OPU-MVS | | | | | 96.21 1 | 98.00 44 | 90.85 1 | 97.13 9 | | | | 97.08 40 | 92.59 1 | 98.94 84 | 92.25 47 | 98.99 10 | 98.84 8 |
|
HPM-MVS++ |  | | 95.14 9 | 94.91 11 | 95.83 2 | 98.25 29 | 89.65 2 | 95.92 59 | 96.96 52 | 91.75 7 | 94.02 35 | 96.83 51 | 88.12 21 | 99.55 12 | 93.41 24 | 98.94 12 | 98.28 45 |
|
SMA-MVS |  | | 95.20 7 | 95.07 9 | 95.59 3 | 98.14 36 | 88.48 6 | 96.26 40 | 97.28 28 | 85.90 138 | 97.67 3 | 98.10 2 | 88.41 17 | 99.56 7 | 94.66 10 | 99.19 1 | 98.71 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
3Dnovator+ | | 87.14 4 | 92.42 73 | 91.37 82 | 95.55 4 | 95.63 122 | 88.73 4 | 97.07 13 | 96.77 71 | 90.84 16 | 84.02 239 | 96.62 63 | 75.95 159 | 99.34 33 | 87.77 116 | 97.68 78 | 98.59 18 |
|
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 5 | 98.11 37 | 88.51 5 | 95.29 89 | 96.96 52 | 92.09 3 | 95.32 19 | 97.08 40 | 89.49 12 | 99.33 36 | 95.10 8 | 98.85 15 | 98.66 14 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 6 | 98.02 43 | 87.70 10 | 95.68 69 | 97.34 19 | 88.28 81 | 95.30 20 | 97.67 13 | 85.90 49 | 99.54 16 | 93.91 17 | 98.95 11 | 98.60 17 |
|
DPE-MVS |  | | 95.57 3 | 95.67 3 | 95.25 7 | 98.36 25 | 87.28 15 | 95.56 76 | 97.51 4 | 89.13 58 | 97.14 7 | 97.91 9 | 91.64 5 | 99.62 1 | 94.61 11 | 99.17 2 | 98.86 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 8 | 97.84 50 | 87.76 8 | 96.65 29 | 97.48 7 | 87.76 97 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 9 | 98.46 18 | 87.50 13 | 95.00 110 | 97.12 40 | 87.13 111 | 92.51 75 | 96.30 74 | 89.24 14 | 99.34 33 | 93.46 21 | 98.62 44 | 98.73 11 |
|
NCCC | | | 94.81 13 | 94.69 15 | 95.17 10 | 97.83 51 | 87.46 14 | 95.66 71 | 96.93 55 | 92.34 2 | 93.94 36 | 96.58 65 | 87.74 24 | 99.44 27 | 92.83 34 | 98.40 53 | 98.62 16 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 11 | 97.70 55 | 87.71 9 | 95.98 56 | 97.44 12 | 86.67 124 | 95.25 21 | 97.31 25 | 87.73 25 | 99.24 44 | 93.11 32 | 98.76 26 | 98.40 35 |
|
DPM-MVS | | | 92.58 69 | 91.74 79 | 95.08 12 | 96.19 98 | 89.31 3 | 92.66 233 | 96.56 95 | 83.44 193 | 91.68 96 | 95.04 118 | 86.60 42 | 98.99 77 | 85.60 142 | 97.92 72 | 96.93 117 |
|
ETH3D cwj APD-0.16 | | | 93.91 41 | 93.53 49 | 95.06 13 | 96.76 81 | 87.78 7 | 94.92 115 | 97.21 34 | 84.33 174 | 93.89 38 | 97.09 39 | 87.20 33 | 99.29 41 | 91.90 65 | 98.44 51 | 98.12 59 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 14 | 98.52 14 | 86.96 17 | 96.85 24 | 97.32 24 | 88.24 82 | 93.15 55 | 97.04 42 | 86.17 44 | 99.62 1 | 92.40 43 | 98.81 18 | 98.52 20 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 41 | 97.09 11 | 97.49 5 | | | | | 99.61 3 | 95.62 5 | 99.08 7 | 98.99 5 |
|
testtj | | | 94.39 25 | 94.18 29 | 95.00 16 | 98.24 31 | 86.77 28 | 96.16 44 | 97.23 32 | 87.28 109 | 94.85 24 | 97.04 42 | 86.99 37 | 99.52 20 | 91.54 72 | 98.33 56 | 98.71 12 |
|
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 16 | 98.42 20 | 86.95 18 | 95.06 108 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 16 | 98.42 20 | 86.95 18 | 94.36 158 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 19 | 98.49 16 | 86.52 38 | 96.91 20 | 97.47 8 | 91.73 8 | 96.10 13 | 96.69 58 | 89.90 9 | 99.30 39 | 94.70 9 | 98.04 66 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ETH3 D test6400 | | | 93.64 49 | 93.22 55 | 94.92 20 | 97.79 52 | 86.84 22 | 95.31 83 | 97.26 29 | 82.67 211 | 93.81 39 | 96.29 75 | 87.29 32 | 99.27 42 | 89.87 93 | 98.67 37 | 98.65 15 |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 20 | 98.65 7 | 86.67 32 | 96.92 19 | 97.23 32 | 88.60 72 | 93.58 47 | 97.27 27 | 85.22 56 | 99.54 16 | 92.21 48 | 98.74 29 | 98.56 19 |
|
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 22 | 98.26 28 | 86.29 49 | 97.46 2 | 97.40 17 | 89.03 61 | 96.20 12 | 98.10 2 | 89.39 13 | 99.34 33 | 95.88 1 | 99.03 9 | 99.10 3 |
|
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 22 | 98.63 8 | 86.69 30 | 96.94 15 | 97.32 24 | 88.63 70 | 93.53 50 | 97.26 29 | 85.04 59 | 99.54 16 | 92.35 45 | 98.78 21 | 98.50 22 |
|
GST-MVS | | | 94.21 33 | 93.97 38 | 94.90 24 | 98.41 22 | 86.82 23 | 96.54 31 | 97.19 35 | 88.24 82 | 93.26 51 | 96.83 51 | 85.48 53 | 99.59 4 | 91.43 76 | 98.40 53 | 98.30 41 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 25 | 98.61 9 | 86.81 24 | 96.94 15 | 97.34 19 | 88.63 70 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 92.35 45 | 98.77 24 | 98.30 41 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 25 | 98.61 9 | 86.81 24 | 96.43 32 | 97.34 19 | 87.51 104 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 91.68 70 | 98.77 24 | 98.30 41 |
|
MP-MVS-pluss | | | 94.21 33 | 94.00 37 | 94.85 27 | 98.17 34 | 86.65 33 | 94.82 122 | 97.17 38 | 86.26 132 | 92.83 63 | 97.87 10 | 85.57 52 | 99.56 7 | 94.37 14 | 98.92 13 | 98.34 38 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
canonicalmvs | | | 93.27 58 | 92.75 66 | 94.85 27 | 95.70 120 | 87.66 11 | 96.33 35 | 96.41 101 | 90.00 34 | 94.09 33 | 94.60 136 | 82.33 90 | 98.62 106 | 92.40 43 | 92.86 160 | 98.27 47 |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 61 | 97.16 37 | 85.02 60 | 99.49 23 | 91.99 57 | 98.56 47 | 98.47 28 |
|
X-MVStestdata | | | 88.31 165 | 86.13 207 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 61 | 23.41 364 | 85.02 60 | 99.49 23 | 91.99 57 | 98.56 47 | 98.47 28 |
|
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 27 | 96.99 76 | 86.33 45 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 18 | 97.46 17 | 88.98 16 | 99.40 28 | 94.12 15 | 98.89 14 | 98.82 10 |
Skip Steuart: Steuart Systems R&D Blog. |
alignmvs | | | 93.08 63 | 92.50 70 | 94.81 32 | 95.62 123 | 87.61 12 | 95.99 54 | 96.07 124 | 89.77 40 | 94.12 32 | 94.87 123 | 80.56 108 | 98.66 102 | 92.42 42 | 93.10 155 | 98.15 56 |
|
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 33 | 98.77 4 | 85.99 55 | 97.13 9 | 97.44 12 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 2 | 99.58 5 | 95.66 2 | 99.13 3 | 98.84 8 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 42 | 94.80 33 | 97.48 62 | 86.78 26 | 95.65 73 | 96.89 58 | 89.40 50 | 92.81 64 | 96.97 45 | 85.37 55 | 99.24 44 | 90.87 85 | 98.69 33 | 98.38 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 94.25 29 | 94.07 34 | 94.77 35 | 98.47 17 | 86.31 47 | 96.71 27 | 96.98 48 | 89.04 60 | 91.98 86 | 97.19 34 | 85.43 54 | 99.56 7 | 92.06 56 | 98.79 19 | 98.44 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS |  | | 94.24 30 | 94.07 34 | 94.75 36 | 98.06 41 | 86.90 21 | 95.88 60 | 96.94 54 | 85.68 144 | 95.05 23 | 97.18 35 | 87.31 31 | 99.07 58 | 91.90 65 | 98.61 45 | 98.28 45 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 37 | 98.39 23 | 86.64 34 | 97.60 1 | 97.24 30 | 88.53 74 | 92.73 68 | 97.23 30 | 85.20 57 | 99.32 37 | 92.15 51 | 98.83 17 | 98.25 50 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 38 | 95.54 124 | 86.75 29 | 94.57 138 | 96.70 80 | 91.84 6 | 94.41 25 | 96.56 67 | 87.19 34 | 99.13 54 | 93.50 20 | 97.65 80 | 98.16 55 |
|
PGM-MVS | | | 93.96 40 | 93.72 45 | 94.68 38 | 98.43 19 | 86.22 50 | 95.30 86 | 97.78 1 | 87.45 107 | 93.26 51 | 97.33 24 | 84.62 65 | 99.51 21 | 90.75 87 | 98.57 46 | 98.32 40 |
|
DVP-MVS | | | 95.67 2 | 96.02 2 | 94.64 40 | 98.78 2 | 85.93 58 | 97.09 11 | 96.73 76 | 90.27 28 | 97.04 8 | 98.05 6 | 91.47 6 | 99.55 12 | 95.62 5 | 99.08 7 | 98.45 32 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 93.99 38 | 93.78 43 | 94.63 41 | 98.50 15 | 85.90 63 | 96.87 21 | 96.91 56 | 88.70 68 | 91.83 92 | 97.17 36 | 83.96 74 | 99.55 12 | 91.44 75 | 98.64 43 | 98.43 34 |
|
PHI-MVS | | | 93.89 43 | 93.65 47 | 94.62 42 | 96.84 79 | 86.43 41 | 96.69 28 | 97.49 5 | 85.15 160 | 93.56 49 | 96.28 76 | 85.60 51 | 99.31 38 | 92.45 40 | 98.79 19 | 98.12 59 |
|
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 43 | 98.25 29 | 86.33 45 | 96.11 49 | 96.62 89 | 88.14 88 | 96.10 13 | 96.96 46 | 89.09 15 | 98.94 84 | 94.48 12 | 98.68 35 | 98.48 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CANet | | | 93.54 51 | 93.20 57 | 94.55 44 | 95.65 121 | 85.73 67 | 94.94 113 | 96.69 82 | 91.89 5 | 90.69 109 | 95.88 93 | 81.99 99 | 99.54 16 | 93.14 31 | 97.95 71 | 98.39 36 |
|
train_agg | | | 93.44 53 | 93.08 58 | 94.52 45 | 97.53 58 | 86.49 39 | 94.07 175 | 96.78 69 | 81.86 230 | 92.77 65 | 96.20 80 | 87.63 27 | 99.12 55 | 92.14 52 | 98.69 33 | 97.94 72 |
|
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 46 | 95.54 124 | 86.36 44 | 94.57 138 | 96.44 98 | 91.69 9 | 94.32 28 | 96.56 67 | 87.05 36 | 99.03 64 | 93.35 26 | 97.65 80 | 98.15 56 |
|
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 47 | 97.85 48 | 85.63 68 | 95.21 95 | 95.47 171 | 89.44 47 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
CDPH-MVS | | | 92.83 65 | 92.30 73 | 94.44 48 | 97.79 52 | 86.11 52 | 94.06 177 | 96.66 86 | 80.09 257 | 92.77 65 | 96.63 62 | 86.62 39 | 99.04 63 | 87.40 121 | 98.66 40 | 98.17 54 |
|
3Dnovator | | 86.66 5 | 91.73 83 | 90.82 94 | 94.44 48 | 94.59 165 | 86.37 43 | 97.18 7 | 97.02 46 | 89.20 55 | 84.31 234 | 96.66 61 | 73.74 194 | 99.17 50 | 86.74 131 | 97.96 70 | 97.79 83 |
|
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 50 | 98.21 33 | 85.78 65 | 96.40 34 | 96.90 57 | 88.20 85 | 94.33 27 | 97.40 21 | 84.75 64 | 99.03 64 | 93.35 26 | 97.99 67 | 98.48 24 |
|
HPM-MVS |  | | 94.02 37 | 93.88 39 | 94.43 50 | 98.39 23 | 85.78 65 | 97.25 5 | 97.07 44 | 86.90 119 | 92.62 72 | 96.80 55 | 84.85 63 | 99.17 50 | 92.43 41 | 98.65 42 | 98.33 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + GP. | | | 93.66 48 | 93.41 52 | 94.41 52 | 96.59 86 | 86.78 26 | 94.40 150 | 93.93 241 | 89.77 40 | 94.21 29 | 95.59 103 | 87.35 30 | 98.61 107 | 92.72 37 | 96.15 105 | 97.83 81 |
|
test12 | | | | | 94.34 53 | 97.13 74 | 86.15 51 | | 96.29 107 | | 91.04 106 | | 85.08 58 | 99.01 70 | | 98.13 62 | 97.86 79 |
|
ACMMP |  | | 93.24 59 | 92.88 64 | 94.30 54 | 98.09 40 | 85.33 72 | 96.86 23 | 97.45 11 | 88.33 78 | 90.15 115 | 97.03 44 | 81.44 102 | 99.51 21 | 90.85 86 | 95.74 108 | 98.04 66 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 93.29 57 | 92.97 62 | 94.26 55 | 97.38 64 | 85.92 60 | 93.92 186 | 96.72 78 | 81.96 224 | 92.16 81 | 96.23 78 | 87.85 22 | 98.97 80 | 91.95 61 | 98.55 49 | 97.90 76 |
|
DeepC-MVS | | 88.79 3 | 93.31 56 | 92.99 61 | 94.26 55 | 96.07 105 | 85.83 64 | 94.89 117 | 96.99 47 | 89.02 62 | 89.56 119 | 97.37 23 | 82.51 87 | 99.38 29 | 92.20 49 | 98.30 57 | 97.57 91 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 93.91 41 | 93.81 41 | 94.19 57 | 95.36 128 | 85.47 70 | 94.68 130 | 96.41 101 | 91.60 10 | 93.75 40 | 96.71 56 | 85.95 48 | 99.10 57 | 93.21 30 | 96.65 96 | 98.01 69 |
|
EPNet | | | 91.79 80 | 91.02 90 | 94.10 58 | 90.10 311 | 85.25 73 | 96.03 53 | 92.05 282 | 92.83 1 | 87.39 156 | 95.78 96 | 79.39 124 | 99.01 70 | 88.13 113 | 97.48 82 | 98.05 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 93.43 54 | 93.25 54 | 93.97 59 | 95.42 127 | 85.04 74 | 93.06 223 | 97.13 39 | 90.74 20 | 91.84 90 | 95.09 117 | 86.32 43 | 99.21 47 | 91.22 77 | 98.45 50 | 97.65 86 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DP-MVS Recon | | | 91.95 78 | 91.28 84 | 93.96 60 | 98.33 27 | 85.92 60 | 94.66 133 | 96.66 86 | 82.69 210 | 90.03 117 | 95.82 95 | 82.30 91 | 99.03 64 | 84.57 154 | 96.48 102 | 96.91 118 |
|
HPM-MVS_fast | | | 93.40 55 | 93.22 55 | 93.94 61 | 98.36 25 | 84.83 76 | 97.15 8 | 96.80 68 | 85.77 141 | 92.47 76 | 97.13 38 | 82.38 88 | 99.07 58 | 90.51 89 | 98.40 53 | 97.92 75 |
|
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 62 | 97.25 73 | 86.69 30 | 96.19 43 | 97.11 42 | 90.42 25 | 96.95 10 | 97.27 27 | 89.53 11 | 96.91 239 | 94.38 13 | 98.85 15 | 98.03 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MVS_111021_HR | | | 93.45 52 | 93.31 53 | 93.84 63 | 96.99 76 | 84.84 75 | 93.24 216 | 97.24 30 | 88.76 67 | 91.60 97 | 95.85 94 | 86.07 47 | 98.66 102 | 91.91 62 | 98.16 61 | 98.03 67 |
|
SR-MVS-dyc-post | | | 93.82 44 | 93.82 40 | 93.82 64 | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 72 | 87.46 105 | 93.75 40 | 97.43 18 | 84.24 69 | 99.01 70 | 92.73 35 | 97.80 75 | 97.88 77 |
|
test_prior3 | | | 93.60 50 | 93.53 49 | 93.82 64 | 97.29 69 | 84.49 85 | 94.12 168 | 96.88 59 | 87.67 100 | 92.63 70 | 96.39 72 | 86.62 39 | 98.87 88 | 91.50 73 | 98.67 37 | 98.11 61 |
|
test_prior | | | | | 93.82 64 | 97.29 69 | 84.49 85 | | 96.88 59 | | | | | 98.87 88 | | | 98.11 61 |
|
Regformer-3 | | | 93.68 47 | 93.64 48 | 93.81 67 | 95.36 128 | 84.61 79 | 94.68 130 | 95.83 144 | 91.27 12 | 93.60 46 | 96.71 56 | 85.75 50 | 98.86 91 | 92.87 33 | 96.65 96 | 97.96 71 |
|
APD-MVS_3200maxsize | | | 93.78 45 | 93.77 44 | 93.80 68 | 97.92 45 | 84.19 96 | 96.30 36 | 96.87 61 | 86.96 115 | 93.92 37 | 97.47 16 | 83.88 75 | 98.96 83 | 92.71 38 | 97.87 73 | 98.26 49 |
|
CSCG | | | 93.23 60 | 93.05 59 | 93.76 69 | 98.04 42 | 84.07 98 | 96.22 42 | 97.37 18 | 84.15 176 | 90.05 116 | 95.66 100 | 87.77 23 | 99.15 53 | 89.91 92 | 98.27 58 | 98.07 63 |
|
UA-Net | | | 92.83 65 | 92.54 69 | 93.68 70 | 96.10 103 | 84.71 78 | 95.66 71 | 96.39 103 | 91.92 4 | 93.22 53 | 96.49 69 | 83.16 80 | 98.87 88 | 84.47 155 | 95.47 113 | 97.45 96 |
|
test1172 | | | 93.97 39 | 94.07 34 | 93.66 71 | 98.11 37 | 83.45 115 | 96.26 40 | 96.84 62 | 88.33 78 | 94.19 30 | 97.43 18 | 84.24 69 | 99.01 70 | 93.26 28 | 97.98 68 | 98.52 20 |
|
QAPM | | | 89.51 130 | 88.15 151 | 93.59 72 | 94.92 149 | 84.58 80 | 96.82 25 | 96.70 80 | 78.43 280 | 83.41 255 | 96.19 83 | 73.18 202 | 99.30 39 | 77.11 257 | 96.54 99 | 96.89 119 |
|
abl_6 | | | 93.18 61 | 93.05 59 | 93.57 73 | 97.52 60 | 84.27 95 | 95.53 77 | 96.67 85 | 87.85 94 | 93.20 54 | 97.22 31 | 80.35 109 | 99.18 49 | 91.91 62 | 97.21 85 | 97.26 100 |
|
EI-MVSNet-Vis-set | | | 93.01 64 | 92.92 63 | 93.29 74 | 95.01 141 | 83.51 114 | 94.48 142 | 95.77 148 | 90.87 15 | 92.52 74 | 96.67 60 | 84.50 66 | 99.00 75 | 91.99 57 | 94.44 133 | 97.36 97 |
|
Vis-MVSNet |  | | 91.75 82 | 91.23 85 | 93.29 74 | 95.32 131 | 83.78 106 | 96.14 46 | 95.98 130 | 89.89 35 | 90.45 111 | 96.58 65 | 75.09 171 | 98.31 129 | 84.75 152 | 96.90 90 | 97.78 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
VNet | | | 92.24 75 | 91.91 77 | 93.24 76 | 96.59 86 | 83.43 116 | 94.84 121 | 96.44 98 | 89.19 56 | 94.08 34 | 95.90 92 | 77.85 144 | 98.17 135 | 88.90 103 | 93.38 149 | 98.13 58 |
|
1121 | | | 90.42 109 | 89.49 115 | 93.20 77 | 97.27 71 | 84.46 88 | 92.63 234 | 95.51 169 | 71.01 340 | 91.20 104 | 96.21 79 | 82.92 83 | 99.05 60 | 80.56 218 | 98.07 65 | 96.10 145 |
|
VDD-MVS | | | 90.74 99 | 89.92 111 | 93.20 77 | 96.27 96 | 83.02 127 | 95.73 66 | 93.86 245 | 88.42 77 | 92.53 73 | 96.84 50 | 62.09 302 | 98.64 104 | 90.95 83 | 92.62 163 | 97.93 74 |
|
nrg030 | | | 91.08 95 | 90.39 97 | 93.17 79 | 93.07 220 | 86.91 20 | 96.41 33 | 96.26 109 | 88.30 80 | 88.37 136 | 94.85 126 | 82.19 94 | 97.64 177 | 91.09 78 | 82.95 266 | 94.96 185 |
|
EI-MVSNet-UG-set | | | 92.74 67 | 92.62 68 | 93.12 80 | 94.86 153 | 83.20 121 | 94.40 150 | 95.74 151 | 90.71 22 | 92.05 85 | 96.60 64 | 84.00 73 | 98.99 77 | 91.55 71 | 93.63 141 | 97.17 105 |
|
æ–°å‡ ä½•1 | | | | | 93.10 81 | 97.30 68 | 84.35 94 | | 95.56 163 | 71.09 339 | 91.26 103 | 96.24 77 | 82.87 84 | 98.86 91 | 79.19 237 | 98.10 63 | 96.07 147 |
|
OMC-MVS | | | 91.23 91 | 90.62 96 | 93.08 82 | 96.27 96 | 84.07 98 | 93.52 201 | 95.93 134 | 86.95 116 | 89.51 120 | 96.13 86 | 78.50 135 | 98.35 124 | 85.84 139 | 92.90 159 | 96.83 120 |
|
OpenMVS |  | 83.78 11 | 88.74 155 | 87.29 170 | 93.08 82 | 92.70 231 | 85.39 71 | 96.57 30 | 96.43 100 | 78.74 276 | 80.85 284 | 96.07 87 | 69.64 244 | 99.01 70 | 78.01 248 | 96.65 96 | 94.83 192 |
|
MAR-MVS | | | 90.30 110 | 89.37 120 | 93.07 84 | 96.61 85 | 84.48 87 | 95.68 69 | 95.67 155 | 82.36 215 | 87.85 144 | 92.85 199 | 76.63 153 | 98.80 98 | 80.01 226 | 96.68 95 | 95.91 152 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
lupinMVS | | | 90.92 96 | 90.21 100 | 93.03 85 | 93.86 196 | 83.88 103 | 92.81 230 | 93.86 245 | 79.84 260 | 91.76 93 | 94.29 146 | 77.92 141 | 98.04 151 | 90.48 90 | 97.11 86 | 97.17 105 |
|
Effi-MVS+ | | | 91.59 86 | 91.11 87 | 93.01 86 | 94.35 178 | 83.39 118 | 94.60 135 | 95.10 195 | 87.10 112 | 90.57 110 | 93.10 192 | 81.43 103 | 98.07 147 | 89.29 99 | 94.48 131 | 97.59 90 |
|
MVS_111021_LR | | | 92.47 72 | 92.29 74 | 92.98 87 | 95.99 109 | 84.43 92 | 93.08 221 | 96.09 122 | 88.20 85 | 91.12 105 | 95.72 99 | 81.33 104 | 97.76 166 | 91.74 68 | 97.37 84 | 96.75 122 |
|
ETV-MVS | | | 92.74 67 | 92.66 67 | 92.97 88 | 95.20 136 | 84.04 100 | 95.07 105 | 96.51 96 | 90.73 21 | 92.96 60 | 91.19 254 | 84.06 71 | 98.34 125 | 91.72 69 | 96.54 99 | 96.54 130 |
|
LFMVS | | | 90.08 114 | 89.13 127 | 92.95 89 | 96.71 82 | 82.32 149 | 96.08 50 | 89.91 332 | 86.79 120 | 92.15 83 | 96.81 53 | 62.60 299 | 98.34 125 | 87.18 125 | 93.90 137 | 98.19 53 |
|
UGNet | | | 89.95 119 | 88.95 131 | 92.95 89 | 94.51 168 | 83.31 119 | 95.70 68 | 95.23 188 | 89.37 51 | 87.58 150 | 93.94 160 | 64.00 294 | 98.78 99 | 83.92 161 | 96.31 104 | 96.74 123 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
jason | | | 90.80 97 | 90.10 104 | 92.90 91 | 93.04 222 | 83.53 113 | 93.08 221 | 94.15 235 | 80.22 254 | 91.41 100 | 94.91 121 | 76.87 147 | 97.93 160 | 90.28 91 | 96.90 90 | 97.24 101 |
jason: jason. |
DP-MVS | | | 87.25 203 | 85.36 233 | 92.90 91 | 97.65 56 | 83.24 120 | 94.81 123 | 92.00 284 | 74.99 311 | 81.92 274 | 95.00 119 | 72.66 207 | 99.05 60 | 66.92 325 | 92.33 167 | 96.40 131 |
|
CANet_DTU | | | 90.26 112 | 89.41 119 | 92.81 93 | 93.46 210 | 83.01 128 | 93.48 202 | 94.47 223 | 89.43 49 | 87.76 148 | 94.23 150 | 70.54 234 | 99.03 64 | 84.97 147 | 96.39 103 | 96.38 132 |
|
MVSFormer | | | 91.68 85 | 91.30 83 | 92.80 94 | 93.86 196 | 83.88 103 | 95.96 57 | 95.90 138 | 84.66 170 | 91.76 93 | 94.91 121 | 77.92 141 | 97.30 207 | 89.64 95 | 97.11 86 | 97.24 101 |
|
PVSNet_Blended_VisFu | | | 91.38 88 | 90.91 92 | 92.80 94 | 96.39 93 | 83.17 122 | 94.87 119 | 96.66 86 | 83.29 197 | 89.27 124 | 94.46 141 | 80.29 111 | 99.17 50 | 87.57 119 | 95.37 116 | 96.05 149 |
|
VDDNet | | | 89.56 129 | 88.49 142 | 92.76 96 | 95.07 140 | 82.09 151 | 96.30 36 | 93.19 257 | 81.05 249 | 91.88 88 | 96.86 49 | 61.16 312 | 98.33 127 | 88.43 109 | 92.49 166 | 97.84 80 |
|
hse-mvs3 | | | 90.80 97 | 90.15 103 | 92.75 97 | 96.01 107 | 82.66 141 | 95.43 79 | 95.53 167 | 89.80 37 | 93.08 58 | 95.64 101 | 75.77 160 | 99.00 75 | 92.07 54 | 78.05 322 | 96.60 126 |
|
casdiffmvs | | | 92.51 71 | 92.43 71 | 92.74 98 | 94.41 174 | 81.98 154 | 94.54 140 | 96.23 113 | 89.57 45 | 91.96 87 | 96.17 84 | 82.58 86 | 98.01 153 | 90.95 83 | 95.45 115 | 98.23 51 |
|
test_yl | | | 90.69 101 | 90.02 109 | 92.71 99 | 95.72 118 | 82.41 147 | 94.11 170 | 95.12 193 | 85.63 145 | 91.49 98 | 94.70 130 | 74.75 175 | 98.42 120 | 86.13 137 | 92.53 164 | 97.31 98 |
|
DCV-MVSNet | | | 90.69 101 | 90.02 109 | 92.71 99 | 95.72 118 | 82.41 147 | 94.11 170 | 95.12 193 | 85.63 145 | 91.49 98 | 94.70 130 | 74.75 175 | 98.42 120 | 86.13 137 | 92.53 164 | 97.31 98 |
|
PCF-MVS | | 84.11 10 | 87.74 180 | 86.08 211 | 92.70 101 | 94.02 187 | 84.43 92 | 89.27 301 | 95.87 141 | 73.62 323 | 84.43 226 | 94.33 143 | 78.48 136 | 98.86 91 | 70.27 300 | 94.45 132 | 94.81 193 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
baseline | | | 92.39 74 | 92.29 74 | 92.69 102 | 94.46 171 | 81.77 159 | 94.14 167 | 96.27 108 | 89.22 54 | 91.88 88 | 96.00 88 | 82.35 89 | 97.99 155 | 91.05 79 | 95.27 120 | 98.30 41 |
|
MSLP-MVS++ | | | 93.72 46 | 94.08 33 | 92.65 103 | 97.31 67 | 83.43 116 | 95.79 64 | 97.33 22 | 90.03 33 | 93.58 47 | 96.96 46 | 84.87 62 | 97.76 166 | 92.19 50 | 98.66 40 | 96.76 121 |
|
ab-mvs | | | 89.41 136 | 88.35 144 | 92.60 104 | 95.15 139 | 82.65 142 | 92.20 249 | 95.60 162 | 83.97 180 | 88.55 132 | 93.70 175 | 74.16 186 | 98.21 134 | 82.46 183 | 89.37 199 | 96.94 116 |
|
LS3D | | | 87.89 175 | 86.32 202 | 92.59 105 | 96.07 105 | 82.92 131 | 95.23 93 | 94.92 206 | 75.66 303 | 82.89 262 | 95.98 89 | 72.48 210 | 99.21 47 | 68.43 314 | 95.23 121 | 95.64 164 |
|
Anonymous20240529 | | | 88.09 171 | 86.59 192 | 92.58 106 | 96.53 89 | 81.92 157 | 95.99 54 | 95.84 143 | 74.11 319 | 89.06 128 | 95.21 113 | 61.44 307 | 98.81 97 | 83.67 166 | 87.47 228 | 97.01 113 |
|
CPTT-MVS | | | 91.99 77 | 91.80 78 | 92.55 107 | 98.24 31 | 81.98 154 | 96.76 26 | 96.49 97 | 81.89 229 | 90.24 113 | 96.44 71 | 78.59 133 | 98.61 107 | 89.68 94 | 97.85 74 | 97.06 110 |
|
114514_t | | | 89.51 130 | 88.50 140 | 92.54 108 | 98.11 37 | 81.99 153 | 95.16 100 | 96.36 105 | 70.19 342 | 85.81 183 | 95.25 111 | 76.70 151 | 98.63 105 | 82.07 189 | 96.86 92 | 97.00 114 |
|
PAPM_NR | | | 91.22 92 | 90.78 95 | 92.52 109 | 97.60 57 | 81.46 168 | 94.37 157 | 96.24 112 | 86.39 130 | 87.41 153 | 94.80 128 | 82.06 97 | 98.48 113 | 82.80 178 | 95.37 116 | 97.61 88 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 110 | 96.52 90 | 80.00 212 | 94.00 182 | 97.08 43 | 90.05 32 | 95.65 17 | 97.29 26 | 89.66 10 | 98.97 80 | 93.95 16 | 98.71 30 | 98.50 22 |
|
IS-MVSNet | | | 91.43 87 | 91.09 89 | 92.46 111 | 95.87 115 | 81.38 171 | 96.95 14 | 93.69 250 | 89.72 42 | 89.50 121 | 95.98 89 | 78.57 134 | 97.77 165 | 83.02 172 | 96.50 101 | 98.22 52 |
|
API-MVS | | | 90.66 103 | 90.07 105 | 92.45 112 | 96.36 94 | 84.57 81 | 96.06 52 | 95.22 190 | 82.39 213 | 89.13 125 | 94.27 149 | 80.32 110 | 98.46 115 | 80.16 225 | 96.71 94 | 94.33 216 |
|
xiu_mvs_v1_base_debu | | | 90.64 104 | 90.05 106 | 92.40 113 | 93.97 193 | 84.46 88 | 93.32 206 | 95.46 172 | 85.17 157 | 92.25 78 | 94.03 152 | 70.59 230 | 98.57 109 | 90.97 80 | 94.67 124 | 94.18 219 |
|
xiu_mvs_v1_base | | | 90.64 104 | 90.05 106 | 92.40 113 | 93.97 193 | 84.46 88 | 93.32 206 | 95.46 172 | 85.17 157 | 92.25 78 | 94.03 152 | 70.59 230 | 98.57 109 | 90.97 80 | 94.67 124 | 94.18 219 |
|
xiu_mvs_v1_base_debi | | | 90.64 104 | 90.05 106 | 92.40 113 | 93.97 193 | 84.46 88 | 93.32 206 | 95.46 172 | 85.17 157 | 92.25 78 | 94.03 152 | 70.59 230 | 98.57 109 | 90.97 80 | 94.67 124 | 94.18 219 |
|
DROMVSNet | | | 93.18 61 | 93.44 51 | 92.40 113 | 94.99 144 | 81.96 156 | 96.87 21 | 96.69 82 | 89.72 42 | 92.47 76 | 95.44 104 | 83.30 79 | 98.15 136 | 93.40 25 | 98.10 63 | 97.10 109 |
|
RRT_MVS | | | 88.86 151 | 87.68 161 | 92.39 117 | 92.02 247 | 86.09 53 | 94.38 156 | 94.94 201 | 85.45 151 | 87.14 159 | 93.84 168 | 65.88 286 | 97.11 224 | 88.73 105 | 86.77 238 | 93.98 232 |
|
AdaColmap |  | | 89.89 122 | 89.07 128 | 92.37 118 | 97.41 63 | 83.03 126 | 94.42 149 | 95.92 135 | 82.81 208 | 86.34 176 | 94.65 134 | 73.89 190 | 99.02 68 | 80.69 215 | 95.51 111 | 95.05 180 |
|
CNLPA | | | 89.07 144 | 87.98 155 | 92.34 119 | 96.87 78 | 84.78 77 | 94.08 174 | 93.24 255 | 81.41 240 | 84.46 224 | 95.13 116 | 75.57 167 | 96.62 249 | 77.21 255 | 93.84 139 | 95.61 165 |
|
ET-MVSNet_ETH3D | | | 87.51 193 | 85.91 218 | 92.32 120 | 93.70 204 | 83.93 101 | 92.33 244 | 90.94 313 | 84.16 175 | 72.09 342 | 92.52 210 | 69.90 239 | 95.85 291 | 89.20 100 | 88.36 217 | 97.17 105 |
|
Anonymous202405211 | | | 87.68 181 | 86.13 207 | 92.31 121 | 96.66 83 | 80.74 190 | 94.87 119 | 91.49 299 | 80.47 253 | 89.46 122 | 95.44 104 | 54.72 337 | 98.23 131 | 82.19 187 | 89.89 191 | 97.97 70 |
|
CHOSEN 1792x2688 | | | 88.84 152 | 87.69 160 | 92.30 122 | 96.14 99 | 81.42 170 | 90.01 291 | 95.86 142 | 74.52 316 | 87.41 153 | 93.94 160 | 75.46 168 | 98.36 122 | 80.36 221 | 95.53 110 | 97.12 108 |
|
HY-MVS | | 83.01 12 | 89.03 146 | 87.94 157 | 92.29 123 | 94.86 153 | 82.77 133 | 92.08 254 | 94.49 222 | 81.52 239 | 86.93 162 | 92.79 205 | 78.32 138 | 98.23 131 | 79.93 227 | 90.55 181 | 95.88 154 |
|
CDS-MVSNet | | | 89.45 133 | 88.51 139 | 92.29 123 | 93.62 205 | 83.61 112 | 93.01 224 | 94.68 219 | 81.95 225 | 87.82 146 | 93.24 186 | 78.69 131 | 96.99 234 | 80.34 222 | 93.23 153 | 96.28 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PAPR | | | 90.02 116 | 89.27 125 | 92.29 123 | 95.78 116 | 80.95 184 | 92.68 232 | 96.22 114 | 81.91 227 | 86.66 169 | 93.75 173 | 82.23 92 | 98.44 119 | 79.40 236 | 94.79 123 | 97.48 94 |
|
PLC |  | 84.53 7 | 89.06 145 | 88.03 153 | 92.15 126 | 97.27 71 | 82.69 140 | 94.29 160 | 95.44 177 | 79.71 262 | 84.01 240 | 94.18 151 | 76.68 152 | 98.75 100 | 77.28 254 | 93.41 148 | 95.02 181 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EPP-MVSNet | | | 91.70 84 | 91.56 81 | 92.13 127 | 95.88 113 | 80.50 197 | 97.33 3 | 95.25 187 | 86.15 134 | 89.76 118 | 95.60 102 | 83.42 78 | 98.32 128 | 87.37 123 | 93.25 152 | 97.56 92 |
|
test_part1 | | | 89.00 149 | 87.99 154 | 92.04 128 | 95.94 112 | 83.81 105 | 96.14 46 | 96.05 127 | 86.44 128 | 85.69 186 | 93.73 174 | 71.57 216 | 97.66 173 | 85.80 140 | 80.54 303 | 94.66 197 |
|
原ACMM1 | | | | | 92.01 129 | 97.34 66 | 81.05 180 | | 96.81 67 | 78.89 271 | 90.45 111 | 95.92 91 | 82.65 85 | 98.84 96 | 80.68 216 | 98.26 59 | 96.14 140 |
|
UniMVSNet (Re) | | | 89.80 124 | 89.07 128 | 92.01 129 | 93.60 206 | 84.52 84 | 94.78 125 | 97.47 8 | 89.26 53 | 86.44 174 | 92.32 216 | 82.10 95 | 97.39 204 | 84.81 151 | 80.84 299 | 94.12 223 |
|
MG-MVS | | | 91.77 81 | 91.70 80 | 92.00 131 | 97.08 75 | 80.03 210 | 93.60 199 | 95.18 191 | 87.85 94 | 90.89 108 | 96.47 70 | 82.06 97 | 98.36 122 | 85.07 146 | 97.04 89 | 97.62 87 |
|
EIA-MVS | | | 91.95 78 | 91.94 76 | 91.98 132 | 95.16 137 | 80.01 211 | 95.36 80 | 96.73 76 | 88.44 75 | 89.34 123 | 92.16 221 | 83.82 77 | 98.45 118 | 89.35 98 | 97.06 88 | 97.48 94 |
|
PVSNet_Blended | | | 90.73 100 | 90.32 99 | 91.98 132 | 96.12 100 | 81.25 173 | 92.55 238 | 96.83 64 | 82.04 222 | 89.10 126 | 92.56 209 | 81.04 106 | 98.85 94 | 86.72 133 | 95.91 106 | 95.84 156 |
|
PS-MVSNAJ | | | 91.18 93 | 90.92 91 | 91.96 134 | 95.26 134 | 82.60 144 | 92.09 253 | 95.70 153 | 86.27 131 | 91.84 90 | 92.46 211 | 79.70 119 | 98.99 77 | 89.08 101 | 95.86 107 | 94.29 217 |
|
TAMVS | | | 89.21 141 | 88.29 148 | 91.96 134 | 93.71 202 | 82.62 143 | 93.30 210 | 94.19 233 | 82.22 217 | 87.78 147 | 93.94 160 | 78.83 128 | 96.95 236 | 77.70 250 | 92.98 158 | 96.32 133 |
|
MVS_Test | | | 91.31 90 | 91.11 87 | 91.93 136 | 94.37 175 | 80.14 203 | 93.46 204 | 95.80 146 | 86.46 127 | 91.35 102 | 93.77 171 | 82.21 93 | 98.09 145 | 87.57 119 | 94.95 122 | 97.55 93 |
|
NR-MVSNet | | | 88.58 160 | 87.47 166 | 91.93 136 | 93.04 222 | 84.16 97 | 94.77 126 | 96.25 111 | 89.05 59 | 80.04 298 | 93.29 184 | 79.02 127 | 97.05 230 | 81.71 200 | 80.05 310 | 94.59 202 |
|
HyFIR lowres test | | | 88.09 171 | 86.81 181 | 91.93 136 | 96.00 108 | 80.63 192 | 90.01 291 | 95.79 147 | 73.42 324 | 87.68 149 | 92.10 227 | 73.86 191 | 97.96 157 | 80.75 214 | 91.70 170 | 97.19 104 |
|
GeoE | | | 90.05 115 | 89.43 118 | 91.90 139 | 95.16 137 | 80.37 199 | 95.80 63 | 94.65 220 | 83.90 181 | 87.55 152 | 94.75 129 | 78.18 139 | 97.62 179 | 81.28 204 | 93.63 141 | 97.71 85 |
|
thisisatest0530 | | | 88.67 156 | 87.61 163 | 91.86 140 | 94.87 152 | 80.07 206 | 94.63 134 | 89.90 333 | 84.00 179 | 88.46 134 | 93.78 170 | 66.88 273 | 98.46 115 | 83.30 168 | 92.65 162 | 97.06 110 |
|
xiu_mvs_v2_base | | | 91.13 94 | 90.89 93 | 91.86 140 | 94.97 145 | 82.42 145 | 92.24 247 | 95.64 160 | 86.11 137 | 91.74 95 | 93.14 190 | 79.67 122 | 98.89 87 | 89.06 102 | 95.46 114 | 94.28 218 |
|
DU-MVS | | | 89.34 140 | 88.50 140 | 91.85 142 | 93.04 222 | 83.72 107 | 94.47 145 | 96.59 92 | 89.50 46 | 86.46 171 | 93.29 184 | 77.25 145 | 97.23 216 | 84.92 148 | 81.02 295 | 94.59 202 |
|
OPM-MVS | | | 90.12 113 | 89.56 114 | 91.82 143 | 93.14 217 | 83.90 102 | 94.16 166 | 95.74 151 | 88.96 63 | 87.86 143 | 95.43 107 | 72.48 210 | 97.91 161 | 88.10 114 | 90.18 186 | 93.65 252 |
|
HQP_MVS | | | 90.60 107 | 90.19 101 | 91.82 143 | 94.70 161 | 82.73 137 | 95.85 61 | 96.22 114 | 90.81 17 | 86.91 164 | 94.86 124 | 74.23 182 | 98.12 137 | 88.15 111 | 89.99 187 | 94.63 198 |
|
UniMVSNet_NR-MVSNet | | | 89.92 121 | 89.29 123 | 91.81 145 | 93.39 211 | 83.72 107 | 94.43 148 | 97.12 40 | 89.80 37 | 86.46 171 | 93.32 181 | 83.16 80 | 97.23 216 | 84.92 148 | 81.02 295 | 94.49 211 |
|
diffmvs | | | 91.37 89 | 91.23 85 | 91.77 146 | 93.09 219 | 80.27 200 | 92.36 243 | 95.52 168 | 87.03 114 | 91.40 101 | 94.93 120 | 80.08 113 | 97.44 192 | 92.13 53 | 94.56 129 | 97.61 88 |
|
1112_ss | | | 88.42 161 | 87.33 169 | 91.72 147 | 94.92 149 | 80.98 182 | 92.97 226 | 94.54 221 | 78.16 285 | 83.82 244 | 93.88 165 | 78.78 130 | 97.91 161 | 79.45 232 | 89.41 198 | 96.26 136 |
|
Fast-Effi-MVS+ | | | 89.41 136 | 88.64 137 | 91.71 148 | 94.74 157 | 80.81 188 | 93.54 200 | 95.10 195 | 83.11 200 | 86.82 167 | 90.67 272 | 79.74 118 | 97.75 169 | 80.51 220 | 93.55 143 | 96.57 128 |
|
WTY-MVS | | | 89.60 127 | 88.92 132 | 91.67 149 | 95.47 126 | 81.15 178 | 92.38 242 | 94.78 216 | 83.11 200 | 89.06 128 | 94.32 144 | 78.67 132 | 96.61 252 | 81.57 201 | 90.89 180 | 97.24 101 |
|
TAPA-MVS | | 84.62 6 | 88.16 169 | 87.01 177 | 91.62 150 | 96.64 84 | 80.65 191 | 94.39 152 | 96.21 117 | 76.38 296 | 86.19 179 | 95.44 104 | 79.75 117 | 98.08 146 | 62.75 340 | 95.29 118 | 96.13 141 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
VPA-MVSNet | | | 89.62 126 | 88.96 130 | 91.60 151 | 93.86 196 | 82.89 132 | 95.46 78 | 97.33 22 | 87.91 91 | 88.43 135 | 93.31 182 | 74.17 185 | 97.40 201 | 87.32 124 | 82.86 271 | 94.52 207 |
|
CS-MVS | | | 92.55 70 | 92.87 65 | 91.58 152 | 94.21 180 | 80.54 195 | 95.30 86 | 96.68 84 | 88.18 87 | 92.09 84 | 94.57 139 | 84.06 71 | 98.05 150 | 92.56 39 | 98.19 60 | 96.15 138 |
|
CS-MVS-test | | | 92.16 76 | 92.35 72 | 91.57 153 | 94.15 184 | 81.18 177 | 95.09 104 | 96.62 89 | 87.64 103 | 90.92 107 | 93.10 192 | 83.86 76 | 98.06 148 | 91.82 67 | 97.98 68 | 95.49 167 |
|
XVG-OURS | | | 89.40 138 | 88.70 136 | 91.52 154 | 94.06 185 | 81.46 168 | 91.27 269 | 96.07 124 | 86.14 135 | 88.89 130 | 95.77 97 | 68.73 259 | 97.26 213 | 87.39 122 | 89.96 189 | 95.83 157 |
|
hse-mvs2 | | | 89.88 123 | 89.34 121 | 91.51 155 | 94.83 155 | 81.12 179 | 93.94 185 | 93.91 244 | 89.80 37 | 93.08 58 | 93.60 176 | 75.77 160 | 97.66 173 | 92.07 54 | 77.07 329 | 95.74 161 |
|
TranMVSNet+NR-MVSNet | | | 88.84 152 | 87.95 156 | 91.49 156 | 92.68 232 | 83.01 128 | 94.92 115 | 96.31 106 | 89.88 36 | 85.53 192 | 93.85 167 | 76.63 153 | 96.96 235 | 81.91 193 | 79.87 313 | 94.50 209 |
|
AUN-MVS | | | 87.78 179 | 86.54 194 | 91.48 157 | 94.82 156 | 81.05 180 | 93.91 189 | 93.93 241 | 83.00 203 | 86.93 162 | 93.53 177 | 69.50 246 | 97.67 172 | 86.14 136 | 77.12 328 | 95.73 162 |
|
XVG-OURS-SEG-HR | | | 89.95 119 | 89.45 116 | 91.47 158 | 94.00 191 | 81.21 176 | 91.87 256 | 96.06 126 | 85.78 140 | 88.55 132 | 95.73 98 | 74.67 178 | 97.27 211 | 88.71 106 | 89.64 196 | 95.91 152 |
|
MVS | | | 87.44 196 | 86.10 210 | 91.44 159 | 92.61 233 | 83.62 111 | 92.63 234 | 95.66 157 | 67.26 346 | 81.47 276 | 92.15 222 | 77.95 140 | 98.22 133 | 79.71 229 | 95.48 112 | 92.47 293 |
|
F-COLMAP | | | 87.95 174 | 86.80 182 | 91.40 160 | 96.35 95 | 80.88 186 | 94.73 128 | 95.45 175 | 79.65 263 | 82.04 272 | 94.61 135 | 71.13 221 | 98.50 112 | 76.24 265 | 91.05 178 | 94.80 194 |
|
thisisatest0515 | | | 87.33 199 | 85.99 213 | 91.37 161 | 93.49 208 | 79.55 219 | 90.63 279 | 89.56 339 | 80.17 255 | 87.56 151 | 90.86 265 | 67.07 270 | 98.28 130 | 81.50 202 | 93.02 157 | 96.29 134 |
|
HQP-MVS | | | 89.80 124 | 89.28 124 | 91.34 162 | 94.17 181 | 81.56 162 | 94.39 152 | 96.04 128 | 88.81 64 | 85.43 202 | 93.97 159 | 73.83 192 | 97.96 157 | 87.11 128 | 89.77 194 | 94.50 209 |
|
FMVSNet3 | | | 87.40 198 | 86.11 209 | 91.30 163 | 93.79 201 | 83.64 110 | 94.20 165 | 94.81 214 | 83.89 182 | 84.37 227 | 91.87 236 | 68.45 262 | 96.56 257 | 78.23 245 | 85.36 244 | 93.70 251 |
|
FMVSNet2 | | | 87.19 208 | 85.82 220 | 91.30 163 | 94.01 188 | 83.67 109 | 94.79 124 | 94.94 201 | 83.57 188 | 83.88 242 | 92.05 231 | 66.59 278 | 96.51 260 | 77.56 252 | 85.01 247 | 93.73 249 |
|
RPMNet | | | 83.95 268 | 81.53 278 | 91.21 165 | 90.58 302 | 79.34 226 | 85.24 336 | 96.76 72 | 71.44 337 | 85.55 190 | 82.97 344 | 70.87 226 | 98.91 86 | 61.01 344 | 89.36 200 | 95.40 172 |
|
IB-MVS | | 80.51 15 | 85.24 252 | 83.26 264 | 91.19 166 | 92.13 242 | 79.86 215 | 91.75 259 | 91.29 304 | 83.28 198 | 80.66 287 | 88.49 307 | 61.28 308 | 98.46 115 | 80.99 210 | 79.46 316 | 95.25 176 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CLD-MVS | | | 89.47 132 | 88.90 133 | 91.18 167 | 94.22 179 | 82.07 152 | 92.13 251 | 96.09 122 | 87.90 92 | 85.37 208 | 92.45 212 | 74.38 180 | 97.56 182 | 87.15 126 | 90.43 182 | 93.93 233 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 89.45 133 | 88.90 133 | 91.12 168 | 94.47 169 | 81.49 166 | 95.30 86 | 96.14 119 | 86.73 122 | 85.45 199 | 95.16 114 | 69.89 240 | 98.10 139 | 87.70 117 | 89.23 203 | 93.77 246 |
|
LGP-MVS_train | | | | | 91.12 168 | 94.47 169 | 81.49 166 | | 96.14 119 | 86.73 122 | 85.45 199 | 95.16 114 | 69.89 240 | 98.10 139 | 87.70 117 | 89.23 203 | 93.77 246 |
|
ACMM | | 84.12 9 | 89.14 142 | 88.48 143 | 91.12 168 | 94.65 164 | 81.22 175 | 95.31 83 | 96.12 121 | 85.31 155 | 85.92 182 | 94.34 142 | 70.19 238 | 98.06 148 | 85.65 141 | 88.86 208 | 94.08 227 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tttt0517 | | | 88.61 158 | 87.78 159 | 91.11 171 | 94.96 146 | 77.81 261 | 95.35 81 | 89.69 336 | 85.09 162 | 88.05 141 | 94.59 137 | 66.93 271 | 98.48 113 | 83.27 169 | 92.13 169 | 97.03 112 |
|
GBi-Net | | | 87.26 201 | 85.98 214 | 91.08 172 | 94.01 188 | 83.10 123 | 95.14 101 | 94.94 201 | 83.57 188 | 84.37 227 | 91.64 240 | 66.59 278 | 96.34 272 | 78.23 245 | 85.36 244 | 93.79 242 |
|
test1 | | | 87.26 201 | 85.98 214 | 91.08 172 | 94.01 188 | 83.10 123 | 95.14 101 | 94.94 201 | 83.57 188 | 84.37 227 | 91.64 240 | 66.59 278 | 96.34 272 | 78.23 245 | 85.36 244 | 93.79 242 |
|
FMVSNet1 | | | 85.85 240 | 84.11 253 | 91.08 172 | 92.81 229 | 83.10 123 | 95.14 101 | 94.94 201 | 81.64 235 | 82.68 264 | 91.64 240 | 59.01 325 | 96.34 272 | 75.37 272 | 83.78 256 | 93.79 242 |
|
Test_1112_low_res | | | 87.65 183 | 86.51 195 | 91.08 172 | 94.94 148 | 79.28 230 | 91.77 258 | 94.30 229 | 76.04 301 | 83.51 253 | 92.37 214 | 77.86 143 | 97.73 170 | 78.69 241 | 89.13 205 | 96.22 137 |
|
PS-MVSNAJss | | | 89.97 118 | 89.62 113 | 91.02 176 | 91.90 250 | 80.85 187 | 95.26 92 | 95.98 130 | 86.26 132 | 86.21 178 | 94.29 146 | 79.70 119 | 97.65 175 | 88.87 104 | 88.10 220 | 94.57 204 |
|
BH-RMVSNet | | | 88.37 163 | 87.48 165 | 91.02 176 | 95.28 132 | 79.45 222 | 92.89 228 | 93.07 259 | 85.45 151 | 86.91 164 | 94.84 127 | 70.35 235 | 97.76 166 | 73.97 283 | 94.59 128 | 95.85 155 |
|
UniMVSNet_ETH3D | | | 87.53 192 | 86.37 198 | 91.00 178 | 92.44 235 | 78.96 235 | 94.74 127 | 95.61 161 | 84.07 178 | 85.36 209 | 94.52 140 | 59.78 321 | 97.34 206 | 82.93 173 | 87.88 225 | 96.71 124 |
|
FIs | | | 90.51 108 | 90.35 98 | 90.99 179 | 93.99 192 | 80.98 182 | 95.73 66 | 97.54 3 | 89.15 57 | 86.72 168 | 94.68 132 | 81.83 101 | 97.24 215 | 85.18 145 | 88.31 218 | 94.76 195 |
|
ACMP | | 84.23 8 | 89.01 148 | 88.35 144 | 90.99 179 | 94.73 158 | 81.27 172 | 95.07 105 | 95.89 140 | 86.48 126 | 83.67 248 | 94.30 145 | 69.33 248 | 97.99 155 | 87.10 130 | 88.55 210 | 93.72 250 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Anonymous20231211 | | | 86.59 226 | 85.13 236 | 90.98 181 | 96.52 90 | 81.50 164 | 96.14 46 | 96.16 118 | 73.78 321 | 83.65 249 | 92.15 222 | 63.26 297 | 97.37 205 | 82.82 177 | 81.74 284 | 94.06 228 |
|
sss | | | 88.93 150 | 88.26 150 | 90.94 182 | 94.05 186 | 80.78 189 | 91.71 261 | 95.38 181 | 81.55 238 | 88.63 131 | 93.91 164 | 75.04 172 | 95.47 307 | 82.47 182 | 91.61 171 | 96.57 128 |
|
PVSNet_BlendedMVS | | | 89.98 117 | 89.70 112 | 90.82 183 | 96.12 100 | 81.25 173 | 93.92 186 | 96.83 64 | 83.49 192 | 89.10 126 | 92.26 219 | 81.04 106 | 98.85 94 | 86.72 133 | 87.86 226 | 92.35 298 |
|
cascas | | | 86.43 232 | 84.98 239 | 90.80 184 | 92.10 244 | 80.92 185 | 90.24 285 | 95.91 137 | 73.10 327 | 83.57 252 | 88.39 308 | 65.15 289 | 97.46 189 | 84.90 150 | 91.43 172 | 94.03 230 |
|
GA-MVS | | | 86.61 224 | 85.27 234 | 90.66 185 | 91.33 272 | 78.71 237 | 90.40 282 | 93.81 248 | 85.34 154 | 85.12 212 | 89.57 293 | 61.25 309 | 97.11 224 | 80.99 210 | 89.59 197 | 96.15 138 |
|
bset_n11_16_dypcd | | | 86.83 216 | 85.55 226 | 90.65 186 | 88.22 332 | 81.70 160 | 88.88 308 | 90.42 320 | 85.26 156 | 85.49 196 | 90.69 271 | 67.11 269 | 97.02 232 | 89.51 97 | 84.39 251 | 93.23 268 |
|
thres600view7 | | | 87.65 183 | 86.67 187 | 90.59 187 | 96.08 104 | 78.72 236 | 94.88 118 | 91.58 295 | 87.06 113 | 88.08 139 | 92.30 217 | 68.91 256 | 98.10 139 | 70.05 307 | 91.10 174 | 94.96 185 |
|
thres400 | | | 87.62 188 | 86.64 188 | 90.57 188 | 95.99 109 | 78.64 238 | 94.58 136 | 91.98 286 | 86.94 117 | 88.09 137 | 91.77 237 | 69.18 253 | 98.10 139 | 70.13 304 | 91.10 174 | 94.96 185 |
|
baseline1 | | | 88.10 170 | 87.28 171 | 90.57 188 | 94.96 146 | 80.07 206 | 94.27 161 | 91.29 304 | 86.74 121 | 87.41 153 | 94.00 157 | 76.77 150 | 96.20 276 | 80.77 213 | 79.31 318 | 95.44 170 |
|
FC-MVSNet-test | | | 90.27 111 | 90.18 102 | 90.53 190 | 93.71 202 | 79.85 216 | 95.77 65 | 97.59 2 | 89.31 52 | 86.27 177 | 94.67 133 | 81.93 100 | 97.01 233 | 84.26 157 | 88.09 222 | 94.71 196 |
|
PAPM | | | 86.68 223 | 85.39 231 | 90.53 190 | 93.05 221 | 79.33 229 | 89.79 294 | 94.77 217 | 78.82 273 | 81.95 273 | 93.24 186 | 76.81 148 | 97.30 207 | 66.94 323 | 93.16 154 | 94.95 188 |
|
WR-MVS | | | 88.38 162 | 87.67 162 | 90.52 192 | 93.30 214 | 80.18 201 | 93.26 213 | 95.96 132 | 88.57 73 | 85.47 198 | 92.81 203 | 76.12 155 | 96.91 239 | 81.24 205 | 82.29 274 | 94.47 214 |
|
MVSTER | | | 88.84 152 | 88.29 148 | 90.51 193 | 92.95 227 | 80.44 198 | 93.73 193 | 95.01 198 | 84.66 170 | 87.15 157 | 93.12 191 | 72.79 206 | 97.21 218 | 87.86 115 | 87.36 231 | 93.87 237 |
|
testdata | | | | | 90.49 194 | 96.40 92 | 77.89 258 | | 95.37 183 | 72.51 332 | 93.63 45 | 96.69 58 | 82.08 96 | 97.65 175 | 83.08 170 | 97.39 83 | 95.94 151 |
|
jajsoiax | | | 88.24 167 | 87.50 164 | 90.48 195 | 90.89 291 | 80.14 203 | 95.31 83 | 95.65 159 | 84.97 164 | 84.24 236 | 94.02 155 | 65.31 288 | 97.42 194 | 88.56 107 | 88.52 212 | 93.89 234 |
|
PatchMatch-RL | | | 86.77 222 | 85.54 227 | 90.47 196 | 95.88 113 | 82.71 139 | 90.54 280 | 92.31 275 | 79.82 261 | 84.32 232 | 91.57 247 | 68.77 258 | 96.39 268 | 73.16 288 | 93.48 147 | 92.32 299 |
|
tfpn200view9 | | | 87.58 190 | 86.64 188 | 90.41 197 | 95.99 109 | 78.64 238 | 94.58 136 | 91.98 286 | 86.94 117 | 88.09 137 | 91.77 237 | 69.18 253 | 98.10 139 | 70.13 304 | 91.10 174 | 94.48 212 |
|
VPNet | | | 88.20 168 | 87.47 166 | 90.39 198 | 93.56 207 | 79.46 221 | 94.04 178 | 95.54 166 | 88.67 69 | 86.96 161 | 94.58 138 | 69.33 248 | 97.15 220 | 84.05 160 | 80.53 305 | 94.56 205 |
|
ACMH | | 80.38 17 | 85.36 247 | 83.68 259 | 90.39 198 | 94.45 172 | 80.63 192 | 94.73 128 | 94.85 210 | 82.09 219 | 77.24 316 | 92.65 207 | 60.01 319 | 97.58 180 | 72.25 292 | 84.87 248 | 92.96 279 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres100view900 | | | 87.63 186 | 86.71 185 | 90.38 200 | 96.12 100 | 78.55 240 | 95.03 109 | 91.58 295 | 87.15 110 | 88.06 140 | 92.29 218 | 68.91 256 | 98.10 139 | 70.13 304 | 91.10 174 | 94.48 212 |
|
mvs-test1 | | | 89.45 133 | 89.14 126 | 90.38 200 | 93.33 212 | 77.63 267 | 94.95 112 | 94.36 226 | 87.70 98 | 87.10 160 | 92.81 203 | 73.45 197 | 98.03 152 | 85.57 143 | 93.04 156 | 95.48 168 |
|
mvs_tets | | | 88.06 173 | 87.28 171 | 90.38 200 | 90.94 287 | 79.88 214 | 95.22 94 | 95.66 157 | 85.10 161 | 84.21 237 | 93.94 160 | 63.53 296 | 97.40 201 | 88.50 108 | 88.40 216 | 93.87 237 |
|
1314 | | | 87.51 193 | 86.57 193 | 90.34 203 | 92.42 236 | 79.74 218 | 92.63 234 | 95.35 185 | 78.35 281 | 80.14 295 | 91.62 244 | 74.05 187 | 97.15 220 | 81.05 206 | 93.53 144 | 94.12 223 |
|
LTVRE_ROB | | 82.13 13 | 86.26 234 | 84.90 242 | 90.34 203 | 94.44 173 | 81.50 164 | 92.31 246 | 94.89 207 | 83.03 202 | 79.63 303 | 92.67 206 | 69.69 243 | 97.79 164 | 71.20 295 | 86.26 239 | 91.72 307 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_djsdf | | | 89.03 146 | 88.64 137 | 90.21 205 | 90.74 297 | 79.28 230 | 95.96 57 | 95.90 138 | 84.66 170 | 85.33 210 | 92.94 197 | 74.02 188 | 97.30 207 | 89.64 95 | 88.53 211 | 94.05 229 |
|
v2v482 | | | 87.84 176 | 87.06 175 | 90.17 206 | 90.99 283 | 79.23 233 | 94.00 182 | 95.13 192 | 84.87 165 | 85.53 192 | 92.07 230 | 74.45 179 | 97.45 190 | 84.71 153 | 81.75 283 | 93.85 240 |
|
pmmvs4 | | | 85.43 246 | 83.86 257 | 90.16 207 | 90.02 314 | 82.97 130 | 90.27 283 | 92.67 268 | 75.93 302 | 80.73 285 | 91.74 239 | 71.05 222 | 95.73 297 | 78.85 239 | 83.46 263 | 91.78 306 |
|
V42 | | | 87.68 181 | 86.86 179 | 90.15 208 | 90.58 302 | 80.14 203 | 94.24 163 | 95.28 186 | 83.66 186 | 85.67 187 | 91.33 249 | 74.73 177 | 97.41 199 | 84.43 156 | 81.83 281 | 92.89 282 |
|
MSDG | | | 84.86 259 | 83.09 266 | 90.14 209 | 93.80 199 | 80.05 208 | 89.18 304 | 93.09 258 | 78.89 271 | 78.19 309 | 91.91 234 | 65.86 287 | 97.27 211 | 68.47 313 | 88.45 214 | 93.11 274 |
|
anonymousdsp | | | 87.84 176 | 87.09 174 | 90.12 210 | 89.13 321 | 80.54 195 | 94.67 132 | 95.55 164 | 82.05 220 | 83.82 244 | 92.12 224 | 71.47 219 | 97.15 220 | 87.15 126 | 87.80 227 | 92.67 287 |
|
thres200 | | | 87.21 207 | 86.24 205 | 90.12 210 | 95.36 128 | 78.53 241 | 93.26 213 | 92.10 280 | 86.42 129 | 88.00 142 | 91.11 260 | 69.24 252 | 98.00 154 | 69.58 308 | 91.04 179 | 93.83 241 |
|
CR-MVSNet | | | 85.35 248 | 83.76 258 | 90.12 210 | 90.58 302 | 79.34 226 | 85.24 336 | 91.96 288 | 78.27 282 | 85.55 190 | 87.87 318 | 71.03 223 | 95.61 298 | 73.96 284 | 89.36 200 | 95.40 172 |
|
v1144 | | | 87.61 189 | 86.79 183 | 90.06 213 | 91.01 282 | 79.34 226 | 93.95 184 | 95.42 180 | 83.36 196 | 85.66 188 | 91.31 252 | 74.98 173 | 97.42 194 | 83.37 167 | 82.06 277 | 93.42 261 |
|
XXY-MVS | | | 87.65 183 | 86.85 180 | 90.03 214 | 92.14 241 | 80.60 194 | 93.76 192 | 95.23 188 | 82.94 205 | 84.60 219 | 94.02 155 | 74.27 181 | 95.49 306 | 81.04 207 | 83.68 259 | 94.01 231 |
|
Vis-MVSNet (Re-imp) | | | 89.59 128 | 89.44 117 | 90.03 214 | 95.74 117 | 75.85 289 | 95.61 74 | 90.80 317 | 87.66 102 | 87.83 145 | 95.40 108 | 76.79 149 | 96.46 265 | 78.37 242 | 96.73 93 | 97.80 82 |
|
BH-untuned | | | 88.60 159 | 88.13 152 | 90.01 216 | 95.24 135 | 78.50 243 | 93.29 211 | 94.15 235 | 84.75 168 | 84.46 224 | 93.40 178 | 75.76 162 | 97.40 201 | 77.59 251 | 94.52 130 | 94.12 223 |
|
v1192 | | | 87.25 203 | 86.33 201 | 90.00 217 | 90.76 296 | 79.04 234 | 93.80 190 | 95.48 170 | 82.57 212 | 85.48 197 | 91.18 256 | 73.38 201 | 97.42 194 | 82.30 185 | 82.06 277 | 93.53 255 |
|
v7n | | | 86.81 217 | 85.76 224 | 89.95 218 | 90.72 298 | 79.25 232 | 95.07 105 | 95.92 135 | 84.45 173 | 82.29 267 | 90.86 265 | 72.60 209 | 97.53 184 | 79.42 235 | 80.52 306 | 93.08 276 |
|
v8 | | | 87.50 195 | 86.71 185 | 89.89 219 | 91.37 269 | 79.40 223 | 94.50 141 | 95.38 181 | 84.81 167 | 83.60 251 | 91.33 249 | 76.05 156 | 97.42 194 | 82.84 176 | 80.51 307 | 92.84 284 |
|
v10 | | | 87.25 203 | 86.38 197 | 89.85 220 | 91.19 275 | 79.50 220 | 94.48 142 | 95.45 175 | 83.79 184 | 83.62 250 | 91.19 254 | 75.13 170 | 97.42 194 | 81.94 192 | 80.60 301 | 92.63 289 |
|
baseline2 | | | 86.50 229 | 85.39 231 | 89.84 221 | 91.12 279 | 76.70 279 | 91.88 255 | 88.58 341 | 82.35 216 | 79.95 299 | 90.95 264 | 73.42 199 | 97.63 178 | 80.27 224 | 89.95 190 | 95.19 177 |
|
pm-mvs1 | | | 86.61 224 | 85.54 227 | 89.82 222 | 91.44 263 | 80.18 201 | 95.28 91 | 94.85 210 | 83.84 183 | 81.66 275 | 92.62 208 | 72.45 212 | 96.48 262 | 79.67 230 | 78.06 321 | 92.82 285 |
|
TR-MVS | | | 86.78 219 | 85.76 224 | 89.82 222 | 94.37 175 | 78.41 245 | 92.47 239 | 92.83 263 | 81.11 248 | 86.36 175 | 92.40 213 | 68.73 259 | 97.48 187 | 73.75 286 | 89.85 193 | 93.57 254 |
|
ACMH+ | | 81.04 14 | 85.05 255 | 83.46 263 | 89.82 222 | 94.66 163 | 79.37 224 | 94.44 147 | 94.12 238 | 82.19 218 | 78.04 311 | 92.82 202 | 58.23 327 | 97.54 183 | 73.77 285 | 82.90 270 | 92.54 290 |
|
EI-MVSNet | | | 89.10 143 | 88.86 135 | 89.80 225 | 91.84 252 | 78.30 248 | 93.70 196 | 95.01 198 | 85.73 142 | 87.15 157 | 95.28 109 | 79.87 116 | 97.21 218 | 83.81 163 | 87.36 231 | 93.88 236 |
|
v144192 | | | 87.19 208 | 86.35 200 | 89.74 226 | 90.64 300 | 78.24 250 | 93.92 186 | 95.43 178 | 81.93 226 | 85.51 194 | 91.05 262 | 74.21 184 | 97.45 190 | 82.86 175 | 81.56 285 | 93.53 255 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 267 | 82.04 274 | 89.74 226 | 95.28 132 | 79.75 217 | 94.25 162 | 92.28 276 | 75.17 309 | 78.02 312 | 93.77 171 | 58.60 326 | 97.84 163 | 65.06 333 | 85.92 240 | 91.63 309 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SCA | | | 86.32 233 | 85.18 235 | 89.73 228 | 92.15 240 | 76.60 280 | 91.12 272 | 91.69 293 | 83.53 191 | 85.50 195 | 88.81 301 | 66.79 274 | 96.48 262 | 76.65 260 | 90.35 184 | 96.12 142 |
|
IterMVS-LS | | | 88.36 164 | 87.91 158 | 89.70 229 | 93.80 199 | 78.29 249 | 93.73 193 | 95.08 197 | 85.73 142 | 84.75 217 | 91.90 235 | 79.88 115 | 96.92 238 | 83.83 162 | 82.51 272 | 93.89 234 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 86.97 213 | 86.06 212 | 89.69 230 | 90.53 305 | 78.11 253 | 93.80 190 | 95.43 178 | 81.90 228 | 85.33 210 | 91.05 262 | 72.66 207 | 97.41 199 | 82.05 190 | 81.80 282 | 93.53 255 |
|
Fast-Effi-MVS+-dtu | | | 87.44 196 | 86.72 184 | 89.63 231 | 92.04 245 | 77.68 266 | 94.03 179 | 93.94 240 | 85.81 139 | 82.42 266 | 91.32 251 | 70.33 236 | 97.06 229 | 80.33 223 | 90.23 185 | 94.14 222 |
|
v1240 | | | 86.78 219 | 85.85 219 | 89.56 232 | 90.45 306 | 77.79 262 | 93.61 198 | 95.37 183 | 81.65 234 | 85.43 202 | 91.15 258 | 71.50 218 | 97.43 193 | 81.47 203 | 82.05 279 | 93.47 259 |
|
Effi-MVS+-dtu | | | 88.65 157 | 88.35 144 | 89.54 233 | 93.33 212 | 76.39 284 | 94.47 145 | 94.36 226 | 87.70 98 | 85.43 202 | 89.56 294 | 73.45 197 | 97.26 213 | 85.57 143 | 91.28 173 | 94.97 182 |
|
AllTest | | | 83.42 273 | 81.39 279 | 89.52 234 | 95.01 141 | 77.79 262 | 93.12 218 | 90.89 315 | 77.41 288 | 76.12 324 | 93.34 179 | 54.08 340 | 97.51 185 | 68.31 315 | 84.27 253 | 93.26 264 |
|
TestCases | | | | | 89.52 234 | 95.01 141 | 77.79 262 | | 90.89 315 | 77.41 288 | 76.12 324 | 93.34 179 | 54.08 340 | 97.51 185 | 68.31 315 | 84.27 253 | 93.26 264 |
|
mvs_anonymous | | | 89.37 139 | 89.32 122 | 89.51 236 | 93.47 209 | 74.22 300 | 91.65 264 | 94.83 212 | 82.91 206 | 85.45 199 | 93.79 169 | 81.23 105 | 96.36 271 | 86.47 135 | 94.09 135 | 97.94 72 |
|
XVG-ACMP-BASELINE | | | 86.00 236 | 84.84 244 | 89.45 237 | 91.20 274 | 78.00 254 | 91.70 262 | 95.55 164 | 85.05 163 | 82.97 261 | 92.25 220 | 54.49 338 | 97.48 187 | 82.93 173 | 87.45 230 | 92.89 282 |
|
MVP-Stereo | | | 85.97 237 | 84.86 243 | 89.32 238 | 90.92 289 | 82.19 150 | 92.11 252 | 94.19 233 | 78.76 275 | 78.77 308 | 91.63 243 | 68.38 263 | 96.56 257 | 75.01 277 | 93.95 136 | 89.20 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PatchmatchNet |  | | 85.85 240 | 84.70 246 | 89.29 239 | 91.76 255 | 75.54 292 | 88.49 313 | 91.30 303 | 81.63 236 | 85.05 213 | 88.70 305 | 71.71 214 | 96.24 275 | 74.61 280 | 89.05 206 | 96.08 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v148 | | | 87.04 212 | 86.32 202 | 89.21 240 | 90.94 287 | 77.26 273 | 93.71 195 | 94.43 224 | 84.84 166 | 84.36 230 | 90.80 268 | 76.04 157 | 97.05 230 | 82.12 188 | 79.60 315 | 93.31 263 |
|
tfpnnormal | | | 84.72 261 | 83.23 265 | 89.20 241 | 92.79 230 | 80.05 208 | 94.48 142 | 95.81 145 | 82.38 214 | 81.08 282 | 91.21 253 | 69.01 255 | 96.95 236 | 61.69 342 | 80.59 302 | 90.58 329 |
|
cl-mvsnet2 | | | 86.78 219 | 85.98 214 | 89.18 242 | 92.34 237 | 77.62 268 | 90.84 276 | 94.13 237 | 81.33 242 | 83.97 241 | 90.15 281 | 73.96 189 | 96.60 254 | 84.19 158 | 82.94 267 | 93.33 262 |
|
BH-w/o | | | 87.57 191 | 87.05 176 | 89.12 243 | 94.90 151 | 77.90 257 | 92.41 240 | 93.51 252 | 82.89 207 | 83.70 247 | 91.34 248 | 75.75 163 | 97.07 228 | 75.49 270 | 93.49 145 | 92.39 296 |
|
WR-MVS_H | | | 87.80 178 | 87.37 168 | 89.10 244 | 93.23 215 | 78.12 252 | 95.61 74 | 97.30 26 | 87.90 92 | 83.72 246 | 92.01 232 | 79.65 123 | 96.01 284 | 76.36 262 | 80.54 303 | 93.16 272 |
|
miper_enhance_ethall | | | 86.90 214 | 86.18 206 | 89.06 245 | 91.66 260 | 77.58 269 | 90.22 287 | 94.82 213 | 79.16 268 | 84.48 223 | 89.10 297 | 79.19 126 | 96.66 247 | 84.06 159 | 82.94 267 | 92.94 280 |
|
cl_fuxian | | | 87.14 210 | 86.50 196 | 89.04 246 | 92.20 239 | 77.26 273 | 91.22 271 | 94.70 218 | 82.01 223 | 84.34 231 | 90.43 276 | 78.81 129 | 96.61 252 | 83.70 165 | 81.09 292 | 93.25 266 |
|
miper_ehance_all_eth | | | 87.22 206 | 86.62 191 | 89.02 247 | 92.13 242 | 77.40 272 | 90.91 275 | 94.81 214 | 81.28 243 | 84.32 232 | 90.08 283 | 79.26 125 | 96.62 249 | 83.81 163 | 82.94 267 | 93.04 277 |
|
gg-mvs-nofinetune | | | 81.77 285 | 79.37 298 | 88.99 248 | 90.85 293 | 77.73 265 | 86.29 330 | 79.63 360 | 74.88 314 | 83.19 260 | 69.05 355 | 60.34 316 | 96.11 280 | 75.46 271 | 94.64 127 | 93.11 274 |
|
pmmvs6 | | | 83.42 273 | 81.60 277 | 88.87 249 | 88.01 335 | 77.87 259 | 94.96 111 | 94.24 232 | 74.67 315 | 78.80 307 | 91.09 261 | 60.17 318 | 96.49 261 | 77.06 259 | 75.40 332 | 92.23 301 |
|
DWT-MVSNet_test | | | 84.95 257 | 83.68 259 | 88.77 250 | 91.43 266 | 73.75 304 | 91.74 260 | 90.98 311 | 80.66 252 | 83.84 243 | 87.36 323 | 62.44 300 | 97.11 224 | 78.84 240 | 85.81 241 | 95.46 169 |
|
MIMVSNet | | | 82.59 279 | 80.53 284 | 88.76 251 | 91.51 262 | 78.32 247 | 86.57 329 | 90.13 326 | 79.32 264 | 80.70 286 | 88.69 306 | 52.98 344 | 93.07 337 | 66.03 328 | 88.86 208 | 94.90 189 |
|
cl-mvsnet____ | | | 86.52 228 | 85.78 221 | 88.75 252 | 92.03 246 | 76.46 282 | 90.74 277 | 94.30 229 | 81.83 232 | 83.34 257 | 90.78 269 | 75.74 165 | 96.57 255 | 81.74 198 | 81.54 286 | 93.22 269 |
|
cl-mvsnet1 | | | 86.53 227 | 85.78 221 | 88.75 252 | 92.02 247 | 76.45 283 | 90.74 277 | 94.30 229 | 81.83 232 | 83.34 257 | 90.82 267 | 75.75 163 | 96.57 255 | 81.73 199 | 81.52 287 | 93.24 267 |
|
CP-MVSNet | | | 87.63 186 | 87.26 173 | 88.74 254 | 93.12 218 | 76.59 281 | 95.29 89 | 96.58 93 | 88.43 76 | 83.49 254 | 92.98 196 | 75.28 169 | 95.83 292 | 78.97 238 | 81.15 291 | 93.79 242 |
|
eth_miper_zixun_eth | | | 86.50 229 | 85.77 223 | 88.68 255 | 91.94 249 | 75.81 290 | 90.47 281 | 94.89 207 | 82.05 220 | 84.05 238 | 90.46 275 | 75.96 158 | 96.77 243 | 82.76 179 | 79.36 317 | 93.46 260 |
|
CHOSEN 280x420 | | | 85.15 253 | 83.99 255 | 88.65 256 | 92.47 234 | 78.40 246 | 79.68 353 | 92.76 265 | 74.90 313 | 81.41 278 | 89.59 292 | 69.85 242 | 95.51 303 | 79.92 228 | 95.29 118 | 92.03 303 |
|
PS-CasMVS | | | 87.32 200 | 86.88 178 | 88.63 257 | 92.99 226 | 76.33 286 | 95.33 82 | 96.61 91 | 88.22 84 | 83.30 259 | 93.07 194 | 73.03 204 | 95.79 295 | 78.36 243 | 81.00 297 | 93.75 248 |
|
TransMVSNet (Re) | | | 84.43 264 | 83.06 267 | 88.54 258 | 91.72 256 | 78.44 244 | 95.18 98 | 92.82 264 | 82.73 209 | 79.67 302 | 92.12 224 | 73.49 196 | 95.96 286 | 71.10 299 | 68.73 346 | 91.21 318 |
|
RRT_test8_iter05 | | | 86.90 214 | 86.36 199 | 88.52 259 | 93.00 225 | 73.27 308 | 94.32 159 | 95.96 132 | 85.50 150 | 84.26 235 | 92.86 198 | 60.76 314 | 97.70 171 | 88.32 110 | 82.29 274 | 94.60 201 |
|
EG-PatchMatch MVS | | | 82.37 281 | 80.34 287 | 88.46 260 | 90.27 308 | 79.35 225 | 92.80 231 | 94.33 228 | 77.14 292 | 73.26 339 | 90.18 280 | 47.47 354 | 96.72 244 | 70.25 301 | 87.32 233 | 89.30 336 |
|
PEN-MVS | | | 86.80 218 | 86.27 204 | 88.40 261 | 92.32 238 | 75.71 291 | 95.18 98 | 96.38 104 | 87.97 89 | 82.82 263 | 93.15 189 | 73.39 200 | 95.92 287 | 76.15 266 | 79.03 320 | 93.59 253 |
|
Baseline_NR-MVSNet | | | 87.07 211 | 86.63 190 | 88.40 261 | 91.44 263 | 77.87 259 | 94.23 164 | 92.57 270 | 84.12 177 | 85.74 185 | 92.08 228 | 77.25 145 | 96.04 281 | 82.29 186 | 79.94 311 | 91.30 315 |
|
D2MVS | | | 85.90 238 | 85.09 237 | 88.35 263 | 90.79 294 | 77.42 271 | 91.83 257 | 95.70 153 | 80.77 251 | 80.08 297 | 90.02 284 | 66.74 276 | 96.37 269 | 81.88 194 | 87.97 224 | 91.26 316 |
|
pmmvs5 | | | 84.21 265 | 82.84 271 | 88.34 264 | 88.95 323 | 76.94 277 | 92.41 240 | 91.91 290 | 75.63 304 | 80.28 292 | 91.18 256 | 64.59 292 | 95.57 299 | 77.09 258 | 83.47 262 | 92.53 291 |
|
LCM-MVSNet-Re | | | 88.30 166 | 88.32 147 | 88.27 265 | 94.71 160 | 72.41 320 | 93.15 217 | 90.98 311 | 87.77 96 | 79.25 306 | 91.96 233 | 78.35 137 | 95.75 296 | 83.04 171 | 95.62 109 | 96.65 125 |
|
CostFormer | | | 85.77 242 | 84.94 241 | 88.26 266 | 91.16 278 | 72.58 318 | 89.47 299 | 91.04 310 | 76.26 299 | 86.45 173 | 89.97 286 | 70.74 228 | 96.86 242 | 82.35 184 | 87.07 236 | 95.34 175 |
|
ITE_SJBPF | | | | | 88.24 267 | 91.88 251 | 77.05 276 | | 92.92 261 | 85.54 148 | 80.13 296 | 93.30 183 | 57.29 329 | 96.20 276 | 72.46 291 | 84.71 249 | 91.49 311 |
|
PVSNet | | 78.82 18 | 85.55 244 | 84.65 247 | 88.23 268 | 94.72 159 | 71.93 321 | 87.12 326 | 92.75 266 | 78.80 274 | 84.95 215 | 90.53 274 | 64.43 293 | 96.71 246 | 74.74 278 | 93.86 138 | 96.06 148 |
|
IterMVS-SCA-FT | | | 85.45 245 | 84.53 250 | 88.18 269 | 91.71 257 | 76.87 278 | 90.19 288 | 92.65 269 | 85.40 153 | 81.44 277 | 90.54 273 | 66.79 274 | 95.00 315 | 81.04 207 | 81.05 293 | 92.66 288 |
|
EPNet_dtu | | | 86.49 231 | 85.94 217 | 88.14 270 | 90.24 309 | 72.82 312 | 94.11 170 | 92.20 278 | 86.66 125 | 79.42 305 | 92.36 215 | 73.52 195 | 95.81 294 | 71.26 294 | 93.66 140 | 95.80 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 83.46 272 | 81.92 275 | 88.10 271 | 90.63 301 | 77.49 270 | 93.26 213 | 93.75 249 | 80.04 258 | 80.44 291 | 87.24 326 | 47.94 352 | 95.55 300 | 75.79 268 | 88.16 219 | 91.26 316 |
|
Patchmtry | | | 82.71 277 | 80.93 283 | 88.06 272 | 90.05 313 | 76.37 285 | 84.74 340 | 91.96 288 | 72.28 334 | 81.32 280 | 87.87 318 | 71.03 223 | 95.50 305 | 68.97 310 | 80.15 309 | 92.32 299 |
|
DTE-MVSNet | | | 86.11 235 | 85.48 229 | 87.98 273 | 91.65 261 | 74.92 294 | 94.93 114 | 95.75 150 | 87.36 108 | 82.26 268 | 93.04 195 | 72.85 205 | 95.82 293 | 74.04 282 | 77.46 326 | 93.20 270 |
|
PMMVS | | | 85.71 243 | 84.96 240 | 87.95 274 | 88.90 324 | 77.09 275 | 88.68 311 | 90.06 328 | 72.32 333 | 86.47 170 | 90.76 270 | 72.15 213 | 94.40 318 | 81.78 197 | 93.49 145 | 92.36 297 |
|
GG-mvs-BLEND | | | | | 87.94 275 | 89.73 319 | 77.91 256 | 87.80 319 | 78.23 362 | | 80.58 288 | 83.86 339 | 59.88 320 | 95.33 309 | 71.20 295 | 92.22 168 | 90.60 328 |
|
pmmvs-eth3d | | | 80.97 298 | 78.72 307 | 87.74 276 | 84.99 349 | 79.97 213 | 90.11 290 | 91.65 294 | 75.36 306 | 73.51 337 | 86.03 332 | 59.45 322 | 93.96 327 | 75.17 274 | 72.21 337 | 89.29 337 |
|
MS-PatchMatch | | | 85.05 255 | 84.16 252 | 87.73 277 | 91.42 267 | 78.51 242 | 91.25 270 | 93.53 251 | 77.50 287 | 80.15 294 | 91.58 245 | 61.99 303 | 95.51 303 | 75.69 269 | 94.35 134 | 89.16 339 |
|
test_0402 | | | 81.30 295 | 79.17 303 | 87.67 278 | 93.19 216 | 78.17 251 | 92.98 225 | 91.71 291 | 75.25 308 | 76.02 326 | 90.31 278 | 59.23 323 | 96.37 269 | 50.22 355 | 83.63 260 | 88.47 345 |
|
IterMVS | | | 84.88 258 | 83.98 256 | 87.60 279 | 91.44 263 | 76.03 288 | 90.18 289 | 92.41 272 | 83.24 199 | 81.06 283 | 90.42 277 | 66.60 277 | 94.28 322 | 79.46 231 | 80.98 298 | 92.48 292 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmatch-test | | | 81.37 293 | 79.30 299 | 87.58 280 | 90.92 289 | 74.16 302 | 80.99 351 | 87.68 346 | 70.52 341 | 76.63 321 | 88.81 301 | 71.21 220 | 92.76 339 | 60.01 348 | 86.93 237 | 95.83 157 |
|
EPMVS | | | 83.90 270 | 82.70 272 | 87.51 281 | 90.23 310 | 72.67 314 | 88.62 312 | 81.96 356 | 81.37 241 | 85.01 214 | 88.34 309 | 66.31 281 | 94.45 317 | 75.30 273 | 87.12 234 | 95.43 171 |
|
ADS-MVSNet2 | | | 81.66 288 | 79.71 296 | 87.50 282 | 91.35 270 | 74.19 301 | 83.33 345 | 88.48 342 | 72.90 329 | 82.24 269 | 85.77 335 | 64.98 290 | 93.20 335 | 64.57 334 | 83.74 257 | 95.12 178 |
|
OurMVSNet-221017-0 | | | 85.35 248 | 84.64 248 | 87.49 283 | 90.77 295 | 72.59 317 | 94.01 181 | 94.40 225 | 84.72 169 | 79.62 304 | 93.17 188 | 61.91 304 | 96.72 244 | 81.99 191 | 81.16 289 | 93.16 272 |
|
tpm2 | | | 84.08 266 | 82.94 268 | 87.48 284 | 91.39 268 | 71.27 325 | 89.23 303 | 90.37 322 | 71.95 335 | 84.64 218 | 89.33 295 | 67.30 265 | 96.55 259 | 75.17 274 | 87.09 235 | 94.63 198 |
|
RPSCF | | | 85.07 254 | 84.27 251 | 87.48 284 | 92.91 228 | 70.62 333 | 91.69 263 | 92.46 271 | 76.20 300 | 82.67 265 | 95.22 112 | 63.94 295 | 97.29 210 | 77.51 253 | 85.80 242 | 94.53 206 |
|
miper_lstm_enhance | | | 85.27 251 | 84.59 249 | 87.31 286 | 91.28 273 | 74.63 295 | 87.69 322 | 94.09 239 | 81.20 247 | 81.36 279 | 89.85 289 | 74.97 174 | 94.30 321 | 81.03 209 | 79.84 314 | 93.01 278 |
|
FMVSNet5 | | | 81.52 291 | 79.60 297 | 87.27 287 | 91.17 276 | 77.95 255 | 91.49 266 | 92.26 277 | 76.87 293 | 76.16 323 | 87.91 317 | 51.67 345 | 92.34 341 | 67.74 319 | 81.16 289 | 91.52 310 |
|
USDC | | | 82.76 276 | 81.26 281 | 87.26 288 | 91.17 276 | 74.55 296 | 89.27 301 | 93.39 254 | 78.26 283 | 75.30 329 | 92.08 228 | 54.43 339 | 96.63 248 | 71.64 293 | 85.79 243 | 90.61 326 |
|
test-LLR | | | 85.87 239 | 85.41 230 | 87.25 289 | 90.95 285 | 71.67 323 | 89.55 295 | 89.88 334 | 83.41 194 | 84.54 221 | 87.95 315 | 67.25 266 | 95.11 312 | 81.82 195 | 93.37 150 | 94.97 182 |
|
test-mter | | | 84.54 263 | 83.64 261 | 87.25 289 | 90.95 285 | 71.67 323 | 89.55 295 | 89.88 334 | 79.17 267 | 84.54 221 | 87.95 315 | 55.56 333 | 95.11 312 | 81.82 195 | 93.37 150 | 94.97 182 |
|
JIA-IIPM | | | 81.04 296 | 78.98 306 | 87.25 289 | 88.64 325 | 73.48 306 | 81.75 350 | 89.61 338 | 73.19 326 | 82.05 271 | 73.71 352 | 66.07 285 | 95.87 290 | 71.18 297 | 84.60 250 | 92.41 295 |
|
TDRefinement | | | 79.81 306 | 77.34 310 | 87.22 292 | 79.24 357 | 75.48 293 | 93.12 218 | 92.03 283 | 76.45 295 | 75.01 330 | 91.58 245 | 49.19 350 | 96.44 266 | 70.22 303 | 69.18 343 | 89.75 333 |
|
tpmvs | | | 83.35 275 | 82.07 273 | 87.20 293 | 91.07 281 | 71.00 330 | 88.31 316 | 91.70 292 | 78.91 270 | 80.49 290 | 87.18 327 | 69.30 251 | 97.08 227 | 68.12 318 | 83.56 261 | 93.51 258 |
|
ppachtmachnet_test | | | 81.84 284 | 80.07 292 | 87.15 294 | 88.46 328 | 74.43 299 | 89.04 306 | 92.16 279 | 75.33 307 | 77.75 313 | 88.99 298 | 66.20 282 | 95.37 308 | 65.12 332 | 77.60 324 | 91.65 308 |
|
tpm cat1 | | | 81.96 282 | 80.27 288 | 87.01 295 | 91.09 280 | 71.02 329 | 87.38 325 | 91.53 298 | 66.25 347 | 80.17 293 | 86.35 331 | 68.22 264 | 96.15 279 | 69.16 309 | 82.29 274 | 93.86 239 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 308 | 77.03 314 | 86.93 296 | 87.00 338 | 76.23 287 | 92.33 244 | 90.74 318 | 68.93 344 | 74.52 333 | 88.23 312 | 49.58 349 | 96.62 249 | 57.64 350 | 84.29 252 | 87.94 347 |
|
SixPastTwentyTwo | | | 83.91 269 | 82.90 269 | 86.92 297 | 90.99 283 | 70.67 332 | 93.48 202 | 91.99 285 | 85.54 148 | 77.62 315 | 92.11 226 | 60.59 315 | 96.87 241 | 76.05 267 | 77.75 323 | 93.20 270 |
|
ADS-MVSNet | | | 81.56 290 | 79.78 294 | 86.90 298 | 91.35 270 | 71.82 322 | 83.33 345 | 89.16 340 | 72.90 329 | 82.24 269 | 85.77 335 | 64.98 290 | 93.76 328 | 64.57 334 | 83.74 257 | 95.12 178 |
|
PatchT | | | 82.68 278 | 81.27 280 | 86.89 299 | 90.09 312 | 70.94 331 | 84.06 342 | 90.15 325 | 74.91 312 | 85.63 189 | 83.57 341 | 69.37 247 | 94.87 316 | 65.19 330 | 88.50 213 | 94.84 191 |
|
tpm | | | 84.73 260 | 84.02 254 | 86.87 300 | 90.33 307 | 68.90 340 | 89.06 305 | 89.94 331 | 80.85 250 | 85.75 184 | 89.86 288 | 68.54 261 | 95.97 285 | 77.76 249 | 84.05 255 | 95.75 160 |
|
Patchmatch-RL test | | | 81.67 287 | 79.96 293 | 86.81 301 | 85.42 347 | 71.23 326 | 82.17 349 | 87.50 347 | 78.47 279 | 77.19 317 | 82.50 345 | 70.81 227 | 93.48 331 | 82.66 180 | 72.89 336 | 95.71 163 |
|
MDA-MVSNet-bldmvs | | | 78.85 312 | 76.31 315 | 86.46 302 | 89.76 318 | 73.88 303 | 88.79 309 | 90.42 320 | 79.16 268 | 59.18 354 | 88.33 310 | 60.20 317 | 94.04 324 | 62.00 341 | 68.96 344 | 91.48 312 |
|
tpmrst | | | 85.35 248 | 84.99 238 | 86.43 303 | 90.88 292 | 67.88 344 | 88.71 310 | 91.43 301 | 80.13 256 | 86.08 181 | 88.80 303 | 73.05 203 | 96.02 283 | 82.48 181 | 83.40 265 | 95.40 172 |
|
TESTMET0.1,1 | | | 83.74 271 | 82.85 270 | 86.42 304 | 89.96 315 | 71.21 327 | 89.55 295 | 87.88 343 | 77.41 288 | 83.37 256 | 87.31 324 | 56.71 330 | 93.65 330 | 80.62 217 | 92.85 161 | 94.40 215 |
|
our_test_3 | | | 81.93 283 | 80.46 286 | 86.33 305 | 88.46 328 | 73.48 306 | 88.46 314 | 91.11 306 | 76.46 294 | 76.69 320 | 88.25 311 | 66.89 272 | 94.36 319 | 68.75 311 | 79.08 319 | 91.14 320 |
|
lessismore_v0 | | | | | 86.04 306 | 88.46 328 | 68.78 341 | | 80.59 358 | | 73.01 340 | 90.11 282 | 55.39 334 | 96.43 267 | 75.06 276 | 65.06 348 | 92.90 281 |
|
TinyColmap | | | 79.76 307 | 77.69 309 | 85.97 307 | 91.71 257 | 73.12 309 | 89.55 295 | 90.36 323 | 75.03 310 | 72.03 343 | 90.19 279 | 46.22 355 | 96.19 278 | 63.11 338 | 81.03 294 | 88.59 344 |
|
KD-MVS_2432*1600 | | | 78.50 313 | 76.02 318 | 85.93 308 | 86.22 341 | 74.47 297 | 84.80 338 | 92.33 273 | 79.29 265 | 76.98 318 | 85.92 333 | 53.81 342 | 93.97 325 | 67.39 320 | 57.42 354 | 89.36 334 |
|
miper_refine_blended | | | 78.50 313 | 76.02 318 | 85.93 308 | 86.22 341 | 74.47 297 | 84.80 338 | 92.33 273 | 79.29 265 | 76.98 318 | 85.92 333 | 53.81 342 | 93.97 325 | 67.39 320 | 57.42 354 | 89.36 334 |
|
K. test v3 | | | 81.59 289 | 80.15 291 | 85.91 310 | 89.89 317 | 69.42 339 | 92.57 237 | 87.71 345 | 85.56 147 | 73.44 338 | 89.71 291 | 55.58 332 | 95.52 302 | 77.17 256 | 69.76 340 | 92.78 286 |
|
MIMVSNet1 | | | 79.38 309 | 77.28 311 | 85.69 311 | 86.35 340 | 73.67 305 | 91.61 265 | 92.75 266 | 78.11 286 | 72.64 341 | 88.12 313 | 48.16 351 | 91.97 345 | 60.32 345 | 77.49 325 | 91.43 313 |
|
UnsupCasMVSNet_eth | | | 80.07 304 | 78.27 308 | 85.46 312 | 85.24 348 | 72.63 316 | 88.45 315 | 94.87 209 | 82.99 204 | 71.64 345 | 88.07 314 | 56.34 331 | 91.75 346 | 73.48 287 | 63.36 351 | 92.01 304 |
|
CL-MVSNet_2432*1600 | | | 81.74 286 | 80.53 284 | 85.36 313 | 85.96 343 | 72.45 319 | 90.25 284 | 93.07 259 | 81.24 245 | 79.85 301 | 87.29 325 | 70.93 225 | 92.52 340 | 66.95 322 | 69.23 342 | 91.11 322 |
|
MDA-MVSNet_test_wron | | | 79.21 311 | 77.19 313 | 85.29 314 | 88.22 332 | 72.77 313 | 85.87 332 | 90.06 328 | 74.34 317 | 62.62 353 | 87.56 321 | 66.14 283 | 91.99 344 | 66.90 326 | 73.01 334 | 91.10 323 |
|
YYNet1 | | | 79.22 310 | 77.20 312 | 85.28 315 | 88.20 334 | 72.66 315 | 85.87 332 | 90.05 330 | 74.33 318 | 62.70 352 | 87.61 320 | 66.09 284 | 92.03 343 | 66.94 323 | 72.97 335 | 91.15 319 |
|
dp | | | 81.47 292 | 80.23 289 | 85.17 316 | 89.92 316 | 65.49 350 | 86.74 327 | 90.10 327 | 76.30 298 | 81.10 281 | 87.12 328 | 62.81 298 | 95.92 287 | 68.13 317 | 79.88 312 | 94.09 226 |
|
UnsupCasMVSNet_bld | | | 76.23 319 | 73.27 322 | 85.09 317 | 83.79 351 | 72.92 310 | 85.65 335 | 93.47 253 | 71.52 336 | 68.84 348 | 79.08 349 | 49.77 348 | 93.21 334 | 66.81 327 | 60.52 353 | 89.13 341 |
|
Anonymous20231206 | | | 81.03 297 | 79.77 295 | 84.82 318 | 87.85 337 | 70.26 335 | 91.42 267 | 92.08 281 | 73.67 322 | 77.75 313 | 89.25 296 | 62.43 301 | 93.08 336 | 61.50 343 | 82.00 280 | 91.12 321 |
|
test0.0.03 1 | | | 82.41 280 | 81.69 276 | 84.59 319 | 88.23 331 | 72.89 311 | 90.24 285 | 87.83 344 | 83.41 194 | 79.86 300 | 89.78 290 | 67.25 266 | 88.99 352 | 65.18 331 | 83.42 264 | 91.90 305 |
|
CMPMVS |  | 59.16 21 | 80.52 300 | 79.20 302 | 84.48 320 | 83.98 350 | 67.63 346 | 89.95 293 | 93.84 247 | 64.79 349 | 66.81 350 | 91.14 259 | 57.93 328 | 95.17 310 | 76.25 264 | 88.10 220 | 90.65 325 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CVMVSNet | | | 84.69 262 | 84.79 245 | 84.37 321 | 91.84 252 | 64.92 352 | 93.70 196 | 91.47 300 | 66.19 348 | 86.16 180 | 95.28 109 | 67.18 268 | 93.33 333 | 80.89 212 | 90.42 183 | 94.88 190 |
|
PVSNet_0 | | 73.20 20 | 77.22 316 | 74.83 321 | 84.37 321 | 90.70 299 | 71.10 328 | 83.09 347 | 89.67 337 | 72.81 331 | 73.93 336 | 83.13 343 | 60.79 313 | 93.70 329 | 68.54 312 | 50.84 357 | 88.30 346 |
|
LF4IMVS | | | 80.37 302 | 79.07 305 | 84.27 323 | 86.64 339 | 69.87 338 | 89.39 300 | 91.05 309 | 76.38 296 | 74.97 331 | 90.00 285 | 47.85 353 | 94.25 323 | 74.55 281 | 80.82 300 | 88.69 343 |
|
Anonymous20240521 | | | 80.44 301 | 79.21 301 | 84.11 324 | 85.75 345 | 67.89 343 | 92.86 229 | 93.23 256 | 75.61 305 | 75.59 328 | 87.47 322 | 50.03 347 | 94.33 320 | 71.14 298 | 81.21 288 | 90.12 331 |
|
PM-MVS | | | 78.11 315 | 76.12 317 | 84.09 325 | 83.54 352 | 70.08 336 | 88.97 307 | 85.27 351 | 79.93 259 | 74.73 332 | 86.43 329 | 34.70 359 | 93.48 331 | 79.43 234 | 72.06 338 | 88.72 342 |
|
testgi | | | 80.94 299 | 80.20 290 | 83.18 326 | 87.96 336 | 66.29 347 | 91.28 268 | 90.70 319 | 83.70 185 | 78.12 310 | 92.84 200 | 51.37 346 | 90.82 349 | 63.34 337 | 82.46 273 | 92.43 294 |
|
DIV-MVS_2432*1600 | | | 80.20 303 | 79.24 300 | 83.07 327 | 85.64 346 | 65.29 351 | 91.01 274 | 93.93 241 | 78.71 277 | 76.32 322 | 86.40 330 | 59.20 324 | 92.93 338 | 72.59 290 | 69.35 341 | 91.00 324 |
|
ambc | | | | | 83.06 328 | 79.99 356 | 63.51 354 | 77.47 354 | 92.86 262 | | 74.34 335 | 84.45 338 | 28.74 360 | 95.06 314 | 73.06 289 | 68.89 345 | 90.61 326 |
|
test20.03 | | | 79.95 305 | 79.08 304 | 82.55 329 | 85.79 344 | 67.74 345 | 91.09 273 | 91.08 307 | 81.23 246 | 74.48 334 | 89.96 287 | 61.63 305 | 90.15 350 | 60.08 346 | 76.38 330 | 89.76 332 |
|
EU-MVSNet | | | 81.32 294 | 80.95 282 | 82.42 330 | 88.50 327 | 63.67 353 | 93.32 206 | 91.33 302 | 64.02 350 | 80.57 289 | 92.83 201 | 61.21 311 | 92.27 342 | 76.34 263 | 80.38 308 | 91.32 314 |
|
pmmvs3 | | | 71.81 322 | 68.71 325 | 81.11 331 | 75.86 358 | 70.42 334 | 86.74 327 | 83.66 353 | 58.95 353 | 68.64 349 | 80.89 347 | 36.93 358 | 89.52 351 | 63.10 339 | 63.59 350 | 83.39 349 |
|
new-patchmatchnet | | | 76.41 318 | 75.17 320 | 80.13 332 | 82.65 355 | 59.61 355 | 87.66 323 | 91.08 307 | 78.23 284 | 69.85 346 | 83.22 342 | 54.76 336 | 91.63 348 | 64.14 336 | 64.89 349 | 89.16 339 |
|
DSMNet-mixed | | | 76.94 317 | 76.29 316 | 78.89 333 | 83.10 353 | 56.11 360 | 87.78 320 | 79.77 359 | 60.65 352 | 75.64 327 | 88.71 304 | 61.56 306 | 88.34 353 | 60.07 347 | 89.29 202 | 92.21 302 |
|
new_pmnet | | | 72.15 321 | 70.13 324 | 78.20 334 | 82.95 354 | 65.68 348 | 83.91 343 | 82.40 355 | 62.94 351 | 64.47 351 | 79.82 348 | 42.85 357 | 86.26 355 | 57.41 351 | 74.44 333 | 82.65 352 |
|
MVS-HIRNet | | | 73.70 320 | 72.20 323 | 78.18 335 | 91.81 254 | 56.42 359 | 82.94 348 | 82.58 354 | 55.24 354 | 68.88 347 | 66.48 356 | 55.32 335 | 95.13 311 | 58.12 349 | 88.42 215 | 83.01 350 |
|
LCM-MVSNet | | | 66.00 324 | 62.16 328 | 77.51 336 | 64.51 364 | 58.29 356 | 83.87 344 | 90.90 314 | 48.17 357 | 54.69 355 | 73.31 353 | 16.83 369 | 86.75 354 | 65.47 329 | 61.67 352 | 87.48 348 |
|
ANet_high | | | 58.88 327 | 54.22 331 | 72.86 337 | 56.50 367 | 56.67 358 | 80.75 352 | 86.00 348 | 73.09 328 | 37.39 361 | 64.63 358 | 22.17 364 | 79.49 360 | 43.51 357 | 23.96 362 | 82.43 353 |
|
FPMVS | | | 64.63 325 | 62.55 327 | 70.88 338 | 70.80 360 | 56.71 357 | 84.42 341 | 84.42 352 | 51.78 356 | 49.57 356 | 81.61 346 | 23.49 363 | 81.48 358 | 40.61 359 | 76.25 331 | 74.46 355 |
|
N_pmnet | | | 68.89 323 | 68.44 326 | 70.23 339 | 89.07 322 | 28.79 369 | 88.06 317 | 19.50 370 | 69.47 343 | 71.86 344 | 84.93 337 | 61.24 310 | 91.75 346 | 54.70 352 | 77.15 327 | 90.15 330 |
|
PMMVS2 | | | 59.60 326 | 56.40 329 | 69.21 340 | 68.83 361 | 46.58 364 | 73.02 358 | 77.48 363 | 55.07 355 | 49.21 357 | 72.95 354 | 17.43 368 | 80.04 359 | 49.32 356 | 44.33 359 | 80.99 354 |
|
Gipuma |  | | 57.99 328 | 54.91 330 | 67.24 341 | 88.51 326 | 65.59 349 | 52.21 361 | 90.33 324 | 43.58 359 | 42.84 360 | 51.18 361 | 20.29 366 | 85.07 356 | 34.77 360 | 70.45 339 | 51.05 359 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 47.18 22 | 52.22 329 | 48.46 333 | 63.48 342 | 45.72 369 | 46.20 365 | 73.41 357 | 78.31 361 | 41.03 360 | 30.06 363 | 65.68 357 | 6.05 370 | 83.43 357 | 30.04 361 | 65.86 347 | 60.80 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 39.65 23 | 43.39 331 | 38.59 337 | 57.77 343 | 56.52 366 | 48.77 363 | 55.38 360 | 58.64 367 | 29.33 363 | 28.96 364 | 52.65 360 | 4.68 371 | 64.62 364 | 28.11 362 | 33.07 360 | 59.93 357 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.52 330 | 48.47 332 | 56.66 344 | 52.26 368 | 18.98 371 | 41.51 363 | 81.40 357 | 10.10 364 | 44.59 359 | 75.01 351 | 28.51 361 | 68.16 361 | 53.54 353 | 49.31 358 | 82.83 351 |
|
DeepMVS_CX |  | | | | 56.31 345 | 74.23 359 | 51.81 362 | | 56.67 368 | 44.85 358 | 48.54 358 | 75.16 350 | 27.87 362 | 58.74 365 | 40.92 358 | 52.22 356 | 58.39 358 |
|
E-PMN | | | 43.23 332 | 42.29 334 | 46.03 346 | 65.58 363 | 37.41 366 | 73.51 356 | 64.62 364 | 33.99 361 | 28.47 365 | 47.87 362 | 19.90 367 | 67.91 362 | 22.23 363 | 24.45 361 | 32.77 360 |
|
EMVS | | | 42.07 333 | 41.12 335 | 44.92 347 | 63.45 365 | 35.56 368 | 73.65 355 | 63.48 365 | 33.05 362 | 26.88 366 | 45.45 363 | 21.27 365 | 67.14 363 | 19.80 364 | 23.02 363 | 32.06 361 |
|
tmp_tt | | | 35.64 334 | 39.24 336 | 24.84 348 | 14.87 370 | 23.90 370 | 62.71 359 | 51.51 369 | 6.58 366 | 36.66 362 | 62.08 359 | 44.37 356 | 30.34 367 | 52.40 354 | 22.00 364 | 20.27 362 |
|
wuyk23d | | | 21.27 336 | 20.48 339 | 23.63 349 | 68.59 362 | 36.41 367 | 49.57 362 | 6.85 371 | 9.37 365 | 7.89 367 | 4.46 369 | 4.03 372 | 31.37 366 | 17.47 365 | 16.07 365 | 3.12 363 |
|
test123 | | | 8.76 338 | 11.22 341 | 1.39 350 | 0.85 372 | 0.97 372 | 85.76 334 | 0.35 373 | 0.54 368 | 2.45 369 | 8.14 368 | 0.60 373 | 0.48 368 | 2.16 367 | 0.17 367 | 2.71 364 |
|
testmvs | | | 8.92 337 | 11.52 340 | 1.12 351 | 1.06 371 | 0.46 373 | 86.02 331 | 0.65 372 | 0.62 367 | 2.74 368 | 9.52 367 | 0.31 374 | 0.45 369 | 2.38 366 | 0.39 366 | 2.46 365 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
cdsmvs_eth3d_5k | | | 22.14 335 | 29.52 338 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 95.76 149 | 0.00 369 | 0.00 370 | 94.29 146 | 75.66 166 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 6.64 340 | 8.86 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 79.70 119 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 7.82 339 | 10.43 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 93.88 165 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.15 35 | 86.62 35 | | 97.07 44 | 83.63 187 | 94.19 30 | 96.91 48 | 87.57 29 | 99.26 43 | 91.99 57 | 98.44 51 | |
|
RE-MVS-def | | | | 93.68 46 | | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 72 | 87.46 105 | 93.75 40 | 97.43 18 | 82.94 82 | | 92.73 35 | 97.80 75 | 97.88 77 |
|
IU-MVS | | | | | | 98.77 4 | 86.00 54 | | 96.84 62 | 81.26 244 | 97.26 6 | | | | 95.50 7 | 99.13 3 | 99.03 4 |
|
test_241102_TWO | | | | | | | | | 97.44 12 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 8 | 99.58 5 | 95.66 2 | 99.12 6 | 98.98 6 |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 55 | | 97.44 12 | 90.26 30 | 97.71 1 | 97.96 8 | 92.31 2 | 99.38 29 | | | |
|
9.14 | | | | 94.47 17 | | 97.79 52 | | 96.08 50 | 97.44 12 | 86.13 136 | 95.10 22 | 97.40 21 | 88.34 18 | 99.22 46 | 93.25 29 | 98.70 32 | |
|
save fliter | | | | | | 97.85 48 | 85.63 68 | 95.21 95 | 96.82 66 | 89.44 47 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 8 | 98.05 6 | 92.09 4 | 99.55 12 | 95.64 4 | 99.13 3 | 99.13 1 |
|
test0726 | | | | | | 98.78 2 | 85.93 58 | 97.19 6 | 97.47 8 | 90.27 28 | 97.64 4 | 98.13 1 | 91.47 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 142 |
|
test_part2 | | | | | | 98.55 11 | 87.22 16 | | | | 96.40 11 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 215 | | | | 96.12 142 |
|
sam_mvs | | | | | | | | | | | | | 70.60 229 | | | | |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 318 | | | | 9.81 366 | 69.31 250 | 95.53 301 | 76.65 260 | | |
|
test_post | | | | | | | | | | | | 10.29 365 | 70.57 233 | 95.91 289 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 340 | 71.53 217 | 96.48 262 | | | |
|
MTMP | | | | | | | | 96.16 44 | 60.64 366 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 320 | 68.00 342 | | | 77.28 291 | | 88.99 298 | | 97.57 181 | 79.44 233 | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 62 | 98.71 30 | 98.07 63 |
|
TEST9 | | | | | | 97.53 58 | 86.49 39 | 94.07 175 | 96.78 69 | 81.61 237 | 92.77 65 | 96.20 80 | 87.71 26 | 99.12 55 | | | |
|
test_8 | | | | | | 97.49 61 | 86.30 48 | 94.02 180 | 96.76 72 | 81.86 230 | 92.70 69 | 96.20 80 | 87.63 27 | 99.02 68 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 88 | 98.68 35 | 98.27 47 |
|
agg_prior | | | | | | 97.38 64 | 85.92 60 | | 96.72 78 | | 92.16 81 | | | 98.97 80 | | | |
|
test_prior4 | | | | | | | 85.96 57 | 94.11 170 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 168 | | 87.67 100 | 92.63 70 | 96.39 72 | 86.62 39 | | 91.50 73 | 98.67 37 | |
|
旧先验2 | | | | | | | | 93.36 205 | | 71.25 338 | 94.37 26 | | | 97.13 223 | 86.74 131 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 220 | | | | | | | | | |
|
旧先验1 | | | | | | 96.79 80 | 81.81 158 | | 95.67 155 | | | 96.81 53 | 86.69 38 | | | 97.66 79 | 96.97 115 |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 212 | 96.26 109 | 73.95 320 | | | | 99.05 60 | 80.56 218 | | 96.59 127 |
|
原ACMM2 | | | | | | | | 92.94 227 | | | | | | | | | |
|
test222 | | | | | | 96.55 88 | 81.70 160 | 92.22 248 | 95.01 198 | 68.36 345 | 90.20 114 | 96.14 85 | 80.26 112 | | | 97.80 75 | 96.05 149 |
|
testdata2 | | | | | | | | | | | | | | 98.75 100 | 78.30 244 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 35 | | | | |
|
testdata1 | | | | | | | | 92.15 250 | | 87.94 90 | | | | | | | |
|
plane_prior7 | | | | | | 94.70 161 | 82.74 136 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 167 | 82.75 134 | | | | | | 74.23 182 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 114 | | | | | 98.12 137 | 88.15 111 | 89.99 187 | 94.63 198 |
|
plane_prior4 | | | | | | | | | | | | 94.86 124 | | | | | |
|
plane_prior3 | | | | | | | 82.75 134 | | | 90.26 30 | 86.91 164 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 61 | | 90.81 17 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 165 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 137 | 95.21 95 | | 89.66 44 | | | | | | 89.88 192 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 349 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 94 | | | | | | | | |
|
door | | | | | | | | | 85.33 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 162 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 181 | | 94.39 152 | | 88.81 64 | 85.43 202 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 181 | | 94.39 152 | | 88.81 64 | 85.43 202 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 128 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 202 | | | 97.96 157 | | | 94.51 208 |
|
HQP3-MVS | | | | | | | | | 96.04 128 | | | | | | | 89.77 194 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 192 | | | | |
|
NP-MVS | | | | | | 94.37 175 | 82.42 145 | | | | | 93.98 158 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 361 | 87.62 324 | | 73.32 325 | 84.59 220 | | 70.33 236 | | 74.65 279 | | 95.50 166 |
|
MDTV_nov1_ep13 | | | | 83.56 262 | | 91.69 259 | 69.93 337 | 87.75 321 | 91.54 297 | 78.60 278 | 84.86 216 | 88.90 300 | 69.54 245 | 96.03 282 | 70.25 301 | 88.93 207 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 228 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 223 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 114 | | | | |
|