This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5296.86 198.25 2898.26 5096.04 199.24 11695.36 6399.59 1599.56 22
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
MSP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 10894.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 40
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 12698.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 7694.25 3798.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 4795.86 497.27 11798.08 6595.81 397.87 2398.31 4494.26 1099.68 4797.02 999.49 3499.57 19
SD-MVS97.41 997.53 697.06 6998.57 6894.46 2997.92 5298.14 5494.82 2899.01 398.55 1994.18 1197.41 29196.94 1099.64 1199.32 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS97.59 797.54 597.73 3899.40 1193.77 5798.53 998.29 2495.55 598.56 1297.81 7893.90 1299.65 5396.62 2099.21 6599.77 1
MCST-MVS97.18 1696.84 2498.20 1099.30 2495.35 1297.12 13498.07 7093.54 6496.08 7397.69 8693.86 1399.71 3896.50 2499.39 4799.55 26
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3898.07 4397.85 10893.72 5698.57 1198.35 3593.69 1599.40 10497.06 899.46 3899.44 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS93.97 196.61 4697.09 1295.15 15598.09 10186.63 25596.00 22598.15 5295.43 697.95 1998.56 1793.40 1699.36 10896.77 1799.48 3599.45 44
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4594.28 3497.02 13997.22 17795.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
SF-MVS97.39 1097.13 1198.17 1199.02 4195.28 1798.23 3198.27 2892.37 10398.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
SMA-MVS97.35 1297.03 1498.30 699.06 3995.42 897.94 5098.18 4790.57 16298.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
NCCC97.30 1497.03 1498.11 1498.77 5395.06 2297.34 10998.04 8195.96 297.09 4297.88 7093.18 2099.71 3895.84 4699.17 6899.56 22
9.1496.75 3198.93 4397.73 6998.23 3991.28 13897.88 2298.44 2593.00 2199.65 5395.76 4899.47 36
segment_acmp92.89 22
TSAR-MVS + GP.96.69 4396.49 4397.27 6098.31 8493.39 6596.79 16396.72 22094.17 4597.44 2997.66 8992.76 2399.33 10996.86 1397.76 11499.08 77
TEST998.70 5694.19 3996.41 19298.02 8488.17 22396.03 7497.56 10192.74 2499.59 66
train_agg96.30 5595.83 6097.72 3998.70 5694.19 3996.41 19298.02 8488.58 21196.03 7497.56 10192.73 2599.59 6695.04 7099.37 5299.39 51
test_898.67 5894.06 4896.37 19998.01 8788.58 21195.98 7997.55 10392.73 2599.58 69
agg_prior196.22 5895.77 6197.56 4898.67 5893.79 5496.28 20898.00 8988.76 20895.68 8997.55 10392.70 2799.57 7795.01 7199.32 5399.32 57
CSCG96.05 6195.91 5896.46 9199.24 2890.47 15498.30 2398.57 1189.01 19493.97 12297.57 9992.62 2899.76 3094.66 8499.27 5999.15 69
ETH3D-3000-0.197.07 2296.71 3398.14 1398.90 4795.33 1497.68 7698.24 3591.57 12497.90 2198.37 3392.61 2999.66 5295.59 5999.51 2999.43 48
Regformer-297.16 1896.99 1697.67 4398.32 8293.84 5296.83 15998.10 6295.24 1197.49 2698.25 5192.57 3099.61 6196.80 1499.29 5599.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3796.16 297.55 9097.97 9595.59 496.61 5297.89 6892.57 3099.84 1995.95 4399.51 2999.40 50
PHI-MVS96.77 4096.46 4597.71 4198.40 7494.07 4798.21 3498.45 1589.86 17497.11 4198.01 6492.52 3299.69 4496.03 4299.53 2499.36 55
Regformer-197.10 2096.96 1897.54 4998.32 8293.48 6396.83 15997.99 9395.20 1397.46 2798.25 5192.48 3399.58 6996.79 1699.29 5599.55 26
APD-MVScopyleft96.95 3196.60 3798.01 1999.03 4094.93 2497.72 7298.10 6291.50 12698.01 1898.32 4392.33 3499.58 6994.85 7699.51 2999.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4596.58 3996.99 7198.46 7092.31 9296.20 21598.90 294.30 4495.86 8297.74 8392.33 3499.38 10796.04 4199.42 4399.28 62
MSLP-MVS++96.94 3297.06 1396.59 8198.72 5591.86 10797.67 7798.49 1294.66 3597.24 3398.41 3192.31 3698.94 14696.61 2199.46 3898.96 88
旧先验198.38 7793.38 6697.75 11398.09 5892.30 3799.01 7999.16 67
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4498.52 1098.32 2093.21 7297.18 3598.29 4792.08 3899.83 2295.63 5499.59 1599.54 28
#test#97.02 2696.75 3197.83 2699.42 694.12 4498.15 3798.32 2092.57 9997.18 3598.29 4792.08 3899.83 2295.12 6899.59 1599.54 28
test_prior396.46 5196.20 5397.23 6298.67 5892.99 7596.35 20098.00 8992.80 9296.03 7497.59 9792.01 4099.41 10295.01 7199.38 4899.29 59
test_prior296.35 20092.80 9296.03 7497.59 9792.01 4095.01 7199.38 48
CDPH-MVS95.97 6495.38 7197.77 3598.93 4394.44 3096.35 20097.88 10286.98 25596.65 5097.89 6891.99 4299.47 9592.26 12199.46 3899.39 51
testtj96.93 3396.56 4098.05 1799.10 3494.66 2797.78 6498.22 4092.74 9497.59 2498.20 5491.96 4399.86 894.21 8999.25 6199.63 11
CP-MVS97.02 2696.81 2797.64 4699.33 2293.54 6198.80 398.28 2692.99 8196.45 6298.30 4691.90 4499.85 1495.61 5699.68 499.54 28
Regformer-496.97 2996.87 2197.25 6198.34 7992.66 8496.96 14798.01 8795.12 1797.14 3898.42 2891.82 4599.61 6196.90 1199.13 7199.50 36
ETH3D cwj APD-0.1696.56 4896.06 5598.05 1798.26 8895.19 1896.99 14498.05 8089.85 17697.26 3298.22 5391.80 4699.69 4494.84 7799.28 5799.27 63
DPM-MVS95.69 6994.92 8198.01 1998.08 10295.71 795.27 25797.62 12990.43 16595.55 9597.07 12191.72 4799.50 9289.62 17398.94 8298.82 103
Regformer-396.85 3696.80 2897.01 7098.34 7992.02 10396.96 14797.76 11295.01 2197.08 4398.42 2891.71 4899.54 8296.80 1499.13 7199.48 40
XVS97.18 1696.96 1897.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5498.29 4791.70 4999.80 2795.66 4999.40 4599.62 13
X-MVStestdata91.71 19089.67 24797.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5432.69 34791.70 4999.80 2795.66 4999.40 4599.62 13
ZNCC-MVS96.96 3096.67 3597.85 2599.37 1694.12 4498.49 1498.18 4792.64 9896.39 6498.18 5591.61 5199.88 495.59 5999.55 2199.57 19
ACMMP_NAP97.20 1596.86 2298.23 899.09 3595.16 2097.60 8698.19 4592.82 9197.93 2098.74 1191.60 5299.86 896.26 2999.52 2599.67 8
region2R97.07 2296.84 2497.77 3599.46 193.79 5498.52 1098.24 3593.19 7597.14 3898.34 3891.59 5399.87 795.46 6299.59 1599.64 10
DELS-MVS96.61 4696.38 4897.30 5797.79 11593.19 7195.96 22798.18 4795.23 1295.87 8197.65 9091.45 5499.70 4395.87 4499.44 4299.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2896.86 2297.47 5199.09 3593.27 7097.98 4798.07 7093.75 5597.45 2898.48 2291.43 5599.59 6696.22 3299.27 5999.54 28
GST-MVS96.85 3696.52 4297.82 2999.36 1994.14 4398.29 2498.13 5592.72 9596.70 4698.06 6091.35 5699.86 894.83 7899.28 5799.47 43
ACMMPR97.07 2296.84 2497.79 3299.44 593.88 5198.52 1098.31 2293.21 7297.15 3798.33 4191.35 5699.86 895.63 5499.59 1599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3697.78 3398.64 6394.30 3397.41 10198.04 8194.81 2996.59 5498.37 3391.24 5899.64 6095.16 6699.52 2599.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 6295.89 5996.40 9497.16 13792.44 9097.47 9897.77 11194.55 3796.48 5994.51 24391.23 5998.92 14795.65 5298.19 10197.82 163
ETH3 D test640096.16 5995.52 6598.07 1698.90 4795.06 2297.03 13698.21 4188.16 22596.64 5197.70 8591.18 6099.67 4992.44 12099.47 3699.48 40
PGM-MVS96.81 3896.53 4197.65 4499.35 2193.53 6297.65 8098.98 192.22 10597.14 3898.44 2591.17 6199.85 1494.35 8799.46 3899.57 19
MP-MVS-pluss96.70 4296.27 5097.98 2199.23 3094.71 2696.96 14798.06 7390.67 15395.55 9598.78 1091.07 6299.86 896.58 2299.55 2199.38 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3596.60 3797.64 4699.40 1193.44 6498.50 1398.09 6493.27 7195.95 8098.33 4191.04 6399.88 495.20 6599.57 2099.60 16
HPM-MVScopyleft96.69 4396.45 4697.40 5399.36 1993.11 7398.87 198.06 7391.17 14296.40 6397.99 6590.99 6499.58 6995.61 5699.61 1499.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 3896.71 3397.12 6899.01 4292.31 9297.98 4798.06 7393.11 7897.44 2998.55 1990.93 6599.55 8096.06 4099.25 6199.51 33
test1297.65 4498.46 7094.26 3697.66 12495.52 9890.89 6699.46 9699.25 6199.22 64
zzz-MVS97.07 2296.77 3097.97 2299.37 1694.42 3197.15 13298.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
MTAPA97.08 2196.78 2997.97 2299.37 1694.42 3197.24 11998.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
EI-MVSNet-Vis-set96.51 4996.47 4496.63 7898.24 8991.20 13096.89 15497.73 11594.74 3396.49 5898.49 2190.88 6799.58 6996.44 2798.32 9899.13 71
EIA-MVS95.53 7595.47 6795.71 13197.06 14589.63 17197.82 6097.87 10493.57 6093.92 12395.04 22090.61 7098.95 14594.62 8598.68 8998.54 117
MP-MVScopyleft96.77 4096.45 4697.72 3999.39 1393.80 5398.41 1898.06 7393.37 6795.54 9798.34 3890.59 7199.88 494.83 7899.54 2399.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5496.30 4996.47 8998.20 9490.93 14196.86 15597.72 11894.67 3496.16 7098.46 2390.43 7299.58 6996.23 3197.96 10898.90 95
原ACMM196.38 9798.59 6591.09 13697.89 10087.41 24795.22 10197.68 8790.25 7399.54 8287.95 20499.12 7498.49 124
112194.71 10093.83 10497.34 5598.57 6893.64 5996.04 22197.73 11581.56 31395.68 8997.85 7490.23 7499.65 5387.68 21399.12 7498.73 108
CS-MVS95.80 6895.65 6396.24 10897.32 13191.43 12198.10 3997.91 9993.38 6695.16 10394.57 24190.21 7598.98 14395.53 6198.67 9098.30 142
HPM-MVS_fast96.51 4996.27 5097.22 6499.32 2392.74 8198.74 498.06 7390.57 16296.77 4598.35 3590.21 7599.53 8594.80 8199.63 1299.38 53
testdata95.46 14898.18 9888.90 20397.66 12482.73 30597.03 4498.07 5990.06 7798.85 15389.67 17198.98 8098.64 114
新几何197.32 5698.60 6493.59 6097.75 11381.58 31295.75 8697.85 7490.04 7899.67 4986.50 23599.13 7198.69 112
DP-MVS Recon95.68 7095.12 7997.37 5499.19 3194.19 3997.03 13698.08 6588.35 21895.09 10497.65 9089.97 7999.48 9492.08 13098.59 9398.44 132
MVS_111021_LR96.24 5796.19 5496.39 9698.23 9391.35 12396.24 21398.79 493.99 4995.80 8497.65 9089.92 8099.24 11695.87 4499.20 6698.58 115
EPP-MVSNet95.22 8395.04 8095.76 12597.49 12989.56 17598.67 597.00 20090.69 15294.24 11697.62 9589.79 8198.81 15693.39 10996.49 14598.92 93
PAPR94.18 10793.42 12196.48 8897.64 12291.42 12295.55 24397.71 12288.99 19592.34 15795.82 18489.19 8299.11 12886.14 24197.38 12398.90 95
MG-MVS95.61 7295.38 7196.31 10198.42 7390.53 15296.04 22197.48 14193.47 6595.67 9298.10 5789.17 8399.25 11591.27 14998.77 8699.13 71
PAPM_NR95.01 8794.59 8996.26 10698.89 5090.68 14997.24 11997.73 11591.80 11992.93 14896.62 14989.13 8499.14 12689.21 18597.78 11298.97 87
ACMMPcopyleft96.27 5695.93 5797.28 5999.24 2892.62 8598.25 2898.81 392.99 8194.56 11098.39 3288.96 8599.85 1494.57 8697.63 11599.36 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6595.53 6497.20 6697.67 12092.98 7797.65 8098.13 5594.81 2996.61 5298.35 3588.87 8699.51 9090.36 15997.35 12599.11 75
API-MVS94.84 9694.49 9495.90 12197.90 11192.00 10497.80 6297.48 14189.19 19094.81 10796.71 13588.84 8799.17 12288.91 19198.76 8796.53 197
test22298.24 8992.21 9595.33 25297.60 13079.22 32595.25 10097.84 7788.80 8899.15 6998.72 109
Test By Simon88.73 89
pcd_1.5k_mvsjas7.39 3259.85 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35388.65 900.00 3540.00 3510.00 3510.00 350
PS-MVSNAJss93.74 12493.51 11594.44 18593.91 28789.28 19397.75 6697.56 13692.50 10089.94 20996.54 15288.65 9098.18 20493.83 10090.90 22995.86 217
PS-MVSNAJ95.37 7795.33 7395.49 14497.35 13090.66 15095.31 25497.48 14193.85 5296.51 5795.70 19588.65 9099.65 5394.80 8198.27 9996.17 206
xiu_mvs_v2_base95.32 7995.29 7495.40 14997.22 13390.50 15395.44 24897.44 15693.70 5896.46 6196.18 16888.59 9399.53 8594.79 8397.81 11196.17 206
PLCcopyleft91.00 694.11 11193.43 11996.13 11198.58 6791.15 13596.69 17297.39 16287.29 25091.37 17396.71 13588.39 9499.52 8987.33 22397.13 13397.73 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13492.67 13895.47 14795.34 22492.83 7997.17 12998.58 1092.98 8690.13 20195.80 18588.37 9597.85 25191.71 13883.93 30395.73 230
PVSNet_BlendedMVS94.06 11393.92 10294.47 18498.27 8589.46 18296.73 16798.36 1690.17 16894.36 11395.24 21488.02 9699.58 6993.44 10690.72 23194.36 298
PVSNet_Blended94.87 9594.56 9095.81 12498.27 8589.46 18295.47 24798.36 1688.84 20294.36 11396.09 17488.02 9699.58 6993.44 10698.18 10298.40 135
TAPA-MVS90.10 792.30 17391.22 18995.56 13898.33 8189.60 17396.79 16397.65 12681.83 31091.52 17097.23 11487.94 9898.91 14971.31 33198.37 9798.17 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5296.21 5296.98 7298.89 5092.20 9797.89 5398.03 8393.34 7097.22 3498.42 2887.93 9999.72 3595.10 6999.07 7699.02 80
MVS_Test94.89 9494.62 8895.68 13296.83 15489.55 17696.70 17097.17 18091.17 14295.60 9496.11 17387.87 10098.76 16193.01 11797.17 13298.72 109
UniMVSNet (Re)93.31 13692.55 14395.61 13695.39 21893.34 6997.39 10598.71 593.14 7790.10 20594.83 22987.71 10198.03 22791.67 14283.99 30295.46 238
FC-MVSNet-test93.94 11893.57 11195.04 15995.48 21591.45 12098.12 3898.71 593.37 6790.23 19696.70 13787.66 10297.85 25191.49 14490.39 23695.83 221
canonicalmvs96.02 6295.45 6897.75 3797.59 12695.15 2198.28 2597.60 13094.52 3896.27 6796.12 17187.65 10399.18 12196.20 3794.82 17298.91 94
FIs94.09 11293.70 10795.27 15195.70 20792.03 10298.10 3998.68 793.36 6990.39 19396.70 13787.63 10497.94 24192.25 12390.50 23595.84 220
CDS-MVSNet94.14 11093.54 11395.93 11996.18 18791.46 11996.33 20397.04 19688.97 19793.56 12896.51 15387.55 10597.89 24989.80 16795.95 15198.44 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9294.45 9696.36 9996.61 16191.47 11896.41 19297.41 16191.02 14794.50 11195.92 17887.53 10698.78 15893.89 9796.81 13698.84 102
casdiffmvs95.64 7195.49 6696.08 11296.76 15990.45 15597.29 11697.44 15694.00 4895.46 9997.98 6687.52 10798.73 16395.64 5397.33 12699.08 77
PVSNet_Blended_VisFu95.27 8094.91 8296.38 9798.20 9490.86 14397.27 11798.25 3490.21 16794.18 11797.27 11187.48 10899.73 3293.53 10397.77 11398.55 116
mvs_anonymous93.82 12193.74 10694.06 19996.44 17585.41 27395.81 23497.05 19489.85 17690.09 20696.36 16287.44 10997.75 26193.97 9396.69 14199.02 80
CANet96.39 5396.02 5697.50 5097.62 12393.38 6697.02 13997.96 9695.42 794.86 10697.81 7887.38 11099.82 2596.88 1299.20 6699.29 59
baseline95.58 7395.42 7096.08 11296.78 15690.41 15797.16 13097.45 15293.69 5995.65 9397.85 7487.29 11198.68 16895.66 4997.25 12999.13 71
TAMVS94.01 11693.46 11795.64 13396.16 18990.45 15596.71 16996.89 21089.27 18893.46 13396.92 12887.29 11197.94 24188.70 19595.74 15698.53 118
nrg03094.05 11493.31 12396.27 10595.22 23594.59 2898.34 2097.46 14692.93 8891.21 18396.64 14287.23 11398.22 19894.99 7485.80 27795.98 215
CPTT-MVS95.57 7495.19 7696.70 7599.27 2691.48 11798.33 2198.11 6087.79 23695.17 10298.03 6287.09 11499.61 6193.51 10499.42 4399.02 80
OMC-MVS95.09 8694.70 8796.25 10798.46 7091.28 12496.43 19097.57 13392.04 11494.77 10897.96 6787.01 11599.09 13291.31 14896.77 13798.36 139
DeepC-MVS93.07 396.06 6095.66 6297.29 5897.96 10593.17 7297.30 11598.06 7393.92 5093.38 13598.66 1286.83 11699.73 3295.60 5899.22 6498.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 17491.94 16293.34 23896.25 18386.97 24796.57 18697.05 19490.67 15389.50 22594.80 23186.59 11797.64 26989.91 16486.11 27595.40 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14692.88 13193.48 23195.77 20486.98 24696.44 18897.12 18490.66 15591.30 17797.64 9386.56 11898.05 22389.91 16490.55 23395.41 241
miper_enhance_ethall91.54 19991.01 19393.15 24595.35 22387.07 24593.97 29096.90 20886.79 25989.17 23593.43 29286.55 11997.64 26989.97 16386.93 26694.74 288
1112_ss93.37 13492.42 14996.21 10997.05 14790.99 13796.31 20596.72 22086.87 25889.83 21396.69 13986.51 12099.14 12688.12 20193.67 18798.50 122
diffmvs95.25 8195.13 7895.63 13496.43 17689.34 18795.99 22697.35 16892.83 9096.31 6597.37 10886.44 12198.67 16996.26 2997.19 13198.87 99
WTY-MVS94.71 10094.02 10196.79 7497.71 11992.05 10196.59 18397.35 16890.61 15994.64 10996.93 12586.41 12299.39 10591.20 15194.71 17698.94 91
EPNet95.20 8494.56 9097.14 6792.80 31392.68 8397.85 5894.87 30096.64 192.46 15197.80 8086.23 12399.65 5393.72 10198.62 9299.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19491.13 19292.97 25195.55 21286.57 25694.47 27296.88 21187.77 23788.88 24094.01 27086.22 12497.54 27889.49 17586.93 26694.79 284
Fast-Effi-MVS+93.46 13292.75 13595.59 13796.77 15790.03 16096.81 16297.13 18388.19 22191.30 17794.27 25986.21 12598.63 17287.66 21596.46 14798.12 147
MVSFormer95.37 7795.16 7795.99 11896.34 18091.21 12898.22 3297.57 13391.42 13096.22 6897.32 10986.20 12697.92 24594.07 9199.05 7798.85 100
lupinMVS94.99 9194.56 9096.29 10496.34 18091.21 12895.83 23396.27 24388.93 19996.22 6896.88 13086.20 12698.85 15395.27 6499.05 7798.82 103
114514_t93.95 11793.06 12796.63 7899.07 3891.61 11297.46 10097.96 9677.99 32993.00 14397.57 9986.14 12899.33 10989.22 18499.15 6998.94 91
alignmvs95.87 6795.23 7597.78 3397.56 12895.19 1897.86 5597.17 18094.39 4196.47 6096.40 16085.89 12999.20 11896.21 3695.11 16898.95 90
WR-MVS_H92.00 18491.35 18093.95 20795.09 24289.47 18098.04 4598.68 791.46 12888.34 25194.68 23685.86 13097.56 27685.77 24984.24 30094.82 279
Test_1112_low_res92.84 15791.84 16595.85 12397.04 14889.97 16695.53 24596.64 22985.38 27489.65 21995.18 21585.86 13099.10 12987.70 21093.58 19298.49 124
HY-MVS89.66 993.87 11992.95 12996.63 7897.10 14192.49 8995.64 24196.64 22989.05 19393.00 14395.79 18885.77 13299.45 9889.16 18894.35 17897.96 152
cl_fuxian91.38 20690.89 19592.88 25495.58 21086.30 25994.68 26796.84 21688.17 22388.83 24394.23 26285.65 13397.47 28589.36 17884.63 29494.89 274
IS-MVSNet94.90 9394.52 9396.05 11597.67 12090.56 15198.44 1696.22 24693.21 7293.99 12097.74 8385.55 13498.45 18589.98 16297.86 10999.14 70
MVS91.71 19090.44 21395.51 14295.20 23791.59 11496.04 22197.45 15273.44 33687.36 27495.60 19985.42 13599.10 12985.97 24697.46 11895.83 221
VNet95.89 6695.45 6897.21 6598.07 10392.94 7897.50 9398.15 5293.87 5197.52 2597.61 9685.29 13699.53 8595.81 4795.27 16499.16 67
CNLPA94.28 10593.53 11496.52 8398.38 7792.55 8796.59 18396.88 21190.13 17091.91 16597.24 11385.21 13799.09 13287.64 21697.83 11097.92 155
F-COLMAP93.58 12992.98 12895.37 15098.40 7488.98 20197.18 12897.29 17387.75 23990.49 19097.10 12085.21 13799.50 9286.70 23296.72 14097.63 169
LCM-MVSNet-Re92.50 16392.52 14692.44 26496.82 15581.89 30696.92 15193.71 31992.41 10284.30 30494.60 24085.08 13997.03 30391.51 14397.36 12498.40 135
NR-MVSNet92.34 17091.27 18695.53 14194.95 24893.05 7497.39 10598.07 7092.65 9784.46 30295.71 19385.00 14097.77 26089.71 16983.52 30995.78 224
PAPM91.52 20090.30 21995.20 15395.30 23089.83 16993.38 30496.85 21586.26 26588.59 24795.80 18584.88 14198.15 20675.67 31995.93 15297.63 169
MAR-MVS94.22 10693.46 11796.51 8698.00 10492.19 9897.67 7797.47 14488.13 22793.00 14395.84 18284.86 14299.51 9087.99 20398.17 10397.83 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 9694.39 9896.18 11095.52 21390.93 14196.09 21996.52 23689.28 18796.01 7897.32 10984.70 14398.77 16095.15 6798.91 8498.85 100
jason: jason.
sss94.51 10293.80 10596.64 7697.07 14291.97 10596.32 20498.06 7388.94 19894.50 11196.78 13284.60 14499.27 11491.90 13296.02 14998.68 113
LS3D93.57 13092.61 14196.47 8997.59 12691.61 11297.67 7797.72 11885.17 27890.29 19598.34 3884.60 14499.73 3283.85 27398.27 9998.06 151
Vis-MVSNet (Re-imp)94.15 10893.88 10394.95 16697.61 12487.92 22698.10 3995.80 25892.22 10593.02 14297.45 10584.53 14697.91 24888.24 19997.97 10799.02 80
cdsmvs_eth3d_5k23.24 32130.99 3220.00 3370.00 3560.00 3570.00 34897.63 1280.00 3520.00 35396.88 13084.38 1470.00 3540.00 3510.00 3510.00 350
test_yl94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
DCV-MVSNet94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
CHOSEN 280x42093.12 14292.72 13794.34 19096.71 16087.27 23790.29 32897.72 11886.61 26191.34 17495.29 21184.29 15098.41 18693.25 11198.94 8297.35 180
baseline192.82 15891.90 16395.55 14097.20 13590.77 14797.19 12794.58 30592.20 10792.36 15596.34 16384.16 15198.21 19989.20 18683.90 30697.68 168
eth_miper_zixun_eth91.02 22590.59 20992.34 26895.33 22784.35 28494.10 28796.90 20888.56 21388.84 24294.33 25484.08 15297.60 27488.77 19484.37 29995.06 263
PCF-MVS89.48 1191.56 19789.95 23596.36 9996.60 16292.52 8892.51 31797.26 17479.41 32488.90 23896.56 15184.04 15399.55 8077.01 31597.30 12797.01 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 15992.03 15895.14 15695.33 22789.52 17996.04 22197.44 15687.72 24086.25 28995.33 21083.84 15498.79 15789.26 18297.05 13497.11 182
DP-MVS92.76 16091.51 17896.52 8398.77 5390.99 13797.38 10796.08 25082.38 30689.29 23197.87 7183.77 15599.69 4481.37 29396.69 14198.89 97
3Dnovator+91.43 495.40 7694.48 9598.16 1296.90 15095.34 1398.48 1597.87 10494.65 3688.53 24998.02 6383.69 15699.71 3893.18 11298.96 8199.44 46
AdaColmapbinary94.34 10493.68 10996.31 10198.59 6591.68 11196.59 18397.81 11089.87 17392.15 16197.06 12283.62 15799.54 8289.34 17998.07 10597.70 167
DU-MVS92.90 15392.04 15795.49 14494.95 24892.83 7997.16 13098.24 3593.02 8090.13 20195.71 19383.47 15897.85 25191.71 13883.93 30395.78 224
Baseline_NR-MVSNet91.20 21790.62 20792.95 25293.83 29088.03 22497.01 14395.12 28688.42 21689.70 21695.13 21883.47 15897.44 28889.66 17283.24 31193.37 316
miper_lstm_enhance90.50 24590.06 23391.83 27895.33 22783.74 29093.86 29296.70 22587.56 24487.79 26593.81 27883.45 16096.92 30987.39 22184.62 29594.82 279
EPNet_dtu91.71 19091.28 18592.99 25093.76 29283.71 29296.69 17295.28 27793.15 7687.02 28195.95 17783.37 16197.38 29379.46 30496.84 13597.88 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 15192.62 14093.92 21297.22 13386.16 26496.40 19596.25 24590.06 17189.79 21496.17 17083.19 16298.35 19187.19 22697.27 12897.24 181
TranMVSNet+NR-MVSNet92.50 16391.63 17195.14 15694.76 25992.07 10097.53 9198.11 6092.90 8989.56 22296.12 17183.16 16397.60 27489.30 18083.20 31295.75 228
CHOSEN 1792x268894.15 10893.51 11596.06 11498.27 8589.38 18595.18 26198.48 1485.60 27393.76 12697.11 11983.15 16499.61 6191.33 14798.72 8899.19 65
PMMVS92.86 15592.34 15094.42 18794.92 25086.73 25194.53 27196.38 23984.78 28594.27 11595.12 21983.13 16598.40 18791.47 14596.49 14598.12 147
Effi-MVS+-dtu93.08 14393.21 12592.68 26196.02 19683.25 29797.14 13396.72 22093.85 5291.20 18493.44 29083.08 16698.30 19491.69 14095.73 15796.50 199
mvs-test193.63 12793.69 10893.46 23396.02 19684.61 28397.24 11996.72 22093.85 5292.30 15895.76 19083.08 16698.89 15191.69 14096.54 14496.87 190
v891.29 21490.53 21293.57 22894.15 28088.12 22397.34 10997.06 19388.99 19588.32 25294.26 26183.08 16698.01 22987.62 21783.92 30594.57 293
cl-mvsnet190.97 22890.33 21692.88 25495.36 22286.19 26394.46 27496.63 23287.82 23388.18 25894.23 26282.99 16997.53 28087.72 20885.57 27994.93 270
cl-mvsnet_90.96 22990.32 21792.89 25395.37 22186.21 26294.46 27496.64 22987.82 23388.15 25994.18 26582.98 17097.54 27887.70 21085.59 27894.92 272
BH-w/o92.14 18291.75 16793.31 23996.99 14985.73 26895.67 23895.69 26088.73 20989.26 23394.82 23082.97 17198.07 22085.26 25696.32 14896.13 210
v14890.99 22690.38 21592.81 25793.83 29085.80 26796.78 16596.68 22689.45 18388.75 24593.93 27482.96 17297.82 25587.83 20683.25 31094.80 282
HyFIR lowres test93.66 12692.92 13095.87 12298.24 8989.88 16894.58 26998.49 1285.06 28093.78 12595.78 18982.86 17398.67 16991.77 13695.71 15899.07 79
test_djsdf93.07 14492.76 13394.00 20293.49 30088.70 20798.22 3297.57 13391.42 13090.08 20795.55 20382.85 17497.92 24594.07 9191.58 21695.40 245
PatchmatchNetpermissive91.91 18691.35 18093.59 22695.38 21984.11 28893.15 30895.39 27089.54 18092.10 16293.68 28382.82 17598.13 20784.81 26095.32 16398.52 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 17698.45 129
xiu_mvs_v1_base_debu95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base_debi95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
patchmatchnet-post90.45 31982.65 18098.10 212
V4291.58 19690.87 19693.73 21894.05 28488.50 21197.32 11296.97 20188.80 20789.71 21594.33 25482.54 18198.05 22389.01 18985.07 28894.64 292
WR-MVS92.34 17091.53 17594.77 17595.13 24090.83 14496.40 19597.98 9491.88 11889.29 23195.54 20482.50 18297.80 25689.79 16885.27 28495.69 231
tpmrst91.44 20391.32 18291.79 28195.15 23879.20 32793.42 30395.37 27288.55 21493.49 13293.67 28482.49 18398.27 19590.41 15789.34 24597.90 156
MDTV_nov1_ep13_2view70.35 34093.10 31083.88 29593.55 12982.47 18486.25 23898.38 137
XVG-OURS-SEG-HR93.86 12093.55 11294.81 17297.06 14588.53 21095.28 25597.45 15291.68 12294.08 11997.68 8782.41 18598.90 15093.84 9992.47 20196.98 184
QAPM93.45 13392.27 15396.98 7296.77 15792.62 8598.39 1998.12 5784.50 28888.27 25597.77 8182.39 18699.81 2685.40 25498.81 8598.51 121
Patchmatch-test89.42 26387.99 26993.70 22195.27 23185.11 27588.98 33594.37 31081.11 31487.10 27993.69 28182.28 18797.50 28374.37 32294.76 17398.48 126
Vis-MVSNetpermissive95.23 8294.81 8396.51 8697.18 13691.58 11598.26 2798.12 5794.38 4294.90 10598.15 5682.28 18798.92 14791.45 14698.58 9499.01 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8594.44 9797.44 5296.56 16793.36 6898.65 698.36 1694.12 4689.25 23498.06 6082.20 18999.77 2993.41 10899.32 5399.18 66
v1091.04 22490.23 22493.49 23094.12 28188.16 22297.32 11297.08 19088.26 22088.29 25494.22 26482.17 19097.97 23486.45 23684.12 30194.33 299
v114491.37 20890.60 20893.68 22393.89 28888.23 21896.84 15897.03 19888.37 21789.69 21794.39 25082.04 19197.98 23187.80 20785.37 28294.84 276
MVSTER93.20 14092.81 13294.37 18896.56 16789.59 17497.06 13597.12 18491.24 13991.30 17795.96 17682.02 19298.05 22393.48 10590.55 23395.47 237
CP-MVSNet91.89 18791.24 18793.82 21595.05 24388.57 20997.82 6098.19 4591.70 12188.21 25795.76 19081.96 19397.52 28287.86 20584.65 29395.37 248
Patchmatch-RL test87.38 28486.24 28490.81 29888.74 33578.40 33088.12 33793.17 32387.11 25482.17 31589.29 32481.95 19495.60 32588.64 19677.02 32798.41 134
sam_mvs81.94 195
pmmvs490.93 23089.85 23994.17 19593.34 30490.79 14694.60 26896.02 25184.62 28687.45 27095.15 21681.88 19697.45 28787.70 21087.87 25894.27 303
test_post17.58 35081.76 19798.08 217
XVG-OURS93.72 12593.35 12294.80 17397.07 14288.61 20894.79 26597.46 14691.97 11793.99 12097.86 7381.74 19898.88 15292.64 11992.67 19996.92 188
v2v48291.59 19490.85 19993.80 21693.87 28988.17 22196.94 15096.88 21189.54 18089.53 22394.90 22581.70 19998.02 22889.25 18385.04 29095.20 259
baseline291.63 19390.86 19793.94 21094.33 27686.32 25895.92 22991.64 33489.37 18586.94 28294.69 23581.62 20098.69 16788.64 19694.57 17796.81 192
v14419291.06 22390.28 22093.39 23593.66 29587.23 24096.83 15997.07 19187.43 24689.69 21794.28 25881.48 20198.00 23087.18 22784.92 29294.93 270
MDTV_nov1_ep1390.76 20395.22 23580.33 31793.03 31195.28 27788.14 22692.84 14993.83 27581.34 20298.08 21782.86 27894.34 179
HQP_MVS93.78 12393.43 11994.82 17096.21 18489.99 16397.74 6797.51 13994.85 2491.34 17496.64 14281.32 20398.60 17593.02 11592.23 20495.86 217
plane_prior696.10 19490.00 16181.32 203
v7n90.76 23489.86 23893.45 23493.54 29787.60 23497.70 7597.37 16588.85 20187.65 26894.08 26981.08 20598.10 21284.68 26283.79 30794.66 291
HQP2-MVS80.95 206
HQP-MVS93.19 14192.74 13694.54 18395.86 19989.33 18896.65 17597.39 16293.55 6190.14 19795.87 18080.95 20698.50 18292.13 12792.10 20995.78 224
CR-MVSNet90.82 23389.77 24393.95 20794.45 27287.19 24190.23 32995.68 26286.89 25792.40 15292.36 30780.91 20897.05 30181.09 29593.95 18597.60 174
Patchmtry88.64 27387.25 27692.78 25894.09 28286.64 25289.82 33295.68 26280.81 31887.63 26992.36 30780.91 20897.03 30378.86 30785.12 28794.67 290
v119291.07 22290.23 22493.58 22793.70 29387.82 23096.73 16797.07 19187.77 23789.58 22094.32 25680.90 21097.97 23486.52 23485.48 28094.95 266
cl-mvsnet291.21 21690.56 21193.14 24696.09 19586.80 24994.41 27696.58 23587.80 23588.58 24893.99 27280.85 21197.62 27289.87 16686.93 26694.99 265
anonymousdsp92.16 18091.55 17493.97 20592.58 31789.55 17697.51 9297.42 16089.42 18488.40 25094.84 22880.66 21297.88 25091.87 13491.28 22294.48 294
CLD-MVS92.98 14892.53 14594.32 19196.12 19389.20 19595.28 25597.47 14492.66 9689.90 21095.62 19880.58 21398.40 18792.73 11892.40 20295.38 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 31416.58 35180.53 21497.68 26586.20 239
VPA-MVSNet93.24 13892.48 14895.51 14295.70 20792.39 9197.86 5598.66 992.30 10492.09 16395.37 20980.49 21598.40 18793.95 9485.86 27695.75 228
tpmvs89.83 26089.15 25791.89 27694.92 25080.30 31893.11 30995.46 26986.28 26488.08 26092.65 29980.44 21698.52 18181.47 28989.92 24096.84 191
PatchMatch-RL92.90 15392.02 15995.56 13898.19 9690.80 14595.27 25797.18 17887.96 22991.86 16795.68 19680.44 21698.99 14284.01 26997.54 11796.89 189
PEN-MVS91.20 21790.44 21393.48 23194.49 27087.91 22897.76 6598.18 4791.29 13587.78 26695.74 19280.35 21897.33 29585.46 25382.96 31395.19 260
Fast-Effi-MVS+-dtu92.29 17491.99 16093.21 24495.27 23185.52 27197.03 13696.63 23292.09 11289.11 23695.14 21780.33 21998.08 21787.54 21994.74 17596.03 214
MSDG91.42 20490.24 22394.96 16597.15 13988.91 20293.69 29796.32 24185.72 27286.93 28396.47 15580.24 22098.98 14380.57 29695.05 16996.98 184
v192192090.85 23290.03 23493.29 24093.55 29686.96 24896.74 16697.04 19687.36 24889.52 22494.34 25380.23 22197.97 23486.27 23785.21 28594.94 268
RPMNet88.52 27486.72 28393.95 20794.45 27287.19 24190.23 32994.99 29277.87 33192.40 15287.55 33280.17 22297.05 30168.84 33593.95 18597.60 174
ET-MVSNet_ETH3D91.49 20190.11 22995.63 13496.40 17791.57 11695.34 25193.48 32190.60 16175.58 33295.49 20680.08 22396.79 31294.25 8889.76 24298.52 119
PatchT88.87 26987.42 27493.22 24394.08 28385.10 27689.51 33394.64 30481.92 30992.36 15588.15 33080.05 22497.01 30672.43 32793.65 18897.54 177
our_test_388.78 27187.98 27091.20 29392.45 31982.53 30193.61 30195.69 26085.77 27184.88 29993.71 28079.99 22596.78 31379.47 30386.24 27294.28 302
DTE-MVSNet90.56 24289.75 24593.01 24993.95 28587.25 23897.64 8497.65 12690.74 15087.12 27795.68 19679.97 22697.00 30783.33 27481.66 31894.78 286
D2MVS91.30 21390.95 19492.35 26794.71 26285.52 27196.18 21698.21 4188.89 20086.60 28693.82 27779.92 22797.95 24089.29 18190.95 22893.56 312
TransMVSNet (Re)88.94 26687.56 27393.08 24894.35 27588.45 21397.73 6995.23 28187.47 24584.26 30595.29 21179.86 22897.33 29579.44 30574.44 33393.45 315
ACMM89.79 892.96 14992.50 14794.35 18996.30 18288.71 20697.58 8797.36 16791.40 13390.53 18996.65 14179.77 22998.75 16291.24 15091.64 21495.59 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18091.23 18894.95 16694.75 26090.94 14097.47 9897.43 15989.14 19188.90 23896.43 15779.71 23098.24 19689.56 17487.68 25995.67 232
PS-CasMVS91.55 19890.84 20093.69 22294.96 24788.28 21597.84 5998.24 3591.46 12888.04 26195.80 18579.67 23197.48 28487.02 22984.54 29795.31 251
RRT_MVS93.21 13992.32 15295.91 12094.92 25094.15 4296.92 15196.86 21491.42 13091.28 18096.43 15779.66 23298.10 21293.29 11090.06 23895.46 238
ab-mvs93.57 13092.55 14396.64 7697.28 13291.96 10695.40 24997.45 15289.81 17893.22 14196.28 16579.62 23399.46 9690.74 15493.11 19398.50 122
v124090.70 23989.85 23993.23 24293.51 29986.80 24996.61 18097.02 19987.16 25389.58 22094.31 25779.55 23497.98 23185.52 25285.44 28194.90 273
CostFormer91.18 22190.70 20592.62 26294.84 25681.76 30794.09 28894.43 30784.15 29192.72 15093.77 27979.43 23598.20 20190.70 15592.18 20797.90 156
CANet_DTU94.37 10393.65 11096.55 8296.46 17492.13 9996.21 21496.67 22894.38 4293.53 13197.03 12379.34 23699.71 3890.76 15398.45 9697.82 163
OPM-MVS93.28 13792.76 13394.82 17094.63 26690.77 14796.65 17597.18 17893.72 5691.68 16897.26 11279.33 23798.63 17292.13 12792.28 20395.07 262
JIA-IIPM88.26 27887.04 28091.91 27593.52 29881.42 30889.38 33494.38 30980.84 31790.93 18680.74 33779.22 23897.92 24582.76 28091.62 21596.38 202
CVMVSNet91.23 21591.75 16789.67 31195.77 20474.69 33596.44 18894.88 29785.81 27092.18 16097.64 9379.07 23995.58 32688.06 20295.86 15498.74 107
LPG-MVS_test92.94 15192.56 14294.10 19796.16 18988.26 21697.65 8097.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
LGP-MVS_train94.10 19796.16 18988.26 21697.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
test-LLR91.42 20491.19 19092.12 27194.59 26780.66 31294.29 28292.98 32491.11 14490.76 18792.37 30479.02 24298.07 22088.81 19296.74 13897.63 169
test0.0.03 189.37 26488.70 26191.41 29192.47 31885.63 26995.22 26092.70 32691.11 14486.91 28493.65 28579.02 24293.19 33878.00 31089.18 24695.41 241
ADS-MVSNet289.45 26288.59 26392.03 27395.86 19982.26 30590.93 32494.32 31283.23 30291.28 18091.81 31479.01 24495.99 31979.52 30191.39 22097.84 160
ADS-MVSNet89.89 25788.68 26293.53 22995.86 19984.89 28090.93 32495.07 28883.23 30291.28 18091.81 31479.01 24497.85 25179.52 30191.39 22097.84 160
ppachtmachnet_test88.35 27787.29 27591.53 28792.45 31983.57 29593.75 29595.97 25284.28 28985.32 29894.18 26579.00 24696.93 30875.71 31884.99 29194.10 305
OpenMVScopyleft89.19 1292.86 15591.68 17096.40 9495.34 22492.73 8298.27 2698.12 5784.86 28385.78 29297.75 8278.89 24799.74 3187.50 22098.65 9196.73 194
LTVRE_ROB88.41 1390.99 22689.92 23694.19 19496.18 18789.55 17696.31 20597.09 18987.88 23285.67 29395.91 17978.79 24898.57 17881.50 28889.98 23994.44 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs190.72 23889.65 24993.96 20694.29 27989.63 17197.79 6396.82 21789.07 19286.12 29195.48 20778.61 24997.78 25886.97 23081.67 31794.46 295
PVSNet86.66 1892.24 17791.74 16993.73 21897.77 11683.69 29492.88 31296.72 22087.91 23193.00 14394.86 22778.51 25099.05 13886.53 23397.45 12298.47 127
ACMP89.59 1092.62 16292.14 15594.05 20096.40 17788.20 21997.36 10897.25 17691.52 12588.30 25396.64 14278.46 25198.72 16691.86 13591.48 21895.23 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 16191.97 16194.97 16497.16 13787.99 22596.15 21795.60 26490.62 15891.87 16697.15 11878.41 25298.57 17883.16 27597.60 11698.36 139
thres20092.23 17891.39 17994.75 17697.61 12489.03 20096.60 18295.09 28792.08 11393.28 13894.00 27178.39 25399.04 14081.26 29494.18 18096.19 205
MDA-MVSNet_test_wron85.87 29684.23 29990.80 30092.38 32182.57 30093.17 30695.15 28482.15 30767.65 33792.33 31078.20 25495.51 32777.33 31279.74 32294.31 301
tfpn200view992.38 16991.52 17694.95 16697.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.48 200
thres40092.42 16791.52 17695.12 15897.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.98 184
YYNet185.87 29684.23 29990.78 30192.38 32182.46 30393.17 30695.14 28582.12 30867.69 33692.36 30778.16 25795.50 32877.31 31379.73 32394.39 297
thres100view90092.43 16691.58 17394.98 16397.92 10989.37 18697.71 7494.66 30292.20 10793.31 13794.90 22578.06 25899.08 13481.40 29094.08 18196.48 200
thres600view792.49 16591.60 17295.18 15497.91 11089.47 18097.65 8094.66 30292.18 11193.33 13694.91 22478.06 25899.10 12981.61 28794.06 18496.98 184
tpm cat188.36 27687.21 27891.81 28095.13 24080.55 31592.58 31695.70 25974.97 33387.45 27091.96 31278.01 26098.17 20580.39 29888.74 25196.72 195
MVP-Stereo90.74 23790.08 23092.71 25993.19 30788.20 21995.86 23196.27 24386.07 26884.86 30094.76 23277.84 26197.75 26183.88 27298.01 10692.17 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 23989.81 24193.37 23794.73 26184.21 28693.67 29888.02 34189.50 18292.38 15493.49 28877.82 26297.78 25886.03 24592.68 19898.11 150
tfpnnormal89.70 26188.40 26593.60 22595.15 23890.10 15997.56 8998.16 5187.28 25186.16 29094.63 23977.57 26398.05 22374.48 32084.59 29692.65 320
tpm90.25 24989.74 24691.76 28493.92 28679.73 32393.98 28993.54 32088.28 21991.99 16493.25 29377.51 26497.44 28887.30 22487.94 25798.12 147
thisisatest051592.29 17491.30 18495.25 15296.60 16288.90 20394.36 27892.32 32887.92 23093.43 13494.57 24177.28 26599.00 14189.42 17795.86 15497.86 159
FMVSNet391.78 18990.69 20695.03 16096.53 16992.27 9497.02 13996.93 20489.79 17989.35 22894.65 23877.01 26697.47 28586.12 24288.82 24895.35 249
TR-MVS91.48 20290.59 20994.16 19696.40 17787.33 23595.67 23895.34 27687.68 24191.46 17195.52 20576.77 26798.35 19182.85 27993.61 19096.79 193
tttt051792.96 14992.33 15194.87 16997.11 14087.16 24397.97 4992.09 33090.63 15793.88 12497.01 12476.50 26899.06 13790.29 16195.45 16198.38 137
RPSCF90.75 23690.86 19790.42 30596.84 15276.29 33395.61 24296.34 24083.89 29491.38 17297.87 7176.45 26998.78 15887.16 22892.23 20496.20 204
tpm289.96 25589.21 25592.23 27094.91 25381.25 30993.78 29494.42 30880.62 31991.56 16993.44 29076.44 27097.94 24185.60 25192.08 21197.49 178
thisisatest053093.03 14692.21 15495.49 14497.07 14289.11 19997.49 9792.19 32990.16 16994.09 11896.41 15976.43 27199.05 13890.38 15895.68 15998.31 141
EU-MVSNet88.72 27288.90 25988.20 31493.15 30874.21 33696.63 17994.22 31485.18 27787.32 27595.97 17576.16 27294.98 33085.27 25586.17 27395.41 241
dp88.90 26888.26 26890.81 29894.58 26976.62 33292.85 31394.93 29585.12 27990.07 20893.07 29475.81 27398.12 21080.53 29787.42 26397.71 166
IterMVS-SCA-FT90.31 24789.81 24191.82 27995.52 21384.20 28794.30 28196.15 24890.61 15987.39 27394.27 25975.80 27496.44 31587.34 22286.88 27094.82 279
SCA91.84 18891.18 19193.83 21495.59 20984.95 27994.72 26695.58 26690.82 14892.25 15993.69 28175.80 27498.10 21286.20 23995.98 15098.45 129
IterMVS90.15 25389.67 24791.61 28695.48 21583.72 29194.33 28096.12 24989.99 17287.31 27694.15 26775.78 27696.27 31886.97 23086.89 26994.83 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 16791.89 16494.03 20193.33 30588.50 21197.73 6997.53 13792.00 11688.85 24196.50 15475.62 27798.11 21193.88 9891.56 21795.48 235
cascas91.20 21790.08 23094.58 18294.97 24689.16 19893.65 29997.59 13279.90 32289.40 22692.92 29675.36 27898.36 19092.14 12694.75 17496.23 203
VPNet92.23 17891.31 18394.99 16195.56 21190.96 13997.22 12597.86 10792.96 8790.96 18596.62 14975.06 27998.20 20191.90 13283.65 30895.80 223
N_pmnet78.73 30978.71 31078.79 32492.80 31346.50 35194.14 28643.71 35478.61 32780.83 31891.66 31774.94 28096.36 31667.24 33684.45 29893.50 313
mvs_tets92.31 17291.76 16693.94 21093.41 30288.29 21497.63 8597.53 13792.04 11488.76 24496.45 15674.62 28198.09 21693.91 9691.48 21895.45 240
DSMNet-mixed86.34 29286.12 28787.00 31989.88 33170.43 33994.93 26490.08 33977.97 33085.42 29792.78 29874.44 28293.96 33474.43 32195.14 16596.62 196
pmmvs589.86 25988.87 26092.82 25692.86 31186.23 26196.26 20995.39 27084.24 29087.12 27794.51 24374.27 28397.36 29487.61 21887.57 26094.86 275
OurMVSNet-221017-090.51 24490.19 22891.44 29093.41 30281.25 30996.98 14696.28 24291.68 12286.55 28796.30 16474.20 28497.98 23188.96 19087.40 26495.09 261
GBi-Net91.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
test191.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
FMVSNet291.31 21290.08 23094.99 16196.51 17092.21 9597.41 10196.95 20288.82 20488.62 24694.75 23373.87 28597.42 29085.20 25788.55 25495.35 249
COLMAP_ROBcopyleft87.81 1590.40 24689.28 25493.79 21797.95 10687.13 24496.92 15195.89 25582.83 30486.88 28597.18 11573.77 28899.29 11378.44 30993.62 18994.95 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 23489.89 23793.38 23695.04 24483.70 29395.85 23294.30 31388.19 22190.46 19192.80 29773.61 28998.50 18288.16 20090.58 23297.95 154
Anonymous2023120687.09 28786.14 28689.93 31091.22 32680.35 31696.11 21895.35 27383.57 29984.16 30693.02 29573.54 29095.61 32472.16 32886.14 27493.84 310
UGNet94.04 11593.28 12496.31 10196.85 15191.19 13197.88 5497.68 12394.40 4093.00 14396.18 16873.39 29199.61 6191.72 13798.46 9598.13 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121190.63 24189.42 25194.27 19298.24 8989.19 19798.05 4497.89 10079.95 32188.25 25694.96 22172.56 29298.13 20789.70 17085.14 28695.49 234
ACMH87.59 1690.53 24389.42 25193.87 21396.21 18487.92 22697.24 11996.94 20388.45 21583.91 31096.27 16671.92 29398.62 17484.43 26689.43 24495.05 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 20690.31 21894.59 17894.65 26487.62 23394.34 27996.19 24790.73 15190.35 19493.83 27571.84 29497.96 23887.22 22593.61 19098.21 144
SixPastTwentyTwo89.15 26588.54 26490.98 29593.49 30080.28 31996.70 17094.70 30190.78 14984.15 30795.57 20071.78 29597.71 26484.63 26385.07 28894.94 268
gg-mvs-nofinetune87.82 28185.61 28994.44 18594.46 27189.27 19491.21 32384.61 34680.88 31689.89 21274.98 33971.50 29697.53 28085.75 25097.21 13096.51 198
test20.0386.14 29485.40 29188.35 31290.12 32880.06 32195.90 23095.20 28288.59 21081.29 31793.62 28671.43 29792.65 33971.26 33281.17 32092.34 324
MS-PatchMatch90.27 24889.77 24391.78 28294.33 27684.72 28295.55 24396.73 21986.17 26786.36 28895.28 21371.28 29897.80 25684.09 26898.14 10492.81 319
PVSNet_082.17 1985.46 29983.64 30190.92 29695.27 23179.49 32490.55 32795.60 26483.76 29783.00 31389.95 32071.09 29997.97 23482.75 28160.79 34195.31 251
GG-mvs-BLEND93.62 22493.69 29489.20 19592.39 31983.33 34787.98 26489.84 32271.00 30096.87 31082.08 28695.40 16294.80 282
ITE_SJBPF92.43 26595.34 22485.37 27495.92 25391.47 12787.75 26796.39 16171.00 30097.96 23882.36 28489.86 24193.97 308
IB-MVS87.33 1789.91 25688.28 26794.79 17495.26 23487.70 23295.12 26293.95 31889.35 18687.03 28092.49 30270.74 30299.19 11989.18 18781.37 31997.49 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 30082.95 30391.17 29493.13 30983.33 29694.56 27095.00 29084.57 28765.13 34092.65 29970.45 30395.85 32073.57 32577.49 32694.33 299
RRT_test8_iter0591.19 22090.78 20292.41 26695.76 20683.14 29897.32 11297.46 14691.37 13489.07 23795.57 20070.33 30498.21 19993.56 10286.62 27195.89 216
AllTest90.23 25088.98 25893.98 20397.94 10786.64 25296.51 18795.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
TestCases93.98 20397.94 10786.64 25295.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
ACMH+87.92 1490.20 25189.18 25693.25 24196.48 17386.45 25796.99 14496.68 22688.83 20384.79 30196.22 16770.16 30798.53 18084.42 26788.04 25694.77 287
Anonymous2024052991.98 18590.73 20495.73 13098.14 9989.40 18497.99 4697.72 11879.63 32393.54 13097.41 10769.94 30899.56 7991.04 15291.11 22498.22 143
pmmvs-eth3d86.22 29384.45 29791.53 28788.34 33687.25 23894.47 27295.01 28983.47 30079.51 32789.61 32369.75 30995.71 32383.13 27676.73 32991.64 328
LFMVS93.60 12892.63 13996.52 8398.13 10091.27 12597.94 5093.39 32290.57 16296.29 6698.31 4469.00 31099.16 12394.18 9095.87 15399.12 74
TESTMET0.1,190.06 25489.42 25191.97 27494.41 27480.62 31494.29 28291.97 33287.28 25190.44 19292.47 30368.79 31197.67 26688.50 19896.60 14397.61 173
XVG-ACMP-BASELINE90.93 23090.21 22793.09 24794.31 27885.89 26695.33 25297.26 17491.06 14689.38 22795.44 20868.61 31298.60 17589.46 17691.05 22594.79 284
MVS-HIRNet82.47 30681.21 30786.26 32195.38 21969.21 34288.96 33689.49 34066.28 33880.79 31974.08 34168.48 31397.39 29271.93 32995.47 16092.18 326
VDD-MVS93.82 12193.08 12696.02 11697.88 11289.96 16797.72 7295.85 25692.43 10195.86 8298.44 2568.42 31499.39 10596.31 2894.85 17098.71 111
test_040286.46 29184.79 29591.45 28995.02 24585.55 27096.29 20794.89 29680.90 31582.21 31493.97 27368.21 31597.29 29762.98 33988.68 25391.51 330
test-mter90.19 25289.54 25092.12 27194.59 26780.66 31294.29 28292.98 32487.68 24190.76 18792.37 30467.67 31698.07 22088.81 19296.74 13897.63 169
VDDNet93.05 14592.07 15696.02 11696.84 15290.39 15898.08 4295.85 25686.22 26695.79 8598.46 2367.59 31799.19 11994.92 7594.85 17098.47 127
USDC88.94 26687.83 27192.27 26994.66 26384.96 27893.86 29295.90 25487.34 24983.40 31295.56 20267.43 31898.19 20382.64 28389.67 24393.66 311
pmmvs687.81 28286.19 28592.69 26091.32 32586.30 25997.34 10996.41 23880.59 32084.05 30994.37 25267.37 31997.67 26684.75 26179.51 32494.09 307
K. test v387.64 28386.75 28290.32 30693.02 31079.48 32596.61 18092.08 33190.66 15580.25 32494.09 26867.21 32096.65 31485.96 24780.83 32194.83 277
CMPMVSbinary62.92 2185.62 29884.92 29487.74 31689.14 33473.12 33894.17 28596.80 21873.98 33473.65 33494.93 22366.36 32197.61 27383.95 27191.28 22292.48 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 21190.22 22694.68 17794.86 25587.86 22997.23 12497.46 14687.99 22889.90 21096.92 12866.35 32298.23 19790.30 16090.99 22797.96 152
lessismore_v090.45 30491.96 32479.09 32887.19 34480.32 32394.39 25066.31 32397.55 27784.00 27076.84 32894.70 289
Anonymous20240521192.07 18390.83 20195.76 12598.19 9688.75 20597.58 8795.00 29086.00 26993.64 12797.45 10566.24 32499.53 8590.68 15692.71 19799.01 84
new-patchmatchnet83.18 30481.87 30587.11 31886.88 34075.99 33493.70 29695.18 28385.02 28177.30 33088.40 32765.99 32593.88 33574.19 32470.18 33791.47 332
FMVSNet189.88 25888.31 26694.59 17895.41 21791.18 13297.50 9396.93 20486.62 26087.41 27294.51 24365.94 32697.29 29783.04 27787.43 26295.31 251
TDRefinement86.53 29084.76 29691.85 27782.23 34384.25 28596.38 19895.35 27384.97 28284.09 30894.94 22265.76 32798.34 19384.60 26474.52 33292.97 317
UnsupCasMVSNet_eth85.99 29584.45 29790.62 30289.97 33082.40 30493.62 30097.37 16589.86 17478.59 32992.37 30465.25 32895.35 32982.27 28570.75 33694.10 305
LF4IMVS87.94 28087.25 27689.98 30992.38 32180.05 32294.38 27795.25 28087.59 24384.34 30394.74 23464.31 32997.66 26884.83 25987.45 26192.23 325
MIMVSNet88.50 27586.76 28193.72 22094.84 25687.77 23191.39 32194.05 31586.41 26387.99 26392.59 30163.27 33095.82 32277.44 31192.84 19697.57 176
FMVSNet587.29 28685.79 28891.78 28294.80 25887.28 23695.49 24695.28 27784.09 29283.85 31191.82 31362.95 33194.17 33378.48 30885.34 28393.91 309
testgi87.97 27987.21 27890.24 30792.86 31180.76 31196.67 17494.97 29391.74 12085.52 29495.83 18362.66 33294.47 33276.25 31688.36 25595.48 235
TinyColmap86.82 28985.35 29291.21 29294.91 25382.99 29993.94 29194.02 31783.58 29881.56 31694.68 23662.34 33398.13 20775.78 31787.35 26592.52 322
new_pmnet82.89 30581.12 30888.18 31589.63 33280.18 32091.77 32092.57 32776.79 33275.56 33388.23 32961.22 33494.48 33171.43 33082.92 31489.87 335
OpenMVS_ROBcopyleft81.14 2084.42 30282.28 30490.83 29790.06 32984.05 28995.73 23794.04 31673.89 33580.17 32591.53 31859.15 33597.64 26966.92 33789.05 24790.80 333
MIMVSNet184.93 30183.05 30290.56 30389.56 33384.84 28195.40 24995.35 27383.91 29380.38 32292.21 31157.23 33693.34 33770.69 33482.75 31693.50 313
EG-PatchMatch MVS87.02 28885.44 29091.76 28492.67 31585.00 27796.08 22096.45 23783.41 30179.52 32693.49 28857.10 33797.72 26379.34 30690.87 23092.56 321
MVS_030488.79 27087.57 27292.46 26394.65 26486.15 26596.40 19597.17 18086.44 26288.02 26291.71 31656.68 33897.03 30384.47 26592.58 20094.19 304
UnsupCasMVSNet_bld82.13 30779.46 30990.14 30888.00 33782.47 30290.89 32696.62 23478.94 32675.61 33184.40 33556.63 33996.31 31777.30 31466.77 34091.63 329
testing_287.33 28585.03 29394.22 19387.77 33989.32 19094.97 26397.11 18689.22 18971.64 33588.73 32555.16 34097.94 24191.95 13188.73 25295.41 241
tmp_tt51.94 31953.82 31846.29 33333.73 35345.30 35378.32 34467.24 35318.02 34850.93 34487.05 33452.99 34153.11 35070.76 33325.29 34740.46 346
pmmvs379.97 30877.50 31187.39 31782.80 34279.38 32692.70 31590.75 33870.69 33778.66 32887.47 33351.34 34293.40 33673.39 32669.65 33889.38 336
DeepMVS_CXcopyleft74.68 32890.84 32764.34 34681.61 34965.34 33967.47 33888.01 33148.60 34380.13 34662.33 34073.68 33579.58 340
PM-MVS83.48 30381.86 30688.31 31387.83 33877.59 33193.43 30291.75 33386.91 25680.63 32089.91 32144.42 34495.84 32185.17 25876.73 32991.50 331
ambc86.56 32083.60 34170.00 34185.69 33994.97 29380.60 32188.45 32637.42 34596.84 31182.69 28275.44 33192.86 318
Gipumacopyleft67.86 31365.41 31575.18 32792.66 31673.45 33766.50 34694.52 30653.33 34357.80 34366.07 34330.81 34689.20 34148.15 34378.88 32562.90 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 31851.31 32054.39 33272.62 34845.39 35283.84 34175.51 35141.13 34640.77 34759.65 34630.08 34773.60 34828.31 34729.90 34644.18 345
FPMVS71.27 31169.85 31275.50 32674.64 34559.03 34791.30 32291.50 33558.80 34157.92 34288.28 32829.98 34885.53 34453.43 34182.84 31581.95 339
E-PMN53.28 31652.56 31955.43 33174.43 34647.13 35083.63 34276.30 35042.23 34542.59 34662.22 34528.57 34974.40 34731.53 34631.51 34444.78 344
PMMVS270.19 31266.92 31480.01 32376.35 34465.67 34486.22 33887.58 34364.83 34062.38 34180.29 33826.78 35088.49 34263.79 33854.07 34285.88 337
ANet_high63.94 31459.58 31677.02 32561.24 35166.06 34385.66 34087.93 34278.53 32842.94 34571.04 34225.42 35180.71 34552.60 34230.83 34584.28 338
LCM-MVSNet72.55 31069.39 31382.03 32270.81 34965.42 34590.12 33194.36 31155.02 34265.88 33981.72 33624.16 35289.96 34074.32 32368.10 33990.71 334
PMVScopyleft53.92 2258.58 31555.40 31768.12 32951.00 35248.64 34978.86 34387.10 34546.77 34435.84 34974.28 3408.76 35386.34 34342.07 34473.91 33469.38 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 32024.57 32326.74 33473.98 34739.89 35457.88 3479.80 35512.27 34910.39 3506.97 3527.03 35436.44 35125.43 34817.39 3483.89 349
MVEpermissive50.73 2353.25 31748.81 32166.58 33065.34 35057.50 34872.49 34570.94 35240.15 34739.28 34863.51 3446.89 35573.48 34938.29 34542.38 34368.76 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 32315.66 3255.18 3354.51 3553.45 35592.50 3181.81 3572.50 3517.58 35220.15 3493.67 3562.18 3537.13 3501.07 3509.90 347
testmvs13.36 32216.33 3244.48 3365.04 3542.26 35693.18 3053.28 3562.70 3508.24 35121.66 3482.29 3572.19 3527.58 3492.96 3499.00 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.26 330.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.06 32410.74 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35396.69 1390.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.42 695.39 997.94 9890.40 16698.94 597.41 799.66 899.74 5
save fliter98.91 4594.28 3497.02 13998.02 8495.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 129
test_part299.28 2595.74 698.10 17
MTGPAbinary98.08 65
MTMP97.86 5582.03 348
gm-plane-assit93.22 30678.89 32984.82 28493.52 28798.64 17187.72 208
test9_res94.81 8099.38 4899.45 44
agg_prior293.94 9599.38 4899.50 36
agg_prior98.67 5893.79 5498.00 8995.68 8999.57 77
test_prior493.66 5896.42 191
test_prior97.23 6298.67 5892.99 7598.00 8999.41 10299.29 59
旧先验295.94 22881.66 31197.34 3198.82 15592.26 121
新几何295.79 235
无先验95.79 23597.87 10483.87 29699.65 5387.68 21398.89 97
原ACMM295.67 238
testdata299.67 4985.96 247
testdata195.26 25993.10 79
plane_prior796.21 18489.98 165
plane_prior597.51 13998.60 17593.02 11592.23 20495.86 217
plane_prior496.64 142
plane_prior390.00 16194.46 3991.34 174
plane_prior297.74 6794.85 24
plane_prior196.14 192
plane_prior89.99 16397.24 11994.06 4792.16 208
n20.00 358
nn0.00 358
door-mid91.06 337
test1197.88 102
door91.13 336
HQP5-MVS89.33 188
HQP-NCC95.86 19996.65 17593.55 6190.14 197
ACMP_Plane95.86 19996.65 17593.55 6190.14 197
BP-MVS92.13 127
HQP4-MVS90.14 19798.50 18295.78 224
HQP3-MVS97.39 16292.10 209
NP-MVS95.99 19889.81 17095.87 180
ACMMP++_ref90.30 237
ACMMP++91.02 226