This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14696.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16696.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13489.56 18198.67 597.00 20490.69 15694.24 12097.62 9989.79 8598.81 16093.39 11496.49 14998.92 96
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17393.36 6998.65 698.36 1694.12 4689.25 24098.06 6482.20 19399.77 2993.41 11399.32 5399.18 69
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19489.67 25397.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35791.70 5099.80 2795.66 5299.40 4599.62 13
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15695.34 1398.48 1597.87 10894.65 3688.53 25698.02 6783.69 16099.71 3893.18 11798.96 8599.44 47
IS-MVSNet94.90 9594.52 9696.05 11797.67 12590.56 15698.44 1696.22 25293.21 7593.99 12497.74 8785.55 13898.45 19089.98 16897.86 11399.14 73
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM93.45 13592.27 15696.98 7496.77 16392.62 8798.39 1998.12 5684.50 29888.27 26297.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24295.17 10698.03 6687.09 11899.61 6293.51 10999.42 4399.02 83
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20093.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
canonicalmvs96.02 6495.45 7197.75 3797.59 13195.15 2198.28 2597.60 13594.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 23092.73 8398.27 2698.12 5684.86 29385.78 29997.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
MVSFormer95.37 7995.16 8095.99 12096.34 18691.21 13398.22 3297.57 13891.42 13496.22 7297.32 11386.20 13097.92 25094.07 9699.05 8198.85 103
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13490.08 21395.55 20982.85 17897.92 25094.07 9691.58 22095.40 249
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17897.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
FC-MVSNet-test93.94 12093.57 11495.04 16295.48 22191.45 12598.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25691.49 14890.39 24095.83 225
CS-MVS95.80 7095.65 6696.24 11097.32 13691.43 12698.10 3997.91 10393.38 6995.16 10794.57 24890.21 7998.98 14795.53 6498.67 9498.30 145
FIs94.09 11493.70 11095.27 15495.70 21392.03 10798.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12890.50 23995.84 224
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16997.61 12987.92 23298.10 3995.80 26592.22 10993.02 14697.45 10984.53 15097.91 25388.24 20597.97 11199.02 83
VDDNet93.05 14792.07 15996.02 11896.84 15890.39 16398.08 4295.85 26386.22 27395.79 8998.46 2667.59 32699.19 12394.92 7894.85 17498.47 130
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121190.63 24689.42 25794.27 19898.24 9389.19 20298.05 4497.89 10479.95 33188.25 26394.96 22772.56 30098.13 21389.70 17685.14 29095.49 239
WR-MVS_H92.00 18791.35 18393.95 21295.09 24889.47 18698.04 4598.68 791.46 13288.34 25894.68 24385.86 13497.56 28285.77 25584.24 30494.82 284
test_part192.21 18291.10 19695.51 14497.80 11992.66 8598.02 4697.68 12789.79 18388.80 25096.02 18076.85 27498.18 20990.86 15784.11 30695.69 235
Anonymous2024052991.98 18890.73 20995.73 13298.14 10389.40 19097.99 4797.72 12279.63 33393.54 13497.41 11169.94 31799.56 8091.04 15691.11 22898.22 146
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
tttt051792.96 15192.33 15494.87 17297.11 14587.16 24997.97 5292.09 33990.63 16193.88 12897.01 12876.50 27699.06 14190.29 16795.45 16598.38 140
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16698.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 13097.94 5493.39 33190.57 16696.29 7098.31 4769.00 31999.16 12794.18 9595.87 15799.12 77
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
UGNet94.04 11793.28 12796.31 10396.85 15791.19 13697.88 5897.68 12794.40 4093.00 14796.18 17273.39 29999.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MTMP97.86 5982.03 357
alignmvs95.87 6995.23 7897.78 3397.56 13395.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21392.39 9397.86 5998.66 992.30 10792.09 16895.37 21580.49 21998.40 19293.95 9985.86 28095.75 232
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30896.64 192.46 15597.80 8486.23 12799.65 5393.72 10698.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS91.55 20290.84 20493.69 22694.96 25388.28 22197.84 6398.24 3491.46 13288.04 26895.80 19179.67 23597.48 29087.02 23584.54 30195.31 255
EIA-MVS95.53 7795.47 7095.71 13397.06 15089.63 17797.82 6497.87 10893.57 6193.92 12795.04 22690.61 7498.95 14994.62 8898.68 9398.54 120
CP-MVSNet91.89 19091.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12588.21 26495.76 19681.96 19797.52 28887.86 21184.65 29795.37 252
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10997.80 6697.48 14689.19 19694.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
pm-mvs190.72 24389.65 25593.96 21194.29 28589.63 17797.79 6796.82 22189.07 19886.12 29895.48 21378.61 25497.78 26486.97 23681.67 32294.46 300
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
PEN-MVS91.20 22290.44 21993.48 23594.49 27687.91 23497.76 6998.18 4691.29 13987.78 27395.74 19880.35 22297.33 30185.46 25982.96 31895.19 265
PS-MVSNAJss93.74 12693.51 11894.44 19093.91 29389.28 19897.75 7097.56 14192.50 10389.94 21596.54 15688.65 9498.18 20993.83 10590.90 23395.86 221
HQP_MVS93.78 12593.43 12294.82 17396.21 19089.99 16997.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 12092.23 20895.86 221
plane_prior297.74 7194.85 24
9.1496.75 3398.93 4797.73 7398.23 3891.28 14297.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 12088.85 24796.50 15875.62 28598.11 21793.88 10391.56 22195.48 240
TransMVSNet (Re)88.94 27287.56 27993.08 25294.35 28188.45 21997.73 7395.23 29087.47 25184.26 31395.29 21779.86 23297.33 30179.44 31274.44 33993.45 320
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17397.72 7695.85 26392.43 10495.86 8698.44 2868.42 32399.39 10996.31 2894.85 17498.71 114
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13098.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
thres100view90092.43 16891.58 17694.98 16697.92 11389.37 19297.71 7894.66 31092.20 11193.31 14194.90 23178.06 26599.08 13881.40 29694.08 18596.48 204
v7n90.76 23989.86 24493.45 23893.54 30387.60 24097.70 7997.37 17088.85 20787.65 27594.08 27681.08 20998.10 21884.68 26883.79 31294.66 296
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12897.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10397.67 8197.47 14988.13 23393.00 14795.84 18884.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D93.57 13292.61 14496.47 9197.59 13191.61 11797.67 8197.72 12285.17 28890.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
UA-Net95.95 6795.53 6797.20 6697.67 12592.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16597.35 12999.11 78
thres600view792.49 16791.60 17595.18 15797.91 11489.47 18697.65 8494.66 31092.18 11593.33 14094.91 23078.06 26599.10 13381.61 29394.06 18896.98 188
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10997.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19588.26 22297.65 8497.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
DTE-MVSNet90.56 24789.75 25193.01 25393.95 29187.25 24497.64 8897.65 13190.74 15487.12 28495.68 20279.97 23097.00 31283.33 28081.66 32394.78 291
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11888.76 25196.45 16074.62 28998.09 22293.91 10191.48 22295.45 245
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
Anonymous20240521192.07 18690.83 20595.76 12798.19 10088.75 21097.58 9195.00 29986.00 27693.64 13197.45 10966.24 33599.53 8890.68 16292.71 20199.01 87
ACMM89.79 892.96 15192.50 15094.35 19596.30 18888.71 21197.58 9197.36 17291.40 13790.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal89.70 26688.40 27193.60 22995.15 24490.10 16597.56 9398.16 5087.28 25786.16 29794.63 24677.57 27098.05 22974.48 33084.59 30092.65 329
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15994.76 26592.07 10597.53 9598.11 5992.90 9289.56 22896.12 17583.16 16797.60 28089.30 18683.20 31795.75 232
anonymousdsp92.16 18391.55 17793.97 21092.58 32389.55 18297.51 9697.42 16589.42 19088.40 25794.84 23480.66 21697.88 25591.87 13891.28 22694.48 299
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
GBi-Net91.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
test191.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
FMVSNet189.88 26388.31 27294.59 18395.41 22391.18 13797.50 9796.93 20886.62 26787.41 27994.51 25065.94 33797.29 30383.04 28387.43 26695.31 255
thisisatest053093.03 14892.21 15795.49 14797.07 14789.11 20497.49 10192.19 33890.16 17394.09 12296.41 16376.43 27999.05 14290.38 16495.68 16398.31 144
ETV-MVS96.02 6495.89 6296.40 9697.16 14292.44 9297.47 10297.77 11594.55 3796.48 6394.51 25091.23 6298.92 15195.65 5598.19 10597.82 166
XXY-MVS92.16 18391.23 19194.95 16994.75 26690.94 14597.47 10297.43 16489.14 19788.90 24496.43 16179.71 23498.24 20189.56 18087.68 26395.67 237
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11797.46 10497.96 10077.99 33993.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
tfpn200view992.38 17191.52 17994.95 16997.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.48 204
thres40092.42 16991.52 17995.12 16197.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.98 188
FMVSNet291.31 21790.08 23694.99 16496.51 17692.21 10097.41 10596.95 20688.82 21088.62 25394.75 23973.87 29397.42 29685.20 26388.55 25795.35 253
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22493.34 7097.39 10998.71 593.14 8090.10 21194.83 23587.71 10598.03 23391.67 14683.99 30795.46 243
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 31095.71 19985.00 14497.77 26689.71 17583.52 31495.78 228
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14297.38 11196.08 25782.38 31689.29 23797.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18388.20 22597.36 11297.25 18191.52 12988.30 26096.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs687.81 28786.19 29192.69 26491.32 33286.30 26597.34 11396.41 24480.59 33084.05 31894.37 25967.37 32897.67 27284.75 26779.51 32994.09 312
v891.29 21990.53 21893.57 23294.15 28688.12 22997.34 11397.06 19788.99 20188.32 25994.26 26883.08 17098.01 23587.62 22383.92 31094.57 298
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
v1091.04 22990.23 23093.49 23494.12 28788.16 22897.32 11697.08 19488.26 22688.29 26194.22 27182.17 19497.97 24086.45 24284.12 30594.33 304
V4291.58 20090.87 20093.73 22294.05 29088.50 21797.32 11696.97 20588.80 21389.71 22194.33 26182.54 18598.05 22989.01 19585.07 29294.64 297
RRT_test8_iter0591.19 22590.78 20692.41 27095.76 21283.14 30697.32 11697.46 15191.37 13889.07 24395.57 20670.33 31298.21 20493.56 10786.62 27595.89 220
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs95.64 7395.49 6996.08 11496.76 16590.45 16097.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12198.25 3390.21 17194.18 12197.27 11587.48 11299.73 3293.53 10897.77 11798.55 119
mvs-test193.63 12993.69 11193.46 23796.02 20284.61 29197.24 12396.72 22493.85 5292.30 16295.76 19683.08 17098.89 15591.69 14496.54 14896.87 194
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
plane_prior89.99 16997.24 12394.06 4792.16 212
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12397.73 11991.80 12392.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
ACMH87.59 1690.53 24889.42 25793.87 21796.21 19087.92 23297.24 12396.94 20788.45 22183.91 31996.27 17071.92 30198.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D91.34 21690.22 23294.68 18294.86 26187.86 23597.23 12897.46 15187.99 23489.90 21696.92 13266.35 33398.23 20290.30 16690.99 23197.96 155
VPNet92.23 18091.31 18694.99 16495.56 21790.96 14497.22 12997.86 11192.96 9090.96 19096.62 15375.06 28798.20 20691.90 13683.65 31395.80 227
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
baseline192.82 16091.90 16695.55 14297.20 14090.77 15297.19 13194.58 31392.20 11192.36 15996.34 16784.16 15598.21 20489.20 19283.90 31197.68 171
F-COLMAP93.58 13192.98 13195.37 15398.40 7888.98 20697.18 13297.29 17887.75 24590.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 15095.34 23092.83 8097.17 13398.58 1092.98 8990.13 20795.80 19188.37 9997.85 25691.71 14283.93 30895.73 234
DU-MVS92.90 15592.04 16095.49 14794.95 25492.83 8097.16 13498.24 3493.02 8390.13 20795.71 19983.47 16297.85 25691.71 14283.93 30895.78 228
baseline95.58 7595.42 7396.08 11496.78 16290.41 16297.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20283.25 30597.14 13796.72 22493.85 5291.20 18993.44 29783.08 17098.30 19991.69 14495.73 16196.50 203
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
MVSTER93.20 14292.81 13594.37 19496.56 17389.59 18097.06 13997.12 18991.24 14391.30 18295.96 18282.02 19698.05 22993.48 11090.55 23795.47 242
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23196.64 5597.70 8991.18 6399.67 4992.44 12599.47 3699.48 41
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23692.09 11689.11 24295.14 22380.33 22398.08 22387.54 22594.74 17996.03 218
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22495.09 10897.65 9489.97 8399.48 9892.08 13598.59 9798.44 135
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
CANet96.39 5596.02 5997.50 5097.62 12893.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
FMVSNet391.78 19290.69 21195.03 16396.53 17592.27 9997.02 14396.93 20889.79 18389.35 23494.65 24577.01 27397.47 29186.12 24888.82 25295.35 253
Baseline_NR-MVSNet91.20 22290.62 21292.95 25693.83 29688.03 23097.01 14795.12 29588.42 22289.70 22295.13 22483.47 16297.44 29489.66 17883.24 31693.37 321
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 18097.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
ACMH+87.92 1490.20 25689.18 26293.25 24596.48 17986.45 26396.99 14896.68 23088.83 20984.79 30996.22 17170.16 31598.53 18484.42 27388.04 25994.77 292
OurMVSNet-221017-090.51 24990.19 23491.44 29493.41 30881.25 31896.98 15096.28 24891.68 12686.55 29496.30 16874.20 29297.98 23788.96 19687.40 26895.09 266
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15795.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
v2v48291.59 19890.85 20393.80 22093.87 29588.17 22796.94 15496.88 21589.54 18689.53 22994.90 23181.70 20398.02 23489.25 18985.04 29495.20 264
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21891.42 13491.28 18596.43 16179.66 23698.10 21893.29 11590.06 24295.46 243
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16181.89 31496.92 15593.71 32792.41 10584.30 31294.60 24785.08 14397.03 30891.51 14797.36 12898.40 138
COLMAP_ROBcopyleft87.81 1590.40 25189.28 26093.79 22197.95 11087.13 25096.92 15595.89 26282.83 31486.88 29297.18 11973.77 29699.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
test_yl94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
v114491.37 21390.60 21393.68 22793.89 29488.23 22496.84 16297.03 20288.37 22389.69 22394.39 25782.04 19597.98 23787.80 21385.37 28694.84 281
v14419291.06 22890.28 22693.39 23993.66 30187.23 24696.83 16397.07 19587.43 25289.69 22394.28 26581.48 20598.00 23687.18 23384.92 29694.93 275
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16390.03 16696.81 16697.13 18888.19 22791.30 18294.27 26686.21 12998.63 17687.66 22196.46 15198.12 150
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22494.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17996.79 16797.65 13181.83 32091.52 17597.23 11887.94 10298.91 15371.31 34198.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14890.99 23190.38 22192.81 26193.83 29685.80 27396.78 16996.68 23089.45 18988.75 25293.93 28182.96 17697.82 26087.83 21283.25 31594.80 287
v192192090.85 23790.03 24093.29 24493.55 30286.96 25496.74 17097.04 20087.36 25489.52 23094.34 26080.23 22597.97 24086.27 24385.21 28994.94 273
v119291.07 22790.23 23093.58 23193.70 29987.82 23696.73 17197.07 19587.77 24389.58 22694.32 26380.90 21497.97 24086.52 24085.48 28494.95 271
PVSNet_BlendedMVS94.06 11593.92 10594.47 18998.27 8989.46 18896.73 17198.36 1690.17 17294.36 11795.24 22088.02 10099.58 7093.44 11190.72 23594.36 303
TAMVS94.01 11893.46 12095.64 13596.16 19590.45 16096.71 17396.89 21489.27 19493.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
MVS_Test94.89 9694.62 9195.68 13496.83 16089.55 18296.70 17497.17 18591.17 14695.60 9896.11 17887.87 10498.76 16593.01 12297.17 13698.72 112
SixPastTwentyTwo89.15 27088.54 27090.98 30193.49 30680.28 32896.70 17494.70 30990.78 15384.15 31595.57 20671.78 30397.71 27084.63 26985.07 29294.94 273
EPNet_dtu91.71 19491.28 18892.99 25493.76 29883.71 30096.69 17695.28 28693.15 7987.02 28895.95 18383.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 14096.69 17697.39 16787.29 25691.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testgi87.97 28487.21 28490.24 31392.86 31780.76 32096.67 17894.97 30191.74 12485.52 30195.83 18962.66 34394.47 34176.25 32588.36 25895.48 240
AUN-MVS91.76 19390.75 20894.81 17597.00 15488.57 21496.65 17996.49 24189.63 18592.15 16596.12 17578.66 25398.50 18690.83 15879.18 33097.36 183
OPM-MVS93.28 13992.76 13694.82 17394.63 27290.77 15296.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13292.28 20795.07 267
HQP-NCC95.86 20596.65 17993.55 6290.14 203
ACMP_Plane95.86 20596.65 17993.55 6290.14 203
HQP-MVS93.19 14392.74 13994.54 18895.86 20589.33 19496.65 17997.39 16793.55 6290.14 20395.87 18680.95 21098.50 18692.13 13292.10 21395.78 228
EU-MVSNet88.72 27888.90 26588.20 32293.15 31474.21 34696.63 18494.22 32285.18 28787.32 28295.97 18176.16 28094.98 33785.27 26186.17 27795.41 246
v124090.70 24489.85 24593.23 24693.51 30586.80 25596.61 18597.02 20387.16 25989.58 22694.31 26479.55 23897.98 23785.52 25885.44 28594.90 278
K. test v387.64 28886.75 28990.32 31293.02 31679.48 33496.61 18592.08 34090.66 15980.25 33594.09 27567.21 32996.65 31985.96 25380.83 32694.83 282
thres20092.23 18091.39 18294.75 18197.61 12989.03 20596.60 18795.09 29692.08 11793.28 14294.00 27878.39 25999.04 14481.26 30094.18 18496.19 209
WTY-MVS94.71 10294.02 10496.79 7697.71 12492.05 10696.59 18897.35 17390.61 16394.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 18896.88 21590.13 17491.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 18897.81 11489.87 17792.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
IterMVS-LS92.29 17691.94 16593.34 24296.25 18986.97 25396.57 19197.05 19890.67 15789.50 23194.80 23786.59 12197.64 27589.91 17086.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest90.23 25588.98 26493.98 20897.94 11186.64 25896.51 19295.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
EI-MVSNet93.03 14892.88 13493.48 23595.77 21086.98 25296.44 19397.12 18990.66 15991.30 18297.64 9786.56 12298.05 22989.91 17090.55 23795.41 246
CVMVSNet91.23 22091.75 17089.67 31895.77 21074.69 34596.44 19394.88 30585.81 27892.18 16497.64 9779.07 24395.58 33388.06 20895.86 15898.74 110
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19597.57 13892.04 11894.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
test_prior493.66 5996.42 196
Effi-MVS+94.93 9494.45 9996.36 10196.61 16791.47 12396.41 19797.41 16691.02 15194.50 11595.92 18487.53 11098.78 16293.89 10296.81 14098.84 105
TEST998.70 6094.19 4096.41 19798.02 8888.17 22996.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21796.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
MVS_030488.79 27687.57 27892.46 26794.65 27086.15 27196.40 20097.17 18586.44 26988.02 26991.71 32356.68 34997.03 30884.47 27192.58 20494.19 309
WR-MVS92.34 17291.53 17894.77 17995.13 24690.83 14996.40 20097.98 9891.88 12289.29 23795.54 21082.50 18697.80 26189.79 17485.27 28895.69 235
BH-untuned92.94 15392.62 14393.92 21697.22 13886.16 27096.40 20096.25 25190.06 17589.79 22096.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
TDRefinement86.53 29484.76 30391.85 28182.23 35384.25 29396.38 20395.35 28284.97 29284.09 31694.94 22865.76 33898.34 19884.60 27074.52 33892.97 323
test_898.67 6294.06 4996.37 20498.01 9188.58 21795.98 8397.55 10792.73 2599.58 70
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26196.65 5497.89 7291.99 4399.47 9992.26 12699.46 3899.39 54
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19391.46 12496.33 20897.04 20088.97 20393.56 13296.51 15787.55 10997.89 25489.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 20998.06 7388.94 20494.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
1112_ss93.37 13692.42 15296.21 11197.05 15290.99 14296.31 21096.72 22486.87 26489.83 21996.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
LTVRE_ROB88.41 1390.99 23189.92 24294.19 19996.18 19389.55 18296.31 21097.09 19387.88 23885.67 30095.91 18578.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040286.46 29584.79 30291.45 29395.02 25185.55 27696.29 21294.89 30480.90 32582.21 32593.97 28068.21 32497.29 30362.98 34988.68 25691.51 339
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21495.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
pmmvs589.86 26488.87 26692.82 26092.86 31786.23 26796.26 21495.39 27984.24 30087.12 28494.51 25074.27 29197.36 30087.61 22487.57 26494.86 280
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
CANet_DTU94.37 10593.65 11396.55 8496.46 18092.13 10496.21 21996.67 23294.38 4293.53 13597.03 12779.34 24099.71 3890.76 15998.45 10097.82 166
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
D2MVS91.30 21890.95 19892.35 27194.71 26885.52 27796.18 22198.21 4088.89 20686.60 29393.82 28479.92 23197.95 24689.29 18790.95 23293.56 317
BH-RMVSNet92.72 16391.97 16494.97 16797.16 14287.99 23196.15 22295.60 27390.62 16291.87 17197.15 12278.41 25898.57 18283.16 28197.60 12098.36 142
Anonymous2023120687.09 29186.14 29289.93 31691.22 33380.35 32596.11 22395.35 28283.57 30984.16 31493.02 30273.54 29895.61 33172.16 33886.14 27893.84 315
jason94.84 9894.39 10196.18 11295.52 21990.93 14696.09 22496.52 24089.28 19396.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
EG-PatchMatch MVS87.02 29285.44 29691.76 28892.67 32185.00 28596.08 22596.45 24283.41 31179.52 33793.49 29557.10 34897.72 26979.34 31390.87 23492.56 330
131492.81 16192.03 16195.14 15995.33 23389.52 18596.04 22697.44 16187.72 24686.25 29695.33 21683.84 15898.79 16189.26 18897.05 13897.11 186
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 32395.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
MVS91.71 19490.44 21995.51 14495.20 24391.59 11996.04 22697.45 15773.44 34687.36 28195.60 20585.42 13999.10 13385.97 25297.46 12295.83 225
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15898.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
diffmvs95.25 8395.13 8195.63 13696.43 18289.34 19395.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
DELS-MVS96.61 4896.38 5197.30 5797.79 12093.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
旧先验295.94 23381.66 32197.34 3498.82 15992.26 126
baseline291.63 19790.86 20193.94 21494.33 28286.32 26495.92 23491.64 34389.37 19186.94 28994.69 24281.62 20498.69 17188.64 20294.57 18196.81 196
test20.0386.14 29985.40 29788.35 32090.12 33780.06 33095.90 23595.20 29188.59 21681.29 32893.62 29371.43 30592.65 34871.26 34281.17 32592.34 333
MVP-Stereo90.74 24290.08 23692.71 26393.19 31388.20 22595.86 23696.27 24986.07 27584.86 30894.76 23877.84 26897.75 26783.88 27898.01 11092.17 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DWT-MVSNet_test90.76 23989.89 24393.38 24095.04 25083.70 30195.85 23794.30 32188.19 22790.46 19692.80 30473.61 29798.50 18688.16 20690.58 23697.95 157
lupinMVS94.99 9394.56 9396.29 10696.34 18691.21 13395.83 23896.27 24988.93 20596.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
mvs_anonymous93.82 12393.74 10994.06 20496.44 18185.41 27995.81 23997.05 19889.85 18090.09 21296.36 16687.44 11397.75 26793.97 9896.69 14599.02 83
新几何295.79 240
无先验95.79 24097.87 10883.87 30699.65 5387.68 21998.89 100
OpenMVS_ROBcopyleft81.14 2084.42 31082.28 31390.83 30390.06 33884.05 29795.73 24294.04 32473.89 34580.17 33691.53 32559.15 34697.64 27566.92 34789.05 25190.80 342
原ACMM295.67 243
BH-w/o92.14 18591.75 17093.31 24396.99 15585.73 27495.67 24395.69 26988.73 21589.26 23994.82 23682.97 17598.07 22685.26 26296.32 15296.13 214
TR-MVS91.48 20790.59 21494.16 20196.40 18387.33 24195.67 24395.34 28587.68 24791.46 17695.52 21176.77 27598.35 19682.85 28593.61 19496.79 197
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14692.49 9195.64 24696.64 23389.05 19993.00 14795.79 19485.77 13699.45 10289.16 19494.35 18297.96 155
RPSCF90.75 24190.86 20190.42 31196.84 15876.29 34395.61 24796.34 24683.89 30491.38 17797.87 7576.45 27798.78 16287.16 23492.23 20896.20 208
MS-PatchMatch90.27 25389.77 24991.78 28694.33 28284.72 29095.55 24896.73 22386.17 27486.36 29595.28 21971.28 30697.80 26184.09 27498.14 10892.81 326
PAPR94.18 10993.42 12496.48 9097.64 12791.42 12795.55 24897.71 12688.99 20192.34 16195.82 19089.19 8699.11 13286.14 24797.38 12798.90 98
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15389.97 17295.53 25096.64 23385.38 28489.65 22595.18 22185.86 13499.10 13387.70 21693.58 19698.49 127
FMVSNet587.29 29085.79 29491.78 28694.80 26487.28 24295.49 25195.28 28684.09 30283.85 32091.82 32062.95 34294.17 34278.48 31585.34 28793.91 314
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18895.47 25298.36 1688.84 20894.36 11796.09 17988.02 10099.58 7093.44 11198.18 10698.40 138
xiu_mvs_v2_base95.32 8195.29 7795.40 15297.22 13890.50 15895.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
ab-mvs93.57 13292.55 14696.64 7897.28 13791.96 11195.40 25497.45 15789.81 18293.22 14596.28 16979.62 23799.46 10090.74 16093.11 19798.50 125
MIMVSNet184.93 30783.05 30990.56 30989.56 34284.84 28995.40 25495.35 28283.91 30380.38 33392.21 31857.23 34793.34 34670.69 34482.75 32193.50 318
ET-MVSNet_ETH3D91.49 20690.11 23595.63 13696.40 18391.57 12195.34 25693.48 32990.60 16575.58 34395.49 21280.08 22796.79 31794.25 9289.76 24698.52 122
test22298.24 9392.21 10095.33 25797.60 13579.22 33595.25 10497.84 8188.80 9299.15 7398.72 112
XVG-ACMP-BASELINE90.93 23590.21 23393.09 25194.31 28485.89 27295.33 25797.26 17991.06 15089.38 23395.44 21468.61 32198.60 17989.46 18291.05 22994.79 289
PS-MVSNAJ95.37 7995.33 7695.49 14797.35 13590.66 15595.31 25997.48 14693.85 5296.51 6195.70 20188.65 9499.65 5394.80 8498.27 10396.17 210
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17597.06 15088.53 21695.28 26097.45 15791.68 12694.08 12397.68 9182.41 18998.90 15493.84 10492.47 20596.98 188
CLD-MVS92.98 15092.53 14894.32 19796.12 19989.20 20095.28 26097.47 14992.66 9989.90 21695.62 20480.58 21798.40 19292.73 12392.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13490.43 16995.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 15095.27 26297.18 18387.96 23591.86 17295.68 20280.44 22098.99 14684.01 27597.54 12196.89 193
testdata195.26 26493.10 82
test0.0.03 189.37 26988.70 26791.41 29592.47 32485.63 27595.22 26592.70 33591.11 14886.91 29193.65 29279.02 24693.19 34778.00 31789.18 25095.41 246
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19195.18 26698.48 1485.60 28193.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
DIV-MVS_2432*160085.95 30184.95 30088.96 31989.55 34379.11 33795.13 26796.42 24385.91 27784.07 31790.48 32770.03 31694.82 33880.04 30572.94 34292.94 324
IB-MVS87.33 1789.91 26188.28 27394.79 17895.26 24087.70 23895.12 26893.95 32689.35 19287.03 28792.49 30970.74 31099.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed86.34 29686.12 29387.00 32789.88 34070.43 34994.93 26990.08 34877.97 34085.42 30492.78 30574.44 29093.96 34374.43 33195.14 16996.62 200
XVG-OURS93.72 12793.35 12594.80 17797.07 14788.61 21394.79 27097.46 15191.97 12193.99 12497.86 7781.74 20298.88 15692.64 12492.67 20396.92 192
SCA91.84 19191.18 19493.83 21895.59 21584.95 28794.72 27195.58 27590.82 15292.25 16393.69 28875.80 28298.10 21886.20 24595.98 15498.45 132
cl_fuxian91.38 21190.89 19992.88 25895.58 21686.30 26594.68 27296.84 22088.17 22988.83 24994.23 26985.65 13797.47 29189.36 18484.63 29894.89 279
pmmvs490.93 23589.85 24594.17 20093.34 31090.79 15194.60 27396.02 25884.62 29687.45 27795.15 22281.88 20097.45 29387.70 21687.87 26194.27 308
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17494.58 27498.49 1285.06 29093.78 12995.78 19582.86 17798.67 17391.77 14095.71 16299.07 82
MDA-MVSNet-bldmvs85.00 30682.95 31091.17 30093.13 31583.33 30494.56 27595.00 29984.57 29765.13 35092.65 30670.45 31195.85 32773.57 33577.49 33294.33 304
PMMVS92.86 15792.34 15394.42 19394.92 25686.73 25794.53 27696.38 24584.78 29594.27 11995.12 22583.13 16998.40 19291.47 14996.49 14998.12 150
miper_ehance_all_eth91.59 19891.13 19592.97 25595.55 21886.57 26294.47 27796.88 21587.77 24388.88 24694.01 27786.22 12897.54 28489.49 18186.93 27094.79 289
pmmvs-eth3d86.22 29884.45 30491.53 29188.34 34787.25 24494.47 27795.01 29883.47 31079.51 33889.61 33469.75 31895.71 33083.13 28276.73 33591.64 337
cl-mvsnet_90.96 23490.32 22392.89 25795.37 22786.21 26894.46 27996.64 23387.82 23988.15 26694.18 27282.98 17497.54 28487.70 21685.59 28294.92 277
cl-mvsnet190.97 23390.33 22292.88 25895.36 22886.19 26994.46 27996.63 23687.82 23988.18 26594.23 26982.99 17397.53 28687.72 21485.57 28394.93 275
cl-mvsnet291.21 22190.56 21793.14 25096.09 20186.80 25594.41 28196.58 23987.80 24188.58 25593.99 27980.85 21597.62 27889.87 17286.93 27094.99 270
LF4IMVS87.94 28587.25 28289.98 31592.38 32780.05 33194.38 28295.25 28987.59 24984.34 31194.74 24064.31 34097.66 27484.83 26587.45 26592.23 334
thisisatest051592.29 17691.30 18795.25 15596.60 16888.90 20894.36 28392.32 33787.92 23693.43 13894.57 24877.28 27299.00 14589.42 18395.86 15897.86 162
GA-MVS91.38 21190.31 22494.59 18394.65 27087.62 23994.34 28496.19 25490.73 15590.35 19993.83 28271.84 30297.96 24487.22 23193.61 19498.21 147
IterMVS90.15 25889.67 25391.61 29095.48 22183.72 29994.33 28596.12 25689.99 17687.31 28394.15 27475.78 28496.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 25289.81 24791.82 28395.52 21984.20 29594.30 28696.15 25590.61 16387.39 28094.27 26675.80 28296.44 32087.34 22886.88 27494.82 284
test-LLR91.42 20991.19 19392.12 27594.59 27380.66 32194.29 28792.98 33391.11 14890.76 19292.37 31179.02 24698.07 22688.81 19896.74 14297.63 172
TESTMET0.1,190.06 25989.42 25791.97 27894.41 28080.62 32394.29 28791.97 34187.28 25790.44 19792.47 31068.79 32097.67 27288.50 20496.60 14797.61 176
test-mter90.19 25789.54 25692.12 27594.59 27380.66 32194.29 28792.98 33387.68 24790.76 19292.37 31167.67 32598.07 22688.81 19896.74 14297.63 172
CMPMVSbinary62.92 2185.62 30484.92 30187.74 32489.14 34473.12 34894.17 29096.80 22273.98 34473.65 34594.93 22966.36 33297.61 27983.95 27791.28 22692.48 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet78.73 31778.71 31978.79 33292.80 31946.50 36194.14 29143.71 36378.61 33780.83 32991.66 32474.94 28896.36 32167.24 34684.45 30293.50 318
eth_miper_zixun_eth91.02 23090.59 21492.34 27295.33 23384.35 29294.10 29296.90 21288.56 21988.84 24894.33 26184.08 15697.60 28088.77 20084.37 30395.06 268
CostFormer91.18 22690.70 21092.62 26694.84 26281.76 31594.09 29394.43 31584.15 30192.72 15493.77 28679.43 23998.20 20690.70 16192.18 21197.90 159
tpm90.25 25489.74 25291.76 28893.92 29279.73 33293.98 29493.54 32888.28 22591.99 16993.25 30077.51 27197.44 29487.30 23087.94 26098.12 150
miper_enhance_ethall91.54 20491.01 19793.15 24995.35 22987.07 25193.97 29596.90 21286.79 26589.17 24193.43 29986.55 12397.64 27589.97 16986.93 27094.74 293
TinyColmap86.82 29385.35 29891.21 29894.91 25982.99 30793.94 29694.02 32583.58 30881.56 32794.68 24362.34 34498.13 21375.78 32687.35 26992.52 331
CL-MVSNet_2432*160086.31 29785.15 29989.80 31788.83 34581.74 31693.93 29796.22 25286.67 26685.03 30690.80 32678.09 26494.50 33974.92 32971.86 34393.15 322
miper_lstm_enhance90.50 25090.06 23991.83 28295.33 23383.74 29893.86 29896.70 22987.56 25087.79 27293.81 28583.45 16496.92 31487.39 22784.62 29994.82 284
USDC88.94 27287.83 27792.27 27394.66 26984.96 28693.86 29895.90 26187.34 25583.40 32195.56 20867.43 32798.19 20882.64 28989.67 24793.66 316
tpm289.96 26089.21 26192.23 27494.91 25981.25 31893.78 30094.42 31680.62 32991.56 17493.44 29776.44 27897.94 24785.60 25792.08 21597.49 181
ppachtmachnet_test88.35 28287.29 28191.53 29192.45 32583.57 30393.75 30195.97 25984.28 29985.32 30594.18 27279.00 25096.93 31375.71 32784.99 29594.10 310
new-patchmatchnet83.18 31281.87 31487.11 32686.88 35075.99 34493.70 30295.18 29285.02 29177.30 34188.40 33765.99 33693.88 34474.19 33470.18 34591.47 341
MSDG91.42 20990.24 22994.96 16897.15 14488.91 20793.69 30396.32 24785.72 28086.93 29096.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
EPMVS90.70 24489.81 24793.37 24194.73 26784.21 29493.67 30488.02 35089.50 18892.38 15893.49 29577.82 26997.78 26486.03 25192.68 20298.11 153
cascas91.20 22290.08 23694.58 18794.97 25289.16 20393.65 30597.59 13779.90 33289.40 23292.92 30375.36 28698.36 19592.14 13194.75 17896.23 207
UnsupCasMVSNet_eth85.99 30084.45 30490.62 30889.97 33982.40 31293.62 30697.37 17089.86 17878.59 34092.37 31165.25 33995.35 33682.27 29170.75 34494.10 310
our_test_388.78 27787.98 27691.20 29992.45 32582.53 30993.61 30795.69 26985.77 27984.88 30793.71 28779.99 22996.78 31879.47 31086.24 27694.28 307
PM-MVS83.48 31181.86 31588.31 32187.83 34977.59 34193.43 30891.75 34286.91 26280.63 33189.91 33244.42 35495.84 32885.17 26476.73 33591.50 340
tpmrst91.44 20891.32 18591.79 28595.15 24479.20 33693.42 30995.37 28188.55 22093.49 13693.67 29182.49 18798.27 20090.41 16389.34 24997.90 159
PAPM91.52 20590.30 22595.20 15695.30 23689.83 17593.38 31096.85 21986.26 27288.59 25495.80 19184.88 14598.15 21275.67 32895.93 15697.63 172
testmvs13.36 33016.33 3334.48 3445.04 3642.26 36693.18 3113.28 3652.70 3608.24 36121.66 3582.29 3672.19 3617.58 3592.96 3599.00 357
YYNet185.87 30284.23 30690.78 30792.38 32782.46 31193.17 31295.14 29482.12 31867.69 34692.36 31478.16 26395.50 33577.31 32079.73 32894.39 302
MDA-MVSNet_test_wron85.87 30284.23 30690.80 30692.38 32782.57 30893.17 31295.15 29382.15 31767.65 34792.33 31778.20 26095.51 33477.33 31979.74 32794.31 306
PatchmatchNetpermissive91.91 18991.35 18393.59 23095.38 22584.11 29693.15 31495.39 27989.54 18692.10 16793.68 29082.82 17998.13 21384.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs89.83 26589.15 26391.89 28094.92 25680.30 32793.11 31595.46 27886.28 27188.08 26792.65 30680.44 22098.52 18581.47 29589.92 24496.84 195
MDTV_nov1_ep13_2view70.35 35093.10 31683.88 30593.55 13382.47 18886.25 24498.38 140
MDTV_nov1_ep1390.76 20795.22 24180.33 32693.03 31795.28 28688.14 23292.84 15393.83 28281.34 20698.08 22382.86 28494.34 183
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12183.69 30292.88 31896.72 22487.91 23793.00 14794.86 23378.51 25599.05 14286.53 23997.45 12698.47 130
dp88.90 27488.26 27490.81 30494.58 27576.62 34292.85 31994.93 30385.12 28990.07 21493.07 30175.81 28198.12 21680.53 30387.42 26797.71 169
test_post192.81 32016.58 36180.53 21897.68 27186.20 245
bset_n11_16_dypcd91.55 20290.59 21494.44 19091.51 33190.25 16492.70 32193.42 33092.27 10890.22 20294.74 24078.42 25797.80 26194.19 9487.86 26295.29 262
pmmvs379.97 31677.50 32087.39 32582.80 35279.38 33592.70 32190.75 34770.69 34778.66 33987.47 34351.34 35293.40 34573.39 33669.65 34689.38 345
tpm cat188.36 28187.21 28491.81 28495.13 24680.55 32492.58 32395.70 26874.97 34387.45 27791.96 31978.01 26798.17 21180.39 30488.74 25596.72 199
PCF-MVS89.48 1191.56 20189.95 24196.36 10196.60 16892.52 9092.51 32497.26 17979.41 33488.90 24496.56 15584.04 15799.55 8377.01 32497.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test12313.04 33115.66 3345.18 3434.51 3653.45 36592.50 3251.81 3662.50 3617.58 36220.15 3593.67 3662.18 3627.13 3601.07 3609.90 356
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32683.33 35687.98 27189.84 33371.00 30896.87 31582.08 29295.40 16694.80 287
new_pmnet82.89 31381.12 31788.18 32389.63 34180.18 32991.77 32792.57 33676.79 34275.56 34488.23 33961.22 34594.48 34071.43 34082.92 31989.87 344
MIMVSNet88.50 28086.76 28893.72 22494.84 26287.77 23791.39 32894.05 32386.41 27087.99 27092.59 30863.27 34195.82 32977.44 31892.84 20097.57 179
FPMVS71.27 31969.85 32175.50 33474.64 35559.03 35791.30 32991.50 34458.80 35157.92 35288.28 33829.98 35885.53 35353.43 35182.84 32081.95 348
KD-MVS_2432*160084.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
miper_refine_blended84.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
gg-mvs-nofinetune87.82 28685.61 29594.44 19094.46 27789.27 19991.21 33284.61 35580.88 32689.89 21874.98 34971.50 30497.53 28685.75 25697.21 13496.51 202
ADS-MVSNet289.45 26788.59 26992.03 27795.86 20582.26 31390.93 33394.32 32083.23 31291.28 18591.81 32179.01 24895.99 32479.52 30891.39 22497.84 163
ADS-MVSNet89.89 26288.68 26893.53 23395.86 20584.89 28890.93 33395.07 29783.23 31291.28 18591.81 32179.01 24897.85 25679.52 30891.39 22497.84 163
UnsupCasMVSNet_bld82.13 31579.46 31890.14 31488.00 34882.47 31090.89 33596.62 23878.94 33675.61 34284.40 34556.63 35096.31 32277.30 32166.77 34891.63 338
PVSNet_082.17 1985.46 30583.64 30890.92 30295.27 23779.49 33390.55 33695.60 27383.76 30783.00 32489.95 33171.09 30797.97 24082.75 28760.79 35195.31 255
CHOSEN 280x42093.12 14492.72 14094.34 19696.71 16687.27 24390.29 33797.72 12286.61 26891.34 17995.29 21784.29 15498.41 19193.25 11698.94 8697.35 184
CR-MVSNet90.82 23889.77 24993.95 21294.45 27887.19 24790.23 33895.68 27186.89 26392.40 15692.36 31480.91 21297.05 30781.09 30193.95 18997.60 177
RPMNet88.98 27187.05 28694.77 17994.45 27887.19 24790.23 33898.03 8477.87 34192.40 15687.55 34280.17 22699.51 9368.84 34593.95 18997.60 177
LCM-MVSNet72.55 31869.39 32282.03 33070.81 35965.42 35590.12 34094.36 31955.02 35265.88 34981.72 34624.16 36289.96 34974.32 33368.10 34790.71 343
Patchmtry88.64 27987.25 28292.78 26294.09 28886.64 25889.82 34195.68 27180.81 32887.63 27692.36 31480.91 21297.03 30878.86 31485.12 29194.67 295
PatchT88.87 27587.42 28093.22 24794.08 28985.10 28489.51 34294.64 31281.92 31992.36 15988.15 34080.05 22897.01 31172.43 33793.65 19297.54 180
JIA-IIPM88.26 28387.04 28791.91 27993.52 30481.42 31789.38 34394.38 31780.84 32790.93 19180.74 34779.22 24297.92 25082.76 28691.62 21996.38 206
Patchmatch-test89.42 26887.99 27593.70 22595.27 23785.11 28388.98 34494.37 31881.11 32487.10 28693.69 28882.28 19197.50 28974.37 33294.76 17798.48 129
MVS-HIRNet82.47 31481.21 31686.26 32995.38 22569.21 35288.96 34589.49 34966.28 34880.79 33074.08 35168.48 32297.39 29871.93 33995.47 16492.18 335
Patchmatch-RL test87.38 28986.24 29090.81 30488.74 34678.40 34088.12 34693.17 33287.11 26082.17 32689.29 33581.95 19895.60 33288.64 20277.02 33398.41 137
PMMVS270.19 32066.92 32380.01 33176.35 35465.67 35486.22 34787.58 35264.83 35062.38 35180.29 34826.78 36088.49 35163.79 34854.07 35285.88 346
ambc86.56 32883.60 35170.00 35185.69 34894.97 30180.60 33288.45 33637.42 35596.84 31682.69 28875.44 33792.86 325
ANet_high63.94 32259.58 32577.02 33361.24 36166.06 35385.66 34987.93 35178.53 33842.94 35571.04 35225.42 36180.71 35452.60 35230.83 35584.28 347
EMVS52.08 32651.31 32954.39 34072.62 35845.39 36283.84 35075.51 36041.13 35640.77 35759.65 35630.08 35773.60 35728.31 35729.90 35644.18 354
E-PMN53.28 32452.56 32855.43 33974.43 35647.13 36083.63 35176.30 35942.23 35542.59 35662.22 35528.57 35974.40 35631.53 35631.51 35444.78 353
PMVScopyleft53.92 2258.58 32355.40 32668.12 33751.00 36248.64 35978.86 35287.10 35446.77 35435.84 35974.28 3508.76 36386.34 35242.07 35473.91 34069.38 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 32753.82 32746.29 34133.73 36345.30 36378.32 35367.24 36218.02 35850.93 35487.05 34452.99 35153.11 35970.76 34325.29 35740.46 355
MVEpermissive50.73 2353.25 32548.81 33066.58 33865.34 36057.50 35872.49 35470.94 36140.15 35739.28 35863.51 3546.89 36573.48 35838.29 35542.38 35368.76 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 32165.41 32475.18 33592.66 32273.45 34766.50 35594.52 31453.33 35357.80 35366.07 35330.81 35689.20 35048.15 35378.88 33162.90 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d25.11 32824.57 33226.74 34273.98 35739.89 36457.88 3569.80 36412.27 35910.39 3606.97 3627.03 36436.44 36025.43 35817.39 3583.89 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.24 32930.99 3310.00 3450.00 3660.00 3670.00 35797.63 1330.00 3620.00 36396.88 13484.38 1510.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.39 3339.85 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36388.65 940.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.06 33210.74 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36396.69 1430.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.05 4194.59 2898.08 6489.22 19597.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
IU-MVS99.42 695.39 997.94 10290.40 17098.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
MTGPAbinary98.08 64
test_post17.58 36081.76 20198.08 223
patchmatchnet-post90.45 32882.65 18498.10 218
gm-plane-assit93.22 31278.89 33984.82 29493.52 29498.64 17587.72 214
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 10099.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
TestCases93.98 20897.94 11186.64 25895.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
新几何197.32 5698.60 6893.59 6197.75 11781.58 32295.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25395.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
testdata299.67 4985.96 253
segment_acmp92.89 22
testdata95.46 15198.18 10288.90 20897.66 12982.73 31597.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
test1297.65 4498.46 7494.26 3797.66 12995.52 10290.89 6999.46 10099.25 6599.22 67
plane_prior796.21 19089.98 171
plane_prior696.10 20090.00 16781.32 207
plane_prior597.51 14498.60 17993.02 12092.23 20895.86 221
plane_prior496.64 146
plane_prior390.00 16794.46 3991.34 179
plane_prior196.14 198
n20.00 367
nn0.00 367
door-mid91.06 346
lessismore_v090.45 31091.96 33079.09 33887.19 35380.32 33494.39 25766.31 33497.55 28384.00 27676.84 33494.70 294
LGP-MVS_train94.10 20296.16 19588.26 22297.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
test1197.88 106
door91.13 345
HQP5-MVS89.33 194
BP-MVS92.13 132
HQP4-MVS90.14 20398.50 18695.78 228
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20489.81 17695.87 186
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93
ITE_SJBPF92.43 26995.34 23085.37 28095.92 26091.47 13187.75 27496.39 16571.00 30897.96 24482.36 29089.86 24593.97 313
DeepMVS_CXcopyleft74.68 33690.84 33664.34 35681.61 35865.34 34967.47 34888.01 34148.60 35380.13 35562.33 35073.68 34179.58 349