This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DVP-MVS89.51 389.91 488.30 794.28 2673.46 1692.90 1494.11 680.27 1291.35 1194.16 3678.35 1096.77 2089.59 194.22 5994.67 16
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5493.83 293.96 1575.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
MSP-MVS89.60 290.35 287.33 4295.27 571.25 5893.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
test_0728_SECOND87.71 3195.34 171.43 5793.49 794.23 597.49 189.08 496.41 894.21 32
SED-MVS90.08 190.85 187.77 2395.30 270.98 6493.57 594.06 1177.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
test_241102_TWO94.06 1177.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
IU-MVS95.30 271.25 5892.95 5066.81 22392.39 588.94 896.63 294.85 10
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4372.04 4889.80 7693.50 2575.17 9686.34 3495.29 1070.86 5696.00 4988.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVS89.08 689.23 688.61 394.25 2773.73 892.40 2093.63 2174.77 10192.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5593.00 4380.90 988.06 2494.06 4076.43 1396.84 1788.48 1195.99 1594.34 27
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4272.13 4691.41 4192.35 7274.62 10588.90 1793.85 4575.75 1796.00 4987.80 1294.63 4895.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4073.05 2190.86 4893.59 2276.27 7788.14 2295.09 1371.06 5596.67 2487.67 1396.37 1094.09 36
SD-MVS88.06 1388.50 1286.71 5492.60 6772.71 2891.81 3593.19 3677.87 3390.32 1394.00 4274.83 2493.78 13387.63 1494.27 5893.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7172.96 2493.73 393.67 2080.19 1488.10 2394.80 1473.76 3597.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3175.89 1696.81 1987.45 1696.44 793.05 86
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 3694.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3772.35 4290.47 5889.69 15774.31 11089.16 1595.10 1175.65 1896.19 4187.07 1896.01 1394.79 11
SF-MVS88.46 1088.74 1087.64 3592.78 6071.95 4992.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4187.07 1896.01 1394.79 11
9.1488.26 1492.84 5991.52 3994.75 173.93 12088.57 2094.67 1775.57 2095.79 5586.77 2095.76 24
zzz-MVS87.53 2387.41 2687.90 1994.18 3174.25 390.23 6592.02 8279.45 1985.88 3694.80 1468.07 8096.21 3986.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3174.25 386.58 17292.02 8279.45 1985.88 3694.80 1468.07 8096.21 3986.69 2195.34 3293.23 78
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6171.89 5291.43 4094.70 374.47 10788.86 1894.61 1975.23 2195.84 5386.62 2395.92 1794.78 13
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 6969.03 10089.57 8293.39 3177.53 4289.79 1494.12 3878.98 996.58 3285.66 2495.72 2594.58 19
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2573.88 592.71 1992.65 6277.57 3883.84 6994.40 2972.24 4696.28 3785.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1876.81 6085.24 4394.32 3071.76 5096.93 1585.53 2695.79 2194.32 28
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 7872.45 3990.02 7094.37 471.76 15087.28 2994.27 3175.18 2296.08 4585.16 2795.77 2293.80 55
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3672.16 4592.19 2993.33 3276.07 8083.81 7093.95 4469.77 6996.01 4885.15 2894.66 4794.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 4486.20 4587.13 4693.26 4972.96 2488.75 10491.89 9168.69 21085.00 4693.10 5874.43 2795.41 6784.97 2995.71 2693.02 88
test9_res84.90 3095.70 2792.87 92
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4592.83 5481.50 685.79 3993.47 5273.02 4197.00 1484.90 3094.94 4094.10 35
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7493.82 1773.07 13484.86 5392.89 6476.22 1496.33 3584.89 3295.13 3794.40 24
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8272.32 4490.31 6393.94 1677.12 5282.82 8294.23 3472.13 4897.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3472.11 4792.37 2492.56 6574.50 10686.84 3294.65 1867.31 8995.77 5684.80 3492.85 6792.84 93
agg_prior186.22 4886.09 4986.62 5692.85 5771.94 5088.59 11191.78 9768.96 20584.41 5993.18 5774.94 2394.93 8684.75 3595.33 3493.01 89
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3376.78 6284.91 4894.44 2570.78 5796.61 2884.53 3694.89 4293.66 57
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3576.78 6284.66 5594.52 2068.81 7896.65 2584.53 3694.90 4194.00 42
Regformer-286.63 4286.53 4186.95 4889.33 12071.24 6188.43 11492.05 8182.50 186.88 3190.09 11774.45 2695.61 5984.38 3890.63 8894.01 41
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 5894.52 2069.09 7596.70 2384.37 3994.83 4594.03 39
CANet86.45 4386.10 4887.51 3790.09 10070.94 6889.70 8092.59 6481.78 481.32 9991.43 9070.34 6297.23 984.26 4093.36 6394.37 25
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2872.39 4091.86 3492.83 5473.01 13688.58 1994.52 2073.36 3696.49 3384.26 4095.01 3892.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS87.11 3486.92 3587.68 3494.20 3073.86 693.98 192.82 5776.62 6783.68 7194.46 2467.93 8295.95 5184.20 4294.39 5493.23 78
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2674.75 10288.33 2194.43 2773.27 3897.02 1384.18 4394.84 4493.82 52
GST-MVS87.42 2787.26 2887.89 2294.12 3372.97 2392.39 2293.43 2976.89 5884.68 5493.99 4370.67 6096.82 1884.18 4395.01 3893.90 47
Regformer-186.41 4686.33 4286.64 5589.33 12070.93 6988.43 11491.39 11082.14 386.65 3390.09 11774.39 2995.01 8583.97 4590.63 8893.97 43
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4182.45 396.87 1683.77 4696.48 694.88 7
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3375.23 9384.91 4894.44 2570.78 5796.61 2883.75 4794.89 4293.66 57
ETH3 D test640087.50 2487.44 2587.70 3293.71 3971.75 5390.62 5394.05 1470.80 16587.59 2893.51 4977.57 1196.63 2783.31 4895.77 2294.72 15
test_prior386.73 3886.86 3886.33 6092.61 6569.59 9188.85 10092.97 4875.41 8984.91 4893.54 4774.28 3195.48 6383.31 4895.86 1893.91 45
test_prior288.85 10075.41 8984.91 4893.54 4774.28 3183.31 4895.86 18
Regformer-485.68 5485.45 5386.35 5988.95 13769.67 9088.29 12491.29 11281.73 585.36 4190.01 11972.62 4395.35 7383.28 5187.57 12194.03 39
PHI-MVS86.43 4486.17 4787.24 4390.88 8870.96 6692.27 2794.07 1072.45 13985.22 4491.90 7769.47 7196.42 3483.28 5195.94 1694.35 26
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7294.17 3567.45 8796.60 3083.06 5394.50 5194.07 37
X-MVStestdata80.37 13477.83 16788.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7212.47 34767.45 8796.60 3083.06 5394.50 5194.07 37
APD-MVS_3200maxsize85.97 4985.88 5086.22 6392.69 6369.53 9391.93 3392.99 4573.54 12885.94 3594.51 2365.80 10595.61 5983.04 5592.51 7293.53 69
agg_prior282.91 5695.45 2992.70 95
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 7576.87 5982.81 8394.25 3366.44 9696.24 3882.88 5794.28 5793.38 72
PGM-MVS86.68 4086.27 4487.90 1994.22 2973.38 1790.22 6793.04 3975.53 8783.86 6894.42 2867.87 8496.64 2682.70 5894.57 5093.66 57
ACMMPcopyleft85.89 5185.39 5487.38 4193.59 4472.63 3292.74 1793.18 3776.78 6280.73 10893.82 4664.33 11496.29 3682.67 5990.69 8793.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-385.23 6085.07 6085.70 7088.95 13769.01 10288.29 12489.91 15180.95 885.01 4590.01 11972.45 4494.19 11482.50 6087.57 12193.90 47
abl_685.23 6084.95 6386.07 6692.23 7070.48 7790.80 5092.08 8073.51 12985.26 4294.16 3662.75 13395.92 5282.46 6191.30 8291.81 122
diffmvs82.10 9481.88 9582.76 16983.00 26263.78 20083.68 23889.76 15472.94 13782.02 9089.85 12265.96 10490.79 23382.38 6287.30 12893.71 56
TSAR-MVS + GP.85.71 5385.33 5586.84 5091.34 8072.50 3589.07 9487.28 21976.41 7085.80 3890.22 11574.15 3495.37 7281.82 6391.88 7492.65 99
alignmvs85.48 5585.32 5685.96 6889.51 11469.47 9589.74 7892.47 6676.17 7887.73 2791.46 8970.32 6393.78 13381.51 6488.95 10694.63 18
canonicalmvs85.91 5085.87 5186.04 6789.84 10669.44 9890.45 6193.00 4376.70 6688.01 2591.23 9273.28 3793.91 12881.50 6588.80 10994.77 14
baseline84.93 6584.98 6184.80 9387.30 19165.39 17187.30 15092.88 5177.62 3684.04 6792.26 7171.81 4993.96 12181.31 6690.30 9295.03 4
casdiffmvs85.11 6385.14 5985.01 8487.20 19365.77 16487.75 13992.83 5477.84 3484.36 6292.38 7072.15 4793.93 12781.27 6790.48 9095.33 1
MVS_111021_HR85.14 6284.75 6586.32 6291.65 7772.70 2985.98 18790.33 13976.11 7982.08 8991.61 8471.36 5494.17 11681.02 6892.58 7192.08 115
HPM-MVS_fast85.35 5984.95 6386.57 5893.69 4170.58 7692.15 3191.62 10173.89 12182.67 8594.09 3962.60 13495.54 6280.93 6992.93 6593.57 66
CPTT-MVS83.73 7283.33 7484.92 8993.28 4870.86 7192.09 3290.38 13568.75 20979.57 11592.83 6660.60 17193.04 16980.92 7091.56 7890.86 146
ETV-MVS84.90 6784.67 6685.59 7189.39 11868.66 11688.74 10692.64 6379.97 1784.10 6585.71 23169.32 7395.38 6980.82 7191.37 8092.72 94
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4572.37 4191.26 4293.04 3976.62 6784.22 6393.36 5471.44 5396.76 2180.82 7195.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 7083.53 7184.96 8686.77 20169.28 9990.46 6092.67 6074.79 10082.95 7891.33 9172.70 4293.09 16580.79 7379.28 22392.50 102
EI-MVSNet-Vis-set84.19 6983.81 7085.31 7488.18 16267.85 13087.66 14189.73 15680.05 1682.95 7889.59 12970.74 5994.82 9480.66 7484.72 15693.28 77
MSLP-MVS++85.43 5785.76 5284.45 10191.93 7470.24 7890.71 5192.86 5277.46 4484.22 6392.81 6867.16 9192.94 17180.36 7594.35 5690.16 171
MVS_111021_LR82.61 9082.11 8984.11 11388.82 14271.58 5585.15 20586.16 23374.69 10380.47 11091.04 9962.29 14190.55 23780.33 7690.08 9790.20 170
DELS-MVS85.41 5885.30 5785.77 6988.49 15367.93 12985.52 20293.44 2878.70 2883.63 7489.03 14574.57 2595.71 5880.26 7794.04 6093.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 7183.38 7385.09 8287.87 17167.53 13487.44 14789.66 15879.74 1882.23 8889.41 13870.24 6494.74 9779.95 7883.92 16492.99 90
CSCG86.41 4686.19 4687.07 4792.91 5672.48 3690.81 4993.56 2373.95 11883.16 7791.07 9875.94 1595.19 7679.94 7994.38 5593.55 67
CS-MVS84.76 6884.61 6785.22 7989.66 10866.43 15190.23 6593.56 2376.52 6982.59 8685.93 22670.41 6195.80 5479.93 8092.68 7093.42 71
OPM-MVS83.50 7682.95 7985.14 8088.79 14570.95 6789.13 9391.52 10477.55 4180.96 10691.75 7960.71 16794.50 10379.67 8186.51 14089.97 187
CDPH-MVS85.76 5285.29 5887.17 4593.49 4671.08 6288.58 11292.42 7068.32 21584.61 5693.48 5072.32 4596.15 4479.00 8295.43 3094.28 30
MVSFormer82.85 8782.05 9185.24 7787.35 18670.21 7990.50 5690.38 13568.55 21281.32 9989.47 13261.68 14993.46 14978.98 8390.26 9392.05 116
test_djsdf80.30 13579.32 13583.27 13983.98 24165.37 17290.50 5690.38 13568.55 21276.19 18088.70 15056.44 19993.46 14978.98 8380.14 21390.97 143
HQP_MVS83.64 7483.14 7585.14 8090.08 10168.71 11291.25 4392.44 6779.12 2378.92 12391.00 10260.42 17395.38 6978.71 8586.32 14291.33 133
plane_prior592.44 6795.38 6978.71 8586.32 14291.33 133
RRT_MVS79.88 14378.38 15384.38 10385.42 21870.60 7588.71 10888.75 19172.30 14478.83 12589.14 14044.44 29492.18 19478.50 8779.33 22290.35 165
LPG-MVS_test82.08 9581.27 10084.50 9989.23 12868.76 10890.22 6791.94 8975.37 9176.64 17091.51 8654.29 21294.91 8878.44 8883.78 16589.83 192
LGP-MVS_train84.50 9989.23 12868.76 10891.94 8975.37 9176.64 17091.51 8654.29 21294.91 8878.44 8883.78 16589.83 192
lupinMVS81.39 10980.27 11784.76 9487.35 18670.21 7985.55 19886.41 22862.85 27081.32 9988.61 15461.68 14992.24 19278.41 9090.26 9391.83 120
jason81.39 10980.29 11684.70 9586.63 20369.90 8685.95 18886.77 22463.24 26481.07 10589.47 13261.08 16392.15 19578.33 9190.07 9892.05 116
jason: jason.
xiu_mvs_v1_base_debu80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
xiu_mvs_v1_base80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
xiu_mvs_v1_base_debi80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
Effi-MVS+83.62 7583.08 7685.24 7788.38 15867.45 13588.89 9889.15 17375.50 8882.27 8788.28 16469.61 7094.45 10477.81 9587.84 11993.84 51
PS-MVSNAJss82.07 9681.31 9984.34 10786.51 20467.27 14089.27 8691.51 10571.75 15179.37 11790.22 11563.15 12794.27 10877.69 9682.36 18791.49 129
ACMP74.13 681.51 10880.57 10984.36 10589.42 11668.69 11589.97 7291.50 10874.46 10875.04 21190.41 11153.82 21794.54 10077.56 9782.91 17989.86 191
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 98
HQP-MVS82.61 9082.02 9284.37 10489.33 12066.98 14489.17 8892.19 7776.41 7077.23 15890.23 11460.17 17695.11 7977.47 9885.99 14791.03 140
MVS_Test83.15 8283.06 7783.41 13586.86 19763.21 21486.11 18592.00 8574.31 11082.87 8089.44 13770.03 6593.21 15677.39 10088.50 11593.81 53
3Dnovator+77.84 485.48 5584.47 6888.51 491.08 8373.49 1593.18 993.78 1980.79 1076.66 16993.37 5360.40 17596.75 2277.20 10193.73 6295.29 2
anonymousdsp78.60 17177.15 18382.98 15580.51 30267.08 14287.24 15289.53 16065.66 24175.16 20687.19 19252.52 22292.25 19177.17 10279.34 22189.61 199
VDD-MVS83.01 8682.36 8784.96 8691.02 8566.40 15288.91 9788.11 19977.57 3884.39 6193.29 5552.19 22893.91 12877.05 10388.70 11194.57 21
RRT_test8_iter0578.38 17677.40 17881.34 19586.00 20958.86 26186.55 17491.26 11372.13 14875.91 18587.42 18444.97 29193.73 13977.02 10475.30 27091.45 132
XVG-OURS-SEG-HR80.81 12079.76 12483.96 12485.60 21568.78 10783.54 24490.50 13270.66 17076.71 16891.66 8060.69 16891.26 22076.94 10581.58 19491.83 120
jajsoiax79.29 15677.96 16283.27 13984.68 23066.57 15089.25 8790.16 14469.20 19875.46 19589.49 13145.75 28893.13 16376.84 10680.80 20290.11 175
mvs_tets79.13 15977.77 17083.22 14384.70 22966.37 15389.17 8890.19 14369.38 19275.40 19889.46 13444.17 29693.15 16176.78 10780.70 20490.14 172
DPM-MVS84.93 6584.29 6986.84 5090.20 9873.04 2287.12 15493.04 3969.80 18482.85 8191.22 9373.06 4096.02 4776.72 10894.63 4891.46 131
testing_275.73 22473.34 23582.89 16077.37 32365.22 17484.10 23390.54 13169.09 20060.46 31981.15 28940.48 31492.84 17676.36 10980.54 20890.60 155
ET-MVSNet_ETH3D78.63 17076.63 19884.64 9686.73 20269.47 9585.01 20884.61 24669.54 18966.51 29386.59 21150.16 25491.75 20776.26 11084.24 16292.69 97
v2v48280.23 13679.29 13683.05 15183.62 24664.14 19387.04 15689.97 14873.61 12578.18 13987.22 19061.10 16293.82 13176.11 11176.78 24691.18 137
CLD-MVS82.31 9281.65 9784.29 10988.47 15467.73 13385.81 19392.35 7275.78 8278.33 13586.58 21364.01 11794.35 10576.05 11287.48 12690.79 147
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 7382.92 8086.14 6584.22 23669.48 9491.05 4785.27 24081.30 776.83 16491.65 8166.09 10095.56 6176.00 11393.85 6193.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS80.41 13279.23 13783.97 12385.64 21469.02 10183.03 25190.39 13471.09 16277.63 14991.49 8854.62 21191.35 21875.71 11483.47 17291.54 126
V4279.38 15578.24 15882.83 16181.10 29665.50 16885.55 19889.82 15271.57 15678.21 13786.12 22460.66 16993.18 16075.64 11575.46 26589.81 194
PS-MVSNAJ81.69 10281.02 10583.70 12789.51 11468.21 12584.28 22990.09 14670.79 16681.26 10385.62 23563.15 12794.29 10675.62 11688.87 10888.59 230
xiu_mvs_v2_base81.69 10281.05 10483.60 12889.15 13168.03 12884.46 22390.02 14770.67 16981.30 10286.53 21663.17 12694.19 11475.60 11788.54 11388.57 231
EIA-MVS83.31 8182.80 8284.82 9189.59 11065.59 16688.21 12792.68 5974.66 10478.96 12186.42 21869.06 7695.26 7475.54 11890.09 9693.62 64
OMC-MVS82.69 8881.97 9484.85 9088.75 14767.42 13687.98 13290.87 12474.92 9979.72 11491.65 8162.19 14493.96 12175.26 11986.42 14193.16 83
v114480.03 14079.03 14083.01 15383.78 24464.51 18587.11 15590.57 13071.96 14978.08 14286.20 22361.41 15493.94 12474.93 12077.23 23790.60 155
MVSTER79.01 16277.88 16682.38 17483.07 25964.80 18184.08 23588.95 18369.01 20478.69 12687.17 19354.70 20992.43 18474.69 12180.57 20689.89 190
PVSNet_Blended_VisFu82.62 8981.83 9684.96 8690.80 9069.76 8888.74 10691.70 10069.39 19178.96 12188.46 15965.47 10794.87 9374.42 12288.57 11290.24 169
v879.97 14279.02 14182.80 16484.09 23864.50 18787.96 13390.29 14274.13 11775.24 20586.81 19962.88 13293.89 13074.39 12375.40 26790.00 183
v14419279.47 15078.37 15482.78 16783.35 25063.96 19686.96 15890.36 13869.99 18077.50 15085.67 23360.66 16993.77 13574.27 12476.58 24790.62 153
ACMM73.20 880.78 12579.84 12283.58 12989.31 12568.37 12089.99 7191.60 10270.28 17677.25 15689.66 12553.37 22093.53 14774.24 12582.85 18088.85 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 17358.10 30687.04 3088.98 26174.07 126
v119279.59 14778.43 15283.07 15083.55 24864.52 18486.93 16090.58 12970.83 16477.78 14685.90 22759.15 17993.94 12473.96 12777.19 23990.76 148
v1079.74 14578.67 14582.97 15684.06 23964.95 17987.88 13890.62 12873.11 13375.11 20886.56 21461.46 15394.05 12073.68 12875.55 26289.90 189
v192192079.22 15778.03 16182.80 16483.30 25263.94 19786.80 16490.33 13969.91 18277.48 15185.53 23658.44 18393.75 13773.60 12976.85 24490.71 151
cl-mvsnet278.07 18577.01 18581.23 19882.37 27861.83 23483.55 24387.98 20468.96 20575.06 21083.87 25961.40 15591.88 20573.53 13076.39 25189.98 186
Effi-MVS+-dtu80.03 14078.57 14884.42 10285.13 22468.74 11088.77 10388.10 20074.99 9774.97 21283.49 26757.27 19393.36 15273.53 13080.88 20091.18 137
mvs-test180.88 11579.40 13285.29 7585.13 22469.75 8989.28 8588.10 20074.99 9776.44 17586.72 20257.27 19394.26 11273.53 13083.18 17691.87 119
cl_fuxian78.75 16777.91 16481.26 19782.89 26661.56 23784.09 23489.13 17569.97 18175.56 19184.29 25566.36 9792.09 19773.47 13375.48 26490.12 174
VDDNet81.52 10680.67 10884.05 11790.44 9464.13 19489.73 7985.91 23671.11 16183.18 7693.48 5050.54 25193.49 14873.40 13488.25 11794.54 22
CANet_DTU80.61 12779.87 12182.83 16185.60 21563.17 21787.36 14888.65 19276.37 7475.88 18788.44 16053.51 21993.07 16673.30 13589.74 10192.25 109
miper_ehance_all_eth78.59 17277.76 17181.08 20382.66 27161.56 23783.65 23989.15 17368.87 20775.55 19283.79 26366.49 9592.03 19873.25 13676.39 25189.64 198
3Dnovator76.31 583.38 8082.31 8886.59 5787.94 17072.94 2790.64 5292.14 7977.21 4975.47 19392.83 6658.56 18294.72 9873.24 13792.71 6992.13 114
v124078.99 16377.78 16982.64 17083.21 25463.54 20586.62 17190.30 14169.74 18877.33 15485.68 23257.04 19693.76 13673.13 13876.92 24190.62 153
miper_enhance_ethall77.87 19276.86 18980.92 20681.65 28561.38 23982.68 25288.98 18065.52 24375.47 19382.30 28065.76 10692.00 20072.95 13976.39 25189.39 203
MG-MVS83.41 7883.45 7283.28 13892.74 6262.28 22888.17 12989.50 16175.22 9481.49 9892.74 6966.75 9295.11 7972.85 14091.58 7792.45 103
EPP-MVSNet83.40 7983.02 7884.57 9790.13 9964.47 18892.32 2690.73 12674.45 10979.35 11891.10 9669.05 7795.12 7872.78 14187.22 12994.13 34
IterMVS-LS80.06 13979.38 13382.11 17785.89 21063.20 21586.79 16589.34 16474.19 11475.45 19686.72 20266.62 9392.39 18672.58 14276.86 24390.75 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 13179.98 11982.12 17684.28 23463.19 21686.41 17688.95 18374.18 11578.69 12687.54 18166.62 9392.43 18472.57 14380.57 20690.74 150
Vis-MVSNetpermissive83.46 7782.80 8285.43 7390.25 9768.74 11090.30 6490.13 14576.33 7680.87 10792.89 6461.00 16494.20 11372.45 14490.97 8493.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 10181.23 10183.57 13091.89 7563.43 21089.84 7381.85 28277.04 5583.21 7593.10 5852.26 22793.43 15171.98 14589.95 9993.85 49
v14878.72 16877.80 16881.47 19082.73 26961.96 23286.30 18088.08 20273.26 13276.18 18185.47 23862.46 13892.36 18871.92 14673.82 28690.09 177
PVSNet_BlendedMVS80.60 12880.02 11882.36 17588.85 13965.40 16986.16 18492.00 8569.34 19378.11 14086.09 22566.02 10294.27 10871.52 14782.06 18987.39 251
PVSNet_Blended80.98 11480.34 11482.90 15888.85 13965.40 16984.43 22592.00 8567.62 21878.11 14085.05 24866.02 10294.27 10871.52 14789.50 10289.01 214
eth_miper_zixun_eth77.92 19076.69 19681.61 18883.00 26261.98 23183.15 24789.20 17269.52 19074.86 21484.35 25461.76 14892.56 18171.50 14972.89 29190.28 168
UA-Net85.08 6484.96 6285.45 7292.07 7268.07 12789.78 7790.86 12582.48 284.60 5793.20 5669.35 7295.22 7571.39 15090.88 8693.07 85
cl-mvsnet_77.72 19476.76 19380.58 21182.49 27560.48 24983.09 24887.87 20769.22 19674.38 21985.22 24362.10 14591.53 21371.09 15175.41 26689.73 197
cl-mvsnet177.72 19476.76 19380.58 21182.48 27660.48 24983.09 24887.86 20869.22 19674.38 21985.24 24262.10 14591.53 21371.09 15175.40 26789.74 196
test_yl81.17 11180.47 11283.24 14189.13 13263.62 20186.21 18289.95 14972.43 14281.78 9589.61 12757.50 19093.58 14270.75 15386.90 13392.52 100
DCV-MVSNet81.17 11180.47 11283.24 14189.13 13263.62 20186.21 18289.95 14972.43 14281.78 9589.61 12757.50 19093.58 14270.75 15386.90 13392.52 100
VNet82.21 9382.41 8581.62 18690.82 8960.93 24284.47 22189.78 15376.36 7584.07 6691.88 7864.71 11390.26 23970.68 15588.89 10793.66 57
mvs_anonymous79.42 15279.11 13980.34 21684.45 23357.97 27282.59 25387.62 21267.40 22176.17 18388.56 15768.47 7989.59 25070.65 15686.05 14693.47 70
VPA-MVSNet80.60 12880.55 11080.76 20988.07 16660.80 24586.86 16291.58 10375.67 8680.24 11189.45 13663.34 12190.25 24070.51 15779.22 22491.23 136
PAPM_NR83.02 8582.41 8584.82 9192.47 6866.37 15387.93 13691.80 9573.82 12277.32 15590.66 10767.90 8394.90 9070.37 15889.48 10393.19 82
thisisatest053079.40 15377.76 17184.31 10887.69 18065.10 17887.36 14884.26 25170.04 17977.42 15288.26 16649.94 25794.79 9670.20 15984.70 15793.03 87
tttt051779.40 15377.91 16483.90 12688.10 16563.84 19888.37 12184.05 25371.45 15876.78 16689.12 14249.93 25994.89 9170.18 16083.18 17692.96 91
UniMVSNet_NR-MVSNet81.88 9981.54 9882.92 15788.46 15563.46 20887.13 15392.37 7180.19 1478.38 13389.14 14071.66 5293.05 16770.05 16176.46 24992.25 109
DU-MVS81.12 11380.52 11182.90 15887.80 17463.46 20887.02 15791.87 9379.01 2678.38 13389.07 14365.02 11193.05 16770.05 16176.46 24992.20 111
XVG-ACMP-BASELINE76.11 22074.27 22681.62 18683.20 25564.67 18383.60 24289.75 15569.75 18671.85 24287.09 19532.78 33392.11 19669.99 16380.43 20988.09 238
FIs82.07 9682.42 8481.04 20488.80 14458.34 26688.26 12693.49 2676.93 5778.47 13291.04 9969.92 6792.34 18969.87 16484.97 15392.44 104
114514_t80.68 12679.51 12984.20 11194.09 3567.27 14089.64 8191.11 11958.75 30474.08 22190.72 10658.10 18495.04 8469.70 16589.42 10490.30 167
Anonymous2023121178.97 16477.69 17482.81 16390.54 9264.29 19190.11 6991.51 10565.01 24976.16 18488.13 17150.56 25093.03 17069.68 16677.56 23591.11 139
Patchmatch-RL test70.24 27267.78 28277.61 26177.43 32259.57 25871.16 32170.33 33162.94 26968.65 27372.77 32850.62 24985.49 29369.58 16766.58 31787.77 244
UniMVSNet (Re)81.60 10581.11 10383.09 14888.38 15864.41 18987.60 14293.02 4278.42 3178.56 12988.16 16769.78 6893.26 15569.58 16776.49 24891.60 124
IterMVS-SCA-FT75.43 22973.87 23080.11 22082.69 27064.85 18081.57 26483.47 26369.16 19970.49 25284.15 25751.95 23488.15 27269.23 16972.14 29687.34 253
v7n78.97 16477.58 17683.14 14683.45 24965.51 16788.32 12291.21 11573.69 12472.41 23686.32 22157.93 18593.81 13269.18 17075.65 26090.11 175
Anonymous2024052980.19 13878.89 14384.10 11490.60 9164.75 18288.95 9690.90 12365.97 23880.59 10991.17 9549.97 25693.73 13969.16 17182.70 18493.81 53
miper_lstm_enhance74.11 23973.11 23877.13 26980.11 30559.62 25672.23 31986.92 22366.76 22570.40 25382.92 27156.93 19782.92 30669.06 17272.63 29288.87 221
testdata79.97 22290.90 8764.21 19284.71 24459.27 29985.40 4092.91 6362.02 14789.08 25968.95 17391.37 8086.63 271
GA-MVS76.87 20875.17 21681.97 18182.75 26862.58 22381.44 26686.35 23172.16 14774.74 21582.89 27246.20 28392.02 19968.85 17481.09 19891.30 135
UGNet80.83 11979.59 12884.54 9888.04 16768.09 12689.42 8388.16 19876.95 5676.22 17989.46 13449.30 26593.94 12468.48 17590.31 9191.60 124
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 10682.02 9280.03 22188.42 15755.97 30287.95 13493.42 3077.10 5377.38 15390.98 10469.96 6691.79 20668.46 17684.50 15892.33 105
DP-MVS Recon83.11 8482.09 9086.15 6494.44 1970.92 7088.79 10292.20 7670.53 17279.17 11991.03 10164.12 11696.03 4668.39 17790.14 9591.50 128
UniMVSNet_ETH3D79.10 16078.24 15881.70 18586.85 19860.24 25287.28 15188.79 18674.25 11376.84 16390.53 11049.48 26291.56 21267.98 17882.15 18893.29 76
D2MVS74.82 23373.21 23679.64 23179.81 30962.56 22480.34 27387.35 21864.37 25668.86 27182.66 27646.37 28090.10 24367.91 17981.24 19786.25 274
IS-MVSNet83.15 8282.81 8184.18 11289.94 10463.30 21291.59 3688.46 19679.04 2579.49 11692.16 7265.10 11094.28 10767.71 18091.86 7594.95 5
Fast-Effi-MVS+-dtu78.02 18776.49 19982.62 17183.16 25866.96 14686.94 15987.45 21772.45 13971.49 24684.17 25654.79 20891.58 21167.61 18180.31 21089.30 205
PAPR81.66 10480.89 10683.99 12290.27 9664.00 19586.76 16891.77 9968.84 20877.13 16289.50 13067.63 8594.88 9267.55 18288.52 11493.09 84
cascas76.72 21074.64 21982.99 15485.78 21265.88 16182.33 25689.21 17160.85 28672.74 23181.02 29147.28 27593.75 13767.48 18385.02 15289.34 204
131476.53 21175.30 21580.21 21983.93 24262.32 22784.66 21588.81 18560.23 29070.16 25884.07 25855.30 20390.73 23567.37 18483.21 17587.59 248
无先验87.48 14588.98 18060.00 29294.12 11767.28 18588.97 217
112180.84 11779.77 12384.05 11793.11 5370.78 7284.66 21585.42 23957.37 31281.76 9792.02 7463.41 12094.12 11767.28 18592.93 6587.26 256
thisisatest051577.33 20275.38 21283.18 14485.27 22063.80 19982.11 25883.27 26665.06 24775.91 18583.84 26149.54 26194.27 10867.24 18786.19 14491.48 130
原ACMM184.35 10693.01 5568.79 10692.44 6763.96 26281.09 10491.57 8566.06 10195.45 6567.19 18894.82 4688.81 224
Baseline_NR-MVSNet78.15 18378.33 15677.61 26185.79 21156.21 30086.78 16685.76 23773.60 12677.93 14487.57 17965.02 11188.99 26067.14 18975.33 26987.63 246
TranMVSNet+NR-MVSNet80.84 11780.31 11582.42 17387.85 17262.33 22687.74 14091.33 11180.55 1177.99 14389.86 12165.23 10992.62 17867.05 19075.24 27392.30 107
Fast-Effi-MVS+80.81 12079.92 12083.47 13188.85 13964.51 18585.53 20089.39 16370.79 16678.49 13185.06 24767.54 8693.58 14267.03 19186.58 13892.32 106
VPNet78.69 16978.66 14678.76 24388.31 16055.72 30484.45 22486.63 22676.79 6178.26 13690.55 10959.30 17889.70 24966.63 19277.05 24090.88 145
PM-MVS66.41 29464.14 29573.20 29673.92 33256.45 29478.97 28764.96 34363.88 26364.72 30480.24 29819.84 34383.44 30366.24 19364.52 32279.71 326
test-LLR72.94 25372.43 24274.48 28981.35 29258.04 27078.38 29177.46 31366.66 22769.95 26279.00 30848.06 27179.24 31666.13 19484.83 15486.15 277
test-mter71.41 26270.39 26174.48 28981.35 29258.04 27078.38 29177.46 31360.32 28969.95 26279.00 30836.08 32979.24 31666.13 19484.83 15486.15 277
MVS78.19 18276.99 18781.78 18385.66 21366.99 14384.66 21590.47 13355.08 32272.02 24185.27 24163.83 11894.11 11966.10 19689.80 10084.24 299
NR-MVSNet80.23 13679.38 13382.78 16787.80 17463.34 21186.31 17991.09 12079.01 2672.17 23989.07 14367.20 9092.81 17766.08 19775.65 26092.20 111
CVMVSNet72.99 25272.58 24174.25 29284.28 23450.85 32686.41 17683.45 26444.56 33373.23 22787.54 18149.38 26385.70 29165.90 19878.44 22886.19 276
IterMVS74.29 23672.94 23978.35 25081.53 28863.49 20781.58 26382.49 27568.06 21669.99 26183.69 26551.66 24085.54 29265.85 19971.64 29986.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 23772.42 24379.80 22683.76 24559.59 25785.92 19086.64 22566.39 23266.96 28687.58 17839.46 31791.60 21065.76 20069.27 30888.22 236
tpmrst72.39 25672.13 24573.18 29780.54 30149.91 32979.91 27879.08 30663.11 26571.69 24479.95 30155.32 20282.77 30765.66 20173.89 28486.87 264
MAR-MVS81.84 10080.70 10785.27 7691.32 8171.53 5689.82 7490.92 12269.77 18578.50 13086.21 22262.36 14094.52 10265.36 20292.05 7389.77 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 17877.01 18581.99 18091.03 8460.67 24684.77 21383.90 25570.65 17180.00 11291.20 9441.08 31291.43 21665.21 20385.26 15193.85 49
ab-mvs79.51 14878.97 14281.14 20188.46 15560.91 24383.84 23689.24 17070.36 17479.03 12088.87 14863.23 12590.21 24165.12 20482.57 18592.28 108
IB-MVS68.01 1575.85 22373.36 23483.31 13784.76 22866.03 15683.38 24585.06 24270.21 17869.40 26881.05 29045.76 28794.66 9965.10 20575.49 26389.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 14979.22 13880.27 21888.79 14558.35 26585.06 20788.61 19478.56 2977.65 14888.34 16263.81 11990.66 23664.98 20677.22 23891.80 123
CostFormer75.24 23273.90 22979.27 23682.65 27258.27 26780.80 26782.73 27461.57 28175.33 20383.13 27055.52 20191.07 22964.98 20678.34 23088.45 233
API-MVS81.99 9881.23 10184.26 11090.94 8670.18 8491.10 4689.32 16571.51 15778.66 12888.28 16465.26 10895.10 8264.74 20891.23 8387.51 249
新几何183.42 13393.13 5170.71 7385.48 23857.43 31181.80 9491.98 7563.28 12292.27 19064.60 20992.99 6487.27 255
pm-mvs177.25 20376.68 19778.93 24184.22 23658.62 26486.41 17688.36 19771.37 15973.31 22588.01 17261.22 16089.15 25864.24 21073.01 29089.03 213
TESTMET0.1,169.89 27669.00 26772.55 29879.27 31756.85 28778.38 29174.71 32557.64 30968.09 27677.19 31837.75 32476.70 32763.92 21184.09 16384.10 302
QAPM80.88 11579.50 13085.03 8388.01 16968.97 10491.59 3692.00 8566.63 23075.15 20792.16 7257.70 18795.45 6563.52 21288.76 11090.66 152
baseline275.70 22573.83 23181.30 19683.26 25361.79 23582.57 25480.65 29166.81 22366.88 28783.42 26857.86 18692.19 19363.47 21379.57 21689.91 188
LCM-MVSNet-Re77.05 20476.94 18877.36 26487.20 19351.60 32180.06 27580.46 29575.20 9567.69 27986.72 20262.48 13788.98 26163.44 21489.25 10591.51 127
gm-plane-assit81.40 29053.83 31462.72 27380.94 29392.39 18663.40 215
baseline176.98 20676.75 19577.66 25988.13 16355.66 30585.12 20681.89 28073.04 13576.79 16588.90 14662.43 13987.78 27763.30 21671.18 30289.55 201
DWT-MVSNet_test73.70 24371.86 24779.21 23882.91 26558.94 26082.34 25582.17 27765.21 24471.05 25078.31 31044.21 29590.17 24263.29 21777.28 23688.53 232
AdaColmapbinary80.58 13079.42 13184.06 11693.09 5468.91 10589.36 8488.97 18269.27 19475.70 19089.69 12457.20 19595.77 5663.06 21888.41 11687.50 250
GBi-Net78.40 17477.40 17881.40 19287.60 18163.01 21888.39 11889.28 16671.63 15375.34 20087.28 18654.80 20591.11 22362.72 21979.57 21690.09 177
test178.40 17477.40 17881.40 19287.60 18163.01 21888.39 11889.28 16671.63 15375.34 20087.28 18654.80 20591.11 22362.72 21979.57 21690.09 177
FMVSNet377.88 19176.85 19080.97 20586.84 19962.36 22586.52 17588.77 18771.13 16075.34 20086.66 20954.07 21591.10 22662.72 21979.57 21689.45 202
CMPMVSbinary51.72 2170.19 27368.16 27476.28 27473.15 33757.55 28079.47 28183.92 25448.02 33256.48 33184.81 24943.13 30086.42 28762.67 22281.81 19384.89 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet278.20 18177.21 18281.20 19987.60 18162.89 22287.47 14689.02 17871.63 15375.29 20487.28 18654.80 20591.10 22662.38 22379.38 22089.61 199
testdata291.01 23062.37 224
CP-MVSNet78.22 17978.34 15577.84 25687.83 17354.54 30987.94 13591.17 11777.65 3573.48 22488.49 15862.24 14388.43 26962.19 22574.07 28190.55 158
XXY-MVS75.41 23075.56 20774.96 28583.59 24757.82 27680.59 27183.87 25666.54 23174.93 21388.31 16363.24 12480.09 31562.16 22676.85 24486.97 263
pmmvs674.69 23473.39 23378.61 24581.38 29157.48 28186.64 17087.95 20564.99 25070.18 25686.61 21050.43 25289.52 25162.12 22770.18 30688.83 223
1112_ss77.40 20176.43 20080.32 21789.11 13660.41 25183.65 23987.72 21162.13 27873.05 22986.72 20262.58 13689.97 24462.11 22880.80 20290.59 157
PS-CasMVS78.01 18878.09 16077.77 25887.71 17854.39 31188.02 13191.22 11477.50 4373.26 22688.64 15360.73 16688.41 27061.88 22973.88 28590.53 159
CDS-MVSNet79.07 16177.70 17383.17 14587.60 18168.23 12484.40 22786.20 23267.49 22076.36 17686.54 21561.54 15290.79 23361.86 23087.33 12790.49 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 14478.33 15684.09 11585.17 22169.91 8590.57 5490.97 12166.70 22672.17 23991.91 7654.70 20993.96 12161.81 23190.95 8588.41 235
K. test v371.19 26368.51 27079.21 23883.04 26157.78 27784.35 22876.91 31772.90 13862.99 31382.86 27339.27 31891.09 22861.65 23252.66 33688.75 226
CHOSEN 1792x268877.63 19775.69 20583.44 13289.98 10368.58 11878.70 29087.50 21556.38 31775.80 18986.84 19858.67 18191.40 21761.58 23385.75 15090.34 166
PCF-MVS73.52 780.38 13378.84 14485.01 8487.71 17868.99 10383.65 23991.46 10963.00 26777.77 14790.28 11266.10 9995.09 8361.40 23488.22 11890.94 144
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 18977.15 18380.36 21587.57 18560.21 25383.37 24687.78 21066.11 23475.37 19987.06 19763.27 12390.48 23861.38 23582.43 18690.40 164
HyFIR lowres test77.53 19875.40 21183.94 12589.59 11066.62 14880.36 27288.64 19356.29 31876.45 17285.17 24457.64 18893.28 15461.34 23683.10 17891.91 118
PMMVS69.34 27868.67 26971.35 30475.67 32962.03 23075.17 30973.46 32750.00 33168.68 27279.05 30652.07 23278.13 32161.16 23782.77 18173.90 333
FMVSNet177.44 19976.12 20481.40 19286.81 20063.01 21888.39 11889.28 16670.49 17374.39 21887.28 18649.06 26891.11 22360.91 23878.52 22690.09 177
sss73.60 24473.64 23273.51 29582.80 26755.01 30776.12 30381.69 28362.47 27574.68 21685.85 23057.32 19278.11 32260.86 23980.93 19987.39 251
Test_1112_low_res76.40 21675.44 20979.27 23689.28 12658.09 26881.69 26287.07 22159.53 29772.48 23586.67 20861.30 15789.33 25460.81 24080.15 21290.41 163
BH-untuned79.47 15078.60 14782.05 17889.19 13065.91 16086.07 18688.52 19572.18 14575.42 19787.69 17661.15 16193.54 14660.38 24186.83 13586.70 269
WTY-MVS75.65 22675.68 20675.57 28086.40 20556.82 28877.92 29782.40 27665.10 24676.18 18187.72 17463.13 13080.90 31260.31 24281.96 19089.00 216
pmmvs474.03 24171.91 24680.39 21481.96 28268.32 12181.45 26582.14 27859.32 29869.87 26485.13 24552.40 22588.13 27360.21 24374.74 27784.73 295
PEN-MVS77.73 19377.69 17477.84 25687.07 19653.91 31387.91 13791.18 11677.56 4073.14 22888.82 14961.23 15989.17 25759.95 24472.37 29390.43 162
CR-MVSNet73.37 24571.27 25379.67 22981.32 29465.19 17575.92 30580.30 29759.92 29372.73 23281.19 28752.50 22386.69 28359.84 24577.71 23287.11 261
lessismore_v078.97 24081.01 29757.15 28465.99 34061.16 31782.82 27439.12 31991.34 21959.67 24646.92 33988.43 234
CNLPA78.08 18476.79 19281.97 18190.40 9571.07 6387.59 14384.55 24766.03 23772.38 23789.64 12657.56 18986.04 28959.61 24783.35 17388.79 225
BH-RMVSNet79.61 14678.44 15183.14 14689.38 11965.93 15984.95 21087.15 22073.56 12778.19 13889.79 12356.67 19893.36 15259.53 24886.74 13690.13 173
MS-PatchMatch73.83 24272.67 24077.30 26683.87 24366.02 15781.82 25984.66 24561.37 28468.61 27482.82 27447.29 27488.21 27159.27 24984.32 16177.68 330
test_post178.90 2895.43 34948.81 27085.44 29459.25 250
SCA74.22 23872.33 24479.91 22384.05 24062.17 22979.96 27779.29 30566.30 23372.38 23780.13 29951.95 23488.60 26759.25 25077.67 23488.96 218
SixPastTwentyTwo73.37 24571.26 25479.70 22785.08 22657.89 27485.57 19483.56 26071.03 16365.66 29785.88 22842.10 30792.57 18059.11 25263.34 32388.65 229
MVS_030472.48 25570.89 25777.24 26782.20 27959.68 25584.11 23283.49 26267.10 22266.87 28880.59 29535.00 33287.40 27959.07 25379.58 21584.63 296
WR-MVS_H78.51 17378.49 14978.56 24688.02 16856.38 29788.43 11492.67 6077.14 5173.89 22287.55 18066.25 9889.24 25658.92 25473.55 28890.06 181
PLCcopyleft70.83 1178.05 18676.37 20283.08 14991.88 7667.80 13188.19 12889.46 16264.33 25769.87 26488.38 16153.66 21893.58 14258.86 25582.73 18287.86 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 24971.46 25078.54 24782.50 27459.85 25482.18 25782.84 27358.96 30171.15 24989.41 13845.48 29084.77 29758.82 25671.83 29891.02 142
EU-MVSNet68.53 28367.61 28471.31 30578.51 31947.01 33584.47 22184.27 25042.27 33466.44 29484.79 25040.44 31583.76 30058.76 25768.54 31383.17 308
pmmvs-eth3d70.50 27067.83 28078.52 24877.37 32366.18 15581.82 25981.51 28458.90 30263.90 30980.42 29742.69 30386.28 28858.56 25865.30 32083.11 310
TAMVS78.89 16677.51 17783.03 15287.80 17467.79 13284.72 21485.05 24367.63 21776.75 16787.70 17562.25 14290.82 23258.53 25987.13 13090.49 160
ACMH+68.96 1476.01 22174.01 22782.03 17988.60 15065.31 17388.86 9987.55 21370.25 17767.75 27887.47 18341.27 31093.19 15958.37 26075.94 25787.60 247
tpm72.37 25871.71 24974.35 29182.19 28052.00 31879.22 28477.29 31564.56 25372.95 23083.68 26651.35 24183.26 30558.33 26175.80 25887.81 243
BH-w/o78.21 18077.33 18180.84 20788.81 14365.13 17784.87 21187.85 20969.75 18674.52 21784.74 25161.34 15693.11 16458.24 26285.84 14984.27 298
Vis-MVSNet (Re-imp)78.36 17778.45 15078.07 25488.64 14951.78 32086.70 16979.63 30374.14 11675.11 20890.83 10561.29 15889.75 24758.10 26391.60 7692.69 97
MVP-Stereo76.12 21974.46 22481.13 20285.37 21969.79 8784.42 22687.95 20565.03 24867.46 28185.33 24053.28 22191.73 20958.01 26483.27 17481.85 318
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 28473.16 33650.51 32863.05 33987.47 21664.28 30677.81 31517.80 34489.73 24857.88 26560.64 32785.49 285
TR-MVS77.44 19976.18 20381.20 19988.24 16163.24 21384.61 21986.40 22967.55 21977.81 14586.48 21754.10 21493.15 16157.75 26682.72 18387.20 257
F-COLMAP76.38 21774.33 22582.50 17289.28 12666.95 14788.41 11789.03 17764.05 25966.83 28988.61 15446.78 27892.89 17257.48 26778.55 22587.67 245
EG-PatchMatch MVS74.04 24071.82 24880.71 21084.92 22767.42 13685.86 19188.08 20266.04 23664.22 30783.85 26035.10 33192.56 18157.44 26880.83 20182.16 317
PatchmatchNetpermissive73.12 25071.33 25278.49 24983.18 25660.85 24479.63 27978.57 30764.13 25871.73 24379.81 30451.20 24385.97 29057.40 26976.36 25488.66 228
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 20576.80 19177.54 26386.24 20653.06 31787.52 14490.66 12777.08 5472.50 23488.67 15260.48 17289.52 25157.33 27070.74 30490.05 182
UnsupCasMVSNet_eth67.33 28865.99 29071.37 30273.48 33451.47 32375.16 31085.19 24165.20 24560.78 31880.93 29442.35 30477.20 32657.12 27153.69 33585.44 286
pmmvs571.55 26170.20 26275.61 27977.83 32056.39 29681.74 26180.89 28757.76 30867.46 28184.49 25249.26 26685.32 29557.08 27275.29 27185.11 291
TransMVSNet (Re)75.39 23174.56 22177.86 25585.50 21757.10 28586.78 16686.09 23572.17 14671.53 24587.34 18563.01 13189.31 25556.84 27361.83 32487.17 258
EPMVS69.02 28068.16 27471.59 30079.61 31349.80 33177.40 29966.93 33962.82 27170.01 25979.05 30645.79 28677.86 32456.58 27475.26 27287.13 260
tpm273.26 24871.46 25078.63 24483.34 25156.71 29180.65 27080.40 29656.63 31673.55 22382.02 28451.80 23891.24 22156.35 27578.42 22987.95 239
LTVRE_ROB69.57 1376.25 21874.54 22281.41 19188.60 15064.38 19079.24 28389.12 17670.76 16869.79 26687.86 17349.09 26793.20 15856.21 27680.16 21186.65 270
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 22273.93 22881.77 18488.71 14866.61 14988.62 11089.01 17969.81 18366.78 29086.70 20741.95 30991.51 21555.64 27778.14 23187.17 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 29364.71 29371.90 29981.45 28963.52 20657.98 34068.95 33853.57 32462.59 31576.70 31946.22 28275.29 33455.25 27879.68 21476.88 332
EPNet_dtu75.46 22874.86 21777.23 26882.57 27354.60 30886.89 16183.09 27071.64 15266.25 29585.86 22955.99 20088.04 27454.92 27986.55 13989.05 212
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet64.34 1872.08 25970.87 25875.69 27886.21 20756.44 29574.37 31580.73 29062.06 27970.17 25782.23 28242.86 30283.31 30454.77 28084.45 16087.32 254
ITE_SJBPF78.22 25181.77 28460.57 24783.30 26569.25 19567.54 28087.20 19136.33 32887.28 28154.34 28174.62 27886.80 266
MDTV_nov1_ep13_2view37.79 34375.16 31055.10 32166.53 29249.34 26453.98 28287.94 240
gg-mvs-nofinetune69.95 27567.96 27775.94 27683.07 25954.51 31077.23 30070.29 33263.11 26570.32 25462.33 33443.62 29888.69 26653.88 28387.76 12084.62 297
PatchMatch-RL72.38 25770.90 25676.80 27288.60 15067.38 13879.53 28076.17 31962.75 27269.36 26982.00 28545.51 28984.89 29653.62 28480.58 20578.12 329
Patchmtry70.74 26669.16 26675.49 28280.72 29854.07 31274.94 31480.30 29758.34 30570.01 25981.19 28752.50 22386.54 28553.37 28571.09 30385.87 284
USDC70.33 27168.37 27176.21 27580.60 30056.23 29979.19 28586.49 22760.89 28561.29 31685.47 23831.78 33689.47 25353.37 28576.21 25582.94 314
LF4IMVS64.02 30162.19 30369.50 31170.90 33953.29 31676.13 30277.18 31652.65 32758.59 32480.98 29223.55 34076.52 32853.06 28766.66 31678.68 328
PAPM77.68 19676.40 20181.51 18987.29 19261.85 23383.78 23789.59 15964.74 25171.23 24788.70 15062.59 13593.66 14152.66 28887.03 13289.01 214
tpm cat170.57 26868.31 27277.35 26582.41 27757.95 27378.08 29580.22 29952.04 32868.54 27577.66 31652.00 23387.84 27651.77 28972.07 29786.25 274
our_test_369.14 27967.00 28675.57 28079.80 31058.80 26277.96 29677.81 31159.55 29662.90 31478.25 31247.43 27383.97 29951.71 29067.58 31483.93 303
MDTV_nov1_ep1369.97 26383.18 25653.48 31577.10 30180.18 30060.45 28769.33 27080.44 29648.89 26986.90 28251.60 29178.51 227
JIA-IIPM66.32 29562.82 30276.82 27177.09 32561.72 23665.34 33575.38 32058.04 30764.51 30562.32 33542.05 30886.51 28651.45 29269.22 30982.21 316
MSDG73.36 24770.99 25580.49 21384.51 23265.80 16280.71 26986.13 23465.70 24065.46 29883.74 26444.60 29290.91 23151.13 29376.89 24284.74 294
PatchT68.46 28467.85 27970.29 30880.70 29943.93 33872.47 31874.88 32260.15 29170.55 25176.57 32049.94 25781.59 31050.58 29474.83 27685.34 287
GG-mvs-BLEND75.38 28381.59 28755.80 30379.32 28269.63 33467.19 28473.67 32743.24 29988.90 26550.41 29584.50 15881.45 320
AllTest70.96 26568.09 27679.58 23285.15 22263.62 20184.58 22079.83 30162.31 27660.32 32086.73 20032.02 33488.96 26350.28 29671.57 30086.15 277
TestCases79.58 23285.15 22263.62 20179.83 30162.31 27660.32 32086.73 20032.02 33488.96 26350.28 29671.57 30086.15 277
TAPA-MVS73.13 979.15 15877.94 16382.79 16689.59 11062.99 22188.16 13091.51 10565.77 23977.14 16191.09 9760.91 16593.21 15650.26 29887.05 13192.17 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 29762.91 30071.38 30175.85 32856.60 29369.12 32974.66 32657.28 31354.12 33377.87 31445.85 28574.48 33649.95 29961.52 32683.05 311
MDA-MVSNet_test_wron65.03 29762.92 29971.37 30275.93 32756.73 28969.09 33074.73 32457.28 31354.03 33477.89 31345.88 28474.39 33749.89 30061.55 32582.99 313
tpmvs71.09 26469.29 26576.49 27382.04 28156.04 30178.92 28881.37 28664.05 25967.18 28578.28 31149.74 26089.77 24649.67 30172.37 29383.67 304
ppachtmachnet_test70.04 27467.34 28578.14 25279.80 31061.13 24079.19 28580.59 29259.16 30065.27 30079.29 30546.75 27987.29 28049.33 30266.72 31586.00 283
UnsupCasMVSNet_bld63.70 30261.53 30570.21 30973.69 33351.39 32472.82 31781.89 28055.63 32057.81 32771.80 33038.67 32078.61 31949.26 30352.21 33780.63 322
dp66.80 29065.43 29170.90 30779.74 31248.82 33275.12 31274.77 32359.61 29564.08 30877.23 31742.89 30180.72 31348.86 30466.58 31783.16 309
FMVSNet569.50 27767.96 27774.15 29382.97 26455.35 30680.01 27682.12 27962.56 27463.02 31181.53 28636.92 32681.92 30948.42 30574.06 28285.17 290
thres100view90076.50 21275.55 20879.33 23589.52 11356.99 28685.83 19283.23 26773.94 11976.32 17787.12 19451.89 23691.95 20148.33 30683.75 16789.07 207
tfpn200view976.42 21575.37 21379.55 23489.13 13257.65 27885.17 20383.60 25873.41 13076.45 17286.39 21952.12 22991.95 20148.33 30683.75 16789.07 207
thres40076.50 21275.37 21379.86 22489.13 13257.65 27885.17 20383.60 25873.41 13076.45 17286.39 21952.12 22991.95 20148.33 30683.75 16790.00 183
LCM-MVSNet54.25 30849.68 31367.97 31753.73 34645.28 33666.85 33480.78 28935.96 34039.45 34062.23 3368.70 35178.06 32348.24 30951.20 33880.57 323
RPMNet71.62 26068.94 26879.67 22981.32 29465.19 17575.92 30578.30 30957.60 31072.73 23276.45 32152.30 22686.69 28348.14 31077.71 23287.11 261
thres600view776.50 21275.44 20979.68 22889.40 11757.16 28385.53 20083.23 26773.79 12376.26 17887.09 19551.89 23691.89 20448.05 31183.72 17090.00 183
TDRefinement67.49 28664.34 29476.92 27073.47 33561.07 24184.86 21282.98 27159.77 29458.30 32685.13 24526.06 33887.89 27547.92 31260.59 32881.81 319
thres20075.55 22774.47 22378.82 24287.78 17757.85 27583.07 25083.51 26172.44 14175.84 18884.42 25352.08 23191.75 20747.41 31383.64 17186.86 265
PVSNet_057.27 2061.67 30459.27 30668.85 31479.61 31357.44 28268.01 33173.44 32855.93 31958.54 32570.41 33144.58 29377.55 32547.01 31435.91 34071.55 335
DP-MVS76.78 20974.57 22083.42 13393.29 4769.46 9788.55 11383.70 25763.98 26170.20 25588.89 14754.01 21694.80 9546.66 31581.88 19286.01 281
COLMAP_ROBcopyleft66.92 1773.01 25170.41 26080.81 20887.13 19565.63 16588.30 12384.19 25262.96 26863.80 31087.69 17638.04 32392.56 18146.66 31574.91 27584.24 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 26769.30 26474.88 28684.52 23156.35 29875.87 30779.42 30464.59 25267.76 27782.41 27841.10 31181.54 31146.64 31781.34 19586.75 268
LS3D76.95 20774.82 21883.37 13690.45 9367.36 13989.15 9286.94 22261.87 28069.52 26790.61 10851.71 23994.53 10146.38 31886.71 13788.21 237
MDA-MVSNet-bldmvs66.68 29163.66 29675.75 27779.28 31660.56 24873.92 31678.35 30864.43 25450.13 33779.87 30344.02 29783.67 30146.10 31956.86 33183.03 312
new-patchmatchnet61.73 30361.73 30461.70 32172.74 33824.50 35169.16 32878.03 31061.40 28256.72 33075.53 32438.42 32176.48 32945.95 32057.67 33084.13 301
TinyColmap67.30 28964.81 29274.76 28881.92 28356.68 29280.29 27481.49 28560.33 28856.27 33283.22 26924.77 33987.66 27845.52 32169.47 30779.95 325
pmmvs357.79 30654.26 30968.37 31664.02 34356.72 29075.12 31265.17 34140.20 33652.93 33569.86 33220.36 34275.48 33345.45 32255.25 33472.90 334
OpenMVS_ROBcopyleft64.09 1970.56 26968.19 27377.65 26080.26 30359.41 25985.01 20882.96 27258.76 30365.43 29982.33 27937.63 32591.23 22245.34 32376.03 25682.32 315
test0.0.03 168.00 28567.69 28368.90 31377.55 32147.43 33375.70 30872.95 32966.66 22766.56 29182.29 28148.06 27175.87 33144.97 32474.51 27983.41 306
testgi66.67 29266.53 28967.08 31875.62 33041.69 34175.93 30476.50 31866.11 23465.20 30386.59 21135.72 33074.71 33543.71 32573.38 28984.84 293
Anonymous2023120668.60 28167.80 28171.02 30680.23 30450.75 32778.30 29480.47 29456.79 31566.11 29682.63 27746.35 28178.95 31843.62 32675.70 25983.36 307
tfpnnormal74.39 23573.16 23778.08 25386.10 20858.05 26984.65 21887.53 21470.32 17571.22 24885.63 23454.97 20489.86 24543.03 32775.02 27486.32 273
MIMVSNet168.58 28266.78 28873.98 29480.07 30651.82 31980.77 26884.37 24864.40 25559.75 32382.16 28336.47 32783.63 30242.73 32870.33 30586.48 272
test20.0367.45 28766.95 28768.94 31275.48 33144.84 33777.50 29877.67 31266.66 22763.01 31283.80 26247.02 27678.40 32042.53 32968.86 31283.58 305
ADS-MVSNet266.20 29663.33 29774.82 28779.92 30758.75 26367.55 33275.19 32153.37 32565.25 30175.86 32242.32 30580.53 31441.57 33068.91 31085.18 288
ADS-MVSNet64.36 30062.88 30168.78 31579.92 30747.17 33467.55 33271.18 33053.37 32565.25 30175.86 32242.32 30573.99 33841.57 33068.91 31085.18 288
Patchmatch-test64.82 29963.24 29869.57 31079.42 31549.82 33063.49 33869.05 33751.98 32959.95 32280.13 29950.91 24570.98 34040.66 33273.57 28787.90 241
MVS-HIRNet59.14 30557.67 30763.57 32081.65 28543.50 33971.73 32065.06 34239.59 33851.43 33657.73 33838.34 32282.58 30839.53 33373.95 28364.62 338
DSMNet-mixed57.77 30756.90 30860.38 32267.70 34135.61 34469.18 32753.97 34632.30 34357.49 32879.88 30240.39 31668.57 34238.78 33472.37 29376.97 331
N_pmnet52.79 31053.26 31051.40 32778.99 3187.68 35469.52 3253.89 35451.63 33057.01 32974.98 32540.83 31365.96 34337.78 33564.67 32180.56 324
test_040272.79 25470.44 25979.84 22588.13 16365.99 15885.93 18984.29 24965.57 24267.40 28385.49 23746.92 27792.61 17935.88 33674.38 28080.94 321
new_pmnet50.91 31150.29 31252.78 32668.58 34034.94 34663.71 33756.63 34539.73 33744.95 33865.47 33321.93 34158.48 34434.98 33756.62 33264.92 337
ANet_high50.57 31246.10 31463.99 31948.67 34939.13 34270.99 32380.85 28861.39 28331.18 34257.70 33917.02 34573.65 33931.22 33815.89 34679.18 327
PMMVS240.82 31538.86 31746.69 32853.84 34516.45 35248.61 34349.92 34737.49 33931.67 34160.97 3378.14 35256.42 34528.42 33930.72 34167.19 336
tmp_tt18.61 32021.40 32210.23 3344.82 35310.11 35334.70 34530.74 3521.48 34923.91 34626.07 34628.42 33713.41 35127.12 34015.35 3477.17 346
FPMVS53.68 30951.64 31159.81 32365.08 34251.03 32569.48 32669.58 33541.46 33540.67 33972.32 32916.46 34670.00 34124.24 34165.42 31958.40 339
Gipumacopyleft45.18 31341.86 31555.16 32577.03 32651.52 32232.50 34680.52 29332.46 34227.12 34335.02 3439.52 35075.50 33222.31 34260.21 32938.45 342
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 33240.17 35226.90 34924.59 35317.44 34723.95 34548.61 3419.77 34926.48 34918.06 34324.47 34228.83 343
PMVScopyleft37.38 2244.16 31440.28 31655.82 32440.82 35142.54 34065.12 33663.99 34434.43 34124.48 34457.12 3403.92 35376.17 33017.10 34455.52 33348.75 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 31825.89 32143.81 32944.55 35035.46 34528.87 34739.07 35018.20 34618.58 34740.18 3422.68 35447.37 34817.07 34523.78 34348.60 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 31630.64 31835.15 33052.87 34727.67 34857.09 34147.86 34824.64 34416.40 34833.05 34411.23 34854.90 34614.46 34618.15 34422.87 344
EMVS30.81 31729.65 31934.27 33150.96 34825.95 35056.58 34246.80 34924.01 34515.53 34930.68 34512.47 34754.43 34712.81 34717.05 34522.43 345
wuyk23d16.82 32115.94 32319.46 33358.74 34431.45 34739.22 3443.74 3556.84 3486.04 3502.70 3501.27 35524.29 35010.54 34814.40 3482.63 347
testmvs6.04 3248.02 3260.10 3360.08 3540.03 35669.74 3240.04 3560.05 3500.31 3511.68 3510.02 3570.04 3520.24 3490.02 3490.25 349
test1236.12 3238.11 3250.14 3350.06 3550.09 35571.05 3220.03 3570.04 3510.25 3521.30 3520.05 3560.03 3530.21 3500.01 3500.29 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34894.09 90.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k19.96 31926.61 3200.00 3370.00 3560.00 3570.00 34889.26 1690.00 3520.00 35388.61 15461.62 1510.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas5.26 3257.02 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35363.15 1270.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.23 3229.64 3240.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35386.72 2020.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE95.30 270.98 6494.06 1177.17 5093.10 195.39 982.99 197.27 7
save fliter93.80 3772.35 4290.47 5891.17 11774.31 110
test072695.27 571.25 5893.60 494.11 677.33 4592.81 395.79 380.98 7
GSMVS88.96 218
test_part295.06 772.65 3191.80 10
sam_mvs151.32 24288.96 218
sam_mvs50.01 255
MTGPAbinary92.02 82
test_post5.46 34850.36 25384.24 298
patchmatchnet-post74.00 32651.12 24488.60 267
MTMP92.18 3032.83 351
TEST993.26 4972.96 2488.75 10491.89 9168.44 21485.00 4693.10 5874.36 3095.41 67
test_893.13 5172.57 3488.68 10991.84 9468.69 21084.87 5293.10 5874.43 2795.16 77
agg_prior92.85 5771.94 5091.78 9784.41 5994.93 86
test_prior472.60 3389.01 95
test_prior86.33 6092.61 6569.59 9192.97 4895.48 6393.91 45
新几何286.29 181
旧先验191.96 7365.79 16386.37 23093.08 6269.31 7492.74 6888.74 227
原ACMM286.86 162
test22291.50 7968.26 12384.16 23083.20 26954.63 32379.74 11391.63 8358.97 18091.42 7986.77 267
segment_acmp73.08 39
testdata184.14 23175.71 83
test1286.80 5292.63 6470.70 7491.79 9682.71 8471.67 5196.16 4394.50 5193.54 68
plane_prior790.08 10168.51 119
plane_prior689.84 10668.70 11460.42 173
plane_prior491.00 102
plane_prior368.60 11778.44 3078.92 123
plane_prior291.25 4379.12 23
plane_prior189.90 105
plane_prior68.71 11290.38 6277.62 3686.16 145
n20.00 358
nn0.00 358
door-mid69.98 333
test1192.23 74
door69.44 336
HQP5-MVS66.98 144
HQP-NCC89.33 12089.17 8876.41 7077.23 158
ACMP_Plane89.33 12089.17 8876.41 7077.23 158
HQP4-MVS77.24 15795.11 7991.03 140
HQP3-MVS92.19 7785.99 147
HQP2-MVS60.17 176
NP-MVS89.62 10968.32 12190.24 113
ACMMP++_ref81.95 191
ACMMP++81.25 196
Test By Simon64.33 114