This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 7099.59 1599.56 22
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13498.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2199.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9897.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4999.51 2999.40 53
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12598.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 17098.85 798.94 193.33 1799.83 2296.72 2099.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9498.19 4492.82 9797.93 2098.74 1191.60 5399.86 896.26 3299.52 2599.67 8
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14298.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2699.39 4799.55 26
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 11098.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
3Dnovator+91.43 495.40 8094.48 10098.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 26198.02 6783.69 16399.71 3893.18 12198.96 8799.44 47
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8298.24 3491.57 13297.90 2198.37 3692.61 2999.66 5295.59 6799.51 2999.43 49
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11798.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5499.17 7299.56 22
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
ETH3 D test640096.16 6295.52 7098.07 1698.90 5195.06 2297.03 14498.21 4088.16 23696.64 5797.70 8991.18 6399.67 4992.44 12999.47 3699.48 41
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15298.05 8089.85 18497.26 3598.22 5691.80 4799.69 4494.84 8499.28 5999.27 66
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 10097.59 2498.20 5791.96 4499.86 894.21 9799.25 6599.63 11
DPM-MVS95.69 7294.92 8698.01 1998.08 10695.71 795.27 26897.62 13690.43 17395.55 10397.07 12891.72 4899.50 9789.62 18398.94 8898.82 107
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7898.10 6191.50 13498.01 1898.32 4692.33 3599.58 7194.85 8399.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4496.27 5497.98 2199.23 3094.71 2696.96 15598.06 7390.67 16195.55 10398.78 1091.07 6599.86 896.58 2499.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 14098.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12798.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2599.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1598.18 4692.64 10596.39 7098.18 5891.61 5299.88 495.59 6799.55 2199.57 19
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14797.22 18595.35 898.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1198.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6299.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10697.18 3898.29 5092.08 3999.83 2295.12 7599.59 1599.54 29
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10196.70 5298.06 6491.35 5999.86 894.83 8599.28 5999.47 44
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5799.40 4599.62 13
X-MVStestdata91.71 19989.67 25897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6032.69 36491.70 5099.80 2795.66 5799.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1198.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6299.59 1599.62 13
alignmvs95.87 7195.23 8097.78 3397.56 13495.19 1897.86 6097.17 18894.39 4396.47 6696.40 16885.89 13599.20 12396.21 4095.11 17598.95 94
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10998.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7399.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1198.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6999.59 1599.64 10
CDPH-MVS95.97 6795.38 7697.77 3598.93 4794.44 3196.35 21197.88 10586.98 26696.65 5697.89 7291.99 4399.47 10092.26 13099.46 3899.39 54
canonicalmvs96.02 6595.45 7397.75 3797.59 13295.15 2198.28 2697.60 13794.52 4096.27 7496.12 18087.65 10999.18 12696.20 4194.82 17998.91 98
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 1098.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2299.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg96.30 5795.83 6597.72 3998.70 6094.19 4096.41 20398.02 8888.58 22296.03 8297.56 10592.73 2599.59 6895.04 7799.37 5299.39 54
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10598.34 4190.59 7599.88 494.83 8599.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18297.11 4498.01 6892.52 3299.69 4496.03 4899.53 2499.36 58
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 999.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16798.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1699.29 5799.56 22
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8698.98 192.22 11397.14 4198.44 2891.17 6499.85 1494.35 9599.46 3899.57 19
test1297.65 4498.46 7494.26 3797.66 13195.52 10690.89 6999.46 10199.25 6599.22 67
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1498.09 6393.27 7695.95 8898.33 4491.04 6699.88 495.20 7299.57 2099.60 16
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8796.45 6898.30 4991.90 4599.85 1495.61 6499.68 499.54 29
agg_prior196.22 6195.77 6697.56 4898.67 6293.79 5596.28 21998.00 9388.76 21995.68 9797.55 10792.70 2799.57 7995.01 7899.32 5399.32 60
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16797.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1899.29 5799.55 26
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14797.96 10095.42 794.86 11497.81 8287.38 11699.82 2596.88 1399.20 7099.29 62
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3699.27 6199.54 29
3Dnovator91.36 595.19 8994.44 10297.44 5296.56 17693.36 6998.65 798.36 1694.12 4889.25 24598.06 6482.20 19899.77 2993.41 11799.32 5399.18 69
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 15096.40 6997.99 6990.99 6799.58 7195.61 6499.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7395.12 8497.37 5499.19 3194.19 4097.03 14498.08 6488.35 22995.09 11297.65 9489.97 8399.48 9992.08 13998.59 9998.44 137
112194.71 10493.83 10997.34 5598.57 7293.64 6096.04 23297.73 11981.56 32995.68 9797.85 7890.23 7899.65 5387.68 22499.12 7898.73 112
新几何197.32 5698.60 6893.59 6197.75 11681.58 32895.75 9497.85 7890.04 8299.67 4986.50 24699.13 7598.69 116
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23898.18 4695.23 1295.87 8997.65 9491.45 5599.70 4395.87 5099.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6395.66 6797.29 5897.96 10993.17 7397.30 12398.06 7393.92 5293.38 14398.66 1286.83 12299.73 3295.60 6699.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 5895.93 6297.28 5999.24 2892.62 8798.25 2998.81 392.99 8794.56 11898.39 3588.96 9199.85 1494.57 9497.63 12199.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 17196.72 22894.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 12099.08 80
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15598.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
test_prior396.46 5396.20 5797.23 6298.67 6292.99 7696.35 21198.00 9392.80 9896.03 8297.59 10192.01 4199.41 10795.01 7899.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
HPM-MVS_fast96.51 5196.27 5497.22 6499.32 2392.74 8298.74 498.06 7390.57 17096.77 4998.35 3890.21 7999.53 8994.80 8899.63 1299.38 56
VNet95.89 6995.45 7397.21 6598.07 10792.94 7997.50 10198.15 5193.87 5497.52 2597.61 10085.29 14299.53 8995.81 5595.27 17199.16 70
UA-Net95.95 6895.53 6997.20 6697.67 12692.98 7897.65 8698.13 5494.81 3196.61 5898.35 3888.87 9299.51 9490.36 16997.35 13199.11 78
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3199.30 5699.55 26
EPNet95.20 8894.56 9597.14 6892.80 32492.68 8497.85 6394.87 31496.64 192.46 15997.80 8486.23 12999.65 5393.72 11098.62 9899.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4499.25 6599.51 34
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4599.26 6399.43 49
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30296.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15597.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1699.13 7599.48 41
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22698.90 294.30 4695.86 9097.74 8792.33 3599.38 11296.04 4799.42 4399.28 65
abl_696.40 5496.21 5696.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10599.72 3595.10 7699.07 8199.02 83
QAPM93.45 13992.27 16196.98 7496.77 16692.62 8798.39 2098.12 5684.50 30388.27 26797.77 8582.39 19599.81 2685.40 26598.81 9298.51 125
WTY-MVS94.71 10494.02 10696.79 7697.71 12592.05 10696.59 19497.35 17690.61 16794.64 11796.93 13286.41 12899.39 11091.20 15994.71 18398.94 95
CPTT-MVS95.57 7895.19 8196.70 7799.27 2691.48 12298.33 2298.11 5987.79 24795.17 11198.03 6687.09 12099.61 6293.51 11399.42 4399.02 83
sss94.51 10693.80 11096.64 7897.07 14791.97 11096.32 21598.06 7388.94 20994.50 11996.78 13984.60 15099.27 11991.90 14096.02 15698.68 117
ab-mvs93.57 13692.55 15196.64 7897.28 13791.96 11195.40 26097.45 16089.81 18693.22 14996.28 17379.62 24299.46 10190.74 16493.11 20098.50 126
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 16297.73 11994.74 3596.49 6498.49 2490.88 7099.58 7196.44 2998.32 10499.13 74
114514_t93.95 12293.06 13496.63 8099.07 3991.61 11797.46 10897.96 10077.99 34593.00 15197.57 10386.14 13499.33 11489.22 19499.15 7398.94 95
HY-MVS89.66 993.87 12592.95 13796.63 8097.10 14692.49 9195.64 25296.64 23789.05 20493.00 15195.79 20085.77 13899.45 10389.16 19894.35 18597.96 157
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8398.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2399.46 3898.96 92
CANet_DTU94.37 10793.65 11596.55 8496.46 18392.13 10496.21 22596.67 23694.38 4493.53 13997.03 13079.34 24599.71 3890.76 16398.45 10297.82 168
LFMVS93.60 13492.63 14796.52 8598.13 10491.27 13097.94 5593.39 33790.57 17096.29 7298.31 4769.00 32499.16 12894.18 9995.87 16099.12 77
DP-MVS92.76 16791.51 18696.52 8598.77 5790.99 14397.38 11596.08 26282.38 32289.29 24297.87 7583.77 16299.69 4481.37 30496.69 14798.89 101
CNLPA94.28 10993.53 11996.52 8598.38 8192.55 8996.59 19496.88 21990.13 17891.91 17597.24 11985.21 14399.09 13787.64 22797.83 11697.92 160
Vis-MVSNetpermissive95.23 8694.81 8896.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11398.15 5982.28 19698.92 15191.45 15498.58 10099.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 11093.46 12396.51 8898.00 10892.19 10397.67 8397.47 15288.13 23893.00 15195.84 19484.86 14899.51 9487.99 21398.17 10997.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11193.42 12796.48 9097.64 12891.42 12695.55 25497.71 12788.99 20692.34 16595.82 19689.19 8899.11 13386.14 25297.38 12998.90 99
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14796.86 16397.72 12394.67 3696.16 7798.46 2690.43 7699.58 7196.23 3597.96 11498.90 99
LS3D93.57 13692.61 14996.47 9197.59 13291.61 11797.67 8397.72 12385.17 29390.29 20598.34 4184.60 15099.73 3283.85 28498.27 10598.06 156
CSCG96.05 6495.91 6396.46 9399.24 2890.47 16198.30 2498.57 1189.01 20593.97 13097.57 10392.62 2899.76 3094.66 9199.27 6199.15 72
test_yl94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
DCV-MVSNet94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
ETV-MVS96.02 6595.89 6496.40 9697.16 14292.44 9297.47 10697.77 11494.55 3996.48 6594.51 25591.23 6298.92 15195.65 6098.19 10797.82 168
OpenMVScopyleft89.19 1292.86 16291.68 17896.40 9695.34 23592.73 8398.27 2798.12 5684.86 29885.78 30497.75 8678.89 25699.74 3187.50 23198.65 9796.73 203
MVS_111021_LR96.24 6096.19 5896.39 9898.23 9791.35 12796.24 22498.79 493.99 5195.80 9297.65 9489.92 8599.24 12195.87 5099.20 7098.58 119
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25895.22 10997.68 9190.25 7799.54 8687.95 21499.12 7898.49 128
PVSNet_Blended_VisFu95.27 8494.91 8796.38 9998.20 9890.86 14997.27 12598.25 3390.21 17594.18 12597.27 11787.48 11499.73 3293.53 11297.77 11998.55 120
Effi-MVS+94.93 9694.45 10196.36 10196.61 17091.47 12396.41 20397.41 16991.02 15594.50 11995.92 18987.53 11298.78 16293.89 10696.81 14298.84 106
PCF-MVS89.48 1191.56 20689.95 24696.36 10196.60 17192.52 9092.51 33097.26 18279.41 34088.90 24996.56 15984.04 16099.55 8477.01 33097.30 13397.01 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UGNet94.04 12093.28 13096.31 10396.85 16091.19 13697.88 5997.68 12894.40 4293.00 15196.18 17673.39 30499.61 6291.72 14598.46 10198.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7595.38 7696.31 10398.42 7790.53 15996.04 23297.48 14993.47 7195.67 10098.10 6089.17 8999.25 12091.27 15798.77 9399.13 74
AdaColmapbinary94.34 10893.68 11496.31 10398.59 6991.68 11696.59 19497.81 11389.87 18192.15 16997.06 12983.62 16699.54 8689.34 18998.07 11197.70 172
lupinMVS94.99 9594.56 9596.29 10696.34 19091.21 13395.83 24496.27 25488.93 21096.22 7596.88 13786.20 13298.85 15795.27 7199.05 8398.82 107
nrg03094.05 11993.31 12996.27 10795.22 24694.59 2898.34 2197.46 15492.93 9491.21 19396.64 15087.23 11998.22 20894.99 8185.80 28495.98 224
PAPM_NR95.01 9194.59 9496.26 10898.89 5490.68 15597.24 12797.73 11991.80 12792.93 15696.62 15789.13 9099.14 13189.21 19597.78 11898.97 91
OMC-MVS95.09 9094.70 9296.25 10998.46 7491.28 12996.43 20197.57 14192.04 12294.77 11697.96 7187.01 12199.09 13791.31 15696.77 14398.36 144
1112_ss93.37 14192.42 15796.21 11097.05 15290.99 14396.31 21696.72 22886.87 26989.83 22496.69 14786.51 12699.14 13188.12 21193.67 19498.50 126
jason94.84 10094.39 10396.18 11195.52 22490.93 14796.09 23096.52 24489.28 19896.01 8697.32 11584.70 14998.77 16495.15 7498.91 9198.85 104
jason: jason.
DROMVSNet96.25 5996.29 5396.13 11296.87 15991.35 12798.66 697.74 11893.91 5396.29 7297.43 11289.36 8798.59 18397.23 899.07 8198.45 133
PLCcopyleft91.00 694.11 11693.43 12596.13 11298.58 7191.15 14096.69 18197.39 17087.29 26191.37 18396.71 14388.39 10099.52 9387.33 23497.13 13997.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs95.64 7495.49 7196.08 11496.76 16890.45 16297.29 12497.44 16494.00 5095.46 10797.98 7087.52 11398.73 16795.64 6197.33 13299.08 80
baseline95.58 7795.42 7596.08 11496.78 16590.41 16497.16 13897.45 16093.69 6395.65 10197.85 7887.29 11798.68 17295.66 5797.25 13599.13 74
CHOSEN 1792x268894.15 11293.51 12196.06 11698.27 8989.38 19595.18 27298.48 1485.60 28693.76 13497.11 12683.15 17399.61 6291.33 15598.72 9599.19 68
IS-MVSNet94.90 9794.52 9896.05 11797.67 12690.56 15798.44 1796.22 25793.21 7793.99 12897.74 8785.55 14098.45 19489.98 17297.86 11599.14 73
hse-mvs394.15 11293.52 12096.04 11897.81 11990.22 16797.62 9397.58 14095.19 1496.74 5097.45 10983.67 16499.61 6295.85 5279.73 33298.29 147
VDD-MVS93.82 12793.08 13396.02 11997.88 11689.96 17697.72 7895.85 26992.43 10895.86 9098.44 2868.42 32899.39 11096.31 3094.85 17798.71 115
VDDNet93.05 15292.07 16496.02 11996.84 16190.39 16598.08 4395.85 26986.22 27895.79 9398.46 2667.59 33199.19 12494.92 8294.85 17798.47 131
MVSFormer95.37 8195.16 8295.99 12196.34 19091.21 13398.22 3497.57 14191.42 13896.22 7597.32 11586.20 13297.92 25594.07 10099.05 8398.85 104
CDS-MVSNet94.14 11593.54 11895.93 12296.18 19891.46 12496.33 21497.04 20388.97 20893.56 13696.51 16187.55 11197.89 25989.80 17795.95 15898.44 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS93.21 14692.32 16095.91 12394.92 26194.15 4396.92 15996.86 22291.42 13891.28 19096.43 16579.66 24198.10 22393.29 11990.06 24595.46 248
API-MVS94.84 10094.49 9995.90 12497.90 11592.00 10997.80 6797.48 14989.19 20194.81 11596.71 14388.84 9399.17 12788.91 20198.76 9496.53 206
HyFIR lowres test93.66 13292.92 13895.87 12598.24 9389.88 17794.58 28098.49 1285.06 29593.78 13395.78 20182.86 18298.67 17391.77 14495.71 16599.07 82
Test_1112_low_res92.84 16491.84 17395.85 12697.04 15389.97 17595.53 25696.64 23785.38 28989.65 23095.18 22785.86 13699.10 13487.70 22193.58 19998.49 128
PVSNet_Blended94.87 9994.56 9595.81 12798.27 8989.46 19295.47 25898.36 1688.84 21394.36 12196.09 18488.02 10299.58 7193.44 11598.18 10898.40 140
Anonymous20240521192.07 19190.83 21095.76 12898.19 10088.75 21497.58 9595.00 30586.00 28193.64 13597.45 10966.24 34099.53 8990.68 16692.71 20499.01 87
EPP-MVSNet95.22 8795.04 8595.76 12897.49 13589.56 18598.67 597.00 20790.69 16094.24 12497.62 9989.79 8698.81 16093.39 11896.49 15298.92 97
xiu_mvs_v1_base_debu95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base_debi95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
Anonymous2024052991.98 19390.73 21495.73 13398.14 10389.40 19497.99 4897.72 12379.63 33993.54 13897.41 11369.94 32299.56 8191.04 16091.11 23198.22 148
GeoE93.89 12493.28 13095.72 13496.96 15789.75 18098.24 3296.92 21589.47 19392.12 17197.21 12184.42 15398.39 19987.71 22096.50 15199.01 87
EIA-MVS95.53 7995.47 7295.71 13597.06 15089.63 18197.82 6597.87 10793.57 6493.92 13195.04 23290.61 7498.95 14994.62 9298.68 9698.54 121
MVS_Test94.89 9894.62 9395.68 13696.83 16389.55 18696.70 17997.17 18891.17 15095.60 10296.11 18387.87 10698.76 16593.01 12697.17 13898.72 113
TAMVS94.01 12193.46 12395.64 13796.16 20090.45 16296.71 17896.89 21889.27 19993.46 14196.92 13587.29 11797.94 25288.70 20595.74 16398.53 122
ET-MVSNet_ETH3D91.49 21190.11 24095.63 13896.40 18791.57 12195.34 26293.48 33590.60 16975.58 34995.49 21880.08 23296.79 32294.25 9689.76 24998.52 123
diffmvs95.25 8595.13 8395.63 13896.43 18689.34 19795.99 23797.35 17692.83 9696.31 7197.37 11486.44 12798.67 17396.26 3297.19 13798.87 103
UniMVSNet (Re)93.31 14392.55 15195.61 14095.39 22993.34 7097.39 11398.71 593.14 8290.10 21694.83 24187.71 10798.03 23891.67 15083.99 31195.46 248
Fast-Effi-MVS+93.46 13892.75 14395.59 14196.77 16690.03 16996.81 17097.13 19188.19 23291.30 18794.27 27186.21 13198.63 17687.66 22696.46 15498.12 152
CS-MVS95.88 7095.98 6195.58 14296.44 18490.56 15797.78 6997.73 11993.01 8696.07 8196.77 14090.13 8098.57 18496.83 1599.10 8097.60 179
CS-MVS-test95.61 7595.62 6895.58 14296.33 19291.02 14297.64 9097.68 12892.69 10295.18 11095.91 19089.95 8498.61 17996.24 3498.92 9097.12 190
PatchMatch-RL92.90 16092.02 16795.56 14498.19 10090.80 15195.27 26897.18 18687.96 24091.86 17795.68 20880.44 22598.99 14784.01 28097.54 12396.89 198
TAPA-MVS90.10 792.30 18091.22 19795.56 14498.33 8589.60 18396.79 17197.65 13381.83 32691.52 18097.23 12087.94 10498.91 15371.31 34898.37 10398.17 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 16591.90 17195.55 14697.20 14090.77 15397.19 13594.58 31992.20 11592.36 16396.34 17184.16 15898.21 20989.20 19683.90 31597.68 173
NR-MVSNet92.34 17791.27 19495.53 14794.95 25993.05 7597.39 11398.07 7092.65 10484.46 31595.71 20585.00 14697.77 27189.71 17983.52 31895.78 233
test_part192.21 18791.10 20195.51 14897.80 12092.66 8598.02 4797.68 12889.79 18788.80 25596.02 18576.85 27998.18 21490.86 16184.11 31095.69 240
MVS91.71 19990.44 22495.51 14895.20 24891.59 11996.04 23297.45 16073.44 35287.36 28695.60 21185.42 14199.10 13485.97 25797.46 12495.83 230
VPA-MVSNet93.24 14592.48 15695.51 14895.70 21892.39 9397.86 6098.66 992.30 11192.09 17395.37 22180.49 22498.40 19693.95 10385.86 28395.75 237
thisisatest053093.03 15392.21 16295.49 15197.07 14789.11 20897.49 10592.19 34590.16 17794.09 12696.41 16776.43 28499.05 14390.38 16895.68 16698.31 146
PS-MVSNAJ95.37 8195.33 7895.49 15197.35 13690.66 15695.31 26597.48 14993.85 5596.51 6395.70 20788.65 9699.65 5394.80 8898.27 10596.17 215
DU-MVS92.90 16092.04 16595.49 15194.95 25992.83 8097.16 13898.24 3493.02 8590.13 21295.71 20583.47 16797.85 26191.71 14683.93 31295.78 233
UniMVSNet_NR-MVSNet93.37 14192.67 14695.47 15495.34 23592.83 8097.17 13798.58 1092.98 9290.13 21295.80 19788.37 10197.85 26191.71 14683.93 31295.73 239
testdata95.46 15598.18 10288.90 21297.66 13182.73 32197.03 4798.07 6390.06 8198.85 15789.67 18198.98 8698.64 118
xiu_mvs_v2_base95.32 8395.29 7995.40 15697.22 13890.50 16095.44 25997.44 16493.70 6296.46 6796.18 17688.59 9999.53 8994.79 9097.81 11796.17 215
F-COLMAP93.58 13592.98 13695.37 15798.40 7888.98 21097.18 13697.29 18187.75 25090.49 20097.10 12785.21 14399.50 9786.70 24396.72 14697.63 174
FIs94.09 11793.70 11295.27 15895.70 21892.03 10798.10 4198.68 793.36 7490.39 20396.70 14587.63 11097.94 25292.25 13290.50 24295.84 229
thisisatest051592.29 18191.30 19295.25 15996.60 17188.90 21294.36 28992.32 34487.92 24193.43 14294.57 25477.28 27799.00 14689.42 18795.86 16197.86 164
PAPM91.52 21090.30 23095.20 16095.30 24189.83 17893.38 31696.85 22386.26 27788.59 25995.80 19784.88 14798.15 21775.67 33495.93 15997.63 174
thres600view792.49 17291.60 18095.18 16197.91 11489.47 19097.65 8694.66 31692.18 11993.33 14494.91 23678.06 27099.10 13481.61 29894.06 19196.98 193
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16298.09 10586.63 26696.00 23698.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1999.48 3599.45 45
131492.81 16692.03 16695.14 16395.33 23889.52 18996.04 23297.44 16487.72 25186.25 30195.33 22283.84 16198.79 16189.26 19297.05 14097.11 191
TranMVSNet+NR-MVSNet92.50 17091.63 17995.14 16394.76 27092.07 10597.53 9998.11 5992.90 9589.56 23396.12 18083.16 17297.60 28589.30 19083.20 32195.75 237
thres40092.42 17491.52 18495.12 16597.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.98 193
FC-MVSNet-test93.94 12393.57 11695.04 16695.48 22691.45 12598.12 4098.71 593.37 7290.23 20696.70 14587.66 10897.85 26191.49 15290.39 24395.83 230
FMVSNet391.78 19790.69 21695.03 16796.53 17892.27 9997.02 14796.93 21189.79 18789.35 23994.65 25177.01 27897.47 29686.12 25388.82 25595.35 258
VPNet92.23 18591.31 19194.99 16895.56 22290.96 14597.22 13397.86 11092.96 9390.96 19596.62 15775.06 29298.20 21191.90 14083.65 31795.80 232
FMVSNet291.31 22290.08 24194.99 16896.51 17992.21 10097.41 10996.95 20988.82 21588.62 25894.75 24573.87 29897.42 30185.20 26888.55 26095.35 258
thres100view90092.43 17391.58 18194.98 17097.92 11389.37 19697.71 8094.66 31692.20 11593.31 14594.90 23778.06 27099.08 13981.40 30194.08 18896.48 209
BH-RMVSNet92.72 16891.97 16994.97 17197.16 14287.99 23696.15 22895.60 27990.62 16691.87 17697.15 12578.41 26398.57 18483.16 28697.60 12298.36 144
MSDG91.42 21490.24 23494.96 17297.15 14488.91 21193.69 30996.32 25285.72 28586.93 29596.47 16380.24 22998.98 14880.57 30795.05 17696.98 193
tfpn200view992.38 17691.52 18494.95 17397.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.48 209
XXY-MVS92.16 18891.23 19694.95 17394.75 27190.94 14697.47 10697.43 16789.14 20288.90 24996.43 16579.71 23998.24 20689.56 18487.68 26695.67 242
Vis-MVSNet (Re-imp)94.15 11293.88 10894.95 17397.61 13087.92 23798.10 4195.80 27192.22 11393.02 15097.45 10984.53 15297.91 25888.24 20997.97 11399.02 83
tttt051792.96 15692.33 15994.87 17697.11 14587.16 25497.97 5392.09 34690.63 16593.88 13297.01 13176.50 28199.06 14290.29 17195.45 16898.38 142
OPM-MVS93.28 14492.76 14194.82 17794.63 27790.77 15396.65 18597.18 18693.72 6091.68 17897.26 11879.33 24698.63 17692.13 13692.28 21095.07 272
HQP_MVS93.78 12993.43 12594.82 17796.21 19589.99 17297.74 7397.51 14794.85 2691.34 18496.64 15081.32 21298.60 18093.02 12492.23 21195.86 226
hse-mvs293.45 13992.99 13594.81 17997.02 15488.59 21896.69 18196.47 24695.19 1496.74 5096.16 17983.67 16498.48 19395.85 5279.13 33697.35 187
AUN-MVS91.76 19890.75 21394.81 17997.00 15588.57 21996.65 18596.49 24589.63 18992.15 16996.12 18078.66 25898.50 18990.83 16279.18 33597.36 186
XVG-OURS-SEG-HR93.86 12693.55 11794.81 17997.06 15088.53 22195.28 26697.45 16091.68 13094.08 12797.68 9182.41 19498.90 15493.84 10892.47 20896.98 193
XVG-OURS93.72 13193.35 12894.80 18297.07 14788.61 21794.79 27697.46 15491.97 12593.99 12897.86 7781.74 20798.88 15692.64 12892.67 20696.92 197
IB-MVS87.33 1789.91 26688.28 27894.79 18395.26 24587.70 24395.12 27493.95 33289.35 19787.03 29292.49 31470.74 31599.19 12489.18 19781.37 32897.49 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 17791.53 18394.77 18495.13 25190.83 15096.40 20697.98 9891.88 12689.29 24295.54 21682.50 19197.80 26689.79 17885.27 29295.69 240
RPMNet88.98 27687.05 29194.77 18494.45 28387.19 25290.23 34498.03 8477.87 34792.40 16087.55 34980.17 23199.51 9468.84 35293.95 19297.60 179
thres20092.23 18591.39 18794.75 18697.61 13089.03 20996.60 19395.09 30292.08 12193.28 14694.00 28378.39 26499.04 14581.26 30594.18 18796.19 214
UniMVSNet_ETH3D91.34 22190.22 23794.68 18794.86 26687.86 24097.23 13297.46 15487.99 23989.90 22196.92 13566.35 33898.23 20790.30 17090.99 23497.96 157
GA-MVS91.38 21690.31 22994.59 18894.65 27587.62 24494.34 29096.19 25990.73 15990.35 20493.83 28771.84 30797.96 24987.22 23693.61 19798.21 149
GBi-Net91.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
test191.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
FMVSNet189.88 26888.31 27794.59 18895.41 22891.18 13797.50 10196.93 21186.62 27287.41 28494.51 25565.94 34297.29 30883.04 28887.43 26995.31 260
cascas91.20 22790.08 24194.58 19294.97 25789.16 20793.65 31197.59 13979.90 33889.40 23792.92 30875.36 29198.36 20092.14 13594.75 18196.23 212
HQP-MVS93.19 14892.74 14494.54 19395.86 21089.33 19896.65 18597.39 17093.55 6590.14 20895.87 19280.95 21598.50 18992.13 13692.10 21695.78 233
PVSNet_BlendedMVS94.06 11893.92 10794.47 19498.27 8989.46 19296.73 17598.36 1690.17 17694.36 12195.24 22688.02 10299.58 7193.44 11590.72 23894.36 308
gg-mvs-nofinetune87.82 29185.61 30094.44 19594.46 28289.27 20391.21 33884.61 36280.88 33289.89 22374.98 35671.50 30997.53 29185.75 26197.21 13696.51 207
bset_n11_16_dypcd91.55 20790.59 21994.44 19591.51 33690.25 16692.70 32793.42 33692.27 11290.22 20794.74 24678.42 26297.80 26694.19 9887.86 26595.29 267
PS-MVSNAJss93.74 13093.51 12194.44 19593.91 29889.28 20297.75 7297.56 14492.50 10789.94 22096.54 16088.65 9698.18 21493.83 10990.90 23695.86 226
PMMVS92.86 16292.34 15894.42 19894.92 26186.73 26294.53 28296.38 25084.78 30094.27 12395.12 23183.13 17498.40 19691.47 15396.49 15298.12 152
MVSTER93.20 14792.81 14094.37 19996.56 17689.59 18497.06 14397.12 19291.24 14791.30 18795.96 18782.02 20198.05 23493.48 11490.55 24095.47 247
ACMM89.79 892.96 15692.50 15594.35 20096.30 19388.71 21597.58 9597.36 17591.40 14190.53 19996.65 14979.77 23898.75 16691.24 15891.64 22195.59 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 14992.72 14594.34 20196.71 16987.27 24890.29 34397.72 12386.61 27391.34 18495.29 22384.29 15798.41 19593.25 12098.94 8897.35 187
CLD-MVS92.98 15592.53 15394.32 20296.12 20489.20 20495.28 26697.47 15292.66 10389.90 22195.62 21080.58 22298.40 19692.73 12792.40 20995.38 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 25189.42 26294.27 20398.24 9389.19 20698.05 4597.89 10379.95 33788.25 26894.96 23372.56 30598.13 21889.70 18085.14 29495.49 244
LTVRE_ROB88.41 1390.99 23689.92 24794.19 20496.18 19889.55 18696.31 21697.09 19687.88 24385.67 30595.91 19078.79 25798.57 18481.50 29989.98 24694.44 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 24089.85 25094.17 20593.34 31590.79 15294.60 27996.02 26384.62 30187.45 28295.15 22881.88 20597.45 29887.70 22187.87 26494.27 313
TR-MVS91.48 21290.59 21994.16 20696.40 18787.33 24695.67 24995.34 29187.68 25291.46 18195.52 21776.77 28098.35 20182.85 29093.61 19796.79 202
LPG-MVS_test92.94 15892.56 15094.10 20796.16 20088.26 22797.65 8697.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
LGP-MVS_train94.10 20796.16 20088.26 22797.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
mvs_anonymous93.82 12793.74 11194.06 20996.44 18485.41 28495.81 24597.05 20189.85 18490.09 21796.36 17087.44 11597.75 27293.97 10296.69 14799.02 83
ACMP89.59 1092.62 16992.14 16394.05 21096.40 18788.20 23097.36 11697.25 18491.52 13388.30 26596.64 15078.46 26198.72 17091.86 14391.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax92.42 17491.89 17294.03 21193.33 31688.50 22297.73 7597.53 14592.00 12488.85 25296.50 16275.62 29098.11 22293.88 10791.56 22495.48 245
test_djsdf93.07 15192.76 14194.00 21293.49 31188.70 21698.22 3497.57 14191.42 13890.08 21895.55 21582.85 18397.92 25594.07 10091.58 22395.40 254
AllTest90.23 26088.98 26993.98 21397.94 11186.64 26396.51 19895.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
TestCases93.98 21397.94 11186.64 26395.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
anonymousdsp92.16 18891.55 18293.97 21592.58 32889.55 18697.51 10097.42 16889.42 19588.40 26294.84 24080.66 22197.88 26091.87 14291.28 22994.48 304
pm-mvs190.72 24889.65 26093.96 21694.29 29089.63 18197.79 6896.82 22589.07 20386.12 30395.48 21978.61 25997.78 26986.97 24181.67 32694.46 305
WR-MVS_H92.00 19291.35 18893.95 21795.09 25389.47 19098.04 4698.68 791.46 13688.34 26394.68 24985.86 13697.56 28785.77 26084.24 30894.82 289
CR-MVSNet90.82 24389.77 25493.95 21794.45 28387.19 25290.23 34495.68 27786.89 26892.40 16092.36 31980.91 21797.05 31281.09 30693.95 19297.60 179
mvs_tets92.31 17991.76 17493.94 21993.41 31388.29 22597.63 9297.53 14592.04 12288.76 25696.45 16474.62 29498.09 22793.91 10591.48 22595.45 250
baseline291.63 20290.86 20693.94 21994.33 28786.32 26995.92 24091.64 35089.37 19686.94 29494.69 24881.62 20998.69 17188.64 20694.57 18496.81 201
BH-untuned92.94 15892.62 14893.92 22197.22 13886.16 27596.40 20696.25 25690.06 17989.79 22596.17 17883.19 17198.35 20187.19 23797.27 13497.24 189
ACMH87.59 1690.53 25389.42 26293.87 22296.21 19587.92 23797.24 12796.94 21088.45 22683.91 32496.27 17471.92 30698.62 17884.43 27789.43 25195.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 19691.18 19993.83 22395.59 22084.95 29294.72 27795.58 28190.82 15692.25 16793.69 29375.80 28798.10 22386.20 25095.98 15798.45 133
CP-MVSNet91.89 19591.24 19593.82 22495.05 25488.57 21997.82 6598.19 4491.70 12988.21 26995.76 20281.96 20297.52 29387.86 21584.65 30195.37 257
v2v48291.59 20390.85 20893.80 22593.87 30088.17 23296.94 15896.88 21989.54 19089.53 23494.90 23781.70 20898.02 23989.25 19385.04 29895.20 269
COLMAP_ROBcopyleft87.81 1590.40 25689.28 26593.79 22697.95 11087.13 25596.92 15995.89 26882.83 32086.88 29797.18 12273.77 30199.29 11878.44 32193.62 19694.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4291.58 20590.87 20593.73 22794.05 29588.50 22297.32 12096.97 20888.80 21889.71 22694.33 26682.54 19098.05 23489.01 19985.07 29694.64 302
PVSNet86.66 1892.24 18491.74 17793.73 22797.77 12283.69 30792.88 32496.72 22887.91 24293.00 15194.86 23978.51 26099.05 14386.53 24497.45 12898.47 131
MIMVSNet88.50 28586.76 29393.72 22994.84 26787.77 24291.39 33494.05 32986.41 27587.99 27592.59 31363.27 34795.82 33577.44 32492.84 20397.57 182
Patchmatch-test89.42 27387.99 28093.70 23095.27 24285.11 28888.98 35094.37 32481.11 33087.10 29193.69 29382.28 19697.50 29474.37 33894.76 18098.48 130
PS-CasMVS91.55 20790.84 20993.69 23194.96 25888.28 22697.84 6498.24 3491.46 13688.04 27395.80 19779.67 24097.48 29587.02 24084.54 30595.31 260
v114491.37 21890.60 21893.68 23293.89 29988.23 22996.84 16697.03 20588.37 22889.69 22894.39 26282.04 20097.98 24287.80 21785.37 28994.84 286
GG-mvs-BLEND93.62 23393.69 30589.20 20492.39 33283.33 36387.98 27689.84 33971.00 31396.87 32082.08 29795.40 16994.80 292
tfpnnormal89.70 27188.40 27693.60 23495.15 24990.10 16897.56 9798.16 5087.28 26286.16 30294.63 25277.57 27598.05 23474.48 33684.59 30492.65 334
PatchmatchNetpermissive91.91 19491.35 18893.59 23595.38 23084.11 30193.15 32095.39 28589.54 19092.10 17293.68 29582.82 18498.13 21884.81 27195.32 17098.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 23290.23 23593.58 23693.70 30487.82 24196.73 17597.07 19887.77 24889.58 23194.32 26880.90 21997.97 24586.52 24585.48 28794.95 276
v891.29 22490.53 22393.57 23794.15 29188.12 23497.34 11797.06 20088.99 20688.32 26494.26 27383.08 17598.01 24087.62 22883.92 31494.57 303
ADS-MVSNet89.89 26788.68 27393.53 23895.86 21084.89 29390.93 33995.07 30383.23 31891.28 19091.81 32679.01 25397.85 26179.52 31391.39 22797.84 165
v1091.04 23490.23 23593.49 23994.12 29288.16 23397.32 12097.08 19788.26 23188.29 26694.22 27682.17 19997.97 24586.45 24784.12 30994.33 309
EI-MVSNet93.03 15392.88 13993.48 24095.77 21586.98 25796.44 19997.12 19290.66 16391.30 18797.64 9786.56 12498.05 23489.91 17490.55 24095.41 251
PEN-MVS91.20 22790.44 22493.48 24094.49 28187.91 23997.76 7198.18 4691.29 14387.78 27895.74 20480.35 22797.33 30685.46 26482.96 32295.19 270
mvs-test193.63 13393.69 11393.46 24296.02 20784.61 29697.24 12796.72 22893.85 5592.30 16695.76 20283.08 17598.89 15591.69 14896.54 15096.87 199
v7n90.76 24489.86 24993.45 24393.54 30887.60 24597.70 8197.37 17388.85 21287.65 28094.08 28181.08 21498.10 22384.68 27383.79 31694.66 301
v14419291.06 23390.28 23193.39 24493.66 30687.23 25196.83 16797.07 19887.43 25789.69 22894.28 27081.48 21098.00 24187.18 23884.92 30094.93 280
DWT-MVSNet_test90.76 24489.89 24893.38 24595.04 25583.70 30695.85 24394.30 32788.19 23290.46 20192.80 30973.61 30298.50 18988.16 21090.58 23997.95 159
EPMVS90.70 24989.81 25293.37 24694.73 27284.21 29993.67 31088.02 35789.50 19292.38 16293.49 30077.82 27497.78 26986.03 25692.68 20598.11 155
IterMVS-LS92.29 18191.94 17093.34 24796.25 19486.97 25896.57 19797.05 20190.67 16189.50 23694.80 24386.59 12397.64 28089.91 17486.11 28295.40 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 19091.75 17593.31 24896.99 15685.73 27995.67 24995.69 27588.73 22089.26 24494.82 24282.97 18098.07 23185.26 26796.32 15596.13 219
v192192090.85 24290.03 24593.29 24993.55 30786.96 25996.74 17497.04 20387.36 25989.52 23594.34 26580.23 23097.97 24586.27 24885.21 29394.94 278
ACMH+87.92 1490.20 26189.18 26793.25 25096.48 18286.45 26896.99 15296.68 23488.83 21484.79 31496.22 17570.16 32098.53 18784.42 27888.04 26294.77 297
v124090.70 24989.85 25093.23 25193.51 31086.80 26096.61 19197.02 20687.16 26489.58 23194.31 26979.55 24397.98 24285.52 26385.44 28894.90 283
PatchT88.87 28087.42 28593.22 25294.08 29485.10 28989.51 34894.64 31881.92 32592.36 16388.15 34680.05 23397.01 31672.43 34493.65 19597.54 183
Fast-Effi-MVS+-dtu92.29 18191.99 16893.21 25395.27 24285.52 28297.03 14496.63 24092.09 12089.11 24795.14 22980.33 22898.08 22887.54 23094.74 18296.03 223
miper_enhance_ethall91.54 20991.01 20293.15 25495.35 23487.07 25693.97 30196.90 21686.79 27089.17 24693.43 30486.55 12597.64 28089.97 17386.93 27394.74 298
cl-mvsnet291.21 22690.56 22293.14 25596.09 20686.80 26094.41 28796.58 24387.80 24688.58 26093.99 28480.85 22097.62 28389.87 17686.93 27394.99 275
XVG-ACMP-BASELINE90.93 24090.21 23893.09 25694.31 28985.89 27795.33 26397.26 18291.06 15489.38 23895.44 22068.61 32698.60 18089.46 18691.05 23294.79 294
TransMVSNet (Re)88.94 27787.56 28493.08 25794.35 28688.45 22497.73 7595.23 29687.47 25684.26 31895.29 22379.86 23797.33 30679.44 31774.44 34593.45 325
DTE-MVSNet90.56 25289.75 25693.01 25893.95 29687.25 24997.64 9097.65 13390.74 15887.12 28995.68 20879.97 23597.00 31783.33 28581.66 32794.78 296
EPNet_dtu91.71 19991.28 19392.99 25993.76 30383.71 30596.69 18195.28 29293.15 8187.02 29395.95 18883.37 17097.38 30479.46 31696.84 14197.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 20391.13 20092.97 26095.55 22386.57 26794.47 28396.88 21987.77 24888.88 25194.01 28286.22 13097.54 28989.49 18586.93 27394.79 294
Baseline_NR-MVSNet91.20 22790.62 21792.95 26193.83 30188.03 23597.01 15195.12 30188.42 22789.70 22795.13 23083.47 16797.44 29989.66 18283.24 32093.37 326
cl-mvsnet____90.96 23990.32 22892.89 26295.37 23286.21 27394.46 28596.64 23787.82 24488.15 27194.18 27782.98 17997.54 28987.70 22185.59 28594.92 282
cl-mvsnet190.97 23890.33 22792.88 26395.36 23386.19 27494.46 28596.63 24087.82 24488.18 27094.23 27482.99 17897.53 29187.72 21885.57 28694.93 280
cl_fuxian91.38 21690.89 20492.88 26395.58 22186.30 27094.68 27896.84 22488.17 23488.83 25494.23 27485.65 13997.47 29689.36 18884.63 30294.89 284
pmmvs589.86 26988.87 27192.82 26592.86 32286.23 27296.26 22095.39 28584.24 30587.12 28994.51 25574.27 29697.36 30587.61 22987.57 26794.86 285
v14890.99 23690.38 22692.81 26693.83 30185.80 27896.78 17396.68 23489.45 19488.75 25793.93 28682.96 18197.82 26587.83 21683.25 31994.80 292
Patchmtry88.64 28487.25 28792.78 26794.09 29386.64 26389.82 34795.68 27780.81 33487.63 28192.36 31980.91 21797.03 31378.86 31985.12 29594.67 300
MVP-Stereo90.74 24790.08 24192.71 26893.19 31888.20 23095.86 24296.27 25486.07 28084.86 31394.76 24477.84 27397.75 27283.88 28398.01 11292.17 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 29286.19 29692.69 26991.32 33786.30 27097.34 11796.41 24980.59 33684.05 32394.37 26467.37 33397.67 27784.75 27279.51 33494.09 317
Effi-MVS+-dtu93.08 15093.21 13292.68 27096.02 20783.25 31097.14 14196.72 22893.85 5591.20 19493.44 30283.08 17598.30 20491.69 14895.73 16496.50 208
CostFormer91.18 23190.70 21592.62 27194.84 26781.76 32094.09 29994.43 32184.15 30692.72 15893.77 29179.43 24498.20 21190.70 16592.18 21497.90 161
MVS_030488.79 28187.57 28392.46 27294.65 27586.15 27696.40 20697.17 18886.44 27488.02 27491.71 32856.68 35597.03 31384.47 27692.58 20794.19 314
LCM-MVSNet-Re92.50 17092.52 15492.44 27396.82 16481.89 31996.92 15993.71 33392.41 10984.30 31794.60 25385.08 14597.03 31391.51 15197.36 13098.40 140
ITE_SJBPF92.43 27495.34 23585.37 28595.92 26591.47 13587.75 27996.39 16971.00 31397.96 24982.36 29589.86 24893.97 318
RRT_test8_iter0591.19 23090.78 21192.41 27595.76 21783.14 31197.32 12097.46 15491.37 14289.07 24895.57 21270.33 31798.21 20993.56 11186.62 27895.89 225
D2MVS91.30 22390.95 20392.35 27694.71 27385.52 28296.18 22798.21 4088.89 21186.60 29893.82 28979.92 23697.95 25189.29 19190.95 23593.56 322
eth_miper_zixun_eth91.02 23590.59 21992.34 27795.33 23884.35 29794.10 29896.90 21688.56 22488.84 25394.33 26684.08 15997.60 28588.77 20484.37 30795.06 273
USDC88.94 27787.83 28292.27 27894.66 27484.96 29193.86 30495.90 26787.34 26083.40 32695.56 21467.43 33298.19 21382.64 29489.67 25093.66 321
tpm289.96 26589.21 26692.23 27994.91 26481.25 32393.78 30694.42 32280.62 33591.56 17993.44 30276.44 28397.94 25285.60 26292.08 21897.49 184
test-LLR91.42 21491.19 19892.12 28094.59 27880.66 32694.29 29392.98 33991.11 15290.76 19792.37 31679.02 25198.07 23188.81 20296.74 14497.63 174
test-mter90.19 26289.54 26192.12 28094.59 27880.66 32694.29 29392.98 33987.68 25290.76 19792.37 31667.67 33098.07 23188.81 20296.74 14497.63 174
ADS-MVSNet289.45 27288.59 27492.03 28295.86 21082.26 31890.93 33994.32 32683.23 31891.28 19091.81 32679.01 25395.99 33079.52 31391.39 22797.84 165
TESTMET0.1,190.06 26489.42 26291.97 28394.41 28580.62 32894.29 29391.97 34887.28 26290.44 20292.47 31568.79 32597.67 27788.50 20896.60 14997.61 178
JIA-IIPM88.26 28887.04 29291.91 28493.52 30981.42 32289.38 34994.38 32380.84 33390.93 19680.74 35479.22 24797.92 25582.76 29191.62 22296.38 211
tpmvs89.83 27089.15 26891.89 28594.92 26180.30 33293.11 32195.46 28486.28 27688.08 27292.65 31180.44 22598.52 18881.47 30089.92 24796.84 200
TDRefinement86.53 29984.76 30991.85 28682.23 35984.25 29896.38 20995.35 28884.97 29784.09 32194.94 23465.76 34398.34 20384.60 27574.52 34492.97 328
miper_lstm_enhance90.50 25590.06 24491.83 28795.33 23883.74 30393.86 30496.70 23387.56 25587.79 27793.81 29083.45 16996.92 31987.39 23284.62 30394.82 289
IterMVS-SCA-FT90.31 25789.81 25291.82 28895.52 22484.20 30094.30 29296.15 26090.61 16787.39 28594.27 27175.80 28796.44 32587.34 23386.88 27794.82 289
tpm cat188.36 28687.21 28991.81 28995.13 25180.55 32992.58 32995.70 27474.97 34987.45 28291.96 32478.01 27298.17 21680.39 30988.74 25896.72 204
tpmrst91.44 21391.32 19091.79 29095.15 24979.20 34293.42 31595.37 28788.55 22593.49 14093.67 29682.49 19298.27 20590.41 16789.34 25297.90 161
MS-PatchMatch90.27 25889.77 25491.78 29194.33 28784.72 29595.55 25496.73 22786.17 27986.36 30095.28 22571.28 31197.80 26684.09 27998.14 11092.81 331
FMVSNet587.29 29585.79 29991.78 29194.80 26987.28 24795.49 25795.28 29284.09 30783.85 32591.82 32562.95 34894.17 34878.48 32085.34 29193.91 319
EG-PatchMatch MVS87.02 29785.44 30191.76 29392.67 32685.00 29096.08 23196.45 24783.41 31779.52 34393.49 30057.10 35497.72 27479.34 31890.87 23792.56 335
tpm90.25 25989.74 25791.76 29393.92 29779.73 33893.98 30093.54 33488.28 23091.99 17493.25 30577.51 27697.44 29987.30 23587.94 26398.12 152
IterMVS90.15 26389.67 25891.61 29595.48 22683.72 30494.33 29196.12 26189.99 18087.31 28894.15 27975.78 28996.27 32886.97 24186.89 27694.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 28787.29 28691.53 29692.45 33083.57 30893.75 30795.97 26484.28 30485.32 31094.18 27779.00 25596.93 31875.71 33384.99 29994.10 315
pmmvs-eth3d86.22 30484.45 31091.53 29688.34 35387.25 24994.47 28395.01 30483.47 31679.51 34489.61 34069.75 32395.71 33683.13 28776.73 34191.64 343
test_040286.46 30084.79 30891.45 29895.02 25685.55 28196.29 21894.89 31080.90 33182.21 33193.97 28568.21 32997.29 30862.98 35688.68 25991.51 345
OurMVSNet-221017-090.51 25490.19 23991.44 29993.41 31381.25 32396.98 15496.28 25391.68 13086.55 29996.30 17274.20 29797.98 24288.96 20087.40 27195.09 271
test0.0.03 189.37 27488.70 27291.41 30092.47 32985.63 28095.22 27192.70 34291.11 15286.91 29693.65 29779.02 25193.19 35378.00 32389.18 25395.41 251
KD-MVS_2432*160084.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
miper_refine_blended84.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
TinyColmap86.82 29885.35 30491.21 30394.91 26482.99 31293.94 30294.02 33183.58 31481.56 33394.68 24962.34 35098.13 21875.78 33287.35 27292.52 336
our_test_388.78 28287.98 28191.20 30492.45 33082.53 31493.61 31395.69 27585.77 28484.88 31293.71 29279.99 23496.78 32379.47 31586.24 27994.28 312
MDA-MVSNet-bldmvs85.00 31282.95 31691.17 30593.13 32083.33 30994.56 28195.00 30584.57 30265.13 35792.65 31170.45 31695.85 33373.57 34177.49 33894.33 309
SixPastTwentyTwo89.15 27588.54 27590.98 30693.49 31180.28 33396.70 17994.70 31590.78 15784.15 32095.57 21271.78 30897.71 27584.63 27485.07 29694.94 278
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 33990.55 34295.60 27983.76 31283.00 33089.95 33771.09 31297.97 24582.75 29260.79 35895.31 260
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 31990.83 30890.06 34484.05 30295.73 24894.04 33073.89 35180.17 34291.53 33059.15 35297.64 28066.92 35489.05 25490.80 349
Patchmatch-RL test87.38 29486.24 29590.81 30988.74 35278.40 34688.12 35293.17 33887.11 26582.17 33289.29 34181.95 20395.60 33888.64 20677.02 33998.41 139
dp88.90 27988.26 27990.81 30994.58 28076.62 34892.85 32594.93 30985.12 29490.07 21993.07 30675.81 28698.12 22180.53 30887.42 27097.71 171
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33282.57 31393.17 31895.15 29982.15 32367.65 35392.33 32278.20 26595.51 34077.33 32579.74 33194.31 311
YYNet185.87 30884.23 31290.78 31292.38 33282.46 31693.17 31895.14 30082.12 32467.69 35292.36 31978.16 26895.50 34177.31 32679.73 33294.39 307
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 34582.40 31793.62 31297.37 17389.86 18278.59 34692.37 31665.25 34495.35 34282.27 29670.75 35094.10 315
MIMVSNet184.93 31383.05 31590.56 31489.56 34884.84 29495.40 26095.35 28883.91 30880.38 33992.21 32357.23 35393.34 35270.69 35182.75 32593.50 323
lessismore_v090.45 31591.96 33579.09 34487.19 36080.32 34094.39 26266.31 33997.55 28884.00 28176.84 34094.70 299
RPSCF90.75 24690.86 20690.42 31696.84 16176.29 34995.61 25396.34 25183.89 30991.38 18297.87 7576.45 28298.78 16287.16 23992.23 21196.20 213
K. test v387.64 29386.75 29490.32 31793.02 32179.48 34096.61 19192.08 34790.66 16380.25 34194.09 28067.21 33496.65 32485.96 25880.83 33094.83 287
testgi87.97 28987.21 28990.24 31892.86 32280.76 32596.67 18494.97 30791.74 12885.52 30695.83 19562.66 34994.47 34776.25 33188.36 26195.48 245
UnsupCasMVSNet_bld82.13 32179.46 32490.14 31988.00 35482.47 31590.89 34196.62 24278.94 34275.61 34884.40 35256.63 35696.31 32777.30 32766.77 35491.63 344
LF4IMVS87.94 29087.25 28789.98 32092.38 33280.05 33694.38 28895.25 29587.59 25484.34 31694.74 24664.31 34597.66 27984.83 27087.45 26892.23 339
Anonymous2023120687.09 29686.14 29789.93 32191.22 33880.35 33096.11 22995.35 28883.57 31584.16 31993.02 30773.54 30395.61 33772.16 34586.14 28193.84 320
CL-MVSNet_2432*160086.31 30385.15 30589.80 32288.83 35181.74 32193.93 30396.22 25786.67 27185.03 31190.80 33278.09 26994.50 34574.92 33571.86 34993.15 327
CVMVSNet91.23 22591.75 17589.67 32395.77 21574.69 35196.44 19994.88 31185.81 28392.18 16897.64 9779.07 24895.58 33988.06 21295.86 16198.74 111
Anonymous2024052186.42 30185.44 30189.34 32490.33 34279.79 33796.73 17595.92 26583.71 31383.25 32791.36 33163.92 34696.01 32978.39 32285.36 29092.22 340
DIV-MVS_2432*160085.95 30784.95 30688.96 32589.55 34979.11 34395.13 27396.42 24885.91 28284.07 32290.48 33370.03 32194.82 34480.04 31072.94 34892.94 329
test20.0386.14 30585.40 30388.35 32690.12 34380.06 33595.90 24195.20 29788.59 22181.29 33493.62 29871.43 31092.65 35471.26 34981.17 32992.34 338
PM-MVS83.48 31781.86 32188.31 32787.83 35577.59 34793.43 31491.75 34986.91 26780.63 33789.91 33844.42 36095.84 33485.17 26976.73 34191.50 346
EU-MVSNet88.72 28388.90 27088.20 32893.15 31974.21 35296.63 19094.22 32885.18 29287.32 28795.97 18676.16 28594.98 34385.27 26686.17 28095.41 251
new_pmnet82.89 31981.12 32388.18 32989.63 34780.18 33491.77 33392.57 34376.79 34875.56 35088.23 34561.22 35194.48 34671.43 34782.92 32389.87 351
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33089.14 35073.12 35494.17 29696.80 22673.98 35073.65 35194.93 23566.36 33797.61 28483.95 28291.28 22992.48 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs379.97 32277.50 32687.39 33182.80 35879.38 34192.70 32790.75 35470.69 35378.66 34587.47 35051.34 35893.40 35173.39 34269.65 35289.38 352
new-patchmatchnet83.18 31881.87 32087.11 33286.88 35675.99 35093.70 30895.18 29885.02 29677.30 34788.40 34365.99 34193.88 35074.19 34070.18 35191.47 347
DSMNet-mixed86.34 30286.12 29887.00 33389.88 34670.43 35594.93 27590.08 35577.97 34685.42 30992.78 31074.44 29593.96 34974.43 33795.14 17296.62 205
ambc86.56 33483.60 35770.00 35785.69 35494.97 30780.60 33888.45 34237.42 36296.84 32182.69 29375.44 34392.86 330
MVS-HIRNet82.47 32081.21 32286.26 33595.38 23069.21 35888.96 35189.49 35666.28 35480.79 33674.08 35868.48 32797.39 30371.93 34695.47 16792.18 341
LCM-MVSNet72.55 32469.39 32882.03 33670.81 36665.42 36190.12 34694.36 32555.02 35865.88 35581.72 35324.16 36989.96 35574.32 33968.10 35390.71 350
PMMVS270.19 32666.92 32980.01 33776.35 36065.67 36086.22 35387.58 35964.83 35662.38 35880.29 35526.78 36788.49 35763.79 35554.07 35985.88 353
N_pmnet78.73 32378.71 32578.79 33892.80 32446.50 36794.14 29743.71 37078.61 34380.83 33591.66 32974.94 29396.36 32667.24 35384.45 30693.50 323
ANet_high63.94 32959.58 33277.02 33961.24 36866.06 35985.66 35587.93 35878.53 34442.94 36271.04 35925.42 36880.71 36152.60 35930.83 36284.28 354
FPMVS71.27 32569.85 32775.50 34074.64 36159.03 36391.30 33591.50 35158.80 35757.92 35988.28 34429.98 36585.53 35953.43 35882.84 32481.95 355
Gipumacopyleft67.86 32765.41 33075.18 34192.66 32773.45 35366.50 36194.52 32053.33 35957.80 36066.07 36030.81 36389.20 35648.15 36078.88 33762.90 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 34290.84 34164.34 36281.61 36565.34 35567.47 35488.01 34848.60 35980.13 36262.33 35773.68 34779.58 356
test_method66.11 32864.89 33169.79 34372.62 36435.23 37165.19 36292.83 34120.35 36465.20 35688.08 34743.14 36182.70 36073.12 34363.46 35591.45 348
PMVScopyleft53.92 2258.58 33055.40 33368.12 34451.00 36948.64 36578.86 35887.10 36146.77 36035.84 36674.28 3578.76 37086.34 35842.07 36173.91 34669.38 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33248.81 33766.58 34565.34 36757.50 36472.49 36070.94 36840.15 36339.28 36563.51 3616.89 37273.48 36538.29 36242.38 36068.76 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 33152.56 33555.43 34674.43 36247.13 36683.63 35776.30 36642.23 36142.59 36362.22 36228.57 36674.40 36331.53 36331.51 36144.78 360
EMVS52.08 33351.31 33654.39 34772.62 36445.39 36883.84 35675.51 36741.13 36240.77 36459.65 36330.08 36473.60 36428.31 36429.90 36344.18 361
tmp_tt51.94 33453.82 33446.29 34833.73 37045.30 36978.32 35967.24 36918.02 36550.93 36187.05 35152.99 35753.11 36670.76 35025.29 36440.46 362
wuyk23d25.11 33524.57 33926.74 34973.98 36339.89 37057.88 3639.80 37112.27 36610.39 3676.97 3697.03 37136.44 36725.43 36517.39 3653.89 365
test12313.04 33815.66 3415.18 3504.51 3723.45 37292.50 3311.81 3732.50 3687.58 36920.15 3663.67 3732.18 3697.13 3671.07 3679.90 363
testmvs13.36 33716.33 3404.48 3515.04 3712.26 37393.18 3173.28 3722.70 3678.24 36821.66 3652.29 3742.19 3687.58 3662.96 3669.00 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.24 33630.99 3380.00 3520.00 3730.00 3740.00 36497.63 1350.00 3690.00 37096.88 13784.38 1540.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.39 3409.85 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37088.65 960.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.06 33910.74 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37096.69 1470.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.05 4194.59 2898.08 6489.22 20097.03 4798.10 6092.52 3299.65 5394.58 9399.31 55
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4599.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17498.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7598.23 3891.28 14697.88 2298.44 2893.00 2199.65 5395.76 5699.47 36
save fliter98.91 4994.28 3597.02 14798.02 8895.35 8
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18598.45 133
sam_mvs81.94 204
MTGPAbinary98.08 64
test_post192.81 32616.58 36880.53 22397.68 27686.20 250
test_post17.58 36781.76 20698.08 228
patchmatchnet-post90.45 33482.65 18998.10 223
MTMP97.86 6082.03 364
gm-plane-assit93.22 31778.89 34584.82 29993.52 29998.64 17587.72 218
test9_res94.81 8799.38 4899.45 45
TEST998.70 6094.19 4096.41 20398.02 8888.17 23496.03 8297.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 21098.01 9188.58 22295.98 8797.55 10792.73 2599.58 71
agg_prior293.94 10499.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9799.57 79
test_prior493.66 5996.42 202
test_prior296.35 21192.80 9896.03 8297.59 10192.01 4195.01 7899.38 48
旧先验295.94 23981.66 32797.34 3498.82 15992.26 130
新几何295.79 246
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8599.16 70
无先验95.79 24697.87 10783.87 31199.65 5387.68 22498.89 101
原ACMM295.67 249
test22298.24 9392.21 10095.33 26397.60 13779.22 34195.25 10897.84 8188.80 9499.15 7398.72 113
testdata299.67 4985.96 258
segment_acmp92.89 22
testdata195.26 27093.10 84
plane_prior796.21 19589.98 174
plane_prior696.10 20590.00 17081.32 212
plane_prior597.51 14798.60 18093.02 12492.23 21195.86 226
plane_prior496.64 150
plane_prior390.00 17094.46 4191.34 184
plane_prior297.74 7394.85 26
plane_prior196.14 203
plane_prior89.99 17297.24 12794.06 4992.16 215
n20.00 374
nn0.00 374
door-mid91.06 353
test1197.88 105
door91.13 352
HQP5-MVS89.33 198
HQP-NCC95.86 21096.65 18593.55 6590.14 208
ACMP_Plane95.86 21096.65 18593.55 6590.14 208
BP-MVS92.13 136
HQP4-MVS90.14 20898.50 18995.78 233
HQP3-MVS97.39 17092.10 216
HQP2-MVS80.95 215
NP-MVS95.99 20989.81 17995.87 192
MDTV_nov1_ep13_2view70.35 35693.10 32283.88 31093.55 13782.47 19386.25 24998.38 142
MDTV_nov1_ep1390.76 21295.22 24680.33 33193.03 32395.28 29288.14 23792.84 15793.83 28781.34 21198.08 22882.86 28994.34 186
ACMMP++_ref90.30 244
ACMMP++91.02 233
Test By Simon88.73 95