This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
IU-MVS99.42 695.39 997.94 10290.40 17498.94 597.41 799.66 899.74 5
DROMVSNet96.25 5996.29 5396.13 11296.87 15991.35 12798.66 697.74 11893.91 5396.29 7297.43 11289.36 8798.59 18397.23 899.07 8198.45 133
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 999.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12598.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30296.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15598.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14797.96 10095.42 794.86 11497.81 8287.38 11699.82 2596.88 1399.20 7099.29 62
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 17196.72 22894.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 12099.08 80
CS-MVS95.88 7095.98 6195.58 14296.44 18490.56 15797.78 6997.73 11993.01 8696.07 8196.77 14090.13 8098.57 18496.83 1599.10 8097.60 179
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15597.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1699.13 7599.48 41
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16798.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1699.29 5799.56 22
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16797.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1899.29 5799.55 26
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16298.09 10586.63 26696.00 23698.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1999.48 3599.45 45
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 17098.85 798.94 193.33 1799.83 2296.72 2099.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13498.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2199.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 1098.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2299.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8398.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2399.46 3898.96 92
MP-MVS-pluss96.70 4496.27 5497.98 2199.23 3094.71 2696.96 15598.06 7390.67 16195.55 10398.78 1091.07 6599.86 896.58 2499.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2599.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14298.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2699.39 4799.55 26
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14797.22 18595.35 898.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 11098.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 16297.73 11994.74 3596.49 6498.49 2490.88 7099.58 7196.44 2998.32 10499.13 74
VDD-MVS93.82 12793.08 13396.02 11997.88 11689.96 17697.72 7895.85 26992.43 10895.86 9098.44 2868.42 32899.39 11096.31 3094.85 17798.71 115
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3199.30 5699.55 26
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9498.19 4492.82 9797.93 2098.74 1191.60 5399.86 896.26 3299.52 2599.67 8
diffmvs95.25 8595.13 8395.63 13896.43 18689.34 19795.99 23797.35 17692.83 9696.31 7197.37 11486.44 12798.67 17396.26 3297.19 13798.87 103
CS-MVS-test95.61 7595.62 6895.58 14296.33 19291.02 14297.64 9097.68 12892.69 10295.18 11095.91 19089.95 8498.61 17996.24 3498.92 9097.12 190
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14796.86 16397.72 12394.67 3696.16 7798.46 2690.43 7699.58 7196.23 3597.96 11498.90 99
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3699.27 6199.54 29
xiu_mvs_v1_base_debu95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base_debi95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
alignmvs95.87 7195.23 8097.78 3397.56 13495.19 1897.86 6097.17 18894.39 4396.47 6696.40 16885.89 13599.20 12396.21 4095.11 17598.95 94
canonicalmvs96.02 6595.45 7397.75 3797.59 13295.15 2198.28 2697.60 13794.52 4096.27 7496.12 18087.65 10999.18 12696.20 4194.82 17998.91 98
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 14098.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12798.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4499.25 6599.51 34
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4599.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4599.26 6399.43 49
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22698.90 294.30 4695.86 9097.74 8792.33 3599.38 11296.04 4799.42 4399.28 65
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18297.11 4498.01 6892.52 3299.69 4496.03 4899.53 2499.36 58
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9897.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4999.51 2999.40 53
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23898.18 4695.23 1295.87 8997.65 9491.45 5599.70 4395.87 5099.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 6096.19 5896.39 9898.23 9791.35 12796.24 22498.79 493.99 5195.80 9297.65 9489.92 8599.24 12195.87 5099.20 7098.58 119
hse-mvs394.15 11293.52 12096.04 11897.81 11990.22 16797.62 9397.58 14095.19 1496.74 5097.45 10983.67 16499.61 6295.85 5279.73 33298.29 147
hse-mvs293.45 13992.99 13594.81 17997.02 15488.59 21896.69 18196.47 24695.19 1496.74 5096.16 17983.67 16498.48 19395.85 5279.13 33697.35 187
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11798.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5499.17 7299.56 22
VNet95.89 6995.45 7397.21 6598.07 10792.94 7997.50 10198.15 5193.87 5497.52 2597.61 10085.29 14299.53 8995.81 5595.27 17199.16 70
9.1496.75 3398.93 4797.73 7598.23 3891.28 14697.88 2298.44 2893.00 2199.65 5395.76 5699.47 36
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5799.40 4599.62 13
X-MVStestdata91.71 19989.67 25897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6032.69 36491.70 5099.80 2795.66 5799.40 4599.62 13
baseline95.58 7795.42 7596.08 11496.78 16590.41 16497.16 13897.45 16093.69 6395.65 10197.85 7887.29 11798.68 17295.66 5797.25 13599.13 74
ETV-MVS96.02 6595.89 6496.40 9697.16 14292.44 9297.47 10697.77 11494.55 3996.48 6594.51 25591.23 6298.92 15195.65 6098.19 10797.82 168
casdiffmvs95.64 7495.49 7196.08 11496.76 16890.45 16297.29 12497.44 16494.00 5095.46 10797.98 7087.52 11398.73 16795.64 6197.33 13299.08 80
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1198.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6299.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1198.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6299.59 1599.62 13
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 15096.40 6997.99 6990.99 6799.58 7195.61 6499.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8796.45 6898.30 4991.90 4599.85 1495.61 6499.68 499.54 29
DeepC-MVS93.07 396.06 6395.66 6797.29 5897.96 10993.17 7397.30 12398.06 7393.92 5293.38 14398.66 1286.83 12299.73 3295.60 6699.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1598.18 4692.64 10596.39 7098.18 5891.61 5299.88 495.59 6799.55 2199.57 19
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8298.24 3491.57 13297.90 2198.37 3692.61 2999.66 5295.59 6799.51 2999.43 49
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1198.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6999.59 1599.64 10
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 7099.59 1599.56 22
lupinMVS94.99 9594.56 9596.29 10696.34 19091.21 13395.83 24496.27 25488.93 21096.22 7596.88 13786.20 13298.85 15795.27 7199.05 8398.82 107
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1498.09 6393.27 7695.95 8898.33 4491.04 6699.88 495.20 7299.57 2099.60 16
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10998.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7399.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 10094.39 10396.18 11195.52 22490.93 14796.09 23096.52 24489.28 19896.01 8697.32 11584.70 14998.77 16495.15 7498.91 9198.85 104
jason: jason.
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10697.18 3898.29 5092.08 3999.83 2295.12 7599.59 1599.54 29
abl_696.40 5496.21 5696.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10599.72 3595.10 7699.07 8199.02 83
train_agg96.30 5795.83 6597.72 3998.70 6094.19 4096.41 20398.02 8888.58 22296.03 8297.56 10592.73 2599.59 6895.04 7799.37 5299.39 54
agg_prior196.22 6195.77 6697.56 4898.67 6293.79 5596.28 21998.00 9388.76 21995.68 9797.55 10792.70 2799.57 7995.01 7899.32 5399.32 60
test_prior396.46 5396.20 5797.23 6298.67 6292.99 7696.35 21198.00 9392.80 9896.03 8297.59 10192.01 4199.41 10795.01 7899.38 4899.29 62
test_prior296.35 21192.80 9896.03 8297.59 10192.01 4195.01 7899.38 48
nrg03094.05 11993.31 12996.27 10795.22 24694.59 2898.34 2197.46 15492.93 9491.21 19396.64 15087.23 11998.22 20894.99 8185.80 28495.98 224
VDDNet93.05 15292.07 16496.02 11996.84 16190.39 16598.08 4395.85 26986.22 27895.79 9398.46 2667.59 33199.19 12494.92 8294.85 17798.47 131
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7898.10 6191.50 13498.01 1898.32 4692.33 3599.58 7194.85 8399.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15298.05 8089.85 18497.26 3598.22 5691.80 4799.69 4494.84 8499.28 5999.27 66
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10196.70 5298.06 6491.35 5999.86 894.83 8599.28 5999.47 44
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10598.34 4190.59 7599.88 494.83 8599.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 8799.38 4899.45 45
PS-MVSNAJ95.37 8195.33 7895.49 15197.35 13690.66 15695.31 26597.48 14993.85 5596.51 6395.70 20788.65 9699.65 5394.80 8898.27 10596.17 215
HPM-MVS_fast96.51 5196.27 5497.22 6499.32 2392.74 8298.74 498.06 7390.57 17096.77 4998.35 3890.21 7999.53 8994.80 8899.63 1299.38 56
xiu_mvs_v2_base95.32 8395.29 7995.40 15697.22 13890.50 16095.44 25997.44 16493.70 6296.46 6796.18 17688.59 9999.53 8994.79 9097.81 11796.17 215
CSCG96.05 6495.91 6396.46 9399.24 2890.47 16198.30 2498.57 1189.01 20593.97 13097.57 10392.62 2899.76 3094.66 9199.27 6199.15 72
EIA-MVS95.53 7995.47 7295.71 13597.06 15089.63 18197.82 6597.87 10793.57 6493.92 13195.04 23290.61 7498.95 14994.62 9298.68 9698.54 121
ZD-MVS99.05 4194.59 2898.08 6489.22 20097.03 4798.10 6092.52 3299.65 5394.58 9399.31 55
ACMMPcopyleft96.27 5895.93 6297.28 5999.24 2892.62 8798.25 2998.81 392.99 8794.56 11898.39 3588.96 9199.85 1494.57 9497.63 12199.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8698.98 192.22 11397.14 4198.44 2891.17 6499.85 1494.35 9599.46 3899.57 19
ET-MVSNet_ETH3D91.49 21190.11 24095.63 13896.40 18791.57 12195.34 26293.48 33590.60 16975.58 34995.49 21880.08 23296.79 32294.25 9689.76 24998.52 123
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 10097.59 2498.20 5791.96 4499.86 894.21 9799.25 6599.63 11
bset_n11_16_dypcd91.55 20790.59 21994.44 19591.51 33690.25 16692.70 32793.42 33692.27 11290.22 20794.74 24678.42 26297.80 26694.19 9887.86 26595.29 267
LFMVS93.60 13492.63 14796.52 8598.13 10491.27 13097.94 5593.39 33790.57 17096.29 7298.31 4769.00 32499.16 12894.18 9995.87 16099.12 77
MVSFormer95.37 8195.16 8295.99 12196.34 19091.21 13398.22 3497.57 14191.42 13896.22 7597.32 11586.20 13297.92 25594.07 10099.05 8398.85 104
test_djsdf93.07 15192.76 14194.00 21293.49 31188.70 21698.22 3497.57 14191.42 13890.08 21895.55 21582.85 18397.92 25594.07 10091.58 22395.40 254
mvs_anonymous93.82 12793.74 11194.06 20996.44 18485.41 28495.81 24597.05 20189.85 18490.09 21796.36 17087.44 11597.75 27293.97 10296.69 14799.02 83
VPA-MVSNet93.24 14592.48 15695.51 14895.70 21892.39 9397.86 6098.66 992.30 11192.09 17395.37 22180.49 22498.40 19693.95 10385.86 28395.75 237
agg_prior293.94 10499.38 4899.50 37
mvs_tets92.31 17991.76 17493.94 21993.41 31388.29 22597.63 9297.53 14592.04 12288.76 25696.45 16474.62 29498.09 22793.91 10591.48 22595.45 250
Effi-MVS+94.93 9694.45 10196.36 10196.61 17091.47 12396.41 20397.41 16991.02 15594.50 11995.92 18987.53 11298.78 16293.89 10696.81 14298.84 106
jajsoiax92.42 17491.89 17294.03 21193.33 31688.50 22297.73 7597.53 14592.00 12488.85 25296.50 16275.62 29098.11 22293.88 10791.56 22495.48 245
XVG-OURS-SEG-HR93.86 12693.55 11794.81 17997.06 15088.53 22195.28 26697.45 16091.68 13094.08 12797.68 9182.41 19498.90 15493.84 10892.47 20896.98 193
PS-MVSNAJss93.74 13093.51 12194.44 19593.91 29889.28 20297.75 7297.56 14492.50 10789.94 22096.54 16088.65 9698.18 21493.83 10990.90 23695.86 226
EPNet95.20 8894.56 9597.14 6892.80 32492.68 8497.85 6394.87 31496.64 192.46 15997.80 8486.23 12999.65 5393.72 11098.62 9899.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_test8_iter0591.19 23090.78 21192.41 27595.76 21783.14 31197.32 12097.46 15491.37 14289.07 24895.57 21270.33 31798.21 20993.56 11186.62 27895.89 225
PVSNet_Blended_VisFu95.27 8494.91 8796.38 9998.20 9890.86 14997.27 12598.25 3390.21 17594.18 12597.27 11787.48 11499.73 3293.53 11297.77 11998.55 120
CPTT-MVS95.57 7895.19 8196.70 7799.27 2691.48 12298.33 2298.11 5987.79 24795.17 11198.03 6687.09 12099.61 6293.51 11399.42 4399.02 83
MVSTER93.20 14792.81 14094.37 19996.56 17689.59 18497.06 14397.12 19291.24 14791.30 18795.96 18782.02 20198.05 23493.48 11490.55 24095.47 247
PVSNet_BlendedMVS94.06 11893.92 10794.47 19498.27 8989.46 19296.73 17598.36 1690.17 17694.36 12195.24 22688.02 10299.58 7193.44 11590.72 23894.36 308
PVSNet_Blended94.87 9994.56 9595.81 12798.27 8989.46 19295.47 25898.36 1688.84 21394.36 12196.09 18488.02 10299.58 7193.44 11598.18 10898.40 140
3Dnovator91.36 595.19 8994.44 10297.44 5296.56 17693.36 6998.65 798.36 1694.12 4889.25 24598.06 6482.20 19899.77 2993.41 11799.32 5399.18 69
EPP-MVSNet95.22 8795.04 8595.76 12897.49 13589.56 18598.67 597.00 20790.69 16094.24 12497.62 9989.79 8698.81 16093.39 11896.49 15298.92 97
RRT_MVS93.21 14692.32 16095.91 12394.92 26194.15 4396.92 15996.86 22291.42 13891.28 19096.43 16579.66 24198.10 22393.29 11990.06 24595.46 248
CHOSEN 280x42093.12 14992.72 14594.34 20196.71 16987.27 24890.29 34397.72 12386.61 27391.34 18495.29 22384.29 15798.41 19593.25 12098.94 8897.35 187
3Dnovator+91.43 495.40 8094.48 10098.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 26198.02 6783.69 16399.71 3893.18 12198.96 8799.44 47
test_yl94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
DCV-MVSNet94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
HQP_MVS93.78 12993.43 12594.82 17796.21 19589.99 17297.74 7397.51 14794.85 2691.34 18496.64 15081.32 21298.60 18093.02 12492.23 21195.86 226
plane_prior597.51 14798.60 18093.02 12492.23 21195.86 226
MVS_Test94.89 9894.62 9395.68 13696.83 16389.55 18696.70 17997.17 18891.17 15095.60 10296.11 18387.87 10698.76 16593.01 12697.17 13898.72 113
CLD-MVS92.98 15592.53 15394.32 20296.12 20489.20 20495.28 26697.47 15292.66 10389.90 22195.62 21080.58 22298.40 19692.73 12792.40 20995.38 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 13193.35 12894.80 18297.07 14788.61 21794.79 27697.46 15491.97 12593.99 12897.86 7781.74 20798.88 15692.64 12892.67 20696.92 197
ETH3 D test640096.16 6295.52 7098.07 1698.90 5195.06 2297.03 14498.21 4088.16 23696.64 5797.70 8991.18 6399.67 4992.44 12999.47 3699.48 41
旧先验295.94 23981.66 32797.34 3498.82 15992.26 130
CDPH-MVS95.97 6795.38 7697.77 3598.93 4794.44 3196.35 21197.88 10586.98 26696.65 5697.89 7291.99 4399.47 10092.26 13099.46 3899.39 54
FIs94.09 11793.70 11295.27 15895.70 21892.03 10798.10 4198.68 793.36 7490.39 20396.70 14587.63 11097.94 25292.25 13290.50 24295.84 229
LPG-MVS_test92.94 15892.56 15094.10 20796.16 20088.26 22797.65 8697.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
LGP-MVS_train94.10 20796.16 20088.26 22797.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
cascas91.20 22790.08 24194.58 19294.97 25789.16 20793.65 31197.59 13979.90 33889.40 23792.92 30875.36 29198.36 20092.14 13594.75 18196.23 212
OPM-MVS93.28 14492.76 14194.82 17794.63 27790.77 15396.65 18597.18 18693.72 6091.68 17897.26 11879.33 24698.63 17692.13 13692.28 21095.07 272
BP-MVS92.13 136
HQP-MVS93.19 14892.74 14494.54 19395.86 21089.33 19896.65 18597.39 17093.55 6590.14 20895.87 19280.95 21598.50 18992.13 13692.10 21695.78 233
DP-MVS Recon95.68 7395.12 8497.37 5499.19 3194.19 4097.03 14498.08 6488.35 22995.09 11297.65 9489.97 8399.48 9992.08 13998.59 9998.44 137
VPNet92.23 18591.31 19194.99 16895.56 22290.96 14597.22 13397.86 11092.96 9390.96 19596.62 15775.06 29298.20 21191.90 14083.65 31795.80 232
sss94.51 10693.80 11096.64 7897.07 14791.97 11096.32 21598.06 7388.94 20994.50 11996.78 13984.60 15099.27 11991.90 14096.02 15698.68 117
anonymousdsp92.16 18891.55 18293.97 21592.58 32889.55 18697.51 10097.42 16889.42 19588.40 26294.84 24080.66 22197.88 26091.87 14291.28 22994.48 304
ACMP89.59 1092.62 16992.14 16394.05 21096.40 18788.20 23097.36 11697.25 18491.52 13388.30 26596.64 15078.46 26198.72 17091.86 14391.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 13292.92 13895.87 12598.24 9389.88 17794.58 28098.49 1285.06 29593.78 13395.78 20182.86 18298.67 17391.77 14495.71 16599.07 82
UGNet94.04 12093.28 13096.31 10396.85 16091.19 13697.88 5997.68 12894.40 4293.00 15196.18 17673.39 30499.61 6291.72 14598.46 10198.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 14192.67 14695.47 15495.34 23592.83 8097.17 13798.58 1092.98 9290.13 21295.80 19788.37 10197.85 26191.71 14683.93 31295.73 239
DU-MVS92.90 16092.04 16595.49 15194.95 25992.83 8097.16 13898.24 3493.02 8590.13 21295.71 20583.47 16797.85 26191.71 14683.93 31295.78 233
Effi-MVS+-dtu93.08 15093.21 13292.68 27096.02 20783.25 31097.14 14196.72 22893.85 5591.20 19493.44 30283.08 17598.30 20491.69 14895.73 16496.50 208
mvs-test193.63 13393.69 11393.46 24296.02 20784.61 29697.24 12796.72 22893.85 5592.30 16695.76 20283.08 17598.89 15591.69 14896.54 15096.87 199
UniMVSNet (Re)93.31 14392.55 15195.61 14095.39 22993.34 7097.39 11398.71 593.14 8290.10 21694.83 24187.71 10798.03 23891.67 15083.99 31195.46 248
LCM-MVSNet-Re92.50 17092.52 15492.44 27396.82 16481.89 31996.92 15993.71 33392.41 10984.30 31794.60 25385.08 14597.03 31391.51 15197.36 13098.40 140
FC-MVSNet-test93.94 12393.57 11695.04 16695.48 22691.45 12598.12 4098.71 593.37 7290.23 20696.70 14587.66 10897.85 26191.49 15290.39 24395.83 230
PMMVS92.86 16292.34 15894.42 19894.92 26186.73 26294.53 28296.38 25084.78 30094.27 12395.12 23183.13 17498.40 19691.47 15396.49 15298.12 152
Vis-MVSNetpermissive95.23 8694.81 8896.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11398.15 5982.28 19698.92 15191.45 15498.58 10099.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 11293.51 12196.06 11698.27 8989.38 19595.18 27298.48 1485.60 28693.76 13497.11 12683.15 17399.61 6291.33 15598.72 9599.19 68
OMC-MVS95.09 9094.70 9296.25 10998.46 7491.28 12996.43 20197.57 14192.04 12294.77 11697.96 7187.01 12199.09 13791.31 15696.77 14398.36 144
MG-MVS95.61 7595.38 7696.31 10398.42 7790.53 15996.04 23297.48 14993.47 7195.67 10098.10 6089.17 8999.25 12091.27 15798.77 9399.13 74
ACMM89.79 892.96 15692.50 15594.35 20096.30 19388.71 21597.58 9597.36 17591.40 14190.53 19996.65 14979.77 23898.75 16691.24 15891.64 22195.59 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10494.02 10696.79 7697.71 12592.05 10696.59 19497.35 17690.61 16794.64 11796.93 13286.41 12899.39 11091.20 15994.71 18398.94 95
Anonymous2024052991.98 19390.73 21495.73 13398.14 10389.40 19497.99 4897.72 12379.63 33993.54 13897.41 11369.94 32299.56 8191.04 16091.11 23198.22 148
test_part192.21 18791.10 20195.51 14897.80 12092.66 8598.02 4797.68 12889.79 18788.80 25596.02 18576.85 27998.18 21490.86 16184.11 31095.69 240
AUN-MVS91.76 19890.75 21394.81 17997.00 15588.57 21996.65 18596.49 24589.63 18992.15 16996.12 18078.66 25898.50 18990.83 16279.18 33597.36 186
CANet_DTU94.37 10793.65 11596.55 8496.46 18392.13 10496.21 22596.67 23694.38 4493.53 13997.03 13079.34 24599.71 3890.76 16398.45 10297.82 168
ab-mvs93.57 13692.55 15196.64 7897.28 13791.96 11195.40 26097.45 16089.81 18693.22 14996.28 17379.62 24299.46 10190.74 16493.11 20098.50 126
CostFormer91.18 23190.70 21592.62 27194.84 26781.76 32094.09 29994.43 32184.15 30692.72 15893.77 29179.43 24498.20 21190.70 16592.18 21497.90 161
Anonymous20240521192.07 19190.83 21095.76 12898.19 10088.75 21497.58 9595.00 30586.00 28193.64 13597.45 10966.24 34099.53 8990.68 16692.71 20499.01 87
tpmrst91.44 21391.32 19091.79 29095.15 24979.20 34293.42 31595.37 28788.55 22593.49 14093.67 29682.49 19298.27 20590.41 16789.34 25297.90 161
thisisatest053093.03 15392.21 16295.49 15197.07 14789.11 20897.49 10592.19 34590.16 17794.09 12696.41 16776.43 28499.05 14390.38 16895.68 16698.31 146
UA-Net95.95 6895.53 6997.20 6697.67 12692.98 7897.65 8698.13 5494.81 3196.61 5898.35 3888.87 9299.51 9490.36 16997.35 13199.11 78
UniMVSNet_ETH3D91.34 22190.22 23794.68 18794.86 26687.86 24097.23 13297.46 15487.99 23989.90 22196.92 13566.35 33898.23 20790.30 17090.99 23497.96 157
tttt051792.96 15692.33 15994.87 17697.11 14587.16 25497.97 5392.09 34690.63 16593.88 13297.01 13176.50 28199.06 14290.29 17195.45 16898.38 142
IS-MVSNet94.90 9794.52 9896.05 11797.67 12690.56 15798.44 1796.22 25793.21 7793.99 12897.74 8785.55 14098.45 19489.98 17297.86 11599.14 73
miper_enhance_ethall91.54 20991.01 20293.15 25495.35 23487.07 25693.97 30196.90 21686.79 27089.17 24693.43 30486.55 12597.64 28089.97 17386.93 27394.74 298
EI-MVSNet93.03 15392.88 13993.48 24095.77 21586.98 25796.44 19997.12 19290.66 16391.30 18797.64 9786.56 12498.05 23489.91 17490.55 24095.41 251
IterMVS-LS92.29 18191.94 17093.34 24796.25 19486.97 25896.57 19797.05 20190.67 16189.50 23694.80 24386.59 12397.64 28089.91 17486.11 28295.40 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet291.21 22690.56 22293.14 25596.09 20686.80 26094.41 28796.58 24387.80 24688.58 26093.99 28480.85 22097.62 28389.87 17686.93 27394.99 275
CDS-MVSNet94.14 11593.54 11895.93 12296.18 19891.46 12496.33 21497.04 20388.97 20893.56 13696.51 16187.55 11197.89 25989.80 17795.95 15898.44 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 17791.53 18394.77 18495.13 25190.83 15096.40 20697.98 9891.88 12689.29 24295.54 21682.50 19197.80 26689.79 17885.27 29295.69 240
NR-MVSNet92.34 17791.27 19495.53 14794.95 25993.05 7597.39 11398.07 7092.65 10484.46 31595.71 20585.00 14697.77 27189.71 17983.52 31895.78 233
Anonymous2023121190.63 25189.42 26294.27 20398.24 9389.19 20698.05 4597.89 10379.95 33788.25 26894.96 23372.56 30598.13 21889.70 18085.14 29495.49 244
testdata95.46 15598.18 10288.90 21297.66 13182.73 32197.03 4798.07 6390.06 8198.85 15789.67 18198.98 8698.64 118
Baseline_NR-MVSNet91.20 22790.62 21792.95 26193.83 30188.03 23597.01 15195.12 30188.42 22789.70 22795.13 23083.47 16797.44 29989.66 18283.24 32093.37 326
DPM-MVS95.69 7294.92 8698.01 1998.08 10695.71 795.27 26897.62 13690.43 17395.55 10397.07 12891.72 4899.50 9789.62 18398.94 8898.82 107
XXY-MVS92.16 18891.23 19694.95 17394.75 27190.94 14697.47 10697.43 16789.14 20288.90 24996.43 16579.71 23998.24 20689.56 18487.68 26695.67 242
miper_ehance_all_eth91.59 20391.13 20092.97 26095.55 22386.57 26794.47 28396.88 21987.77 24888.88 25194.01 28286.22 13097.54 28989.49 18586.93 27394.79 294
XVG-ACMP-BASELINE90.93 24090.21 23893.09 25694.31 28985.89 27795.33 26397.26 18291.06 15489.38 23895.44 22068.61 32698.60 18089.46 18691.05 23294.79 294
thisisatest051592.29 18191.30 19295.25 15996.60 17188.90 21294.36 28992.32 34487.92 24193.43 14294.57 25477.28 27799.00 14689.42 18795.86 16197.86 164
cl_fuxian91.38 21690.89 20492.88 26395.58 22186.30 27094.68 27896.84 22488.17 23488.83 25494.23 27485.65 13997.47 29689.36 18884.63 30294.89 284
AdaColmapbinary94.34 10893.68 11496.31 10398.59 6991.68 11696.59 19497.81 11389.87 18192.15 16997.06 12983.62 16699.54 8689.34 18998.07 11197.70 172
TranMVSNet+NR-MVSNet92.50 17091.63 17995.14 16394.76 27092.07 10597.53 9998.11 5992.90 9589.56 23396.12 18083.16 17297.60 28589.30 19083.20 32195.75 237
D2MVS91.30 22390.95 20392.35 27694.71 27385.52 28296.18 22798.21 4088.89 21186.60 29893.82 28979.92 23697.95 25189.29 19190.95 23593.56 322
131492.81 16692.03 16695.14 16395.33 23889.52 18996.04 23297.44 16487.72 25186.25 30195.33 22283.84 16198.79 16189.26 19297.05 14097.11 191
v2v48291.59 20390.85 20893.80 22593.87 30088.17 23296.94 15896.88 21989.54 19089.53 23494.90 23781.70 20898.02 23989.25 19385.04 29895.20 269
114514_t93.95 12293.06 13496.63 8099.07 3991.61 11797.46 10897.96 10077.99 34593.00 15197.57 10386.14 13499.33 11489.22 19499.15 7398.94 95
PAPM_NR95.01 9194.59 9496.26 10898.89 5490.68 15597.24 12797.73 11991.80 12792.93 15696.62 15789.13 9099.14 13189.21 19597.78 11898.97 91
baseline192.82 16591.90 17195.55 14697.20 14090.77 15397.19 13594.58 31992.20 11592.36 16396.34 17184.16 15898.21 20989.20 19683.90 31597.68 173
IB-MVS87.33 1789.91 26688.28 27894.79 18395.26 24587.70 24395.12 27493.95 33289.35 19787.03 29292.49 31470.74 31599.19 12489.18 19781.37 32897.49 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 12592.95 13796.63 8097.10 14692.49 9195.64 25296.64 23789.05 20493.00 15195.79 20085.77 13899.45 10389.16 19894.35 18597.96 157
V4291.58 20590.87 20593.73 22794.05 29588.50 22297.32 12096.97 20888.80 21889.71 22694.33 26682.54 19098.05 23489.01 19985.07 29694.64 302
OurMVSNet-221017-090.51 25490.19 23991.44 29993.41 31381.25 32396.98 15496.28 25391.68 13086.55 29996.30 17274.20 29797.98 24288.96 20087.40 27195.09 271
API-MVS94.84 10094.49 9995.90 12497.90 11592.00 10997.80 6797.48 14989.19 20194.81 11596.71 14388.84 9399.17 12788.91 20198.76 9496.53 206
test-LLR91.42 21491.19 19892.12 28094.59 27880.66 32694.29 29392.98 33991.11 15290.76 19792.37 31679.02 25198.07 23188.81 20296.74 14497.63 174
test-mter90.19 26289.54 26192.12 28094.59 27880.66 32694.29 29392.98 33987.68 25290.76 19792.37 31667.67 33098.07 23188.81 20296.74 14497.63 174
eth_miper_zixun_eth91.02 23590.59 21992.34 27795.33 23884.35 29794.10 29896.90 21688.56 22488.84 25394.33 26684.08 15997.60 28588.77 20484.37 30795.06 273
TAMVS94.01 12193.46 12395.64 13796.16 20090.45 16296.71 17896.89 21889.27 19993.46 14196.92 13587.29 11797.94 25288.70 20595.74 16398.53 122
Patchmatch-RL test87.38 29486.24 29590.81 30988.74 35278.40 34688.12 35293.17 33887.11 26582.17 33289.29 34181.95 20395.60 33888.64 20677.02 33998.41 139
baseline291.63 20290.86 20693.94 21994.33 28786.32 26995.92 24091.64 35089.37 19686.94 29494.69 24881.62 20998.69 17188.64 20694.57 18496.81 201
TESTMET0.1,190.06 26489.42 26291.97 28394.41 28580.62 32894.29 29391.97 34887.28 26290.44 20292.47 31568.79 32597.67 27788.50 20896.60 14997.61 178
Vis-MVSNet (Re-imp)94.15 11293.88 10894.95 17397.61 13087.92 23798.10 4195.80 27192.22 11393.02 15097.45 10984.53 15297.91 25888.24 20997.97 11399.02 83
DWT-MVSNet_test90.76 24489.89 24893.38 24595.04 25583.70 30695.85 24394.30 32788.19 23290.46 20192.80 30973.61 30298.50 18988.16 21090.58 23997.95 159
1112_ss93.37 14192.42 15796.21 11097.05 15290.99 14396.31 21696.72 22886.87 26989.83 22496.69 14786.51 12699.14 13188.12 21193.67 19498.50 126
CVMVSNet91.23 22591.75 17589.67 32395.77 21574.69 35196.44 19994.88 31185.81 28392.18 16897.64 9779.07 24895.58 33988.06 21295.86 16198.74 111
MAR-MVS94.22 11093.46 12396.51 8898.00 10892.19 10397.67 8397.47 15288.13 23893.00 15195.84 19484.86 14899.51 9487.99 21398.17 10997.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25895.22 10997.68 9190.25 7799.54 8687.95 21499.12 7898.49 128
CP-MVSNet91.89 19591.24 19593.82 22495.05 25488.57 21997.82 6598.19 4491.70 12988.21 26995.76 20281.96 20297.52 29387.86 21584.65 30195.37 257
v14890.99 23690.38 22692.81 26693.83 30185.80 27896.78 17396.68 23489.45 19488.75 25793.93 28682.96 18197.82 26587.83 21683.25 31994.80 292
v114491.37 21890.60 21893.68 23293.89 29988.23 22996.84 16697.03 20588.37 22889.69 22894.39 26282.04 20097.98 24287.80 21785.37 28994.84 286
cl-mvsnet190.97 23890.33 22792.88 26395.36 23386.19 27494.46 28596.63 24087.82 24488.18 27094.23 27482.99 17897.53 29187.72 21885.57 28694.93 280
gm-plane-assit93.22 31778.89 34584.82 29993.52 29998.64 17587.72 218
GeoE93.89 12493.28 13095.72 13496.96 15789.75 18098.24 3296.92 21589.47 19392.12 17197.21 12184.42 15398.39 19987.71 22096.50 15199.01 87
cl-mvsnet____90.96 23990.32 22892.89 26295.37 23286.21 27394.46 28596.64 23787.82 24488.15 27194.18 27782.98 17997.54 28987.70 22185.59 28594.92 282
pmmvs490.93 24089.85 25094.17 20593.34 31590.79 15294.60 27996.02 26384.62 30187.45 28295.15 22881.88 20597.45 29887.70 22187.87 26494.27 313
Test_1112_low_res92.84 16491.84 17395.85 12697.04 15389.97 17595.53 25696.64 23785.38 28989.65 23095.18 22785.86 13699.10 13487.70 22193.58 19998.49 128
无先验95.79 24697.87 10783.87 31199.65 5387.68 22498.89 101
112194.71 10493.83 10997.34 5598.57 7293.64 6096.04 23297.73 11981.56 32995.68 9797.85 7890.23 7899.65 5387.68 22499.12 7898.73 112
Fast-Effi-MVS+93.46 13892.75 14395.59 14196.77 16690.03 16996.81 17097.13 19188.19 23291.30 18794.27 27186.21 13198.63 17687.66 22696.46 15498.12 152
CNLPA94.28 10993.53 11996.52 8598.38 8192.55 8996.59 19496.88 21990.13 17891.91 17597.24 11985.21 14399.09 13787.64 22797.83 11697.92 160
v891.29 22490.53 22393.57 23794.15 29188.12 23497.34 11797.06 20088.99 20688.32 26494.26 27383.08 17598.01 24087.62 22883.92 31494.57 303
pmmvs589.86 26988.87 27192.82 26592.86 32286.23 27296.26 22095.39 28584.24 30587.12 28994.51 25574.27 29697.36 30587.61 22987.57 26794.86 285
Fast-Effi-MVS+-dtu92.29 18191.99 16893.21 25395.27 24285.52 28297.03 14496.63 24092.09 12089.11 24795.14 22980.33 22898.08 22887.54 23094.74 18296.03 223
OpenMVScopyleft89.19 1292.86 16291.68 17896.40 9695.34 23592.73 8398.27 2798.12 5684.86 29885.78 30497.75 8678.89 25699.74 3187.50 23198.65 9796.73 203
miper_lstm_enhance90.50 25590.06 24491.83 28795.33 23883.74 30393.86 30496.70 23387.56 25587.79 27793.81 29083.45 16996.92 31987.39 23284.62 30394.82 289
IterMVS-SCA-FT90.31 25789.81 25291.82 28895.52 22484.20 30094.30 29296.15 26090.61 16787.39 28594.27 27175.80 28796.44 32587.34 23386.88 27794.82 289
PLCcopyleft91.00 694.11 11693.43 12596.13 11298.58 7191.15 14096.69 18197.39 17087.29 26191.37 18396.71 14388.39 10099.52 9387.33 23497.13 13997.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 25989.74 25791.76 29393.92 29779.73 33893.98 30093.54 33488.28 23091.99 17493.25 30577.51 27697.44 29987.30 23587.94 26398.12 152
GA-MVS91.38 21690.31 22994.59 18894.65 27587.62 24494.34 29096.19 25990.73 15990.35 20493.83 28771.84 30797.96 24987.22 23693.61 19798.21 149
BH-untuned92.94 15892.62 14893.92 22197.22 13886.16 27596.40 20696.25 25690.06 17989.79 22596.17 17883.19 17198.35 20187.19 23797.27 13497.24 189
v14419291.06 23390.28 23193.39 24493.66 30687.23 25196.83 16797.07 19887.43 25789.69 22894.28 27081.48 21098.00 24187.18 23884.92 30094.93 280
RPSCF90.75 24690.86 20690.42 31696.84 16176.29 34995.61 25396.34 25183.89 30991.38 18297.87 7576.45 28298.78 16287.16 23992.23 21196.20 213
PS-CasMVS91.55 20790.84 20993.69 23194.96 25888.28 22697.84 6498.24 3491.46 13688.04 27395.80 19779.67 24097.48 29587.02 24084.54 30595.31 260
pm-mvs190.72 24889.65 26093.96 21694.29 29089.63 18197.79 6896.82 22589.07 20386.12 30395.48 21978.61 25997.78 26986.97 24181.67 32694.46 305
IterMVS90.15 26389.67 25891.61 29595.48 22683.72 30494.33 29196.12 26189.99 18087.31 28894.15 27975.78 28996.27 32886.97 24186.89 27694.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 13592.98 13695.37 15798.40 7888.98 21097.18 13697.29 18187.75 25090.49 20097.10 12785.21 14399.50 9786.70 24396.72 14697.63 174
PVSNet86.66 1892.24 18491.74 17793.73 22797.77 12283.69 30792.88 32496.72 22887.91 24293.00 15194.86 23978.51 26099.05 14386.53 24497.45 12898.47 131
v119291.07 23290.23 23593.58 23693.70 30487.82 24196.73 17597.07 19887.77 24889.58 23194.32 26880.90 21997.97 24586.52 24585.48 28794.95 276
新几何197.32 5698.60 6893.59 6197.75 11681.58 32895.75 9497.85 7890.04 8299.67 4986.50 24699.13 7598.69 116
v1091.04 23490.23 23593.49 23994.12 29288.16 23397.32 12097.08 19788.26 23188.29 26694.22 27682.17 19997.97 24586.45 24784.12 30994.33 309
v192192090.85 24290.03 24593.29 24993.55 30786.96 25996.74 17497.04 20387.36 25989.52 23594.34 26580.23 23097.97 24586.27 24885.21 29394.94 278
MDTV_nov1_ep13_2view70.35 35693.10 32283.88 31093.55 13782.47 19386.25 24998.38 142
test_post192.81 32616.58 36880.53 22397.68 27686.20 250
SCA91.84 19691.18 19993.83 22395.59 22084.95 29294.72 27795.58 28190.82 15692.25 16793.69 29375.80 28798.10 22386.20 25095.98 15798.45 133
PAPR94.18 11193.42 12796.48 9097.64 12891.42 12695.55 25497.71 12788.99 20692.34 16595.82 19689.19 8899.11 13386.14 25297.38 12998.90 99
GBi-Net91.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
test191.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
FMVSNet391.78 19790.69 21695.03 16796.53 17892.27 9997.02 14796.93 21189.79 18789.35 23994.65 25177.01 27897.47 29686.12 25388.82 25595.35 258
EPMVS90.70 24989.81 25293.37 24694.73 27284.21 29993.67 31088.02 35789.50 19292.38 16293.49 30077.82 27497.78 26986.03 25692.68 20598.11 155
MVS91.71 19990.44 22495.51 14895.20 24891.59 11996.04 23297.45 16073.44 35287.36 28695.60 21185.42 14199.10 13485.97 25797.46 12495.83 230
testdata299.67 4985.96 258
K. test v387.64 29386.75 29490.32 31793.02 32179.48 34096.61 19192.08 34790.66 16380.25 34194.09 28067.21 33496.65 32485.96 25880.83 33094.83 287
WR-MVS_H92.00 19291.35 18893.95 21795.09 25389.47 19098.04 4698.68 791.46 13688.34 26394.68 24985.86 13697.56 28785.77 26084.24 30894.82 289
gg-mvs-nofinetune87.82 29185.61 30094.44 19594.46 28289.27 20391.21 33884.61 36280.88 33289.89 22374.98 35671.50 30997.53 29185.75 26197.21 13696.51 207
tpm289.96 26589.21 26692.23 27994.91 26481.25 32393.78 30694.42 32280.62 33591.56 17993.44 30276.44 28397.94 25285.60 26292.08 21897.49 184
v124090.70 24989.85 25093.23 25193.51 31086.80 26096.61 19197.02 20687.16 26489.58 23194.31 26979.55 24397.98 24285.52 26385.44 28894.90 283
PEN-MVS91.20 22790.44 22493.48 24094.49 28187.91 23997.76 7198.18 4691.29 14387.78 27895.74 20480.35 22797.33 30685.46 26482.96 32295.19 270
QAPM93.45 13992.27 16196.98 7496.77 16692.62 8798.39 2098.12 5684.50 30388.27 26797.77 8582.39 19599.81 2685.40 26598.81 9298.51 125
EU-MVSNet88.72 28388.90 27088.20 32893.15 31974.21 35296.63 19094.22 32885.18 29287.32 28795.97 18676.16 28594.98 34385.27 26686.17 28095.41 251
BH-w/o92.14 19091.75 17593.31 24896.99 15685.73 27995.67 24995.69 27588.73 22089.26 24494.82 24282.97 18098.07 23185.26 26796.32 15596.13 219
FMVSNet291.31 22290.08 24194.99 16896.51 17992.21 10097.41 10996.95 20988.82 21588.62 25894.75 24573.87 29897.42 30185.20 26888.55 26095.35 258
PM-MVS83.48 31781.86 32188.31 32787.83 35577.59 34793.43 31491.75 34986.91 26780.63 33789.91 33844.42 36095.84 33485.17 26976.73 34191.50 346
LF4IMVS87.94 29087.25 28789.98 32092.38 33280.05 33694.38 28895.25 29587.59 25484.34 31694.74 24664.31 34597.66 27984.83 27087.45 26892.23 339
PatchmatchNetpermissive91.91 19491.35 18893.59 23595.38 23084.11 30193.15 32095.39 28589.54 19092.10 17293.68 29582.82 18498.13 21884.81 27195.32 17098.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 29286.19 29692.69 26991.32 33786.30 27097.34 11796.41 24980.59 33684.05 32394.37 26467.37 33397.67 27784.75 27279.51 33494.09 317
v7n90.76 24489.86 24993.45 24393.54 30887.60 24597.70 8197.37 17388.85 21287.65 28094.08 28181.08 21498.10 22384.68 27383.79 31694.66 301
SixPastTwentyTwo89.15 27588.54 27590.98 30693.49 31180.28 33396.70 17994.70 31590.78 15784.15 32095.57 21271.78 30897.71 27584.63 27485.07 29694.94 278
TDRefinement86.53 29984.76 30991.85 28682.23 35984.25 29896.38 20995.35 28884.97 29784.09 32194.94 23465.76 34398.34 20384.60 27574.52 34492.97 328
MVS_030488.79 28187.57 28392.46 27294.65 27586.15 27696.40 20697.17 18886.44 27488.02 27491.71 32856.68 35597.03 31384.47 27692.58 20794.19 314
ACMH87.59 1690.53 25389.42 26293.87 22296.21 19587.92 23797.24 12796.94 21088.45 22683.91 32496.27 17471.92 30698.62 17884.43 27789.43 25195.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 26189.18 26793.25 25096.48 18286.45 26896.99 15296.68 23488.83 21484.79 31496.22 17570.16 32098.53 18784.42 27888.04 26294.77 297
MS-PatchMatch90.27 25889.77 25491.78 29194.33 28784.72 29595.55 25496.73 22786.17 27986.36 30095.28 22571.28 31197.80 26684.09 27998.14 11092.81 331
PatchMatch-RL92.90 16092.02 16795.56 14498.19 10090.80 15195.27 26897.18 18687.96 24091.86 17795.68 20880.44 22598.99 14784.01 28097.54 12396.89 198
lessismore_v090.45 31591.96 33579.09 34487.19 36080.32 34094.39 26266.31 33997.55 28884.00 28176.84 34094.70 299
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33089.14 35073.12 35494.17 29696.80 22673.98 35073.65 35194.93 23566.36 33797.61 28483.95 28291.28 22992.48 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 24790.08 24192.71 26893.19 31888.20 23095.86 24296.27 25486.07 28084.86 31394.76 24477.84 27397.75 27283.88 28398.01 11292.17 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 13692.61 14996.47 9197.59 13291.61 11797.67 8397.72 12385.17 29390.29 20598.34 4184.60 15099.73 3283.85 28498.27 10598.06 156
DTE-MVSNet90.56 25289.75 25693.01 25893.95 29687.25 24997.64 9097.65 13390.74 15887.12 28995.68 20879.97 23597.00 31783.33 28581.66 32794.78 296
BH-RMVSNet92.72 16891.97 16994.97 17197.16 14287.99 23696.15 22895.60 27990.62 16691.87 17697.15 12578.41 26398.57 18483.16 28697.60 12298.36 144
pmmvs-eth3d86.22 30484.45 31091.53 29688.34 35387.25 24994.47 28395.01 30483.47 31679.51 34489.61 34069.75 32395.71 33683.13 28776.73 34191.64 343
FMVSNet189.88 26888.31 27794.59 18895.41 22891.18 13797.50 10196.93 21186.62 27287.41 28494.51 25565.94 34297.29 30883.04 28887.43 26995.31 260
MDTV_nov1_ep1390.76 21295.22 24680.33 33193.03 32395.28 29288.14 23792.84 15793.83 28781.34 21198.08 22882.86 28994.34 186
TR-MVS91.48 21290.59 21994.16 20696.40 18787.33 24695.67 24995.34 29187.68 25291.46 18195.52 21776.77 28098.35 20182.85 29093.61 19796.79 202
JIA-IIPM88.26 28887.04 29291.91 28493.52 30981.42 32289.38 34994.38 32380.84 33390.93 19680.74 35479.22 24797.92 25582.76 29191.62 22296.38 211
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 33990.55 34295.60 27983.76 31283.00 33089.95 33771.09 31297.97 24582.75 29260.79 35895.31 260
ambc86.56 33483.60 35770.00 35785.69 35494.97 30780.60 33888.45 34237.42 36296.84 32182.69 29375.44 34392.86 330
USDC88.94 27787.83 28292.27 27894.66 27484.96 29193.86 30495.90 26787.34 26083.40 32695.56 21467.43 33298.19 21382.64 29489.67 25093.66 321
ITE_SJBPF92.43 27495.34 23585.37 28595.92 26591.47 13587.75 27996.39 16971.00 31397.96 24982.36 29589.86 24893.97 318
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 34582.40 31793.62 31297.37 17389.86 18278.59 34692.37 31665.25 34495.35 34282.27 29670.75 35094.10 315
GG-mvs-BLEND93.62 23393.69 30589.20 20492.39 33283.33 36387.98 27689.84 33971.00 31396.87 32082.08 29795.40 16994.80 292
thres600view792.49 17291.60 18095.18 16197.91 11489.47 19097.65 8694.66 31692.18 11993.33 14494.91 23678.06 27099.10 13481.61 29894.06 19196.98 193
LTVRE_ROB88.41 1390.99 23689.92 24794.19 20496.18 19889.55 18696.31 21697.09 19687.88 24385.67 30595.91 19078.79 25798.57 18481.50 29989.98 24694.44 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 27089.15 26891.89 28594.92 26180.30 33293.11 32195.46 28486.28 27688.08 27292.65 31180.44 22598.52 18881.47 30089.92 24796.84 200
thres100view90092.43 17391.58 18194.98 17097.92 11389.37 19697.71 8094.66 31692.20 11593.31 14594.90 23778.06 27099.08 13981.40 30194.08 18896.48 209
tfpn200view992.38 17691.52 18494.95 17397.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.48 209
thres40092.42 17491.52 18495.12 16597.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.98 193
DP-MVS92.76 16791.51 18696.52 8598.77 5790.99 14397.38 11596.08 26282.38 32289.29 24297.87 7583.77 16299.69 4481.37 30496.69 14798.89 101
thres20092.23 18591.39 18794.75 18697.61 13089.03 20996.60 19395.09 30292.08 12193.28 14694.00 28378.39 26499.04 14581.26 30594.18 18796.19 214
CR-MVSNet90.82 24389.77 25493.95 21794.45 28387.19 25290.23 34495.68 27786.89 26892.40 16092.36 31980.91 21797.05 31281.09 30693.95 19297.60 179
MSDG91.42 21490.24 23494.96 17297.15 14488.91 21193.69 30996.32 25285.72 28586.93 29596.47 16380.24 22998.98 14880.57 30795.05 17696.98 193
dp88.90 27988.26 27990.81 30994.58 28076.62 34892.85 32594.93 30985.12 29490.07 21993.07 30675.81 28698.12 22180.53 30887.42 27097.71 171
tpm cat188.36 28687.21 28991.81 28995.13 25180.55 32992.58 32995.70 27474.97 34987.45 28291.96 32478.01 27298.17 21680.39 30988.74 25896.72 204
DIV-MVS_2432*160085.95 30784.95 30688.96 32589.55 34979.11 34395.13 27396.42 24885.91 28284.07 32290.48 33370.03 32194.82 34480.04 31072.94 34892.94 329
AllTest90.23 26088.98 26993.98 21397.94 11186.64 26396.51 19895.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
TestCases93.98 21397.94 11186.64 26395.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
ADS-MVSNet289.45 27288.59 27492.03 28295.86 21082.26 31890.93 33994.32 32683.23 31891.28 19091.81 32679.01 25395.99 33079.52 31391.39 22797.84 165
ADS-MVSNet89.89 26788.68 27393.53 23895.86 21084.89 29390.93 33995.07 30383.23 31891.28 19091.81 32679.01 25397.85 26179.52 31391.39 22797.84 165
our_test_388.78 28287.98 28191.20 30492.45 33082.53 31493.61 31395.69 27585.77 28484.88 31293.71 29279.99 23496.78 32379.47 31586.24 27994.28 312
EPNet_dtu91.71 19991.28 19392.99 25993.76 30383.71 30596.69 18195.28 29293.15 8187.02 29395.95 18883.37 17097.38 30479.46 31696.84 14197.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 27787.56 28493.08 25794.35 28688.45 22497.73 7595.23 29687.47 25684.26 31895.29 22379.86 23797.33 30679.44 31774.44 34593.45 325
EG-PatchMatch MVS87.02 29785.44 30191.76 29392.67 32685.00 29096.08 23196.45 24783.41 31779.52 34393.49 30057.10 35497.72 27479.34 31890.87 23792.56 335
Patchmtry88.64 28487.25 28792.78 26794.09 29386.64 26389.82 34795.68 27780.81 33487.63 28192.36 31980.91 21797.03 31378.86 31985.12 29594.67 300
FMVSNet587.29 29585.79 29991.78 29194.80 26987.28 24795.49 25795.28 29284.09 30783.85 32591.82 32562.95 34894.17 34878.48 32085.34 29193.91 319
COLMAP_ROBcopyleft87.81 1590.40 25689.28 26593.79 22697.95 11087.13 25596.92 15995.89 26882.83 32086.88 29797.18 12273.77 30199.29 11878.44 32193.62 19694.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 30185.44 30189.34 32490.33 34279.79 33796.73 17595.92 26583.71 31383.25 32791.36 33163.92 34696.01 32978.39 32285.36 29092.22 340
test0.0.03 189.37 27488.70 27291.41 30092.47 32985.63 28095.22 27192.70 34291.11 15286.91 29693.65 29779.02 25193.19 35378.00 32389.18 25395.41 251
MIMVSNet88.50 28586.76 29393.72 22994.84 26787.77 24291.39 33494.05 32986.41 27587.99 27592.59 31363.27 34795.82 33577.44 32492.84 20397.57 182
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33282.57 31393.17 31895.15 29982.15 32367.65 35392.33 32278.20 26595.51 34077.33 32579.74 33194.31 311
YYNet185.87 30884.23 31290.78 31292.38 33282.46 31693.17 31895.14 30082.12 32467.69 35292.36 31978.16 26895.50 34177.31 32679.73 33294.39 307
UnsupCasMVSNet_bld82.13 32179.46 32490.14 31988.00 35482.47 31590.89 34196.62 24278.94 34275.61 34884.40 35256.63 35696.31 32777.30 32766.77 35491.63 344
KD-MVS_2432*160084.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
miper_refine_blended84.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
PCF-MVS89.48 1191.56 20689.95 24696.36 10196.60 17192.52 9092.51 33097.26 18279.41 34088.90 24996.56 15984.04 16099.55 8477.01 33097.30 13397.01 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 28987.21 28990.24 31892.86 32280.76 32596.67 18494.97 30791.74 12885.52 30695.83 19562.66 34994.47 34776.25 33188.36 26195.48 245
TinyColmap86.82 29885.35 30491.21 30394.91 26482.99 31293.94 30294.02 33183.58 31481.56 33394.68 24962.34 35098.13 21875.78 33287.35 27292.52 336
ppachtmachnet_test88.35 28787.29 28691.53 29692.45 33083.57 30893.75 30795.97 26484.28 30485.32 31094.18 27779.00 25596.93 31875.71 33384.99 29994.10 315
PAPM91.52 21090.30 23095.20 16095.30 24189.83 17893.38 31696.85 22386.26 27788.59 25995.80 19784.88 14798.15 21775.67 33495.93 15997.63 174
CL-MVSNet_2432*160086.31 30385.15 30589.80 32288.83 35181.74 32193.93 30396.22 25786.67 27185.03 31190.80 33278.09 26994.50 34574.92 33571.86 34993.15 327
tfpnnormal89.70 27188.40 27693.60 23495.15 24990.10 16897.56 9798.16 5087.28 26286.16 30294.63 25277.57 27598.05 23474.48 33684.59 30492.65 334
DSMNet-mixed86.34 30286.12 29887.00 33389.88 34670.43 35594.93 27590.08 35577.97 34685.42 30992.78 31074.44 29593.96 34974.43 33795.14 17296.62 205
Patchmatch-test89.42 27387.99 28093.70 23095.27 24285.11 28888.98 35094.37 32481.11 33087.10 29193.69 29382.28 19697.50 29474.37 33894.76 18098.48 130
LCM-MVSNet72.55 32469.39 32882.03 33670.81 36665.42 36190.12 34694.36 32555.02 35865.88 35581.72 35324.16 36989.96 35574.32 33968.10 35390.71 350
new-patchmatchnet83.18 31881.87 32087.11 33286.88 35675.99 35093.70 30895.18 29885.02 29677.30 34788.40 34365.99 34193.88 35074.19 34070.18 35191.47 347
MDA-MVSNet-bldmvs85.00 31282.95 31691.17 30593.13 32083.33 30994.56 28195.00 30584.57 30265.13 35792.65 31170.45 31695.85 33373.57 34177.49 33894.33 309
pmmvs379.97 32277.50 32687.39 33182.80 35879.38 34192.70 32790.75 35470.69 35378.66 34587.47 35051.34 35893.40 35173.39 34269.65 35289.38 352
test_method66.11 32864.89 33169.79 34372.62 36435.23 37165.19 36292.83 34120.35 36465.20 35688.08 34743.14 36182.70 36073.12 34363.46 35591.45 348
PatchT88.87 28087.42 28593.22 25294.08 29485.10 28989.51 34894.64 31881.92 32592.36 16388.15 34680.05 23397.01 31672.43 34493.65 19597.54 183
Anonymous2023120687.09 29686.14 29789.93 32191.22 33880.35 33096.11 22995.35 28883.57 31584.16 31993.02 30773.54 30395.61 33772.16 34586.14 28193.84 320
MVS-HIRNet82.47 32081.21 32286.26 33595.38 23069.21 35888.96 35189.49 35666.28 35480.79 33674.08 35868.48 32797.39 30371.93 34695.47 16792.18 341
new_pmnet82.89 31981.12 32388.18 32989.63 34780.18 33491.77 33392.57 34376.79 34875.56 35088.23 34561.22 35194.48 34671.43 34782.92 32389.87 351
TAPA-MVS90.10 792.30 18091.22 19795.56 14498.33 8589.60 18396.79 17197.65 13381.83 32691.52 18097.23 12087.94 10498.91 15371.31 34898.37 10398.17 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 30585.40 30388.35 32690.12 34380.06 33595.90 24195.20 29788.59 22181.29 33493.62 29871.43 31092.65 35471.26 34981.17 32992.34 338
tmp_tt51.94 33453.82 33446.29 34833.73 37045.30 36978.32 35967.24 36918.02 36550.93 36187.05 35152.99 35753.11 36670.76 35025.29 36440.46 362
MIMVSNet184.93 31383.05 31590.56 31489.56 34884.84 29495.40 26095.35 28883.91 30880.38 33992.21 32357.23 35393.34 35270.69 35182.75 32593.50 323
RPMNet88.98 27687.05 29194.77 18494.45 28387.19 25290.23 34498.03 8477.87 34792.40 16087.55 34980.17 23199.51 9468.84 35293.95 19297.60 179
N_pmnet78.73 32378.71 32578.79 33892.80 32446.50 36794.14 29743.71 37078.61 34380.83 33591.66 32974.94 29396.36 32667.24 35384.45 30693.50 323
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 31990.83 30890.06 34484.05 30295.73 24894.04 33073.89 35180.17 34291.53 33059.15 35297.64 28066.92 35489.05 25490.80 349
PMMVS270.19 32666.92 32980.01 33776.35 36065.67 36086.22 35387.58 35964.83 35662.38 35880.29 35526.78 36788.49 35763.79 35554.07 35985.88 353
test_040286.46 30084.79 30891.45 29895.02 25685.55 28196.29 21894.89 31080.90 33182.21 33193.97 28568.21 32997.29 30862.98 35688.68 25991.51 345
DeepMVS_CXcopyleft74.68 34290.84 34164.34 36281.61 36565.34 35567.47 35488.01 34848.60 35980.13 36262.33 35773.68 34779.58 356
FPMVS71.27 32569.85 32775.50 34074.64 36159.03 36391.30 33591.50 35158.80 35757.92 35988.28 34429.98 36585.53 35953.43 35882.84 32481.95 355
ANet_high63.94 32959.58 33277.02 33961.24 36866.06 35985.66 35587.93 35878.53 34442.94 36271.04 35925.42 36880.71 36152.60 35930.83 36284.28 354
Gipumacopyleft67.86 32765.41 33075.18 34192.66 32773.45 35366.50 36194.52 32053.33 35957.80 36066.07 36030.81 36389.20 35648.15 36078.88 33762.90 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 33055.40 33368.12 34451.00 36948.64 36578.86 35887.10 36146.77 36035.84 36674.28 3578.76 37086.34 35842.07 36173.91 34669.38 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33248.81 33766.58 34565.34 36757.50 36472.49 36070.94 36840.15 36339.28 36563.51 3616.89 37273.48 36538.29 36242.38 36068.76 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 33152.56 33555.43 34674.43 36247.13 36683.63 35776.30 36642.23 36142.59 36362.22 36228.57 36674.40 36331.53 36331.51 36144.78 360
EMVS52.08 33351.31 33654.39 34772.62 36445.39 36883.84 35675.51 36741.13 36240.77 36459.65 36330.08 36473.60 36428.31 36429.90 36344.18 361
wuyk23d25.11 33524.57 33926.74 34973.98 36339.89 37057.88 3639.80 37112.27 36610.39 3676.97 3697.03 37136.44 36725.43 36517.39 3653.89 365
testmvs13.36 33716.33 3404.48 3515.04 3712.26 37393.18 3173.28 3722.70 3678.24 36821.66 3652.29 3742.19 3687.58 3662.96 3669.00 364
test12313.04 33815.66 3415.18 3504.51 3723.45 37292.50 3311.81 3732.50 3687.58 36920.15 3663.67 3732.18 3697.13 3671.07 3679.90 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.24 33630.99 3380.00 3520.00 3730.00 3740.00 36497.63 1350.00 3690.00 37096.88 13784.38 1540.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.39 3409.85 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37088.65 960.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.06 33910.74 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37096.69 1470.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
save fliter98.91 4994.28 3597.02 14798.02 8895.35 8
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18598.45 133
sam_mvs81.94 204
MTGPAbinary98.08 64
test_post17.58 36781.76 20698.08 228
patchmatchnet-post90.45 33482.65 18998.10 223
MTMP97.86 6082.03 364
TEST998.70 6094.19 4096.41 20398.02 8888.17 23496.03 8297.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 21098.01 9188.58 22295.98 8797.55 10792.73 2599.58 71
agg_prior98.67 6293.79 5598.00 9395.68 9799.57 79
test_prior493.66 5996.42 202
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
新几何295.79 246
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8599.16 70
原ACMM295.67 249
test22298.24 9392.21 10095.33 26397.60 13779.22 34195.25 10897.84 8188.80 9499.15 7398.72 113
segment_acmp92.89 22
testdata195.26 27093.10 84
test1297.65 4498.46 7494.26 3797.66 13195.52 10690.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19589.98 174
plane_prior696.10 20590.00 17081.32 212
plane_prior496.64 150
plane_prior390.00 17094.46 4191.34 184
plane_prior297.74 7394.85 26
plane_prior196.14 203
plane_prior89.99 17297.24 12794.06 4992.16 215
n20.00 374
nn0.00 374
door-mid91.06 353
test1197.88 105
door91.13 352
HQP5-MVS89.33 198
HQP-NCC95.86 21096.65 18593.55 6590.14 208
ACMP_Plane95.86 21096.65 18593.55 6590.14 208
HQP4-MVS90.14 20898.50 18995.78 233
HQP3-MVS97.39 17092.10 216
HQP2-MVS80.95 215
NP-MVS95.99 20989.81 17995.87 192
ACMMP++_ref90.30 244
ACMMP++91.02 233
Test By Simon88.73 95