This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13497.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12188.73 497.07 1396.77 7290.84 1684.02 23496.62 6375.95 15699.34 3387.77 11297.68 7598.59 18
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22796.56 9383.44 18891.68 9295.04 11686.60 4298.99 7685.60 13897.92 6996.93 116
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 17093.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20693.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12892.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 5892.75 6494.85 2795.70 11987.66 1196.33 3496.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 16086.13 20294.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35785.02 6099.49 2391.99 5398.56 4798.47 28
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
alignmvs93.08 6292.50 6994.81 3295.62 12287.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14095.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15693.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 5694.55 4495.65 12085.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22592.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16889.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 25292.77 6396.63 6286.62 3999.04 6387.40 11798.66 4098.17 54
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16286.37 4397.18 797.02 4689.20 5284.31 22996.66 6173.74 18999.17 5086.74 12797.96 6797.79 83
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23789.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21992.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
EPNet91.79 7891.02 8894.10 5890.10 30685.25 7396.03 5392.05 27692.83 187.39 15195.78 9679.39 12299.01 7088.13 10997.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.43 5493.25 5393.97 5995.42 12785.04 7493.06 21897.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20590.03 11395.82 9582.30 8999.03 6484.57 15096.48 10096.91 117
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13792.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23494.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21197.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17290.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15195.47 11197.45 95
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
QAPM89.51 12588.15 14693.59 7294.92 14784.58 8096.82 2496.70 8178.43 27583.41 25096.19 8373.18 19799.30 3977.11 25296.54 9796.89 118
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14083.51 11494.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4595.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14896.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9993.38 14698.13 58
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22895.51 16671.01 33491.20 10196.21 7982.92 8199.05 6080.56 21398.07 6396.10 142
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12795.73 6593.86 24088.42 7592.53 7196.84 5062.09 29798.64 10390.95 7992.62 16097.93 74
nrg03091.08 9390.39 9593.17 7993.07 21586.91 2096.41 3296.26 10788.30 7888.37 13294.85 12482.19 9297.64 17391.09 7482.95 26394.96 180
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15183.20 12194.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
新几何193.10 8197.30 6884.35 9495.56 16171.09 33391.26 10096.24 7782.87 8298.86 9079.19 23298.10 6296.07 144
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19695.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13592.90 15696.83 119
OpenMVScopyleft83.78 1188.74 15087.29 16593.08 8292.70 22685.39 7196.57 2996.43 9878.74 27180.85 27996.07 8769.64 23999.01 7078.01 24396.65 9494.83 187
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 21087.85 14092.85 19376.63 15098.80 9780.01 22196.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9490.21 9893.03 8593.86 19183.88 10392.81 22493.86 24079.84 25591.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
Effi-MVS+91.59 8491.11 8593.01 8694.35 17583.39 11894.60 13195.10 19287.10 10890.57 10693.10 18781.43 10198.07 14689.29 9594.48 12997.59 89
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21696.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
ETV-MVS92.74 6692.66 6592.97 8895.20 13684.04 10095.07 10196.51 9490.73 2192.96 5891.19 24984.06 7298.34 12591.72 6496.54 9796.54 128
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32686.79 11692.15 8096.81 5362.60 29498.34 12587.18 12193.90 13598.19 53
UGNet89.95 11588.95 12692.95 8994.51 16583.31 11995.70 6795.23 18589.37 4887.58 14693.94 15664.00 28998.78 9883.92 15796.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9590.10 10192.90 9193.04 21783.53 11393.08 21694.15 23180.22 24991.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
DP-MVS87.25 19885.36 22892.90 9197.65 5683.24 12094.81 11992.00 27874.99 30581.92 26995.00 11772.66 20299.05 6066.92 31992.33 16496.40 129
CANet_DTU90.26 10989.41 11592.81 9393.46 20583.01 12893.48 19794.47 21989.43 4687.76 14494.23 14670.54 22999.03 6484.97 14396.39 10196.38 130
MVSFormer91.68 8391.30 8192.80 9493.86 19183.88 10395.96 5795.90 13684.66 16691.76 8994.91 11977.92 13897.30 20289.64 9197.11 8497.24 101
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11596.66 8583.29 19289.27 12094.46 13780.29 10999.17 5087.57 11595.37 11496.05 146
VDDNet89.56 12488.49 13792.76 9695.07 13982.09 15196.30 3593.19 25181.05 24491.88 8496.86 4961.16 30798.33 12788.43 10592.49 16397.84 80
casdiffmvs92.51 7092.43 7092.74 9794.41 17181.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
CS-MVS92.60 6892.56 6792.73 9895.55 12382.35 14896.14 4596.85 6288.71 6591.44 9691.51 24284.13 7198.48 11291.27 7297.47 8097.34 97
test_yl90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
PCF-MVS84.11 1087.74 17586.08 20692.70 10194.02 18284.43 9289.27 29595.87 13973.62 31784.43 22194.33 13978.48 13498.86 9070.27 29494.45 13094.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7392.29 7292.69 10294.46 16881.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
ab-mvs89.41 13188.35 13992.60 10495.15 13882.65 14192.20 24395.60 16083.97 17688.55 12893.70 17174.16 18198.21 13482.46 17989.37 19696.94 115
LS3D87.89 17086.32 19792.59 10596.07 10582.92 13195.23 9094.92 20375.66 29882.89 25795.98 8972.48 20599.21 4768.43 30895.23 11995.64 160
Anonymous2024052988.09 16686.59 18792.58 10696.53 8981.92 15695.99 5495.84 14174.11 31389.06 12495.21 11161.44 30298.81 9683.67 16287.47 22597.01 112
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22490.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33685.81 17895.25 10976.70 14898.63 10482.07 18596.86 9097.00 113
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16794.37 15396.24 11086.39 12687.41 14894.80 12682.06 9598.48 11282.80 17495.37 11497.61 87
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20794.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
IS-MVSNet91.43 8591.09 8792.46 11195.87 11481.38 17096.95 1493.69 24589.72 4089.50 11795.98 8978.57 13297.77 16283.02 16896.50 9998.22 52
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18782.39 20889.13 12194.27 14580.32 10898.46 11580.16 22096.71 9294.33 211
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
RRT_MVS88.86 14687.68 15692.39 11692.02 24286.09 5394.38 15294.94 19885.45 14787.14 15493.84 16465.88 28197.11 21988.73 10186.77 23593.98 227
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12694.42 14595.92 13382.81 20386.34 17194.65 13173.89 18599.02 6880.69 21095.51 10995.05 175
CNLPA89.07 13987.98 15092.34 11896.87 7884.78 7794.08 17093.24 25081.41 23584.46 21995.13 11475.57 16296.62 24477.21 25093.84 13795.61 161
ET-MVSNet_ETH3D87.51 18885.91 21392.32 11993.70 19983.93 10192.33 23890.94 30784.16 17172.09 33692.52 20469.90 23495.85 28689.20 9688.36 21497.17 105
Anonymous20240521187.68 17686.13 20292.31 12096.66 8380.74 18794.87 11591.49 29380.47 24889.46 11895.44 10354.72 33298.23 13182.19 18389.89 18897.97 70
CHOSEN 1792x268888.84 14787.69 15592.30 12196.14 9981.42 16990.01 28595.86 14074.52 31087.41 14893.94 15675.46 16398.36 12280.36 21695.53 10897.12 108
HY-MVS83.01 1289.03 14187.94 15292.29 12294.86 15182.77 13392.08 24894.49 21881.52 23486.93 15792.79 19978.32 13698.23 13179.93 22290.55 17895.88 151
CDS-MVSNet89.45 12888.51 13492.29 12293.62 20083.61 11293.01 21994.68 21681.95 22087.82 14293.24 18178.69 12996.99 22980.34 21793.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11289.27 12092.29 12295.78 11580.95 18192.68 22696.22 11281.91 22286.66 16493.75 16982.23 9098.44 11979.40 23194.79 12197.48 93
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17479.71 25784.01 23594.18 14776.68 14998.75 9977.28 24993.41 14595.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11280.50 19397.33 395.25 18486.15 13089.76 11495.60 10183.42 7798.32 12887.37 11993.25 14997.56 91
test_part189.00 14487.99 14992.04 12795.94 11183.81 10596.14 4596.05 12586.44 12485.69 18193.73 17071.57 21197.66 17085.80 13680.54 29994.66 192
原ACMM192.01 12897.34 6681.05 17796.81 6878.89 26690.45 10795.92 9182.65 8398.84 9580.68 21198.26 5996.14 137
UniMVSNet (Re)89.80 11989.07 12392.01 12893.60 20184.52 8494.78 12197.47 889.26 5086.44 16992.32 21082.10 9397.39 19984.81 14780.84 29594.12 218
MG-MVS91.77 7991.70 7892.00 13097.08 7580.03 20593.60 19495.18 18887.85 9190.89 10496.47 7082.06 9598.36 12285.07 14297.04 8797.62 86
EIA-MVS91.95 7691.94 7491.98 13195.16 13780.01 20695.36 7896.73 7788.44 7389.34 11992.16 21583.82 7698.45 11889.35 9497.06 8697.48 93
PVSNet_Blended90.73 9790.32 9791.98 13196.12 10081.25 17292.55 23296.83 6582.04 21789.10 12292.56 20381.04 10498.85 9386.72 12995.91 10495.84 153
PS-MVSNAJ91.18 9190.92 8991.96 13395.26 13482.60 14392.09 24795.70 15186.27 12791.84 8692.46 20579.70 11798.99 7689.08 9795.86 10594.29 212
TAMVS89.21 13688.29 14391.96 13393.71 19782.62 14293.30 20594.19 22982.22 21287.78 14393.94 15678.83 12696.95 23177.70 24592.98 15596.32 131
MVS_Test91.31 8891.11 8591.93 13594.37 17280.14 19893.46 19995.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11594.95 12097.55 92
NR-MVSNet88.58 15587.47 16191.93 13593.04 21784.16 9794.77 12296.25 10989.05 5680.04 29393.29 17979.02 12597.05 22581.71 19680.05 30694.59 197
HyFIR lowres test88.09 16686.81 17691.93 13596.00 10780.63 18990.01 28595.79 14573.42 31887.68 14592.10 22173.86 18697.96 15480.75 20991.70 16797.19 104
thisisatest053088.67 15187.61 15891.86 13894.87 15080.07 20194.63 13089.90 32784.00 17588.46 13093.78 16666.88 26898.46 11583.30 16492.65 15997.06 109
xiu_mvs_v2_base91.13 9290.89 9191.86 13894.97 14382.42 14492.24 24195.64 15886.11 13391.74 9193.14 18579.67 12098.89 8689.06 9895.46 11294.28 213
DU-MVS89.34 13588.50 13591.85 14093.04 21783.72 10794.47 14196.59 9089.50 4386.46 16693.29 17977.25 14297.23 21184.92 14481.02 29194.59 197
OPM-MVS90.12 11089.56 11191.82 14193.14 21283.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 11090.18 18393.65 247
HQP_MVS90.60 10490.19 9991.82 14194.70 15882.73 13795.85 6196.22 11290.81 1786.91 15994.86 12274.23 17798.12 13688.15 10789.99 18494.63 193
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14393.39 20683.72 10794.43 14497.12 4089.80 3786.46 16693.32 17683.16 7897.23 21184.92 14481.02 29194.49 206
diffmvs91.37 8791.23 8391.77 14493.09 21480.27 19592.36 23795.52 16587.03 11091.40 9894.93 11880.08 11197.44 18792.13 5194.56 12797.61 87
1112_ss88.42 15687.33 16491.72 14594.92 14780.98 17992.97 22194.54 21778.16 28083.82 23993.88 16178.78 12897.91 15879.45 22789.41 19596.26 134
Fast-Effi-MVS+89.41 13188.64 13291.71 14694.74 15480.81 18593.54 19595.10 19283.11 19586.82 16290.67 26779.74 11697.75 16680.51 21593.55 14096.57 126
WTY-MVS89.60 12288.92 12791.67 14795.47 12681.15 17692.38 23694.78 21383.11 19589.06 12494.32 14078.67 13096.61 24781.57 19790.89 17797.24 101
TAPA-MVS84.62 688.16 16487.01 17291.62 14896.64 8480.65 18894.39 14896.21 11576.38 29186.19 17495.44 10379.75 11598.08 14562.75 33495.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 12188.96 12591.60 14993.86 19182.89 13295.46 7797.33 2287.91 8888.43 13193.31 17774.17 18097.40 19687.32 12082.86 26894.52 202
XVG-OURS89.40 13388.70 13191.52 15094.06 18081.46 16791.27 26396.07 12286.14 13188.89 12695.77 9768.73 25497.26 20887.39 11889.96 18695.83 154
TranMVSNet+NR-MVSNet88.84 14787.95 15191.49 15192.68 22783.01 12894.92 11196.31 10489.88 3685.53 18793.85 16376.63 15096.96 23081.91 18979.87 30994.50 204
AUN-MVS87.78 17486.54 18991.48 15294.82 15381.05 17793.91 18493.93 23783.00 19886.93 15793.53 17269.50 24197.67 16986.14 13277.12 32395.73 158
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15394.00 18681.21 17591.87 25096.06 12485.78 13688.55 12895.73 9874.67 17397.27 20688.71 10289.64 19395.91 149
MVS87.44 19186.10 20591.44 15492.61 22883.62 11192.63 22895.66 15567.26 34081.47 27192.15 21677.95 13798.22 13379.71 22495.48 11092.47 288
F-COLMAP87.95 16986.80 17791.40 15596.35 9580.88 18394.73 12495.45 17279.65 25882.04 26794.61 13271.13 21698.50 11176.24 26091.05 17594.80 189
thisisatest051587.33 19485.99 20891.37 15693.49 20379.55 21490.63 27389.56 33380.17 25087.56 14790.86 26067.07 26598.28 13081.50 19893.02 15496.29 132
HQP-MVS89.80 11989.28 11991.34 15794.17 17781.56 16194.39 14896.04 12688.81 6185.43 19793.97 15573.83 18797.96 15487.11 12489.77 19194.50 204
FMVSNet387.40 19386.11 20491.30 15893.79 19683.64 11094.20 16194.81 21183.89 17784.37 22291.87 23068.45 25796.56 25278.23 24085.36 24193.70 246
FMVSNet287.19 20385.82 21591.30 15894.01 18383.67 10994.79 12094.94 19883.57 18383.88 23792.05 22566.59 27396.51 25577.56 24785.01 24493.73 244
RPMNet83.95 26381.53 27391.21 16090.58 29779.34 22185.24 33096.76 7371.44 33185.55 18582.97 33870.87 22198.91 8561.01 33889.36 19795.40 167
IB-MVS80.51 1585.24 24783.26 25991.19 16192.13 23779.86 21091.75 25391.29 29883.28 19380.66 28288.49 30261.28 30398.46 11580.99 20579.46 31295.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 12788.90 12891.18 16294.22 17682.07 15292.13 24596.09 12087.90 8985.37 20392.45 20674.38 17597.56 17787.15 12290.43 17993.93 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 12888.90 12891.12 16394.47 16681.49 16595.30 8496.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
LGP-MVS_train91.12 16394.47 16681.49 16596.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
ACMM84.12 989.14 13788.48 13891.12 16394.65 16181.22 17495.31 8196.12 11985.31 15185.92 17794.34 13870.19 23398.06 14785.65 13788.86 20594.08 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 15387.78 15491.11 16694.96 14477.81 25695.35 7989.69 33085.09 15888.05 13794.59 13466.93 26698.48 11283.27 16592.13 16697.03 111
GBi-Net87.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
test187.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
FMVSNet185.85 23584.11 24891.08 16792.81 22483.10 12395.14 9894.94 19881.64 23082.68 25991.64 23459.01 32096.34 26775.37 26783.78 25393.79 237
Test_1112_low_res87.65 17886.51 19091.08 16794.94 14679.28 22591.77 25294.30 22576.04 29683.51 24892.37 20877.86 14097.73 16778.69 23689.13 20296.22 135
PS-MVSNAJss89.97 11489.62 11091.02 17191.90 24580.85 18495.26 8995.98 12886.26 12886.21 17394.29 14279.70 11797.65 17188.87 10088.10 21794.57 199
BH-RMVSNet88.37 15887.48 16091.02 17195.28 13279.45 21792.89 22393.07 25385.45 14786.91 15994.84 12570.35 23097.76 16373.97 27894.59 12695.85 152
UniMVSNet_ETH3D87.53 18786.37 19391.00 17392.44 23078.96 23094.74 12395.61 15984.07 17485.36 20494.52 13659.78 31697.34 20182.93 16987.88 22296.71 123
FIs90.51 10590.35 9690.99 17493.99 18780.98 17995.73 6597.54 389.15 5486.72 16394.68 12981.83 9997.24 21085.18 14188.31 21594.76 190
ACMP84.23 889.01 14388.35 13990.99 17494.73 15581.27 17195.07 10195.89 13886.48 12283.67 24394.30 14169.33 24397.99 15287.10 12688.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 22185.13 23190.98 17696.52 9081.50 16396.14 4596.16 11673.78 31583.65 24492.15 21663.26 29297.37 20082.82 17381.74 28194.06 223
sss88.93 14588.26 14590.94 17794.05 18180.78 18691.71 25595.38 17881.55 23388.63 12793.91 16075.04 16795.47 30282.47 17891.61 16896.57 126
PVSNet_BlendedMVS89.98 11389.70 10990.82 17896.12 10081.25 17293.92 18196.83 6583.49 18789.10 12292.26 21381.04 10498.85 9386.72 12987.86 22392.35 293
cascas86.43 22784.98 23490.80 17992.10 23980.92 18290.24 27995.91 13573.10 32183.57 24788.39 30365.15 28497.46 18484.90 14691.43 16994.03 225
GA-MVS86.61 21985.27 22990.66 18091.33 26778.71 23290.40 27693.81 24385.34 15085.12 20789.57 28861.25 30497.11 21980.99 20589.59 19496.15 136
bset_n11_16_dypcd86.83 21185.55 22190.65 18188.22 32781.70 15988.88 30290.42 31485.26 15285.49 19190.69 26667.11 26497.02 22789.51 9384.39 24893.23 263
thres600view787.65 17886.67 18290.59 18296.08 10478.72 23194.88 11491.58 28987.06 10988.08 13592.30 21168.91 25198.10 13870.05 30191.10 17194.96 180
thres40087.62 18386.64 18390.57 18395.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.96 180
baseline188.10 16587.28 16690.57 18394.96 14480.07 20194.27 15791.29 29886.74 11787.41 14894.00 15376.77 14796.20 27180.77 20879.31 31495.44 165
FC-MVSNet-test90.27 10890.18 10090.53 18593.71 19779.85 21195.77 6497.59 289.31 4986.27 17294.67 13081.93 9897.01 22884.26 15388.09 21994.71 191
PAPM86.68 21885.39 22690.53 18593.05 21679.33 22489.79 28894.77 21478.82 26881.95 26893.24 18176.81 14597.30 20266.94 31793.16 15194.95 183
WR-MVS88.38 15787.67 15790.52 18793.30 20980.18 19693.26 20895.96 13088.57 7185.47 19392.81 19776.12 15296.91 23481.24 20082.29 27194.47 209
MVSTER88.84 14788.29 14390.51 18892.95 22280.44 19493.73 18895.01 19584.66 16687.15 15293.12 18672.79 20197.21 21387.86 11187.36 22893.87 232
testdata90.49 18996.40 9277.89 25395.37 18072.51 32693.63 4596.69 5882.08 9497.65 17183.08 16697.39 8195.94 148
jajsoiax88.24 16287.50 15990.48 19090.89 28680.14 19895.31 8195.65 15784.97 16084.24 23194.02 15165.31 28397.42 18988.56 10388.52 20993.89 229
PatchMatch-RL86.77 21785.54 22290.47 19195.88 11282.71 13990.54 27492.31 26979.82 25684.32 22791.57 24168.77 25396.39 26373.16 28393.48 14492.32 294
tfpn200view987.58 18586.64 18390.41 19295.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.48 207
VPNet88.20 16387.47 16190.39 19393.56 20279.46 21694.04 17495.54 16488.67 6786.96 15694.58 13569.33 24397.15 21584.05 15680.53 30194.56 200
ACMH80.38 1785.36 24283.68 25490.39 19394.45 16980.63 18994.73 12494.85 20782.09 21477.24 31192.65 20160.01 31497.58 17572.25 28784.87 24592.96 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 18186.71 18090.38 19596.12 10078.55 23595.03 10591.58 28987.15 10688.06 13692.29 21268.91 25198.10 13870.13 29891.10 17194.48 207
mvs-test189.45 12889.14 12190.38 19593.33 20777.63 26294.95 10894.36 22287.70 9587.10 15592.81 19773.45 19298.03 14985.57 13993.04 15395.48 163
mvs_tets88.06 16887.28 16690.38 19590.94 28279.88 20995.22 9195.66 15585.10 15784.21 23293.94 15663.53 29197.40 19688.50 10488.40 21393.87 232
131487.51 18886.57 18890.34 19892.42 23179.74 21392.63 22895.35 18278.35 27680.14 29091.62 23874.05 18297.15 21581.05 20193.53 14194.12 218
LTVRE_ROB82.13 1386.26 22984.90 23790.34 19894.44 17081.50 16392.31 24094.89 20483.03 19779.63 29892.67 20069.69 23897.79 16171.20 29086.26 23691.72 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 14188.64 13290.21 20090.74 29279.28 22595.96 5795.90 13684.66 16685.33 20592.94 19174.02 18397.30 20289.64 9188.53 20894.05 224
v2v48287.84 17187.06 17090.17 20190.99 27879.23 22894.00 17895.13 18984.87 16185.53 18792.07 22474.45 17497.45 18584.71 14981.75 28093.85 235
pmmvs485.43 24183.86 25290.16 20290.02 30982.97 13090.27 27792.67 26275.93 29780.73 28091.74 23371.05 21795.73 29278.85 23483.46 26091.78 301
V4287.68 17686.86 17490.15 20390.58 29780.14 19894.24 15995.28 18383.66 18185.67 18291.33 24474.73 17297.41 19484.43 15281.83 27892.89 277
MSDG84.86 25483.09 26190.14 20493.80 19480.05 20389.18 29893.09 25278.89 26678.19 30491.91 22865.86 28297.27 20668.47 30788.45 21193.11 269
anonymousdsp87.84 17187.09 16990.12 20589.13 31680.54 19294.67 12895.55 16282.05 21583.82 23992.12 21871.47 21497.15 21587.15 12287.80 22492.67 282
thres20087.21 20286.24 20090.12 20595.36 12878.53 23693.26 20892.10 27486.42 12588.00 13891.11 25569.24 24798.00 15169.58 30291.04 17693.83 236
CR-MVSNet85.35 24383.76 25390.12 20590.58 29779.34 22185.24 33091.96 28278.27 27785.55 18587.87 31371.03 21895.61 29373.96 27989.36 19795.40 167
v114487.61 18486.79 17890.06 20891.01 27779.34 22193.95 18095.42 17783.36 19185.66 18391.31 24774.98 16897.42 18983.37 16382.06 27493.42 256
XXY-MVS87.65 17886.85 17590.03 20992.14 23680.60 19193.76 18795.23 18582.94 20084.60 21494.02 15174.27 17695.49 30181.04 20283.68 25694.01 226
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20995.74 11675.85 28495.61 7390.80 31187.66 9987.83 14195.40 10676.79 14696.46 26078.37 23796.73 9197.80 82
BH-untuned88.60 15488.13 14790.01 21195.24 13578.50 23893.29 20694.15 23184.75 16484.46 21993.40 17375.76 15797.40 19677.59 24694.52 12894.12 218
v119287.25 19886.33 19690.00 21290.76 29179.04 22993.80 18595.48 16782.57 20785.48 19291.18 25173.38 19697.42 18982.30 18182.06 27493.53 250
v7n86.81 21285.76 21989.95 21390.72 29379.25 22795.07 10195.92 13384.45 16982.29 26290.86 26072.60 20497.53 17979.42 23080.52 30293.08 271
v887.50 19086.71 18089.89 21491.37 26479.40 21894.50 13795.38 17884.81 16383.60 24691.33 24476.05 15397.42 18982.84 17280.51 30392.84 279
v1087.25 19886.38 19289.85 21591.19 27079.50 21594.48 13895.45 17283.79 17983.62 24591.19 24975.13 16597.42 18981.94 18880.60 29792.63 284
baseline286.50 22485.39 22689.84 21691.12 27476.70 27491.88 24988.58 33582.35 21179.95 29490.95 25973.42 19497.63 17480.27 21989.95 18795.19 172
pm-mvs186.61 21985.54 22289.82 21791.44 25880.18 19695.28 8894.85 20783.84 17881.66 27092.62 20272.45 20796.48 25779.67 22578.06 31792.82 280
TR-MVS86.78 21485.76 21989.82 21794.37 17278.41 24092.47 23392.83 25781.11 24386.36 17092.40 20768.73 25497.48 18273.75 28189.85 19093.57 249
ACMH+81.04 1485.05 25083.46 25889.82 21794.66 16079.37 21994.44 14394.12 23482.19 21378.04 30692.82 19658.23 32297.54 17873.77 28082.90 26792.54 285
EI-MVSNet89.10 13888.86 13089.80 22091.84 24778.30 24393.70 19195.01 19585.73 13887.15 15295.28 10779.87 11497.21 21383.81 15987.36 22893.88 231
v14419287.19 20386.35 19589.74 22190.64 29578.24 24593.92 18195.43 17581.93 22185.51 18991.05 25774.21 17997.45 18582.86 17181.56 28293.53 250
COLMAP_ROBcopyleft80.39 1683.96 26282.04 26989.74 22195.28 13279.75 21294.25 15892.28 27075.17 30378.02 30793.77 16758.60 32197.84 16065.06 32785.92 23791.63 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 22885.18 23089.73 22392.15 23576.60 27591.12 26691.69 28783.53 18685.50 19088.81 29666.79 26996.48 25776.65 25590.35 18196.12 139
IterMVS-LS88.36 15987.91 15389.70 22493.80 19478.29 24493.73 18895.08 19485.73 13884.75 21291.90 22979.88 11396.92 23383.83 15882.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.97 20886.06 20789.69 22590.53 30078.11 24893.80 18595.43 17581.90 22385.33 20591.05 25772.66 20297.41 19482.05 18681.80 27993.53 250
Fast-Effi-MVS+-dtu87.44 19186.72 17989.63 22692.04 24077.68 26194.03 17593.94 23685.81 13582.42 26191.32 24670.33 23197.06 22480.33 21890.23 18294.14 217
v124086.78 21485.85 21489.56 22790.45 30177.79 25793.61 19395.37 18081.65 22985.43 19791.15 25371.50 21397.43 18881.47 19982.05 27693.47 254
Effi-MVS+-dtu88.65 15288.35 13989.54 22893.33 20776.39 27994.47 14194.36 22287.70 9585.43 19789.56 28973.45 19297.26 20885.57 13991.28 17094.97 177
AllTest83.42 26881.39 27489.52 22995.01 14077.79 25793.12 21390.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
TestCases89.52 22995.01 14077.79 25790.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
mvs_anonymous89.37 13489.32 11789.51 23193.47 20474.22 29591.65 25894.83 20982.91 20185.45 19493.79 16581.23 10396.36 26686.47 13194.09 13397.94 72
XVG-ACMP-BASELINE86.00 23184.84 23989.45 23291.20 26978.00 24991.70 25695.55 16285.05 15982.97 25692.25 21454.49 33397.48 18282.93 16987.45 22792.89 277
MVP-Stereo85.97 23284.86 23889.32 23390.92 28482.19 15092.11 24694.19 22978.76 27078.77 30391.63 23768.38 25896.56 25275.01 27293.95 13489.20 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 23584.70 24189.29 23491.76 25075.54 28788.49 30791.30 29781.63 23185.05 20888.70 30071.71 20996.24 27074.61 27589.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 20786.32 19789.21 23590.94 28277.26 26893.71 19094.43 22084.84 16284.36 22590.80 26376.04 15497.05 22582.12 18479.60 31193.31 258
tfpnnormal84.72 25683.23 26089.20 23692.79 22580.05 20394.48 13895.81 14382.38 20981.08 27791.21 24869.01 25096.95 23161.69 33680.59 29890.58 324
cl-mvsnet286.78 21485.98 20989.18 23792.34 23277.62 26390.84 27094.13 23381.33 23783.97 23690.15 27673.96 18496.60 24984.19 15482.94 26493.33 257
BH-w/o87.57 18687.05 17189.12 23894.90 14977.90 25292.41 23493.51 24782.89 20283.70 24291.34 24375.75 15897.07 22375.49 26593.49 14292.39 291
WR-MVS_H87.80 17387.37 16389.10 23993.23 21078.12 24795.61 7397.30 2687.90 8983.72 24192.01 22679.65 12196.01 27976.36 25780.54 29993.16 267
miper_enhance_ethall86.90 20986.18 20189.06 24091.66 25577.58 26490.22 28194.82 21079.16 26384.48 21889.10 29279.19 12496.66 24284.06 15582.94 26492.94 275
cl_fuxian87.14 20586.50 19189.04 24192.20 23477.26 26891.22 26594.70 21582.01 21884.34 22690.43 27178.81 12796.61 24783.70 16181.09 28893.25 261
miper_ehance_all_eth87.22 20186.62 18689.02 24292.13 23777.40 26790.91 26994.81 21181.28 23884.32 22790.08 27879.26 12396.62 24483.81 15982.94 26493.04 272
gg-mvs-nofinetune81.77 28079.37 29388.99 24390.85 28877.73 26086.29 32479.63 35374.88 30883.19 25569.05 34860.34 31196.11 27575.46 26694.64 12593.11 269
pmmvs683.42 26881.60 27288.87 24488.01 33077.87 25494.96 10794.24 22874.67 30978.80 30291.09 25660.17 31396.49 25677.06 25475.40 32692.23 296
DWT-MVSNet_test84.95 25283.68 25488.77 24591.43 26173.75 29991.74 25490.98 30580.66 24783.84 23887.36 31762.44 29597.11 21978.84 23585.81 23895.46 164
MIMVSNet82.59 27480.53 27988.76 24691.51 25778.32 24286.57 32390.13 32079.32 25980.70 28188.69 30152.98 33993.07 33166.03 32288.86 20594.90 184
cl-mvsnet_86.52 22385.78 21688.75 24792.03 24176.46 27790.74 27194.30 22581.83 22783.34 25290.78 26475.74 16096.57 25081.74 19481.54 28393.22 264
cl-mvsnet186.53 22285.78 21688.75 24792.02 24276.45 27890.74 27194.30 22581.83 22783.34 25290.82 26275.75 15896.57 25081.73 19581.52 28493.24 262
CP-MVSNet87.63 18187.26 16888.74 24993.12 21376.59 27695.29 8696.58 9188.43 7483.49 24992.98 19075.28 16495.83 28778.97 23381.15 28793.79 237
eth_miper_zixun_eth86.50 22485.77 21888.68 25091.94 24475.81 28590.47 27594.89 20482.05 21584.05 23390.46 27075.96 15596.77 23882.76 17579.36 31393.46 255
CHOSEN 280x42085.15 24883.99 25088.65 25192.47 22978.40 24179.68 34792.76 25974.90 30781.41 27389.59 28769.85 23795.51 29879.92 22395.29 11692.03 298
PS-CasMVS87.32 19586.88 17388.63 25292.99 22176.33 28195.33 8096.61 8988.22 8283.30 25493.07 18873.03 19995.79 29078.36 23881.00 29393.75 243
TransMVSNet (Re)84.43 25983.06 26288.54 25391.72 25178.44 23995.18 9592.82 25882.73 20479.67 29792.12 21873.49 19195.96 28171.10 29368.73 34091.21 313
RRT_test8_iter0586.90 20986.36 19488.52 25493.00 22073.27 30394.32 15595.96 13085.50 14684.26 23092.86 19260.76 30997.70 16888.32 10682.29 27194.60 196
EG-PatchMatch MVS82.37 27680.34 28288.46 25590.27 30379.35 22092.80 22594.33 22477.14 28773.26 33390.18 27547.47 34896.72 23970.25 29587.32 23089.30 330
PEN-MVS86.80 21386.27 19988.40 25692.32 23375.71 28695.18 9596.38 10287.97 8682.82 25893.15 18473.39 19595.92 28276.15 26179.03 31693.59 248
Baseline_NR-MVSNet87.07 20686.63 18588.40 25691.44 25877.87 25494.23 16092.57 26484.12 17385.74 18092.08 22277.25 14296.04 27682.29 18279.94 30791.30 310
D2MVS85.90 23385.09 23288.35 25890.79 28977.42 26691.83 25195.70 15180.77 24680.08 29290.02 27966.74 27196.37 26481.88 19087.97 22191.26 311
pmmvs584.21 26082.84 26688.34 25988.95 31876.94 27292.41 23491.91 28475.63 29980.28 28791.18 25164.59 28795.57 29477.09 25383.47 25992.53 286
LCM-MVSNet-Re88.30 16188.32 14288.27 26094.71 15772.41 31593.15 21290.98 30587.77 9379.25 30191.96 22778.35 13595.75 29183.04 16795.62 10796.65 124
CostFormer85.77 23784.94 23688.26 26191.16 27372.58 31389.47 29391.04 30476.26 29486.45 16889.97 28170.74 22396.86 23782.35 18087.07 23395.34 170
ITE_SJBPF88.24 26291.88 24677.05 27192.92 25585.54 14480.13 29193.30 17857.29 32496.20 27172.46 28684.71 24691.49 306
PVSNet78.82 1885.55 23984.65 24288.23 26394.72 15671.93 31687.12 32092.75 26078.80 26984.95 21090.53 26964.43 28896.71 24174.74 27393.86 13696.06 145
IterMVS-SCA-FT85.45 24084.53 24588.18 26491.71 25276.87 27390.19 28292.65 26385.40 14981.44 27290.54 26866.79 26995.00 31081.04 20281.05 28992.66 283
EPNet_dtu86.49 22685.94 21288.14 26590.24 30472.82 30794.11 16692.20 27286.66 12179.42 30092.36 20973.52 19095.81 28971.26 28993.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030483.46 26781.92 27088.10 26690.63 29677.49 26593.26 20893.75 24480.04 25380.44 28687.24 32047.94 34695.55 29575.79 26388.16 21691.26 311
Patchmtry82.71 27280.93 27888.06 26790.05 30876.37 28084.74 33491.96 28272.28 32881.32 27587.87 31371.03 21895.50 30068.97 30480.15 30592.32 294
DTE-MVSNet86.11 23085.48 22487.98 26891.65 25674.92 28994.93 11095.75 14887.36 10482.26 26393.04 18972.85 20095.82 28874.04 27777.46 32193.20 265
PMMVS85.71 23884.96 23587.95 26988.90 31977.09 27088.68 30590.06 32272.32 32786.47 16590.76 26572.15 20894.40 31381.78 19393.49 14292.36 292
GG-mvs-BLEND87.94 27089.73 31477.91 25187.80 31378.23 35580.58 28383.86 33359.88 31595.33 30471.20 29092.22 16590.60 323
pmmvs-eth3d80.97 29378.72 30187.74 27184.99 34379.97 20890.11 28491.65 28875.36 30073.51 33186.03 32659.45 31793.96 32175.17 26972.21 33189.29 331
MS-PatchMatch85.05 25084.16 24787.73 27291.42 26278.51 23791.25 26493.53 24677.50 28280.15 28991.58 23961.99 29895.51 29875.69 26494.35 13289.16 333
test_040281.30 29079.17 29787.67 27393.19 21178.17 24692.98 22091.71 28575.25 30276.02 32190.31 27359.23 31896.37 26450.22 34883.63 25788.47 339
IterMVS84.88 25383.98 25187.60 27491.44 25876.03 28390.18 28392.41 26683.24 19481.06 27890.42 27266.60 27294.28 31679.46 22680.98 29492.48 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 28879.30 29487.58 27590.92 28474.16 29780.99 34587.68 34070.52 33576.63 31688.81 29671.21 21592.76 33360.01 34286.93 23495.83 154
EPMVS83.90 26582.70 26787.51 27690.23 30572.67 30988.62 30681.96 35081.37 23685.01 20988.34 30466.31 27694.45 31275.30 26887.12 23195.43 166
ADS-MVSNet281.66 28379.71 29187.50 27791.35 26574.19 29683.33 33988.48 33672.90 32382.24 26485.77 32964.98 28593.20 32964.57 32883.74 25495.12 173
OurMVSNet-221017-085.35 24384.64 24387.49 27890.77 29072.59 31294.01 17794.40 22184.72 16579.62 29993.17 18361.91 29996.72 23981.99 18781.16 28593.16 267
tpm284.08 26182.94 26387.48 27991.39 26371.27 32089.23 29790.37 31671.95 32984.64 21389.33 29067.30 26096.55 25475.17 26987.09 23294.63 193
RPSCF85.07 24984.27 24687.48 27992.91 22370.62 32891.69 25792.46 26576.20 29582.67 26095.22 11063.94 29097.29 20577.51 24885.80 23994.53 201
miper_lstm_enhance85.27 24684.59 24487.31 28191.28 26874.63 29087.69 31694.09 23581.20 24281.36 27489.85 28474.97 16994.30 31581.03 20479.84 31093.01 273
FMVSNet581.52 28679.60 29287.27 28291.17 27177.95 25091.49 26092.26 27176.87 28876.16 31887.91 31251.67 34092.34 33567.74 31381.16 28591.52 305
USDC82.76 27181.26 27687.26 28391.17 27174.55 29189.27 29593.39 24978.26 27875.30 32392.08 22254.43 33496.63 24371.64 28885.79 24090.61 321
test-LLR85.87 23485.41 22587.25 28490.95 28071.67 31889.55 28989.88 32883.41 18984.54 21687.95 31067.25 26195.11 30781.82 19193.37 14794.97 177
test-mter84.54 25883.64 25687.25 28490.95 28071.67 31889.55 28989.88 32879.17 26284.54 21687.95 31055.56 32895.11 30781.82 19193.37 14794.97 177
JIA-IIPM81.04 29178.98 30087.25 28488.64 32073.48 30181.75 34489.61 33273.19 32082.05 26673.71 34566.07 28095.87 28571.18 29284.60 24792.41 290
TDRefinement79.81 30077.34 30487.22 28779.24 35175.48 28893.12 21392.03 27776.45 29075.01 32491.58 23949.19 34496.44 26170.22 29769.18 33789.75 327
tpmvs83.35 27082.07 26887.20 28891.07 27671.00 32588.31 31091.70 28678.91 26580.49 28587.18 32169.30 24697.08 22268.12 31283.56 25893.51 253
ppachtmachnet_test81.84 27980.07 28787.15 28988.46 32374.43 29489.04 30092.16 27375.33 30177.75 30888.99 29366.20 27795.37 30365.12 32677.60 31991.65 303
tpm cat181.96 27780.27 28387.01 29091.09 27571.02 32487.38 31991.53 29266.25 34180.17 28886.35 32568.22 25996.15 27469.16 30382.29 27193.86 234
OpenMVS_ROBcopyleft74.94 1979.51 30277.03 30886.93 29187.00 33376.23 28292.33 23890.74 31268.93 33874.52 32788.23 30749.58 34396.62 24457.64 34484.29 24987.94 341
SixPastTwentyTwo83.91 26482.90 26486.92 29290.99 27870.67 32793.48 19791.99 27985.54 14477.62 31092.11 22060.59 31096.87 23676.05 26277.75 31893.20 265
ADS-MVSNet81.56 28579.78 28986.90 29391.35 26571.82 31783.33 33989.16 33472.90 32382.24 26485.77 32964.98 28593.76 32264.57 32883.74 25495.12 173
PatchT82.68 27381.27 27586.89 29490.09 30770.94 32684.06 33690.15 31974.91 30685.63 18483.57 33569.37 24294.87 31165.19 32488.50 21094.84 186
tpm84.73 25584.02 24986.87 29590.33 30268.90 33589.06 29989.94 32580.85 24585.75 17989.86 28368.54 25695.97 28077.76 24484.05 25295.75 157
Patchmatch-RL test81.67 28279.96 28886.81 29685.42 34171.23 32182.17 34387.50 34178.47 27477.19 31282.50 33970.81 22293.48 32582.66 17672.89 33095.71 159
MDA-MVSNet-bldmvs78.85 30676.31 30986.46 29789.76 31373.88 29888.79 30390.42 31479.16 26359.18 34888.33 30560.20 31294.04 31862.00 33568.96 33891.48 307
tpmrst85.35 24384.99 23386.43 29890.88 28767.88 33888.71 30491.43 29580.13 25186.08 17688.80 29873.05 19896.02 27882.48 17783.40 26295.40 167
TESTMET0.1,183.74 26682.85 26586.42 29989.96 31071.21 32289.55 28987.88 33777.41 28383.37 25187.31 31856.71 32593.65 32480.62 21292.85 15894.40 210
our_test_381.93 27880.46 28186.33 30088.46 32373.48 30188.46 30891.11 30076.46 28976.69 31588.25 30666.89 26794.36 31468.75 30579.08 31591.14 315
lessismore_v086.04 30188.46 32368.78 33680.59 35173.01 33490.11 27755.39 32996.43 26275.06 27165.06 34292.90 276
TinyColmap79.76 30177.69 30385.97 30291.71 25273.12 30489.55 28990.36 31775.03 30472.03 33790.19 27446.22 34996.19 27363.11 33281.03 29088.59 338
KD-MVS_2432*160078.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
miper_refine_blended78.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
K. test v381.59 28480.15 28685.91 30589.89 31269.42 33492.57 23187.71 33985.56 14373.44 33289.71 28655.58 32795.52 29777.17 25169.76 33492.78 281
MIMVSNet179.38 30377.28 30585.69 30686.35 33573.67 30091.61 25992.75 26078.11 28172.64 33588.12 30848.16 34591.97 33960.32 33977.49 32091.43 308
UnsupCasMVSNet_eth80.07 29878.27 30285.46 30785.24 34272.63 31188.45 30994.87 20682.99 19971.64 33988.07 30956.34 32691.75 34073.48 28263.36 34592.01 299
CL-MVSNet_2432*160081.74 28180.53 27985.36 30885.96 33872.45 31490.25 27893.07 25381.24 24079.85 29687.29 31970.93 22092.52 33466.95 31669.23 33691.11 317
MDA-MVSNet_test_wron79.21 30577.19 30785.29 30988.22 32772.77 30885.87 32690.06 32274.34 31162.62 34787.56 31666.14 27891.99 33866.90 32073.01 32891.10 318
YYNet179.22 30477.20 30685.28 31088.20 32972.66 31085.87 32690.05 32474.33 31262.70 34687.61 31566.09 27992.03 33766.94 31772.97 32991.15 314
dp81.47 28780.23 28485.17 31189.92 31165.49 34486.74 32190.10 32176.30 29381.10 27687.12 32262.81 29395.92 28268.13 31179.88 30894.09 221
UnsupCasMVSNet_bld76.23 31373.27 31685.09 31283.79 34572.92 30585.65 32993.47 24871.52 33068.84 34279.08 34349.77 34293.21 32866.81 32160.52 34789.13 335
Anonymous2023120681.03 29279.77 29084.82 31387.85 33270.26 33091.42 26192.08 27573.67 31677.75 30889.25 29162.43 29693.08 33061.50 33782.00 27791.12 316
test0.0.03 182.41 27581.69 27184.59 31488.23 32672.89 30690.24 27987.83 33883.41 18979.86 29589.78 28567.25 26188.99 34665.18 32583.42 26191.90 300
CMPMVSbinary59.16 2180.52 29579.20 29684.48 31583.98 34467.63 34089.95 28793.84 24264.79 34366.81 34491.14 25457.93 32395.17 30576.25 25988.10 21790.65 320
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 25784.79 24084.37 31691.84 24764.92 34693.70 19191.47 29466.19 34286.16 17595.28 10767.18 26393.33 32780.89 20790.42 18094.88 185
PVSNet_073.20 2077.22 31074.83 31584.37 31690.70 29471.10 32383.09 34189.67 33172.81 32573.93 33083.13 33760.79 30893.70 32368.54 30650.84 35188.30 340
LF4IMVS80.37 29679.07 29984.27 31886.64 33469.87 33389.39 29491.05 30376.38 29174.97 32590.00 28047.85 34794.25 31774.55 27680.82 29688.69 337
PM-MVS78.11 30976.12 31184.09 31983.54 34670.08 33188.97 30185.27 34579.93 25474.73 32686.43 32334.70 35393.48 32579.43 22972.06 33288.72 336
testgi80.94 29480.20 28583.18 32087.96 33166.29 34191.28 26290.70 31383.70 18078.12 30592.84 19451.37 34190.82 34363.34 33182.46 27092.43 289
DIV-MVS_2432*160080.20 29779.24 29583.07 32185.64 34065.29 34591.01 26893.93 23778.71 27276.32 31786.40 32459.20 31992.93 33272.59 28569.35 33591.00 319
ambc83.06 32279.99 35063.51 34877.47 34892.86 25674.34 32984.45 33228.74 35495.06 30973.06 28468.89 33990.61 321
test20.0379.95 29979.08 29882.55 32385.79 33967.74 33991.09 26791.08 30181.23 24174.48 32889.96 28261.63 30090.15 34460.08 34076.38 32489.76 326
EU-MVSNet81.32 28980.95 27782.42 32488.50 32263.67 34793.32 20191.33 29664.02 34480.57 28492.83 19561.21 30692.27 33676.34 25880.38 30491.32 309
pmmvs371.81 31668.71 31981.11 32575.86 35270.42 32986.74 32183.66 34758.95 34768.64 34380.89 34136.93 35289.52 34563.10 33363.59 34483.39 343
new-patchmatchnet76.41 31275.17 31480.13 32682.65 34959.61 34987.66 31791.08 30178.23 27969.85 34083.22 33654.76 33191.63 34264.14 33064.89 34389.16 333
DSMNet-mixed76.94 31176.29 31078.89 32783.10 34756.11 35487.78 31479.77 35260.65 34675.64 32288.71 29961.56 30188.34 34760.07 34189.29 19992.21 297
new_pmnet72.15 31570.13 31878.20 32882.95 34865.68 34283.91 33782.40 34962.94 34564.47 34579.82 34242.85 35186.26 34957.41 34574.44 32782.65 345
MVS-HIRNet73.70 31472.20 31778.18 32991.81 24956.42 35382.94 34282.58 34855.24 34868.88 34166.48 34955.32 33095.13 30658.12 34388.42 21283.01 344
LCM-MVSNet66.00 31862.16 32277.51 33064.51 35858.29 35083.87 33890.90 30848.17 35154.69 34973.31 34616.83 36286.75 34865.47 32361.67 34687.48 342
ANet_high58.88 32154.22 32572.86 33156.50 36156.67 35280.75 34686.00 34273.09 32237.39 35464.63 35122.17 35779.49 35443.51 35023.96 35582.43 346
FPMVS64.63 31962.55 32170.88 33270.80 35456.71 35184.42 33584.42 34651.78 35049.57 35081.61 34023.49 35681.48 35240.61 35276.25 32574.46 348
N_pmnet68.89 31768.44 32070.23 33389.07 31728.79 36388.06 31119.50 36369.47 33771.86 33884.93 33161.24 30591.75 34054.70 34677.15 32290.15 325
PMMVS259.60 32056.40 32369.21 33468.83 35546.58 35873.02 35277.48 35655.07 34949.21 35172.95 34717.43 36180.04 35349.32 34944.33 35280.99 347
Gipumacopyleft57.99 32254.91 32467.24 33588.51 32165.59 34352.21 35590.33 31843.58 35342.84 35351.18 35420.29 35985.07 35034.77 35370.45 33351.05 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32348.46 32663.48 33645.72 36246.20 35973.41 35178.31 35441.03 35430.06 35665.68 3506.05 36383.43 35130.04 35465.86 34160.80 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 32438.59 33057.77 33756.52 36048.77 35755.38 35458.64 36029.33 35728.96 35752.65 3534.68 36464.62 35728.11 35533.07 35359.93 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 33874.23 35351.81 35656.67 36144.85 35248.54 35275.16 34427.87 35558.74 35840.92 35152.22 35058.39 351
E-PMN43.23 32542.29 32746.03 33965.58 35737.41 36073.51 35064.62 35733.99 35528.47 35847.87 35519.90 36067.91 35522.23 35624.45 35432.77 353
EMVS42.07 32641.12 32844.92 34063.45 35935.56 36273.65 34963.48 35833.05 35626.88 35945.45 35621.27 35867.14 35619.80 35723.02 35632.06 354
tmp_tt35.64 32739.24 32924.84 34114.87 36323.90 36462.71 35351.51 3626.58 35936.66 35562.08 35244.37 35030.34 36052.40 34722.00 35720.27 355
wuyk23d21.27 32920.48 33223.63 34268.59 35636.41 36149.57 3566.85 3649.37 3587.89 3604.46 3624.03 36531.37 35917.47 35816.07 3583.12 356
test1238.76 33111.22 3341.39 3430.85 3650.97 36585.76 3280.35 3660.54 3612.45 3628.14 3610.60 3660.48 3612.16 3600.17 3602.71 357
testmvs8.92 33011.52 3331.12 3441.06 3640.46 36686.02 3250.65 3650.62 3602.74 3619.52 3600.31 3670.45 3622.38 3590.39 3592.46 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k22.14 32829.52 3310.00 3450.00 3660.00 3670.00 35795.76 1470.00 3620.00 36394.29 14275.66 1610.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas6.64 3338.86 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36379.70 1170.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.82 33210.43 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36393.88 1610.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS98.15 3586.62 3597.07 4483.63 18294.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
IU-MVS98.77 486.00 5496.84 6381.26 23997.26 695.50 799.13 399.03 4
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13295.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 139
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21096.12 139
sam_mvs70.60 224
MTGPAbinary96.97 49
test_post188.00 3129.81 35969.31 24595.53 29676.65 255
test_post10.29 35870.57 22895.91 284
patchmatchnet-post83.76 33471.53 21296.48 257
MTMP96.16 4360.64 359
gm-plane-assit89.60 31568.00 33777.28 28688.99 29397.57 17679.44 228
test9_res91.91 5898.71 3098.07 63
TEST997.53 5886.49 3994.07 17196.78 7081.61 23292.77 6396.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17696.76 7381.86 22592.70 6796.20 8087.63 2799.02 68
agg_prior290.54 8498.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
test_prior485.96 5794.11 166
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
旧先验293.36 20071.25 33294.37 2697.13 21886.74 127
新几何293.11 215
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
无先验93.28 20796.26 10773.95 31499.05 6080.56 21396.59 125
原ACMM292.94 222
test22296.55 8881.70 15992.22 24295.01 19568.36 33990.20 11096.14 8580.26 11097.80 7296.05 146
testdata298.75 9978.30 239
segment_acmp87.16 35
testdata192.15 24487.94 87
plane_prior794.70 15882.74 136
plane_prior694.52 16482.75 13474.23 177
plane_prior596.22 11298.12 13688.15 10789.99 18494.63 193
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 159
plane_prior295.85 6190.81 17
plane_prior194.59 162
plane_prior82.73 13795.21 9289.66 4189.88 189
n20.00 367
nn0.00 367
door-mid85.49 343
test1196.57 92
door85.33 344
HQP5-MVS81.56 161
HQP-NCC94.17 17794.39 14888.81 6185.43 197
ACMP_Plane94.17 17794.39 14888.81 6185.43 197
BP-MVS87.11 124
HQP4-MVS85.43 19797.96 15494.51 203
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 187
NP-MVS94.37 17282.42 14493.98 154
MDTV_nov1_ep13_2view55.91 35587.62 31873.32 31984.59 21570.33 23174.65 27495.50 162
MDTV_nov1_ep1383.56 25791.69 25469.93 33287.75 31591.54 29178.60 27384.86 21188.90 29569.54 24096.03 27770.25 29588.93 204
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112