This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
MSP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 10894.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 40
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
IU-MVS99.42 695.39 997.94 9890.40 16698.94 597.41 799.66 899.74 5
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3898.07 4397.85 10893.72 5698.57 1198.35 3593.69 1599.40 10497.06 899.46 3899.44 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 597.44 898.37 598.90 4795.86 497.27 11798.08 6595.81 397.87 2398.31 4494.26 1099.68 4797.02 999.49 3499.57 19
SD-MVS97.41 997.53 697.06 6998.57 6894.46 2997.92 5298.14 5494.82 2899.01 398.55 1994.18 1197.41 29196.94 1099.64 1199.32 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-496.97 2996.87 2197.25 6198.34 7992.66 8496.96 14798.01 8795.12 1797.14 3898.42 2891.82 4599.61 6196.90 1199.13 7199.50 36
CANet96.39 5396.02 5697.50 5097.62 12393.38 6697.02 13997.96 9695.42 794.86 10697.81 7887.38 11099.82 2596.88 1299.20 6699.29 59
TSAR-MVS + GP.96.69 4396.49 4397.27 6098.31 8493.39 6596.79 16396.72 22094.17 4597.44 2997.66 8992.76 2399.33 10996.86 1397.76 11499.08 77
Regformer-396.85 3696.80 2897.01 7098.34 7992.02 10396.96 14797.76 11295.01 2197.08 4398.42 2891.71 4899.54 8296.80 1499.13 7199.48 40
Regformer-297.16 1896.99 1697.67 4398.32 8293.84 5296.83 15998.10 6295.24 1197.49 2698.25 5192.57 3099.61 6196.80 1499.29 5599.56 22
Regformer-197.10 2096.96 1897.54 4998.32 8293.48 6396.83 15997.99 9395.20 1397.46 2798.25 5192.48 3399.58 6996.79 1699.29 5599.55 26
DeepPCF-MVS93.97 196.61 4697.09 1295.15 15598.09 10186.63 25596.00 22598.15 5295.43 697.95 1998.56 1793.40 1699.36 10896.77 1799.48 3599.45 44
SMA-MVS97.35 1297.03 1498.30 699.06 3995.42 897.94 5098.18 4790.57 16298.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 12698.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
DVP-MVS97.59 797.54 597.73 3899.40 1193.77 5798.53 998.29 2495.55 598.56 1297.81 7893.90 1299.65 5396.62 2099.21 6599.77 1
MSLP-MVS++96.94 3297.06 1396.59 8198.72 5591.86 10797.67 7798.49 1294.66 3597.24 3398.41 3192.31 3698.94 14696.61 2199.46 3898.96 88
MP-MVS-pluss96.70 4296.27 5097.98 2199.23 3094.71 2696.96 14798.06 7390.67 15395.55 9598.78 1091.07 6299.86 896.58 2299.55 2199.38 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 7694.25 3798.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1696.84 2498.20 1099.30 2495.35 1297.12 13498.07 7093.54 6496.08 7397.69 8693.86 1399.71 3896.50 2499.39 4799.55 26
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4594.28 3497.02 13997.22 17795.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
SF-MVS97.39 1097.13 1198.17 1199.02 4195.28 1798.23 3198.27 2892.37 10398.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
EI-MVSNet-Vis-set96.51 4996.47 4496.63 7898.24 8991.20 13096.89 15497.73 11594.74 3396.49 5898.49 2190.88 6799.58 6996.44 2798.32 9899.13 71
VDD-MVS93.82 12193.08 12696.02 11697.88 11289.96 16797.72 7295.85 25692.43 10195.86 8298.44 2568.42 31499.39 10596.31 2894.85 17098.71 111
ACMMP_NAP97.20 1596.86 2298.23 899.09 3595.16 2097.60 8698.19 4592.82 9197.93 2098.74 1191.60 5299.86 896.26 2999.52 2599.67 8
diffmvs95.25 8195.13 7895.63 13496.43 17689.34 18795.99 22697.35 16892.83 9096.31 6597.37 10886.44 12198.67 16996.26 2997.19 13198.87 99
EI-MVSNet-UG-set96.34 5496.30 4996.47 8998.20 9490.93 14196.86 15597.72 11894.67 3496.16 7098.46 2390.43 7299.58 6996.23 3197.96 10898.90 95
SR-MVS97.01 2896.86 2297.47 5199.09 3593.27 7097.98 4798.07 7093.75 5597.45 2898.48 2291.43 5599.59 6696.22 3299.27 5999.54 28
xiu_mvs_v1_base_debu95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base_debi95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
alignmvs95.87 6795.23 7597.78 3397.56 12895.19 1897.86 5597.17 18094.39 4196.47 6096.40 16085.89 12999.20 11896.21 3695.11 16898.95 90
canonicalmvs96.02 6295.45 6897.75 3797.59 12695.15 2198.28 2597.60 13094.52 3896.27 6796.12 17187.65 10399.18 12196.20 3794.82 17298.91 94
zzz-MVS97.07 2296.77 3097.97 2299.37 1694.42 3197.15 13298.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
MTAPA97.08 2196.78 2997.97 2299.37 1694.42 3197.24 11998.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
APD-MVS_3200maxsize96.81 3896.71 3397.12 6899.01 4292.31 9297.98 4798.06 7393.11 7897.44 2998.55 1990.93 6599.55 8096.06 4099.25 6199.51 33
MVS_111021_HR96.68 4596.58 3996.99 7198.46 7092.31 9296.20 21598.90 294.30 4495.86 8297.74 8392.33 3499.38 10796.04 4199.42 4399.28 62
PHI-MVS96.77 4096.46 4597.71 4198.40 7494.07 4798.21 3498.45 1589.86 17497.11 4198.01 6492.52 3299.69 4496.03 4299.53 2499.36 55
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3796.16 297.55 9097.97 9595.59 496.61 5297.89 6892.57 3099.84 1995.95 4399.51 2999.40 50
DELS-MVS96.61 4696.38 4897.30 5797.79 11593.19 7195.96 22798.18 4795.23 1295.87 8197.65 9091.45 5499.70 4395.87 4499.44 4299.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 5796.19 5496.39 9698.23 9391.35 12396.24 21398.79 493.99 4995.80 8497.65 9089.92 8099.24 11695.87 4499.20 6698.58 115
NCCC97.30 1497.03 1498.11 1498.77 5395.06 2297.34 10998.04 8195.96 297.09 4297.88 7093.18 2099.71 3895.84 4699.17 6899.56 22
VNet95.89 6695.45 6897.21 6598.07 10392.94 7897.50 9398.15 5293.87 5197.52 2597.61 9685.29 13699.53 8595.81 4795.27 16499.16 67
9.1496.75 3198.93 4397.73 6998.23 3991.28 13897.88 2298.44 2593.00 2199.65 5395.76 4899.47 36
XVS97.18 1696.96 1897.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5498.29 4791.70 4999.80 2795.66 4999.40 4599.62 13
X-MVStestdata91.71 19089.67 24797.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5432.69 34791.70 4999.80 2795.66 4999.40 4599.62 13
baseline95.58 7395.42 7096.08 11296.78 15690.41 15797.16 13097.45 15293.69 5995.65 9397.85 7487.29 11198.68 16895.66 4997.25 12999.13 71
ETV-MVS96.02 6295.89 5996.40 9497.16 13792.44 9097.47 9897.77 11194.55 3796.48 5994.51 24391.23 5998.92 14795.65 5298.19 10197.82 163
casdiffmvs95.64 7195.49 6696.08 11296.76 15990.45 15597.29 11697.44 15694.00 4895.46 9997.98 6687.52 10798.73 16395.64 5397.33 12699.08 77
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4498.52 1098.32 2093.21 7297.18 3598.29 4792.08 3899.83 2295.63 5499.59 1599.54 28
ACMMPR97.07 2296.84 2497.79 3299.44 593.88 5198.52 1098.31 2293.21 7297.15 3798.33 4191.35 5699.86 895.63 5499.59 1599.62 13
HPM-MVScopyleft96.69 4396.45 4697.40 5399.36 1993.11 7398.87 198.06 7391.17 14296.40 6397.99 6590.99 6499.58 6995.61 5699.61 1499.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2696.81 2797.64 4699.33 2293.54 6198.80 398.28 2692.99 8196.45 6298.30 4691.90 4499.85 1495.61 5699.68 499.54 28
DeepC-MVS93.07 396.06 6095.66 6297.29 5897.96 10593.17 7297.30 11598.06 7393.92 5093.38 13598.66 1286.83 11699.73 3295.60 5899.22 6498.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3096.67 3597.85 2599.37 1694.12 4498.49 1498.18 4792.64 9896.39 6498.18 5591.61 5199.88 495.59 5999.55 2199.57 19
ETH3D-3000-0.197.07 2296.71 3398.14 1398.90 4795.33 1497.68 7698.24 3591.57 12497.90 2198.37 3392.61 2999.66 5295.59 5999.51 2999.43 48
CS-MVS95.80 6895.65 6396.24 10897.32 13191.43 12198.10 3997.91 9993.38 6695.16 10394.57 24190.21 7598.98 14395.53 6198.67 9098.30 142
region2R97.07 2296.84 2497.77 3599.46 193.79 5498.52 1098.24 3593.19 7597.14 3898.34 3891.59 5399.87 795.46 6299.59 1599.64 10
OPU-MVS98.55 198.82 5296.86 198.25 2898.26 5096.04 199.24 11695.36 6399.59 1599.56 22
lupinMVS94.99 9194.56 9096.29 10496.34 18091.21 12895.83 23396.27 24388.93 19996.22 6896.88 13086.20 12698.85 15395.27 6499.05 7798.82 103
mPP-MVS96.86 3596.60 3797.64 4699.40 1193.44 6498.50 1398.09 6493.27 7195.95 8098.33 4191.04 6399.88 495.20 6599.57 2099.60 16
DeepC-MVS_fast93.89 296.93 3396.64 3697.78 3398.64 6394.30 3397.41 10198.04 8194.81 2996.59 5498.37 3391.24 5899.64 6095.16 6699.52 2599.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 9694.39 9896.18 11095.52 21390.93 14196.09 21996.52 23689.28 18796.01 7897.32 10984.70 14398.77 16095.15 6798.91 8498.85 100
jason: jason.
#test#97.02 2696.75 3197.83 2699.42 694.12 4498.15 3798.32 2092.57 9997.18 3598.29 4792.08 3899.83 2295.12 6899.59 1599.54 28
abl_696.40 5296.21 5296.98 7298.89 5092.20 9797.89 5398.03 8393.34 7097.22 3498.42 2887.93 9999.72 3595.10 6999.07 7699.02 80
train_agg96.30 5595.83 6097.72 3998.70 5694.19 3996.41 19298.02 8488.58 21196.03 7497.56 10192.73 2599.59 6695.04 7099.37 5299.39 51
agg_prior196.22 5895.77 6197.56 4898.67 5893.79 5496.28 20898.00 8988.76 20895.68 8997.55 10392.70 2799.57 7795.01 7199.32 5399.32 57
test_prior396.46 5196.20 5397.23 6298.67 5892.99 7596.35 20098.00 8992.80 9296.03 7497.59 9792.01 4099.41 10295.01 7199.38 4899.29 59
test_prior296.35 20092.80 9296.03 7497.59 9792.01 4095.01 7199.38 48
nrg03094.05 11493.31 12396.27 10595.22 23594.59 2898.34 2097.46 14692.93 8891.21 18396.64 14287.23 11398.22 19894.99 7485.80 27795.98 215
VDDNet93.05 14592.07 15696.02 11696.84 15290.39 15898.08 4295.85 25686.22 26695.79 8598.46 2367.59 31799.19 11994.92 7594.85 17098.47 127
APD-MVScopyleft96.95 3196.60 3798.01 1999.03 4094.93 2497.72 7298.10 6291.50 12698.01 1898.32 4392.33 3499.58 6994.85 7699.51 2999.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.56 4896.06 5598.05 1798.26 8895.19 1896.99 14498.05 8089.85 17697.26 3298.22 5391.80 4699.69 4494.84 7799.28 5799.27 63
GST-MVS96.85 3696.52 4297.82 2999.36 1994.14 4398.29 2498.13 5592.72 9596.70 4698.06 6091.35 5699.86 894.83 7899.28 5799.47 43
MP-MVScopyleft96.77 4096.45 4697.72 3999.39 1393.80 5398.41 1898.06 7393.37 6795.54 9798.34 3890.59 7199.88 494.83 7899.54 2399.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 8099.38 4899.45 44
PS-MVSNAJ95.37 7795.33 7395.49 14497.35 13090.66 15095.31 25497.48 14193.85 5296.51 5795.70 19588.65 9099.65 5394.80 8198.27 9996.17 206
HPM-MVS_fast96.51 4996.27 5097.22 6499.32 2392.74 8198.74 498.06 7390.57 16296.77 4598.35 3590.21 7599.53 8594.80 8199.63 1299.38 53
xiu_mvs_v2_base95.32 7995.29 7495.40 14997.22 13390.50 15395.44 24897.44 15693.70 5896.46 6196.18 16888.59 9399.53 8594.79 8397.81 11196.17 206
CSCG96.05 6195.91 5896.46 9199.24 2890.47 15498.30 2398.57 1189.01 19493.97 12297.57 9992.62 2899.76 3094.66 8499.27 5999.15 69
EIA-MVS95.53 7595.47 6795.71 13197.06 14589.63 17197.82 6097.87 10493.57 6093.92 12395.04 22090.61 7098.95 14594.62 8598.68 8998.54 117
ACMMPcopyleft96.27 5695.93 5797.28 5999.24 2892.62 8598.25 2898.81 392.99 8194.56 11098.39 3288.96 8599.85 1494.57 8697.63 11599.36 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 3896.53 4197.65 4499.35 2193.53 6297.65 8098.98 192.22 10597.14 3898.44 2591.17 6199.85 1494.35 8799.46 3899.57 19
ET-MVSNet_ETH3D91.49 20190.11 22995.63 13496.40 17791.57 11695.34 25193.48 32190.60 16175.58 33295.49 20680.08 22396.79 31294.25 8889.76 24298.52 119
testtj96.93 3396.56 4098.05 1799.10 3494.66 2797.78 6498.22 4092.74 9497.59 2498.20 5491.96 4399.86 894.21 8999.25 6199.63 11
LFMVS93.60 12892.63 13996.52 8398.13 10091.27 12597.94 5093.39 32290.57 16296.29 6698.31 4469.00 31099.16 12394.18 9095.87 15399.12 74
MVSFormer95.37 7795.16 7795.99 11896.34 18091.21 12898.22 3297.57 13391.42 13096.22 6897.32 10986.20 12697.92 24594.07 9199.05 7798.85 100
test_djsdf93.07 14492.76 13394.00 20293.49 30088.70 20798.22 3297.57 13391.42 13090.08 20795.55 20382.85 17497.92 24594.07 9191.58 21695.40 245
mvs_anonymous93.82 12193.74 10694.06 19996.44 17585.41 27395.81 23497.05 19489.85 17690.09 20696.36 16287.44 10997.75 26193.97 9396.69 14199.02 80
VPA-MVSNet93.24 13892.48 14895.51 14295.70 20792.39 9197.86 5598.66 992.30 10492.09 16395.37 20980.49 21598.40 18793.95 9485.86 27695.75 228
agg_prior293.94 9599.38 4899.50 36
mvs_tets92.31 17291.76 16693.94 21093.41 30288.29 21497.63 8597.53 13792.04 11488.76 24496.45 15674.62 28198.09 21693.91 9691.48 21895.45 240
Effi-MVS+94.93 9294.45 9696.36 9996.61 16191.47 11896.41 19297.41 16191.02 14794.50 11195.92 17887.53 10698.78 15893.89 9796.81 13698.84 102
jajsoiax92.42 16791.89 16494.03 20193.33 30588.50 21197.73 6997.53 13792.00 11688.85 24196.50 15475.62 27798.11 21193.88 9891.56 21795.48 235
XVG-OURS-SEG-HR93.86 12093.55 11294.81 17297.06 14588.53 21095.28 25597.45 15291.68 12294.08 11997.68 8782.41 18598.90 15093.84 9992.47 20196.98 184
PS-MVSNAJss93.74 12493.51 11594.44 18593.91 28789.28 19397.75 6697.56 13692.50 10089.94 20996.54 15288.65 9098.18 20493.83 10090.90 22995.86 217
EPNet95.20 8494.56 9097.14 6792.80 31392.68 8397.85 5894.87 30096.64 192.46 15197.80 8086.23 12399.65 5393.72 10198.62 9299.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_test8_iter0591.19 22090.78 20292.41 26695.76 20683.14 29897.32 11297.46 14691.37 13489.07 23795.57 20070.33 30498.21 19993.56 10286.62 27195.89 216
PVSNet_Blended_VisFu95.27 8094.91 8296.38 9798.20 9490.86 14397.27 11798.25 3490.21 16794.18 11797.27 11187.48 10899.73 3293.53 10397.77 11398.55 116
CPTT-MVS95.57 7495.19 7696.70 7599.27 2691.48 11798.33 2198.11 6087.79 23695.17 10298.03 6287.09 11499.61 6193.51 10499.42 4399.02 80
MVSTER93.20 14092.81 13294.37 18896.56 16789.59 17497.06 13597.12 18491.24 13991.30 17795.96 17682.02 19298.05 22393.48 10590.55 23395.47 237
PVSNet_BlendedMVS94.06 11393.92 10294.47 18498.27 8589.46 18296.73 16798.36 1690.17 16894.36 11395.24 21488.02 9699.58 6993.44 10690.72 23194.36 298
PVSNet_Blended94.87 9594.56 9095.81 12498.27 8589.46 18295.47 24798.36 1688.84 20294.36 11396.09 17488.02 9699.58 6993.44 10698.18 10298.40 135
3Dnovator91.36 595.19 8594.44 9797.44 5296.56 16793.36 6898.65 698.36 1694.12 4689.25 23498.06 6082.20 18999.77 2993.41 10899.32 5399.18 66
EPP-MVSNet95.22 8395.04 8095.76 12597.49 12989.56 17598.67 597.00 20090.69 15294.24 11697.62 9589.79 8198.81 15693.39 10996.49 14598.92 93
RRT_MVS93.21 13992.32 15295.91 12094.92 25094.15 4296.92 15196.86 21491.42 13091.28 18096.43 15779.66 23298.10 21293.29 11090.06 23895.46 238
CHOSEN 280x42093.12 14292.72 13794.34 19096.71 16087.27 23790.29 32897.72 11886.61 26191.34 17495.29 21184.29 15098.41 18693.25 11198.94 8297.35 180
3Dnovator+91.43 495.40 7694.48 9598.16 1296.90 15095.34 1398.48 1597.87 10494.65 3688.53 24998.02 6383.69 15699.71 3893.18 11298.96 8199.44 46
test_yl94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
DCV-MVSNet94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
HQP_MVS93.78 12393.43 11994.82 17096.21 18489.99 16397.74 6797.51 13994.85 2491.34 17496.64 14281.32 20398.60 17593.02 11592.23 20495.86 217
plane_prior597.51 13998.60 17593.02 11592.23 20495.86 217
MVS_Test94.89 9494.62 8895.68 13296.83 15489.55 17696.70 17097.17 18091.17 14295.60 9496.11 17387.87 10098.76 16193.01 11797.17 13298.72 109
CLD-MVS92.98 14892.53 14594.32 19196.12 19389.20 19595.28 25597.47 14492.66 9689.90 21095.62 19880.58 21398.40 18792.73 11892.40 20295.38 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 12593.35 12294.80 17397.07 14288.61 20894.79 26597.46 14691.97 11793.99 12097.86 7381.74 19898.88 15292.64 11992.67 19996.92 188
ETH3 D test640096.16 5995.52 6598.07 1698.90 4795.06 2297.03 13698.21 4188.16 22596.64 5197.70 8591.18 6099.67 4992.44 12099.47 3699.48 40
旧先验295.94 22881.66 31197.34 3198.82 15592.26 121
CDPH-MVS95.97 6495.38 7197.77 3598.93 4394.44 3096.35 20097.88 10286.98 25596.65 5097.89 6891.99 4299.47 9592.26 12199.46 3899.39 51
FIs94.09 11293.70 10795.27 15195.70 20792.03 10298.10 3998.68 793.36 6990.39 19396.70 13787.63 10497.94 24192.25 12390.50 23595.84 220
LPG-MVS_test92.94 15192.56 14294.10 19796.16 18988.26 21697.65 8097.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
LGP-MVS_train94.10 19796.16 18988.26 21697.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
cascas91.20 21790.08 23094.58 18294.97 24689.16 19893.65 29997.59 13279.90 32289.40 22692.92 29675.36 27898.36 19092.14 12694.75 17496.23 203
OPM-MVS93.28 13792.76 13394.82 17094.63 26690.77 14796.65 17597.18 17893.72 5691.68 16897.26 11279.33 23798.63 17292.13 12792.28 20395.07 262
BP-MVS92.13 127
HQP-MVS93.19 14192.74 13694.54 18395.86 19989.33 18896.65 17597.39 16293.55 6190.14 19795.87 18080.95 20698.50 18292.13 12792.10 20995.78 224
DP-MVS Recon95.68 7095.12 7997.37 5499.19 3194.19 3997.03 13698.08 6588.35 21895.09 10497.65 9089.97 7999.48 9492.08 13098.59 9398.44 132
testing_287.33 28585.03 29394.22 19387.77 33989.32 19094.97 26397.11 18689.22 18971.64 33588.73 32555.16 34097.94 24191.95 13188.73 25295.41 241
VPNet92.23 17891.31 18394.99 16195.56 21190.96 13997.22 12597.86 10792.96 8790.96 18596.62 14975.06 27998.20 20191.90 13283.65 30895.80 223
sss94.51 10293.80 10596.64 7697.07 14291.97 10596.32 20498.06 7388.94 19894.50 11196.78 13284.60 14499.27 11491.90 13296.02 14998.68 113
anonymousdsp92.16 18091.55 17493.97 20592.58 31789.55 17697.51 9297.42 16089.42 18488.40 25094.84 22880.66 21297.88 25091.87 13491.28 22294.48 294
ACMP89.59 1092.62 16292.14 15594.05 20096.40 17788.20 21997.36 10897.25 17691.52 12588.30 25396.64 14278.46 25198.72 16691.86 13591.48 21895.23 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 12692.92 13095.87 12298.24 8989.88 16894.58 26998.49 1285.06 28093.78 12595.78 18982.86 17398.67 16991.77 13695.71 15899.07 79
UGNet94.04 11593.28 12496.31 10196.85 15191.19 13197.88 5497.68 12394.40 4093.00 14396.18 16873.39 29199.61 6191.72 13798.46 9598.13 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 13492.67 13895.47 14795.34 22492.83 7997.17 12998.58 1092.98 8690.13 20195.80 18588.37 9597.85 25191.71 13883.93 30395.73 230
DU-MVS92.90 15392.04 15795.49 14494.95 24892.83 7997.16 13098.24 3593.02 8090.13 20195.71 19383.47 15897.85 25191.71 13883.93 30395.78 224
Effi-MVS+-dtu93.08 14393.21 12592.68 26196.02 19683.25 29797.14 13396.72 22093.85 5291.20 18493.44 29083.08 16698.30 19491.69 14095.73 15796.50 199
mvs-test193.63 12793.69 10893.46 23396.02 19684.61 28397.24 11996.72 22093.85 5292.30 15895.76 19083.08 16698.89 15191.69 14096.54 14496.87 190
UniMVSNet (Re)93.31 13692.55 14395.61 13695.39 21893.34 6997.39 10598.71 593.14 7790.10 20594.83 22987.71 10198.03 22791.67 14283.99 30295.46 238
LCM-MVSNet-Re92.50 16392.52 14692.44 26496.82 15581.89 30696.92 15193.71 31992.41 10284.30 30494.60 24085.08 13997.03 30391.51 14397.36 12498.40 135
FC-MVSNet-test93.94 11893.57 11195.04 15995.48 21591.45 12098.12 3898.71 593.37 6790.23 19696.70 13787.66 10297.85 25191.49 14490.39 23695.83 221
PMMVS92.86 15592.34 15094.42 18794.92 25086.73 25194.53 27196.38 23984.78 28594.27 11595.12 21983.13 16598.40 18791.47 14596.49 14598.12 147
Vis-MVSNetpermissive95.23 8294.81 8396.51 8697.18 13691.58 11598.26 2798.12 5794.38 4294.90 10598.15 5682.28 18798.92 14791.45 14698.58 9499.01 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 10893.51 11596.06 11498.27 8589.38 18595.18 26198.48 1485.60 27393.76 12697.11 11983.15 16499.61 6191.33 14798.72 8899.19 65
OMC-MVS95.09 8694.70 8796.25 10798.46 7091.28 12496.43 19097.57 13392.04 11494.77 10897.96 6787.01 11599.09 13291.31 14896.77 13798.36 139
MG-MVS95.61 7295.38 7196.31 10198.42 7390.53 15296.04 22197.48 14193.47 6595.67 9298.10 5789.17 8399.25 11591.27 14998.77 8699.13 71
ACMM89.79 892.96 14992.50 14794.35 18996.30 18288.71 20697.58 8797.36 16791.40 13390.53 18996.65 14179.77 22998.75 16291.24 15091.64 21495.59 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10094.02 10196.79 7497.71 11992.05 10196.59 18397.35 16890.61 15994.64 10996.93 12586.41 12299.39 10591.20 15194.71 17698.94 91
Anonymous2024052991.98 18590.73 20495.73 13098.14 9989.40 18497.99 4697.72 11879.63 32393.54 13097.41 10769.94 30899.56 7991.04 15291.11 22498.22 143
CANet_DTU94.37 10393.65 11096.55 8296.46 17492.13 9996.21 21496.67 22894.38 4293.53 13197.03 12379.34 23699.71 3890.76 15398.45 9697.82 163
ab-mvs93.57 13092.55 14396.64 7697.28 13291.96 10695.40 24997.45 15289.81 17893.22 14196.28 16579.62 23399.46 9690.74 15493.11 19398.50 122
CostFormer91.18 22190.70 20592.62 26294.84 25681.76 30794.09 28894.43 30784.15 29192.72 15093.77 27979.43 23598.20 20190.70 15592.18 20797.90 156
Anonymous20240521192.07 18390.83 20195.76 12598.19 9688.75 20597.58 8795.00 29086.00 26993.64 12797.45 10566.24 32499.53 8590.68 15692.71 19799.01 84
tpmrst91.44 20391.32 18291.79 28195.15 23879.20 32793.42 30395.37 27288.55 21493.49 13293.67 28482.49 18398.27 19590.41 15789.34 24597.90 156
thisisatest053093.03 14692.21 15495.49 14497.07 14289.11 19997.49 9792.19 32990.16 16994.09 11896.41 15976.43 27199.05 13890.38 15895.68 15998.31 141
UA-Net95.95 6595.53 6497.20 6697.67 12092.98 7797.65 8098.13 5594.81 2996.61 5298.35 3588.87 8699.51 9090.36 15997.35 12599.11 75
UniMVSNet_ETH3D91.34 21190.22 22694.68 17794.86 25587.86 22997.23 12497.46 14687.99 22889.90 21096.92 12866.35 32298.23 19790.30 16090.99 22797.96 152
tttt051792.96 14992.33 15194.87 16997.11 14087.16 24397.97 4992.09 33090.63 15793.88 12497.01 12476.50 26899.06 13790.29 16195.45 16198.38 137
IS-MVSNet94.90 9394.52 9396.05 11597.67 12090.56 15198.44 1696.22 24693.21 7293.99 12097.74 8385.55 13498.45 18589.98 16297.86 10999.14 70
miper_enhance_ethall91.54 19991.01 19393.15 24595.35 22387.07 24593.97 29096.90 20886.79 25989.17 23593.43 29286.55 11997.64 26989.97 16386.93 26694.74 288
EI-MVSNet93.03 14692.88 13193.48 23195.77 20486.98 24696.44 18897.12 18490.66 15591.30 17797.64 9386.56 11898.05 22389.91 16490.55 23395.41 241
IterMVS-LS92.29 17491.94 16293.34 23896.25 18386.97 24796.57 18697.05 19490.67 15389.50 22594.80 23186.59 11797.64 26989.91 16486.11 27595.40 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet291.21 21690.56 21193.14 24696.09 19586.80 24994.41 27696.58 23587.80 23588.58 24893.99 27280.85 21197.62 27289.87 16686.93 26694.99 265
CDS-MVSNet94.14 11093.54 11395.93 11996.18 18791.46 11996.33 20397.04 19688.97 19793.56 12896.51 15387.55 10597.89 24989.80 16795.95 15198.44 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 17091.53 17594.77 17595.13 24090.83 14496.40 19597.98 9491.88 11889.29 23195.54 20482.50 18297.80 25689.79 16885.27 28495.69 231
NR-MVSNet92.34 17091.27 18695.53 14194.95 24893.05 7497.39 10598.07 7092.65 9784.46 30295.71 19385.00 14097.77 26089.71 16983.52 30995.78 224
Anonymous2023121190.63 24189.42 25194.27 19298.24 8989.19 19798.05 4497.89 10079.95 32188.25 25694.96 22172.56 29298.13 20789.70 17085.14 28695.49 234
testdata95.46 14898.18 9888.90 20397.66 12482.73 30597.03 4498.07 5990.06 7798.85 15389.67 17198.98 8098.64 114
Baseline_NR-MVSNet91.20 21790.62 20792.95 25293.83 29088.03 22497.01 14395.12 28688.42 21689.70 21695.13 21883.47 15897.44 28889.66 17283.24 31193.37 316
DPM-MVS95.69 6994.92 8198.01 1998.08 10295.71 795.27 25797.62 12990.43 16595.55 9597.07 12191.72 4799.50 9289.62 17398.94 8298.82 103
XXY-MVS92.16 18091.23 18894.95 16694.75 26090.94 14097.47 9897.43 15989.14 19188.90 23896.43 15779.71 23098.24 19689.56 17487.68 25995.67 232
miper_ehance_all_eth91.59 19491.13 19292.97 25195.55 21286.57 25694.47 27296.88 21187.77 23788.88 24094.01 27086.22 12497.54 27889.49 17586.93 26694.79 284
XVG-ACMP-BASELINE90.93 23090.21 22793.09 24794.31 27885.89 26695.33 25297.26 17491.06 14689.38 22795.44 20868.61 31298.60 17589.46 17691.05 22594.79 284
thisisatest051592.29 17491.30 18495.25 15296.60 16288.90 20394.36 27892.32 32887.92 23093.43 13494.57 24177.28 26599.00 14189.42 17795.86 15497.86 159
cl_fuxian91.38 20690.89 19592.88 25495.58 21086.30 25994.68 26796.84 21688.17 22388.83 24394.23 26285.65 13397.47 28589.36 17884.63 29494.89 274
AdaColmapbinary94.34 10493.68 10996.31 10198.59 6591.68 11196.59 18397.81 11089.87 17392.15 16197.06 12283.62 15799.54 8289.34 17998.07 10597.70 167
TranMVSNet+NR-MVSNet92.50 16391.63 17195.14 15694.76 25992.07 10097.53 9198.11 6092.90 8989.56 22296.12 17183.16 16397.60 27489.30 18083.20 31295.75 228
D2MVS91.30 21390.95 19492.35 26794.71 26285.52 27196.18 21698.21 4188.89 20086.60 28693.82 27779.92 22797.95 24089.29 18190.95 22893.56 312
131492.81 15992.03 15895.14 15695.33 22789.52 17996.04 22197.44 15687.72 24086.25 28995.33 21083.84 15498.79 15789.26 18297.05 13497.11 182
v2v48291.59 19490.85 19993.80 21693.87 28988.17 22196.94 15096.88 21189.54 18089.53 22394.90 22581.70 19998.02 22889.25 18385.04 29095.20 259
114514_t93.95 11793.06 12796.63 7899.07 3891.61 11297.46 10097.96 9677.99 32993.00 14397.57 9986.14 12899.33 10989.22 18499.15 6998.94 91
PAPM_NR95.01 8794.59 8996.26 10698.89 5090.68 14997.24 11997.73 11591.80 11992.93 14896.62 14989.13 8499.14 12689.21 18597.78 11298.97 87
baseline192.82 15891.90 16395.55 14097.20 13590.77 14797.19 12794.58 30592.20 10792.36 15596.34 16384.16 15198.21 19989.20 18683.90 30697.68 168
IB-MVS87.33 1789.91 25688.28 26794.79 17495.26 23487.70 23295.12 26293.95 31889.35 18687.03 28092.49 30270.74 30299.19 11989.18 18781.37 31997.49 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 11992.95 12996.63 7897.10 14192.49 8995.64 24196.64 22989.05 19393.00 14395.79 18885.77 13299.45 9889.16 18894.35 17897.96 152
V4291.58 19690.87 19693.73 21894.05 28488.50 21197.32 11296.97 20188.80 20789.71 21594.33 25482.54 18198.05 22389.01 18985.07 28894.64 292
OurMVSNet-221017-090.51 24490.19 22891.44 29093.41 30281.25 30996.98 14696.28 24291.68 12286.55 28796.30 16474.20 28497.98 23188.96 19087.40 26495.09 261
API-MVS94.84 9694.49 9495.90 12197.90 11192.00 10497.80 6297.48 14189.19 19094.81 10796.71 13588.84 8799.17 12288.91 19198.76 8796.53 197
test-LLR91.42 20491.19 19092.12 27194.59 26780.66 31294.29 28292.98 32491.11 14490.76 18792.37 30479.02 24298.07 22088.81 19296.74 13897.63 169
test-mter90.19 25289.54 25092.12 27194.59 26780.66 31294.29 28292.98 32487.68 24190.76 18792.37 30467.67 31698.07 22088.81 19296.74 13897.63 169
eth_miper_zixun_eth91.02 22590.59 20992.34 26895.33 22784.35 28494.10 28796.90 20888.56 21388.84 24294.33 25484.08 15297.60 27488.77 19484.37 29995.06 263
TAMVS94.01 11693.46 11795.64 13396.16 18990.45 15596.71 16996.89 21089.27 18893.46 13396.92 12887.29 11197.94 24188.70 19595.74 15698.53 118
Patchmatch-RL test87.38 28486.24 28490.81 29888.74 33578.40 33088.12 33793.17 32387.11 25482.17 31589.29 32481.95 19495.60 32588.64 19677.02 32798.41 134
baseline291.63 19390.86 19793.94 21094.33 27686.32 25895.92 22991.64 33489.37 18586.94 28294.69 23581.62 20098.69 16788.64 19694.57 17796.81 192
TESTMET0.1,190.06 25489.42 25191.97 27494.41 27480.62 31494.29 28291.97 33287.28 25190.44 19292.47 30368.79 31197.67 26688.50 19896.60 14397.61 173
Vis-MVSNet (Re-imp)94.15 10893.88 10394.95 16697.61 12487.92 22698.10 3995.80 25892.22 10593.02 14297.45 10584.53 14697.91 24888.24 19997.97 10799.02 80
DWT-MVSNet_test90.76 23489.89 23793.38 23695.04 24483.70 29395.85 23294.30 31388.19 22190.46 19192.80 29773.61 28998.50 18288.16 20090.58 23297.95 154
1112_ss93.37 13492.42 14996.21 10997.05 14790.99 13796.31 20596.72 22086.87 25889.83 21396.69 13986.51 12099.14 12688.12 20193.67 18798.50 122
CVMVSNet91.23 21591.75 16789.67 31195.77 20474.69 33596.44 18894.88 29785.81 27092.18 16097.64 9379.07 23995.58 32688.06 20295.86 15498.74 107
MAR-MVS94.22 10693.46 11796.51 8698.00 10492.19 9897.67 7797.47 14488.13 22793.00 14395.84 18284.86 14299.51 9087.99 20398.17 10397.83 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 9798.59 6591.09 13697.89 10087.41 24795.22 10197.68 8790.25 7399.54 8287.95 20499.12 7498.49 124
CP-MVSNet91.89 18791.24 18793.82 21595.05 24388.57 20997.82 6098.19 4591.70 12188.21 25795.76 19081.96 19397.52 28287.86 20584.65 29395.37 248
v14890.99 22690.38 21592.81 25793.83 29085.80 26796.78 16596.68 22689.45 18388.75 24593.93 27482.96 17297.82 25587.83 20683.25 31094.80 282
v114491.37 20890.60 20893.68 22393.89 28888.23 21896.84 15897.03 19888.37 21789.69 21794.39 25082.04 19197.98 23187.80 20785.37 28294.84 276
cl-mvsnet190.97 22890.33 21692.88 25495.36 22286.19 26394.46 27496.63 23287.82 23388.18 25894.23 26282.99 16997.53 28087.72 20885.57 27994.93 270
gm-plane-assit93.22 30678.89 32984.82 28493.52 28798.64 17187.72 208
cl-mvsnet_90.96 22990.32 21792.89 25395.37 22186.21 26294.46 27496.64 22987.82 23388.15 25994.18 26582.98 17097.54 27887.70 21085.59 27894.92 272
pmmvs490.93 23089.85 23994.17 19593.34 30490.79 14694.60 26896.02 25184.62 28687.45 27095.15 21681.88 19697.45 28787.70 21087.87 25894.27 303
Test_1112_low_res92.84 15791.84 16595.85 12397.04 14889.97 16695.53 24596.64 22985.38 27489.65 21995.18 21585.86 13099.10 12987.70 21093.58 19298.49 124
无先验95.79 23597.87 10483.87 29699.65 5387.68 21398.89 97
112194.71 10093.83 10497.34 5598.57 6893.64 5996.04 22197.73 11581.56 31395.68 8997.85 7490.23 7499.65 5387.68 21399.12 7498.73 108
Fast-Effi-MVS+93.46 13292.75 13595.59 13796.77 15790.03 16096.81 16297.13 18388.19 22191.30 17794.27 25986.21 12598.63 17287.66 21596.46 14798.12 147
CNLPA94.28 10593.53 11496.52 8398.38 7792.55 8796.59 18396.88 21190.13 17091.91 16597.24 11385.21 13799.09 13287.64 21697.83 11097.92 155
v891.29 21490.53 21293.57 22894.15 28088.12 22397.34 10997.06 19388.99 19588.32 25294.26 26183.08 16698.01 22987.62 21783.92 30594.57 293
pmmvs589.86 25988.87 26092.82 25692.86 31186.23 26196.26 20995.39 27084.24 29087.12 27794.51 24374.27 28397.36 29487.61 21887.57 26094.86 275
Fast-Effi-MVS+-dtu92.29 17491.99 16093.21 24495.27 23185.52 27197.03 13696.63 23292.09 11289.11 23695.14 21780.33 21998.08 21787.54 21994.74 17596.03 214
OpenMVScopyleft89.19 1292.86 15591.68 17096.40 9495.34 22492.73 8298.27 2698.12 5784.86 28385.78 29297.75 8278.89 24799.74 3187.50 22098.65 9196.73 194
miper_lstm_enhance90.50 24590.06 23391.83 27895.33 22783.74 29093.86 29296.70 22587.56 24487.79 26593.81 27883.45 16096.92 30987.39 22184.62 29594.82 279
IterMVS-SCA-FT90.31 24789.81 24191.82 27995.52 21384.20 28794.30 28196.15 24890.61 15987.39 27394.27 25975.80 27496.44 31587.34 22286.88 27094.82 279
PLCcopyleft91.00 694.11 11193.43 11996.13 11198.58 6791.15 13596.69 17297.39 16287.29 25091.37 17396.71 13588.39 9499.52 8987.33 22397.13 13397.73 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 24989.74 24691.76 28493.92 28679.73 32393.98 28993.54 32088.28 21991.99 16493.25 29377.51 26497.44 28887.30 22487.94 25798.12 147
GA-MVS91.38 20690.31 21894.59 17894.65 26487.62 23394.34 27996.19 24790.73 15190.35 19493.83 27571.84 29497.96 23887.22 22593.61 19098.21 144
BH-untuned92.94 15192.62 14093.92 21297.22 13386.16 26496.40 19596.25 24590.06 17189.79 21496.17 17083.19 16298.35 19187.19 22697.27 12897.24 181
v14419291.06 22390.28 22093.39 23593.66 29587.23 24096.83 15997.07 19187.43 24689.69 21794.28 25881.48 20198.00 23087.18 22784.92 29294.93 270
RPSCF90.75 23690.86 19790.42 30596.84 15276.29 33395.61 24296.34 24083.89 29491.38 17297.87 7176.45 26998.78 15887.16 22892.23 20496.20 204
PS-CasMVS91.55 19890.84 20093.69 22294.96 24788.28 21597.84 5998.24 3591.46 12888.04 26195.80 18579.67 23197.48 28487.02 22984.54 29795.31 251
pm-mvs190.72 23889.65 24993.96 20694.29 27989.63 17197.79 6396.82 21789.07 19286.12 29195.48 20778.61 24997.78 25886.97 23081.67 31794.46 295
IterMVS90.15 25389.67 24791.61 28695.48 21583.72 29194.33 28096.12 24989.99 17287.31 27694.15 26775.78 27696.27 31886.97 23086.89 26994.83 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 12992.98 12895.37 15098.40 7488.98 20197.18 12897.29 17387.75 23990.49 19097.10 12085.21 13799.50 9286.70 23296.72 14097.63 169
PVSNet86.66 1892.24 17791.74 16993.73 21897.77 11683.69 29492.88 31296.72 22087.91 23193.00 14394.86 22778.51 25099.05 13886.53 23397.45 12298.47 127
v119291.07 22290.23 22493.58 22793.70 29387.82 23096.73 16797.07 19187.77 23789.58 22094.32 25680.90 21097.97 23486.52 23485.48 28094.95 266
新几何197.32 5698.60 6493.59 6097.75 11381.58 31295.75 8697.85 7490.04 7899.67 4986.50 23599.13 7198.69 112
v1091.04 22490.23 22493.49 23094.12 28188.16 22297.32 11297.08 19088.26 22088.29 25494.22 26482.17 19097.97 23486.45 23684.12 30194.33 299
v192192090.85 23290.03 23493.29 24093.55 29686.96 24896.74 16697.04 19687.36 24889.52 22494.34 25380.23 22197.97 23486.27 23785.21 28594.94 268
MDTV_nov1_ep13_2view70.35 34093.10 31083.88 29593.55 12982.47 18486.25 23898.38 137
test_post192.81 31416.58 35180.53 21497.68 26586.20 239
SCA91.84 18891.18 19193.83 21495.59 20984.95 27994.72 26695.58 26690.82 14892.25 15993.69 28175.80 27498.10 21286.20 23995.98 15098.45 129
PAPR94.18 10793.42 12196.48 8897.64 12291.42 12295.55 24397.71 12288.99 19592.34 15795.82 18489.19 8299.11 12886.14 24197.38 12398.90 95
GBi-Net91.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
test191.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
FMVSNet391.78 18990.69 20695.03 16096.53 16992.27 9497.02 13996.93 20489.79 17989.35 22894.65 23877.01 26697.47 28586.12 24288.82 24895.35 249
EPMVS90.70 23989.81 24193.37 23794.73 26184.21 28693.67 29888.02 34189.50 18292.38 15493.49 28877.82 26297.78 25886.03 24592.68 19898.11 150
MVS91.71 19090.44 21395.51 14295.20 23791.59 11496.04 22197.45 15273.44 33687.36 27495.60 19985.42 13599.10 12985.97 24697.46 11895.83 221
testdata299.67 4985.96 247
K. test v387.64 28386.75 28290.32 30693.02 31079.48 32596.61 18092.08 33190.66 15580.25 32494.09 26867.21 32096.65 31485.96 24780.83 32194.83 277
WR-MVS_H92.00 18491.35 18093.95 20795.09 24289.47 18098.04 4598.68 791.46 12888.34 25194.68 23685.86 13097.56 27685.77 24984.24 30094.82 279
gg-mvs-nofinetune87.82 28185.61 28994.44 18594.46 27189.27 19491.21 32384.61 34680.88 31689.89 21274.98 33971.50 29697.53 28085.75 25097.21 13096.51 198
tpm289.96 25589.21 25592.23 27094.91 25381.25 30993.78 29494.42 30880.62 31991.56 16993.44 29076.44 27097.94 24185.60 25192.08 21197.49 178
v124090.70 23989.85 23993.23 24293.51 29986.80 24996.61 18097.02 19987.16 25389.58 22094.31 25779.55 23497.98 23185.52 25285.44 28194.90 273
PEN-MVS91.20 21790.44 21393.48 23194.49 27087.91 22897.76 6598.18 4791.29 13587.78 26695.74 19280.35 21897.33 29585.46 25382.96 31395.19 260
QAPM93.45 13392.27 15396.98 7296.77 15792.62 8598.39 1998.12 5784.50 28888.27 25597.77 8182.39 18699.81 2685.40 25498.81 8598.51 121
EU-MVSNet88.72 27288.90 25988.20 31493.15 30874.21 33696.63 17994.22 31485.18 27787.32 27595.97 17576.16 27294.98 33085.27 25586.17 27395.41 241
BH-w/o92.14 18291.75 16793.31 23996.99 14985.73 26895.67 23895.69 26088.73 20989.26 23394.82 23082.97 17198.07 22085.26 25696.32 14896.13 210
FMVSNet291.31 21290.08 23094.99 16196.51 17092.21 9597.41 10196.95 20288.82 20488.62 24694.75 23373.87 28597.42 29085.20 25788.55 25495.35 249
PM-MVS83.48 30381.86 30688.31 31387.83 33877.59 33193.43 30291.75 33386.91 25680.63 32089.91 32144.42 34495.84 32185.17 25876.73 32991.50 331
LF4IMVS87.94 28087.25 27689.98 30992.38 32180.05 32294.38 27795.25 28087.59 24384.34 30394.74 23464.31 32997.66 26884.83 25987.45 26192.23 325
PatchmatchNetpermissive91.91 18691.35 18093.59 22695.38 21984.11 28893.15 30895.39 27089.54 18092.10 16293.68 28382.82 17598.13 20784.81 26095.32 16398.52 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 28286.19 28592.69 26091.32 32586.30 25997.34 10996.41 23880.59 32084.05 30994.37 25267.37 31997.67 26684.75 26179.51 32494.09 307
v7n90.76 23489.86 23893.45 23493.54 29787.60 23497.70 7597.37 16588.85 20187.65 26894.08 26981.08 20598.10 21284.68 26283.79 30794.66 291
SixPastTwentyTwo89.15 26588.54 26490.98 29593.49 30080.28 31996.70 17094.70 30190.78 14984.15 30795.57 20071.78 29597.71 26484.63 26385.07 28894.94 268
TDRefinement86.53 29084.76 29691.85 27782.23 34384.25 28596.38 19895.35 27384.97 28284.09 30894.94 22265.76 32798.34 19384.60 26474.52 33292.97 317
MVS_030488.79 27087.57 27292.46 26394.65 26486.15 26596.40 19597.17 18086.44 26288.02 26291.71 31656.68 33897.03 30384.47 26592.58 20094.19 304
ACMH87.59 1690.53 24389.42 25193.87 21396.21 18487.92 22697.24 11996.94 20388.45 21583.91 31096.27 16671.92 29398.62 17484.43 26689.43 24495.05 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 25189.18 25693.25 24196.48 17386.45 25796.99 14496.68 22688.83 20384.79 30196.22 16770.16 30798.53 18084.42 26788.04 25694.77 287
MS-PatchMatch90.27 24889.77 24391.78 28294.33 27684.72 28295.55 24396.73 21986.17 26786.36 28895.28 21371.28 29897.80 25684.09 26898.14 10492.81 319
PatchMatch-RL92.90 15392.02 15995.56 13898.19 9690.80 14595.27 25797.18 17887.96 22991.86 16795.68 19680.44 21698.99 14284.01 26997.54 11796.89 189
lessismore_v090.45 30491.96 32479.09 32887.19 34480.32 32394.39 25066.31 32397.55 27784.00 27076.84 32894.70 289
CMPMVSbinary62.92 2185.62 29884.92 29487.74 31689.14 33473.12 33894.17 28596.80 21873.98 33473.65 33494.93 22366.36 32197.61 27383.95 27191.28 22292.48 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 23790.08 23092.71 25993.19 30788.20 21995.86 23196.27 24386.07 26884.86 30094.76 23277.84 26197.75 26183.88 27298.01 10692.17 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 13092.61 14196.47 8997.59 12691.61 11297.67 7797.72 11885.17 27890.29 19598.34 3884.60 14499.73 3283.85 27398.27 9998.06 151
DTE-MVSNet90.56 24289.75 24593.01 24993.95 28587.25 23897.64 8497.65 12690.74 15087.12 27795.68 19679.97 22697.00 30783.33 27481.66 31894.78 286
BH-RMVSNet92.72 16191.97 16194.97 16497.16 13787.99 22596.15 21795.60 26490.62 15891.87 16697.15 11878.41 25298.57 17883.16 27597.60 11698.36 139
pmmvs-eth3d86.22 29384.45 29791.53 28788.34 33687.25 23894.47 27295.01 28983.47 30079.51 32789.61 32369.75 30995.71 32383.13 27676.73 32991.64 328
FMVSNet189.88 25888.31 26694.59 17895.41 21791.18 13297.50 9396.93 20486.62 26087.41 27294.51 24365.94 32697.29 29783.04 27787.43 26295.31 251
MDTV_nov1_ep1390.76 20395.22 23580.33 31793.03 31195.28 27788.14 22692.84 14993.83 27581.34 20298.08 21782.86 27894.34 179
TR-MVS91.48 20290.59 20994.16 19696.40 17787.33 23595.67 23895.34 27687.68 24191.46 17195.52 20576.77 26798.35 19182.85 27993.61 19096.79 193
JIA-IIPM88.26 27887.04 28091.91 27593.52 29881.42 30889.38 33494.38 30980.84 31790.93 18680.74 33779.22 23897.92 24582.76 28091.62 21596.38 202
PVSNet_082.17 1985.46 29983.64 30190.92 29695.27 23179.49 32490.55 32795.60 26483.76 29783.00 31389.95 32071.09 29997.97 23482.75 28160.79 34195.31 251
ambc86.56 32083.60 34170.00 34185.69 33994.97 29380.60 32188.45 32637.42 34596.84 31182.69 28275.44 33192.86 318
USDC88.94 26687.83 27192.27 26994.66 26384.96 27893.86 29295.90 25487.34 24983.40 31295.56 20267.43 31898.19 20382.64 28389.67 24393.66 311
ITE_SJBPF92.43 26595.34 22485.37 27495.92 25391.47 12787.75 26796.39 16171.00 30097.96 23882.36 28489.86 24193.97 308
UnsupCasMVSNet_eth85.99 29584.45 29790.62 30289.97 33082.40 30493.62 30097.37 16589.86 17478.59 32992.37 30465.25 32895.35 32982.27 28570.75 33694.10 305
GG-mvs-BLEND93.62 22493.69 29489.20 19592.39 31983.33 34787.98 26489.84 32271.00 30096.87 31082.08 28695.40 16294.80 282
thres600view792.49 16591.60 17295.18 15497.91 11089.47 18097.65 8094.66 30292.18 11193.33 13694.91 22478.06 25899.10 12981.61 28794.06 18496.98 184
LTVRE_ROB88.41 1390.99 22689.92 23694.19 19496.18 18789.55 17696.31 20597.09 18987.88 23285.67 29395.91 17978.79 24898.57 17881.50 28889.98 23994.44 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 26089.15 25791.89 27694.92 25080.30 31893.11 30995.46 26986.28 26488.08 26092.65 29980.44 21698.52 18181.47 28989.92 24096.84 191
thres100view90092.43 16691.58 17394.98 16397.92 10989.37 18697.71 7494.66 30292.20 10793.31 13794.90 22578.06 25899.08 13481.40 29094.08 18196.48 200
tfpn200view992.38 16991.52 17694.95 16697.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.48 200
thres40092.42 16791.52 17695.12 15897.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.98 184
DP-MVS92.76 16091.51 17896.52 8398.77 5390.99 13797.38 10796.08 25082.38 30689.29 23197.87 7183.77 15599.69 4481.37 29396.69 14198.89 97
thres20092.23 17891.39 17994.75 17697.61 12489.03 20096.60 18295.09 28792.08 11393.28 13894.00 27178.39 25399.04 14081.26 29494.18 18096.19 205
CR-MVSNet90.82 23389.77 24393.95 20794.45 27287.19 24190.23 32995.68 26286.89 25792.40 15292.36 30780.91 20897.05 30181.09 29593.95 18597.60 174
MSDG91.42 20490.24 22394.96 16597.15 13988.91 20293.69 29796.32 24185.72 27286.93 28396.47 15580.24 22098.98 14380.57 29695.05 16996.98 184
dp88.90 26888.26 26890.81 29894.58 26976.62 33292.85 31394.93 29585.12 27990.07 20893.07 29475.81 27398.12 21080.53 29787.42 26397.71 166
tpm cat188.36 27687.21 27891.81 28095.13 24080.55 31592.58 31695.70 25974.97 33387.45 27091.96 31278.01 26098.17 20580.39 29888.74 25196.72 195
AllTest90.23 25088.98 25893.98 20397.94 10786.64 25296.51 18795.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
TestCases93.98 20397.94 10786.64 25295.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
ADS-MVSNet289.45 26288.59 26392.03 27395.86 19982.26 30590.93 32494.32 31283.23 30291.28 18091.81 31479.01 24495.99 31979.52 30191.39 22097.84 160
ADS-MVSNet89.89 25788.68 26293.53 22995.86 19984.89 28090.93 32495.07 28883.23 30291.28 18091.81 31479.01 24497.85 25179.52 30191.39 22097.84 160
our_test_388.78 27187.98 27091.20 29392.45 31982.53 30193.61 30195.69 26085.77 27184.88 29993.71 28079.99 22596.78 31379.47 30386.24 27294.28 302
EPNet_dtu91.71 19091.28 18592.99 25093.76 29283.71 29296.69 17295.28 27793.15 7687.02 28195.95 17783.37 16197.38 29379.46 30496.84 13597.88 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 26687.56 27393.08 24894.35 27588.45 21397.73 6995.23 28187.47 24584.26 30595.29 21179.86 22897.33 29579.44 30574.44 33393.45 315
EG-PatchMatch MVS87.02 28885.44 29091.76 28492.67 31585.00 27796.08 22096.45 23783.41 30179.52 32693.49 28857.10 33797.72 26379.34 30690.87 23092.56 321
Patchmtry88.64 27387.25 27692.78 25894.09 28286.64 25289.82 33295.68 26280.81 31887.63 26992.36 30780.91 20897.03 30378.86 30785.12 28794.67 290
FMVSNet587.29 28685.79 28891.78 28294.80 25887.28 23695.49 24695.28 27784.09 29283.85 31191.82 31362.95 33194.17 33378.48 30885.34 28393.91 309
COLMAP_ROBcopyleft87.81 1590.40 24689.28 25493.79 21797.95 10687.13 24496.92 15195.89 25582.83 30486.88 28597.18 11573.77 28899.29 11378.44 30993.62 18994.95 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 189.37 26488.70 26191.41 29192.47 31885.63 26995.22 26092.70 32691.11 14486.91 28493.65 28579.02 24293.19 33878.00 31089.18 24695.41 241
MIMVSNet88.50 27586.76 28193.72 22094.84 25687.77 23191.39 32194.05 31586.41 26387.99 26392.59 30163.27 33095.82 32277.44 31192.84 19697.57 176
MDA-MVSNet_test_wron85.87 29684.23 29990.80 30092.38 32182.57 30093.17 30695.15 28482.15 30767.65 33792.33 31078.20 25495.51 32777.33 31279.74 32294.31 301
YYNet185.87 29684.23 29990.78 30192.38 32182.46 30393.17 30695.14 28582.12 30867.69 33692.36 30778.16 25795.50 32877.31 31379.73 32394.39 297
UnsupCasMVSNet_bld82.13 30779.46 30990.14 30888.00 33782.47 30290.89 32696.62 23478.94 32675.61 33184.40 33556.63 33996.31 31777.30 31466.77 34091.63 329
PCF-MVS89.48 1191.56 19789.95 23596.36 9996.60 16292.52 8892.51 31797.26 17479.41 32488.90 23896.56 15184.04 15399.55 8077.01 31597.30 12797.01 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 27987.21 27890.24 30792.86 31180.76 31196.67 17494.97 29391.74 12085.52 29495.83 18362.66 33294.47 33276.25 31688.36 25595.48 235
TinyColmap86.82 28985.35 29291.21 29294.91 25382.99 29993.94 29194.02 31783.58 29881.56 31694.68 23662.34 33398.13 20775.78 31787.35 26592.52 322
ppachtmachnet_test88.35 27787.29 27591.53 28792.45 31983.57 29593.75 29595.97 25284.28 28985.32 29894.18 26579.00 24696.93 30875.71 31884.99 29194.10 305
PAPM91.52 20090.30 21995.20 15395.30 23089.83 16993.38 30496.85 21586.26 26588.59 24795.80 18584.88 14198.15 20675.67 31995.93 15297.63 169
tfpnnormal89.70 26188.40 26593.60 22595.15 23890.10 15997.56 8998.16 5187.28 25186.16 29094.63 23977.57 26398.05 22374.48 32084.59 29692.65 320
DSMNet-mixed86.34 29286.12 28787.00 31989.88 33170.43 33994.93 26490.08 33977.97 33085.42 29792.78 29874.44 28293.96 33474.43 32195.14 16596.62 196
Patchmatch-test89.42 26387.99 26993.70 22195.27 23185.11 27588.98 33594.37 31081.11 31487.10 27993.69 28182.28 18797.50 28374.37 32294.76 17398.48 126
LCM-MVSNet72.55 31069.39 31382.03 32270.81 34965.42 34590.12 33194.36 31155.02 34265.88 33981.72 33624.16 35289.96 34074.32 32368.10 33990.71 334
new-patchmatchnet83.18 30481.87 30587.11 31886.88 34075.99 33493.70 29695.18 28385.02 28177.30 33088.40 32765.99 32593.88 33574.19 32470.18 33791.47 332
MDA-MVSNet-bldmvs85.00 30082.95 30391.17 29493.13 30983.33 29694.56 27095.00 29084.57 28765.13 34092.65 29970.45 30395.85 32073.57 32577.49 32694.33 299
pmmvs379.97 30877.50 31187.39 31782.80 34279.38 32692.70 31590.75 33870.69 33778.66 32887.47 33351.34 34293.40 33673.39 32669.65 33889.38 336
PatchT88.87 26987.42 27493.22 24394.08 28385.10 27689.51 33394.64 30481.92 30992.36 15588.15 33080.05 22497.01 30672.43 32793.65 18897.54 177
Anonymous2023120687.09 28786.14 28689.93 31091.22 32680.35 31696.11 21895.35 27383.57 29984.16 30693.02 29573.54 29095.61 32472.16 32886.14 27493.84 310
MVS-HIRNet82.47 30681.21 30786.26 32195.38 21969.21 34288.96 33689.49 34066.28 33880.79 31974.08 34168.48 31397.39 29271.93 32995.47 16092.18 326
new_pmnet82.89 30581.12 30888.18 31589.63 33280.18 32091.77 32092.57 32776.79 33275.56 33388.23 32961.22 33494.48 33171.43 33082.92 31489.87 335
TAPA-MVS90.10 792.30 17391.22 18995.56 13898.33 8189.60 17396.79 16397.65 12681.83 31091.52 17097.23 11487.94 9898.91 14971.31 33198.37 9798.17 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 29485.40 29188.35 31290.12 32880.06 32195.90 23095.20 28288.59 21081.29 31793.62 28671.43 29792.65 33971.26 33281.17 32092.34 324
tmp_tt51.94 31953.82 31846.29 33333.73 35345.30 35378.32 34467.24 35318.02 34850.93 34487.05 33452.99 34153.11 35070.76 33325.29 34740.46 346
MIMVSNet184.93 30183.05 30290.56 30389.56 33384.84 28195.40 24995.35 27383.91 29380.38 32292.21 31157.23 33693.34 33770.69 33482.75 31693.50 313
RPMNet88.52 27486.72 28393.95 20794.45 27287.19 24190.23 32994.99 29277.87 33192.40 15287.55 33280.17 22297.05 30168.84 33593.95 18597.60 174
N_pmnet78.73 30978.71 31078.79 32492.80 31346.50 35194.14 28643.71 35478.61 32780.83 31891.66 31774.94 28096.36 31667.24 33684.45 29893.50 313
OpenMVS_ROBcopyleft81.14 2084.42 30282.28 30490.83 29790.06 32984.05 28995.73 23794.04 31673.89 33580.17 32591.53 31859.15 33597.64 26966.92 33789.05 24790.80 333
PMMVS270.19 31266.92 31480.01 32376.35 34465.67 34486.22 33887.58 34364.83 34062.38 34180.29 33826.78 35088.49 34263.79 33854.07 34285.88 337
test_040286.46 29184.79 29591.45 28995.02 24585.55 27096.29 20794.89 29680.90 31582.21 31493.97 27368.21 31597.29 29762.98 33988.68 25391.51 330
DeepMVS_CXcopyleft74.68 32890.84 32764.34 34681.61 34965.34 33967.47 33888.01 33148.60 34380.13 34662.33 34073.68 33579.58 340
FPMVS71.27 31169.85 31275.50 32674.64 34559.03 34791.30 32291.50 33558.80 34157.92 34288.28 32829.98 34885.53 34453.43 34182.84 31581.95 339
ANet_high63.94 31459.58 31677.02 32561.24 35166.06 34385.66 34087.93 34278.53 32842.94 34571.04 34225.42 35180.71 34552.60 34230.83 34584.28 338
Gipumacopyleft67.86 31365.41 31575.18 32792.66 31673.45 33766.50 34694.52 30653.33 34357.80 34366.07 34330.81 34689.20 34148.15 34378.88 32562.90 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 31555.40 31768.12 32951.00 35248.64 34978.86 34387.10 34546.77 34435.84 34974.28 3408.76 35386.34 34342.07 34473.91 33469.38 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 31748.81 32166.58 33065.34 35057.50 34872.49 34570.94 35240.15 34739.28 34863.51 3446.89 35573.48 34938.29 34542.38 34368.76 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 31652.56 31955.43 33174.43 34647.13 35083.63 34276.30 35042.23 34542.59 34662.22 34528.57 34974.40 34731.53 34631.51 34444.78 344
EMVS52.08 31851.31 32054.39 33272.62 34845.39 35283.84 34175.51 35141.13 34640.77 34759.65 34630.08 34773.60 34828.31 34729.90 34644.18 345
wuyk23d25.11 32024.57 32326.74 33473.98 34739.89 35457.88 3479.80 35512.27 34910.39 3506.97 3527.03 35436.44 35125.43 34817.39 3483.89 349
testmvs13.36 32216.33 3244.48 3365.04 3542.26 35693.18 3053.28 3562.70 3508.24 35121.66 3482.29 3572.19 3527.58 3492.96 3499.00 348
test12313.04 32315.66 3255.18 3354.51 3553.45 35592.50 3181.81 3572.50 3517.58 35220.15 3493.67 3562.18 3537.13 3501.07 3509.90 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.26 330.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.24 32130.99 3220.00 3370.00 3560.00 3570.00 34897.63 1280.00 3520.00 35396.88 13084.38 1470.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.39 3259.85 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35388.65 900.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.06 32410.74 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35396.69 1390.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
save fliter98.91 4594.28 3497.02 13998.02 8495.35 8
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 129
test_part299.28 2595.74 698.10 17
sam_mvs182.76 17698.45 129
sam_mvs81.94 195
MTGPAbinary98.08 65
test_post17.58 35081.76 19798.08 217
patchmatchnet-post90.45 31982.65 18098.10 212
MTMP97.86 5582.03 348
TEST998.70 5694.19 3996.41 19298.02 8488.17 22396.03 7497.56 10192.74 2499.59 66
test_898.67 5894.06 4896.37 19998.01 8788.58 21195.98 7997.55 10392.73 2599.58 69
agg_prior98.67 5893.79 5498.00 8995.68 8999.57 77
test_prior493.66 5896.42 191
test_prior97.23 6298.67 5892.99 7598.00 8999.41 10299.29 59
新几何295.79 235
旧先验198.38 7793.38 6697.75 11398.09 5892.30 3799.01 7999.16 67
原ACMM295.67 238
test22298.24 8992.21 9595.33 25297.60 13079.22 32595.25 10097.84 7788.80 8899.15 6998.72 109
segment_acmp92.89 22
testdata195.26 25993.10 79
test1297.65 4498.46 7094.26 3697.66 12495.52 9890.89 6699.46 9699.25 6199.22 64
plane_prior796.21 18489.98 165
plane_prior696.10 19490.00 16181.32 203
plane_prior496.64 142
plane_prior390.00 16194.46 3991.34 174
plane_prior297.74 6794.85 24
plane_prior196.14 192
plane_prior89.99 16397.24 11994.06 4792.16 208
n20.00 358
nn0.00 358
door-mid91.06 337
test1197.88 102
door91.13 336
HQP5-MVS89.33 188
HQP-NCC95.86 19996.65 17593.55 6190.14 197
ACMP_Plane95.86 19996.65 17593.55 6190.14 197
HQP4-MVS90.14 19798.50 18295.78 224
HQP3-MVS97.39 16292.10 209
HQP2-MVS80.95 206
NP-MVS95.99 19889.81 17095.87 180
ACMMP++_ref90.30 237
ACMMP++91.02 226
Test By Simon88.73 89