 21893.57 23294.15 28688.12 22997.34 11397.06 19788.99 20188.32 25994.26 26883.08 17098.01 23587.62 22383.92 31094.57 298
cl-mvsnet190.97 23390.33 22292.88 25895.36 22886.19 26994.46 27996.63 23687.82 23988.18 26594.23 26982.99 17397.53 28687.72 21485.57 28394.93 275
cl-mvsnet_90.96 23490.32 22392.89 25795.37 22786.21 26894.46 27996.64 23387.82 23988.15 26694.18 27282.98 17497.54 28487.70 21685.59 28294.92 277
BH-w/o92.14 18591.75 17093.31 24396.99 15585.73 27495.67 24395.69 26988.73 21589.26 23994.82 23682.97 17598.07 22685.26 26296.32 15296.13 214
v14890.99 23190.38 22192.81 26193.83 29685.80 27396.78 16996.68 23089.45 18988.75 25293.93 28182.96 17697.82 26087.83 21283.25 31594.80 287
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17494.58 27498.49 1285.06 29093.78 12995.78 19582.86 17798.67 17391.77 14095.71 16299.07 82
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13490.08 21395.55 20982.85 17897.92 25094.07 9691.58 22095.40 249
PatchmatchNetpermissive91.91 18991.35 18393.59 23095.38 22584.11 29693.15 31495.39 27989.54 18692.10 16793.68 29082.82 17998.13 21384.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 18098.45 132
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
patchmatchnet-post90.45 32882.65 18498.10 218
V4291.58 20090.87 20093.73 22294.05 29088.50 21797.32 11696.97 20588.80 21389.71 22194.33 26182.54 18598.05 22989.01 19585.07 29294.64 297
WR-MVS92.34 17291.53 17894.77 17995.13 24690.83 14996.40 20097.98 9891.88 12289.29 23795.54 21082.50 18697.80 26189.79 17485.27 28895.69 235
tpmrst91.44 20891.32 18591.79 28595.15 24479.20 33693.42 30995.37 28188.55 22093.49 13693.67 29182.49 18798.27 20090.41 16389.34 24997.90 159
MDTV_nov1_ep13_2view70.35 35093.10 31683.88 30593.55 13382.47 18886.25 24498.38 140
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17597.06 15088.53 21695.28 26097.45 15791.68 12694.08 12397.68 9182.41 18998.90 15493.84 10492.47 20596.98 188
QAPM93.45 13592.27 15696.98 7496.77 16392.62 8798.39 1998.12 5684.50 29888.27 26297.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
Patchmatch-test89.42 26887.99 27593.70 22595.27 23785.11 28388.98 34494.37 31881.11 32487.10 28693.69 28882.28 19197.50 28974.37 33294.76 17798.48 129
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17393.36 6998.65 698.36 1694.12 4689.25 24098.06 6482.20 19399.77 2993.41 11399.32 5399.18 69
v1091.04 22990.23 23093.49 23494.12 28788.16 22897.32 11697.08 19488.26 22688.29 26194.22 27182.17 19497.97 24086.45 24284.12 30594.33 304
v114491.37 21390.60 21393.68 22793.89 29488.23 22496.84 16297.03 20288.37 22389.69 22394.39 25782.04 19597.98 23787.80 21385.37 28694.84 281
MVSTER93.20 14292.81 13594.37 19496.56 17389.59 18097.06 13997.12 18991.24 14391.30 18295.96 18282.02 19698.05 22993.48 11090.55 23795.47 242
CP-MVSNet91.89 19091.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12588.21 26495.76 19681.96 19797.52 28887.86 21184.65 29795.37 252
Patchmatch-RL test87.38 28986.24 29090.81 30488.74 34678.40 34088.12 34693.17 33287.11 26082.17 32689.29 33581.95 19895.60 33288.64 20277.02 33398.41 137
sam_mvs81.94 199
pmmvs490.93 23589.85 24594.17 20093.34 31090.79 15194.60 27396.02 25884.62 29687.45 27795.15 22281.88 20097.45 29387.70 21687.87 26194.27 308
test_post17.58 36081.76 20198.08 223
XVG-OURS93.72 12793.35 12594.80 17797.07 14788.61 21394.79 27097.46 15191.97 12193.99 12497.86 7781.74 20298.88 15692.64 12492.67 20396.92 192
v2v48291.59 19890.85 20393.80 22093.87 29588.17 22796.94 15496.88 21589.54 18689.53 22994.90 23181.70 20398.02 23489.25 18985.04 29495.20 264
baseline291.63 19790.86 20193.94 21494.33 28286.32 26495.92 23491.64 34389.37 19186.94 28994.69 24281.62 20498.69 17188.64 20294.57 18196.81 196
v14419291.06 22890.28 22693.39 23993.66 30187.23 24696.83 16397.07 19587.43 25289.69 22394.28 26581.48 20598.00 23687.18 23384.92 29694.93 275
MDTV_nov1_ep1390.76 20795.22 24180.33 32693.03 31795.28 28688.14 23292.84 15393.83 28281.34 20698.08 22382.86 28494.34 183
HQP_MVS93.78 12593.43 12294.82 17396.21 19089.99 16997.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 12092.23 20895.86 221
plane_prior696.10 20090.00 16781.32 207
v7n90.76 23989.86 24493.45 23893.54 30387.60 24097.70 7997.37 17088.85 20787.65 27594.08 27681.08 20998.10 21884.68 26883.79 31294.66 296
HQP2-MVS80.95 210
HQP-MVS93.19 14392.74 13994.54 18895.86 20589.33 19496.65 17997.39 16793.55 6290.14 20395.87 18680.95 21098.50 18692.13 13292.10 21395.78 228
CR-MVSNet90.82 23889.77 24993.95 21294.45 27887.19 24790.23 33895.68 27186.89 26392.40 15692.36 31480.91 21297.05 30781.09 30193.95 18997.60 177
Patchmtry88.64 27987.25 28292.78 26294.09 28886.64 25889.82 34195.68 27180.81 32887.63 27692.36 31480.91 21297.03 30878.86 31485.12 29194.67 295
v119291.07 22790.23 23093.58 23193.70 29987.82 23696.73 17197.07 19587.77 24389.58 22694.32 26380.90 21497.97 24086.52 24085.48 28494.95 271
cl-mvsnet291.21 22190.56 21793.14 25096.09 20186.80 25594.41 28196.58 23987.80 24188.58 25593.99 27980.85 21597.62 27889.87 17286.93 27094.99 270
anonymousdsp92.16 18391.55 17793.97 21092.58 32389.55 18297.51 9697.42 16589.42 19088.40 25794.84 23480.66 21697.88 25591.87 13891.28 22694.48 299
CLD-MVS92.98 15092.53 14894.32 19796.12 19989.20 20095.28 26097.47 14992.66 9989.90 21695.62 20480.58 21798.40 19292.73 12392.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 32016.58 36180.53 21897.68 27186.20 245
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21392.39 9397.86 5998.66 992.30 10792.09 16895.37 21580.49 21998.40 19293.95 9985.86 28095.75 232
tpmvs89.83 26589.15 26391.89 28094.92 25680.30 32793.11 31595.46 27886.28 27188.08 26792.65 30680.44 22098.52 18581.47 29589.92 24496.84 195
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 15095.27 26297.18 18387.96 23591.86 17295.68 20280.44 22098.99 14684.01 27597.54 12196.89 193
PEN-MVS91.20 22290.44 21993.48 23594.49 27687.91 23497.76 6998.18 4691.29 13987.78 27395.74 19880.35 22297.33 30185.46 25982.96 31895.19 265
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23692.09 11689.11 24295.14 22380.33 22398.08 22387.54 22594.74 17996.03 218
MSDG91.42 20990.24 22994.96 16897.15 14488.91 20793.69 30396.32 24785.72 28086.93 29096.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
v192192090.85 23790.03 24093.29 24493.55 30286.96 25496.74 17097.04 20087.36 25489.52 23094.34 26080.23 22597.97 24086.27 24385.21 28994.94 273
RPMNet88.98 27187.05 28694.77 17994.45 27887.19 24790.23 33898.03 8477.87 34192.40 15687.55 34280.17 22699.51 9368.84 34593.95 18997.60 177
ET-MVSNet_ETH3D91.49 20690.11 23595.63 13696.40 18391.57 12195.34 25693.48 32990.60 16575.58 34395.49 21280.08 22796.79 31794.25 9289.76 24698.52 122
PatchT88.87 27587.42 28093.22 24794.08 28985.10 28489.51 34294.64 31281.92 31992.36 15988.15 34080.05 22897.01 31172.43 33793.65 19297.54 180
our_test_388.78 27787.98 27691.20 29992.45 32582.53 30993.61 30795.69 26985.77 27984.88 30793.71 28779.99 22996.78 31879.47 31086.24 27694.28 307
DTE-MVSNet90.56 24789.75 25193.01 25393.95 29187.25 24497.64 8897.65 13190.74 15487.12 28495.68 20279.97 23097.00 31283.33 28081.66 32394.78 291
D2MVS91.30 21890.95 19892.35 27194.71 26885.52 27796.18 22198.21 4088.89 20686.60 29393.82 28479.92 23197.95 24689.29 18790.95 23293.56 317
TransMVSNet (Re)88.94 27287.56 27993.08 25294.35 28188.45 21997.73 7395.23 29087.47 25184.26 31395.29 21779.86 23297.33 30179.44 31274.44 33993.45 320
ACMM89.79 892.96 15192.50 15094.35 19596.30 18888.71 21197.58 9197.36 17291.40 13790.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18391.23 19194.95 16994.75 26690.94 14597.47 10297.43 16489.14 19788.90 24496.43 16179.71 23498.24 20189.56 18087.68 26395.67 237
PS-CasMVS91.55 20290.84 20493.69 22694.96 25388.28 22197.84 6398.24 3491.46 13288.04 26895.80 19179.67 23597.48 29087.02 23584.54 30195.31 255
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21891.42 13491.28 18596.43 16179.66 23698.10 21893.29 11590.06 24295.46 243
ab-mvs93.57 13292.55 14696.64 7897.28 13791.96 11195.40 25497.45 15789.81 18293.22 14596.28 16979.62 23799.46 10090.74 16093.11 19798.50 125
v124090.70 24489.85 24593.23 24693.51 30586.80 25596.61 18597.02 20387.16 25989.58 22694.31 26479.55 23897.98 23785.52 25885.44 28594.90 278
CostFormer91.18 22690.70 21092.62 26694.84 26281.76 31594.09 29394.43 31584.15 30192.72 15493.77 28679.43 23998.20 20690.70 16192.18 21197.90 159
CANet_DTU94.37 10593.65 11396.55 8496.46 18092.13 10496.21 21996.67 23294.38 4293.53 13597.03 12779.34 24099.71 3890.76 15998.45 10097.82 166
OPM-MVS93.28 13992.76 13694.82 17394.63 27290.77 15296.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13292.28 20795.07 267
JIA-IIPM88.26 28387.04 28791.91 27993.52 30481.42 31789.38 34394.38 31780.84 32790.93 19180.74 34779.22 24297.92 25082.76 28691.62 21996.38 206
CVMVSNet91.23 22091.75 17089.67 31895.77 21074.69 34596.44 19394.88 30585.81 27892.18 16497.64 9779.07 24395.58 33388.06 20895.86 15898.74 110
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19588.26 22297.65 8497.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
LGP-MVS_train94.10 20296.16 19588.26 22297.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
test-LLR91.42 20991.19 19392.12 27594.59 27380.66 32194.29 28792.98 33391.11 14890.76 19292.37 31179.02 24698.07 22688.81 19896.74 14297.63 172
test0.0.03 189.37 26988.70 26791.41 29592.47 32485.63 27595.22 26592.70 33591.11 14886.91 29193.65 29279.02 24693.19 34778.00 31789.18 25095.41 246
ADS-MVSNet289.45 26788.59 26992.03 27795.86 20582.26 31390.93 33394.32 32083.23 31291.28 18591.81 32179.01 24895.99 32479.52 30891.39 22497.84 163
ADS-MVSNet89.89 26288.68 26893.53 23395.86 20584.89 28890.93 33395.07 29783.23 31291.28 18591.81 32179.01 24897.85 25679.52 30891.39 22497.84 163
ppachtmachnet_test88.35 28287.29 28191.53 29192.45 32583.57 30393.75 30195.97 25984.28 29985.32 30594.18 27279.00 25096.93 31375.71 32784.99 29594.10 310
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 23092.73 8398.27 2698.12 5684.86 29385.78 29997.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
LTVRE_ROB88.41 1390.99 23189.92 24294.19 19996.18 19389.55 18296.31 21097.09 19387.88 23885.67 30095.91 18578.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 19390.75 20894.81 17597.00 15488.57 21496.65 17996.49 24189.63 18592.15 16596.12 17578.66 25398.50 18690.83 15879.18 33097.36 183
pm-mvs190.72 24389.65 25593.96 21194.29 28589.63 17797.79 6796.82 22189.07 19886.12 29895.48 21378.61 25497.78 26486.97 23681.67 32294.46 300
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12183.69 30292.88 31896.72 22487.91 23793.00 14794.86 23378.51 25599.05 14286.53 23997.45 12698.47 130
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18388.20 22597.36 11297.25 18191.52 12988.30 26096.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd91.55 20290.59 21494.44 19091.51 33190.25 16492.70 32193.42 33092.27 10890.22 20294.74 24078.42 25797.80 26194.19 9487.86 26295.29 262
BH-RMVSNet92.72 16391.97 16494.97 16797.16 14287.99 23196.15 22295.60 27390.62 16291.87 17197.15 12278.41 25898.57 18283.16 28197.60 12098.36 142
thres20092.23 18091.39 18294.75 18197.61 12989.03 20596.60 18795.09 29692.08 11793.28 14294.00 27878.39 25999.04 14481.26 30094.18 18496.19 209
MDA-MVSNet_test_wron85.87 30284.23 30690.80 30692.38 32782.57 30893.17 31295.15 29382.15 31767.65 34792.33 31778.20 26095.51 33477.33 31979.74 32794.31 306
tfpn200view992.38 17191.52 17994.95 16997.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.48 204
thres40092.42 16991.52 17995.12 16197.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.98 188
YYNet185.87 30284.23 30690.78 30792.38 32782.46 31193.17 31295.14 29482.12 31867.69 34692.36 31478.16 26395.50 33577.31 32079.73 32894.39 302
CL-MVSNet_2432*160086.31 29785.15 29989.80 31788.83 34581.74 31693.93 29796.22 25286.67 26685.03 30690.80 32678.09 26494.50 33974.92 32971.86 34393.15 322
thres100view90092.43 16891.58 17694.98 16697.92 11389.37 19297.71 7894.66 31092.20 11193.31 14194.90 23178.06 26599.08 13881.40 29694.08 18596.48 204
thres600view792.49 16791.60 17595.18 15797.91 11489.47 18697.65 8494.66 31092.18 11593.33 14094.91 23078.06 26599.10 13381.61 29394.06 18896.98 188
tpm cat188.36 28187.21 28491.81 28495.13 24680.55 32492.58 32395.70 26874.97 34387.45 27791.96 31978.01 26798.17 21180.39 30488.74 25596.72 199
MVP-Stereo90.74 24290.08 23692.71 26393.19 31388.20 22595.86 23696.27 24986.07 27584.86 30894.76 23877.84 26897.75 26783.88 27898.01 11092.17 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 24489.81 24793.37 24194.73 26784.21 29493.67 30488.02 35089.50 18892.38 15893.49 29577.82 26997.78 26486.03 25192.68 20298.11 153
tfpnnormal89.70 26688.40 27193.60 22995.15 24490.10 16597.56 9398.16 5087.28 25786.16 29794.63 24677.57 27098.05 22974.48 33084.59 30092.65 329
tpm90.25 25489.74 25291.76 28893.92 29279.73 33293.98 29493.54 32888.28 22591.99 16993.25 30077.51 27197.44 29487.30 23087.94 26098.12 150
thisisatest051592.29 17691.30 18795.25 15596.60 16888.90 20894.36 28392.32 33787.92 23693.43 13894.57 24877.28 27299.00 14589.42 18395.86 15897.86 162
FMVSNet391.78 19290.69 21195.03 16396.53 17592.27 9997.02 14396.93 20889.79 18389.35 23494.65 24577.01 27397.47 29186.12 24888.82 25295.35 253
test_part192.21 18291.10 19695.51 14497.80 11992.66 8598.02 4697.68 12789.79 18388.80 25096.02 18076.85 27498.18 20990.86 15784.11 30695.69 235
TR-MVS91.48 20790.59 21494.16 20196.40 18387.33 24195.67 24395.34 28587.68 24791.46 17695.52 21176.77 27598.35 19682.85 28593.61 19496.79 197
tttt051792.96 15192.33 15494.87 17297.11 14587.16 24997.97 5292.09 33990.63 16193.88 12897.01 12876.50 27699.06 14190.29 16795.45 16598.38 140
RPSCF90.75 24190.86 20190.42 31196.84 15876.29 34395.61 24796.34 24683.89 30491.38 17797.87 7576.45 27798.78 16287.16 23492.23 20896.20 208
tpm289.96 26089.21 26192.23 27494.91 25981.25 31893.78 30094.42 31680.62 32991.56 17493.44 29776.44 27897.94 24785.60 25792.08 21597.49 181
thisisatest053093.03 14892.21 15795.49 14797.07 14789.11 20497.49 10192.19 33890.16 17394.09 12296.41 16376.43 27999.05 14290.38 16495.68 16398.31 144
EU-MVSNet88.72 27888.90 26588.20 32293.15 31474.21 34696.63 18494.22 32285.18 28787.32 28295.97 18176.16 28094.98 33785.27 26186.17 27795.41 246
dp88.90 27488.26 27490.81 30494.58 27576.62 34292.85 31994.93 30385.12 28990.07 21493.07 30175.81 28198.12 21680.53 30387.42 26797.71 169
IterMVS-SCA-FT90.31 25289.81 24791.82 28395.52 21984.20 29594.30 28696.15 25590.61 16387.39 28094.27 26675.80 28296.44 32087.34 22886.88 27494.82 284
SCA91.84 19191.18 19493.83 21895.59 21584.95 28794.72 27195.58 27590.82 15292.25 16393.69 28875.80 28298.10 21886.20 24595.98 15498.45 132
IterMVS90.15 25889.67 25391.61 29095.48 22183.72 29994.33 28596.12 25689.99 17687.31 28394.15 27475.78 28496.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 12088.85 24796.50 15875.62 28598.11 21793.88 10391.56 22195.48 240
cascas91.20 22290.08 23694.58 18794.97 25289.16 20393.65 30597.59 13779.90 33289.40 23292.92 30375.36 28698.36 19592.14 13194.75 17896.23 207
VPNet92.23 18091.31 18694.99 16495.56 21790.96 14497.22 12997.86 11192.96 9090.96 19096.62 15375.06 28798.20 20691.90 13683.65 31395.80 227
N_pmnet78.73 31778.71 31978.79 33292.80 31946.50 36194.14 29143.71 36378.61 33780.83 32991.66 32474.94 28896.36 32167.24 34684.45 30293.50 318
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11888.76 25196.45 16074.62 28998.09 22293.91 10191.48 22295.45 245
DSMNet-mixed86.34 29686.12 29387.00 32789.88 34070.43 34994.93 26990.08 34877.97 34085.42 30492.78 30574.44 29093.96 34374.43 33195.14 16996.62 200
pmmvs589.86 26488.87 26692.82 26092.86 31786.23 26796.26 21495.39 27984.24 30087.12 28494.51 25074.27 29197.36 30087.61 22487.57 26494.86 280
OurMVSNet-221017-090.51 24990.19 23491.44 29493.41 30881.25 31896.98 15096.28 24891.68 12686.55 29496.30 16874.20 29297.98 23788.96 19687.40 26895.09 266
GBi-Net91.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
test191.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
FMVSNet291.31 21790.08 23694.99 16496.51 17692.21 10097.41 10596.95 20688.82 21088.62 25394.75 23973.87 29397.42 29685.20 26388.55 25795.35 253
COLMAP_ROBcopyleft87.81 1590.40 25189.28 26093.79 22197.95 11087.13 25096.92 15595.89 26282.83 31486.88 29297.18 11973.77 29699.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 23989.89 24393.38 24095.04 25083.70 30195.85 23794.30 32188.19 22790.46 19692.80 30473.61 29798.50 18688.16 20690.58 23697.95 157
Anonymous2023120687.09 29186.14 29289.93 31691.22 33380.35 32596.11 22395.35 28283.57 30984.16 31493.02 30273.54 29895.61 33172.16 33886.14 27893.84 315
UGNet94.04 11793.28 12796.31 10396.85 15791.19 13697.88 5897.68 12794.40 4093.00 14796.18 17273.39 29999.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121190.63 24689.42 25794.27 19898.24 9389.19 20298.05 4497.89 10479.95 33188.25 26394.96 22772.56 30098.13 21389.70 17685.14 29095.49 239
ACMH87.59 1690.53 24889.42 25793.87 21796.21 19087.92 23297.24 12396.94 20788.45 22183.91 31996.27 17071.92 30198.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 21190.31 22494.59 18394.65 27087.62 23994.34 28496.19 25490.73 15590.35 19993.83 28271.84 30297.96 24487.22 23193.61 19498.21 147
SixPastTwentyTwo89.15 27088.54 27090.98 30193.49 30680.28 32896.70 17494.70 30990.78 15384.15 31595.57 20671.78 30397.71 27084.63 26985.07 29294.94 273
gg-mvs-nofinetune87.82 28685.61 29594.44 19094.46 27789.27 19991.21 33284.61 35580.88 32689.89 21874.98 34971.50 30497.53 28685.75 25697.21 13496.51 202
test20.0386.14 29985.40 29788.35 32090.12 33780.06 33095.90 23595.20 29188.59 21681.29 32893.62 29371.43 30592.65 34871.26 34281.17 32592.34 333
MS-PatchMatch90.27 25389.77 24991.78 28694.33 28284.72 29095.55 24896.73 22386.17 27486.36 29595.28 21971.28 30697.80 26184.09 27498.14 10892.81 326
PVSNet_082.17 1985.46 30583.64 30890.92 30295.27 23779.49 33390.55 33695.60 27383.76 30783.00 32489.95 33171.09 30797.97 24082.75 28760.79 35195.31 255
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32683.33 35687.98 27189.84 33371.00 30896.87 31582.08 29295.40 16694.80 287
ITE_SJBPF92.43 26995.34 23085.37 28095.92 26091.47 13187.75 27496.39 16571.00 30897.96 24482.36 29089.86 24593.97 313
IB-MVS87.33 1789.91 26188.28 27394.79 17895.26 24087.70 23895.12 26893.95 32689.35 19287.03 28792.49 30970.74 31099.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 30682.95 31091.17 30093.13 31583.33 30494.56 27595.00 29984.57 29765.13 35092.65 30670.45 31195.85 32773.57 33577.49 33294.33 304
RRT_test8_iter0591.19 22590.78 20692.41 27095.76 21283.14 30697.32 11697.46 15191.37 13889.07 24395.57 20670.33 31298.21 20493.56 10786.62 27595.89 220
AllTest90.23 25588.98 26493.98 20897.94 11186.64 25896.51 19295.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
TestCases93.98 20897.94 11186.64 25895.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
ACMH+87.92 1490.20 25689.18 26293.25 24596.48 17986.45 26396.99 14896.68 23088.83 20984.79 30996.22 17170.16 31598.53 18484.42 27388.04 25994.77 292
DIV-MVS_2432*160085.95 30184.95 30088.96 31989.55 34379.11 33795.13 26796.42 24385.91 27784.07 31790.48 32770.03 31694.82 33880.04 30572.94 34292.94 324
Anonymous2024052991.98 18890.73 20995.73 13298.14 10389.40 19097.99 4797.72 12279.63 33393.54 13497.41 11169.94 31799.56 8091.04 15691.11 22898.22 146
pmmvs-eth3d86.22 29884.45 30491.53 29188.34 34787.25 24494.47 27795.01 29883.47 31079.51 33889.61 33469.75 31895.71 33083.13 28276.73 33591.64 337
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 13097.94 5493.39 33190.57 16696.29 7098.31 4769.00 31999.16 12794.18 9595.87 15799.12 77
TESTMET0.1,190.06 25989.42 25791.97 27894.41 28080.62 32394.29 28791.97 34187.28 25790.44 19792.47 31068.79 32097.67 27288.50 20496.60 14797.61 176
XVG-ACMP-BASELINE90.93 23590.21 23393.09 25194.31 28485.89 27295.33 25797.26 17991.06 15089.38 23395.44 21468.61 32198.60 17989.46 18291.05 22994.79 289
MVS-HIRNet82.47 31481.21 31686.26 32995.38 22569.21 35288.96 34589.49 34966.28 34880.79 33074.08 35168.48 32297.39 29871.93 33995.47 16492.18 335
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17397.72 7695.85 26392.43 10495.86 8698.44 2868.42 32399.39 10996.31 2894.85 17498.71 114
test_040286.46 29584.79 30291.45 29395.02 25185.55 27696.29 21294.89 30480.90 32582.21 32593.97 28068.21 32497.29 30362.98 34988.68 25691.51 339
test-mter90.19 25789.54 25692.12 27594.59 27380.66 32194.29 28792.98 33387.68 24790.76 19292.37 31167.67 32598.07 22688.81 19896.74 14297.63 172
VDDNet93.05 14792.07 15996.02 11896.84 15890.39 16398.08 4295.85 26386.22 27395.79 8998.46 2667.59 32699.19 12394.92 7894.85 17498.47 130
USDC88.94 27287.83 27792.27 27394.66 26984.96 28693.86 29895.90 26187.34 25583.40 32195.56 20867.43 32798.19 20882.64 28989.67 24793.66 316
pmmvs687.81 28786.19 29192.69 26491.32 33286.30 26597.34 11396.41 24480.59 33084.05 31894.37 25967.37 32897.67 27284.75 26779.51 32994.09 312
KD-MVS_2432*160084.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
miper_refine_blended84.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
K. test v387.64 28886.75 28990.32 31293.02 31679.48 33496.61 18592.08 34090.66 15980.25 33594.09 27567.21 32996.65 31985.96 25380.83 32694.83 282
CMPMVSbinary62.92 2185.62 30484.92 30187.74 32489.14 34473.12 34894.17 29096.80 22273.98 34473.65 34594.93 22966.36 33297.61 27983.95 27791.28 22692.48 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 21690.22 23294.68 18294.86 26187.86 23597.23 12897.46 15187.99 23489.90 21696.92 13266.35 33398.23 20290.30 16690.99 23197.96 155
lessismore_v090.45 31091.96 33079.09 33887.19 35380.32 33494.39 25766.31 33497.55 28384.00 27676.84 33494.70 294
Anonymous20240521192.07 18690.83 20595.76 12798.19 10088.75 21097.58 9195.00 29986.00 27693.64 13197.45 10966.24 33599.53 8890.68 16292.71 20199.01 87
new-patchmatchnet83.18 31281.87 31487.11 32686.88 35075.99 34493.70 30295.18 29285.02 29177.30 34188.40 33765.99 33693.88 34474.19 33470.18 34591.47 341
FMVSNet189.88 26388.31 27294.59 18395.41 22391.18 13797.50 9796.93 20886.62 26787.41 27994.51 25065.94 33797.29 30383.04 28387.43 26695.31 255
TDRefinement86.53 29484.76 30391.85 28182.23 35384.25 29396.38 20395.35 28284.97 29284.09 31694.94 22865.76 33898.34 19884.60 27074.52 33892.97 323
UnsupCasMVSNet_eth85.99 30084.45 30490.62 30889.97 33982.40 31293.62 30697.37 17089.86 17878.59 34092.37 31165.25 33995.35 33682.27 29170.75 34494.10 310
LF4IMVS87.94 28587.25 28289.98 31592.38 32780.05 33194.38 28295.25 28987.59 24984.34 31194.74 24064.31 34097.66 27484.83 26587.45 26592.23 334
MIMVSNet88.50 28086.76 28893.72 22494.84 26287.77 23791.39 32894.05 32386.41 27087.99 27092.59 30863.27 34195.82 32977.44 31892.84 20097.57 179
FMVSNet587.29 29085.79 29491.78 28694.80 26487.28 24295.49 25195.28 28684.09 30283.85 32091.82 32062.95 34294.17 34278.48 31585.34 28793.91 314
testgi87.97 28487.21 28490.24 31392.86 31780.76 32096.67 17894.97 30191.74 12485.52 30195.83 18962.66 34394.47 34176.25 32588.36 25895.48 240
TinyColmap86.82 29385.35 29891.21 29894.91 25982.99 30793.94 29694.02 32583.58 30881.56 32794.68 24362.34 34498.13 21375.78 32687.35 26992.52 331
new_pmnet82.89 31381.12 31788.18 32389.63 34180.18 32991.77 32792.57 33676.79 34275.56 34488.23 33961.22 34594.48 34071.43 34082.92 31989.87 344
OpenMVS_ROBcopyleft81.14 2084.42 31082.28 31390.83 30390.06 33884.05 29795.73 24294.04 32473.89 34580.17 33691.53 32559.15 34697.64 27566.92 34789.05 25190.80 342
MIMVSNet184.93 30783.05 30990.56 30989.56 34284.84 28995.40 25495.35 28283.91 30380.38 33392.21 31857.23 34793.34 34670.69 34482.75 32193.50 318
EG-PatchMatch MVS87.02 29285.44 29691.76 28892.67 32185.00 28596.08 22596.45 24283.41 31179.52 33793.49 29557.10 34897.72 26979.34 31390.87 23492.56 330
MVS_030488.79 27687.57 27892.46 26794.65 27086.15 27196.40 20097.17 18586.44 26988.02 26991.71 32356.68 34997.03 30884.47 27192.58 20494.19 309
UnsupCasMVSNet_bld82.13 31579.46 31890.14 31488.00 34882.47 31090.89 33596.62 23878.94 33675.61 34284.40 34556.63 35096.31 32277.30 32166.77 34891.63 338
tmp_tt51.94 32753.82 32746.29 34133.73 36345.30 36378.32 35367.24 36218.02 35850.93 35487.05 34452.99 35153.11 35970.76 34325.29 35740.46 355
pmmvs379.97 31677.50 32087.39 32582.80 35279.38 33592.70 32190.75 34770.69 34778.66 33987.47 34351.34 35293.40 34573.39 33669.65 34689.38 345
DeepMVS_CXcopyleft74.68 33690.84 33664.34 35681.61 35865.34 34967.47 34888.01 34148.60 35380.13 35562.33 35073.68 34179.58 349
PM-MVS83.48 31181.86 31588.31 32187.83 34977.59 34193.43 30891.75 34286.91 26280.63 33189.91 33244.42 35495.84 32885.17 26476.73 33591.50 340
ambc86.56 32883.60 35170.00 35185.69 34894.97 30180.60 33288.45 33637.42 35596.84 31682.69 28875.44 33792.86 325
Gipumacopyleft67.86 32165.41 32475.18 33592.66 32273.45 34766.50 35594.52 31453.33 35357.80 35366.07 35330.81 35689.20 35048.15 35378.88 33162.90 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 32651.31 32954.39 34072.62 35845.39 36283.84 35075.51 36041.13 35640.77 35759.65 35630.08 35773.60 35728.31 35729.90 35644.18 354
FPMVS71.27 31969.85 32175.50 33474.64 35559.03 35791.30 32991.50 34458.80 35157.92 35288.28 33829.98 35885.53 35353.43 35182.84 32081.95 348
E-PMN53.28 32452.56 32855.43 33974.43 35647.13 36083.63 35176.30 35942.23 35542.59 35662.22 35528.57 35974.40 35631.53 35631.51 35444.78 353
PMMVS270.19 32066.92 32380.01 33176.35 35465.67 35486.22 34787.58 35264.83 35062.38 35180.29 34826.78 36088.49 35163.79 34854.07 35285.88 346
ANet_high63.94 32259.58 32577.02 33361.24 36166.06 35385.66 34987.93 35178.53 33842.94 35571.04 35225.42 36180.71 35452.60 35230.83 35584.28 347
LCM-MVSNet72.55 31869.39 32282.03 33070.81 35965.42 35590.12 34094.36 31955.02 35265.88 34981.72 34624.16 36289.96 34974.32 33368.10 34790.71 343
PMVScopyleft53.92 2258.58 32355.40 32668.12 33751.00 36248.64 35978.86 35287.10 35446.77 35435.84 35974.28 3508.76 36386.34 35242.07 35473.91 34069.38 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 32824.57 33226.74 34273.98 35739.89 36457.88 3569.80 36412.27 35910.39 3606.97 3627.03 36436.44 36025.43 35817.39 3583.89 358
MVEpermissive50.73 2353.25 32548.81 33066.58 33865.34 36057.50 35872.49 35470.94 36140.15 35739.28 35863.51 3546.89 36573.48 35838.29 35542.38 35368.76 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 33115.66 3345.18 3434.51 3653.45 36592.50 3251.81 3662.50 3617.58 36220.15 3593.67 3662.18 3627.13 3601.07 3609.90 356
testmvs13.36 33016.33 3334.48 3445.04 3642.26 36693.18 3113.28 3652.70 3608.24 36121.66 3582.29 3672.19 3617.58 3592.96 3599.00 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.06 33210.74 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36396.69 1430.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
IU-MVS99.42 695.39 997.94 10290.40 17098.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
MTGPAbinary98.08 64
MTMP97.86 5982.03 357
gm-plane-assit93.22 31278.89 33984.82 29493.52 29498.64 17587.72 214
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 10099.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior493.66 5996.42 196
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
旧先验295.94 23381.66 32197.34 3498.82 15992.26 126
新几何295.79 240
无先验95.79 24097.87 10883.87 30699.65 5387.68 21998.89 100
原ACMM295.67 243
testdata299.67 4985.96 253
testdata195.26 26493.10 82
plane_prior796.21 19089.98 171
plane_prior597.51 14498.60 17993.02 12092.23 20895.86 221
plane_prior496.64 146
plane_prior390.00 16794.46 3991.34 179
plane_prior297.74 7194.85 24
plane_prior196.14 198
plane_prior89.99 16997.24 12394.06 4792.16 212
n20.00 367
nn0.00 367
door-mid91.06 346
test1197.88 106
door91.13 345
HQP5-MVS89.33 194
HQP-NCC95.86 20596.65 17993.55 6290.14 203
ACMP_Plane95.86 20596.65 17993.55 6290.14 203
BP-MVS92.13 132
HQP4-MVS90.14 20398.50 18695.78 228
HQP3-MVS97.39 16792.10 213
NP-MVS95.99 20489.81 17695.87 186
ACMMP++_ref90.30 241
ACMMP++91.02 230