This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4299.52 699.05 16799.74 7099.68 4999.46 15299.52 9099.11 799.88 599.91 599.43 197.70 34998.72 10399.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6299.39 21398.91 3899.78 3199.85 2999.36 299.94 5498.84 8599.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2699.83 4299.28 399.97 1198.48 13999.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.64 7799.56 14499.72 4299.60 7599.70 13399.27 499.42 24898.24 16099.80 8499.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 599.96 1998.91 7199.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 599.76 175
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12399.41 17299.71 1398.98 2799.45 11399.78 9599.19 799.54 23299.28 3499.84 6599.63 124
SMA-MVScopyleft99.44 3099.30 4299.85 2599.73 7599.83 1499.56 10099.47 16097.45 18599.78 3199.82 4999.18 899.91 9198.79 9499.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3999.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15699.76 3799.75 11199.13 1099.92 8099.07 5599.92 1199.85 14
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8899.65 3297.84 14199.71 4699.80 7699.12 1199.97 1198.33 15599.87 4099.83 29
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8399.90 2399.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 5099.67 2298.15 10599.68 5399.69 14099.06 1399.96 1998.69 10899.87 4099.84 18
#test#99.43 3399.29 4699.86 1899.87 1599.80 2699.55 10999.67 2297.83 14299.68 5399.69 14099.06 1399.96 1998.39 14799.87 4099.84 18
TSAR-MVS + GP.99.36 5099.36 2199.36 12999.67 10198.61 18999.07 26599.33 24599.00 2299.82 2099.81 6299.06 1399.84 13699.09 5399.42 13699.65 113
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 37099.01 160.00 3700.00 3680.00 3680.00 366
PS-MVSNAJss98.92 11698.92 9998.90 19298.78 30298.53 19499.78 2299.54 7398.07 11999.00 21799.76 10699.01 1699.37 25599.13 4997.23 25298.81 223
PS-MVSNAJ99.32 5599.32 3199.30 14099.57 14098.94 15798.97 29399.46 17098.92 3799.71 4699.24 29099.01 1699.98 699.35 2499.66 11998.97 213
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12799.61 7499.45 18299.01 1899.89 499.82 4999.01 1699.92 8099.56 599.95 699.85 14
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9599.49 13899.46 17098.95 3299.83 1799.76 10699.01 1699.93 6999.17 4599.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8499.49 13899.49 13098.94 3399.83 1799.76 10699.01 1699.94 5499.15 4899.87 4099.80 49
Regformer-499.59 399.54 499.73 5899.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2299.94 5499.45 1999.92 1199.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12899.60 7599.45 18299.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
Regformer-399.57 799.53 599.68 6599.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2499.91 9199.44 2199.92 1199.83 29
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5799.66 2798.13 10799.66 6599.68 14698.96 2599.96 1998.62 11799.87 4099.84 18
segment_acmp98.96 25
CNVR-MVS99.42 3899.30 4299.78 4599.62 12699.71 4499.26 23199.52 9098.82 4499.39 13299.71 12998.96 2599.85 13198.59 12599.80 8499.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6999.14 25399.53 8499.00 2299.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
SF-MVS99.38 4899.24 5799.79 4399.79 4299.68 4999.57 9399.54 7397.82 14799.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 5099.67 2298.15 10599.67 6099.69 14098.95 2899.96 1998.69 10899.87 4099.84 18
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3199.96 1998.91 7199.84 6599.88 5
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2299.80 7698.94 3199.96 1998.93 6899.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 31
xiu_mvs_v2_base99.26 6599.25 5699.29 14399.53 14798.91 16199.02 27999.45 18298.80 4899.71 4699.26 28798.94 3199.98 699.34 2899.23 14898.98 212
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 9098.07 11999.53 9999.63 17398.93 3599.97 1198.74 9999.91 1699.83 29
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11899.55 9699.64 16698.91 3699.96 1998.72 10399.90 2399.82 36
MCST-MVS99.43 3399.30 4299.82 3599.79 4299.74 4199.29 21599.40 20998.79 4999.52 10199.62 17998.91 3699.90 10698.64 11599.75 9899.82 36
HPM-MVScopyleft99.42 3899.28 5099.83 3399.90 399.72 4299.81 1399.54 7397.59 16899.68 5399.63 17398.91 3699.94 5498.58 12699.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9399.75 6298.95 15499.51 10397.07 22399.43 11899.70 13398.87 3999.94 5497.76 20099.64 12399.72 87
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6299.54 7398.36 8199.79 2699.82 4998.86 4099.95 4398.62 11799.81 8099.78 61
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6999.36 19699.46 17099.07 1399.79 2699.82 4998.85 4199.92 8098.68 11099.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7199.72 8099.40 18099.51 10397.53 17899.64 7299.78 9598.84 4299.91 9197.63 21399.82 78
CDPH-MVS99.13 8198.91 10199.80 4099.75 6299.71 4499.15 25199.41 20396.60 25999.60 8499.55 20298.83 4399.90 10697.48 22999.83 7299.78 61
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12499.76 3799.86 2398.82 4499.93 6998.82 9299.91 1699.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13799.74 11798.81 4599.94 5498.79 9499.86 5199.84 18
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13764.01 36898.81 4599.94 5498.79 9499.86 5199.84 18
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21199.60 8499.79 8898.79 4799.95 4398.83 8899.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3099.30 4299.86 1899.88 1199.79 3099.69 3799.48 14298.12 10999.50 10499.75 11198.78 4899.97 1198.57 12899.89 3399.83 29
APD-MVScopyleft99.27 6299.08 7499.84 3299.75 6299.79 3099.50 12899.50 12297.16 21399.77 3399.82 4998.78 4899.94 5497.56 22299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 24597.34 26598.94 18299.70 9397.53 24699.25 23399.51 10391.90 34299.30 15199.63 17398.78 4899.64 21888.09 35399.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10199.65 5799.05 27099.41 20396.22 28798.95 22399.49 22498.77 5199.91 91
agg_prior199.01 10998.76 12299.76 5099.67 10199.62 6198.99 28699.40 20996.26 28398.87 23699.49 22498.77 5199.91 9197.69 21099.72 10599.75 69
train_agg99.02 10698.77 12099.77 4799.67 10199.65 5799.05 27099.41 20396.28 28098.95 22399.49 22498.76 5399.91 9197.63 21399.72 10599.75 69
test_899.67 10199.61 6399.03 27699.41 20396.28 28098.93 22799.48 23098.76 5399.91 91
API-MVS99.04 10399.03 8199.06 16599.40 18699.31 10799.55 10999.56 5698.54 6399.33 14799.39 25698.76 5399.78 16996.98 26199.78 9098.07 332
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.75 5698.61 12099.81 8099.77 63
DP-MVS Recon99.12 8798.95 9799.65 7299.74 7099.70 4699.27 22299.57 5196.40 27699.42 12199.68 14698.75 5699.80 16197.98 18299.72 10599.44 169
Test By Simon98.75 56
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6899.69 1898.12 10999.63 7399.84 3898.73 5999.96 1998.55 13499.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6099.96 1998.16 16899.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5299.19 6399.79 4399.61 13099.65 5799.30 21199.48 14298.86 4099.21 17599.63 17398.72 6099.90 10698.25 15999.63 12599.80 49
DeepPCF-MVS98.18 398.81 13399.37 1997.12 31799.60 13491.75 35298.61 32999.44 19199.35 199.83 1799.85 2998.70 6299.81 15699.02 5999.91 1699.81 41
SR-MVS99.43 3399.29 4699.86 1899.75 6299.83 1499.59 8199.62 3398.21 10099.73 4399.79 8898.68 6399.96 1998.44 14599.77 9399.79 53
test_prior399.21 6999.05 7699.68 6599.67 10199.48 8998.96 29499.56 5698.34 8499.01 21299.52 21498.68 6399.83 14597.96 18399.74 10199.74 74
test_prior298.96 29498.34 8499.01 21299.52 21498.68 6397.96 18399.74 101
DPM-MVS98.95 11498.71 12699.66 6899.63 12099.55 7698.64 32899.10 28997.93 13399.42 12199.55 20298.67 6699.80 16195.80 29699.68 11699.61 128
原ACMM199.65 7299.73 7599.33 10399.47 16097.46 18299.12 19199.66 15898.67 6699.91 9197.70 20999.69 11199.71 94
HPM-MVS++copyleft99.39 4799.23 5999.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 15999.53 21198.64 6899.96 1998.44 14599.80 8499.79 53
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 5099.59 4398.13 10799.82 2099.81 6298.60 6999.96 1998.46 14399.88 3699.79 53
ZD-MVS99.71 8699.79 3099.61 3596.84 24199.56 9299.54 20798.58 7099.96 1996.93 26699.75 98
PHI-MVS99.30 5799.17 6599.70 6499.56 14499.52 8499.58 8899.80 897.12 21799.62 7799.73 12498.58 7099.90 10698.61 12099.91 1699.68 103
test117299.43 3399.29 4699.85 2599.75 6299.82 2099.60 7599.56 5698.28 9199.74 4199.79 8898.53 7299.95 4398.55 13499.78 9099.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.53 7299.95 4398.61 12099.81 8099.77 63
GST-MVS99.40 4599.24 5799.85 2599.86 2199.79 3099.60 7599.67 2297.97 13099.63 7399.68 14698.52 7499.95 4398.38 14999.86 5199.81 41
ETH3D-3000-0.199.21 6999.02 8499.77 4799.73 7599.69 4799.38 18999.51 10397.45 18599.61 8099.75 11198.51 7599.91 9197.45 23499.83 7299.71 94
MVS_111021_LR99.41 4299.33 2999.65 7299.77 4999.51 8698.94 30099.85 698.82 4499.65 7099.74 11798.51 7599.80 16198.83 8899.89 3399.64 120
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9198.95 29899.85 698.82 4499.54 9799.73 12498.51 7599.74 17998.91 7199.88 3699.77 63
旧先验199.74 7099.59 6999.54 7399.69 14098.47 7899.68 11699.73 81
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 10099.05 27099.66 2799.14 699.57 9199.80 7698.46 7999.94 5499.57 499.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 15098.34 15999.51 10799.40 18699.03 14098.80 31399.36 22996.33 27799.00 21799.12 30598.46 7999.84 13695.23 30999.37 14299.66 109
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
新几何199.75 5199.75 6299.59 6999.54 7396.76 24599.29 15499.64 16698.43 8199.94 5496.92 26899.66 11999.72 87
F-COLMAP99.19 7199.04 7999.64 7799.78 4499.27 11299.42 17099.54 7397.29 20199.41 12599.59 18998.42 8499.93 6998.19 16399.69 11199.73 81
ETV-MVS99.26 6599.21 6199.40 12499.46 17099.30 10899.56 10099.52 9098.52 6599.44 11799.27 28698.41 8599.86 12599.10 5299.59 12899.04 205
112199.09 9698.87 10699.75 5199.74 7099.60 6599.27 22299.48 14296.82 24499.25 16699.65 15998.38 8699.93 6997.53 22599.67 11899.73 81
test1299.75 5199.64 11799.61 6399.29 26599.21 17598.38 8699.89 11499.74 10199.74 74
CSCG99.32 5599.32 3199.32 13599.85 2598.29 21299.71 3499.66 2798.11 11199.41 12599.80 7698.37 8899.96 1998.99 6199.96 599.72 87
CS-MVS99.34 5299.31 3899.43 12299.44 17699.47 9199.68 4299.56 5698.41 7599.62 7799.41 24898.35 8999.76 17599.52 799.76 9699.05 204
PAPM_NR99.04 10398.84 11299.66 6899.74 7099.44 9599.39 18499.38 21997.70 15899.28 15699.28 28398.34 9099.85 13196.96 26399.45 13499.69 99
TAMVS99.12 8799.08 7499.24 15199.46 17098.55 19299.51 12299.46 17098.09 11499.45 11399.82 4998.34 9099.51 23398.70 10598.93 17399.67 106
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6199.51 15299.60 6599.23 23699.44 19197.04 22699.39 13299.67 15298.30 9299.92 8097.27 24199.69 11199.64 120
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11499.48 10899.74 11798.29 9399.96 1997.93 18699.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6299.49 8898.91 30399.49 13096.42 27499.34 14699.65 15998.28 9499.69 11199.72 87
CS-MVS-test99.27 6299.22 6099.40 12499.39 18999.60 6599.67 4599.56 5698.30 8999.47 10999.25 28898.27 9599.79 16499.41 2299.66 11998.81 223
PLCcopyleft97.94 499.02 10698.85 11199.53 9999.66 11099.01 14399.24 23599.52 9096.85 24099.27 15999.48 23098.25 9699.91 9197.76 20099.62 12699.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 3899.27 5299.88 699.89 899.80 2699.67 4599.50 12298.70 5599.77 3399.49 22498.21 9799.95 4398.46 14399.77 9399.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet99.40 4599.35 2499.55 9299.52 14999.50 8799.84 699.58 4998.35 8299.68 5399.64 16698.19 9899.71 19699.59 199.80 8499.43 171
xiu_mvs_v1_base_debu99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base_debi99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
testtj99.12 8798.87 10699.86 1899.72 8099.79 3099.44 15799.51 10397.29 20199.59 8799.74 11798.15 10299.96 1996.74 27499.69 11199.81 41
EIA-MVS99.18 7399.09 7399.45 11799.49 16199.18 12099.67 4599.53 8497.66 16499.40 13099.44 23998.10 10399.81 15698.94 6699.62 12699.35 178
CNLPA99.14 7998.99 8999.59 8499.58 13899.41 9899.16 24799.44 19198.45 7199.19 18199.49 22498.08 10499.89 11497.73 20499.75 9899.48 159
114514_t98.93 11598.67 13099.72 6199.85 2599.53 8199.62 6899.59 4392.65 34099.71 4699.78 9598.06 10599.90 10698.84 8599.91 1699.74 74
CDS-MVSNet99.09 9699.03 8199.25 14999.42 17898.73 17899.45 15399.46 17098.11 11199.46 11299.77 10298.01 10699.37 25598.70 10598.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 8199.02 8499.45 11799.57 14098.63 18699.07 26599.34 23898.99 2599.61 8099.82 4997.98 10799.87 12297.00 25999.80 8499.85 14
EI-MVSNet98.67 14698.67 13098.68 22599.35 19697.97 22799.50 12899.38 21996.93 23799.20 17899.83 4297.87 10899.36 25998.38 14997.56 23298.71 243
IterMVS-LS98.46 15598.42 15498.58 23299.59 13698.00 22599.37 19299.43 19996.94 23699.07 20399.59 18997.87 10899.03 31098.32 15795.62 29098.71 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 11198.80 11799.53 9999.76 5299.19 11898.75 31899.55 6697.25 20599.47 10999.77 10297.82 11099.87 12296.93 26699.90 2399.54 143
OMC-MVS99.08 9899.04 7999.20 15499.67 10198.22 21699.28 21799.52 9098.07 11999.66 6599.81 6297.79 11199.78 16997.79 19799.81 8099.60 130
LS3D99.27 6299.12 6999.74 5699.18 24099.75 3899.56 10099.57 5198.45 7199.49 10799.85 2997.77 11299.94 5498.33 15599.84 6599.52 148
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8299.86 2199.07 13799.47 14999.93 297.66 16499.71 4699.86 2397.73 11399.96 1999.47 1799.82 7899.79 53
131498.68 14598.54 14999.11 16298.89 28698.65 18499.27 22299.49 13096.89 23897.99 30999.56 19997.72 11499.83 14597.74 20399.27 14698.84 222
MVS_Test99.10 9598.97 9399.48 11199.49 16199.14 12899.67 4599.34 23897.31 19999.58 8999.76 10697.65 11599.82 15298.87 7899.07 16399.46 166
PVSNet_BlendedMVS98.86 12198.80 11799.03 17099.76 5298.79 17599.28 21799.91 397.42 19199.67 6099.37 26097.53 11699.88 11998.98 6297.29 25198.42 315
PVSNet_Blended99.08 9898.97 9399.42 12399.76 5298.79 17598.78 31599.91 396.74 24699.67 6099.49 22497.53 11699.88 11998.98 6299.85 5899.60 130
UA-Net99.42 3899.29 4699.80 4099.62 12699.55 7699.50 12899.70 1598.79 4999.77 3399.96 197.45 11899.96 1998.92 7099.90 2399.89 2
ETH3 D test640098.70 14298.35 15899.73 5899.69 9699.60 6599.16 24799.45 18295.42 30999.27 15999.60 18697.39 11999.91 9195.36 30799.83 7299.70 96
MVSFormer99.17 7599.12 6999.29 14399.51 15298.94 15799.88 199.46 17097.55 17399.80 2499.65 15997.39 11999.28 27399.03 5799.85 5899.65 113
lupinMVS99.13 8199.01 8899.46 11699.51 15298.94 15799.05 27099.16 28397.86 13799.80 2499.56 19997.39 11999.86 12598.94 6699.85 5899.58 138
DP-MVS99.16 7798.95 9799.78 4599.77 4999.53 8199.41 17299.50 12297.03 22899.04 20999.88 1597.39 11999.92 8098.66 11399.90 2399.87 10
sss99.17 7599.05 7699.53 9999.62 12698.97 14899.36 19699.62 3397.83 14299.67 6099.65 15997.37 12399.95 4399.19 4299.19 15199.68 103
mvs_anonymous99.03 10598.99 8999.16 15899.38 19198.52 19899.51 12299.38 21997.79 14899.38 13599.81 6297.30 12499.45 23899.35 2498.99 17099.51 154
miper_ehance_all_eth98.18 17998.10 17398.41 25499.23 22797.72 24298.72 32199.31 25696.60 25998.88 23499.29 28197.29 12599.13 29797.60 21595.99 27998.38 320
CPTT-MVS99.11 9298.90 10299.74 5699.80 4199.46 9399.59 8199.49 13097.03 22899.63 7399.69 14097.27 12699.96 1997.82 19599.84 6599.81 41
PMMVS98.80 13698.62 14099.34 13099.27 21998.70 18098.76 31799.31 25697.34 19699.21 17599.07 30797.20 12799.82 15298.56 13198.87 17899.52 148
EPP-MVSNet99.13 8198.99 8999.53 9999.65 11599.06 13899.81 1399.33 24597.43 18999.60 8499.88 1597.14 12899.84 13699.13 4998.94 17299.69 99
cl_fuxian98.12 18798.04 18198.38 25899.30 21097.69 24598.81 31299.33 24596.67 25198.83 24299.34 26997.11 12998.99 31697.58 21795.34 29698.48 306
canonicalmvs99.02 10698.86 11099.51 10799.42 17899.32 10499.80 1799.48 14298.63 5899.31 14998.81 32597.09 13099.75 17899.27 3697.90 22099.47 164
MAR-MVS98.86 12198.63 13599.54 9399.37 19399.66 5499.45 15399.54 7396.61 25799.01 21299.40 25297.09 13099.86 12597.68 21299.53 13299.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 18198.08 17798.41 25498.96 28197.72 24298.45 33899.32 25396.95 23498.97 22199.17 29797.06 13299.22 28397.86 19195.99 27998.29 323
jason99.13 8199.03 8199.45 11799.46 17098.87 16499.12 25599.26 26898.03 12799.79 2699.65 15997.02 13399.85 13199.02 5999.90 2399.65 113
jason: jason.
our_test_397.65 26197.68 22197.55 30798.62 32094.97 32898.84 30999.30 26096.83 24398.19 30099.34 26997.01 13499.02 31295.00 31396.01 27798.64 275
MVS97.28 28096.55 28899.48 11198.78 30298.95 15499.27 22299.39 21383.53 35598.08 30499.54 20796.97 13599.87 12294.23 32199.16 15299.63 124
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22899.41 18196.99 27399.52 11899.49 13098.11 11199.24 16799.34 26996.96 13699.79 16497.95 18599.45 13499.02 208
1112_ss98.98 11198.77 12099.59 8499.68 10099.02 14199.25 23399.48 14297.23 20899.13 18999.58 19296.93 13799.90 10698.87 7898.78 18499.84 18
WTY-MVS99.06 10098.88 10599.61 8299.62 12699.16 12399.37 19299.56 5698.04 12599.53 9999.62 17996.84 13899.94 5498.85 8398.49 19799.72 87
FC-MVSNet-test98.75 14098.62 14099.15 16099.08 26299.45 9499.86 599.60 4098.23 9798.70 26199.82 4996.80 13999.22 28399.07 5596.38 27098.79 226
Effi-MVS+-dtu98.78 13798.89 10498.47 24799.33 20196.91 27999.57 9399.30 26098.47 6899.41 12598.99 31696.78 14099.74 17998.73 10199.38 13898.74 239
mvs-test198.86 12198.84 11298.89 19599.33 20197.77 23999.44 15799.30 26098.47 6899.10 19699.43 24196.78 14099.95 4398.73 10199.02 16898.96 215
Test_1112_low_res98.89 11798.66 13399.57 8899.69 9698.95 15499.03 27699.47 16096.98 23099.15 18799.23 29196.77 14299.89 11498.83 8898.78 18499.86 11
FIs98.78 13798.63 13599.23 15399.18 24099.54 7899.83 1099.59 4398.28 9198.79 24899.81 6296.75 14399.37 25599.08 5496.38 27098.78 227
PVSNet96.02 1798.85 12998.84 11298.89 19599.73 7597.28 25298.32 34599.60 4097.86 13799.50 10499.57 19696.75 14399.86 12598.56 13199.70 11099.54 143
nrg03098.64 14998.42 15499.28 14699.05 26899.69 4799.81 1399.46 17098.04 12599.01 21299.82 4996.69 14599.38 25299.34 2894.59 31098.78 227
CHOSEN 280x42099.12 8799.13 6899.08 16399.66 11097.89 23398.43 33999.71 1398.88 3999.62 7799.76 10696.63 14699.70 20399.46 1899.99 199.66 109
eth_miper_zixun_eth98.05 19797.96 19098.33 26199.26 22197.38 25098.56 33499.31 25696.65 25398.88 23499.52 21496.58 14799.12 30197.39 23895.53 29398.47 308
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3520.00 3730.00 3740.00 36499.51 1030.00 3690.00 37099.56 19996.58 1470.00 3700.00 3680.00 3680.00 366
IS-MVSNet99.05 10298.87 10699.57 8899.73 7599.32 10499.75 2899.20 27898.02 12899.56 9299.86 2396.54 14999.67 20898.09 17299.13 15699.73 81
diffmvs99.14 7999.02 8499.51 10799.61 13098.96 15299.28 21799.49 13098.46 7099.72 4599.71 12996.50 15099.88 11999.31 3199.11 15799.67 106
CANet99.25 6799.14 6799.59 8499.41 18199.16 12399.35 20299.57 5198.82 4499.51 10399.61 18396.46 15199.95 4399.59 199.98 299.65 113
ppachtmachnet_test97.49 27497.45 24597.61 30498.62 32095.24 32298.80 31399.46 17096.11 29898.22 29999.62 17996.45 15298.97 32493.77 32595.97 28298.61 294
HY-MVS97.30 798.85 12998.64 13499.47 11499.42 17899.08 13599.62 6899.36 22997.39 19499.28 15699.68 14696.44 15399.92 8098.37 15198.22 20699.40 175
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 17998.92 28498.98 14599.48 14499.53 8497.76 15198.71 25599.46 23796.43 15499.22 28398.57 12892.87 33398.69 251
Effi-MVS+98.81 13398.59 14699.48 11199.46 17099.12 13298.08 35199.50 12297.50 18199.38 13599.41 24896.37 15599.81 15699.11 5198.54 19499.51 154
AdaColmapbinary99.01 10998.80 11799.66 6899.56 14499.54 7899.18 24599.70 1598.18 10499.35 14399.63 17396.32 15699.90 10697.48 22999.77 9399.55 141
UniMVSNet (Re)98.29 17098.00 18599.13 16199.00 27499.36 10299.49 13899.51 10397.95 13198.97 22199.13 30296.30 15799.38 25298.36 15393.34 32698.66 271
LCM-MVSNet-Re97.83 22898.15 16996.87 32399.30 21092.25 35199.59 8198.26 34097.43 18996.20 33899.13 30296.27 15898.73 33398.17 16798.99 17099.64 120
PAPM97.59 26497.09 28099.07 16499.06 26598.26 21598.30 34699.10 28994.88 31898.08 30499.34 26996.27 15899.64 21889.87 34798.92 17599.31 182
Fast-Effi-MVS+98.70 14298.43 15399.51 10799.51 15299.28 11099.52 11899.47 16096.11 29899.01 21299.34 26996.20 16099.84 13697.88 18998.82 18199.39 176
EPNet_dtu98.03 19897.96 19098.23 27198.27 33295.54 31599.23 23698.75 32299.02 1597.82 31499.71 12996.11 16199.48 23493.04 33499.65 12299.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7899.02 8499.53 9999.66 11099.14 12899.72 3299.48 14298.35 8299.42 12199.84 3896.07 16299.79 16499.51 999.14 15599.67 106
D2MVS98.41 16098.50 15098.15 27699.26 22196.62 28999.40 18099.61 3597.71 15798.98 21999.36 26396.04 16399.67 20898.70 10597.41 24798.15 330
miper_lstm_enhance98.00 20597.91 19698.28 26999.34 20097.43 24998.88 30599.36 22996.48 26998.80 24699.55 20295.98 16498.91 32897.27 24195.50 29498.51 304
EPNet98.86 12198.71 12699.30 14097.20 34898.18 21799.62 6898.91 31199.28 298.63 27299.81 6295.96 16599.99 199.24 3899.72 10599.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11898.72 12499.31 13699.86 2198.48 20499.56 10099.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
TestCases99.31 13699.86 2198.48 20499.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
3Dnovator97.25 999.24 6899.05 7699.81 3899.12 25399.66 5499.84 699.74 1099.09 1098.92 22899.90 795.94 16899.98 698.95 6599.92 1199.79 53
casdiffmvs99.13 8198.98 9299.56 9099.65 11599.16 12399.56 10099.50 12298.33 8799.41 12599.86 2395.92 16999.83 14599.45 1999.16 15299.70 96
RPSCF98.22 17398.62 14096.99 31899.82 3791.58 35399.72 3299.44 19196.61 25799.66 6599.89 1095.92 16999.82 15297.46 23299.10 16099.57 139
pmmvs498.13 18597.90 19798.81 21398.61 32298.87 16498.99 28699.21 27796.44 27299.06 20799.58 19295.90 17199.11 30297.18 25196.11 27698.46 312
HyFIR lowres test99.11 9298.92 9999.65 7299.90 399.37 10199.02 27999.91 397.67 16399.59 8799.75 11195.90 17199.73 18699.53 699.02 16899.86 11
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15799.88 1198.53 19499.34 20599.59 4397.55 17398.70 26199.89 1095.83 17399.90 10698.10 17199.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5799.19 6399.64 7799.82 3799.23 11699.62 6899.55 6698.94 3399.63 7399.95 295.82 17499.94 5499.37 2399.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14698.30 16399.80 4099.20 23599.67 5299.77 2499.72 1194.74 32198.73 25399.90 795.78 17599.98 696.96 26399.88 3699.76 68
BH-untuned98.42 15898.36 15698.59 22999.49 16196.70 28599.27 22299.13 28797.24 20798.80 24699.38 25795.75 17699.74 17997.07 25799.16 15299.33 181
test_djsdf98.67 14698.57 14798.98 17698.70 31398.91 16199.88 199.46 17097.55 17399.22 17299.88 1595.73 17799.28 27399.03 5797.62 22798.75 235
cl-mvsnet198.01 20397.85 20398.48 24399.24 22697.95 23198.71 32299.35 23496.50 26498.60 27799.54 20795.72 17899.03 31097.21 24595.77 28598.46 312
bset_n11_16_dypcd98.16 18197.97 18898.73 22098.26 33398.28 21497.99 35398.01 34697.68 16099.10 19699.63 17395.68 17999.15 29398.78 9796.55 26598.75 235
3Dnovator+97.12 1399.18 7398.97 9399.82 3599.17 24699.68 4999.81 1399.51 10399.20 498.72 25499.89 1095.68 17999.97 1198.86 8199.86 5199.81 41
cl-mvsnet____98.01 20397.84 20498.55 23799.25 22597.97 22798.71 32299.34 23896.47 27198.59 27899.54 20795.65 18199.21 28897.21 24595.77 28598.46 312
VNet99.11 9298.90 10299.73 5899.52 14999.56 7499.41 17299.39 21399.01 1899.74 4199.78 9595.56 18299.92 8099.52 798.18 21099.72 87
WR-MVS_H98.13 18597.87 20298.90 19299.02 27298.84 16899.70 3599.59 4397.27 20398.40 28999.19 29695.53 18399.23 28098.34 15493.78 32298.61 294
CHOSEN 1792x268899.19 7199.10 7199.45 11799.89 898.52 19899.39 18499.94 198.73 5399.11 19399.89 1095.50 18499.94 5499.50 1099.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13699.71 8698.88 16399.80 1799.44 19197.91 13599.36 14099.78 9595.49 18599.43 24797.91 18799.11 15799.62 126
PatchMatch-RL98.84 13298.62 14099.52 10599.71 8699.28 11099.06 26899.77 997.74 15599.50 10499.53 21195.41 18699.84 13697.17 25299.64 12399.44 169
RRT_MVS98.60 15198.44 15299.05 16798.88 28799.14 12899.49 13899.38 21997.76 15199.29 15499.86 2395.38 18799.36 25998.81 9397.16 25698.64 275
test_yl98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
DCV-MVSNet98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
tpmrst98.33 16698.48 15197.90 29299.16 24894.78 33299.31 20999.11 28897.27 20399.45 11399.59 18995.33 19099.84 13698.48 13998.61 18799.09 196
MVP-Stereo97.81 23397.75 21597.99 28697.53 34196.60 29098.96 29498.85 31797.22 20997.23 32599.36 26395.28 19199.46 23795.51 30299.78 9097.92 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11398.87 10699.25 14999.33 20198.42 20999.08 26499.30 26099.16 599.43 11899.75 11195.27 19299.97 1198.56 13199.95 699.36 177
XVG-OURS98.73 14198.68 12998.88 19899.70 9397.73 24198.92 30199.55 6698.52 6599.45 11399.84 3895.27 19299.91 9198.08 17698.84 18099.00 209
BH-w/o98.00 20597.89 20198.32 26399.35 19696.20 30299.01 28498.90 31396.42 27498.38 29099.00 31595.26 19499.72 19096.06 29098.61 18799.03 206
EU-MVSNet97.98 20798.03 18297.81 29898.72 31096.65 28899.66 5099.66 2798.09 11498.35 29399.82 4995.25 19598.01 34297.41 23795.30 29798.78 227
GeoE98.85 12998.62 14099.53 9999.61 13099.08 13599.80 1799.51 10397.10 22199.31 14999.78 9595.23 19699.77 17198.21 16199.03 16699.75 69
MDTV_nov1_ep13_2view95.18 32599.35 20296.84 24199.58 8995.19 19797.82 19599.46 166
JIA-IIPM97.50 27197.02 28298.93 18498.73 30897.80 23899.30 21198.97 30291.73 34398.91 22994.86 35695.10 19899.71 19697.58 21797.98 21899.28 184
NR-MVSNet97.97 21097.61 22899.02 17198.87 29199.26 11399.47 14999.42 20197.63 16697.08 33099.50 22195.07 19999.13 29797.86 19193.59 32498.68 256
tpmvs97.98 20798.02 18497.84 29599.04 26994.73 33399.31 20999.20 27896.10 30298.76 25199.42 24494.94 20099.81 15696.97 26298.45 19898.97 213
hse-mvs397.70 25397.28 27198.97 17899.70 9397.27 25399.36 19699.45 18298.94 3399.66 6599.64 16694.93 20199.99 199.48 1584.36 35099.65 113
hse-mvs297.50 27197.14 27898.59 22999.49 16197.05 26699.28 21799.22 27498.94 3399.66 6599.42 24494.93 20199.65 21599.48 1583.80 35299.08 197
v897.95 21197.63 22798.93 18498.95 28298.81 17499.80 1799.41 20396.03 30399.10 19699.42 24494.92 20399.30 27196.94 26594.08 31998.66 271
PatchmatchNetpermissive98.31 16798.36 15698.19 27399.16 24895.32 32199.27 22298.92 30897.37 19599.37 13799.58 19294.90 20499.70 20397.43 23699.21 14999.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 22097.52 23698.92 18698.76 30698.58 19099.84 699.46 17096.20 28898.91 22999.70 13394.89 20599.44 24396.03 29193.89 32198.75 235
sam_mvs194.86 20699.52 148
DU-MVS98.08 19197.79 20698.96 17998.87 29198.98 14599.41 17299.45 18297.87 13698.71 25599.50 22194.82 20799.22 28398.57 12892.87 33398.68 256
Baseline_NR-MVSNet97.76 23897.45 24598.68 22599.09 26098.29 21299.41 17298.85 31795.65 30798.63 27299.67 15294.82 20799.10 30498.07 17992.89 33298.64 275
patchmatchnet-post98.70 33094.79 20999.74 179
Patchmatch-RL test95.84 30595.81 30395.95 33195.61 35490.57 35498.24 34798.39 33995.10 31595.20 34498.67 33194.78 21097.77 34796.28 28890.02 34299.51 154
alignmvs98.81 13398.56 14899.58 8799.43 17799.42 9799.51 12298.96 30498.61 6099.35 14398.92 32294.78 21099.77 17199.35 2498.11 21699.54 143
MDTV_nov1_ep1398.32 16199.11 25594.44 33599.27 22298.74 32597.51 18099.40 13099.62 17994.78 21099.76 17597.59 21698.81 183
Vis-MVSNetpermissive99.12 8798.97 9399.56 9099.78 4499.10 13399.68 4299.66 2798.49 6799.86 1199.87 2094.77 21399.84 13699.19 4299.41 13799.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15698.28 16498.94 18298.50 32898.96 15299.77 2499.50 12297.07 22398.87 23699.77 10294.76 21499.28 27398.66 11397.60 22898.57 300
v1097.85 22397.52 23698.86 20598.99 27598.67 18299.75 2899.41 20395.70 30698.98 21999.41 24894.75 21599.23 28096.01 29294.63 30998.67 263
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10599.04 26999.53 8199.82 1199.72 1194.56 32498.08 30499.88 1594.73 21699.98 697.47 23199.76 9699.06 203
sam_mvs94.72 217
v14897.79 23697.55 23298.50 24098.74 30797.72 24299.54 11299.33 24596.26 28398.90 23199.51 21894.68 21899.14 29497.83 19493.15 33098.63 283
v114497.98 20797.69 22098.85 20898.87 29198.66 18399.54 11299.35 23496.27 28299.23 17199.35 26694.67 21999.23 28096.73 27595.16 30098.68 256
V4298.06 19297.79 20698.86 20598.98 27898.84 16899.69 3799.34 23896.53 26399.30 15199.37 26094.67 21999.32 26897.57 22194.66 30898.42 315
test_post65.99 36694.65 22199.73 186
baseline198.31 16797.95 19299.38 12899.50 15998.74 17799.59 8198.93 30698.41 7599.14 18899.60 18694.59 22299.79 16498.48 13993.29 32799.61 128
DSMNet-mixed97.25 28197.35 26296.95 32197.84 33893.61 34599.57 9396.63 35996.13 29798.87 23698.61 33494.59 22297.70 34995.08 31198.86 17999.55 141
Patchmatch-test97.93 21297.65 22498.77 21899.18 24097.07 26499.03 27699.14 28696.16 29398.74 25299.57 19694.56 22499.72 19093.36 33099.11 15799.52 148
PCF-MVS97.08 1497.66 26097.06 28199.47 11499.61 13099.09 13498.04 35299.25 27091.24 34598.51 28199.70 13394.55 22599.91 9192.76 33899.85 5899.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 28696.44 29098.79 21698.99 27598.34 21199.16 24799.07 29492.13 34199.52 10197.31 35194.54 22698.98 31788.54 35198.73 18699.03 206
CVMVSNet98.57 15298.67 13098.30 26599.35 19695.59 31299.50 12899.55 6698.60 6199.39 13299.83 4294.48 22799.45 23898.75 9898.56 19399.85 14
test-LLR98.06 19297.90 19798.55 23798.79 29997.10 26098.67 32497.75 34997.34 19698.61 27598.85 32394.45 22899.45 23897.25 24399.38 13899.10 192
test0.0.03 197.71 25297.42 25498.56 23598.41 33197.82 23798.78 31598.63 33497.34 19698.05 30898.98 31994.45 22898.98 31795.04 31297.15 25798.89 219
v14419297.92 21597.60 22998.87 20298.83 29798.65 18499.55 10999.34 23896.20 28899.32 14899.40 25294.36 23099.26 27796.37 28795.03 30398.70 247
CR-MVSNet98.17 18097.93 19598.87 20299.18 24098.49 20299.22 24199.33 24596.96 23299.56 9299.38 25794.33 23199.00 31594.83 31598.58 19099.14 189
Patchmtry97.75 24297.40 25698.81 21399.10 25898.87 16499.11 26199.33 24594.83 31998.81 24499.38 25794.33 23199.02 31296.10 28995.57 29198.53 302
tpm cat197.39 27797.36 26097.50 30999.17 24693.73 34199.43 16399.31 25691.27 34498.71 25599.08 30694.31 23399.77 17196.41 28698.50 19699.00 209
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 21998.78 30298.62 18799.65 5799.49 13097.76 15198.49 28399.60 18694.23 23498.97 32498.00 18192.90 33198.70 247
v2v48298.06 19297.77 21198.92 18698.90 28598.82 17299.57 9399.36 22996.65 25399.19 18199.35 26694.20 23599.25 27897.72 20694.97 30498.69 251
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19599.71 8697.74 24099.12 25599.54 7398.44 7499.42 12199.71 12994.20 23599.92 8098.54 13698.90 17799.00 209
ab-mvs98.86 12198.63 13599.54 9399.64 11799.19 11899.44 15799.54 7397.77 15099.30 15199.81 6294.20 23599.93 6999.17 4598.82 18199.49 158
test_post199.23 23665.14 36794.18 23899.71 19697.58 217
ADS-MVSNet298.02 20098.07 18097.87 29399.33 20195.19 32499.23 23699.08 29296.24 28599.10 19699.67 15294.11 23998.93 32796.81 27199.05 16499.48 159
ADS-MVSNet98.20 17698.08 17798.56 23599.33 20196.48 29399.23 23699.15 28496.24 28599.10 19699.67 15294.11 23999.71 19696.81 27199.05 16499.48 159
RPMNet96.72 29095.90 30099.19 15599.18 24098.49 20299.22 24199.52 9088.72 35199.56 9297.38 34894.08 24199.95 4386.87 35798.58 19099.14 189
v119297.81 23397.44 25098.91 19098.88 28798.68 18199.51 12299.34 23896.18 29099.20 17899.34 26994.03 24299.36 25995.32 30895.18 29998.69 251
v192192097.80 23597.45 24598.84 20998.80 29898.53 19499.52 11899.34 23896.15 29599.24 16799.47 23393.98 24399.29 27295.40 30595.13 30198.69 251
Anonymous2023120696.22 29896.03 29796.79 32597.31 34694.14 33899.63 6299.08 29296.17 29197.04 33199.06 30993.94 24497.76 34886.96 35695.06 30298.47 308
WR-MVS98.06 19297.73 21799.06 16598.86 29499.25 11499.19 24499.35 23497.30 20098.66 26499.43 24193.94 24499.21 28898.58 12694.28 31598.71 243
N_pmnet94.95 31495.83 30292.31 33798.47 32979.33 36299.12 25592.81 36993.87 32997.68 31799.13 30293.87 24699.01 31491.38 34296.19 27498.59 298
MVSTER98.49 15398.32 16199.00 17499.35 19699.02 14199.54 11299.38 21997.41 19299.20 17899.73 12493.86 24799.36 25998.87 7897.56 23298.62 285
CP-MVSNet98.09 18997.78 20999.01 17298.97 28099.24 11599.67 4599.46 17097.25 20598.48 28499.64 16693.79 24899.06 30698.63 11694.10 31898.74 239
cascas97.69 25497.43 25398.48 24398.60 32397.30 25198.18 35099.39 21392.96 33998.41 28898.78 32893.77 24999.27 27698.16 16898.61 18798.86 220
v124097.69 25497.32 26898.79 21698.85 29598.43 20799.48 14499.36 22996.11 29899.27 15999.36 26393.76 25099.24 27994.46 31895.23 29898.70 247
test20.0396.12 30295.96 29996.63 32697.44 34295.45 31899.51 12299.38 21996.55 26296.16 33999.25 28893.76 25096.17 35887.35 35594.22 31698.27 324
baseline297.87 22097.55 23298.82 21199.18 24098.02 22499.41 17296.58 36096.97 23196.51 33599.17 29793.43 25299.57 22897.71 20799.03 16698.86 220
TransMVSNet (Re)97.15 28396.58 28798.86 20599.12 25398.85 16799.49 13898.91 31195.48 30897.16 32899.80 7693.38 25399.11 30294.16 32391.73 33898.62 285
tfpnnormal97.84 22697.47 24298.98 17699.20 23599.22 11799.64 6099.61 3596.32 27898.27 29899.70 13393.35 25499.44 24395.69 29895.40 29598.27 324
Anonymous2023121197.88 21897.54 23598.90 19299.71 8698.53 19499.48 14499.57 5194.16 32798.81 24499.68 14693.23 25599.42 24898.84 8594.42 31398.76 233
XXY-MVS98.38 16398.09 17699.24 15199.26 22199.32 10499.56 10099.55 6697.45 18598.71 25599.83 4293.23 25599.63 22398.88 7496.32 27298.76 233
jajsoiax98.43 15798.28 16498.88 19898.60 32398.43 20799.82 1199.53 8498.19 10198.63 27299.80 7693.22 25799.44 24399.22 3997.50 23898.77 231
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28498.16 33597.21 25899.11 26199.24 27293.49 33480.73 36198.98 31993.02 25898.18 33794.22 32294.45 31298.64 275
ACMM97.58 598.37 16498.34 15998.48 24399.41 18197.10 26099.56 10099.45 18298.53 6499.04 20999.85 2993.00 25999.71 19698.74 9997.45 24398.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 19897.76 21498.84 20999.39 18998.98 14599.40 18099.38 21996.67 25199.07 20399.28 28392.93 26098.98 31797.10 25496.65 26198.56 301
DTE-MVSNet97.51 27097.19 27798.46 24898.63 31998.13 22199.84 699.48 14296.68 25097.97 31099.67 15292.92 26198.56 33496.88 27092.60 33698.70 247
CLD-MVS98.16 18198.10 17398.33 26199.29 21496.82 28298.75 31899.44 19197.83 14299.13 18999.55 20292.92 26199.67 20898.32 15797.69 22498.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 16098.08 17799.40 12499.41 18198.83 17199.30 21198.77 32197.70 15898.94 22599.65 15992.91 26399.74 17996.52 28299.55 13199.64 120
YYNet195.36 31094.51 31697.92 29097.89 33797.10 26099.10 26399.23 27393.26 33780.77 36099.04 31192.81 26498.02 34194.30 31994.18 31798.64 275
mvs_tets98.40 16298.23 16698.91 19098.67 31698.51 20099.66 5099.53 8498.19 10198.65 27099.81 6292.75 26599.44 24399.31 3197.48 24298.77 231
IterMVS97.83 22897.77 21198.02 28399.58 13896.27 30099.02 27999.48 14297.22 20998.71 25599.70 13392.75 26599.13 29797.46 23296.00 27898.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11898.69 12899.40 12499.22 23198.72 17999.44 15799.68 1999.24 399.18 18499.42 24492.74 26799.96 1999.34 2899.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 23197.75 21598.06 28099.57 14096.36 29799.02 27999.49 13097.18 21198.71 25599.72 12892.72 26899.14 29497.44 23595.86 28498.67 263
SCA98.19 17798.16 16898.27 27099.30 21095.55 31399.07 26598.97 30297.57 17199.43 11899.57 19692.72 26899.74 17997.58 21799.20 15099.52 148
HQP_MVS98.27 17298.22 16798.44 25299.29 21496.97 27599.39 18499.47 16098.97 3099.11 19399.61 18392.71 27099.69 20697.78 19897.63 22598.67 263
plane_prior699.27 21996.98 27492.71 270
CL-MVSNet_2432*160094.49 31793.97 32096.08 33096.16 35293.67 34498.33 34499.38 21995.13 31197.33 32398.15 34392.69 27296.57 35688.67 35079.87 35697.99 339
dp97.75 24297.80 20597.59 30599.10 25893.71 34299.32 20798.88 31596.48 26999.08 20299.55 20292.67 27399.82 15296.52 28298.58 19099.24 185
PEN-MVS97.76 23897.44 25098.72 22298.77 30598.54 19399.78 2299.51 10397.06 22598.29 29799.64 16692.63 27498.89 33098.09 17293.16 32998.72 241
LPG-MVS_test98.22 17398.13 17198.49 24199.33 20197.05 26699.58 8899.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LGP-MVS_train98.49 24199.33 20197.05 26699.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
VPA-MVSNet98.29 17097.95 19299.30 14099.16 24899.54 7899.50 12899.58 4998.27 9399.35 14399.37 26092.53 27799.65 21599.35 2494.46 31198.72 241
TR-MVS97.76 23897.41 25598.82 21199.06 26597.87 23498.87 30798.56 33696.63 25698.68 26399.22 29292.49 27899.65 21595.40 30597.79 22298.95 218
pm-mvs197.68 25697.28 27198.88 19899.06 26598.62 18799.50 12899.45 18296.32 27897.87 31299.79 8892.47 27999.35 26397.54 22493.54 32598.67 263
HQP2-MVS92.47 279
HQP-MVS98.02 20097.90 19798.37 25999.19 23796.83 28098.98 29099.39 21398.24 9498.66 26499.40 25292.47 27999.64 21897.19 24997.58 23098.64 275
EPMVS97.82 23197.65 22498.35 26098.88 28795.98 30599.49 13894.71 36497.57 17199.26 16499.48 23092.46 28299.71 19697.87 19099.08 16299.35 178
PS-CasMVS97.93 21297.59 23198.95 18198.99 27599.06 13899.68 4299.52 9097.13 21598.31 29599.68 14692.44 28399.05 30798.51 13794.08 31998.75 235
cl-mvsnet297.85 22397.64 22698.48 24399.09 26097.87 23498.60 33199.33 24597.11 22098.87 23699.22 29292.38 28499.17 29298.21 16195.99 27998.42 315
CostFormer97.72 24897.73 21797.71 30299.15 25194.02 33999.54 11299.02 29894.67 32299.04 20999.35 26692.35 28599.77 17198.50 13897.94 21999.34 180
OPM-MVS98.19 17798.10 17398.45 24998.88 28797.07 26499.28 21799.38 21998.57 6299.22 17299.81 6292.12 28699.66 21198.08 17697.54 23498.61 294
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16799.53 14798.82 17298.84 30997.51 35397.63 16684.77 35699.21 29592.09 28798.91 32898.98 6292.21 33799.41 174
AUN-MVS96.88 28796.31 29298.59 22999.48 16897.04 26999.27 22299.22 27497.44 18898.51 28199.41 24891.97 28899.66 21197.71 20783.83 35199.07 202
ACMP97.20 1198.06 19297.94 19498.45 24999.37 19397.01 27199.44 15799.49 13097.54 17698.45 28599.79 8891.95 28999.72 19097.91 18797.49 24198.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 16997.98 18799.26 14899.57 14098.16 21899.41 17298.55 33796.03 30399.19 18199.74 11791.87 29099.92 8099.16 4798.29 20599.70 96
DIV-MVS_2432*160095.00 31294.34 31796.96 32097.07 35195.39 32099.56 10099.44 19195.11 31397.13 32997.32 35091.86 29197.27 35290.35 34681.23 35598.23 328
tpm97.67 25997.55 23298.03 28199.02 27295.01 32799.43 16398.54 33896.44 27299.12 19199.34 26991.83 29299.60 22697.75 20296.46 26899.48 159
thres100view90097.76 23897.45 24598.69 22499.72 8097.86 23699.59 8198.74 32597.93 13399.26 16498.62 33291.75 29399.83 14593.22 33198.18 21098.37 321
thres600view797.86 22297.51 23898.92 18699.72 8097.95 23199.59 8198.74 32597.94 13299.27 15998.62 33291.75 29399.86 12593.73 32698.19 20998.96 215
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25699.23 22796.80 28399.70 3599.60 4097.12 21798.18 30199.70 13391.73 29599.72 19098.39 14797.45 24398.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 21897.77 21198.19 27398.71 31296.53 29199.88 199.00 29997.79 14898.78 24999.94 391.68 29699.35 26397.21 24596.99 25998.69 251
tfpn200view997.72 24897.38 25898.72 22299.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.37 321
thres40097.77 23797.38 25898.92 18699.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.96 215
thisisatest051598.14 18497.79 20699.19 15599.50 15998.50 20198.61 32996.82 35796.95 23499.54 9799.43 24191.66 29999.86 12598.08 17699.51 13399.22 186
thres20097.61 26397.28 27198.62 22799.64 11798.03 22399.26 23198.74 32597.68 16099.09 20198.32 34191.66 29999.81 15692.88 33598.22 20698.03 335
new_pmnet96.38 29796.03 29797.41 31098.13 33695.16 32699.05 27099.20 27893.94 32897.39 32298.79 32691.61 30199.04 30890.43 34595.77 28598.05 334
pmmvs597.52 26897.30 27098.16 27598.57 32596.73 28499.27 22298.90 31396.14 29698.37 29199.53 21191.54 30299.14 29497.51 22795.87 28398.63 283
tttt051798.42 15898.14 17099.28 14699.66 11098.38 21099.74 3196.85 35697.68 16099.79 2699.74 11791.39 30399.89 11498.83 8899.56 12999.57 139
tpm297.44 27697.34 26597.74 30199.15 25194.36 33699.45 15398.94 30593.45 33698.90 23199.44 23991.35 30499.59 22797.31 23998.07 21799.29 183
MVS-HIRNet95.75 30695.16 31097.51 30899.30 21093.69 34398.88 30595.78 36185.09 35498.78 24992.65 35891.29 30599.37 25594.85 31499.85 5899.46 166
thisisatest053098.35 16598.03 18299.31 13699.63 12098.56 19199.54 11296.75 35897.53 17899.73 4399.65 15991.25 30699.89 11498.62 11799.56 12999.48 159
testgi97.65 26197.50 23998.13 27799.36 19596.45 29499.42 17099.48 14297.76 15197.87 31299.45 23891.09 30798.81 33194.53 31798.52 19599.13 191
ITE_SJBPF98.08 27899.29 21496.37 29698.92 30898.34 8498.83 24299.75 11191.09 30799.62 22495.82 29497.40 24898.25 326
DeepMVS_CXcopyleft93.34 33599.29 21482.27 35999.22 27485.15 35396.33 33799.05 31090.97 30999.73 18693.57 32897.77 22398.01 336
ACMH97.28 898.10 18897.99 18698.44 25299.41 18196.96 27799.60 7599.56 5698.09 11498.15 30299.91 590.87 31099.70 20398.88 7497.45 24398.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo97.50 27197.33 26798.03 28198.65 31796.23 30199.77 2498.68 33397.14 21497.90 31199.93 490.45 31199.18 29197.00 25996.43 26998.67 263
MIMVSNet97.73 24697.45 24598.57 23399.45 17597.50 24799.02 27998.98 30196.11 29899.41 12599.14 30190.28 31298.74 33295.74 29798.93 17399.47 164
GBi-Net97.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
test197.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
FMVSNet297.72 24897.36 26098.80 21599.51 15298.84 16899.45 15399.42 20196.49 26598.86 24199.29 28190.26 31398.98 31796.44 28496.56 26498.58 299
Anonymous2024052998.09 18997.68 22199.34 13099.66 11098.44 20699.40 18099.43 19993.67 33199.22 17299.89 1090.23 31699.93 6999.26 3798.33 20099.66 109
ACMH+97.24 1097.92 21597.78 20998.32 26399.46 17096.68 28799.56 10099.54 7398.41 7597.79 31699.87 2090.18 31799.66 21198.05 18097.18 25598.62 285
LF4IMVS97.52 26897.46 24497.70 30398.98 27895.55 31399.29 21598.82 32098.07 11998.66 26499.64 16689.97 31899.61 22597.01 25896.68 26097.94 342
GA-MVS97.85 22397.47 24299.00 17499.38 19197.99 22698.57 33299.15 28497.04 22698.90 23199.30 27989.83 31999.38 25296.70 27798.33 20099.62 126
test_part197.75 24297.24 27599.29 14399.59 13699.63 6099.65 5799.49 13096.17 29198.44 28699.69 14089.80 32099.47 23598.68 11093.66 32398.78 227
PVSNet_094.43 1996.09 30395.47 30697.94 28899.31 20994.34 33797.81 35499.70 1597.12 21797.46 32098.75 32989.71 32199.79 16497.69 21081.69 35499.68 103
Anonymous2024052196.20 30095.89 30197.13 31697.72 34094.96 32999.79 2199.29 26593.01 33897.20 32799.03 31289.69 32298.36 33691.16 34396.13 27598.07 332
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27299.11 25596.33 29899.41 17299.52 9098.06 12399.05 20899.50 22189.64 32399.73 18697.73 20497.38 24998.53 302
gg-mvs-nofinetune96.17 30195.32 30998.73 22098.79 29998.14 22099.38 18994.09 36591.07 34798.07 30791.04 36189.62 32499.35 26396.75 27399.09 16198.68 256
DWT-MVSNet_test97.53 26797.40 25697.93 28999.03 27194.86 33199.57 9398.63 33496.59 26198.36 29298.79 32689.32 32599.74 17998.14 17098.16 21499.20 188
GG-mvs-BLEND98.45 24998.55 32698.16 21899.43 16393.68 36697.23 32598.46 33689.30 32699.22 28395.43 30498.22 20697.98 340
USDC97.34 27897.20 27697.75 30099.07 26395.20 32398.51 33699.04 29797.99 12998.31 29599.86 2389.02 32799.55 23195.67 30097.36 25098.49 305
MS-PatchMatch97.24 28297.32 26896.99 31898.45 33093.51 34698.82 31199.32 25397.41 19298.13 30399.30 27988.99 32899.56 22995.68 29999.80 8497.90 345
VPNet97.84 22697.44 25099.01 17299.21 23398.94 15799.48 14499.57 5198.38 7899.28 15699.73 12488.89 32999.39 25099.19 4293.27 32898.71 243
K. test v397.10 28596.79 28698.01 28498.72 31096.33 29899.87 497.05 35597.59 16896.16 33999.80 7688.71 33099.04 30896.69 27896.55 26598.65 273
lessismore_v097.79 29998.69 31495.44 31994.75 36395.71 34399.87 2088.69 33199.32 26895.89 29394.93 30698.62 285
TDRefinement95.42 30994.57 31597.97 28789.83 36396.11 30399.48 14498.75 32296.74 24696.68 33499.88 1588.65 33299.71 19698.37 15182.74 35398.09 331
TESTMET0.1,197.55 26597.27 27498.40 25698.93 28396.53 29198.67 32497.61 35296.96 23298.64 27199.28 28388.63 33399.45 23897.30 24099.38 13899.21 187
test_040296.64 29196.24 29397.85 29498.85 29596.43 29599.44 15799.26 26893.52 33396.98 33299.52 21488.52 33499.20 29092.58 34097.50 23897.93 343
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31198.65 31795.65 31099.36 19699.51 10397.13 21596.04 34198.99 31688.40 33598.17 33896.71 27690.27 34198.40 318
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29098.24 33497.27 25399.15 25199.33 24593.80 33080.09 36299.03 31288.31 33697.86 34693.49 32994.36 31498.62 285
test-mter97.49 27497.13 27998.55 23798.79 29997.10 26098.67 32497.75 34996.65 25398.61 27598.85 32388.23 33799.45 23897.25 24399.38 13899.10 192
TinyColmap97.12 28496.89 28497.83 29699.07 26395.52 31698.57 33298.74 32597.58 17097.81 31599.79 8888.16 33899.56 22995.10 31097.21 25398.39 319
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 35695.94 30699.35 20299.10 28995.13 31193.55 34997.54 34688.15 33997.91 34494.58 31689.69 34497.61 347
RRT_test8_iter0597.72 24897.60 22998.08 27899.23 22796.08 30499.63 6299.49 13097.54 17698.94 22599.81 6287.99 34099.35 26399.21 4196.51 26798.81 223
KD-MVS_2432*160094.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
miper_refine_blended94.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
new-patchmatchnet94.48 31894.08 31895.67 33295.08 35792.41 35099.18 24599.28 26794.55 32593.49 35097.37 34987.86 34397.01 35491.57 34188.36 34597.61 347
FMVSNet596.43 29696.19 29497.15 31499.11 25595.89 30799.32 20799.52 9094.47 32698.34 29499.07 30787.54 34497.07 35392.61 33995.72 28898.47 308
pmmvs696.53 29396.09 29697.82 29798.69 31495.47 31799.37 19299.47 16093.46 33597.41 32199.78 9587.06 34599.33 26796.92 26892.70 33598.65 273
pmmvs394.09 32193.25 32496.60 32794.76 35894.49 33498.92 30198.18 34489.66 34896.48 33698.06 34486.28 34697.33 35189.68 34887.20 34797.97 341
IB-MVS95.67 1896.22 29895.44 30898.57 23399.21 23396.70 28598.65 32797.74 35196.71 24897.27 32498.54 33586.03 34799.92 8098.47 14286.30 34899.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 32981.52 33286.66 34266.61 37068.44 36892.79 36297.92 34768.96 36080.04 36399.85 2985.77 34896.15 35997.86 19143.89 36495.39 355
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33897.24 34780.01 36198.52 33599.48 14289.01 34991.99 35399.67 15285.67 34999.13 29795.44 30397.03 25896.39 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 30795.04 31196.92 32297.38 34395.60 31199.52 11899.50 12293.65 33296.97 33399.17 29785.28 35096.56 35788.36 35295.55 29298.60 297
LFMVS97.90 21797.35 26299.54 9399.52 14999.01 14399.39 18498.24 34197.10 22199.65 7099.79 8884.79 35199.91 9199.28 3498.38 19999.69 99
FMVSNet196.84 28896.36 29198.29 26699.32 20897.26 25599.43 16399.48 14295.11 31398.55 27999.32 27683.95 35298.98 31795.81 29596.26 27398.62 285
VDD-MVS97.73 24697.35 26298.88 19899.47 16997.12 25999.34 20598.85 31798.19 10199.67 6099.85 2982.98 35399.92 8099.49 1498.32 20499.60 130
EG-PatchMatch MVS95.97 30495.69 30496.81 32497.78 33992.79 34999.16 24798.93 30696.16 29394.08 34899.22 29282.72 35499.47 23595.67 30097.50 23898.17 329
VDDNet97.55 26597.02 28299.16 15899.49 16198.12 22299.38 18999.30 26095.35 31099.68 5399.90 782.62 35599.93 6999.31 3198.13 21599.42 172
UniMVSNet_ETH3D97.32 27996.81 28598.87 20299.40 18697.46 24899.51 12299.53 8495.86 30598.54 28099.77 10282.44 35699.66 21198.68 11097.52 23599.50 157
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 32997.38 34393.17 34799.06 26898.75 32286.58 35294.84 34798.26 34281.53 35799.32 26889.01 34997.87 22196.76 351
test_method91.10 32491.36 32790.31 34195.85 35373.72 36794.89 35999.25 27068.39 36195.82 34299.02 31480.50 35898.95 32693.64 32794.89 30798.25 326
MVS_030496.79 28996.52 28997.59 30599.22 23194.92 33099.04 27599.59 4396.49 26598.43 28798.99 31680.48 35999.39 25097.15 25399.27 14698.47 308
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32897.38 34393.82 34098.24 34799.48 14291.10 34693.10 35196.66 35274.89 36098.37 33594.03 32487.71 34697.56 349
Gipumacopyleft90.99 32590.15 32893.51 33498.73 30890.12 35593.98 36099.45 18279.32 35792.28 35294.91 35569.61 36197.98 34387.42 35495.67 28992.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32392.23 32695.14 33395.61 35489.98 35699.37 19298.21 34294.80 32095.04 34697.69 34565.06 36297.90 34594.30 31989.98 34397.54 350
EMVS80.02 33179.22 33482.43 34791.19 36076.40 36497.55 35792.49 37066.36 36483.01 35991.27 36064.63 36385.79 36565.82 36460.65 36285.08 361
E-PMN80.61 33079.88 33382.81 34590.75 36176.38 36597.69 35595.76 36266.44 36383.52 35792.25 35962.54 36487.16 36468.53 36361.40 36184.89 362
ambc93.06 33692.68 35982.36 35898.47 33798.73 33095.09 34597.41 34755.55 36599.10 30496.42 28591.32 33997.71 346
FPMVS84.93 32885.65 32982.75 34686.77 36563.39 36998.35 34198.92 30874.11 35883.39 35898.98 31950.85 36692.40 36284.54 35994.97 30492.46 356
PMMVS286.87 32685.37 33091.35 34090.21 36283.80 35798.89 30497.45 35483.13 35691.67 35495.03 35448.49 36794.70 36085.86 35877.62 35795.54 354
LCM-MVSNet86.80 32785.22 33191.53 33987.81 36480.96 36098.23 34998.99 30071.05 35990.13 35596.51 35348.45 36896.88 35590.51 34485.30 34996.76 351
ANet_high77.30 33274.86 33684.62 34475.88 36877.61 36397.63 35693.15 36888.81 35064.27 36589.29 36236.51 36983.93 36675.89 36152.31 36392.33 358
test12339.01 33742.50 33928.53 35039.17 37120.91 37298.75 31819.17 37319.83 36838.57 36766.67 36533.16 37015.42 36837.50 36729.66 36649.26 363
testmvs39.17 33643.78 33825.37 35136.04 37216.84 37398.36 34026.56 37120.06 36738.51 36867.32 36429.64 37115.30 36937.59 36639.90 36543.98 364
wuyk23d40.18 33541.29 34036.84 34986.18 36649.12 37179.73 36322.81 37227.64 36625.46 36928.45 36921.98 37248.89 36755.80 36523.56 36712.51 365
PMVScopyleft70.75 2275.98 33474.97 33579.01 34870.98 36955.18 37093.37 36198.21 34265.08 36561.78 36693.83 35721.74 37392.53 36178.59 36091.12 34089.34 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 33374.31 33784.70 34385.38 36776.05 36696.88 35893.17 36767.39 36271.28 36489.01 36321.66 37487.69 36371.74 36272.29 36090.35 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.30 33911.06 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.58 1920.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
IU-MVS99.84 3299.88 799.32 25398.30 8999.84 1398.86 8199.85 5899.89 2
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 5
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
MTGPAbinary99.47 160
MTMP99.54 11298.88 315
gm-plane-assit98.54 32792.96 34894.65 32399.15 30099.64 21897.56 222
test9_res97.49 22899.72 10599.75 69
agg_prior297.21 24599.73 10499.75 69
agg_prior99.67 10199.62 6199.40 20998.87 23699.91 91
test_prior499.56 7498.99 286
test_prior99.68 6599.67 10199.48 8999.56 5699.83 14599.74 74
旧先验298.96 29496.70 24999.47 10999.94 5498.19 163
新几何299.01 284
无先验98.99 28699.51 10396.89 23899.93 6997.53 22599.72 87
原ACMM298.95 298
testdata299.95 4396.67 279
testdata198.85 30898.32 88
plane_prior799.29 21497.03 270
plane_prior599.47 16099.69 20697.78 19897.63 22598.67 263
plane_prior499.61 183
plane_prior397.00 27298.69 5699.11 193
plane_prior299.39 18498.97 30
plane_prior199.26 221
plane_prior96.97 27599.21 24398.45 7197.60 228
n20.00 374
nn0.00 374
door-mid98.05 345
test1199.35 234
door97.92 347
HQP5-MVS96.83 280
HQP-NCC99.19 23798.98 29098.24 9498.66 264
ACMP_Plane99.19 23798.98 29098.24 9498.66 264
BP-MVS97.19 249
HQP4-MVS98.66 26499.64 21898.64 275
HQP3-MVS99.39 21397.58 230
NP-MVS99.23 22796.92 27899.40 252
ACMMP++_ref97.19 254
ACMMP++97.43 246