This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10997.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
FC-MVSNet-test93.94 12093.57 11495.04 16295.48 22191.45 12598.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25691.49 14890.39 24095.83 225
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22493.34 7097.39 10998.71 593.14 8090.10 21194.83 23587.71 10598.03 23391.67 14683.99 30795.46 243
FIs94.09 11493.70 11095.27 15495.70 21392.03 10798.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12890.50 23995.84 224
WR-MVS_H92.00 18791.35 18393.95 21295.09 24889.47 18698.04 4598.68 791.46 13288.34 25894.68 24385.86 13497.56 28285.77 25584.24 30494.82 284
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21392.39 9397.86 5998.66 992.30 10792.09 16895.37 21580.49 21998.40 19293.95 9985.86 28095.75 232
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 15095.34 23092.83 8097.17 13398.58 1092.98 8990.13 20795.80 19188.37 9997.85 25691.71 14283.93 30895.73 234
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20093.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17494.58 27498.49 1285.06 29093.78 12995.78 19582.86 17798.67 17391.77 14095.71 16299.07 82
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19195.18 26698.48 1485.60 28193.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17897.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
PVSNet_BlendedMVS94.06 11593.92 10594.47 18998.27 8989.46 18896.73 17198.36 1690.17 17294.36 11795.24 22088.02 10099.58 7093.44 11190.72 23594.36 303
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18895.47 25298.36 1688.84 20894.36 11796.09 17988.02 10099.58 7093.44 11198.18 10698.40 138
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17393.36 6998.65 698.36 1694.12 4689.25 24098.06 6482.20 19399.77 2993.41 11399.32 5399.18 69
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12198.25 3390.21 17194.18 12197.27 11587.48 11299.73 3293.53 10897.77 11798.55 119
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12897.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
PS-CasMVS91.55 20290.84 20493.69 22694.96 25388.28 22197.84 6398.24 3491.46 13288.04 26895.80 19179.67 23597.48 29087.02 23584.54 30195.31 255
DU-MVS92.90 15592.04 16095.49 14794.95 25492.83 8097.16 13498.24 3493.02 8390.13 20795.71 19983.47 16297.85 25691.71 14283.93 30895.78 228
9.1496.75 3398.93 4797.73 7398.23 3891.28 14297.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23196.64 5597.70 8991.18 6399.67 4992.44 12599.47 3699.48 41
D2MVS91.30 21890.95 19892.35 27194.71 26885.52 27796.18 22198.21 4088.89 20686.60 29393.82 28479.92 23197.95 24689.29 18790.95 23293.56 317
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19489.67 25397.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35791.70 5099.80 2795.66 5299.40 4599.62 13
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
CP-MVSNet91.89 19091.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12588.21 26495.76 19681.96 19797.52 28887.86 21184.65 29795.37 252
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16698.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 22290.44 21993.48 23594.49 27687.91 23497.76 6998.18 4691.29 13987.78 27395.74 19880.35 22297.33 30185.46 25982.96 31895.19 265
DELS-MVS96.61 4896.38 5197.30 5797.79 12093.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 26688.40 27193.60 22995.15 24490.10 16597.56 9398.16 5087.28 25786.16 29794.63 24677.57 27098.05 22974.48 33084.59 30092.65 329
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15898.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
UA-Net95.95 6795.53 6797.20 6697.67 12592.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16597.35 12999.11 78
QAPM93.45 13592.27 15696.98 7496.77 16392.62 8798.39 1998.12 5684.50 29888.27 26297.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 23092.73 8398.27 2698.12 5684.86 29385.78 29997.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15994.76 26592.07 10597.53 9598.11 5992.90 9289.56 22896.12 17583.16 16797.60 28089.30 18683.20 31795.75 232
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24295.17 10698.03 6687.09 11899.61 6293.51 10999.42 4399.02 83
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13098.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
ZD-MVS99.05 4194.59 2898.08 6489.22 19597.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTGPAbinary98.08 64
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22495.09 10897.65 9489.97 8399.48 9892.08 13598.59 9798.44 135
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 31095.71 19985.00 14497.77 26689.71 17583.52 31495.78 228
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15795.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16696.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14696.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 20998.06 7388.94 20494.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 18097.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
RPMNet88.98 27187.05 28694.77 17994.45 27887.19 24790.23 33898.03 8477.87 34192.40 15687.55 34280.17 22699.51 9368.84 34593.95 18997.60 177
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
TEST998.70 6094.19 4096.41 19798.02 8888.17 22996.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21796.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_898.67 6294.06 4996.37 20498.01 9188.58 21795.98 8397.55 10792.73 2599.58 70
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21495.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
WR-MVS92.34 17291.53 17894.77 17995.13 24690.83 14996.40 20097.98 9891.88 12289.29 23795.54 21082.50 18697.80 26189.79 17485.27 28895.69 235
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
CANet96.39 5596.02 5997.50 5097.62 12893.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11797.46 10497.96 10077.99 33993.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
IU-MVS99.42 695.39 997.94 10290.40 17098.94 597.41 799.66 899.74 5
CS-MVS95.80 7095.65 6696.24 11097.32 13691.43 12698.10 3997.91 10393.38 6995.16 10794.57 24890.21 7998.98 14795.53 6498.67 9498.30 145
Anonymous2023121190.63 24689.42 25794.27 19898.24 9389.19 20298.05 4497.89 10479.95 33188.25 26394.96 22772.56 30098.13 21389.70 17685.14 29095.49 239
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25395.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26196.65 5497.89 7291.99 4399.47 9992.26 12699.46 3899.39 54
test1197.88 106
EIA-MVS95.53 7795.47 7095.71 13397.06 15089.63 17797.82 6497.87 10893.57 6193.92 12795.04 22690.61 7498.95 14994.62 8898.68 9398.54 120
无先验95.79 24097.87 10883.87 30699.65 5387.68 21998.89 100
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15695.34 1398.48 1597.87 10894.65 3688.53 25698.02 6783.69 16099.71 3893.18 11798.96 8599.44 47
VPNet92.23 18091.31 18694.99 16495.56 21790.96 14497.22 12997.86 11192.96 9090.96 19096.62 15375.06 28798.20 20691.90 13683.65 31395.80 227
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 18897.81 11489.87 17792.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
ETV-MVS96.02 6495.89 6296.40 9697.16 14292.44 9297.47 10297.77 11594.55 3796.48 6394.51 25091.23 6298.92 15195.65 5598.19 10597.82 166
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
新几何197.32 5698.60 6893.59 6197.75 11781.58 32295.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 32395.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12397.73 11991.80 12392.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
Anonymous2024052991.98 18890.73 20995.73 13298.14 10389.40 19097.99 4797.72 12279.63 33393.54 13497.41 11169.94 31799.56 8091.04 15691.11 22898.22 146
CHOSEN 280x42093.12 14492.72 14094.34 19696.71 16687.27 24390.29 33797.72 12286.61 26891.34 17995.29 21784.29 15498.41 19193.25 11698.94 8697.35 184
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
LS3D93.57 13292.61 14496.47 9197.59 13191.61 11797.67 8197.72 12285.17 28890.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
PAPR94.18 10993.42 12496.48 9097.64 12791.42 12795.55 24897.71 12688.99 20192.34 16195.82 19089.19 8699.11 13286.14 24797.38 12798.90 98
test_part192.21 18291.10 19695.51 14497.80 11992.66 8598.02 4697.68 12789.79 18388.80 25096.02 18076.85 27498.18 20990.86 15784.11 30695.69 235
UGNet94.04 11793.28 12796.31 10396.85 15791.19 13697.88 5897.68 12794.40 4093.00 14796.18 17273.39 29999.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15198.18 10288.90 20897.66 12982.73 31597.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
test1297.65 4498.46 7494.26 3797.66 12995.52 10290.89 6999.46 10099.25 6599.22 67
DTE-MVSNet90.56 24789.75 25193.01 25393.95 29187.25 24497.64 8897.65 13190.74 15487.12 28495.68 20279.97 23097.00 31283.33 28081.66 32394.78 291
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17996.79 16797.65 13181.83 32091.52 17597.23 11887.94 10298.91 15371.31 34198.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
cdsmvs_eth3d_5k23.24 32930.99 3310.00 3450.00 3660.00 3670.00 35797.63 1330.00 3620.00 36396.88 13484.38 1510.00 3630.00 3610.00 3610.00 359
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13490.43 16995.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
canonicalmvs96.02 6495.45 7197.75 3797.59 13195.15 2198.28 2597.60 13594.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
test22298.24 9392.21 10095.33 25797.60 13579.22 33595.25 10497.84 8188.80 9299.15 7398.72 112
cascas91.20 22290.08 23694.58 18794.97 25289.16 20393.65 30597.59 13779.90 33289.40 23292.92 30375.36 28698.36 19592.14 13194.75 17896.23 207
MVSFormer95.37 7995.16 8095.99 12096.34 18691.21 13398.22 3297.57 13891.42 13496.22 7297.32 11386.20 13097.92 25094.07 9699.05 8198.85 103
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13490.08 21395.55 20982.85 17897.92 25094.07 9691.58 22095.40 249
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19597.57 13892.04 11894.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
PS-MVSNAJss93.74 12693.51 11894.44 19093.91 29389.28 19897.75 7097.56 14192.50 10389.94 21596.54 15688.65 9498.18 20993.83 10590.90 23395.86 221
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 12088.85 24796.50 15875.62 28598.11 21793.88 10391.56 22195.48 240
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11888.76 25196.45 16074.62 28998.09 22293.91 10191.48 22295.45 245
HQP_MVS93.78 12593.43 12294.82 17396.21 19089.99 16997.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 12092.23 20895.86 221
plane_prior597.51 14498.60 17993.02 12092.23 20895.86 221
PS-MVSNAJ95.37 7995.33 7695.49 14797.35 13590.66 15595.31 25997.48 14693.85 5296.51 6195.70 20188.65 9499.65 5394.80 8498.27 10396.17 210
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10997.80 6697.48 14689.19 19694.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10397.67 8197.47 14988.13 23393.00 14795.84 18884.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 15092.53 14894.32 19796.12 19989.20 20095.28 26097.47 14992.66 9989.90 21695.62 20480.58 21798.40 19292.73 12392.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 21690.22 23294.68 18294.86 26187.86 23597.23 12897.46 15187.99 23489.90 21696.92 13266.35 33398.23 20290.30 16690.99 23197.96 155
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
RRT_test8_iter0591.19 22590.78 20692.41 27095.76 21283.14 30697.32 11697.46 15191.37 13889.07 24395.57 20670.33 31298.21 20493.56 10786.62 27595.89 220
XVG-OURS93.72 12793.35 12594.80 17797.07 14788.61 21394.79 27097.46 15191.97 12193.99 12497.86 7781.74 20298.88 15692.64 12492.67 20396.92 192
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19588.26 22297.65 8497.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
LGP-MVS_train94.10 20296.16 19588.26 22297.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
MVS91.71 19490.44 21995.51 14495.20 24391.59 11996.04 22697.45 15773.44 34687.36 28195.60 20585.42 13999.10 13385.97 25297.46 12295.83 225
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17597.06 15088.53 21695.28 26097.45 15791.68 12694.08 12397.68 9182.41 18998.90 15493.84 10492.47 20596.98 188
baseline95.58 7595.42 7396.08 11496.78 16290.41 16297.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
ab-mvs93.57 13292.55 14696.64 7897.28 13791.96 11195.40 25497.45 15789.81 18293.22 14596.28 16979.62 23799.46 10090.74 16093.11 19798.50 125
xiu_mvs_v2_base95.32 8195.29 7795.40 15297.22 13890.50 15895.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
131492.81 16192.03 16195.14 15995.33 23389.52 18596.04 22697.44 16187.72 24686.25 29695.33 21683.84 15898.79 16189.26 18897.05 13897.11 186
casdiffmvs95.64 7395.49 6996.08 11496.76 16590.45 16097.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
XXY-MVS92.16 18391.23 19194.95 16994.75 26690.94 14597.47 10297.43 16489.14 19788.90 24496.43 16179.71 23498.24 20189.56 18087.68 26395.67 237
anonymousdsp92.16 18391.55 17793.97 21092.58 32389.55 18297.51 9697.42 16589.42 19088.40 25794.84 23480.66 21697.88 25591.87 13891.28 22694.48 299
Effi-MVS+94.93 9494.45 9996.36 10196.61 16791.47 12396.41 19797.41 16691.02 15194.50 11595.92 18487.53 11098.78 16293.89 10296.81 14098.84 105
HQP3-MVS97.39 16792.10 213
HQP-MVS93.19 14392.74 13994.54 18895.86 20589.33 19496.65 17997.39 16793.55 6290.14 20395.87 18680.95 21098.50 18692.13 13292.10 21395.78 228
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 14096.69 17697.39 16787.29 25691.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 23989.86 24493.45 23893.54 30387.60 24097.70 7997.37 17088.85 20787.65 27594.08 27681.08 20998.10 21884.68 26883.79 31294.66 296
UnsupCasMVSNet_eth85.99 30084.45 30490.62 30889.97 33982.40 31293.62 30697.37 17089.86 17878.59 34092.37 31165.25 33995.35 33682.27 29170.75 34494.10 310
ACMM89.79 892.96 15192.50 15094.35 19596.30 18888.71 21197.58 9197.36 17291.40 13790.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
diffmvs95.25 8395.13 8195.63 13696.43 18289.34 19395.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
WTY-MVS94.71 10294.02 10496.79 7697.71 12492.05 10696.59 18897.35 17390.61 16394.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
F-COLMAP93.58 13192.98 13195.37 15398.40 7888.98 20697.18 13297.29 17887.75 24590.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
XVG-ACMP-BASELINE90.93 23590.21 23393.09 25194.31 28485.89 27295.33 25797.26 17991.06 15089.38 23395.44 21468.61 32198.60 17989.46 18291.05 22994.79 289
PCF-MVS89.48 1191.56 20189.95 24196.36 10196.60 16892.52 9092.51 32497.26 17979.41 33488.90 24496.56 15584.04 15799.55 8377.01 32497.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18388.20 22597.36 11297.25 18191.52 12988.30 26096.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
OPM-MVS93.28 13992.76 13694.82 17394.63 27290.77 15296.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13292.28 20795.07 267
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 15095.27 26297.18 18387.96 23591.86 17295.68 20280.44 22098.99 14684.01 27597.54 12196.89 193
MVS_030488.79 27687.57 27892.46 26794.65 27086.15 27196.40 20097.17 18586.44 26988.02 26991.71 32356.68 34997.03 30884.47 27192.58 20494.19 309
alignmvs95.87 6995.23 7897.78 3397.56 13395.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
MVS_Test94.89 9694.62 9195.68 13496.83 16089.55 18296.70 17497.17 18591.17 14695.60 9896.11 17887.87 10498.76 16593.01 12297.17 13698.72 112
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16390.03 16696.81 16697.13 18888.19 22791.30 18294.27 26686.21 12998.63 17687.66 22196.46 15198.12 150
EI-MVSNet93.03 14892.88 13493.48 23595.77 21086.98 25296.44 19397.12 18990.66 15991.30 18297.64 9786.56 12298.05 22989.91 17090.55 23795.41 246
MVSTER93.20 14292.81 13594.37 19496.56 17389.59 18097.06 13997.12 18991.24 14391.30 18295.96 18282.02 19698.05 22993.48 11090.55 23795.47 242
test_yl94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
LTVRE_ROB88.41 1390.99 23189.92 24294.19 19996.18 19389.55 18296.31 21097.09 19387.88 23885.67 30095.91 18578.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1091.04 22990.23 23093.49 23494.12 28788.16 22897.32 11697.08 19488.26 22688.29 26194.22 27182.17 19497.97 24086.45 24284.12 30594.33 304
v14419291.06 22890.28 22693.39 23993.66 30187.23 24696.83 16397.07 19587.43 25289.69 22394.28 26581.48 20598.00 23687.18 23384.92 29694.93 275
v119291.07 22790.23 23093.58 23193.70 29987.82 23696.73 17197.07 19587.77 24389.58 22694.32 26380.90 21497.97 24086.52 24085.48 28494.95 271
v891.29 21990.53 21893.57 23294.15 28688.12 22997.34 11397.06 19788.99 20188.32 25994.26 26883.08 17098.01 23587.62 22383.92 31094.57 298
mvs_anonymous93.82 12393.74 10994.06 20496.44 18185.41 27995.81 23997.05 19889.85 18090.09 21296.36 16687.44 11397.75 26793.97 9896.69 14599.02 83
IterMVS-LS92.29 17691.94 16593.34 24296.25 18986.97 25396.57 19197.05 19890.67 15789.50 23194.80 23786.59 12197.64 27589.91 17086.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 23790.03 24093.29 24493.55 30286.96 25496.74 17097.04 20087.36 25489.52 23094.34 26080.23 22597.97 24086.27 24385.21 28994.94 273
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19391.46 12496.33 20897.04 20088.97 20393.56 13296.51 15787.55 10997.89 25489.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 21390.60 21393.68 22793.89 29488.23 22496.84 16297.03 20288.37 22389.69 22394.39 25782.04 19597.98 23787.80 21385.37 28694.84 281
v124090.70 24489.85 24593.23 24693.51 30586.80 25596.61 18597.02 20387.16 25989.58 22694.31 26479.55 23897.98 23785.52 25885.44 28594.90 278
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13489.56 18198.67 597.00 20490.69 15694.24 12097.62 9989.79 8598.81 16093.39 11496.49 14998.92 96
V4291.58 20090.87 20093.73 22294.05 29088.50 21797.32 11696.97 20588.80 21389.71 22194.33 26182.54 18598.05 22989.01 19585.07 29294.64 297
FMVSNet291.31 21790.08 23694.99 16496.51 17692.21 10097.41 10596.95 20688.82 21088.62 25394.75 23973.87 29397.42 29685.20 26388.55 25795.35 253
ACMH87.59 1690.53 24889.42 25793.87 21796.21 19087.92 23297.24 12396.94 20788.45 22183.91 31996.27 17071.92 30198.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
test191.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
FMVSNet391.78 19290.69 21195.03 16396.53 17592.27 9997.02 14396.93 20889.79 18389.35 23494.65 24577.01 27397.47 29186.12 24888.82 25295.35 253
FMVSNet189.88 26388.31 27294.59 18395.41 22391.18 13797.50 9796.93 20886.62 26787.41 27994.51 25065.94 33797.29 30383.04 28387.43 26695.31 255
miper_enhance_ethall91.54 20491.01 19793.15 24995.35 22987.07 25193.97 29596.90 21286.79 26589.17 24193.43 29986.55 12397.64 27589.97 16986.93 27094.74 293
eth_miper_zixun_eth91.02 23090.59 21492.34 27295.33 23384.35 29294.10 29296.90 21288.56 21988.84 24894.33 26184.08 15697.60 28088.77 20084.37 30395.06 268
TAMVS94.01 11893.46 12095.64 13596.16 19590.45 16096.71 17396.89 21489.27 19493.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
miper_ehance_all_eth91.59 19891.13 19592.97 25595.55 21886.57 26294.47 27796.88 21587.77 24388.88 24694.01 27786.22 12897.54 28489.49 18186.93 27094.79 289
v2v48291.59 19890.85 20393.80 22093.87 29588.17 22796.94 15496.88 21589.54 18689.53 22994.90 23181.70 20398.02 23489.25 18985.04 29495.20 264
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 18896.88 21590.13 17491.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21891.42 13491.28 18596.43 16179.66 23698.10 21893.29 11590.06 24295.46 243
PAPM91.52 20590.30 22595.20 15695.30 23689.83 17593.38 31096.85 21986.26 27288.59 25495.80 19184.88 14598.15 21275.67 32895.93 15697.63 172
cl_fuxian91.38 21190.89 19992.88 25895.58 21686.30 26594.68 27296.84 22088.17 22988.83 24994.23 26985.65 13797.47 29189.36 18484.63 29894.89 279
pm-mvs190.72 24389.65 25593.96 21194.29 28589.63 17797.79 6796.82 22189.07 19886.12 29895.48 21378.61 25497.78 26486.97 23681.67 32294.46 300
CMPMVSbinary62.92 2185.62 30484.92 30187.74 32489.14 34473.12 34894.17 29096.80 22273.98 34473.65 34594.93 22966.36 33297.61 27983.95 27791.28 22692.48 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 25389.77 24991.78 28694.33 28284.72 29095.55 24896.73 22386.17 27486.36 29595.28 21971.28 30697.80 26184.09 27498.14 10892.81 326
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20283.25 30597.14 13796.72 22493.85 5291.20 18993.44 29783.08 17098.30 19991.69 14495.73 16196.50 203
mvs-test193.63 12993.69 11193.46 23796.02 20284.61 29197.24 12396.72 22493.85 5292.30 16295.76 19683.08 17098.89 15591.69 14496.54 14896.87 194
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22494.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
1112_ss93.37 13692.42 15296.21 11197.05 15290.99 14296.31 21096.72 22486.87 26489.83 21996.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12183.69 30292.88 31896.72 22487.91 23793.00 14794.86 23378.51 25599.05 14286.53 23997.45 12698.47 130
miper_lstm_enhance90.50 25090.06 23991.83 28295.33 23383.74 29893.86 29896.70 22987.56 25087.79 27293.81 28583.45 16496.92 31487.39 22784.62 29994.82 284
v14890.99 23190.38 22192.81 26193.83 29685.80 27396.78 16996.68 23089.45 18988.75 25293.93 28182.96 17697.82 26087.83 21283.25 31594.80 287
ACMH+87.92 1490.20 25689.18 26293.25 24596.48 17986.45 26396.99 14896.68 23088.83 20984.79 30996.22 17170.16 31598.53 18484.42 27388.04 25994.77 292
CANet_DTU94.37 10593.65 11396.55 8496.46 18092.13 10496.21 21996.67 23294.38 4293.53 13597.03 12779.34 24099.71 3890.76 15998.45 10097.82 166
cl-mvsnet_90.96 23490.32 22392.89 25795.37 22786.21 26894.46 27996.64 23387.82 23988.15 26694.18 27282.98 17497.54 28487.70 21685.59 28294.92 277
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14692.49 9195.64 24696.64 23389.05 19993.00 14795.79 19485.77 13699.45 10289.16 19494.35 18297.96 155
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15389.97 17295.53 25096.64 23385.38 28489.65 22595.18 22185.86 13499.10 13387.70 21693.58 19698.49 127
cl-mvsnet190.97 23390.33 22292.88 25895.36 22886.19 26994.46 27996.63 23687.82 23988.18 26594.23 26982.99 17397.53 28687.72 21485.57 28394.93 275
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23692.09 11689.11 24295.14 22380.33 22398.08 22387.54 22594.74 17996.03 218
UnsupCasMVSNet_bld82.13 31579.46 31890.14 31488.00 34882.47 31090.89 33596.62 23878.94 33675.61 34284.40 34556.63 35096.31 32277.30 32166.77 34891.63 338
cl-mvsnet291.21 22190.56 21793.14 25096.09 20186.80 25594.41 28196.58 23987.80 24188.58 25593.99 27980.85 21597.62 27889.87 17286.93 27094.99 270
jason94.84 9894.39 10196.18 11295.52 21990.93 14696.09 22496.52 24089.28 19396.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
AUN-MVS91.76 19390.75 20894.81 17597.00 15488.57 21496.65 17996.49 24189.63 18592.15 16596.12 17578.66 25398.50 18690.83 15879.18 33097.36 183
EG-PatchMatch MVS87.02 29285.44 29691.76 28892.67 32185.00 28596.08 22596.45 24283.41 31179.52 33793.49 29557.10 34897.72 26979.34 31390.87 23492.56 330
DIV-MVS_2432*160085.95 30184.95 30088.96 31989.55 34379.11 33795.13 26796.42 24385.91 27784.07 31790.48 32770.03 31694.82 33880.04 30572.94 34292.94 324
pmmvs687.81 28786.19 29192.69 26491.32 33286.30 26597.34 11396.41 24480.59 33084.05 31894.37 25967.37 32897.67 27284.75 26779.51 32994.09 312
PMMVS92.86 15792.34 15394.42 19394.92 25686.73 25794.53 27696.38 24584.78 29594.27 11995.12 22583.13 16998.40 19291.47 14996.49 14998.12 150
RPSCF90.75 24190.86 20190.42 31196.84 15876.29 34395.61 24796.34 24683.89 30491.38 17797.87 7576.45 27798.78 16287.16 23492.23 20896.20 208
MSDG91.42 20990.24 22994.96 16897.15 14488.91 20793.69 30396.32 24785.72 28086.93 29096.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
OurMVSNet-221017-090.51 24990.19 23491.44 29493.41 30881.25 31896.98 15096.28 24891.68 12686.55 29496.30 16874.20 29297.98 23788.96 19687.40 26895.09 266
MVP-Stereo90.74 24290.08 23692.71 26393.19 31388.20 22595.86 23696.27 24986.07 27584.86 30894.76 23877.84 26897.75 26783.88 27898.01 11092.17 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9394.56 9396.29 10696.34 18691.21 13395.83 23896.27 24988.93 20596.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
BH-untuned92.94 15392.62 14393.92 21697.22 13886.16 27096.40 20096.25 25190.06 17589.79 22096.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
CL-MVSNet_2432*160086.31 29785.15 29989.80 31788.83 34581.74 31693.93 29796.22 25286.67 26685.03 30690.80 32678.09 26494.50 33974.92 32971.86 34393.15 322
IS-MVSNet94.90 9594.52 9696.05 11797.67 12590.56 15698.44 1696.22 25293.21 7593.99 12497.74 8785.55 13898.45 19089.98 16897.86 11399.14 73
GA-MVS91.38 21190.31 22494.59 18394.65 27087.62 23994.34 28496.19 25490.73 15590.35 19993.83 28271.84 30297.96 24487.22 23193.61 19498.21 147
IterMVS-SCA-FT90.31 25289.81 24791.82 28395.52 21984.20 29594.30 28696.15 25590.61 16387.39 28094.27 26675.80 28296.44 32087.34 22886.88 27494.82 284
IterMVS90.15 25889.67 25391.61 29095.48 22183.72 29994.33 28596.12 25689.99 17687.31 28394.15 27475.78 28496.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14297.38 11196.08 25782.38 31689.29 23797.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
pmmvs490.93 23589.85 24594.17 20093.34 31090.79 15194.60 27396.02 25884.62 29687.45 27795.15 22281.88 20097.45 29387.70 21687.87 26194.27 308
ppachtmachnet_test88.35 28287.29 28191.53 29192.45 32583.57 30393.75 30195.97 25984.28 29985.32 30594.18 27279.00 25096.93 31375.71 32784.99 29594.10 310
ITE_SJBPF92.43 26995.34 23085.37 28095.92 26091.47 13187.75 27496.39 16571.00 30897.96 24482.36 29089.86 24593.97 313
USDC88.94 27287.83 27792.27 27394.66 26984.96 28693.86 29895.90 26187.34 25583.40 32195.56 20867.43 32798.19 20882.64 28989.67 24793.66 316
COLMAP_ROBcopyleft87.81 1590.40 25189.28 26093.79 22197.95 11087.13 25096.92 15595.89 26282.83 31486.88 29297.18 11973.77 29699.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17397.72 7695.85 26392.43 10495.86 8698.44 2868.42 32399.39 10996.31 2894.85 17498.71 114
VDDNet93.05 14792.07 15996.02 11896.84 15890.39 16398.08 4295.85 26386.22 27395.79 8998.46 2667.59 32699.19 12394.92 7894.85 17498.47 130
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16997.61 12987.92 23298.10 3995.80 26592.22 10993.02 14697.45 10984.53 15097.91 25388.24 20597.97 11199.02 83
KD-MVS_2432*160084.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
miper_refine_blended84.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
tpm cat188.36 28187.21 28491.81 28495.13 24680.55 32492.58 32395.70 26874.97 34387.45 27791.96 31978.01 26798.17 21180.39 30488.74 25596.72 199
our_test_388.78 27787.98 27691.20 29992.45 32582.53 30993.61 30795.69 26985.77 27984.88 30793.71 28779.99 22996.78 31879.47 31086.24 27694.28 307
BH-w/o92.14 18591.75 17093.31 24396.99 15585.73 27495.67 24395.69 26988.73 21589.26 23994.82 23682.97 17598.07 22685.26 26296.32 15296.13 214
CR-MVSNet90.82 23889.77 24993.95 21294.45 27887.19 24790.23 33895.68 27186.89 26392.40 15692.36 31480.91 21297.05 30781.09 30193.95 18997.60 177
Patchmtry88.64 27987.25 28292.78 26294.09 28886.64 25889.82 34195.68 27180.81 32887.63 27692.36 31480.91 21297.03 30878.86 31485.12 29194.67 295
BH-RMVSNet92.72 16391.97 16494.97 16797.16 14287.99 23196.15 22295.60 27390.62 16291.87 17197.15 12278.41 25898.57 18283.16 28197.60 12098.36 142
PVSNet_082.17 1985.46 30583.64 30890.92 30295.27 23779.49 33390.55 33695.60 27383.76 30783.00 32489.95 33171.09 30797.97 24082.75 28760.79 35195.31 255
SCA91.84 19191.18 19493.83 21895.59 21584.95 28794.72 27195.58 27590.82 15292.25 16393.69 28875.80 28298.10 21886.20 24595.98 15498.45 132
AllTest90.23 25588.98 26493.98 20897.94 11186.64 25896.51 19295.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
TestCases93.98 20897.94 11186.64 25895.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
tpmvs89.83 26589.15 26391.89 28094.92 25680.30 32793.11 31595.46 27886.28 27188.08 26792.65 30680.44 22098.52 18581.47 29589.92 24496.84 195
pmmvs589.86 26488.87 26692.82 26092.86 31786.23 26796.26 21495.39 27984.24 30087.12 28494.51 25074.27 29197.36 30087.61 22487.57 26494.86 280
PatchmatchNetpermissive91.91 18991.35 18393.59 23095.38 22584.11 29693.15 31495.39 27989.54 18692.10 16793.68 29082.82 17998.13 21384.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 20891.32 18591.79 28595.15 24479.20 33693.42 30995.37 28188.55 22093.49 13693.67 29182.49 18798.27 20090.41 16389.34 24997.90 159
Anonymous2023120687.09 29186.14 29289.93 31691.22 33380.35 32596.11 22395.35 28283.57 30984.16 31493.02 30273.54 29895.61 33172.16 33886.14 27893.84 315
MIMVSNet184.93 30783.05 30990.56 30989.56 34284.84 28995.40 25495.35 28283.91 30380.38 33392.21 31857.23 34793.34 34670.69 34482.75 32193.50 318
TDRefinement86.53 29484.76 30391.85 28182.23 35384.25 29396.38 20395.35 28284.97 29284.09 31694.94 22865.76 33898.34 19884.60 27074.52 33892.97 323
TR-MVS91.48 20790.59 21494.16 20196.40 18387.33 24195.67 24395.34 28587.68 24791.46 17695.52 21176.77 27598.35 19682.85 28593.61 19496.79 197
EPNet_dtu91.71 19491.28 18892.99 25493.76 29883.71 30096.69 17695.28 28693.15 7987.02 28895.95 18383.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 29085.79 29491.78 28694.80 26487.28 24295.49 25195.28 28684.09 30283.85 32091.82 32062.95 34294.17 34278.48 31585.34 28793.91 314
MDTV_nov1_ep1390.76 20795.22 24180.33 32693.03 31795.28 28688.14 23292.84 15393.83 28281.34 20698.08 22382.86 28494.34 183
LF4IMVS87.94 28587.25 28289.98 31592.38 32780.05 33194.38 28295.25 28987.59 24984.34 31194.74 24064.31 34097.66 27484.83 26587.45 26592.23 334
TransMVSNet (Re)88.94 27287.56 27993.08 25294.35 28188.45 21997.73 7395.23 29087.47 25184.26 31395.29 21779.86 23297.33 30179.44 31274.44 33993.45 320
test20.0386.14 29985.40 29788.35 32090.12 33780.06 33095.90 23595.20 29188.59 21681.29 32893.62 29371.43 30592.65 34871.26 34281.17 32592.34 333
new-patchmatchnet83.18 31281.87 31487.11 32686.88 35075.99 34493.70 30295.18 29285.02 29177.30 34188.40 33765.99 33693.88 34474.19 33470.18 34591.47 341
MDA-MVSNet_test_wron85.87 30284.23 30690.80 30692.38 32782.57 30893.17 31295.15 29382.15 31767.65 34792.33 31778.20 26095.51 33477.33 31979.74 32794.31 306
YYNet185.87 30284.23 30690.78 30792.38 32782.46 31193.17 31295.14 29482.12 31867.69 34692.36 31478.16 26395.50 33577.31 32079.73 32894.39 302
Baseline_NR-MVSNet91.20 22290.62 21292.95 25693.83 29688.03 23097.01 14795.12 29588.42 22289.70 22295.13 22483.47 16297.44 29489.66 17883.24 31693.37 321
thres20092.23 18091.39 18294.75 18197.61 12989.03 20596.60 18795.09 29692.08 11793.28 14294.00 27878.39 25999.04 14481.26 30094.18 18496.19 209
ADS-MVSNet89.89 26288.68 26893.53 23395.86 20584.89 28890.93 33395.07 29783.23 31291.28 18591.81 32179.01 24897.85 25679.52 30891.39 22497.84 163
pmmvs-eth3d86.22 29884.45 30491.53 29188.34 34787.25 24494.47 27795.01 29883.47 31079.51 33889.61 33469.75 31895.71 33083.13 28276.73 33591.64 337
Anonymous20240521192.07 18690.83 20595.76 12798.19 10088.75 21097.58 9195.00 29986.00 27693.64 13197.45 10966.24 33599.53 8890.68 16292.71 20199.01 87
MDA-MVSNet-bldmvs85.00 30682.95 31091.17 30093.13 31583.33 30494.56 27595.00 29984.57 29765.13 35092.65 30670.45 31195.85 32773.57 33577.49 33294.33 304
ambc86.56 32883.60 35170.00 35185.69 34894.97 30180.60 33288.45 33637.42 35596.84 31682.69 28875.44 33792.86 325
testgi87.97 28487.21 28490.24 31392.86 31780.76 32096.67 17894.97 30191.74 12485.52 30195.83 18962.66 34394.47 34176.25 32588.36 25895.48 240
dp88.90 27488.26 27490.81 30494.58 27576.62 34292.85 31994.93 30385.12 28990.07 21493.07 30175.81 28198.12 21680.53 30387.42 26797.71 169
test_040286.46 29584.79 30291.45 29395.02 25185.55 27696.29 21294.89 30480.90 32582.21 32593.97 28068.21 32497.29 30362.98 34988.68 25691.51 339
tfpn200view992.38 17191.52 17994.95 16997.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.48 204
CVMVSNet91.23 22091.75 17089.67 31895.77 21074.69 34596.44 19394.88 30585.81 27892.18 16497.64 9779.07 24395.58 33388.06 20895.86 15898.74 110
thres40092.42 16991.52 17995.12 16197.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.98 188
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30896.64 192.46 15597.80 8486.23 12799.65 5393.72 10698.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 27088.54 27090.98 30193.49 30680.28 32896.70 17494.70 30990.78 15384.15 31595.57 20671.78 30397.71 27084.63 26985.07 29294.94 273
thres100view90092.43 16891.58 17694.98 16697.92 11389.37 19297.71 7894.66 31092.20 11193.31 14194.90 23178.06 26599.08 13881.40 29694.08 18596.48 204
thres600view792.49 16791.60 17595.18 15797.91 11489.47 18697.65 8494.66 31092.18 11593.33 14094.91 23078.06 26599.10 13381.61 29394.06 18896.98 188
PatchT88.87 27587.42 28093.22 24794.08 28985.10 28489.51 34294.64 31281.92 31992.36 15988.15 34080.05 22897.01 31172.43 33793.65 19297.54 180
baseline192.82 16091.90 16695.55 14297.20 14090.77 15297.19 13194.58 31392.20 11192.36 15996.34 16784.16 15598.21 20489.20 19283.90 31197.68 171
Gipumacopyleft67.86 32165.41 32475.18 33592.66 32273.45 34766.50 35594.52 31453.33 35357.80 35366.07 35330.81 35689.20 35048.15 35378.88 33162.90 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CostFormer91.18 22690.70 21092.62 26694.84 26281.76 31594.09 29394.43 31584.15 30192.72 15493.77 28679.43 23998.20 20690.70 16192.18 21197.90 159
tpm289.96 26089.21 26192.23 27494.91 25981.25 31893.78 30094.42 31680.62 32991.56 17493.44 29776.44 27897.94 24785.60 25792.08 21597.49 181
JIA-IIPM88.26 28387.04 28791.91 27993.52 30481.42 31789.38 34394.38 31780.84 32790.93 19180.74 34779.22 24297.92 25082.76 28691.62 21996.38 206
Patchmatch-test89.42 26887.99 27593.70 22595.27 23785.11 28388.98 34494.37 31881.11 32487.10 28693.69 28882.28 19197.50 28974.37 33294.76 17798.48 129
LCM-MVSNet72.55 31869.39 32282.03 33070.81 35965.42 35590.12 34094.36 31955.02 35265.88 34981.72 34624.16 36289.96 34974.32 33368.10 34790.71 343
ADS-MVSNet289.45 26788.59 26992.03 27795.86 20582.26 31390.93 33394.32 32083.23 31291.28 18591.81 32179.01 24895.99 32479.52 30891.39 22497.84 163
DWT-MVSNet_test90.76 23989.89 24393.38 24095.04 25083.70 30195.85 23794.30 32188.19 22790.46 19692.80 30473.61 29798.50 18688.16 20690.58 23697.95 157
EU-MVSNet88.72 27888.90 26588.20 32293.15 31474.21 34696.63 18494.22 32285.18 28787.32 28295.97 18176.16 28094.98 33785.27 26186.17 27795.41 246
MIMVSNet88.50 28086.76 28893.72 22494.84 26287.77 23791.39 32894.05 32386.41 27087.99 27092.59 30863.27 34195.82 32977.44 31892.84 20097.57 179
OpenMVS_ROBcopyleft81.14 2084.42 31082.28 31390.83 30390.06 33884.05 29795.73 24294.04 32473.89 34580.17 33691.53 32559.15 34697.64 27566.92 34789.05 25190.80 342
TinyColmap86.82 29385.35 29891.21 29894.91 25982.99 30793.94 29694.02 32583.58 30881.56 32794.68 24362.34 34498.13 21375.78 32687.35 26992.52 331
IB-MVS87.33 1789.91 26188.28 27394.79 17895.26 24087.70 23895.12 26893.95 32689.35 19287.03 28792.49 30970.74 31099.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16181.89 31496.92 15593.71 32792.41 10584.30 31294.60 24785.08 14397.03 30891.51 14797.36 12898.40 138
tpm90.25 25489.74 25291.76 28893.92 29279.73 33293.98 29493.54 32888.28 22591.99 16993.25 30077.51 27197.44 29487.30 23087.94 26098.12 150
ET-MVSNet_ETH3D91.49 20690.11 23595.63 13696.40 18391.57 12195.34 25693.48 32990.60 16575.58 34395.49 21280.08 22796.79 31794.25 9289.76 24698.52 122
bset_n11_16_dypcd91.55 20290.59 21494.44 19091.51 33190.25 16492.70 32193.42 33092.27 10890.22 20294.74 24078.42 25797.80 26194.19 9487.86 26295.29 262
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 13097.94 5493.39 33190.57 16696.29 7098.31 4769.00 31999.16 12794.18 9595.87 15799.12 77
Patchmatch-RL test87.38 28986.24 29090.81 30488.74 34678.40 34088.12 34693.17 33287.11 26082.17 32689.29 33581.95 19895.60 33288.64 20277.02 33398.41 137
test-LLR91.42 20991.19 19392.12 27594.59 27380.66 32194.29 28792.98 33391.11 14890.76 19292.37 31179.02 24698.07 22688.81 19896.74 14297.63 172
test-mter90.19 25789.54 25692.12 27594.59 27380.66 32194.29 28792.98 33387.68 24790.76 19292.37 31167.67 32598.07 22688.81 19896.74 14297.63 172
test0.0.03 189.37 26988.70 26791.41 29592.47 32485.63 27595.22 26592.70 33591.11 14886.91 29193.65 29279.02 24693.19 34778.00 31789.18 25095.41 246
new_pmnet82.89 31381.12 31788.18 32389.63 34180.18 32991.77 32792.57 33676.79 34275.56 34488.23 33961.22 34594.48 34071.43 34082.92 31989.87 344
thisisatest051592.29 17691.30 18795.25 15596.60 16888.90 20894.36 28392.32 33787.92 23693.43 13894.57 24877.28 27299.00 14589.42 18395.86 15897.86 162
thisisatest053093.03 14892.21 15795.49 14797.07 14789.11 20497.49 10192.19 33890.16 17394.09 12296.41 16376.43 27999.05 14290.38 16495.68 16398.31 144
tttt051792.96 15192.33 15494.87 17297.11 14587.16 24997.97 5292.09 33990.63 16193.88 12897.01 12876.50 27699.06 14190.29 16795.45 16598.38 140
K. test v387.64 28886.75 28990.32 31293.02 31679.48 33496.61 18592.08 34090.66 15980.25 33594.09 27567.21 32996.65 31985.96 25380.83 32694.83 282
TESTMET0.1,190.06 25989.42 25791.97 27894.41 28080.62 32394.29 28791.97 34187.28 25790.44 19792.47 31068.79 32097.67 27288.50 20496.60 14797.61 176
PM-MVS83.48 31181.86 31588.31 32187.83 34977.59 34193.43 30891.75 34286.91 26280.63 33189.91 33244.42 35495.84 32885.17 26476.73 33591.50 340
baseline291.63 19790.86 20193.94 21494.33 28286.32 26495.92 23491.64 34389.37 19186.94 28994.69 24281.62 20498.69 17188.64 20294.57 18196.81 196
FPMVS71.27 31969.85 32175.50 33474.64 35559.03 35791.30 32991.50 34458.80 35157.92 35288.28 33829.98 35885.53 35353.43 35182.84 32081.95 348
door91.13 345
door-mid91.06 346
pmmvs379.97 31677.50 32087.39 32582.80 35279.38 33592.70 32190.75 34770.69 34778.66 33987.47 34351.34 35293.40 34573.39 33669.65 34689.38 345
DSMNet-mixed86.34 29686.12 29387.00 32789.88 34070.43 34994.93 26990.08 34877.97 34085.42 30492.78 30574.44 29093.96 34374.43 33195.14 16996.62 200
MVS-HIRNet82.47 31481.21 31686.26 32995.38 22569.21 35288.96 34589.49 34966.28 34880.79 33074.08 35168.48 32297.39 29871.93 33995.47 16492.18 335
EPMVS90.70 24489.81 24793.37 24194.73 26784.21 29493.67 30488.02 35089.50 18892.38 15893.49 29577.82 26997.78 26486.03 25192.68 20298.11 153
ANet_high63.94 32259.58 32577.02 33361.24 36166.06 35385.66 34987.93 35178.53 33842.94 35571.04 35225.42 36180.71 35452.60 35230.83 35584.28 347
PMMVS270.19 32066.92 32380.01 33176.35 35465.67 35486.22 34787.58 35264.83 35062.38 35180.29 34826.78 36088.49 35163.79 34854.07 35285.88 346
lessismore_v090.45 31091.96 33079.09 33887.19 35380.32 33494.39 25766.31 33497.55 28384.00 27676.84 33494.70 294
PMVScopyleft53.92 2258.58 32355.40 32668.12 33751.00 36248.64 35978.86 35287.10 35446.77 35435.84 35974.28 3508.76 36386.34 35242.07 35473.91 34069.38 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune87.82 28685.61 29594.44 19094.46 27789.27 19991.21 33284.61 35580.88 32689.89 21874.98 34971.50 30497.53 28685.75 25697.21 13496.51 202
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32683.33 35687.98 27189.84 33371.00 30896.87 31582.08 29295.40 16694.80 287
MTMP97.86 5982.03 357
DeepMVS_CXcopyleft74.68 33690.84 33664.34 35681.61 35865.34 34967.47 34888.01 34148.60 35380.13 35562.33 35073.68 34179.58 349
E-PMN53.28 32452.56 32855.43 33974.43 35647.13 36083.63 35176.30 35942.23 35542.59 35662.22 35528.57 35974.40 35631.53 35631.51 35444.78 353
EMVS52.08 32651.31 32954.39 34072.62 35845.39 36283.84 35075.51 36041.13 35640.77 35759.65 35630.08 35773.60 35728.31 35729.90 35644.18 354
MVEpermissive50.73 2353.25 32548.81 33066.58 33865.34 36057.50 35872.49 35470.94 36140.15 35739.28 35863.51 3546.89 36573.48 35838.29 35542.38 35368.76 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 32753.82 32746.29 34133.73 36345.30 36378.32 35367.24 36218.02 35850.93 35487.05 34452.99 35153.11 35970.76 34325.29 35740.46 355
N_pmnet78.73 31778.71 31978.79 33292.80 31946.50 36194.14 29143.71 36378.61 33780.83 32991.66 32474.94 28896.36 32167.24 34684.45 30293.50 318
wuyk23d25.11 32824.57 33226.74 34273.98 35739.89 36457.88 3569.80 36412.27 35910.39 3606.97 3627.03 36436.44 36025.43 35817.39 3583.89 358
testmvs13.36 33016.33 3334.48 3445.04 3642.26 36693.18 3113.28 3652.70 3608.24 36121.66 3582.29 3672.19 3617.58 3592.96 3599.00 357
test12313.04 33115.66 3345.18 3434.51 3653.45 36592.50 3251.81 3662.50 3617.58 36220.15 3593.67 3662.18 3627.13 3601.07 3609.90 356
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.39 3339.85 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36388.65 940.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
n20.00 367
nn0.00 367
ab-mvs-re8.06 33210.74 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36396.69 1430.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
test_post192.81 32016.58 36180.53 21897.68 27186.20 245
test_post17.58 36081.76 20198.08 223
patchmatchnet-post90.45 32882.65 18498.10 218
gm-plane-assit93.22 31278.89 33984.82 29493.52 29498.64 17587.72 214
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 10099.38 4899.50 37
test_prior493.66 5996.42 196
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
旧先验295.94 23381.66 32197.34 3498.82 15992.26 126
新几何295.79 240
原ACMM295.67 243
testdata299.67 4985.96 253
segment_acmp92.89 22
testdata195.26 26493.10 82
plane_prior796.21 19089.98 171
plane_prior696.10 20090.00 16781.32 207
plane_prior496.64 146
plane_prior390.00 16794.46 3991.34 179
plane_prior297.74 7194.85 24
plane_prior196.14 198
plane_prior89.99 16997.24 12394.06 4792.16 212
HQP5-MVS89.33 194
HQP-NCC95.86 20596.65 17993.55 6290.14 203
ACMP_Plane95.86 20596.65 17993.55 6290.14 203
BP-MVS92.13 132
HQP4-MVS90.14 20398.50 18695.78 228
HQP2-MVS80.95 210
NP-MVS95.99 20489.81 17695.87 186
MDTV_nov1_ep13_2view70.35 35093.10 31683.88 30593.55 13382.47 18886.25 24498.38 140
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93