This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2588.24 7993.15 5197.04 3986.17 4399.62 192.40 3898.81 1898.52 20
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7197.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
test_0728_SECOND95.01 1598.79 186.43 4097.09 1197.49 599.61 395.62 599.08 798.99 5
GST-MVS94.21 3393.97 3794.90 2498.41 2286.82 2396.54 3097.19 3688.24 7993.26 4796.83 4785.48 5299.59 491.43 6798.40 5298.30 40
SED-MVS95.91 196.28 194.80 3398.77 485.99 5497.13 997.44 1390.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1390.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
SMA-MVS95.20 795.07 995.59 398.14 3588.48 696.26 3797.28 2985.90 13097.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
MP-MVS-pluss94.21 3394.00 3694.85 2798.17 3486.65 3394.82 11497.17 3986.26 12492.83 5797.87 1085.57 5199.56 794.37 1498.92 1398.34 37
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4696.71 2696.98 4889.04 5791.98 7897.19 3185.43 5399.56 792.06 4998.79 1998.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS95.67 296.02 294.64 4098.78 285.93 5797.09 1196.73 7390.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 31
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5596.96 5291.75 794.02 3396.83 4788.12 2199.55 1293.41 2498.94 1298.28 44
mPP-MVS93.99 3893.78 4194.63 4198.50 1585.90 6296.87 2196.91 5688.70 6691.83 8497.17 3383.96 7199.55 1291.44 6698.64 4398.43 33
CANet93.54 4993.20 5394.55 4495.65 11585.73 6694.94 10596.69 7991.89 590.69 10195.88 8981.99 9399.54 1693.14 2997.95 6698.39 35
ACMMP_NAP94.74 1494.56 1695.28 698.02 4187.70 1095.68 6497.34 2088.28 7895.30 2097.67 1385.90 4899.54 1693.91 1798.95 1198.60 17
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3388.60 7093.58 4397.27 2485.22 5599.54 1692.21 4398.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2588.63 6893.53 4697.26 2685.04 5899.54 1692.35 4098.78 2198.50 21
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4097.23 3387.28 10294.85 2497.04 3986.99 3699.52 2091.54 6398.33 5598.71 12
PGM-MVS93.96 3993.72 4394.68 3898.43 1986.22 4995.30 8097.78 187.45 10093.26 4797.33 2184.62 6499.51 2190.75 7998.57 4698.32 39
ACMMPcopyleft93.24 5792.88 6094.30 5498.09 3885.33 7196.86 2297.45 1188.33 7690.15 10797.03 4181.44 9699.51 2190.85 7895.74 10298.04 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 2088.63 6893.65 3997.21 2986.10 4499.49 2392.35 4098.77 2498.30 40
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 2087.51 9993.65 3997.21 2986.10 4499.49 2391.68 6198.77 2498.30 40
XVS94.45 2094.32 2094.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5597.16 3485.02 5999.49 2391.99 5098.56 4798.47 27
X-MVStestdata88.31 15786.13 19794.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5523.41 34785.02 5999.49 2391.99 5098.56 4798.47 27
NCCC94.81 1394.69 1595.17 1097.83 4787.46 1495.66 6696.93 5592.34 293.94 3496.58 6187.74 2499.44 2792.83 3298.40 5298.62 16
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7286.33 4497.33 397.30 2791.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE98.77 485.99 5497.44 1390.26 3097.71 197.96 892.31 299.38 29
DeepC-MVS88.79 393.31 5492.99 5794.26 5596.07 10185.83 6394.89 10996.99 4789.02 5989.56 11197.37 2082.51 8199.38 2992.20 4498.30 5697.57 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4485.63 6795.21 8895.47 16489.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
SF-MVS94.97 1094.90 1295.20 897.84 4687.76 896.65 2897.48 787.76 9395.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4897.46 297.40 1889.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10297.12 4187.13 10492.51 6996.30 7089.24 1499.34 3393.46 2198.62 4498.73 11
3Dnovator+87.14 492.42 7091.37 7795.55 495.63 11688.73 497.07 1396.77 7190.84 1684.02 22796.62 5975.95 15299.34 3387.77 10797.68 7198.59 18
CNVR-MVS95.40 695.37 695.50 598.11 3688.51 595.29 8296.96 5292.09 395.32 1997.08 3789.49 1299.33 3695.10 898.85 1598.66 14
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3188.53 7292.73 6297.23 2785.20 5699.32 3792.15 4698.83 1798.25 49
PHI-MVS93.89 4293.65 4494.62 4296.84 7586.43 4096.69 2797.49 585.15 15193.56 4596.28 7285.60 5099.31 3892.45 3598.79 1998.12 58
DVP-MVS95.42 595.56 594.98 1998.49 1686.52 3796.91 2097.47 891.73 896.10 1396.69 5489.90 999.30 3994.70 998.04 6399.13 1
QAPM89.51 12388.15 14393.59 7094.92 14284.58 7996.82 2496.70 7778.43 26583.41 24396.19 7973.18 19399.30 3977.11 24696.54 9396.89 115
ETH3D cwj APD-0.1693.91 4093.53 4695.06 1396.76 7787.78 794.92 10797.21 3584.33 16593.89 3697.09 3687.20 3299.29 4191.90 5798.44 5198.12 58
ETH3 D test640093.64 4793.22 5194.92 2097.79 4886.84 2295.31 7797.26 3082.67 20093.81 3796.29 7187.29 3199.27 4289.87 8598.67 3798.65 15
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5187.71 995.98 5297.44 1386.67 11795.25 2197.31 2287.73 2599.24 4393.11 3098.76 2698.40 34
DeepC-MVS_fast89.43 294.04 3693.79 4094.80 3397.48 5886.78 2695.65 6896.89 5889.40 4792.81 5896.97 4285.37 5499.24 4390.87 7798.69 3398.38 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.47 1797.79 4896.08 4697.44 1386.13 12895.10 2297.40 1888.34 1899.22 4593.25 2798.70 32
DELS-MVS93.43 5293.25 5093.97 5995.42 12285.04 7393.06 21397.13 4090.74 2091.84 8295.09 11186.32 4299.21 4691.22 6998.45 5097.65 82
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D87.89 16786.32 19292.59 10396.07 10182.92 12695.23 8694.92 19975.66 28882.89 25095.98 8572.48 20199.21 4668.43 30195.23 11595.64 156
abl_693.18 5993.05 5593.57 7197.52 5684.27 9295.53 7296.67 8087.85 9093.20 5097.22 2880.35 10399.18 4891.91 5497.21 7997.26 97
HPM-MVScopyleft94.02 3793.88 3894.43 5098.39 2385.78 6497.25 597.07 4586.90 11292.62 6696.80 5184.85 6299.17 4992.43 3698.65 4298.33 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu91.38 8490.91 8792.80 9296.39 8983.17 11794.87 11196.66 8183.29 18689.27 11694.46 13380.29 10599.17 4987.57 11095.37 11096.05 143
3Dnovator86.66 591.73 7990.82 8994.44 4894.59 15686.37 4297.18 797.02 4689.20 5284.31 22296.66 5773.74 18599.17 4986.74 12297.96 6597.79 80
CSCG93.23 5893.05 5593.76 6898.04 4084.07 9596.22 3897.37 1984.15 16790.05 10895.66 9687.77 2399.15 5289.91 8498.27 5798.07 62
Regformer-294.33 2794.22 2594.68 3895.54 11986.75 2994.57 13096.70 7791.84 694.41 2596.56 6387.19 3399.13 5393.50 2097.65 7398.16 54
TEST997.53 5486.49 3894.07 16796.78 6981.61 22692.77 5996.20 7687.71 2699.12 54
train_agg93.44 5193.08 5494.52 4597.53 5486.49 3894.07 16796.78 6981.86 21992.77 5996.20 7687.63 2799.12 5492.14 4798.69 3397.94 71
Regformer-493.91 4093.81 3994.19 5795.36 12385.47 6994.68 12296.41 9591.60 1093.75 3896.71 5285.95 4799.10 5693.21 2896.65 9098.01 68
HPM-MVS_fast93.40 5393.22 5193.94 6198.36 2584.83 7597.15 896.80 6885.77 13392.47 7097.13 3582.38 8299.07 5790.51 8198.40 5297.92 74
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 3986.90 2195.88 5696.94 5485.68 13695.05 2397.18 3287.31 3099.07 5791.90 5798.61 4598.28 44
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
无先验93.28 20296.26 10373.95 30499.05 5980.56 20796.59 122
112190.42 10489.49 10993.20 7597.27 6784.46 8592.63 22395.51 16271.01 32491.20 9796.21 7582.92 7799.05 5980.56 20798.07 6296.10 139
DP-MVS87.25 19485.36 22292.90 8997.65 5283.24 11594.81 11592.00 26974.99 29581.92 26295.00 11372.66 19899.05 5966.92 30992.33 16096.40 126
CDPH-MVS92.83 6292.30 6894.44 4897.79 4886.11 5194.06 16996.66 8180.09 24592.77 5996.63 5886.62 3899.04 6287.40 11298.66 4098.17 53
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6496.40 3396.90 5788.20 8294.33 2797.40 1884.75 6399.03 6393.35 2597.99 6498.48 23
CANet_DTU90.26 10789.41 11292.81 9193.46 19983.01 12393.48 19294.47 21589.43 4687.76 14094.23 14270.54 22399.03 6384.97 13796.39 9796.38 127
Regformer-194.22 3294.13 3294.51 4695.54 11986.36 4394.57 13096.44 9291.69 994.32 2896.56 6387.05 3599.03 6393.35 2597.65 7398.15 55
DP-MVS Recon91.95 7491.28 7993.96 6098.33 2785.92 5994.66 12596.66 8182.69 19990.03 10995.82 9182.30 8599.03 6384.57 14496.48 9696.91 114
test_897.49 5786.30 4794.02 17296.76 7281.86 21992.70 6396.20 7687.63 2799.02 67
AdaColmapbinary89.89 11689.07 12092.37 11597.41 5983.03 12194.42 14195.92 12882.81 19786.34 16694.65 12773.89 18199.02 6780.69 20495.51 10595.05 171
test1294.34 5397.13 7086.15 5096.29 10191.04 9985.08 5799.01 6998.13 6097.86 76
EPNet91.79 7691.02 8594.10 5890.10 30085.25 7296.03 4992.05 26792.83 187.39 14795.78 9279.39 11899.01 6988.13 10497.48 7598.05 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OpenMVScopyleft83.78 1188.74 14787.29 16193.08 8092.70 22085.39 7096.57 2996.43 9478.74 26280.85 27296.07 8369.64 23399.01 6978.01 23796.65 9094.83 183
EI-MVSNet-Vis-set93.01 6192.92 5993.29 7295.01 13583.51 11094.48 13495.77 14190.87 1592.52 6896.67 5684.50 6599.00 7291.99 5094.44 12797.36 93
DPM-MVS92.58 6791.74 7495.08 1296.19 9489.31 392.66 22296.56 8983.44 18291.68 8895.04 11286.60 4198.99 7385.60 13297.92 6796.93 113
PS-MVSNAJ91.18 8990.92 8691.96 13095.26 12982.60 13892.09 24295.70 14686.27 12391.84 8292.46 19979.70 11398.99 7389.08 9295.86 10194.29 207
EI-MVSNet-UG-set92.74 6492.62 6393.12 7894.86 14683.20 11694.40 14295.74 14490.71 2292.05 7796.60 6084.00 7098.99 7391.55 6293.63 13597.17 102
agg_prior193.29 5592.97 5894.26 5597.38 6085.92 5993.92 17796.72 7581.96 21392.16 7496.23 7487.85 2298.97 7691.95 5398.55 4997.90 75
agg_prior97.38 6085.92 5996.72 7592.16 7498.97 76
DeepPCF-MVS89.96 194.20 3594.77 1392.49 10896.52 8680.00 20194.00 17497.08 4490.05 3295.65 1797.29 2389.66 1098.97 7693.95 1698.71 3098.50 21
APD-MVS_3200maxsize93.78 4393.77 4293.80 6797.92 4384.19 9396.30 3596.87 6186.96 10893.92 3597.47 1683.88 7298.96 7992.71 3497.87 6898.26 48
OPU-MVS96.21 198.00 4290.85 197.13 997.08 3792.59 198.94 8092.25 4298.99 1098.84 8
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4496.11 4596.62 8488.14 8496.10 1396.96 4389.09 1598.94 8094.48 1298.68 3598.48 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base91.13 9090.89 8891.86 13594.97 13882.42 13992.24 23695.64 15386.11 12991.74 8793.14 17979.67 11698.89 8289.06 9395.46 10894.28 208
UA-Net92.83 6292.54 6593.68 6996.10 9984.71 7795.66 6696.39 9791.92 493.22 4996.49 6583.16 7598.87 8384.47 14595.47 10797.45 92
test_prior393.60 4893.53 4693.82 6497.29 6584.49 8294.12 16096.88 5987.67 9692.63 6496.39 6886.62 3898.87 8391.50 6498.67 3798.11 60
test_prior93.82 6497.29 6584.49 8296.88 5998.87 8398.11 60
Regformer-393.68 4593.64 4593.81 6695.36 12384.61 7894.68 12295.83 13791.27 1293.60 4296.71 5285.75 4998.86 8692.87 3196.65 9097.96 70
新几何193.10 7997.30 6484.35 9195.56 15771.09 32391.26 9696.24 7382.87 7898.86 8679.19 22698.10 6196.07 141
PCF-MVS84.11 1087.74 17186.08 20192.70 9994.02 17684.43 8989.27 28995.87 13473.62 30784.43 21494.33 13578.48 13098.86 8670.27 28794.45 12694.81 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_BlendedMVS89.98 11189.70 10690.82 17396.12 9681.25 16693.92 17796.83 6483.49 18189.10 11892.26 20781.04 10098.85 8986.72 12587.86 21992.35 288
PVSNet_Blended90.73 9590.32 9491.98 12896.12 9681.25 16692.55 22796.83 6482.04 21189.10 11892.56 19781.04 10098.85 8986.72 12595.91 10095.84 150
原ACMM192.01 12597.34 6281.05 17196.81 6778.89 25790.45 10395.92 8782.65 7998.84 9180.68 20598.26 5896.14 134
Anonymous2024052988.09 16386.59 18392.58 10496.53 8581.92 15195.99 5095.84 13674.11 30389.06 12095.21 10761.44 29498.81 9283.67 15687.47 22197.01 109
MAR-MVS90.30 10589.37 11393.07 8296.61 8184.48 8495.68 6495.67 14882.36 20487.85 13692.85 18776.63 14698.80 9380.01 21596.68 8995.91 146
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet89.95 11388.95 12392.95 8794.51 15983.31 11495.70 6395.23 18189.37 4887.58 14293.94 15264.00 28198.78 9483.92 15196.31 9896.74 119
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata298.75 9578.30 233
PLCcopyleft84.53 789.06 13888.03 14592.15 12397.27 6782.69 13594.29 15295.44 17079.71 25084.01 22894.18 14376.68 14598.75 9577.28 24393.41 14195.02 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
alignmvs93.08 6092.50 6694.81 3295.62 11787.61 1295.99 5096.07 11889.77 3894.12 3094.87 11780.56 10298.66 9792.42 3793.10 14898.15 55
MVS_111021_HR93.45 5093.31 4993.84 6396.99 7284.84 7493.24 20697.24 3188.76 6491.60 8995.85 9086.07 4698.66 9791.91 5498.16 5998.03 66
VDD-MVS90.74 9489.92 10593.20 7596.27 9283.02 12295.73 6193.86 23488.42 7592.53 6796.84 4662.09 28998.64 9990.95 7592.62 15697.93 73
114514_t89.51 12388.50 13292.54 10698.11 3681.99 14895.16 9396.36 9970.19 32685.81 17395.25 10576.70 14498.63 10082.07 17996.86 8697.00 110
canonicalmvs93.27 5692.75 6194.85 2795.70 11487.66 1196.33 3496.41 9590.00 3494.09 3194.60 12982.33 8498.62 10192.40 3892.86 15398.27 46
TSAR-MVS + GP.93.66 4693.41 4894.41 5296.59 8286.78 2694.40 14293.93 23389.77 3894.21 2995.59 9887.35 2998.61 10292.72 3396.15 9997.83 78
CPTT-MVS91.99 7391.80 7392.55 10598.24 3181.98 14996.76 2596.49 9181.89 21890.24 10596.44 6778.59 12798.61 10289.68 8697.85 6997.06 106
xiu_mvs_v1_base_debu90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base_debi90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
F-COLMAP87.95 16686.80 17391.40 15196.35 9180.88 17694.73 12095.45 16879.65 25182.04 26094.61 12871.13 21198.50 10776.24 25491.05 17194.80 185
CS-MVS92.60 6692.56 6492.73 9695.55 11882.35 14396.14 4296.85 6288.71 6591.44 9291.51 23684.13 6898.48 10891.27 6897.47 7697.34 94
tttt051788.61 15087.78 15091.11 16194.96 13977.81 25095.35 7589.69 32185.09 15388.05 13394.59 13066.93 25898.48 10883.27 15992.13 16297.03 108
PAPM_NR91.22 8890.78 9092.52 10797.60 5381.46 16194.37 14996.24 10686.39 12287.41 14494.80 12282.06 9198.48 10882.80 16895.37 11097.61 84
thisisatest053088.67 14887.61 15491.86 13594.87 14580.07 19594.63 12689.90 31884.00 17088.46 12693.78 16266.88 26098.46 11183.30 15892.65 15597.06 106
IB-MVS80.51 1585.24 24283.26 25391.19 15692.13 23179.86 20491.75 24891.29 28983.28 18780.66 27588.49 29561.28 29598.46 11180.99 19979.46 30795.25 167
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
API-MVS90.66 9890.07 9992.45 11096.36 9084.57 8096.06 4895.22 18382.39 20289.13 11794.27 14180.32 10498.46 11180.16 21496.71 8894.33 206
EIA-MVS91.95 7491.94 7191.98 12895.16 13280.01 20095.36 7496.73 7388.44 7389.34 11592.16 20983.82 7398.45 11489.35 8997.06 8297.48 90
PAPR90.02 11089.27 11792.29 12095.78 11080.95 17492.68 22196.22 10881.91 21686.66 15993.75 16582.23 8698.44 11579.40 22594.79 11797.48 90
test_yl90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
DCV-MVSNet90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
CHOSEN 1792x268888.84 14487.69 15192.30 11996.14 9581.42 16390.01 27995.86 13574.52 30087.41 14493.94 15275.46 15998.36 11880.36 21095.53 10497.12 105
MG-MVS91.77 7791.70 7592.00 12797.08 7180.03 19993.60 18995.18 18487.85 9090.89 10096.47 6682.06 9198.36 11885.07 13697.04 8397.62 83
OMC-MVS91.23 8790.62 9193.08 8096.27 9284.07 9593.52 19195.93 12786.95 10989.51 11296.13 8278.50 12998.35 12085.84 13092.90 15296.83 116
ETV-MVS92.74 6492.66 6292.97 8695.20 13184.04 9795.07 9796.51 9090.73 2192.96 5491.19 24384.06 6998.34 12191.72 6096.54 9396.54 125
LFMVS90.08 10989.13 11992.95 8796.71 7882.32 14496.08 4689.91 31786.79 11392.15 7696.81 4962.60 28698.34 12187.18 11693.90 13198.19 52
VDDNet89.56 12288.49 13492.76 9495.07 13482.09 14696.30 3593.19 24581.05 23791.88 8096.86 4561.16 29998.33 12388.43 10092.49 15997.84 77
EPP-MVSNet91.70 8091.56 7692.13 12495.88 10780.50 18797.33 395.25 18086.15 12689.76 11095.60 9783.42 7498.32 12487.37 11493.25 14597.56 88
Vis-MVSNetpermissive91.75 7891.23 8093.29 7295.32 12683.78 10296.14 4295.98 12389.89 3590.45 10396.58 6175.09 16298.31 12584.75 14296.90 8497.78 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051587.33 19085.99 20391.37 15293.49 19779.55 20890.63 26889.56 32480.17 24387.56 14390.86 25467.07 25798.28 12681.50 19293.02 15096.29 129
Anonymous20240521187.68 17286.13 19792.31 11896.66 7980.74 18094.87 11191.49 28480.47 24189.46 11495.44 9954.72 32398.23 12782.19 17789.89 18497.97 69
HY-MVS83.01 1289.03 13987.94 14892.29 12094.86 14682.77 12892.08 24394.49 21481.52 22886.93 15392.79 19378.32 13298.23 12779.93 21690.55 17495.88 148
MVS87.44 18786.10 20091.44 15092.61 22283.62 10792.63 22395.66 15067.26 33081.47 26492.15 21077.95 13398.22 12979.71 21895.48 10692.47 283
ab-mvs89.41 12988.35 13692.60 10295.15 13382.65 13692.20 23895.60 15583.97 17188.55 12493.70 16674.16 17798.21 13082.46 17389.37 19296.94 112
VNet92.24 7291.91 7293.24 7496.59 8283.43 11194.84 11396.44 9289.19 5394.08 3295.90 8877.85 13798.17 13188.90 9493.38 14298.13 57
HQP_MVS90.60 10290.19 9691.82 13894.70 15282.73 13295.85 5796.22 10890.81 1786.91 15494.86 11874.23 17398.12 13288.15 10289.99 18094.63 188
plane_prior596.22 10898.12 13288.15 10289.99 18094.63 188
thres100view90087.63 17786.71 17690.38 19096.12 9678.55 22995.03 10191.58 28087.15 10388.06 13292.29 20668.91 24498.10 13470.13 29191.10 16794.48 202
tfpn200view987.58 18186.64 17990.41 18795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.48 202
thres600view787.65 17486.67 17890.59 17696.08 10078.72 22594.88 11091.58 28087.06 10688.08 13192.30 20568.91 24498.10 13470.05 29491.10 16794.96 176
thres40087.62 17986.64 17990.57 17795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.96 176
LPG-MVS_test89.45 12688.90 12591.12 15894.47 16081.49 15995.30 8096.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
LGP-MVS_train91.12 15894.47 16081.49 15996.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
MVS_Test91.31 8691.11 8291.93 13294.37 16680.14 19293.46 19495.80 13986.46 12091.35 9593.77 16382.21 8798.09 14087.57 11094.95 11697.55 89
TAPA-MVS84.62 688.16 16187.01 16891.62 14596.64 8080.65 18194.39 14496.21 11176.38 28186.19 16995.44 9979.75 11198.08 14162.75 32495.29 11296.13 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+91.59 8291.11 8293.01 8494.35 16983.39 11394.60 12795.10 18887.10 10590.57 10293.10 18181.43 9798.07 14289.29 9094.48 12597.59 86
ACMM84.12 989.14 13588.48 13591.12 15894.65 15581.22 16895.31 7796.12 11585.31 14785.92 17294.34 13470.19 22798.06 14385.65 13188.86 20194.08 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS90.92 9290.21 9593.03 8393.86 18583.88 10092.81 21993.86 23479.84 24891.76 8594.29 13877.92 13498.04 14490.48 8297.11 8097.17 102
mvs-test189.45 12689.14 11890.38 19093.33 20177.63 25694.95 10494.36 21887.70 9487.10 15192.81 19173.45 18898.03 14585.57 13393.04 14995.48 159
casdiffmvs92.51 6892.43 6792.74 9594.41 16581.98 14994.54 13296.23 10789.57 4291.96 7996.17 8082.58 8098.01 14690.95 7595.45 10998.23 50
thres20087.21 19886.24 19590.12 20095.36 12378.53 23093.26 20392.10 26586.42 12188.00 13491.11 24969.24 24098.00 14769.58 29591.04 17293.83 232
baseline92.39 7192.29 6992.69 10094.46 16281.77 15394.14 15996.27 10289.22 5191.88 8096.00 8482.35 8397.99 14891.05 7195.27 11498.30 40
ACMP84.23 889.01 14188.35 13690.99 16994.73 14981.27 16595.07 9795.89 13386.48 11983.67 23694.30 13769.33 23697.99 14887.10 12188.55 20393.72 241
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP4-MVS85.43 19097.96 15094.51 198
HQP-MVS89.80 11789.28 11691.34 15394.17 17181.56 15594.39 14496.04 12188.81 6185.43 19093.97 15173.83 18397.96 15087.11 11989.77 18794.50 199
HyFIR lowres test88.09 16386.81 17291.93 13296.00 10380.63 18290.01 27995.79 14073.42 30887.68 14192.10 21573.86 18297.96 15080.75 20391.70 16397.19 101
jason90.80 9390.10 9892.90 8993.04 21183.53 10993.08 21194.15 22780.22 24291.41 9394.91 11576.87 14097.93 15390.28 8396.90 8497.24 98
jason: jason.
OPM-MVS90.12 10889.56 10891.82 13893.14 20683.90 9994.16 15895.74 14488.96 6087.86 13595.43 10172.48 20197.91 15488.10 10590.18 17993.65 243
1112_ss88.42 15387.33 16091.72 14294.92 14280.98 17292.97 21694.54 21378.16 27083.82 23293.88 15778.78 12497.91 15479.45 22189.41 19196.26 131
COLMAP_ROBcopyleft80.39 1683.96 25782.04 26389.74 21795.28 12779.75 20694.25 15492.28 26175.17 29378.02 29993.77 16358.60 31297.84 15665.06 31785.92 23391.63 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB82.13 1386.26 22484.90 23190.34 19394.44 16481.50 15792.31 23594.89 20083.03 19179.63 29092.67 19469.69 23297.79 15771.20 28386.26 23291.72 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IS-MVSNet91.43 8391.09 8492.46 10995.87 10981.38 16496.95 1493.69 23989.72 4089.50 11395.98 8578.57 12897.77 15883.02 16296.50 9598.22 51
MSLP-MVS++93.72 4494.08 3392.65 10197.31 6383.43 11195.79 5997.33 2390.03 3393.58 4396.96 4384.87 6197.76 15992.19 4598.66 4096.76 117
BH-RMVSNet88.37 15587.48 15691.02 16695.28 12779.45 21192.89 21893.07 24785.45 14386.91 15494.84 12170.35 22497.76 15973.97 27294.59 12295.85 149
MVS_111021_LR92.47 6992.29 6992.98 8595.99 10484.43 8993.08 21196.09 11688.20 8291.12 9895.72 9581.33 9897.76 15991.74 5997.37 7896.75 118
Fast-Effi-MVS+89.41 12988.64 12991.71 14394.74 14880.81 17893.54 19095.10 18883.11 18986.82 15790.67 26079.74 11297.75 16280.51 20993.55 13696.57 123
Test_1112_low_res87.65 17486.51 18591.08 16294.94 14179.28 21991.77 24794.30 22176.04 28683.51 24192.37 20277.86 13697.73 16378.69 23089.13 19896.22 132
RRT_test8_iter0586.90 20586.36 18988.52 25093.00 21473.27 29594.32 15195.96 12585.50 14284.26 22392.86 18660.76 30197.70 16488.32 10182.29 26794.60 191
PS-MVSNAJss89.97 11289.62 10791.02 16691.90 23980.85 17795.26 8595.98 12386.26 12486.21 16894.29 13879.70 11397.65 16588.87 9588.10 21394.57 194
testdata90.49 18496.40 8877.89 24795.37 17672.51 31693.63 4196.69 5482.08 9097.65 16583.08 16097.39 7795.94 145
nrg03091.08 9190.39 9293.17 7793.07 20986.91 2096.41 3296.26 10388.30 7788.37 12894.85 12082.19 8897.64 16791.09 7082.95 25994.96 176
baseline286.50 21985.39 22089.84 21291.12 26876.70 26891.88 24488.58 32682.35 20579.95 28790.95 25373.42 19097.63 16880.27 21389.95 18395.19 168
ACMH80.38 1785.36 23783.68 24890.39 18894.45 16380.63 18294.73 12094.85 20382.09 20877.24 30392.65 19560.01 30697.58 16972.25 28084.87 24292.96 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
gm-plane-assit89.60 30968.00 32877.28 27688.99 28697.57 17079.44 222
CLD-MVS89.47 12588.90 12591.18 15794.22 17082.07 14792.13 24096.09 11687.90 8885.37 19692.45 20074.38 17197.56 17187.15 11790.43 17593.93 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH+81.04 1485.05 24583.46 25289.82 21394.66 15479.37 21394.44 13994.12 23082.19 20778.04 29892.82 19058.23 31397.54 17273.77 27482.90 26392.54 280
v7n86.81 20785.76 21489.95 20990.72 28779.25 22195.07 9795.92 12884.45 16482.29 25590.86 25472.60 20097.53 17379.42 22480.52 29793.08 266
AllTest83.42 26281.39 26789.52 22595.01 13577.79 25193.12 20890.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
TestCases89.52 22595.01 13577.79 25190.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
XVG-ACMP-BASELINE86.00 22684.84 23389.45 22891.20 26378.00 24391.70 25195.55 15885.05 15482.97 24992.25 20854.49 32497.48 17682.93 16387.45 22392.89 272
TR-MVS86.78 20985.76 21489.82 21394.37 16678.41 23492.47 22892.83 25081.11 23686.36 16592.40 20168.73 24797.48 17673.75 27589.85 18693.57 245
cascas86.43 22284.98 22890.80 17492.10 23380.92 17590.24 27395.91 13073.10 31183.57 24088.39 29665.15 27697.46 17884.90 14091.43 16594.03 220
v14419287.19 19986.35 19089.74 21790.64 28978.24 23993.92 17795.43 17181.93 21585.51 18391.05 25174.21 17597.45 17982.86 16581.56 27893.53 246
v2v48287.84 16887.06 16690.17 19690.99 27279.23 22294.00 17495.13 18584.87 15685.53 18192.07 21874.45 17097.45 17984.71 14381.75 27693.85 231
diffmvs91.37 8591.23 8091.77 14193.09 20880.27 18992.36 23295.52 16187.03 10791.40 9494.93 11480.08 10797.44 18192.13 4894.56 12397.61 84
v124086.78 20985.85 20989.56 22390.45 29577.79 25193.61 18895.37 17681.65 22385.43 19091.15 24771.50 20897.43 18281.47 19382.05 27293.47 250
v119287.25 19486.33 19190.00 20890.76 28579.04 22393.80 18095.48 16382.57 20185.48 18591.18 24573.38 19297.42 18382.30 17582.06 27093.53 246
v114487.61 18086.79 17490.06 20491.01 27179.34 21593.95 17695.42 17383.36 18585.66 17791.31 24174.98 16497.42 18383.37 15782.06 27093.42 252
jajsoiax88.24 15987.50 15590.48 18590.89 28080.14 19295.31 7795.65 15284.97 15584.24 22494.02 14765.31 27597.42 18388.56 9888.52 20593.89 225
v887.50 18686.71 17689.89 21091.37 25879.40 21294.50 13395.38 17484.81 15883.60 23991.33 23876.05 14997.42 18382.84 16680.51 29892.84 274
v1087.25 19486.38 18789.85 21191.19 26479.50 20994.48 13495.45 16883.79 17483.62 23891.19 24375.13 16197.42 18381.94 18280.60 29392.63 279
v192192086.97 20486.06 20289.69 22190.53 29478.11 24293.80 18095.43 17181.90 21785.33 19891.05 25172.66 19897.41 18882.05 18081.80 27593.53 246
V4287.68 17286.86 17090.15 19890.58 29180.14 19294.24 15595.28 17983.66 17685.67 17691.33 23874.73 16897.41 18884.43 14681.83 27492.89 272
mvs_tets88.06 16587.28 16290.38 19090.94 27679.88 20395.22 8795.66 15085.10 15284.21 22593.94 15263.53 28397.40 19088.50 9988.40 20993.87 228
VPA-MVSNet89.62 11988.96 12291.60 14693.86 18582.89 12795.46 7397.33 2387.91 8788.43 12793.31 17174.17 17697.40 19087.32 11582.86 26494.52 197
BH-untuned88.60 15188.13 14490.01 20795.24 13078.50 23293.29 20194.15 22784.75 15984.46 21293.40 16775.76 15397.40 19077.59 24094.52 12494.12 213
UniMVSNet (Re)89.80 11789.07 12092.01 12593.60 19584.52 8194.78 11797.47 889.26 5086.44 16492.32 20482.10 8997.39 19384.81 14180.84 29194.12 213
Anonymous2023121186.59 21685.13 22590.98 17196.52 8681.50 15796.14 4296.16 11273.78 30583.65 23792.15 21063.26 28497.37 19482.82 16781.74 27794.06 218
UniMVSNet_ETH3D87.53 18386.37 18891.00 16892.44 22478.96 22494.74 11995.61 15484.07 16985.36 19794.52 13259.78 30897.34 19582.93 16387.88 21896.71 120
MVSFormer91.68 8191.30 7892.80 9293.86 18583.88 10095.96 5395.90 13184.66 16191.76 8594.91 11577.92 13497.30 19689.64 8797.11 8097.24 98
test_djsdf89.03 13988.64 12990.21 19590.74 28679.28 21995.96 5395.90 13184.66 16185.33 19892.94 18574.02 17997.30 19689.64 8788.53 20494.05 219
PAPM86.68 21385.39 22090.53 18093.05 21079.33 21889.79 28294.77 21078.82 25981.95 26193.24 17576.81 14197.30 19666.94 30793.16 14794.95 179
RPSCF85.07 24484.27 24087.48 27592.91 21770.62 31991.69 25292.46 25876.20 28582.67 25395.22 10663.94 28297.29 19977.51 24285.80 23594.53 196
XVG-OURS-SEG-HR89.95 11389.45 11091.47 14994.00 18081.21 16991.87 24596.06 12085.78 13288.55 12495.73 9474.67 16997.27 20088.71 9789.64 18995.91 146
MSDG84.86 24983.09 25590.14 19993.80 18880.05 19789.18 29293.09 24678.89 25778.19 29691.91 22265.86 27497.27 20068.47 30088.45 20793.11 264
Effi-MVS+-dtu88.65 14988.35 13689.54 22493.33 20176.39 27394.47 13794.36 21887.70 9485.43 19089.56 28273.45 18897.26 20285.57 13391.28 16694.97 173
XVG-OURS89.40 13188.70 12891.52 14794.06 17481.46 16191.27 25996.07 11886.14 12788.89 12295.77 9368.73 24797.26 20287.39 11389.96 18295.83 151
FIs90.51 10390.35 9390.99 16993.99 18180.98 17295.73 6197.54 389.15 5486.72 15894.68 12581.83 9597.24 20485.18 13588.31 21194.76 186
testing_283.40 26481.02 27090.56 17985.06 33280.51 18691.37 25795.57 15682.92 19467.06 33385.54 32049.47 33397.24 20486.74 12285.44 23793.93 223
UniMVSNet_NR-MVSNet89.92 11589.29 11591.81 14093.39 20083.72 10394.43 14097.12 4189.80 3786.46 16193.32 17083.16 7597.23 20684.92 13881.02 28794.49 201
DU-MVS89.34 13388.50 13291.85 13793.04 21183.72 10394.47 13796.59 8689.50 4386.46 16193.29 17377.25 13897.23 20684.92 13881.02 28794.59 192
EI-MVSNet89.10 13688.86 12789.80 21691.84 24178.30 23793.70 18695.01 19185.73 13487.15 14895.28 10379.87 11097.21 20883.81 15387.36 22493.88 227
MVSTER88.84 14488.29 14090.51 18392.95 21680.44 18893.73 18395.01 19184.66 16187.15 14893.12 18072.79 19797.21 20887.86 10687.36 22493.87 228
anonymousdsp87.84 16887.09 16590.12 20089.13 31080.54 18594.67 12495.55 15882.05 20983.82 23292.12 21271.47 20997.15 21087.15 11787.80 22092.67 277
131487.51 18486.57 18490.34 19392.42 22579.74 20792.63 22395.35 17878.35 26680.14 28391.62 23274.05 17897.15 21081.05 19593.53 13794.12 213
VPNet88.20 16087.47 15790.39 18893.56 19679.46 21094.04 17095.54 16088.67 6786.96 15294.58 13169.33 23697.15 21084.05 15080.53 29694.56 195
旧先验293.36 19571.25 32294.37 2697.13 21386.74 122
RRT_MVS88.86 14387.68 15292.39 11492.02 23686.09 5294.38 14894.94 19485.45 14387.14 15093.84 16065.88 27397.11 21488.73 9686.77 23193.98 222
GA-MVS86.61 21485.27 22390.66 17591.33 26178.71 22690.40 27193.81 23785.34 14685.12 20089.57 28161.25 29697.11 21480.99 19989.59 19096.15 133
DWT-MVSNet_test84.95 24783.68 24888.77 24191.43 25573.75 29191.74 24990.98 29680.66 24083.84 23187.36 31062.44 28797.11 21478.84 22985.81 23495.46 160
tpmvs83.35 26582.07 26287.20 28491.07 27071.00 31688.31 30391.70 27778.91 25680.49 27887.18 31369.30 23997.08 21768.12 30583.56 25493.51 249
BH-w/o87.57 18287.05 16789.12 23494.90 14477.90 24692.41 22993.51 24182.89 19683.70 23591.34 23775.75 15497.07 21875.49 25993.49 13892.39 286
Fast-Effi-MVS+-dtu87.44 18786.72 17589.63 22292.04 23477.68 25594.03 17193.94 23285.81 13182.42 25491.32 24070.33 22597.06 21980.33 21290.23 17894.14 212
v14887.04 20386.32 19289.21 23190.94 27677.26 26293.71 18594.43 21684.84 15784.36 21890.80 25776.04 15097.05 22082.12 17879.60 30693.31 254
NR-MVSNet88.58 15287.47 15791.93 13293.04 21184.16 9494.77 11896.25 10589.05 5680.04 28693.29 17379.02 12197.05 22081.71 19080.05 30194.59 192
FC-MVSNet-test90.27 10690.18 9790.53 18093.71 19179.85 20595.77 6097.59 289.31 4986.27 16794.67 12681.93 9497.01 22284.26 14788.09 21594.71 187
CDS-MVSNet89.45 12688.51 13192.29 12093.62 19483.61 10893.01 21494.68 21281.95 21487.82 13893.24 17578.69 12596.99 22380.34 21193.23 14696.28 130
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TranMVSNet+NR-MVSNet88.84 14487.95 14791.49 14892.68 22183.01 12394.92 10796.31 10089.88 3685.53 18193.85 15976.63 14696.96 22481.91 18379.87 30494.50 199
tfpnnormal84.72 25183.23 25489.20 23292.79 21980.05 19794.48 13495.81 13882.38 20381.08 27091.21 24269.01 24396.95 22561.69 32680.59 29490.58 317
TAMVS89.21 13488.29 14091.96 13093.71 19182.62 13793.30 20094.19 22582.22 20687.78 13993.94 15278.83 12296.95 22577.70 23992.98 15196.32 128
IterMVS-LS88.36 15687.91 14989.70 22093.80 18878.29 23893.73 18395.08 19085.73 13484.75 20591.90 22379.88 10996.92 22783.83 15282.51 26593.89 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SD-MVS94.96 1195.33 793.88 6297.25 6986.69 3096.19 3997.11 4390.42 2596.95 1097.27 2489.53 1196.91 22894.38 1398.85 1598.03 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS88.38 15487.67 15390.52 18293.30 20380.18 19093.26 20395.96 12588.57 7185.47 18692.81 19176.12 14896.91 22881.24 19482.29 26794.47 204
SixPastTwentyTwo83.91 25882.90 25886.92 28890.99 27270.67 31893.48 19291.99 27085.54 14077.62 30292.11 21460.59 30296.87 23076.05 25677.75 31393.20 260
CostFormer85.77 23284.94 23088.26 25791.16 26772.58 30589.47 28791.04 29576.26 28486.45 16389.97 27470.74 21796.86 23182.35 17487.07 22995.34 166
eth_miper_zixun_eth86.50 21985.77 21388.68 24691.94 23875.81 27990.47 27094.89 20082.05 20984.05 22690.46 26375.96 15196.77 23282.76 16979.36 30893.46 251
OurMVSNet-221017-085.35 23884.64 23787.49 27490.77 28472.59 30494.01 17394.40 21784.72 16079.62 29193.17 17761.91 29196.72 23381.99 18181.16 28193.16 262
EG-PatchMatch MVS82.37 27280.34 27688.46 25190.27 29779.35 21492.80 22094.33 22077.14 27773.26 32290.18 26847.47 33896.72 23370.25 28887.32 22689.30 321
PVSNet78.82 1885.55 23484.65 23688.23 25994.72 15071.93 30787.12 31392.75 25378.80 26084.95 20390.53 26264.43 28096.71 23574.74 26793.86 13296.06 142
miper_enhance_ethall86.90 20586.18 19689.06 23691.66 24977.58 25890.22 27594.82 20679.16 25484.48 21189.10 28579.19 12096.66 23684.06 14982.94 26092.94 270
USDC82.76 26781.26 26987.26 27991.17 26574.55 28589.27 28993.39 24378.26 26875.30 31292.08 21654.43 32596.63 23771.64 28185.79 23690.61 314
miper_ehance_all_eth87.22 19786.62 18289.02 23892.13 23177.40 26190.91 26494.81 20781.28 23284.32 22090.08 27179.26 11996.62 23883.81 15382.94 26093.04 267
CNLPA89.07 13787.98 14692.34 11696.87 7484.78 7694.08 16693.24 24481.41 22984.46 21295.13 11075.57 15896.62 23877.21 24493.84 13395.61 157
OpenMVS_ROBcopyleft74.94 1979.51 29677.03 30186.93 28787.00 32676.23 27692.33 23390.74 30468.93 32874.52 31688.23 30049.58 33296.62 23857.64 33484.29 24587.94 332
cl_fuxian87.14 20186.50 18689.04 23792.20 22877.26 26291.22 26194.70 21182.01 21284.34 21990.43 26478.81 12396.61 24183.70 15581.09 28493.25 257
WTY-MVS89.60 12088.92 12491.67 14495.47 12181.15 17092.38 23194.78 20983.11 18989.06 12094.32 13678.67 12696.61 24181.57 19190.89 17397.24 98
cl-mvsnet286.78 20985.98 20489.18 23392.34 22677.62 25790.84 26594.13 22981.33 23183.97 22990.15 26973.96 18096.60 24384.19 14882.94 26093.33 253
cl-mvsnet_86.52 21885.78 21188.75 24392.03 23576.46 27190.74 26694.30 22181.83 22183.34 24590.78 25875.74 15696.57 24481.74 18881.54 27993.22 259
cl-mvsnet186.53 21785.78 21188.75 24392.02 23676.45 27290.74 26694.30 22181.83 22183.34 24590.82 25675.75 15496.57 24481.73 18981.52 28093.24 258
MVP-Stereo85.97 22784.86 23289.32 22990.92 27882.19 14592.11 24194.19 22578.76 26178.77 29591.63 23168.38 25196.56 24675.01 26693.95 13089.20 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet387.40 18986.11 19991.30 15493.79 19083.64 10694.20 15794.81 20783.89 17284.37 21591.87 22468.45 25096.56 24678.23 23485.36 23893.70 242
tpm284.08 25682.94 25787.48 27591.39 25771.27 31189.23 29190.37 30771.95 31984.64 20689.33 28367.30 25396.55 24875.17 26387.09 22894.63 188
FMVSNet287.19 19985.82 21091.30 15494.01 17783.67 10594.79 11694.94 19483.57 17783.88 23092.05 21966.59 26596.51 24977.56 24185.01 24193.73 240
pmmvs683.42 26281.60 26688.87 24088.01 32377.87 24894.96 10394.24 22474.67 29978.80 29491.09 25060.17 30596.49 25077.06 24875.40 32092.23 291
patchmatchnet-post83.76 32471.53 20796.48 251
SCA86.32 22385.18 22489.73 21992.15 22976.60 26991.12 26291.69 27883.53 18085.50 18488.81 28966.79 26196.48 25176.65 24990.35 17796.12 136
pm-mvs186.61 21485.54 21689.82 21391.44 25280.18 19095.28 8494.85 20383.84 17381.66 26392.62 19672.45 20396.48 25179.67 21978.06 31292.82 275
Vis-MVSNet (Re-imp)89.59 12189.44 11190.03 20595.74 11175.85 27895.61 6990.80 30287.66 9887.83 13795.40 10276.79 14296.46 25478.37 23196.73 8797.80 79
TDRefinement79.81 29477.34 29787.22 28379.24 34175.48 28293.12 20892.03 26876.45 28075.01 31391.58 23349.19 33496.44 25570.22 29069.18 32989.75 320
lessismore_v086.04 29788.46 31768.78 32780.59 34273.01 32390.11 27055.39 32096.43 25675.06 26565.06 33492.90 271
PatchMatch-RL86.77 21285.54 21690.47 18695.88 10782.71 13490.54 26992.31 26079.82 24984.32 22091.57 23568.77 24696.39 25773.16 27793.48 14092.32 289
D2MVS85.90 22885.09 22688.35 25490.79 28377.42 26091.83 24695.70 14680.77 23980.08 28590.02 27266.74 26396.37 25881.88 18487.97 21791.26 306
test_040281.30 28579.17 29087.67 26993.19 20578.17 24092.98 21591.71 27675.25 29276.02 31090.31 26659.23 31096.37 25850.22 33883.63 25388.47 330
mvs_anonymous89.37 13289.32 11489.51 22793.47 19874.22 28791.65 25394.83 20582.91 19585.45 18793.79 16181.23 9996.36 26086.47 12794.09 12997.94 71
GBi-Net87.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
test187.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
FMVSNet185.85 23084.11 24291.08 16292.81 21883.10 11895.14 9494.94 19481.64 22482.68 25291.64 22859.01 31196.34 26175.37 26183.78 24993.79 233
PatchmatchNetpermissive85.85 23084.70 23589.29 23091.76 24475.54 28188.49 30091.30 28881.63 22585.05 20188.70 29371.71 20596.24 26474.61 26989.05 19996.08 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 16287.28 16290.57 17794.96 13980.07 19594.27 15391.29 28986.74 11487.41 14494.00 14976.77 14396.20 26580.77 20279.31 30995.44 161
ITE_SJBPF88.24 25891.88 24077.05 26592.92 24885.54 14080.13 28493.30 17257.29 31596.20 26572.46 27984.71 24391.49 301
TinyColmap79.76 29577.69 29685.97 29891.71 24673.12 29689.55 28390.36 30875.03 29472.03 32690.19 26746.22 33996.19 26763.11 32281.03 28688.59 329
tpm cat181.96 27380.27 27787.01 28691.09 26971.02 31587.38 31291.53 28366.25 33180.17 28186.35 31668.22 25296.15 26869.16 29682.29 26793.86 230
gg-mvs-nofinetune81.77 27679.37 28788.99 23990.85 28277.73 25486.29 31779.63 34474.88 29883.19 24869.05 33860.34 30396.11 26975.46 26094.64 12193.11 264
Baseline_NR-MVSNet87.07 20286.63 18188.40 25291.44 25277.87 24894.23 15692.57 25784.12 16885.74 17592.08 21677.25 13896.04 27082.29 17679.94 30291.30 305
MDTV_nov1_ep1383.56 25191.69 24869.93 32387.75 30891.54 28278.60 26384.86 20488.90 28869.54 23496.03 27170.25 28888.93 200
tpmrst85.35 23884.99 22786.43 29490.88 28167.88 32988.71 29791.43 28680.13 24486.08 17188.80 29173.05 19496.02 27282.48 17183.40 25895.40 163
WR-MVS_H87.80 17087.37 15989.10 23593.23 20478.12 24195.61 6997.30 2787.90 8883.72 23492.01 22079.65 11796.01 27376.36 25180.54 29593.16 262
tpm84.73 25084.02 24386.87 29190.33 29668.90 32689.06 29389.94 31680.85 23885.75 17489.86 27668.54 24995.97 27477.76 23884.05 24895.75 154
TransMVSNet (Re)84.43 25483.06 25688.54 24991.72 24578.44 23395.18 9192.82 25182.73 19879.67 28992.12 21273.49 18795.96 27571.10 28668.73 33291.21 308
PEN-MVS86.80 20886.27 19488.40 25292.32 22775.71 28095.18 9196.38 9887.97 8582.82 25193.15 17873.39 19195.92 27676.15 25579.03 31193.59 244
dp81.47 28280.23 27885.17 30489.92 30565.49 33586.74 31490.10 31276.30 28381.10 26987.12 31462.81 28595.92 27668.13 30479.88 30394.09 216
test_post10.29 34870.57 22295.91 278
JIA-IIPM81.04 28678.98 29387.25 28088.64 31473.48 29381.75 33589.61 32373.19 31082.05 25973.71 33566.07 27295.87 27971.18 28584.60 24492.41 285
ET-MVSNet_ETH3D87.51 18485.91 20892.32 11793.70 19383.93 9892.33 23390.94 29884.16 16672.09 32592.52 19869.90 22895.85 28089.20 9188.36 21097.17 102
CP-MVSNet87.63 17787.26 16488.74 24593.12 20776.59 27095.29 8296.58 8788.43 7483.49 24292.98 18475.28 16095.83 28178.97 22781.15 28393.79 233
DTE-MVSNet86.11 22585.48 21887.98 26491.65 25074.92 28394.93 10695.75 14387.36 10182.26 25693.04 18372.85 19695.82 28274.04 27177.46 31693.20 260
EPNet_dtu86.49 22185.94 20788.14 26190.24 29872.82 29994.11 16292.20 26386.66 11879.42 29292.36 20373.52 18695.81 28371.26 28293.66 13495.80 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS87.32 19186.88 16988.63 24892.99 21576.33 27595.33 7696.61 8588.22 8183.30 24793.07 18273.03 19595.79 28478.36 23281.00 28993.75 239
LCM-MVSNet-Re88.30 15888.32 13988.27 25694.71 15172.41 30693.15 20790.98 29687.77 9279.25 29391.96 22178.35 13195.75 28583.04 16195.62 10396.65 121
pmmvs485.43 23683.86 24690.16 19790.02 30382.97 12590.27 27292.67 25575.93 28780.73 27391.74 22771.05 21295.73 28678.85 22883.46 25691.78 296
CR-MVSNet85.35 23883.76 24790.12 20090.58 29179.34 21585.24 32391.96 27378.27 26785.55 17987.87 30671.03 21395.61 28773.96 27389.36 19395.40 163
RPMNet83.18 26680.87 27390.12 20090.58 29179.34 21585.24 32390.78 30371.44 32185.55 17982.97 32870.87 21595.61 28761.01 32889.36 19395.40 163
pmmvs584.21 25582.84 26088.34 25588.95 31276.94 26692.41 22991.91 27575.63 28980.28 28091.18 24564.59 27995.57 28977.09 24783.47 25592.53 281
MVS_030483.46 26181.92 26488.10 26290.63 29077.49 25993.26 20393.75 23880.04 24680.44 27987.24 31247.94 33695.55 29075.79 25788.16 21291.26 306
test_post188.00 3059.81 34969.31 23895.53 29176.65 249
K. test v381.59 27980.15 28085.91 29989.89 30669.42 32592.57 22687.71 33085.56 13973.44 32189.71 27955.58 31895.52 29277.17 24569.76 32892.78 276
CHOSEN 280x42085.15 24383.99 24488.65 24792.47 22378.40 23579.68 33892.76 25274.90 29781.41 26689.59 28069.85 23195.51 29379.92 21795.29 11292.03 293
MS-PatchMatch85.05 24584.16 24187.73 26891.42 25678.51 23191.25 26093.53 24077.50 27280.15 28291.58 23361.99 29095.51 29375.69 25894.35 12889.16 324
Patchmtry82.71 26880.93 27288.06 26390.05 30276.37 27484.74 32591.96 27372.28 31881.32 26887.87 30671.03 21395.50 29568.97 29780.15 30092.32 289
XXY-MVS87.65 17486.85 17190.03 20592.14 23080.60 18493.76 18295.23 18182.94 19384.60 20794.02 14774.27 17295.49 29681.04 19683.68 25294.01 221
sss88.93 14288.26 14290.94 17294.05 17580.78 17991.71 25095.38 17481.55 22788.63 12393.91 15675.04 16395.47 29782.47 17291.61 16496.57 123
ppachtmachnet_test81.84 27580.07 28187.15 28588.46 31774.43 28689.04 29492.16 26475.33 29177.75 30088.99 28666.20 26995.37 29865.12 31677.60 31491.65 298
GG-mvs-BLEND87.94 26689.73 30877.91 24587.80 30678.23 34680.58 27683.86 32359.88 30795.33 29971.20 28392.22 16190.60 316
CMPMVSbinary59.16 2180.52 29079.20 28984.48 30883.98 33467.63 33189.95 28193.84 23664.79 33366.81 33491.14 24857.93 31495.17 30076.25 25388.10 21390.65 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet73.70 30672.20 30878.18 32191.81 24356.42 34382.94 33382.58 33955.24 33868.88 33066.48 33955.32 32195.13 30158.12 33388.42 20883.01 335
test-LLR85.87 22985.41 21987.25 28090.95 27471.67 30989.55 28389.88 31983.41 18384.54 20987.95 30367.25 25495.11 30281.82 18593.37 14394.97 173
test-mter84.54 25383.64 25087.25 28090.95 27471.67 30989.55 28389.88 31979.17 25384.54 20987.95 30355.56 31995.11 30281.82 18593.37 14394.97 173
ambc83.06 31479.99 34063.51 33877.47 33992.86 24974.34 31884.45 32228.74 34495.06 30473.06 27868.89 33190.61 314
IterMVS-SCA-FT85.45 23584.53 23988.18 26091.71 24676.87 26790.19 27692.65 25685.40 14581.44 26590.54 26166.79 26195.00 30581.04 19681.05 28592.66 278
PatchT82.68 26981.27 26886.89 29090.09 30170.94 31784.06 32790.15 31074.91 29685.63 17883.57 32569.37 23594.87 30665.19 31488.50 20694.84 182
EPMVS83.90 25982.70 26187.51 27290.23 29972.67 30188.62 29981.96 34181.37 23085.01 20288.34 29766.31 26894.45 30775.30 26287.12 22795.43 162
PMMVS85.71 23384.96 22987.95 26588.90 31377.09 26488.68 29890.06 31372.32 31786.47 16090.76 25972.15 20494.40 30881.78 18793.49 13892.36 287
our_test_381.93 27480.46 27586.33 29688.46 31773.48 29388.46 30191.11 29176.46 27976.69 30588.25 29966.89 25994.36 30968.75 29879.08 31091.14 310
miper_lstm_enhance85.27 24184.59 23887.31 27791.28 26274.63 28487.69 30994.09 23181.20 23581.36 26789.85 27774.97 16594.30 31081.03 19879.84 30593.01 268
IterMVS84.88 24883.98 24587.60 27091.44 25276.03 27790.18 27792.41 25983.24 18881.06 27190.42 26566.60 26494.28 31179.46 22080.98 29092.48 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LF4IMVS80.37 29179.07 29284.27 31186.64 32769.87 32489.39 28891.05 29476.38 28174.97 31490.00 27347.85 33794.25 31274.55 27080.82 29288.69 328
MDA-MVSNet-bldmvs78.85 30076.31 30286.46 29389.76 30773.88 29088.79 29690.42 30679.16 25459.18 33888.33 29860.20 30494.04 31362.00 32568.96 33091.48 302
pmmvs-eth3d80.97 28878.72 29487.74 26784.99 33379.97 20290.11 27891.65 27975.36 29073.51 32086.03 31759.45 30993.96 31475.17 26372.21 32589.29 322
ADS-MVSNet81.56 28079.78 28386.90 28991.35 25971.82 30883.33 33089.16 32572.90 31382.24 25785.77 31864.98 27793.76 31564.57 31883.74 25095.12 169
PVSNet_073.20 2077.22 30274.83 30684.37 30990.70 28871.10 31483.09 33289.67 32272.81 31573.93 31983.13 32760.79 30093.70 31668.54 29950.84 34188.30 331
TESTMET0.1,183.74 26082.85 25986.42 29589.96 30471.21 31389.55 28387.88 32877.41 27383.37 24487.31 31156.71 31693.65 31780.62 20692.85 15494.40 205
Patchmatch-RL test81.67 27779.96 28286.81 29285.42 33071.23 31282.17 33487.50 33278.47 26477.19 30482.50 32970.81 21693.48 31882.66 17072.89 32495.71 155
PM-MVS78.11 30176.12 30484.09 31283.54 33670.08 32288.97 29585.27 33679.93 24774.73 31586.43 31534.70 34393.48 31879.43 22372.06 32688.72 327
CVMVSNet84.69 25284.79 23484.37 30991.84 24164.92 33693.70 18691.47 28566.19 33286.16 17095.28 10367.18 25693.33 32080.89 20190.42 17694.88 181
UnsupCasMVSNet_bld76.23 30573.27 30785.09 30583.79 33572.92 29785.65 32293.47 24271.52 32068.84 33179.08 33349.77 33193.21 32166.81 31160.52 33989.13 326
ADS-MVSNet281.66 27879.71 28587.50 27391.35 25974.19 28883.33 33088.48 32772.90 31382.24 25785.77 31864.98 27793.20 32264.57 31883.74 25095.12 169
Anonymous2023120681.03 28779.77 28484.82 30687.85 32570.26 32191.42 25692.08 26673.67 30677.75 30089.25 28462.43 28893.08 32361.50 32782.00 27391.12 311
MIMVSNet82.59 27080.53 27488.76 24291.51 25178.32 23686.57 31690.13 31179.32 25280.70 27488.69 29452.98 32893.07 32466.03 31288.86 20194.90 180
Patchmatch-test81.37 28379.30 28887.58 27190.92 27874.16 28980.99 33687.68 33170.52 32576.63 30688.81 28971.21 21092.76 32560.01 33286.93 23095.83 151
FMVSNet581.52 28179.60 28687.27 27891.17 26577.95 24491.49 25592.26 26276.87 27876.16 30787.91 30551.67 32992.34 32667.74 30681.16 28191.52 300
EU-MVSNet81.32 28480.95 27182.42 31688.50 31663.67 33793.32 19691.33 28764.02 33480.57 27792.83 18961.21 29892.27 32776.34 25280.38 29991.32 304
YYNet179.22 29877.20 29985.28 30388.20 32272.66 30285.87 31990.05 31574.33 30262.70 33687.61 30866.09 27192.03 32866.94 30772.97 32391.15 309
MDA-MVSNet_test_wron79.21 29977.19 30085.29 30288.22 32172.77 30085.87 31990.06 31374.34 30162.62 33787.56 30966.14 27091.99 32966.90 31073.01 32291.10 312
MIMVSNet179.38 29777.28 29885.69 30086.35 32873.67 29291.61 25492.75 25378.11 27172.64 32488.12 30148.16 33591.97 33060.32 32977.49 31591.43 303
UnsupCasMVSNet_eth80.07 29278.27 29585.46 30185.24 33172.63 30388.45 30294.87 20282.99 19271.64 32888.07 30256.34 31791.75 33173.48 27663.36 33792.01 294
N_pmnet68.89 30968.44 31170.23 32589.07 31128.79 35388.06 30419.50 35469.47 32771.86 32784.93 32161.24 29791.75 33154.70 33677.15 31790.15 318
new-patchmatchnet76.41 30475.17 30580.13 31882.65 33959.61 33987.66 31091.08 29278.23 26969.85 32983.22 32654.76 32291.63 33364.14 32064.89 33589.16 324
testgi80.94 28980.20 27983.18 31387.96 32466.29 33291.28 25890.70 30583.70 17578.12 29792.84 18851.37 33090.82 33463.34 32182.46 26692.43 284
test20.0379.95 29379.08 29182.55 31585.79 32967.74 33091.09 26391.08 29281.23 23474.48 31789.96 27561.63 29290.15 33560.08 33076.38 31889.76 319
pmmvs371.81 30868.71 31081.11 31775.86 34270.42 32086.74 31483.66 33858.95 33768.64 33280.89 33136.93 34289.52 33663.10 32363.59 33683.39 334
test0.0.03 182.41 27181.69 26584.59 30788.23 32072.89 29890.24 27387.83 32983.41 18379.86 28889.78 27867.25 25488.99 33765.18 31583.42 25791.90 295
DSMNet-mixed76.94 30376.29 30378.89 31983.10 33756.11 34487.78 30779.77 34360.65 33675.64 31188.71 29261.56 29388.34 33860.07 33189.29 19592.21 292
LCM-MVSNet66.00 31062.16 31377.51 32264.51 34858.29 34083.87 32990.90 29948.17 34154.69 33973.31 33616.83 35286.75 33965.47 31361.67 33887.48 333
new_pmnet72.15 30770.13 30978.20 32082.95 33865.68 33383.91 32882.40 34062.94 33564.47 33579.82 33242.85 34186.26 34057.41 33574.44 32182.65 336
Gipumacopyleft57.99 31454.91 31567.24 32788.51 31565.59 33452.21 34690.33 30943.58 34342.84 34351.18 34420.29 34985.07 34134.77 34370.45 32751.05 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 31548.46 31763.48 32845.72 35246.20 34973.41 34278.31 34541.03 34430.06 34665.68 3406.05 35383.43 34230.04 34465.86 33360.80 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS64.63 31162.55 31270.88 32470.80 34456.71 34184.42 32684.42 33751.78 34049.57 34081.61 33023.49 34681.48 34340.61 34276.25 31974.46 339
PMMVS259.60 31256.40 31469.21 32668.83 34546.58 34873.02 34377.48 34755.07 33949.21 34172.95 33717.43 35180.04 34449.32 33944.33 34280.99 338
ANet_high58.88 31354.22 31672.86 32356.50 35156.67 34280.75 33786.00 33373.09 31237.39 34464.63 34122.17 34779.49 34543.51 34023.96 34582.43 337
E-PMN43.23 31742.29 31846.03 33165.58 34737.41 35073.51 34164.62 34833.99 34528.47 34847.87 34519.90 35067.91 34622.23 34624.45 34432.77 344
EMVS42.07 31841.12 31944.92 33263.45 34935.56 35273.65 34063.48 34933.05 34626.88 34945.45 34621.27 34867.14 34719.80 34723.02 34632.06 345
MVEpermissive39.65 2343.39 31638.59 32157.77 32956.52 35048.77 34755.38 34558.64 35129.33 34728.96 34752.65 3434.68 35464.62 34828.11 34533.07 34359.93 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 33074.23 34351.81 34656.67 35244.85 34248.54 34275.16 33427.87 34558.74 34940.92 34152.22 34058.39 342
wuyk23d21.27 32120.48 32323.63 33468.59 34636.41 35149.57 3476.85 3559.37 3487.89 3504.46 3524.03 35531.37 35017.47 34816.07 3483.12 347
tmp_tt35.64 31939.24 32024.84 33314.87 35323.90 35462.71 34451.51 3536.58 34936.66 34562.08 34244.37 34030.34 35152.40 33722.00 34720.27 346
test1238.76 32311.22 3251.39 3350.85 3550.97 35585.76 3210.35 3570.54 3512.45 3528.14 3510.60 3560.48 3522.16 3500.17 3502.71 348
testmvs8.92 32211.52 3241.12 3361.06 3540.46 35686.02 3180.65 3560.62 3502.74 3519.52 3500.31 3570.45 3532.38 3490.39 3492.46 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34897.45 110.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.14 32029.52 3220.00 3370.00 3560.00 3570.00 34895.76 1420.00 3520.00 35394.29 13875.66 1570.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.64 3258.86 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35379.70 1130.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.82 32410.43 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35393.88 1570.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS98.77 486.00 5396.84 6381.26 23397.26 695.50 799.13 399.03 4
save fliter97.85 4485.63 6795.21 8896.82 6689.44 44
test072698.78 285.93 5797.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 136
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 20696.12 136
sam_mvs70.60 218
MTGPAbinary96.97 49
MTMP96.16 4060.64 350
test9_res91.91 5498.71 3098.07 62
agg_prior290.54 8098.68 3598.27 46
test_prior485.96 5694.11 162
test_prior294.12 16087.67 9692.63 6496.39 6886.62 3891.50 6498.67 37
新几何293.11 210
旧先验196.79 7681.81 15295.67 14896.81 4986.69 3797.66 7296.97 111
原ACMM292.94 217
test22296.55 8481.70 15492.22 23795.01 19168.36 32990.20 10696.14 8180.26 10697.80 7096.05 143
segment_acmp87.16 34
testdata192.15 23987.94 86
plane_prior794.70 15282.74 131
plane_prior694.52 15882.75 12974.23 173
plane_prior494.86 118
plane_prior382.75 12990.26 3086.91 154
plane_prior295.85 5790.81 17
plane_prior194.59 156
plane_prior82.73 13295.21 8889.66 4189.88 185
n20.00 358
nn0.00 358
door-mid85.49 334
test1196.57 88
door85.33 335
HQP5-MVS81.56 155
HQP-NCC94.17 17194.39 14488.81 6185.43 190
ACMP_Plane94.17 17194.39 14488.81 6185.43 190
BP-MVS87.11 119
HQP3-MVS96.04 12189.77 187
HQP2-MVS73.83 183
NP-MVS94.37 16682.42 13993.98 150
MDTV_nov1_ep13_2view55.91 34587.62 31173.32 30984.59 20870.33 22574.65 26895.50 158
ACMMP++_ref87.47 221
ACMMP++88.01 216
Test By Simon80.02 108