This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 7099.59 1599.56 22
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13498.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2199.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2599.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12598.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30296.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 1098.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2299.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14298.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2699.39 4799.55 26
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 999.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16298.09 10586.63 26696.00 23698.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1999.48 3599.45 45
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14797.22 18595.35 898.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 11098.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 17098.85 798.94 193.33 1799.83 2296.72 2099.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11798.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5499.17 7299.56 22
9.1496.75 3398.93 4797.73 7598.23 3891.28 14697.88 2298.44 2893.00 2199.65 5395.76 5699.47 36
segment_acmp92.89 22
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 17196.72 22894.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 12099.08 80
TEST998.70 6094.19 4096.41 20398.02 8888.17 23496.03 8297.56 10592.74 2499.59 68
train_agg96.30 5795.83 6597.72 3998.70 6094.19 4096.41 20398.02 8888.58 22296.03 8297.56 10592.73 2599.59 6895.04 7799.37 5299.39 54
test_898.67 6294.06 4996.37 21098.01 9188.58 22295.98 8797.55 10792.73 2599.58 71
agg_prior196.22 6195.77 6697.56 4898.67 6293.79 5596.28 21998.00 9388.76 21995.68 9797.55 10792.70 2799.57 7995.01 7899.32 5399.32 60
CSCG96.05 6495.91 6396.46 9399.24 2890.47 16198.30 2498.57 1189.01 20593.97 13097.57 10392.62 2899.76 3094.66 9199.27 6199.15 72
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8298.24 3491.57 13297.90 2198.37 3692.61 2999.66 5295.59 6799.51 2999.43 49
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16798.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1699.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9897.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4999.51 2999.40 53
ZD-MVS99.05 4194.59 2898.08 6489.22 20097.03 4798.10 6092.52 3299.65 5394.58 9399.31 55
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18297.11 4498.01 6892.52 3299.69 4496.03 4899.53 2499.36 58
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16797.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1899.29 5799.55 26
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7898.10 6191.50 13498.01 1898.32 4692.33 3599.58 7194.85 8399.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22698.90 294.30 4695.86 9097.74 8792.33 3599.38 11296.04 4799.42 4399.28 65
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8398.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2399.46 3898.96 92
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8599.16 70
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1198.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6299.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10697.18 3898.29 5092.08 3999.83 2295.12 7599.59 1599.54 29
test_prior396.46 5396.20 5797.23 6298.67 6292.99 7696.35 21198.00 9392.80 9896.03 8297.59 10192.01 4199.41 10795.01 7899.38 4899.29 62
test_prior296.35 21192.80 9896.03 8297.59 10192.01 4195.01 7899.38 48
CDPH-MVS95.97 6795.38 7697.77 3598.93 4794.44 3196.35 21197.88 10586.98 26696.65 5697.89 7291.99 4399.47 10092.26 13099.46 3899.39 54
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 10097.59 2498.20 5791.96 4499.86 894.21 9799.25 6599.63 11
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8796.45 6898.30 4991.90 4599.85 1495.61 6499.68 499.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15598.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15298.05 8089.85 18497.26 3598.22 5691.80 4799.69 4494.84 8499.28 5999.27 66
DPM-MVS95.69 7294.92 8698.01 1998.08 10695.71 795.27 26897.62 13690.43 17395.55 10397.07 12891.72 4899.50 9789.62 18398.94 8898.82 107
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15597.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1699.13 7599.48 41
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5799.40 4599.62 13
X-MVStestdata91.71 19989.67 25897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6032.69 36491.70 5099.80 2795.66 5799.40 4599.62 13
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1598.18 4692.64 10596.39 7098.18 5891.61 5299.88 495.59 6799.55 2199.57 19
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9498.19 4492.82 9797.93 2098.74 1191.60 5399.86 896.26 3299.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1198.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6999.59 1599.64 10
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23898.18 4695.23 1295.87 8997.65 9491.45 5599.70 4395.87 5099.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3699.27 6199.54 29
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3199.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4599.26 6399.43 49
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10196.70 5298.06 6491.35 5999.86 894.83 8599.28 5999.47 44
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1198.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6299.59 1599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10998.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7399.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 6595.89 6496.40 9697.16 14292.44 9297.47 10697.77 11494.55 3996.48 6594.51 25591.23 6298.92 15195.65 6098.19 10797.82 168
ETH3 D test640096.16 6295.52 7098.07 1698.90 5195.06 2297.03 14498.21 4088.16 23696.64 5797.70 8991.18 6399.67 4992.44 12999.47 3699.48 41
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8698.98 192.22 11397.14 4198.44 2891.17 6499.85 1494.35 9599.46 3899.57 19
MP-MVS-pluss96.70 4496.27 5497.98 2199.23 3094.71 2696.96 15598.06 7390.67 16195.55 10398.78 1091.07 6599.86 896.58 2499.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1498.09 6393.27 7695.95 8898.33 4491.04 6699.88 495.20 7299.57 2099.60 16
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 15096.40 6997.99 6990.99 6799.58 7195.61 6499.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4499.25 6599.51 34
test1297.65 4498.46 7494.26 3797.66 13195.52 10690.89 6999.46 10199.25 6599.22 67
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 14098.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12798.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 16297.73 11994.74 3596.49 6498.49 2490.88 7099.58 7196.44 2998.32 10499.13 74
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4599.26 6399.43 49
EIA-MVS95.53 7995.47 7295.71 13597.06 15089.63 18197.82 6597.87 10793.57 6493.92 13195.04 23290.61 7498.95 14994.62 9298.68 9698.54 121
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10598.34 4190.59 7599.88 494.83 8599.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14796.86 16397.72 12394.67 3696.16 7798.46 2690.43 7699.58 7196.23 3597.96 11498.90 99
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25895.22 10997.68 9190.25 7799.54 8687.95 21499.12 7898.49 128
112194.71 10493.83 10997.34 5598.57 7293.64 6096.04 23297.73 11981.56 32995.68 9797.85 7890.23 7899.65 5387.68 22499.12 7898.73 112
HPM-MVS_fast96.51 5196.27 5497.22 6499.32 2392.74 8298.74 498.06 7390.57 17096.77 4998.35 3890.21 7999.53 8994.80 8899.63 1299.38 56
CS-MVS95.88 7095.98 6195.58 14296.44 18490.56 15797.78 6997.73 11993.01 8696.07 8196.77 14090.13 8098.57 18496.83 1599.10 8097.60 179
testdata95.46 15598.18 10288.90 21297.66 13182.73 32197.03 4798.07 6390.06 8198.85 15789.67 18198.98 8698.64 118
新几何197.32 5698.60 6893.59 6197.75 11681.58 32895.75 9497.85 7890.04 8299.67 4986.50 24699.13 7598.69 116
DP-MVS Recon95.68 7395.12 8497.37 5499.19 3194.19 4097.03 14498.08 6488.35 22995.09 11297.65 9489.97 8399.48 9992.08 13998.59 9998.44 137
CS-MVS-test95.61 7595.62 6895.58 14296.33 19291.02 14297.64 9097.68 12892.69 10295.18 11095.91 19089.95 8498.61 17996.24 3498.92 9097.12 190
MVS_111021_LR96.24 6096.19 5896.39 9898.23 9791.35 12796.24 22498.79 493.99 5195.80 9297.65 9489.92 8599.24 12195.87 5099.20 7098.58 119
EPP-MVSNet95.22 8795.04 8595.76 12897.49 13589.56 18598.67 597.00 20790.69 16094.24 12497.62 9989.79 8698.81 16093.39 11896.49 15298.92 97
DROMVSNet96.25 5996.29 5396.13 11296.87 15991.35 12798.66 697.74 11893.91 5396.29 7297.43 11289.36 8798.59 18397.23 899.07 8198.45 133
PAPR94.18 11193.42 12796.48 9097.64 12891.42 12695.55 25497.71 12788.99 20692.34 16595.82 19689.19 8899.11 13386.14 25297.38 12998.90 99
MG-MVS95.61 7595.38 7696.31 10398.42 7790.53 15996.04 23297.48 14993.47 7195.67 10098.10 6089.17 8999.25 12091.27 15798.77 9399.13 74
PAPM_NR95.01 9194.59 9496.26 10898.89 5490.68 15597.24 12797.73 11991.80 12792.93 15696.62 15789.13 9099.14 13189.21 19597.78 11898.97 91
ACMMPcopyleft96.27 5895.93 6297.28 5999.24 2892.62 8798.25 2998.81 392.99 8794.56 11898.39 3588.96 9199.85 1494.57 9497.63 12199.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6895.53 6997.20 6697.67 12692.98 7897.65 8698.13 5494.81 3196.61 5898.35 3888.87 9299.51 9490.36 16997.35 13199.11 78
API-MVS94.84 10094.49 9995.90 12497.90 11592.00 10997.80 6797.48 14989.19 20194.81 11596.71 14388.84 9399.17 12788.91 20198.76 9496.53 206
test22298.24 9392.21 10095.33 26397.60 13779.22 34195.25 10897.84 8188.80 9499.15 7398.72 113
Test By Simon88.73 95
pcd_1.5k_mvsjas7.39 3409.85 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37088.65 960.00 3700.00 3680.00 3680.00 366
PS-MVSNAJss93.74 13093.51 12194.44 19593.91 29889.28 20297.75 7297.56 14492.50 10789.94 22096.54 16088.65 9698.18 21493.83 10990.90 23695.86 226
PS-MVSNAJ95.37 8195.33 7895.49 15197.35 13690.66 15695.31 26597.48 14993.85 5596.51 6395.70 20788.65 9699.65 5394.80 8898.27 10596.17 215
xiu_mvs_v2_base95.32 8395.29 7995.40 15697.22 13890.50 16095.44 25997.44 16493.70 6296.46 6796.18 17688.59 9999.53 8994.79 9097.81 11796.17 215
PLCcopyleft91.00 694.11 11693.43 12596.13 11298.58 7191.15 14096.69 18197.39 17087.29 26191.37 18396.71 14388.39 10099.52 9387.33 23497.13 13997.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 14192.67 14695.47 15495.34 23592.83 8097.17 13798.58 1092.98 9290.13 21295.80 19788.37 10197.85 26191.71 14683.93 31295.73 239
PVSNet_BlendedMVS94.06 11893.92 10794.47 19498.27 8989.46 19296.73 17598.36 1690.17 17694.36 12195.24 22688.02 10299.58 7193.44 11590.72 23894.36 308
PVSNet_Blended94.87 9994.56 9595.81 12798.27 8989.46 19295.47 25898.36 1688.84 21394.36 12196.09 18488.02 10299.58 7193.44 11598.18 10898.40 140
TAPA-MVS90.10 792.30 18091.22 19795.56 14498.33 8589.60 18396.79 17197.65 13381.83 32691.52 18097.23 12087.94 10498.91 15371.31 34898.37 10398.17 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5496.21 5696.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10599.72 3595.10 7699.07 8199.02 83
MVS_Test94.89 9894.62 9395.68 13696.83 16389.55 18696.70 17997.17 18891.17 15095.60 10296.11 18387.87 10698.76 16593.01 12697.17 13898.72 113
UniMVSNet (Re)93.31 14392.55 15195.61 14095.39 22993.34 7097.39 11398.71 593.14 8290.10 21694.83 24187.71 10798.03 23891.67 15083.99 31195.46 248
FC-MVSNet-test93.94 12393.57 11695.04 16695.48 22691.45 12598.12 4098.71 593.37 7290.23 20696.70 14587.66 10897.85 26191.49 15290.39 24395.83 230
canonicalmvs96.02 6595.45 7397.75 3797.59 13295.15 2198.28 2697.60 13794.52 4096.27 7496.12 18087.65 10999.18 12696.20 4194.82 17998.91 98
FIs94.09 11793.70 11295.27 15895.70 21892.03 10798.10 4198.68 793.36 7490.39 20396.70 14587.63 11097.94 25292.25 13290.50 24295.84 229
CDS-MVSNet94.14 11593.54 11895.93 12296.18 19891.46 12496.33 21497.04 20388.97 20893.56 13696.51 16187.55 11197.89 25989.80 17795.95 15898.44 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9694.45 10196.36 10196.61 17091.47 12396.41 20397.41 16991.02 15594.50 11995.92 18987.53 11298.78 16293.89 10696.81 14298.84 106
casdiffmvs95.64 7495.49 7196.08 11496.76 16890.45 16297.29 12497.44 16494.00 5095.46 10797.98 7087.52 11398.73 16795.64 6197.33 13299.08 80
PVSNet_Blended_VisFu95.27 8494.91 8796.38 9998.20 9890.86 14997.27 12598.25 3390.21 17594.18 12597.27 11787.48 11499.73 3293.53 11297.77 11998.55 120
mvs_anonymous93.82 12793.74 11194.06 20996.44 18485.41 28495.81 24597.05 20189.85 18490.09 21796.36 17087.44 11597.75 27293.97 10296.69 14799.02 83
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14797.96 10095.42 794.86 11497.81 8287.38 11699.82 2596.88 1399.20 7099.29 62
baseline95.58 7795.42 7596.08 11496.78 16590.41 16497.16 13897.45 16093.69 6395.65 10197.85 7887.29 11798.68 17295.66 5797.25 13599.13 74
TAMVS94.01 12193.46 12395.64 13796.16 20090.45 16296.71 17896.89 21889.27 19993.46 14196.92 13587.29 11797.94 25288.70 20595.74 16398.53 122
nrg03094.05 11993.31 12996.27 10795.22 24694.59 2898.34 2197.46 15492.93 9491.21 19396.64 15087.23 11998.22 20894.99 8185.80 28495.98 224
CPTT-MVS95.57 7895.19 8196.70 7799.27 2691.48 12298.33 2298.11 5987.79 24795.17 11198.03 6687.09 12099.61 6293.51 11399.42 4399.02 83
OMC-MVS95.09 9094.70 9296.25 10998.46 7491.28 12996.43 20197.57 14192.04 12294.77 11697.96 7187.01 12199.09 13791.31 15696.77 14398.36 144
DeepC-MVS93.07 396.06 6395.66 6797.29 5897.96 10993.17 7397.30 12398.06 7393.92 5293.38 14398.66 1286.83 12299.73 3295.60 6699.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 18191.94 17093.34 24796.25 19486.97 25896.57 19797.05 20190.67 16189.50 23694.80 24386.59 12397.64 28089.91 17486.11 28295.40 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 15392.88 13993.48 24095.77 21586.98 25796.44 19997.12 19290.66 16391.30 18797.64 9786.56 12498.05 23489.91 17490.55 24095.41 251
miper_enhance_ethall91.54 20991.01 20293.15 25495.35 23487.07 25693.97 30196.90 21686.79 27089.17 24693.43 30486.55 12597.64 28089.97 17386.93 27394.74 298
1112_ss93.37 14192.42 15796.21 11097.05 15290.99 14396.31 21696.72 22886.87 26989.83 22496.69 14786.51 12699.14 13188.12 21193.67 19498.50 126
diffmvs95.25 8595.13 8395.63 13896.43 18689.34 19795.99 23797.35 17692.83 9696.31 7197.37 11486.44 12798.67 17396.26 3297.19 13798.87 103
WTY-MVS94.71 10494.02 10696.79 7697.71 12592.05 10696.59 19497.35 17690.61 16794.64 11796.93 13286.41 12899.39 11091.20 15994.71 18398.94 95
EPNet95.20 8894.56 9597.14 6892.80 32492.68 8497.85 6394.87 31496.64 192.46 15997.80 8486.23 12999.65 5393.72 11098.62 9899.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 20391.13 20092.97 26095.55 22386.57 26794.47 28396.88 21987.77 24888.88 25194.01 28286.22 13097.54 28989.49 18586.93 27394.79 294
Fast-Effi-MVS+93.46 13892.75 14395.59 14196.77 16690.03 16996.81 17097.13 19188.19 23291.30 18794.27 27186.21 13198.63 17687.66 22696.46 15498.12 152
MVSFormer95.37 8195.16 8295.99 12196.34 19091.21 13398.22 3497.57 14191.42 13896.22 7597.32 11586.20 13297.92 25594.07 10099.05 8398.85 104
lupinMVS94.99 9594.56 9596.29 10696.34 19091.21 13395.83 24496.27 25488.93 21096.22 7596.88 13786.20 13298.85 15795.27 7199.05 8398.82 107
114514_t93.95 12293.06 13496.63 8099.07 3991.61 11797.46 10897.96 10077.99 34593.00 15197.57 10386.14 13499.33 11489.22 19499.15 7398.94 95
alignmvs95.87 7195.23 8097.78 3397.56 13495.19 1897.86 6097.17 18894.39 4396.47 6696.40 16885.89 13599.20 12396.21 4095.11 17598.95 94
WR-MVS_H92.00 19291.35 18893.95 21795.09 25389.47 19098.04 4698.68 791.46 13688.34 26394.68 24985.86 13697.56 28785.77 26084.24 30894.82 289
Test_1112_low_res92.84 16491.84 17395.85 12697.04 15389.97 17595.53 25696.64 23785.38 28989.65 23095.18 22785.86 13699.10 13487.70 22193.58 19998.49 128
HY-MVS89.66 993.87 12592.95 13796.63 8097.10 14692.49 9195.64 25296.64 23789.05 20493.00 15195.79 20085.77 13899.45 10389.16 19894.35 18597.96 157
cl_fuxian91.38 21690.89 20492.88 26395.58 22186.30 27094.68 27896.84 22488.17 23488.83 25494.23 27485.65 13997.47 29689.36 18884.63 30294.89 284
IS-MVSNet94.90 9794.52 9896.05 11797.67 12690.56 15798.44 1796.22 25793.21 7793.99 12897.74 8785.55 14098.45 19489.98 17297.86 11599.14 73
MVS91.71 19990.44 22495.51 14895.20 24891.59 11996.04 23297.45 16073.44 35287.36 28695.60 21185.42 14199.10 13485.97 25797.46 12495.83 230
VNet95.89 6995.45 7397.21 6598.07 10792.94 7997.50 10198.15 5193.87 5497.52 2597.61 10085.29 14299.53 8995.81 5595.27 17199.16 70
CNLPA94.28 10993.53 11996.52 8598.38 8192.55 8996.59 19496.88 21990.13 17891.91 17597.24 11985.21 14399.09 13787.64 22797.83 11697.92 160
F-COLMAP93.58 13592.98 13695.37 15798.40 7888.98 21097.18 13697.29 18187.75 25090.49 20097.10 12785.21 14399.50 9786.70 24396.72 14697.63 174
LCM-MVSNet-Re92.50 17092.52 15492.44 27396.82 16481.89 31996.92 15993.71 33392.41 10984.30 31794.60 25385.08 14597.03 31391.51 15197.36 13098.40 140
NR-MVSNet92.34 17791.27 19495.53 14794.95 25993.05 7597.39 11398.07 7092.65 10484.46 31595.71 20585.00 14697.77 27189.71 17983.52 31895.78 233
PAPM91.52 21090.30 23095.20 16095.30 24189.83 17893.38 31696.85 22386.26 27788.59 25995.80 19784.88 14798.15 21775.67 33495.93 15997.63 174
MAR-MVS94.22 11093.46 12396.51 8898.00 10892.19 10397.67 8397.47 15288.13 23893.00 15195.84 19484.86 14899.51 9487.99 21398.17 10997.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 10094.39 10396.18 11195.52 22490.93 14796.09 23096.52 24489.28 19896.01 8697.32 11584.70 14998.77 16495.15 7498.91 9198.85 104
jason: jason.
sss94.51 10693.80 11096.64 7897.07 14791.97 11096.32 21598.06 7388.94 20994.50 11996.78 13984.60 15099.27 11991.90 14096.02 15698.68 117
LS3D93.57 13692.61 14996.47 9197.59 13291.61 11797.67 8397.72 12385.17 29390.29 20598.34 4184.60 15099.73 3283.85 28498.27 10598.06 156
Vis-MVSNet (Re-imp)94.15 11293.88 10894.95 17397.61 13087.92 23798.10 4195.80 27192.22 11393.02 15097.45 10984.53 15297.91 25888.24 20997.97 11399.02 83
GeoE93.89 12493.28 13095.72 13496.96 15789.75 18098.24 3296.92 21589.47 19392.12 17197.21 12184.42 15398.39 19987.71 22096.50 15199.01 87
cdsmvs_eth3d_5k23.24 33630.99 3380.00 3520.00 3730.00 3740.00 36497.63 1350.00 3690.00 37096.88 13784.38 1540.00 3700.00 3680.00 3680.00 366
test_yl94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
DCV-MVSNet94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
CHOSEN 280x42093.12 14992.72 14594.34 20196.71 16987.27 24890.29 34397.72 12386.61 27391.34 18495.29 22384.29 15798.41 19593.25 12098.94 8897.35 187
baseline192.82 16591.90 17195.55 14697.20 14090.77 15397.19 13594.58 31992.20 11592.36 16396.34 17184.16 15898.21 20989.20 19683.90 31597.68 173
eth_miper_zixun_eth91.02 23590.59 21992.34 27795.33 23884.35 29794.10 29896.90 21688.56 22488.84 25394.33 26684.08 15997.60 28588.77 20484.37 30795.06 273
PCF-MVS89.48 1191.56 20689.95 24696.36 10196.60 17192.52 9092.51 33097.26 18279.41 34088.90 24996.56 15984.04 16099.55 8477.01 33097.30 13397.01 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16692.03 16695.14 16395.33 23889.52 18996.04 23297.44 16487.72 25186.25 30195.33 22283.84 16198.79 16189.26 19297.05 14097.11 191
DP-MVS92.76 16791.51 18696.52 8598.77 5790.99 14397.38 11596.08 26282.38 32289.29 24297.87 7583.77 16299.69 4481.37 30496.69 14798.89 101
3Dnovator+91.43 495.40 8094.48 10098.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 26198.02 6783.69 16399.71 3893.18 12198.96 8799.44 47
hse-mvs394.15 11293.52 12096.04 11897.81 11990.22 16797.62 9397.58 14095.19 1496.74 5097.45 10983.67 16499.61 6295.85 5279.73 33298.29 147
hse-mvs293.45 13992.99 13594.81 17997.02 15488.59 21896.69 18196.47 24695.19 1496.74 5096.16 17983.67 16498.48 19395.85 5279.13 33697.35 187
AdaColmapbinary94.34 10893.68 11496.31 10398.59 6991.68 11696.59 19497.81 11389.87 18192.15 16997.06 12983.62 16699.54 8689.34 18998.07 11197.70 172
DU-MVS92.90 16092.04 16595.49 15194.95 25992.83 8097.16 13898.24 3493.02 8590.13 21295.71 20583.47 16797.85 26191.71 14683.93 31295.78 233
Baseline_NR-MVSNet91.20 22790.62 21792.95 26193.83 30188.03 23597.01 15195.12 30188.42 22789.70 22795.13 23083.47 16797.44 29989.66 18283.24 32093.37 326
miper_lstm_enhance90.50 25590.06 24491.83 28795.33 23883.74 30393.86 30496.70 23387.56 25587.79 27793.81 29083.45 16996.92 31987.39 23284.62 30394.82 289
EPNet_dtu91.71 19991.28 19392.99 25993.76 30383.71 30596.69 18195.28 29293.15 8187.02 29395.95 18883.37 17097.38 30479.46 31696.84 14197.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 15892.62 14893.92 22197.22 13886.16 27596.40 20696.25 25690.06 17989.79 22596.17 17883.19 17198.35 20187.19 23797.27 13497.24 189
TranMVSNet+NR-MVSNet92.50 17091.63 17995.14 16394.76 27092.07 10597.53 9998.11 5992.90 9589.56 23396.12 18083.16 17297.60 28589.30 19083.20 32195.75 237
CHOSEN 1792x268894.15 11293.51 12196.06 11698.27 8989.38 19595.18 27298.48 1485.60 28693.76 13497.11 12683.15 17399.61 6291.33 15598.72 9599.19 68
PMMVS92.86 16292.34 15894.42 19894.92 26186.73 26294.53 28296.38 25084.78 30094.27 12395.12 23183.13 17498.40 19691.47 15396.49 15298.12 152
Effi-MVS+-dtu93.08 15093.21 13292.68 27096.02 20783.25 31097.14 14196.72 22893.85 5591.20 19493.44 30283.08 17598.30 20491.69 14895.73 16496.50 208
mvs-test193.63 13393.69 11393.46 24296.02 20784.61 29697.24 12796.72 22893.85 5592.30 16695.76 20283.08 17598.89 15591.69 14896.54 15096.87 199
v891.29 22490.53 22393.57 23794.15 29188.12 23497.34 11797.06 20088.99 20688.32 26494.26 27383.08 17598.01 24087.62 22883.92 31494.57 303
cl-mvsnet190.97 23890.33 22792.88 26395.36 23386.19 27494.46 28596.63 24087.82 24488.18 27094.23 27482.99 17897.53 29187.72 21885.57 28694.93 280
cl-mvsnet____90.96 23990.32 22892.89 26295.37 23286.21 27394.46 28596.64 23787.82 24488.15 27194.18 27782.98 17997.54 28987.70 22185.59 28594.92 282
BH-w/o92.14 19091.75 17593.31 24896.99 15685.73 27995.67 24995.69 27588.73 22089.26 24494.82 24282.97 18098.07 23185.26 26796.32 15596.13 219
v14890.99 23690.38 22692.81 26693.83 30185.80 27896.78 17396.68 23489.45 19488.75 25793.93 28682.96 18197.82 26587.83 21683.25 31994.80 292
HyFIR lowres test93.66 13292.92 13895.87 12598.24 9389.88 17794.58 28098.49 1285.06 29593.78 13395.78 20182.86 18298.67 17391.77 14495.71 16599.07 82
test_djsdf93.07 15192.76 14194.00 21293.49 31188.70 21698.22 3497.57 14191.42 13890.08 21895.55 21582.85 18397.92 25594.07 10091.58 22395.40 254
PatchmatchNetpermissive91.91 19491.35 18893.59 23595.38 23084.11 30193.15 32095.39 28589.54 19092.10 17293.68 29582.82 18498.13 21884.81 27195.32 17098.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 18598.45 133
xiu_mvs_v1_base_debu95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base_debi95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
patchmatchnet-post90.45 33482.65 18998.10 223
V4291.58 20590.87 20593.73 22794.05 29588.50 22297.32 12096.97 20888.80 21889.71 22694.33 26682.54 19098.05 23489.01 19985.07 29694.64 302
WR-MVS92.34 17791.53 18394.77 18495.13 25190.83 15096.40 20697.98 9891.88 12689.29 24295.54 21682.50 19197.80 26689.79 17885.27 29295.69 240
tpmrst91.44 21391.32 19091.79 29095.15 24979.20 34293.42 31595.37 28788.55 22593.49 14093.67 29682.49 19298.27 20590.41 16789.34 25297.90 161
MDTV_nov1_ep13_2view70.35 35693.10 32283.88 31093.55 13782.47 19386.25 24998.38 142
XVG-OURS-SEG-HR93.86 12693.55 11794.81 17997.06 15088.53 22195.28 26697.45 16091.68 13094.08 12797.68 9182.41 19498.90 15493.84 10892.47 20896.98 193
QAPM93.45 13992.27 16196.98 7496.77 16692.62 8798.39 2098.12 5684.50 30388.27 26797.77 8582.39 19599.81 2685.40 26598.81 9298.51 125
Patchmatch-test89.42 27387.99 28093.70 23095.27 24285.11 28888.98 35094.37 32481.11 33087.10 29193.69 29382.28 19697.50 29474.37 33894.76 18098.48 130
Vis-MVSNetpermissive95.23 8694.81 8896.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11398.15 5982.28 19698.92 15191.45 15498.58 10099.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8994.44 10297.44 5296.56 17693.36 6998.65 798.36 1694.12 4889.25 24598.06 6482.20 19899.77 2993.41 11799.32 5399.18 69
v1091.04 23490.23 23593.49 23994.12 29288.16 23397.32 12097.08 19788.26 23188.29 26694.22 27682.17 19997.97 24586.45 24784.12 30994.33 309
v114491.37 21890.60 21893.68 23293.89 29988.23 22996.84 16697.03 20588.37 22889.69 22894.39 26282.04 20097.98 24287.80 21785.37 28994.84 286
MVSTER93.20 14792.81 14094.37 19996.56 17689.59 18497.06 14397.12 19291.24 14791.30 18795.96 18782.02 20198.05 23493.48 11490.55 24095.47 247
CP-MVSNet91.89 19591.24 19593.82 22495.05 25488.57 21997.82 6598.19 4491.70 12988.21 26995.76 20281.96 20297.52 29387.86 21584.65 30195.37 257
Patchmatch-RL test87.38 29486.24 29590.81 30988.74 35278.40 34688.12 35293.17 33887.11 26582.17 33289.29 34181.95 20395.60 33888.64 20677.02 33998.41 139
sam_mvs81.94 204
pmmvs490.93 24089.85 25094.17 20593.34 31590.79 15294.60 27996.02 26384.62 30187.45 28295.15 22881.88 20597.45 29887.70 22187.87 26494.27 313
test_post17.58 36781.76 20698.08 228
XVG-OURS93.72 13193.35 12894.80 18297.07 14788.61 21794.79 27697.46 15491.97 12593.99 12897.86 7781.74 20798.88 15692.64 12892.67 20696.92 197
v2v48291.59 20390.85 20893.80 22593.87 30088.17 23296.94 15896.88 21989.54 19089.53 23494.90 23781.70 20898.02 23989.25 19385.04 29895.20 269
baseline291.63 20290.86 20693.94 21994.33 28786.32 26995.92 24091.64 35089.37 19686.94 29494.69 24881.62 20998.69 17188.64 20694.57 18496.81 201
v14419291.06 23390.28 23193.39 24493.66 30687.23 25196.83 16797.07 19887.43 25789.69 22894.28 27081.48 21098.00 24187.18 23884.92 30094.93 280
MDTV_nov1_ep1390.76 21295.22 24680.33 33193.03 32395.28 29288.14 23792.84 15793.83 28781.34 21198.08 22882.86 28994.34 186
HQP_MVS93.78 12993.43 12594.82 17796.21 19589.99 17297.74 7397.51 14794.85 2691.34 18496.64 15081.32 21298.60 18093.02 12492.23 21195.86 226
plane_prior696.10 20590.00 17081.32 212
v7n90.76 24489.86 24993.45 24393.54 30887.60 24597.70 8197.37 17388.85 21287.65 28094.08 28181.08 21498.10 22384.68 27383.79 31694.66 301
HQP2-MVS80.95 215
HQP-MVS93.19 14892.74 14494.54 19395.86 21089.33 19896.65 18597.39 17093.55 6590.14 20895.87 19280.95 21598.50 18992.13 13692.10 21695.78 233
CR-MVSNet90.82 24389.77 25493.95 21794.45 28387.19 25290.23 34495.68 27786.89 26892.40 16092.36 31980.91 21797.05 31281.09 30693.95 19297.60 179
Patchmtry88.64 28487.25 28792.78 26794.09 29386.64 26389.82 34795.68 27780.81 33487.63 28192.36 31980.91 21797.03 31378.86 31985.12 29594.67 300
v119291.07 23290.23 23593.58 23693.70 30487.82 24196.73 17597.07 19887.77 24889.58 23194.32 26880.90 21997.97 24586.52 24585.48 28794.95 276
cl-mvsnet291.21 22690.56 22293.14 25596.09 20686.80 26094.41 28796.58 24387.80 24688.58 26093.99 28480.85 22097.62 28389.87 17686.93 27394.99 275
anonymousdsp92.16 18891.55 18293.97 21592.58 32889.55 18697.51 10097.42 16889.42 19588.40 26294.84 24080.66 22197.88 26091.87 14291.28 22994.48 304
CLD-MVS92.98 15592.53 15394.32 20296.12 20489.20 20495.28 26697.47 15292.66 10389.90 22195.62 21080.58 22298.40 19692.73 12792.40 20995.38 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 32616.58 36880.53 22397.68 27686.20 250
VPA-MVSNet93.24 14592.48 15695.51 14895.70 21892.39 9397.86 6098.66 992.30 11192.09 17395.37 22180.49 22498.40 19693.95 10385.86 28395.75 237
tpmvs89.83 27089.15 26891.89 28594.92 26180.30 33293.11 32195.46 28486.28 27688.08 27292.65 31180.44 22598.52 18881.47 30089.92 24796.84 200
PatchMatch-RL92.90 16092.02 16795.56 14498.19 10090.80 15195.27 26897.18 18687.96 24091.86 17795.68 20880.44 22598.99 14784.01 28097.54 12396.89 198
PEN-MVS91.20 22790.44 22493.48 24094.49 28187.91 23997.76 7198.18 4691.29 14387.78 27895.74 20480.35 22797.33 30685.46 26482.96 32295.19 270
Fast-Effi-MVS+-dtu92.29 18191.99 16893.21 25395.27 24285.52 28297.03 14496.63 24092.09 12089.11 24795.14 22980.33 22898.08 22887.54 23094.74 18296.03 223
MSDG91.42 21490.24 23494.96 17297.15 14488.91 21193.69 30996.32 25285.72 28586.93 29596.47 16380.24 22998.98 14880.57 30795.05 17696.98 193
v192192090.85 24290.03 24593.29 24993.55 30786.96 25996.74 17497.04 20387.36 25989.52 23594.34 26580.23 23097.97 24586.27 24885.21 29394.94 278
RPMNet88.98 27687.05 29194.77 18494.45 28387.19 25290.23 34498.03 8477.87 34792.40 16087.55 34980.17 23199.51 9468.84 35293.95 19297.60 179
ET-MVSNet_ETH3D91.49 21190.11 24095.63 13896.40 18791.57 12195.34 26293.48 33590.60 16975.58 34995.49 21880.08 23296.79 32294.25 9689.76 24998.52 123
PatchT88.87 28087.42 28593.22 25294.08 29485.10 28989.51 34894.64 31881.92 32592.36 16388.15 34680.05 23397.01 31672.43 34493.65 19597.54 183
our_test_388.78 28287.98 28191.20 30492.45 33082.53 31493.61 31395.69 27585.77 28484.88 31293.71 29279.99 23496.78 32379.47 31586.24 27994.28 312
DTE-MVSNet90.56 25289.75 25693.01 25893.95 29687.25 24997.64 9097.65 13390.74 15887.12 28995.68 20879.97 23597.00 31783.33 28581.66 32794.78 296
D2MVS91.30 22390.95 20392.35 27694.71 27385.52 28296.18 22798.21 4088.89 21186.60 29893.82 28979.92 23697.95 25189.29 19190.95 23593.56 322
TransMVSNet (Re)88.94 27787.56 28493.08 25794.35 28688.45 22497.73 7595.23 29687.47 25684.26 31895.29 22379.86 23797.33 30679.44 31774.44 34593.45 325
ACMM89.79 892.96 15692.50 15594.35 20096.30 19388.71 21597.58 9597.36 17591.40 14190.53 19996.65 14979.77 23898.75 16691.24 15891.64 22195.59 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18891.23 19694.95 17394.75 27190.94 14697.47 10697.43 16789.14 20288.90 24996.43 16579.71 23998.24 20689.56 18487.68 26695.67 242
PS-CasMVS91.55 20790.84 20993.69 23194.96 25888.28 22697.84 6498.24 3491.46 13688.04 27395.80 19779.67 24097.48 29587.02 24084.54 30595.31 260
RRT_MVS93.21 14692.32 16095.91 12394.92 26194.15 4396.92 15996.86 22291.42 13891.28 19096.43 16579.66 24198.10 22393.29 11990.06 24595.46 248
ab-mvs93.57 13692.55 15196.64 7897.28 13791.96 11195.40 26097.45 16089.81 18693.22 14996.28 17379.62 24299.46 10190.74 16493.11 20098.50 126
v124090.70 24989.85 25093.23 25193.51 31086.80 26096.61 19197.02 20687.16 26489.58 23194.31 26979.55 24397.98 24285.52 26385.44 28894.90 283
CostFormer91.18 23190.70 21592.62 27194.84 26781.76 32094.09 29994.43 32184.15 30692.72 15893.77 29179.43 24498.20 21190.70 16592.18 21497.90 161
CANet_DTU94.37 10793.65 11596.55 8496.46 18392.13 10496.21 22596.67 23694.38 4493.53 13997.03 13079.34 24599.71 3890.76 16398.45 10297.82 168
OPM-MVS93.28 14492.76 14194.82 17794.63 27790.77 15396.65 18597.18 18693.72 6091.68 17897.26 11879.33 24698.63 17692.13 13692.28 21095.07 272
JIA-IIPM88.26 28887.04 29291.91 28493.52 30981.42 32289.38 34994.38 32380.84 33390.93 19680.74 35479.22 24797.92 25582.76 29191.62 22296.38 211
CVMVSNet91.23 22591.75 17589.67 32395.77 21574.69 35196.44 19994.88 31185.81 28392.18 16897.64 9779.07 24895.58 33988.06 21295.86 16198.74 111
LPG-MVS_test92.94 15892.56 15094.10 20796.16 20088.26 22797.65 8697.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
LGP-MVS_train94.10 20796.16 20088.26 22797.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
test-LLR91.42 21491.19 19892.12 28094.59 27880.66 32694.29 29392.98 33991.11 15290.76 19792.37 31679.02 25198.07 23188.81 20296.74 14497.63 174
test0.0.03 189.37 27488.70 27291.41 30092.47 32985.63 28095.22 27192.70 34291.11 15286.91 29693.65 29779.02 25193.19 35378.00 32389.18 25395.41 251
ADS-MVSNet289.45 27288.59 27492.03 28295.86 21082.26 31890.93 33994.32 32683.23 31891.28 19091.81 32679.01 25395.99 33079.52 31391.39 22797.84 165
ADS-MVSNet89.89 26788.68 27393.53 23895.86 21084.89 29390.93 33995.07 30383.23 31891.28 19091.81 32679.01 25397.85 26179.52 31391.39 22797.84 165
ppachtmachnet_test88.35 28787.29 28691.53 29692.45 33083.57 30893.75 30795.97 26484.28 30485.32 31094.18 27779.00 25596.93 31875.71 33384.99 29994.10 315
OpenMVScopyleft89.19 1292.86 16291.68 17896.40 9695.34 23592.73 8398.27 2798.12 5684.86 29885.78 30497.75 8678.89 25699.74 3187.50 23198.65 9796.73 203
LTVRE_ROB88.41 1390.99 23689.92 24794.19 20496.18 19889.55 18696.31 21697.09 19687.88 24385.67 30595.91 19078.79 25798.57 18481.50 29989.98 24694.44 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 19890.75 21394.81 17997.00 15588.57 21996.65 18596.49 24589.63 18992.15 16996.12 18078.66 25898.50 18990.83 16279.18 33597.36 186
pm-mvs190.72 24889.65 26093.96 21694.29 29089.63 18197.79 6896.82 22589.07 20386.12 30395.48 21978.61 25997.78 26986.97 24181.67 32694.46 305
PVSNet86.66 1892.24 18491.74 17793.73 22797.77 12283.69 30792.88 32496.72 22887.91 24293.00 15194.86 23978.51 26099.05 14386.53 24497.45 12898.47 131
ACMP89.59 1092.62 16992.14 16394.05 21096.40 18788.20 23097.36 11697.25 18491.52 13388.30 26596.64 15078.46 26198.72 17091.86 14391.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd91.55 20790.59 21994.44 19591.51 33690.25 16692.70 32793.42 33692.27 11290.22 20794.74 24678.42 26297.80 26694.19 9887.86 26595.29 267
BH-RMVSNet92.72 16891.97 16994.97 17197.16 14287.99 23696.15 22895.60 27990.62 16691.87 17697.15 12578.41 26398.57 18483.16 28697.60 12298.36 144
thres20092.23 18591.39 18794.75 18697.61 13089.03 20996.60 19395.09 30292.08 12193.28 14694.00 28378.39 26499.04 14581.26 30594.18 18796.19 214
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33282.57 31393.17 31895.15 29982.15 32367.65 35392.33 32278.20 26595.51 34077.33 32579.74 33194.31 311
tfpn200view992.38 17691.52 18494.95 17397.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.48 209
thres40092.42 17491.52 18495.12 16597.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.98 193
YYNet185.87 30884.23 31290.78 31292.38 33282.46 31693.17 31895.14 30082.12 32467.69 35292.36 31978.16 26895.50 34177.31 32679.73 33294.39 307
CL-MVSNet_2432*160086.31 30385.15 30589.80 32288.83 35181.74 32193.93 30396.22 25786.67 27185.03 31190.80 33278.09 26994.50 34574.92 33571.86 34993.15 327
thres100view90092.43 17391.58 18194.98 17097.92 11389.37 19697.71 8094.66 31692.20 11593.31 14594.90 23778.06 27099.08 13981.40 30194.08 18896.48 209
thres600view792.49 17291.60 18095.18 16197.91 11489.47 19097.65 8694.66 31692.18 11993.33 14494.91 23678.06 27099.10 13481.61 29894.06 19196.98 193
tpm cat188.36 28687.21 28991.81 28995.13 25180.55 32992.58 32995.70 27474.97 34987.45 28291.96 32478.01 27298.17 21680.39 30988.74 25896.72 204
MVP-Stereo90.74 24790.08 24192.71 26893.19 31888.20 23095.86 24296.27 25486.07 28084.86 31394.76 24477.84 27397.75 27283.88 28398.01 11292.17 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 24989.81 25293.37 24694.73 27284.21 29993.67 31088.02 35789.50 19292.38 16293.49 30077.82 27497.78 26986.03 25692.68 20598.11 155
tfpnnormal89.70 27188.40 27693.60 23495.15 24990.10 16897.56 9798.16 5087.28 26286.16 30294.63 25277.57 27598.05 23474.48 33684.59 30492.65 334
tpm90.25 25989.74 25791.76 29393.92 29779.73 33893.98 30093.54 33488.28 23091.99 17493.25 30577.51 27697.44 29987.30 23587.94 26398.12 152
thisisatest051592.29 18191.30 19295.25 15996.60 17188.90 21294.36 28992.32 34487.92 24193.43 14294.57 25477.28 27799.00 14689.42 18795.86 16197.86 164
FMVSNet391.78 19790.69 21695.03 16796.53 17892.27 9997.02 14796.93 21189.79 18789.35 23994.65 25177.01 27897.47 29686.12 25388.82 25595.35 258
test_part192.21 18791.10 20195.51 14897.80 12092.66 8598.02 4797.68 12889.79 18788.80 25596.02 18576.85 27998.18 21490.86 16184.11 31095.69 240
TR-MVS91.48 21290.59 21994.16 20696.40 18787.33 24695.67 24995.34 29187.68 25291.46 18195.52 21776.77 28098.35 20182.85 29093.61 19796.79 202
tttt051792.96 15692.33 15994.87 17697.11 14587.16 25497.97 5392.09 34690.63 16593.88 13297.01 13176.50 28199.06 14290.29 17195.45 16898.38 142
RPSCF90.75 24690.86 20690.42 31696.84 16176.29 34995.61 25396.34 25183.89 30991.38 18297.87 7576.45 28298.78 16287.16 23992.23 21196.20 213
tpm289.96 26589.21 26692.23 27994.91 26481.25 32393.78 30694.42 32280.62 33591.56 17993.44 30276.44 28397.94 25285.60 26292.08 21897.49 184
thisisatest053093.03 15392.21 16295.49 15197.07 14789.11 20897.49 10592.19 34590.16 17794.09 12696.41 16776.43 28499.05 14390.38 16895.68 16698.31 146
EU-MVSNet88.72 28388.90 27088.20 32893.15 31974.21 35296.63 19094.22 32885.18 29287.32 28795.97 18676.16 28594.98 34385.27 26686.17 28095.41 251
dp88.90 27988.26 27990.81 30994.58 28076.62 34892.85 32594.93 30985.12 29490.07 21993.07 30675.81 28698.12 22180.53 30887.42 27097.71 171
IterMVS-SCA-FT90.31 25789.81 25291.82 28895.52 22484.20 30094.30 29296.15 26090.61 16787.39 28594.27 27175.80 28796.44 32587.34 23386.88 27794.82 289
SCA91.84 19691.18 19993.83 22395.59 22084.95 29294.72 27795.58 28190.82 15692.25 16793.69 29375.80 28798.10 22386.20 25095.98 15798.45 133
IterMVS90.15 26389.67 25891.61 29595.48 22683.72 30494.33 29196.12 26189.99 18087.31 28894.15 27975.78 28996.27 32886.97 24186.89 27694.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 17491.89 17294.03 21193.33 31688.50 22297.73 7597.53 14592.00 12488.85 25296.50 16275.62 29098.11 22293.88 10791.56 22495.48 245
cascas91.20 22790.08 24194.58 19294.97 25789.16 20793.65 31197.59 13979.90 33889.40 23792.92 30875.36 29198.36 20092.14 13594.75 18196.23 212
VPNet92.23 18591.31 19194.99 16895.56 22290.96 14597.22 13397.86 11092.96 9390.96 19596.62 15775.06 29298.20 21191.90 14083.65 31795.80 232
N_pmnet78.73 32378.71 32578.79 33892.80 32446.50 36794.14 29743.71 37078.61 34380.83 33591.66 32974.94 29396.36 32667.24 35384.45 30693.50 323
mvs_tets92.31 17991.76 17493.94 21993.41 31388.29 22597.63 9297.53 14592.04 12288.76 25696.45 16474.62 29498.09 22793.91 10591.48 22595.45 250
DSMNet-mixed86.34 30286.12 29887.00 33389.88 34670.43 35594.93 27590.08 35577.97 34685.42 30992.78 31074.44 29593.96 34974.43 33795.14 17296.62 205
pmmvs589.86 26988.87 27192.82 26592.86 32286.23 27296.26 22095.39 28584.24 30587.12 28994.51 25574.27 29697.36 30587.61 22987.57 26794.86 285
OurMVSNet-221017-090.51 25490.19 23991.44 29993.41 31381.25 32396.98 15496.28 25391.68 13086.55 29996.30 17274.20 29797.98 24288.96 20087.40 27195.09 271
GBi-Net91.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
test191.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
FMVSNet291.31 22290.08 24194.99 16896.51 17992.21 10097.41 10996.95 20988.82 21588.62 25894.75 24573.87 29897.42 30185.20 26888.55 26095.35 258
COLMAP_ROBcopyleft87.81 1590.40 25689.28 26593.79 22697.95 11087.13 25596.92 15995.89 26882.83 32086.88 29797.18 12273.77 30199.29 11878.44 32193.62 19694.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 24489.89 24893.38 24595.04 25583.70 30695.85 24394.30 32788.19 23290.46 20192.80 30973.61 30298.50 18988.16 21090.58 23997.95 159
Anonymous2023120687.09 29686.14 29789.93 32191.22 33880.35 33096.11 22995.35 28883.57 31584.16 31993.02 30773.54 30395.61 33772.16 34586.14 28193.84 320
UGNet94.04 12093.28 13096.31 10396.85 16091.19 13697.88 5997.68 12894.40 4293.00 15196.18 17673.39 30499.61 6291.72 14598.46 10198.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121190.63 25189.42 26294.27 20398.24 9389.19 20698.05 4597.89 10379.95 33788.25 26894.96 23372.56 30598.13 21889.70 18085.14 29495.49 244
ACMH87.59 1690.53 25389.42 26293.87 22296.21 19587.92 23797.24 12796.94 21088.45 22683.91 32496.27 17471.92 30698.62 17884.43 27789.43 25195.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 21690.31 22994.59 18894.65 27587.62 24494.34 29096.19 25990.73 15990.35 20493.83 28771.84 30797.96 24987.22 23693.61 19798.21 149
SixPastTwentyTwo89.15 27588.54 27590.98 30693.49 31180.28 33396.70 17994.70 31590.78 15784.15 32095.57 21271.78 30897.71 27584.63 27485.07 29694.94 278
gg-mvs-nofinetune87.82 29185.61 30094.44 19594.46 28289.27 20391.21 33884.61 36280.88 33289.89 22374.98 35671.50 30997.53 29185.75 26197.21 13696.51 207
test20.0386.14 30585.40 30388.35 32690.12 34380.06 33595.90 24195.20 29788.59 22181.29 33493.62 29871.43 31092.65 35471.26 34981.17 32992.34 338
MS-PatchMatch90.27 25889.77 25491.78 29194.33 28784.72 29595.55 25496.73 22786.17 27986.36 30095.28 22571.28 31197.80 26684.09 27998.14 11092.81 331
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 33990.55 34295.60 27983.76 31283.00 33089.95 33771.09 31297.97 24582.75 29260.79 35895.31 260
GG-mvs-BLEND93.62 23393.69 30589.20 20492.39 33283.33 36387.98 27689.84 33971.00 31396.87 32082.08 29795.40 16994.80 292
ITE_SJBPF92.43 27495.34 23585.37 28595.92 26591.47 13587.75 27996.39 16971.00 31397.96 24982.36 29589.86 24893.97 318
IB-MVS87.33 1789.91 26688.28 27894.79 18395.26 24587.70 24395.12 27493.95 33289.35 19787.03 29292.49 31470.74 31599.19 12489.18 19781.37 32897.49 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 31282.95 31691.17 30593.13 32083.33 30994.56 28195.00 30584.57 30265.13 35792.65 31170.45 31695.85 33373.57 34177.49 33894.33 309
RRT_test8_iter0591.19 23090.78 21192.41 27595.76 21783.14 31197.32 12097.46 15491.37 14289.07 24895.57 21270.33 31798.21 20993.56 11186.62 27895.89 225
AllTest90.23 26088.98 26993.98 21397.94 11186.64 26396.51 19895.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
TestCases93.98 21397.94 11186.64 26395.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
ACMH+87.92 1490.20 26189.18 26793.25 25096.48 18286.45 26896.99 15296.68 23488.83 21484.79 31496.22 17570.16 32098.53 18784.42 27888.04 26294.77 297
DIV-MVS_2432*160085.95 30784.95 30688.96 32589.55 34979.11 34395.13 27396.42 24885.91 28284.07 32290.48 33370.03 32194.82 34480.04 31072.94 34892.94 329
Anonymous2024052991.98 19390.73 21495.73 13398.14 10389.40 19497.99 4897.72 12379.63 33993.54 13897.41 11369.94 32299.56 8191.04 16091.11 23198.22 148
pmmvs-eth3d86.22 30484.45 31091.53 29688.34 35387.25 24994.47 28395.01 30483.47 31679.51 34489.61 34069.75 32395.71 33683.13 28776.73 34191.64 343
LFMVS93.60 13492.63 14796.52 8598.13 10491.27 13097.94 5593.39 33790.57 17096.29 7298.31 4769.00 32499.16 12894.18 9995.87 16099.12 77
TESTMET0.1,190.06 26489.42 26291.97 28394.41 28580.62 32894.29 29391.97 34887.28 26290.44 20292.47 31568.79 32597.67 27788.50 20896.60 14997.61 178
XVG-ACMP-BASELINE90.93 24090.21 23893.09 25694.31 28985.89 27795.33 26397.26 18291.06 15489.38 23895.44 22068.61 32698.60 18089.46 18691.05 23294.79 294
MVS-HIRNet82.47 32081.21 32286.26 33595.38 23069.21 35888.96 35189.49 35666.28 35480.79 33674.08 35868.48 32797.39 30371.93 34695.47 16792.18 341
VDD-MVS93.82 12793.08 13396.02 11997.88 11689.96 17697.72 7895.85 26992.43 10895.86 9098.44 2868.42 32899.39 11096.31 3094.85 17798.71 115
test_040286.46 30084.79 30891.45 29895.02 25685.55 28196.29 21894.89 31080.90 33182.21 33193.97 28568.21 32997.29 30862.98 35688.68 25991.51 345
test-mter90.19 26289.54 26192.12 28094.59 27880.66 32694.29 29392.98 33987.68 25290.76 19792.37 31667.67 33098.07 23188.81 20296.74 14497.63 174
VDDNet93.05 15292.07 16496.02 11996.84 16190.39 16598.08 4395.85 26986.22 27895.79 9398.46 2667.59 33199.19 12494.92 8294.85 17798.47 131
USDC88.94 27787.83 28292.27 27894.66 27484.96 29193.86 30495.90 26787.34 26083.40 32695.56 21467.43 33298.19 21382.64 29489.67 25093.66 321
pmmvs687.81 29286.19 29692.69 26991.32 33786.30 27097.34 11796.41 24980.59 33684.05 32394.37 26467.37 33397.67 27784.75 27279.51 33494.09 317
KD-MVS_2432*160084.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
miper_refine_blended84.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
K. test v387.64 29386.75 29490.32 31793.02 32179.48 34096.61 19192.08 34790.66 16380.25 34194.09 28067.21 33496.65 32485.96 25880.83 33094.83 287
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33089.14 35073.12 35494.17 29696.80 22673.98 35073.65 35194.93 23566.36 33797.61 28483.95 28291.28 22992.48 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 22190.22 23794.68 18794.86 26687.86 24097.23 13297.46 15487.99 23989.90 22196.92 13566.35 33898.23 20790.30 17090.99 23497.96 157
lessismore_v090.45 31591.96 33579.09 34487.19 36080.32 34094.39 26266.31 33997.55 28884.00 28176.84 34094.70 299
Anonymous20240521192.07 19190.83 21095.76 12898.19 10088.75 21497.58 9595.00 30586.00 28193.64 13597.45 10966.24 34099.53 8990.68 16692.71 20499.01 87
new-patchmatchnet83.18 31881.87 32087.11 33286.88 35675.99 35093.70 30895.18 29885.02 29677.30 34788.40 34365.99 34193.88 35074.19 34070.18 35191.47 347
FMVSNet189.88 26888.31 27794.59 18895.41 22891.18 13797.50 10196.93 21186.62 27287.41 28494.51 25565.94 34297.29 30883.04 28887.43 26995.31 260
TDRefinement86.53 29984.76 30991.85 28682.23 35984.25 29896.38 20995.35 28884.97 29784.09 32194.94 23465.76 34398.34 20384.60 27574.52 34492.97 328
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 34582.40 31793.62 31297.37 17389.86 18278.59 34692.37 31665.25 34495.35 34282.27 29670.75 35094.10 315
LF4IMVS87.94 29087.25 28789.98 32092.38 33280.05 33694.38 28895.25 29587.59 25484.34 31694.74 24664.31 34597.66 27984.83 27087.45 26892.23 339
Anonymous2024052186.42 30185.44 30189.34 32490.33 34279.79 33796.73 17595.92 26583.71 31383.25 32791.36 33163.92 34696.01 32978.39 32285.36 29092.22 340
MIMVSNet88.50 28586.76 29393.72 22994.84 26787.77 24291.39 33494.05 32986.41 27587.99 27592.59 31363.27 34795.82 33577.44 32492.84 20397.57 182
FMVSNet587.29 29585.79 29991.78 29194.80 26987.28 24795.49 25795.28 29284.09 30783.85 32591.82 32562.95 34894.17 34878.48 32085.34 29193.91 319
testgi87.97 28987.21 28990.24 31892.86 32280.76 32596.67 18494.97 30791.74 12885.52 30695.83 19562.66 34994.47 34776.25 33188.36 26195.48 245
TinyColmap86.82 29885.35 30491.21 30394.91 26482.99 31293.94 30294.02 33183.58 31481.56 33394.68 24962.34 35098.13 21875.78 33287.35 27292.52 336
new_pmnet82.89 31981.12 32388.18 32989.63 34780.18 33491.77 33392.57 34376.79 34875.56 35088.23 34561.22 35194.48 34671.43 34782.92 32389.87 351
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 31990.83 30890.06 34484.05 30295.73 24894.04 33073.89 35180.17 34291.53 33059.15 35297.64 28066.92 35489.05 25490.80 349
MIMVSNet184.93 31383.05 31590.56 31489.56 34884.84 29495.40 26095.35 28883.91 30880.38 33992.21 32357.23 35393.34 35270.69 35182.75 32593.50 323
EG-PatchMatch MVS87.02 29785.44 30191.76 29392.67 32685.00 29096.08 23196.45 24783.41 31779.52 34393.49 30057.10 35497.72 27479.34 31890.87 23792.56 335
MVS_030488.79 28187.57 28392.46 27294.65 27586.15 27696.40 20697.17 18886.44 27488.02 27491.71 32856.68 35597.03 31384.47 27692.58 20794.19 314
UnsupCasMVSNet_bld82.13 32179.46 32490.14 31988.00 35482.47 31590.89 34196.62 24278.94 34275.61 34884.40 35256.63 35696.31 32777.30 32766.77 35491.63 344
tmp_tt51.94 33453.82 33446.29 34833.73 37045.30 36978.32 35967.24 36918.02 36550.93 36187.05 35152.99 35753.11 36670.76 35025.29 36440.46 362
pmmvs379.97 32277.50 32687.39 33182.80 35879.38 34192.70 32790.75 35470.69 35378.66 34587.47 35051.34 35893.40 35173.39 34269.65 35289.38 352
DeepMVS_CXcopyleft74.68 34290.84 34164.34 36281.61 36565.34 35567.47 35488.01 34848.60 35980.13 36262.33 35773.68 34779.58 356
PM-MVS83.48 31781.86 32188.31 32787.83 35577.59 34793.43 31491.75 34986.91 26780.63 33789.91 33844.42 36095.84 33485.17 26976.73 34191.50 346
test_method66.11 32864.89 33169.79 34372.62 36435.23 37165.19 36292.83 34120.35 36465.20 35688.08 34743.14 36182.70 36073.12 34363.46 35591.45 348
ambc86.56 33483.60 35770.00 35785.69 35494.97 30780.60 33888.45 34237.42 36296.84 32182.69 29375.44 34392.86 330
Gipumacopyleft67.86 32765.41 33075.18 34192.66 32773.45 35366.50 36194.52 32053.33 35957.80 36066.07 36030.81 36389.20 35648.15 36078.88 33762.90 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 33351.31 33654.39 34772.62 36445.39 36883.84 35675.51 36741.13 36240.77 36459.65 36330.08 36473.60 36428.31 36429.90 36344.18 361
FPMVS71.27 32569.85 32775.50 34074.64 36159.03 36391.30 33591.50 35158.80 35757.92 35988.28 34429.98 36585.53 35953.43 35882.84 32481.95 355
E-PMN53.28 33152.56 33555.43 34674.43 36247.13 36683.63 35776.30 36642.23 36142.59 36362.22 36228.57 36674.40 36331.53 36331.51 36144.78 360
PMMVS270.19 32666.92 32980.01 33776.35 36065.67 36086.22 35387.58 35964.83 35662.38 35880.29 35526.78 36788.49 35763.79 35554.07 35985.88 353
ANet_high63.94 32959.58 33277.02 33961.24 36866.06 35985.66 35587.93 35878.53 34442.94 36271.04 35925.42 36880.71 36152.60 35930.83 36284.28 354
LCM-MVSNet72.55 32469.39 32882.03 33670.81 36665.42 36190.12 34694.36 32555.02 35865.88 35581.72 35324.16 36989.96 35574.32 33968.10 35390.71 350
PMVScopyleft53.92 2258.58 33055.40 33368.12 34451.00 36948.64 36578.86 35887.10 36146.77 36035.84 36674.28 3578.76 37086.34 35842.07 36173.91 34669.38 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 33524.57 33926.74 34973.98 36339.89 37057.88 3639.80 37112.27 36610.39 3676.97 3697.03 37136.44 36725.43 36517.39 3653.89 365
MVEpermissive50.73 2353.25 33248.81 33766.58 34565.34 36757.50 36472.49 36070.94 36840.15 36339.28 36563.51 3616.89 37273.48 36538.29 36242.38 36068.76 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 33815.66 3415.18 3504.51 3723.45 37292.50 3311.81 3732.50 3687.58 36920.15 3663.67 3732.18 3697.13 3671.07 3679.90 363
testmvs13.36 33716.33 3404.48 3515.04 3712.26 37393.18 3173.28 3722.70 3678.24 36821.66 3652.29 3742.19 3687.58 3662.96 3669.00 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.06 33910.74 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37096.69 1470.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
IU-MVS99.42 695.39 997.94 10290.40 17498.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14798.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
MTGPAbinary98.08 64
MTMP97.86 6082.03 364
gm-plane-assit93.22 31778.89 34584.82 29993.52 29998.64 17587.72 218
test9_res94.81 8799.38 4899.45 45
agg_prior293.94 10499.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9799.57 79
test_prior493.66 5996.42 202
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
旧先验295.94 23981.66 32797.34 3498.82 15992.26 130
新几何295.79 246
无先验95.79 24697.87 10783.87 31199.65 5387.68 22498.89 101
原ACMM295.67 249
testdata299.67 4985.96 258
testdata195.26 27093.10 84
plane_prior796.21 19589.98 174
plane_prior597.51 14798.60 18093.02 12492.23 21195.86 226
plane_prior496.64 150
plane_prior390.00 17094.46 4191.34 184
plane_prior297.74 7394.85 26
plane_prior196.14 203
plane_prior89.99 17297.24 12794.06 4992.16 215
n20.00 374
nn0.00 374
door-mid91.06 353
test1197.88 105
door91.13 352
HQP5-MVS89.33 198
HQP-NCC95.86 21096.65 18593.55 6590.14 208
ACMP_Plane95.86 21096.65 18593.55 6590.14 208
BP-MVS92.13 136
HQP4-MVS90.14 20898.50 18995.78 233
HQP3-MVS97.39 17092.10 216
NP-MVS95.99 20989.81 17995.87 192
ACMMP++_ref90.30 244
ACMMP++91.02 233