This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5296.86 198.25 2898.26 5096.04 199.24 11695.36 6399.59 1599.56 22
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 12698.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3796.16 297.55 9097.97 9595.59 496.61 5297.89 6892.57 3099.84 1995.95 4399.51 2999.40 50
CNVR-MVS97.68 597.44 898.37 598.90 4795.86 497.27 11798.08 6595.81 397.87 2398.31 4494.26 1099.68 4797.02 999.49 3499.57 19
SMA-MVS97.35 1297.03 1498.30 699.06 3995.42 897.94 5098.18 4790.57 16298.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3595.16 2097.60 8698.19 4592.82 9197.93 2098.74 1191.60 5299.86 896.26 2999.52 2599.67 8
MSP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 10894.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 40
MCST-MVS97.18 1696.84 2498.20 1099.30 2495.35 1297.12 13498.07 7093.54 6496.08 7397.69 8693.86 1399.71 3896.50 2499.39 4799.55 26
SF-MVS97.39 1097.13 1198.17 1199.02 4195.28 1798.23 3198.27 2892.37 10398.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
3Dnovator+91.43 495.40 7694.48 9598.16 1296.90 15095.34 1398.48 1597.87 10494.65 3688.53 24998.02 6383.69 15699.71 3893.18 11298.96 8199.44 46
ETH3D-3000-0.197.07 2296.71 3398.14 1398.90 4795.33 1497.68 7698.24 3591.57 12497.90 2198.37 3392.61 2999.66 5295.59 5999.51 2999.43 48
NCCC97.30 1497.03 1498.11 1498.77 5395.06 2297.34 10998.04 8195.96 297.09 4297.88 7093.18 2099.71 3895.84 4699.17 6899.56 22
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
ETH3 D test640096.16 5995.52 6598.07 1698.90 4795.06 2297.03 13698.21 4188.16 22596.64 5197.70 8591.18 6099.67 4992.44 12099.47 3699.48 40
ETH3D cwj APD-0.1696.56 4896.06 5598.05 1798.26 8895.19 1896.99 14498.05 8089.85 17697.26 3298.22 5391.80 4699.69 4494.84 7799.28 5799.27 63
testtj96.93 3396.56 4098.05 1799.10 3494.66 2797.78 6498.22 4092.74 9497.59 2498.20 5491.96 4399.86 894.21 8999.25 6199.63 11
DPM-MVS95.69 6994.92 8198.01 1998.08 10295.71 795.27 25797.62 12990.43 16595.55 9597.07 12191.72 4799.50 9289.62 17398.94 8298.82 103
APD-MVScopyleft96.95 3196.60 3798.01 1999.03 4094.93 2497.72 7298.10 6291.50 12698.01 1898.32 4392.33 3499.58 6994.85 7699.51 2999.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4296.27 5097.98 2199.23 3094.71 2696.96 14798.06 7390.67 15395.55 9598.78 1091.07 6299.86 896.58 2299.55 2199.38 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS97.07 2296.77 3097.97 2299.37 1694.42 3197.15 13298.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
MTAPA97.08 2196.78 2997.97 2299.37 1694.42 3197.24 11998.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 7694.25 3798.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3096.67 3597.85 2599.37 1694.12 4498.49 1498.18 4792.64 9896.39 6498.18 5591.61 5199.88 495.59 5999.55 2199.57 19
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4594.28 3497.02 13997.22 17795.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4498.52 1098.32 2093.21 7297.18 3598.29 4792.08 3899.83 2295.63 5499.59 1599.54 28
#test#97.02 2696.75 3197.83 2699.42 694.12 4498.15 3798.32 2092.57 9997.18 3598.29 4792.08 3899.83 2295.12 6899.59 1599.54 28
GST-MVS96.85 3696.52 4297.82 2999.36 1994.14 4398.29 2498.13 5592.72 9596.70 4698.06 6091.35 5699.86 894.83 7899.28 5799.47 43
XVS97.18 1696.96 1897.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5498.29 4791.70 4999.80 2795.66 4999.40 4599.62 13
X-MVStestdata91.71 19089.67 24797.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5432.69 34791.70 4999.80 2795.66 4999.40 4599.62 13
ACMMPR97.07 2296.84 2497.79 3299.44 593.88 5198.52 1098.31 2293.21 7297.15 3798.33 4191.35 5699.86 895.63 5499.59 1599.62 13
alignmvs95.87 6795.23 7597.78 3397.56 12895.19 1897.86 5597.17 18094.39 4196.47 6096.40 16085.89 12999.20 11896.21 3695.11 16898.95 90
DeepC-MVS_fast93.89 296.93 3396.64 3697.78 3398.64 6394.30 3397.41 10198.04 8194.81 2996.59 5498.37 3391.24 5899.64 6095.16 6699.52 2599.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2296.84 2497.77 3599.46 193.79 5498.52 1098.24 3593.19 7597.14 3898.34 3891.59 5399.87 795.46 6299.59 1599.64 10
CDPH-MVS95.97 6495.38 7197.77 3598.93 4394.44 3096.35 20097.88 10286.98 25596.65 5097.89 6891.99 4299.47 9592.26 12199.46 3899.39 51
canonicalmvs96.02 6295.45 6897.75 3797.59 12695.15 2198.28 2597.60 13094.52 3896.27 6796.12 17187.65 10399.18 12196.20 3794.82 17298.91 94
DVP-MVS97.59 797.54 597.73 3899.40 1193.77 5798.53 998.29 2495.55 598.56 1297.81 7893.90 1299.65 5396.62 2099.21 6599.77 1
train_agg96.30 5595.83 6097.72 3998.70 5694.19 3996.41 19298.02 8488.58 21196.03 7497.56 10192.73 2599.59 6695.04 7099.37 5299.39 51
MP-MVScopyleft96.77 4096.45 4697.72 3999.39 1393.80 5398.41 1898.06 7393.37 6795.54 9798.34 3890.59 7199.88 494.83 7899.54 2399.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4096.46 4597.71 4198.40 7494.07 4798.21 3498.45 1589.86 17497.11 4198.01 6492.52 3299.69 4496.03 4299.53 2499.36 55
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3898.07 4397.85 10893.72 5698.57 1198.35 3593.69 1599.40 10497.06 899.46 3899.44 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.16 1896.99 1697.67 4398.32 8293.84 5296.83 15998.10 6295.24 1197.49 2698.25 5192.57 3099.61 6196.80 1499.29 5599.56 22
PGM-MVS96.81 3896.53 4197.65 4499.35 2193.53 6297.65 8098.98 192.22 10597.14 3898.44 2591.17 6199.85 1494.35 8799.46 3899.57 19
test1297.65 4498.46 7094.26 3697.66 12495.52 9890.89 6699.46 9699.25 6199.22 64
mPP-MVS96.86 3596.60 3797.64 4699.40 1193.44 6498.50 1398.09 6493.27 7195.95 8098.33 4191.04 6399.88 495.20 6599.57 2099.60 16
CP-MVS97.02 2696.81 2797.64 4699.33 2293.54 6198.80 398.28 2692.99 8196.45 6298.30 4691.90 4499.85 1495.61 5699.68 499.54 28
agg_prior196.22 5895.77 6197.56 4898.67 5893.79 5496.28 20898.00 8988.76 20895.68 8997.55 10392.70 2799.57 7795.01 7199.32 5399.32 57
Regformer-197.10 2096.96 1897.54 4998.32 8293.48 6396.83 15997.99 9395.20 1397.46 2798.25 5192.48 3399.58 6996.79 1699.29 5599.55 26
CANet96.39 5396.02 5697.50 5097.62 12393.38 6697.02 13997.96 9695.42 794.86 10697.81 7887.38 11099.82 2596.88 1299.20 6699.29 59
SR-MVS97.01 2896.86 2297.47 5199.09 3593.27 7097.98 4798.07 7093.75 5597.45 2898.48 2291.43 5599.59 6696.22 3299.27 5999.54 28
3Dnovator91.36 595.19 8594.44 9797.44 5296.56 16793.36 6898.65 698.36 1694.12 4689.25 23498.06 6082.20 18999.77 2993.41 10899.32 5399.18 66
HPM-MVScopyleft96.69 4396.45 4697.40 5399.36 1993.11 7398.87 198.06 7391.17 14296.40 6397.99 6590.99 6499.58 6995.61 5699.61 1499.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7095.12 7997.37 5499.19 3194.19 3997.03 13698.08 6588.35 21895.09 10497.65 9089.97 7999.48 9492.08 13098.59 9398.44 132
112194.71 10093.83 10497.34 5598.57 6893.64 5996.04 22197.73 11581.56 31395.68 8997.85 7490.23 7499.65 5387.68 21399.12 7498.73 108
新几何197.32 5698.60 6493.59 6097.75 11381.58 31295.75 8697.85 7490.04 7899.67 4986.50 23599.13 7198.69 112
DELS-MVS96.61 4696.38 4897.30 5797.79 11593.19 7195.96 22798.18 4795.23 1295.87 8197.65 9091.45 5499.70 4395.87 4499.44 4299.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6095.66 6297.29 5897.96 10593.17 7297.30 11598.06 7393.92 5093.38 13598.66 1286.83 11699.73 3295.60 5899.22 6498.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 5695.93 5797.28 5999.24 2892.62 8598.25 2898.81 392.99 8194.56 11098.39 3288.96 8599.85 1494.57 8697.63 11599.36 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4396.49 4397.27 6098.31 8493.39 6596.79 16396.72 22094.17 4597.44 2997.66 8992.76 2399.33 10996.86 1397.76 11499.08 77
Regformer-496.97 2996.87 2197.25 6198.34 7992.66 8496.96 14798.01 8795.12 1797.14 3898.42 2891.82 4599.61 6196.90 1199.13 7199.50 36
test_prior396.46 5196.20 5397.23 6298.67 5892.99 7596.35 20098.00 8992.80 9296.03 7497.59 9792.01 4099.41 10295.01 7199.38 4899.29 59
test_prior97.23 6298.67 5892.99 7598.00 8999.41 10299.29 59
HPM-MVS_fast96.51 4996.27 5097.22 6499.32 2392.74 8198.74 498.06 7390.57 16296.77 4598.35 3590.21 7599.53 8594.80 8199.63 1299.38 53
VNet95.89 6695.45 6897.21 6598.07 10392.94 7897.50 9398.15 5293.87 5197.52 2597.61 9685.29 13699.53 8595.81 4795.27 16499.16 67
UA-Net95.95 6595.53 6497.20 6697.67 12092.98 7797.65 8098.13 5594.81 2996.61 5298.35 3588.87 8699.51 9090.36 15997.35 12599.11 75
EPNet95.20 8494.56 9097.14 6792.80 31392.68 8397.85 5894.87 30096.64 192.46 15197.80 8086.23 12399.65 5393.72 10198.62 9299.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 3896.71 3397.12 6899.01 4292.31 9297.98 4798.06 7393.11 7897.44 2998.55 1990.93 6599.55 8096.06 4099.25 6199.51 33
SD-MVS97.41 997.53 697.06 6998.57 6894.46 2997.92 5298.14 5494.82 2899.01 398.55 1994.18 1197.41 29196.94 1099.64 1199.32 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-396.85 3696.80 2897.01 7098.34 7992.02 10396.96 14797.76 11295.01 2197.08 4398.42 2891.71 4899.54 8296.80 1499.13 7199.48 40
MVS_111021_HR96.68 4596.58 3996.99 7198.46 7092.31 9296.20 21598.90 294.30 4495.86 8297.74 8392.33 3499.38 10796.04 4199.42 4399.28 62
abl_696.40 5296.21 5296.98 7298.89 5092.20 9797.89 5398.03 8393.34 7097.22 3498.42 2887.93 9999.72 3595.10 6999.07 7699.02 80
QAPM93.45 13392.27 15396.98 7296.77 15792.62 8598.39 1998.12 5784.50 28888.27 25597.77 8182.39 18699.81 2685.40 25498.81 8598.51 121
WTY-MVS94.71 10094.02 10196.79 7497.71 11992.05 10196.59 18397.35 16890.61 15994.64 10996.93 12586.41 12299.39 10591.20 15194.71 17698.94 91
CPTT-MVS95.57 7495.19 7696.70 7599.27 2691.48 11798.33 2198.11 6087.79 23695.17 10298.03 6287.09 11499.61 6193.51 10499.42 4399.02 80
sss94.51 10293.80 10596.64 7697.07 14291.97 10596.32 20498.06 7388.94 19894.50 11196.78 13284.60 14499.27 11491.90 13296.02 14998.68 113
ab-mvs93.57 13092.55 14396.64 7697.28 13291.96 10695.40 24997.45 15289.81 17893.22 14196.28 16579.62 23399.46 9690.74 15493.11 19398.50 122
EI-MVSNet-Vis-set96.51 4996.47 4496.63 7898.24 8991.20 13096.89 15497.73 11594.74 3396.49 5898.49 2190.88 6799.58 6996.44 2798.32 9899.13 71
114514_t93.95 11793.06 12796.63 7899.07 3891.61 11297.46 10097.96 9677.99 32993.00 14397.57 9986.14 12899.33 10989.22 18499.15 6998.94 91
HY-MVS89.66 993.87 11992.95 12996.63 7897.10 14192.49 8995.64 24196.64 22989.05 19393.00 14395.79 18885.77 13299.45 9889.16 18894.35 17897.96 152
MSLP-MVS++96.94 3297.06 1396.59 8198.72 5591.86 10797.67 7798.49 1294.66 3597.24 3398.41 3192.31 3698.94 14696.61 2199.46 3898.96 88
CANet_DTU94.37 10393.65 11096.55 8296.46 17492.13 9996.21 21496.67 22894.38 4293.53 13197.03 12379.34 23699.71 3890.76 15398.45 9697.82 163
LFMVS93.60 12892.63 13996.52 8398.13 10091.27 12597.94 5093.39 32290.57 16296.29 6698.31 4469.00 31099.16 12394.18 9095.87 15399.12 74
DP-MVS92.76 16091.51 17896.52 8398.77 5390.99 13797.38 10796.08 25082.38 30689.29 23197.87 7183.77 15599.69 4481.37 29396.69 14198.89 97
CNLPA94.28 10593.53 11496.52 8398.38 7792.55 8796.59 18396.88 21190.13 17091.91 16597.24 11385.21 13799.09 13287.64 21697.83 11097.92 155
Vis-MVSNetpermissive95.23 8294.81 8396.51 8697.18 13691.58 11598.26 2798.12 5794.38 4294.90 10598.15 5682.28 18798.92 14791.45 14698.58 9499.01 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 10693.46 11796.51 8698.00 10492.19 9897.67 7797.47 14488.13 22793.00 14395.84 18284.86 14299.51 9087.99 20398.17 10397.83 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 10793.42 12196.48 8897.64 12291.42 12295.55 24397.71 12288.99 19592.34 15795.82 18489.19 8299.11 12886.14 24197.38 12398.90 95
EI-MVSNet-UG-set96.34 5496.30 4996.47 8998.20 9490.93 14196.86 15597.72 11894.67 3496.16 7098.46 2390.43 7299.58 6996.23 3197.96 10898.90 95
LS3D93.57 13092.61 14196.47 8997.59 12691.61 11297.67 7797.72 11885.17 27890.29 19598.34 3884.60 14499.73 3283.85 27398.27 9998.06 151
CSCG96.05 6195.91 5896.46 9199.24 2890.47 15498.30 2398.57 1189.01 19493.97 12297.57 9992.62 2899.76 3094.66 8499.27 5999.15 69
test_yl94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
DCV-MVSNet94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
ETV-MVS96.02 6295.89 5996.40 9497.16 13792.44 9097.47 9897.77 11194.55 3796.48 5994.51 24391.23 5998.92 14795.65 5298.19 10197.82 163
OpenMVScopyleft89.19 1292.86 15591.68 17096.40 9495.34 22492.73 8298.27 2698.12 5784.86 28385.78 29297.75 8278.89 24799.74 3187.50 22098.65 9196.73 194
MVS_111021_LR96.24 5796.19 5496.39 9698.23 9391.35 12396.24 21398.79 493.99 4995.80 8497.65 9089.92 8099.24 11695.87 4499.20 6698.58 115
原ACMM196.38 9798.59 6591.09 13697.89 10087.41 24795.22 10197.68 8790.25 7399.54 8287.95 20499.12 7498.49 124
PVSNet_Blended_VisFu95.27 8094.91 8296.38 9798.20 9490.86 14397.27 11798.25 3490.21 16794.18 11797.27 11187.48 10899.73 3293.53 10397.77 11398.55 116
Effi-MVS+94.93 9294.45 9696.36 9996.61 16191.47 11896.41 19297.41 16191.02 14794.50 11195.92 17887.53 10698.78 15893.89 9796.81 13698.84 102
PCF-MVS89.48 1191.56 19789.95 23596.36 9996.60 16292.52 8892.51 31797.26 17479.41 32488.90 23896.56 15184.04 15399.55 8077.01 31597.30 12797.01 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UGNet94.04 11593.28 12496.31 10196.85 15191.19 13197.88 5497.68 12394.40 4093.00 14396.18 16873.39 29199.61 6191.72 13798.46 9598.13 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7295.38 7196.31 10198.42 7390.53 15296.04 22197.48 14193.47 6595.67 9298.10 5789.17 8399.25 11591.27 14998.77 8699.13 71
AdaColmapbinary94.34 10493.68 10996.31 10198.59 6591.68 11196.59 18397.81 11089.87 17392.15 16197.06 12283.62 15799.54 8289.34 17998.07 10597.70 167
lupinMVS94.99 9194.56 9096.29 10496.34 18091.21 12895.83 23396.27 24388.93 19996.22 6896.88 13086.20 12698.85 15395.27 6499.05 7798.82 103
nrg03094.05 11493.31 12396.27 10595.22 23594.59 2898.34 2097.46 14692.93 8891.21 18396.64 14287.23 11398.22 19894.99 7485.80 27795.98 215
PAPM_NR95.01 8794.59 8996.26 10698.89 5090.68 14997.24 11997.73 11591.80 11992.93 14896.62 14989.13 8499.14 12689.21 18597.78 11298.97 87
OMC-MVS95.09 8694.70 8796.25 10798.46 7091.28 12496.43 19097.57 13392.04 11494.77 10897.96 6787.01 11599.09 13291.31 14896.77 13798.36 139
CS-MVS95.80 6895.65 6396.24 10897.32 13191.43 12198.10 3997.91 9993.38 6695.16 10394.57 24190.21 7598.98 14395.53 6198.67 9098.30 142
1112_ss93.37 13492.42 14996.21 10997.05 14790.99 13796.31 20596.72 22086.87 25889.83 21396.69 13986.51 12099.14 12688.12 20193.67 18798.50 122
jason94.84 9694.39 9896.18 11095.52 21390.93 14196.09 21996.52 23689.28 18796.01 7897.32 10984.70 14398.77 16095.15 6798.91 8498.85 100
jason: jason.
PLCcopyleft91.00 694.11 11193.43 11996.13 11198.58 6791.15 13596.69 17297.39 16287.29 25091.37 17396.71 13588.39 9499.52 8987.33 22397.13 13397.73 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs95.64 7195.49 6696.08 11296.76 15990.45 15597.29 11697.44 15694.00 4895.46 9997.98 6687.52 10798.73 16395.64 5397.33 12699.08 77
baseline95.58 7395.42 7096.08 11296.78 15690.41 15797.16 13097.45 15293.69 5995.65 9397.85 7487.29 11198.68 16895.66 4997.25 12999.13 71
CHOSEN 1792x268894.15 10893.51 11596.06 11498.27 8589.38 18595.18 26198.48 1485.60 27393.76 12697.11 11983.15 16499.61 6191.33 14798.72 8899.19 65
IS-MVSNet94.90 9394.52 9396.05 11597.67 12090.56 15198.44 1696.22 24693.21 7293.99 12097.74 8385.55 13498.45 18589.98 16297.86 10999.14 70
VDD-MVS93.82 12193.08 12696.02 11697.88 11289.96 16797.72 7295.85 25692.43 10195.86 8298.44 2568.42 31499.39 10596.31 2894.85 17098.71 111
VDDNet93.05 14592.07 15696.02 11696.84 15290.39 15898.08 4295.85 25686.22 26695.79 8598.46 2367.59 31799.19 11994.92 7594.85 17098.47 127
MVSFormer95.37 7795.16 7795.99 11896.34 18091.21 12898.22 3297.57 13391.42 13096.22 6897.32 10986.20 12697.92 24594.07 9199.05 7798.85 100
CDS-MVSNet94.14 11093.54 11395.93 11996.18 18791.46 11996.33 20397.04 19688.97 19793.56 12896.51 15387.55 10597.89 24989.80 16795.95 15198.44 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS93.21 13992.32 15295.91 12094.92 25094.15 4296.92 15196.86 21491.42 13091.28 18096.43 15779.66 23298.10 21293.29 11090.06 23895.46 238
API-MVS94.84 9694.49 9495.90 12197.90 11192.00 10497.80 6297.48 14189.19 19094.81 10796.71 13588.84 8799.17 12288.91 19198.76 8796.53 197
HyFIR lowres test93.66 12692.92 13095.87 12298.24 8989.88 16894.58 26998.49 1285.06 28093.78 12595.78 18982.86 17398.67 16991.77 13695.71 15899.07 79
Test_1112_low_res92.84 15791.84 16595.85 12397.04 14889.97 16695.53 24596.64 22985.38 27489.65 21995.18 21585.86 13099.10 12987.70 21093.58 19298.49 124
PVSNet_Blended94.87 9594.56 9095.81 12498.27 8589.46 18295.47 24798.36 1688.84 20294.36 11396.09 17488.02 9699.58 6993.44 10698.18 10298.40 135
Anonymous20240521192.07 18390.83 20195.76 12598.19 9688.75 20597.58 8795.00 29086.00 26993.64 12797.45 10566.24 32499.53 8590.68 15692.71 19799.01 84
EPP-MVSNet95.22 8395.04 8095.76 12597.49 12989.56 17598.67 597.00 20090.69 15294.24 11697.62 9589.79 8198.81 15693.39 10996.49 14598.92 93
xiu_mvs_v1_base_debu95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base_debi95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
Anonymous2024052991.98 18590.73 20495.73 13098.14 9989.40 18497.99 4697.72 11879.63 32393.54 13097.41 10769.94 30899.56 7991.04 15291.11 22498.22 143
EIA-MVS95.53 7595.47 6795.71 13197.06 14589.63 17197.82 6097.87 10493.57 6093.92 12395.04 22090.61 7098.95 14594.62 8598.68 8998.54 117
MVS_Test94.89 9494.62 8895.68 13296.83 15489.55 17696.70 17097.17 18091.17 14295.60 9496.11 17387.87 10098.76 16193.01 11797.17 13298.72 109
TAMVS94.01 11693.46 11795.64 13396.16 18990.45 15596.71 16996.89 21089.27 18893.46 13396.92 12887.29 11197.94 24188.70 19595.74 15698.53 118
ET-MVSNet_ETH3D91.49 20190.11 22995.63 13496.40 17791.57 11695.34 25193.48 32190.60 16175.58 33295.49 20680.08 22396.79 31294.25 8889.76 24298.52 119
diffmvs95.25 8195.13 7895.63 13496.43 17689.34 18795.99 22697.35 16892.83 9096.31 6597.37 10886.44 12198.67 16996.26 2997.19 13198.87 99
UniMVSNet (Re)93.31 13692.55 14395.61 13695.39 21893.34 6997.39 10598.71 593.14 7790.10 20594.83 22987.71 10198.03 22791.67 14283.99 30295.46 238
Fast-Effi-MVS+93.46 13292.75 13595.59 13796.77 15790.03 16096.81 16297.13 18388.19 22191.30 17794.27 25986.21 12598.63 17287.66 21596.46 14798.12 147
PatchMatch-RL92.90 15392.02 15995.56 13898.19 9690.80 14595.27 25797.18 17887.96 22991.86 16795.68 19680.44 21698.99 14284.01 26997.54 11796.89 189
TAPA-MVS90.10 792.30 17391.22 18995.56 13898.33 8189.60 17396.79 16397.65 12681.83 31091.52 17097.23 11487.94 9898.91 14971.31 33198.37 9798.17 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 15891.90 16395.55 14097.20 13590.77 14797.19 12794.58 30592.20 10792.36 15596.34 16384.16 15198.21 19989.20 18683.90 30697.68 168
NR-MVSNet92.34 17091.27 18695.53 14194.95 24893.05 7497.39 10598.07 7092.65 9784.46 30295.71 19385.00 14097.77 26089.71 16983.52 30995.78 224
MVS91.71 19090.44 21395.51 14295.20 23791.59 11496.04 22197.45 15273.44 33687.36 27495.60 19985.42 13599.10 12985.97 24697.46 11895.83 221
VPA-MVSNet93.24 13892.48 14895.51 14295.70 20792.39 9197.86 5598.66 992.30 10492.09 16395.37 20980.49 21598.40 18793.95 9485.86 27695.75 228
thisisatest053093.03 14692.21 15495.49 14497.07 14289.11 19997.49 9792.19 32990.16 16994.09 11896.41 15976.43 27199.05 13890.38 15895.68 15998.31 141
PS-MVSNAJ95.37 7795.33 7395.49 14497.35 13090.66 15095.31 25497.48 14193.85 5296.51 5795.70 19588.65 9099.65 5394.80 8198.27 9996.17 206
DU-MVS92.90 15392.04 15795.49 14494.95 24892.83 7997.16 13098.24 3593.02 8090.13 20195.71 19383.47 15897.85 25191.71 13883.93 30395.78 224
UniMVSNet_NR-MVSNet93.37 13492.67 13895.47 14795.34 22492.83 7997.17 12998.58 1092.98 8690.13 20195.80 18588.37 9597.85 25191.71 13883.93 30395.73 230
testdata95.46 14898.18 9888.90 20397.66 12482.73 30597.03 4498.07 5990.06 7798.85 15389.67 17198.98 8098.64 114
xiu_mvs_v2_base95.32 7995.29 7495.40 14997.22 13390.50 15395.44 24897.44 15693.70 5896.46 6196.18 16888.59 9399.53 8594.79 8397.81 11196.17 206
F-COLMAP93.58 12992.98 12895.37 15098.40 7488.98 20197.18 12897.29 17387.75 23990.49 19097.10 12085.21 13799.50 9286.70 23296.72 14097.63 169
FIs94.09 11293.70 10795.27 15195.70 20792.03 10298.10 3998.68 793.36 6990.39 19396.70 13787.63 10497.94 24192.25 12390.50 23595.84 220
thisisatest051592.29 17491.30 18495.25 15296.60 16288.90 20394.36 27892.32 32887.92 23093.43 13494.57 24177.28 26599.00 14189.42 17795.86 15497.86 159
PAPM91.52 20090.30 21995.20 15395.30 23089.83 16993.38 30496.85 21586.26 26588.59 24795.80 18584.88 14198.15 20675.67 31995.93 15297.63 169
thres600view792.49 16591.60 17295.18 15497.91 11089.47 18097.65 8094.66 30292.18 11193.33 13694.91 22478.06 25899.10 12981.61 28794.06 18496.98 184
DeepPCF-MVS93.97 196.61 4697.09 1295.15 15598.09 10186.63 25596.00 22598.15 5295.43 697.95 1998.56 1793.40 1699.36 10896.77 1799.48 3599.45 44
131492.81 15992.03 15895.14 15695.33 22789.52 17996.04 22197.44 15687.72 24086.25 28995.33 21083.84 15498.79 15789.26 18297.05 13497.11 182
TranMVSNet+NR-MVSNet92.50 16391.63 17195.14 15694.76 25992.07 10097.53 9198.11 6092.90 8989.56 22296.12 17183.16 16397.60 27489.30 18083.20 31295.75 228
thres40092.42 16791.52 17695.12 15897.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.98 184
FC-MVSNet-test93.94 11893.57 11195.04 15995.48 21591.45 12098.12 3898.71 593.37 6790.23 19696.70 13787.66 10297.85 25191.49 14490.39 23695.83 221
FMVSNet391.78 18990.69 20695.03 16096.53 16992.27 9497.02 13996.93 20489.79 17989.35 22894.65 23877.01 26697.47 28586.12 24288.82 24895.35 249
VPNet92.23 17891.31 18394.99 16195.56 21190.96 13997.22 12597.86 10792.96 8790.96 18596.62 14975.06 27998.20 20191.90 13283.65 30895.80 223
FMVSNet291.31 21290.08 23094.99 16196.51 17092.21 9597.41 10196.95 20288.82 20488.62 24694.75 23373.87 28597.42 29085.20 25788.55 25495.35 249
thres100view90092.43 16691.58 17394.98 16397.92 10989.37 18697.71 7494.66 30292.20 10793.31 13794.90 22578.06 25899.08 13481.40 29094.08 18196.48 200
BH-RMVSNet92.72 16191.97 16194.97 16497.16 13787.99 22596.15 21795.60 26490.62 15891.87 16697.15 11878.41 25298.57 17883.16 27597.60 11698.36 139
MSDG91.42 20490.24 22394.96 16597.15 13988.91 20293.69 29796.32 24185.72 27286.93 28396.47 15580.24 22098.98 14380.57 29695.05 16996.98 184
tfpn200view992.38 16991.52 17694.95 16697.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.48 200
XXY-MVS92.16 18091.23 18894.95 16694.75 26090.94 14097.47 9897.43 15989.14 19188.90 23896.43 15779.71 23098.24 19689.56 17487.68 25995.67 232
Vis-MVSNet (Re-imp)94.15 10893.88 10394.95 16697.61 12487.92 22698.10 3995.80 25892.22 10593.02 14297.45 10584.53 14697.91 24888.24 19997.97 10799.02 80
tttt051792.96 14992.33 15194.87 16997.11 14087.16 24397.97 4992.09 33090.63 15793.88 12497.01 12476.50 26899.06 13790.29 16195.45 16198.38 137
OPM-MVS93.28 13792.76 13394.82 17094.63 26690.77 14796.65 17597.18 17893.72 5691.68 16897.26 11279.33 23798.63 17292.13 12792.28 20395.07 262
HQP_MVS93.78 12393.43 11994.82 17096.21 18489.99 16397.74 6797.51 13994.85 2491.34 17496.64 14281.32 20398.60 17593.02 11592.23 20495.86 217
XVG-OURS-SEG-HR93.86 12093.55 11294.81 17297.06 14588.53 21095.28 25597.45 15291.68 12294.08 11997.68 8782.41 18598.90 15093.84 9992.47 20196.98 184
XVG-OURS93.72 12593.35 12294.80 17397.07 14288.61 20894.79 26597.46 14691.97 11793.99 12097.86 7381.74 19898.88 15292.64 11992.67 19996.92 188
IB-MVS87.33 1789.91 25688.28 26794.79 17495.26 23487.70 23295.12 26293.95 31889.35 18687.03 28092.49 30270.74 30299.19 11989.18 18781.37 31997.49 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 17091.53 17594.77 17595.13 24090.83 14496.40 19597.98 9491.88 11889.29 23195.54 20482.50 18297.80 25689.79 16885.27 28495.69 231
thres20092.23 17891.39 17994.75 17697.61 12489.03 20096.60 18295.09 28792.08 11393.28 13894.00 27178.39 25399.04 14081.26 29494.18 18096.19 205
UniMVSNet_ETH3D91.34 21190.22 22694.68 17794.86 25587.86 22997.23 12497.46 14687.99 22889.90 21096.92 12866.35 32298.23 19790.30 16090.99 22797.96 152
GA-MVS91.38 20690.31 21894.59 17894.65 26487.62 23394.34 27996.19 24790.73 15190.35 19493.83 27571.84 29497.96 23887.22 22593.61 19098.21 144
GBi-Net91.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
test191.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
FMVSNet189.88 25888.31 26694.59 17895.41 21791.18 13297.50 9396.93 20486.62 26087.41 27294.51 24365.94 32697.29 29783.04 27787.43 26295.31 251
cascas91.20 21790.08 23094.58 18294.97 24689.16 19893.65 29997.59 13279.90 32289.40 22692.92 29675.36 27898.36 19092.14 12694.75 17496.23 203
HQP-MVS93.19 14192.74 13694.54 18395.86 19989.33 18896.65 17597.39 16293.55 6190.14 19795.87 18080.95 20698.50 18292.13 12792.10 20995.78 224
PVSNet_BlendedMVS94.06 11393.92 10294.47 18498.27 8589.46 18296.73 16798.36 1690.17 16894.36 11395.24 21488.02 9699.58 6993.44 10690.72 23194.36 298
gg-mvs-nofinetune87.82 28185.61 28994.44 18594.46 27189.27 19491.21 32384.61 34680.88 31689.89 21274.98 33971.50 29697.53 28085.75 25097.21 13096.51 198
PS-MVSNAJss93.74 12493.51 11594.44 18593.91 28789.28 19397.75 6697.56 13692.50 10089.94 20996.54 15288.65 9098.18 20493.83 10090.90 22995.86 217
PMMVS92.86 15592.34 15094.42 18794.92 25086.73 25194.53 27196.38 23984.78 28594.27 11595.12 21983.13 16598.40 18791.47 14596.49 14598.12 147
MVSTER93.20 14092.81 13294.37 18896.56 16789.59 17497.06 13597.12 18491.24 13991.30 17795.96 17682.02 19298.05 22393.48 10590.55 23395.47 237
ACMM89.79 892.96 14992.50 14794.35 18996.30 18288.71 20697.58 8797.36 16791.40 13390.53 18996.65 14179.77 22998.75 16291.24 15091.64 21495.59 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 14292.72 13794.34 19096.71 16087.27 23790.29 32897.72 11886.61 26191.34 17495.29 21184.29 15098.41 18693.25 11198.94 8297.35 180
CLD-MVS92.98 14892.53 14594.32 19196.12 19389.20 19595.28 25597.47 14492.66 9689.90 21095.62 19880.58 21398.40 18792.73 11892.40 20295.38 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 24189.42 25194.27 19298.24 8989.19 19798.05 4497.89 10079.95 32188.25 25694.96 22172.56 29298.13 20789.70 17085.14 28695.49 234
testing_287.33 28585.03 29394.22 19387.77 33989.32 19094.97 26397.11 18689.22 18971.64 33588.73 32555.16 34097.94 24191.95 13188.73 25295.41 241
LTVRE_ROB88.41 1390.99 22689.92 23694.19 19496.18 18789.55 17696.31 20597.09 18987.88 23285.67 29395.91 17978.79 24898.57 17881.50 28889.98 23994.44 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 23089.85 23994.17 19593.34 30490.79 14694.60 26896.02 25184.62 28687.45 27095.15 21681.88 19697.45 28787.70 21087.87 25894.27 303
TR-MVS91.48 20290.59 20994.16 19696.40 17787.33 23595.67 23895.34 27687.68 24191.46 17195.52 20576.77 26798.35 19182.85 27993.61 19096.79 193
LPG-MVS_test92.94 15192.56 14294.10 19796.16 18988.26 21697.65 8097.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
LGP-MVS_train94.10 19796.16 18988.26 21697.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
mvs_anonymous93.82 12193.74 10694.06 19996.44 17585.41 27395.81 23497.05 19489.85 17690.09 20696.36 16287.44 10997.75 26193.97 9396.69 14199.02 80
ACMP89.59 1092.62 16292.14 15594.05 20096.40 17788.20 21997.36 10897.25 17691.52 12588.30 25396.64 14278.46 25198.72 16691.86 13591.48 21895.23 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax92.42 16791.89 16494.03 20193.33 30588.50 21197.73 6997.53 13792.00 11688.85 24196.50 15475.62 27798.11 21193.88 9891.56 21795.48 235
test_djsdf93.07 14492.76 13394.00 20293.49 30088.70 20798.22 3297.57 13391.42 13090.08 20795.55 20382.85 17497.92 24594.07 9191.58 21695.40 245
AllTest90.23 25088.98 25893.98 20397.94 10786.64 25296.51 18795.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
TestCases93.98 20397.94 10786.64 25295.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
anonymousdsp92.16 18091.55 17493.97 20592.58 31789.55 17697.51 9297.42 16089.42 18488.40 25094.84 22880.66 21297.88 25091.87 13491.28 22294.48 294
pm-mvs190.72 23889.65 24993.96 20694.29 27989.63 17197.79 6396.82 21789.07 19286.12 29195.48 20778.61 24997.78 25886.97 23081.67 31794.46 295
WR-MVS_H92.00 18491.35 18093.95 20795.09 24289.47 18098.04 4598.68 791.46 12888.34 25194.68 23685.86 13097.56 27685.77 24984.24 30094.82 279
CR-MVSNet90.82 23389.77 24393.95 20794.45 27287.19 24190.23 32995.68 26286.89 25792.40 15292.36 30780.91 20897.05 30181.09 29593.95 18597.60 174
RPMNet88.52 27486.72 28393.95 20794.45 27287.19 24190.23 32994.99 29277.87 33192.40 15287.55 33280.17 22297.05 30168.84 33593.95 18597.60 174
mvs_tets92.31 17291.76 16693.94 21093.41 30288.29 21497.63 8597.53 13792.04 11488.76 24496.45 15674.62 28198.09 21693.91 9691.48 21895.45 240
baseline291.63 19390.86 19793.94 21094.33 27686.32 25895.92 22991.64 33489.37 18586.94 28294.69 23581.62 20098.69 16788.64 19694.57 17796.81 192
BH-untuned92.94 15192.62 14093.92 21297.22 13386.16 26496.40 19596.25 24590.06 17189.79 21496.17 17083.19 16298.35 19187.19 22697.27 12897.24 181
ACMH87.59 1690.53 24389.42 25193.87 21396.21 18487.92 22697.24 11996.94 20388.45 21583.91 31096.27 16671.92 29398.62 17484.43 26689.43 24495.05 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 18891.18 19193.83 21495.59 20984.95 27994.72 26695.58 26690.82 14892.25 15993.69 28175.80 27498.10 21286.20 23995.98 15098.45 129
CP-MVSNet91.89 18791.24 18793.82 21595.05 24388.57 20997.82 6098.19 4591.70 12188.21 25795.76 19081.96 19397.52 28287.86 20584.65 29395.37 248
v2v48291.59 19490.85 19993.80 21693.87 28988.17 22196.94 15096.88 21189.54 18089.53 22394.90 22581.70 19998.02 22889.25 18385.04 29095.20 259
COLMAP_ROBcopyleft87.81 1590.40 24689.28 25493.79 21797.95 10687.13 24496.92 15195.89 25582.83 30486.88 28597.18 11573.77 28899.29 11378.44 30993.62 18994.95 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4291.58 19690.87 19693.73 21894.05 28488.50 21197.32 11296.97 20188.80 20789.71 21594.33 25482.54 18198.05 22389.01 18985.07 28894.64 292
PVSNet86.66 1892.24 17791.74 16993.73 21897.77 11683.69 29492.88 31296.72 22087.91 23193.00 14394.86 22778.51 25099.05 13886.53 23397.45 12298.47 127
MIMVSNet88.50 27586.76 28193.72 22094.84 25687.77 23191.39 32194.05 31586.41 26387.99 26392.59 30163.27 33095.82 32277.44 31192.84 19697.57 176
Patchmatch-test89.42 26387.99 26993.70 22195.27 23185.11 27588.98 33594.37 31081.11 31487.10 27993.69 28182.28 18797.50 28374.37 32294.76 17398.48 126
PS-CasMVS91.55 19890.84 20093.69 22294.96 24788.28 21597.84 5998.24 3591.46 12888.04 26195.80 18579.67 23197.48 28487.02 22984.54 29795.31 251
v114491.37 20890.60 20893.68 22393.89 28888.23 21896.84 15897.03 19888.37 21789.69 21794.39 25082.04 19197.98 23187.80 20785.37 28294.84 276
GG-mvs-BLEND93.62 22493.69 29489.20 19592.39 31983.33 34787.98 26489.84 32271.00 30096.87 31082.08 28695.40 16294.80 282
tfpnnormal89.70 26188.40 26593.60 22595.15 23890.10 15997.56 8998.16 5187.28 25186.16 29094.63 23977.57 26398.05 22374.48 32084.59 29692.65 320
PatchmatchNetpermissive91.91 18691.35 18093.59 22695.38 21984.11 28893.15 30895.39 27089.54 18092.10 16293.68 28382.82 17598.13 20784.81 26095.32 16398.52 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 22290.23 22493.58 22793.70 29387.82 23096.73 16797.07 19187.77 23789.58 22094.32 25680.90 21097.97 23486.52 23485.48 28094.95 266
v891.29 21490.53 21293.57 22894.15 28088.12 22397.34 10997.06 19388.99 19588.32 25294.26 26183.08 16698.01 22987.62 21783.92 30594.57 293
ADS-MVSNet89.89 25788.68 26293.53 22995.86 19984.89 28090.93 32495.07 28883.23 30291.28 18091.81 31479.01 24497.85 25179.52 30191.39 22097.84 160
v1091.04 22490.23 22493.49 23094.12 28188.16 22297.32 11297.08 19088.26 22088.29 25494.22 26482.17 19097.97 23486.45 23684.12 30194.33 299
EI-MVSNet93.03 14692.88 13193.48 23195.77 20486.98 24696.44 18897.12 18490.66 15591.30 17797.64 9386.56 11898.05 22389.91 16490.55 23395.41 241
PEN-MVS91.20 21790.44 21393.48 23194.49 27087.91 22897.76 6598.18 4791.29 13587.78 26695.74 19280.35 21897.33 29585.46 25382.96 31395.19 260
mvs-test193.63 12793.69 10893.46 23396.02 19684.61 28397.24 11996.72 22093.85 5292.30 15895.76 19083.08 16698.89 15191.69 14096.54 14496.87 190
v7n90.76 23489.86 23893.45 23493.54 29787.60 23497.70 7597.37 16588.85 20187.65 26894.08 26981.08 20598.10 21284.68 26283.79 30794.66 291
v14419291.06 22390.28 22093.39 23593.66 29587.23 24096.83 15997.07 19187.43 24689.69 21794.28 25881.48 20198.00 23087.18 22784.92 29294.93 270
DWT-MVSNet_test90.76 23489.89 23793.38 23695.04 24483.70 29395.85 23294.30 31388.19 22190.46 19192.80 29773.61 28998.50 18288.16 20090.58 23297.95 154
EPMVS90.70 23989.81 24193.37 23794.73 26184.21 28693.67 29888.02 34189.50 18292.38 15493.49 28877.82 26297.78 25886.03 24592.68 19898.11 150
IterMVS-LS92.29 17491.94 16293.34 23896.25 18386.97 24796.57 18697.05 19490.67 15389.50 22594.80 23186.59 11797.64 26989.91 16486.11 27595.40 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 18291.75 16793.31 23996.99 14985.73 26895.67 23895.69 26088.73 20989.26 23394.82 23082.97 17198.07 22085.26 25696.32 14896.13 210
v192192090.85 23290.03 23493.29 24093.55 29686.96 24896.74 16697.04 19687.36 24889.52 22494.34 25380.23 22197.97 23486.27 23785.21 28594.94 268
ACMH+87.92 1490.20 25189.18 25693.25 24196.48 17386.45 25796.99 14496.68 22688.83 20384.79 30196.22 16770.16 30798.53 18084.42 26788.04 25694.77 287
v124090.70 23989.85 23993.23 24293.51 29986.80 24996.61 18097.02 19987.16 25389.58 22094.31 25779.55 23497.98 23185.52 25285.44 28194.90 273
PatchT88.87 26987.42 27493.22 24394.08 28385.10 27689.51 33394.64 30481.92 30992.36 15588.15 33080.05 22497.01 30672.43 32793.65 18897.54 177
Fast-Effi-MVS+-dtu92.29 17491.99 16093.21 24495.27 23185.52 27197.03 13696.63 23292.09 11289.11 23695.14 21780.33 21998.08 21787.54 21994.74 17596.03 214
miper_enhance_ethall91.54 19991.01 19393.15 24595.35 22387.07 24593.97 29096.90 20886.79 25989.17 23593.43 29286.55 11997.64 26989.97 16386.93 26694.74 288
cl-mvsnet291.21 21690.56 21193.14 24696.09 19586.80 24994.41 27696.58 23587.80 23588.58 24893.99 27280.85 21197.62 27289.87 16686.93 26694.99 265
XVG-ACMP-BASELINE90.93 23090.21 22793.09 24794.31 27885.89 26695.33 25297.26 17491.06 14689.38 22795.44 20868.61 31298.60 17589.46 17691.05 22594.79 284
TransMVSNet (Re)88.94 26687.56 27393.08 24894.35 27588.45 21397.73 6995.23 28187.47 24584.26 30595.29 21179.86 22897.33 29579.44 30574.44 33393.45 315
DTE-MVSNet90.56 24289.75 24593.01 24993.95 28587.25 23897.64 8497.65 12690.74 15087.12 27795.68 19679.97 22697.00 30783.33 27481.66 31894.78 286
EPNet_dtu91.71 19091.28 18592.99 25093.76 29283.71 29296.69 17295.28 27793.15 7687.02 28195.95 17783.37 16197.38 29379.46 30496.84 13597.88 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19491.13 19292.97 25195.55 21286.57 25694.47 27296.88 21187.77 23788.88 24094.01 27086.22 12497.54 27889.49 17586.93 26694.79 284
Baseline_NR-MVSNet91.20 21790.62 20792.95 25293.83 29088.03 22497.01 14395.12 28688.42 21689.70 21695.13 21883.47 15897.44 28889.66 17283.24 31193.37 316
cl-mvsnet_90.96 22990.32 21792.89 25395.37 22186.21 26294.46 27496.64 22987.82 23388.15 25994.18 26582.98 17097.54 27887.70 21085.59 27894.92 272
cl-mvsnet190.97 22890.33 21692.88 25495.36 22286.19 26394.46 27496.63 23287.82 23388.18 25894.23 26282.99 16997.53 28087.72 20885.57 27994.93 270
cl_fuxian91.38 20690.89 19592.88 25495.58 21086.30 25994.68 26796.84 21688.17 22388.83 24394.23 26285.65 13397.47 28589.36 17884.63 29494.89 274
pmmvs589.86 25988.87 26092.82 25692.86 31186.23 26196.26 20995.39 27084.24 29087.12 27794.51 24374.27 28397.36 29487.61 21887.57 26094.86 275
v14890.99 22690.38 21592.81 25793.83 29085.80 26796.78 16596.68 22689.45 18388.75 24593.93 27482.96 17297.82 25587.83 20683.25 31094.80 282
Patchmtry88.64 27387.25 27692.78 25894.09 28286.64 25289.82 33295.68 26280.81 31887.63 26992.36 30780.91 20897.03 30378.86 30785.12 28794.67 290
MVP-Stereo90.74 23790.08 23092.71 25993.19 30788.20 21995.86 23196.27 24386.07 26884.86 30094.76 23277.84 26197.75 26183.88 27298.01 10692.17 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 28286.19 28592.69 26091.32 32586.30 25997.34 10996.41 23880.59 32084.05 30994.37 25267.37 31997.67 26684.75 26179.51 32494.09 307
Effi-MVS+-dtu93.08 14393.21 12592.68 26196.02 19683.25 29797.14 13396.72 22093.85 5291.20 18493.44 29083.08 16698.30 19491.69 14095.73 15796.50 199
CostFormer91.18 22190.70 20592.62 26294.84 25681.76 30794.09 28894.43 30784.15 29192.72 15093.77 27979.43 23598.20 20190.70 15592.18 20797.90 156
MVS_030488.79 27087.57 27292.46 26394.65 26486.15 26596.40 19597.17 18086.44 26288.02 26291.71 31656.68 33897.03 30384.47 26592.58 20094.19 304
LCM-MVSNet-Re92.50 16392.52 14692.44 26496.82 15581.89 30696.92 15193.71 31992.41 10284.30 30494.60 24085.08 13997.03 30391.51 14397.36 12498.40 135
ITE_SJBPF92.43 26595.34 22485.37 27495.92 25391.47 12787.75 26796.39 16171.00 30097.96 23882.36 28489.86 24193.97 308
RRT_test8_iter0591.19 22090.78 20292.41 26695.76 20683.14 29897.32 11297.46 14691.37 13489.07 23795.57 20070.33 30498.21 19993.56 10286.62 27195.89 216
D2MVS91.30 21390.95 19492.35 26794.71 26285.52 27196.18 21698.21 4188.89 20086.60 28693.82 27779.92 22797.95 24089.29 18190.95 22893.56 312
eth_miper_zixun_eth91.02 22590.59 20992.34 26895.33 22784.35 28494.10 28796.90 20888.56 21388.84 24294.33 25484.08 15297.60 27488.77 19484.37 29995.06 263
USDC88.94 26687.83 27192.27 26994.66 26384.96 27893.86 29295.90 25487.34 24983.40 31295.56 20267.43 31898.19 20382.64 28389.67 24393.66 311
tpm289.96 25589.21 25592.23 27094.91 25381.25 30993.78 29494.42 30880.62 31991.56 16993.44 29076.44 27097.94 24185.60 25192.08 21197.49 178
test-LLR91.42 20491.19 19092.12 27194.59 26780.66 31294.29 28292.98 32491.11 14490.76 18792.37 30479.02 24298.07 22088.81 19296.74 13897.63 169
test-mter90.19 25289.54 25092.12 27194.59 26780.66 31294.29 28292.98 32487.68 24190.76 18792.37 30467.67 31698.07 22088.81 19296.74 13897.63 169
ADS-MVSNet289.45 26288.59 26392.03 27395.86 19982.26 30590.93 32494.32 31283.23 30291.28 18091.81 31479.01 24495.99 31979.52 30191.39 22097.84 160
TESTMET0.1,190.06 25489.42 25191.97 27494.41 27480.62 31494.29 28291.97 33287.28 25190.44 19292.47 30368.79 31197.67 26688.50 19896.60 14397.61 173
JIA-IIPM88.26 27887.04 28091.91 27593.52 29881.42 30889.38 33494.38 30980.84 31790.93 18680.74 33779.22 23897.92 24582.76 28091.62 21596.38 202
tpmvs89.83 26089.15 25791.89 27694.92 25080.30 31893.11 30995.46 26986.28 26488.08 26092.65 29980.44 21698.52 18181.47 28989.92 24096.84 191
TDRefinement86.53 29084.76 29691.85 27782.23 34384.25 28596.38 19895.35 27384.97 28284.09 30894.94 22265.76 32798.34 19384.60 26474.52 33292.97 317
miper_lstm_enhance90.50 24590.06 23391.83 27895.33 22783.74 29093.86 29296.70 22587.56 24487.79 26593.81 27883.45 16096.92 30987.39 22184.62 29594.82 279
IterMVS-SCA-FT90.31 24789.81 24191.82 27995.52 21384.20 28794.30 28196.15 24890.61 15987.39 27394.27 25975.80 27496.44 31587.34 22286.88 27094.82 279
tpm cat188.36 27687.21 27891.81 28095.13 24080.55 31592.58 31695.70 25974.97 33387.45 27091.96 31278.01 26098.17 20580.39 29888.74 25196.72 195
tpmrst91.44 20391.32 18291.79 28195.15 23879.20 32793.42 30395.37 27288.55 21493.49 13293.67 28482.49 18398.27 19590.41 15789.34 24597.90 156
MS-PatchMatch90.27 24889.77 24391.78 28294.33 27684.72 28295.55 24396.73 21986.17 26786.36 28895.28 21371.28 29897.80 25684.09 26898.14 10492.81 319
FMVSNet587.29 28685.79 28891.78 28294.80 25887.28 23695.49 24695.28 27784.09 29283.85 31191.82 31362.95 33194.17 33378.48 30885.34 28393.91 309
EG-PatchMatch MVS87.02 28885.44 29091.76 28492.67 31585.00 27796.08 22096.45 23783.41 30179.52 32693.49 28857.10 33797.72 26379.34 30690.87 23092.56 321
tpm90.25 24989.74 24691.76 28493.92 28679.73 32393.98 28993.54 32088.28 21991.99 16493.25 29377.51 26497.44 28887.30 22487.94 25798.12 147
IterMVS90.15 25389.67 24791.61 28695.48 21583.72 29194.33 28096.12 24989.99 17287.31 27694.15 26775.78 27696.27 31886.97 23086.89 26994.83 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 27787.29 27591.53 28792.45 31983.57 29593.75 29595.97 25284.28 28985.32 29894.18 26579.00 24696.93 30875.71 31884.99 29194.10 305
pmmvs-eth3d86.22 29384.45 29791.53 28788.34 33687.25 23894.47 27295.01 28983.47 30079.51 32789.61 32369.75 30995.71 32383.13 27676.73 32991.64 328
test_040286.46 29184.79 29591.45 28995.02 24585.55 27096.29 20794.89 29680.90 31582.21 31493.97 27368.21 31597.29 29762.98 33988.68 25391.51 330
OurMVSNet-221017-090.51 24490.19 22891.44 29093.41 30281.25 30996.98 14696.28 24291.68 12286.55 28796.30 16474.20 28497.98 23188.96 19087.40 26495.09 261
test0.0.03 189.37 26488.70 26191.41 29192.47 31885.63 26995.22 26092.70 32691.11 14486.91 28493.65 28579.02 24293.19 33878.00 31089.18 24695.41 241
TinyColmap86.82 28985.35 29291.21 29294.91 25382.99 29993.94 29194.02 31783.58 29881.56 31694.68 23662.34 33398.13 20775.78 31787.35 26592.52 322
our_test_388.78 27187.98 27091.20 29392.45 31982.53 30193.61 30195.69 26085.77 27184.88 29993.71 28079.99 22596.78 31379.47 30386.24 27294.28 302
MDA-MVSNet-bldmvs85.00 30082.95 30391.17 29493.13 30983.33 29694.56 27095.00 29084.57 28765.13 34092.65 29970.45 30395.85 32073.57 32577.49 32694.33 299
SixPastTwentyTwo89.15 26588.54 26490.98 29593.49 30080.28 31996.70 17094.70 30190.78 14984.15 30795.57 20071.78 29597.71 26484.63 26385.07 28894.94 268
PVSNet_082.17 1985.46 29983.64 30190.92 29695.27 23179.49 32490.55 32795.60 26483.76 29783.00 31389.95 32071.09 29997.97 23482.75 28160.79 34195.31 251
OpenMVS_ROBcopyleft81.14 2084.42 30282.28 30490.83 29790.06 32984.05 28995.73 23794.04 31673.89 33580.17 32591.53 31859.15 33597.64 26966.92 33789.05 24790.80 333
Patchmatch-RL test87.38 28486.24 28490.81 29888.74 33578.40 33088.12 33793.17 32387.11 25482.17 31589.29 32481.95 19495.60 32588.64 19677.02 32798.41 134
dp88.90 26888.26 26890.81 29894.58 26976.62 33292.85 31394.93 29585.12 27990.07 20893.07 29475.81 27398.12 21080.53 29787.42 26397.71 166
MDA-MVSNet_test_wron85.87 29684.23 29990.80 30092.38 32182.57 30093.17 30695.15 28482.15 30767.65 33792.33 31078.20 25495.51 32777.33 31279.74 32294.31 301
YYNet185.87 29684.23 29990.78 30192.38 32182.46 30393.17 30695.14 28582.12 30867.69 33692.36 30778.16 25795.50 32877.31 31379.73 32394.39 297
UnsupCasMVSNet_eth85.99 29584.45 29790.62 30289.97 33082.40 30493.62 30097.37 16589.86 17478.59 32992.37 30465.25 32895.35 32982.27 28570.75 33694.10 305
MIMVSNet184.93 30183.05 30290.56 30389.56 33384.84 28195.40 24995.35 27383.91 29380.38 32292.21 31157.23 33693.34 33770.69 33482.75 31693.50 313
lessismore_v090.45 30491.96 32479.09 32887.19 34480.32 32394.39 25066.31 32397.55 27784.00 27076.84 32894.70 289
RPSCF90.75 23690.86 19790.42 30596.84 15276.29 33395.61 24296.34 24083.89 29491.38 17297.87 7176.45 26998.78 15887.16 22892.23 20496.20 204
K. test v387.64 28386.75 28290.32 30693.02 31079.48 32596.61 18092.08 33190.66 15580.25 32494.09 26867.21 32096.65 31485.96 24780.83 32194.83 277
testgi87.97 27987.21 27890.24 30792.86 31180.76 31196.67 17494.97 29391.74 12085.52 29495.83 18362.66 33294.47 33276.25 31688.36 25595.48 235
UnsupCasMVSNet_bld82.13 30779.46 30990.14 30888.00 33782.47 30290.89 32696.62 23478.94 32675.61 33184.40 33556.63 33996.31 31777.30 31466.77 34091.63 329
LF4IMVS87.94 28087.25 27689.98 30992.38 32180.05 32294.38 27795.25 28087.59 24384.34 30394.74 23464.31 32997.66 26884.83 25987.45 26192.23 325
Anonymous2023120687.09 28786.14 28689.93 31091.22 32680.35 31696.11 21895.35 27383.57 29984.16 30693.02 29573.54 29095.61 32472.16 32886.14 27493.84 310
CVMVSNet91.23 21591.75 16789.67 31195.77 20474.69 33596.44 18894.88 29785.81 27092.18 16097.64 9379.07 23995.58 32688.06 20295.86 15498.74 107
test20.0386.14 29485.40 29188.35 31290.12 32880.06 32195.90 23095.20 28288.59 21081.29 31793.62 28671.43 29792.65 33971.26 33281.17 32092.34 324
PM-MVS83.48 30381.86 30688.31 31387.83 33877.59 33193.43 30291.75 33386.91 25680.63 32089.91 32144.42 34495.84 32185.17 25876.73 32991.50 331
EU-MVSNet88.72 27288.90 25988.20 31493.15 30874.21 33696.63 17994.22 31485.18 27787.32 27595.97 17576.16 27294.98 33085.27 25586.17 27395.41 241
new_pmnet82.89 30581.12 30888.18 31589.63 33280.18 32091.77 32092.57 32776.79 33275.56 33388.23 32961.22 33494.48 33171.43 33082.92 31489.87 335
CMPMVSbinary62.92 2185.62 29884.92 29487.74 31689.14 33473.12 33894.17 28596.80 21873.98 33473.65 33494.93 22366.36 32197.61 27383.95 27191.28 22292.48 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs379.97 30877.50 31187.39 31782.80 34279.38 32692.70 31590.75 33870.69 33778.66 32887.47 33351.34 34293.40 33673.39 32669.65 33889.38 336
new-patchmatchnet83.18 30481.87 30587.11 31886.88 34075.99 33493.70 29695.18 28385.02 28177.30 33088.40 32765.99 32593.88 33574.19 32470.18 33791.47 332
DSMNet-mixed86.34 29286.12 28787.00 31989.88 33170.43 33994.93 26490.08 33977.97 33085.42 29792.78 29874.44 28293.96 33474.43 32195.14 16596.62 196
ambc86.56 32083.60 34170.00 34185.69 33994.97 29380.60 32188.45 32637.42 34596.84 31182.69 28275.44 33192.86 318
MVS-HIRNet82.47 30681.21 30786.26 32195.38 21969.21 34288.96 33689.49 34066.28 33880.79 31974.08 34168.48 31397.39 29271.93 32995.47 16092.18 326
LCM-MVSNet72.55 31069.39 31382.03 32270.81 34965.42 34590.12 33194.36 31155.02 34265.88 33981.72 33624.16 35289.96 34074.32 32368.10 33990.71 334
PMMVS270.19 31266.92 31480.01 32376.35 34465.67 34486.22 33887.58 34364.83 34062.38 34180.29 33826.78 35088.49 34263.79 33854.07 34285.88 337
N_pmnet78.73 30978.71 31078.79 32492.80 31346.50 35194.14 28643.71 35478.61 32780.83 31891.66 31774.94 28096.36 31667.24 33684.45 29893.50 313
ANet_high63.94 31459.58 31677.02 32561.24 35166.06 34385.66 34087.93 34278.53 32842.94 34571.04 34225.42 35180.71 34552.60 34230.83 34584.28 338
FPMVS71.27 31169.85 31275.50 32674.64 34559.03 34791.30 32291.50 33558.80 34157.92 34288.28 32829.98 34885.53 34453.43 34182.84 31581.95 339
Gipumacopyleft67.86 31365.41 31575.18 32792.66 31673.45 33766.50 34694.52 30653.33 34357.80 34366.07 34330.81 34689.20 34148.15 34378.88 32562.90 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 32890.84 32764.34 34681.61 34965.34 33967.47 33888.01 33148.60 34380.13 34662.33 34073.68 33579.58 340
PMVScopyleft53.92 2258.58 31555.40 31768.12 32951.00 35248.64 34978.86 34387.10 34546.77 34435.84 34974.28 3408.76 35386.34 34342.07 34473.91 33469.38 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 31748.81 32166.58 33065.34 35057.50 34872.49 34570.94 35240.15 34739.28 34863.51 3446.89 35573.48 34938.29 34542.38 34368.76 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 31652.56 31955.43 33174.43 34647.13 35083.63 34276.30 35042.23 34542.59 34662.22 34528.57 34974.40 34731.53 34631.51 34444.78 344
EMVS52.08 31851.31 32054.39 33272.62 34845.39 35283.84 34175.51 35141.13 34640.77 34759.65 34630.08 34773.60 34828.31 34729.90 34644.18 345
tmp_tt51.94 31953.82 31846.29 33333.73 35345.30 35378.32 34467.24 35318.02 34850.93 34487.05 33452.99 34153.11 35070.76 33325.29 34740.46 346
wuyk23d25.11 32024.57 32326.74 33473.98 34739.89 35457.88 3479.80 35512.27 34910.39 3506.97 3527.03 35436.44 35125.43 34817.39 3483.89 349
test12313.04 32315.66 3255.18 3354.51 3553.45 35592.50 3181.81 3572.50 3517.58 35220.15 3493.67 3562.18 3537.13 3501.07 3509.90 347
testmvs13.36 32216.33 3244.48 3365.04 3542.26 35693.18 3053.28 3562.70 3508.24 35121.66 3482.29 3572.19 3527.58 3492.96 3499.00 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.26 330.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.24 32130.99 3220.00 3370.00 3560.00 3570.00 34897.63 1280.00 3520.00 35396.88 13084.38 1470.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.39 3259.85 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35388.65 900.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.06 32410.74 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35396.69 1390.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.42 695.39 997.94 9890.40 16698.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
9.1496.75 3198.93 4397.73 6998.23 3991.28 13897.88 2298.44 2593.00 2199.65 5395.76 4899.47 36
save fliter98.91 4594.28 3497.02 13998.02 8495.35 8
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 129
test_part299.28 2595.74 698.10 17
sam_mvs182.76 17698.45 129
sam_mvs81.94 195
MTGPAbinary98.08 65
test_post192.81 31416.58 35180.53 21497.68 26586.20 239
test_post17.58 35081.76 19798.08 217
patchmatchnet-post90.45 31982.65 18098.10 212
MTMP97.86 5582.03 348
gm-plane-assit93.22 30678.89 32984.82 28493.52 28798.64 17187.72 208
test9_res94.81 8099.38 4899.45 44
TEST998.70 5694.19 3996.41 19298.02 8488.17 22396.03 7497.56 10192.74 2499.59 66
test_898.67 5894.06 4896.37 19998.01 8788.58 21195.98 7997.55 10392.73 2599.58 69
agg_prior293.94 9599.38 4899.50 36
agg_prior98.67 5893.79 5498.00 8995.68 8999.57 77
test_prior493.66 5896.42 191
test_prior296.35 20092.80 9296.03 7497.59 9792.01 4095.01 7199.38 48
旧先验295.94 22881.66 31197.34 3198.82 15592.26 121
新几何295.79 235
旧先验198.38 7793.38 6697.75 11398.09 5892.30 3799.01 7999.16 67
无先验95.79 23597.87 10483.87 29699.65 5387.68 21398.89 97
原ACMM295.67 238
test22298.24 8992.21 9595.33 25297.60 13079.22 32595.25 10097.84 7788.80 8899.15 6998.72 109
testdata299.67 4985.96 247
segment_acmp92.89 22
testdata195.26 25993.10 79
plane_prior796.21 18489.98 165
plane_prior696.10 19490.00 16181.32 203
plane_prior597.51 13998.60 17593.02 11592.23 20495.86 217
plane_prior496.64 142
plane_prior390.00 16194.46 3991.34 174
plane_prior297.74 6794.85 24
plane_prior196.14 192
plane_prior89.99 16397.24 11994.06 4792.16 208
n20.00 358
nn0.00 358
door-mid91.06 337
test1197.88 102
door91.13 336
HQP5-MVS89.33 188
HQP-NCC95.86 19996.65 17593.55 6190.14 197
ACMP_Plane95.86 19996.65 17593.55 6190.14 197
BP-MVS92.13 127
HQP4-MVS90.14 19798.50 18295.78 224
HQP3-MVS97.39 16292.10 209
HQP2-MVS80.95 206
NP-MVS95.99 19889.81 17095.87 180
MDTV_nov1_ep13_2view70.35 34093.10 31083.88 29593.55 12982.47 18486.25 23898.38 137
MDTV_nov1_ep1390.76 20395.22 23580.33 31793.03 31195.28 27788.14 22692.84 14993.83 27581.34 20298.08 21782.86 27894.34 179
ACMMP++_ref90.30 237
ACMMP++91.02 226
Test By Simon88.73 89