This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4099.52 699.05 16099.74 6799.68 4599.46 14399.52 8699.11 799.88 599.91 599.43 197.70 33598.72 9899.93 1099.77 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5099.63 5799.39 20398.91 3699.78 3199.85 2999.36 299.94 4998.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2199.59 7399.51 9698.62 5799.79 2699.83 4299.28 399.97 1098.48 13099.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.64 7599.56 13799.72 3899.60 6899.70 12999.27 499.42 23798.24 15199.80 8299.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 6899.48 13399.08 1199.91 199.81 6099.20 599.96 1898.91 6799.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 13399.07 1399.91 199.74 11399.20 599.76 169
MSLP-MVS++99.46 2499.47 999.44 11899.60 12899.16 11699.41 16499.71 1398.98 2799.45 10499.78 9299.19 799.54 22299.28 2999.84 6599.63 119
SMA-MVS99.44 2999.30 3899.85 2599.73 7299.83 1499.56 9299.47 15297.45 17799.78 3199.82 4999.18 899.91 8698.79 9099.89 3399.81 41
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5499.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 2799.76 2499.56 5497.72 14999.76 3799.75 10799.13 1099.92 7599.07 5099.92 1199.85 14
PGM-MVS99.45 2699.31 3699.86 1899.87 1599.78 3399.58 8099.65 3297.84 13499.71 4399.80 7499.12 1199.97 1098.33 14699.87 4099.83 29
test_0728_THIRD98.99 2599.81 2299.80 7499.09 1299.96 1898.85 7999.90 2399.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2399.66 4699.67 2298.15 9899.68 5099.69 13699.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3299.29 4299.86 1899.87 1599.80 2399.55 10099.67 2297.83 13599.68 5099.69 13699.06 1399.96 1898.39 13899.87 4099.84 18
TSAR-MVS + GP.99.36 4799.36 2199.36 12499.67 9698.61 18299.07 25499.33 23499.00 2299.82 2099.81 6099.06 1399.84 13299.09 4899.42 13099.65 109
pcd_1.5k_mvsjas8.27 32511.03 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 35399.01 160.00 3540.00 3510.00 3510.00 350
PS-MVSNAJss98.92 11298.92 9498.90 18598.78 29198.53 18799.78 1999.54 6898.07 11299.00 20699.76 10299.01 1699.37 24499.13 4497.23 24598.81 215
PS-MVSNAJ99.32 5199.32 2999.30 13599.57 13398.94 15098.97 28299.46 16298.92 3599.71 4399.24 27799.01 1699.98 599.35 1999.66 11398.97 205
EI-MVSNet-Vis-set99.58 499.56 399.64 7599.78 4499.15 12099.61 6799.45 17499.01 1899.89 499.82 4999.01 1699.92 7599.56 499.95 699.85 14
Regformer-199.53 1199.47 999.72 5999.71 8399.44 8799.49 12999.46 16298.95 3299.83 1799.76 10299.01 1699.93 6499.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 4999.71 8399.52 7899.49 12999.49 12298.94 3399.83 1799.76 10299.01 1699.94 4999.15 4399.87 4099.80 49
Regformer-499.59 399.54 499.73 5699.76 5299.41 9099.58 8099.49 12299.02 1599.88 599.80 7499.00 2299.94 4999.45 1599.92 1199.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7599.78 4499.14 12199.60 6899.45 17499.01 1899.90 399.83 4298.98 2399.93 6499.59 199.95 699.86 11
Regformer-399.57 799.53 599.68 6399.76 5299.29 10299.58 8099.44 18299.01 1899.87 1099.80 7498.97 2499.91 8699.44 1799.92 1199.83 29
region2R99.48 1999.35 2499.87 1199.88 1199.80 2399.65 5399.66 2798.13 10099.66 6199.68 14198.96 2599.96 1898.62 11199.87 4099.84 18
segment_acmp98.96 25
CNVR-MVS99.42 3699.30 3899.78 4399.62 12199.71 4099.26 22099.52 8698.82 4299.39 12399.71 12598.96 2599.85 12798.59 11799.80 8299.77 62
xxxxxxxxxxxxxcwj99.43 3299.32 2999.75 4999.76 5299.59 6399.14 24299.53 8099.00 2299.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
SF-MVS99.38 4599.24 5299.79 4199.79 4299.68 4599.57 8599.54 6897.82 14099.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 2799.66 4699.67 2298.15 9899.67 5699.69 13698.95 2899.96 1898.69 10399.87 4099.84 18
test_241102_TWO99.48 13399.08 1199.88 599.81 6098.94 3199.96 1898.91 6799.84 6599.88 5
MSP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8599.37 21799.10 899.81 2299.80 7498.94 3199.96 1898.93 6499.86 5199.81 41
test072699.85 2599.89 399.62 6199.50 11499.10 899.86 1199.82 4998.94 31
xiu_mvs_v2_base99.26 6099.25 5199.29 13899.53 14198.91 15499.02 26899.45 17498.80 4699.71 4399.26 27598.94 3199.98 599.34 2399.23 14298.98 204
CP-MVS99.45 2699.32 2999.85 2599.83 3699.75 3499.69 3599.52 8698.07 11299.53 9199.63 16698.93 3599.97 1098.74 9499.91 1699.83 29
ZNCC-MVS99.47 2299.33 2799.87 1199.87 1599.81 2199.64 5599.67 2298.08 11199.55 8899.64 16198.91 3699.96 1898.72 9899.90 2399.82 36
MCST-MVS99.43 3299.30 3899.82 3399.79 4299.74 3799.29 20699.40 19998.79 4799.52 9399.62 17198.91 3699.90 10198.64 10999.75 9399.82 36
HPM-MVScopyleft99.42 3699.28 4599.83 3199.90 399.72 3899.81 1299.54 6897.59 16099.68 5099.63 16698.91 3699.94 4998.58 11899.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9099.75 6098.95 14799.51 9697.07 21399.43 10999.70 12998.87 3999.94 4997.76 19199.64 11699.72 83
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 6898.36 7699.79 2699.82 4998.86 4099.95 4198.62 11199.81 8099.78 60
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4599.63 11599.59 6399.36 18899.46 16299.07 1399.79 2699.82 4998.85 4199.92 7598.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6699.72 7799.40 17299.51 9697.53 17099.64 6699.78 9298.84 4299.91 8697.63 20399.82 78
CDPH-MVS99.13 7798.91 9699.80 3899.75 6099.71 4099.15 24099.41 19396.60 24899.60 7799.55 19498.83 4399.90 10197.48 21999.83 7299.78 60
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14099.48 13398.05 11799.76 3799.86 2398.82 4499.93 6498.82 8899.91 1699.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12899.74 11398.81 4599.94 4998.79 9099.86 5199.84 18
X-MVStestdata96.55 28295.45 29599.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12864.01 35198.81 4599.94 4998.79 9099.86 5199.84 18
MP-MVS-pluss99.37 4699.20 5699.88 699.90 399.87 999.30 20299.52 8697.18 20299.60 7799.79 8698.79 4799.95 4198.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 2999.30 3899.86 1899.88 1199.79 2799.69 3599.48 13398.12 10299.50 9699.75 10798.78 4899.97 1098.57 12099.89 3399.83 29
APD-MVScopyleft99.27 5899.08 6999.84 3099.75 6099.79 2799.50 11999.50 11497.16 20499.77 3399.82 4998.78 4899.94 4997.56 21299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 23897.34 25898.94 17599.70 8997.53 23899.25 22299.51 9691.90 32699.30 14199.63 16698.78 4899.64 20888.09 33699.87 4099.65 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 9699.65 5399.05 25999.41 19396.22 27798.95 21399.49 21598.77 5199.91 86
agg_prior199.01 10598.76 11799.76 4899.67 9699.62 5698.99 27599.40 19996.26 27398.87 22699.49 21598.77 5199.91 8697.69 20099.72 9999.75 66
train_agg99.02 10298.77 11599.77 4599.67 9699.65 5399.05 25999.41 19396.28 27098.95 21399.49 21598.76 5399.91 8697.63 20399.72 9999.75 66
test_899.67 9699.61 5899.03 26599.41 19396.28 27098.93 21799.48 22198.76 5399.91 86
API-MVS99.04 9999.03 7699.06 15899.40 17699.31 10099.55 10099.56 5498.54 6199.33 13899.39 24498.76 5399.78 16496.98 25199.78 8798.07 320
DP-MVS Recon99.12 8398.95 9299.65 7099.74 6799.70 4299.27 21299.57 4996.40 26699.42 11299.68 14198.75 5699.80 15797.98 17399.72 9999.44 164
Test By Simon98.75 56
ACMMPcopyleft99.45 2699.32 2999.82 3399.89 899.67 4899.62 6199.69 1898.12 10299.63 6799.84 3898.73 5899.96 1898.55 12699.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVS99.46 2499.32 2999.91 299.78 4499.88 799.36 18899.51 9698.73 5199.88 599.84 3898.72 5999.96 1898.16 15999.87 4099.88 5
NCCC99.34 4999.19 5799.79 4199.61 12599.65 5399.30 20299.48 13398.86 3899.21 16599.63 16698.72 5999.90 10198.25 15099.63 11899.80 49
DeepPCF-MVS98.18 398.81 12899.37 1997.12 30599.60 12891.75 33698.61 31899.44 18299.35 199.83 1799.85 2998.70 6199.81 15299.02 5499.91 1699.81 41
SR-MVS99.43 3299.29 4299.86 1899.75 6099.83 1499.59 7399.62 3398.21 9399.73 4099.79 8698.68 6299.96 1898.44 13699.77 8999.79 53
test_prior399.21 6499.05 7199.68 6399.67 9699.48 8298.96 28399.56 5498.34 7899.01 20199.52 20598.68 6299.83 14197.96 17499.74 9599.74 70
test_prior298.96 28398.34 7899.01 20199.52 20598.68 6297.96 17499.74 95
DPM-MVS98.95 11098.71 12199.66 6699.63 11599.55 7098.64 31799.10 27397.93 12699.42 11299.55 19498.67 6599.80 15795.80 28599.68 11099.61 123
原ACMM199.65 7099.73 7299.33 9699.47 15297.46 17499.12 18199.66 15398.67 6599.91 8697.70 19999.69 10599.71 90
HPM-MVS++copyleft99.39 4499.23 5499.87 1199.75 6099.84 1399.43 15499.51 9698.68 5599.27 14999.53 20298.64 6799.96 1898.44 13699.80 8299.79 53
abl_699.44 2999.31 3699.83 3199.85 2599.75 3499.66 4699.59 4298.13 10099.82 2099.81 6098.60 6899.96 1898.46 13499.88 3699.79 53
PHI-MVS99.30 5399.17 5999.70 6299.56 13799.52 7899.58 8099.80 897.12 20899.62 7199.73 12098.58 6999.90 10198.61 11499.91 1699.68 99
GST-MVS99.40 4399.24 5299.85 2599.86 2199.79 2799.60 6899.67 2297.97 12399.63 6799.68 14198.52 7099.95 4198.38 14099.86 5199.81 41
ETH3D-3000-0.199.21 6499.02 7999.77 4599.73 7299.69 4399.38 18199.51 9697.45 17799.61 7399.75 10798.51 7199.91 8697.45 22499.83 7299.71 90
MVS_111021_LR99.41 4099.33 2799.65 7099.77 4999.51 8098.94 28999.85 698.82 4299.65 6499.74 11398.51 7199.80 15798.83 8499.89 3399.64 115
MVS_111021_HR99.41 4099.32 2999.66 6699.72 7799.47 8498.95 28799.85 698.82 4299.54 8999.73 12098.51 7199.74 17298.91 6799.88 3699.77 62
旧先验199.74 6799.59 6399.54 6899.69 13698.47 7499.68 11099.73 77
DELS-MVS99.48 1999.42 1399.65 7099.72 7799.40 9299.05 25999.66 2799.14 699.57 8499.80 7498.46 7599.94 4999.57 399.84 6599.60 125
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 14598.34 15399.51 10399.40 17699.03 13298.80 30299.36 21896.33 26799.00 20699.12 29398.46 7599.84 13295.23 29899.37 13699.66 105
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 18899.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
新几何199.75 4999.75 6099.59 6399.54 6896.76 23499.29 14499.64 16198.43 7799.94 4996.92 25799.66 11399.72 83
F-COLMAP99.19 6799.04 7499.64 7599.78 4499.27 10599.42 16199.54 6897.29 19299.41 11699.59 18198.42 8099.93 6498.19 15499.69 10599.73 77
ETV-MVS99.26 6099.21 5599.40 12099.46 16199.30 10199.56 9299.52 8698.52 6399.44 10899.27 27498.41 8199.86 12199.10 4799.59 12299.04 197
112199.09 9298.87 10199.75 4999.74 6799.60 6099.27 21299.48 13396.82 23399.25 15699.65 15498.38 8299.93 6497.53 21599.67 11299.73 77
test1299.75 4999.64 11299.61 5899.29 25499.21 16598.38 8299.89 10999.74 9599.74 70
CSCG99.32 5199.32 2999.32 13099.85 2598.29 20599.71 3199.66 2798.11 10499.41 11699.80 7498.37 8499.96 1898.99 5699.96 599.72 83
PAPM_NR99.04 9998.84 10799.66 6699.74 6799.44 8799.39 17699.38 20997.70 15199.28 14699.28 27198.34 8599.85 12796.96 25399.45 12899.69 95
TAMVS99.12 8399.08 6999.24 14599.46 16198.55 18599.51 11399.46 16298.09 10799.45 10499.82 4998.34 8599.51 22398.70 10098.93 16699.67 102
ETH3D cwj APD-0.1699.06 9698.84 10799.72 5999.51 14599.60 6099.23 22599.44 18297.04 21699.39 12399.67 14798.30 8799.92 7597.27 23199.69 10599.64 115
MP-MVScopyleft99.33 5099.15 6099.87 1199.88 1199.82 2099.66 4699.46 16298.09 10799.48 10099.74 11398.29 8899.96 1897.93 17799.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6099.49 8198.91 29299.49 12296.42 26499.34 13799.65 15498.28 8999.69 10599.72 83
CS-MVS99.21 6499.13 6299.45 11399.54 14099.34 9599.71 3199.54 6898.26 8698.99 20899.24 27798.25 9099.88 11498.98 5799.63 11899.12 186
PLCcopyleft97.94 499.02 10298.85 10699.53 9699.66 10599.01 13599.24 22499.52 8696.85 23099.27 14999.48 22198.25 9099.91 8697.76 19199.62 12099.65 109
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS99.42 3699.27 4799.88 699.89 899.80 2399.67 4299.50 11498.70 5399.77 3399.49 21598.21 9299.95 4198.46 13499.77 8999.88 5
xiu_mvs_v1_base_debu99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base_debi99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
testtj99.12 8398.87 10199.86 1899.72 7799.79 2799.44 14899.51 9697.29 19299.59 8099.74 11398.15 9699.96 1896.74 26399.69 10599.81 41
EIA-MVS99.18 6999.09 6899.45 11399.49 15499.18 11399.67 4299.53 8097.66 15699.40 12199.44 23098.10 9799.81 15298.94 6299.62 12099.35 172
CNLPA99.14 7598.99 8499.59 8299.58 13199.41 9099.16 23699.44 18298.45 6999.19 17199.49 21598.08 9899.89 10997.73 19599.75 9399.48 154
114514_t98.93 11198.67 12599.72 5999.85 2599.53 7599.62 6199.59 4292.65 32499.71 4399.78 9298.06 9999.90 10198.84 8199.91 1699.74 70
CDS-MVSNet99.09 9299.03 7699.25 14399.42 16898.73 17199.45 14499.46 16298.11 10499.46 10399.77 9898.01 10099.37 24498.70 10098.92 16899.66 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 7799.02 7999.45 11399.57 13398.63 17999.07 25499.34 22798.99 2599.61 7399.82 4997.98 10199.87 11897.00 24999.80 8299.85 14
EI-MVSNet98.67 14198.67 12598.68 21899.35 18597.97 21999.50 11999.38 20996.93 22799.20 16899.83 4297.87 10299.36 24898.38 14097.56 22598.71 232
IterMVS-LS98.46 15098.42 14898.58 22399.59 13098.00 21799.37 18499.43 18996.94 22699.07 19299.59 18197.87 10299.03 29998.32 14895.62 28298.71 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 10798.80 11299.53 9699.76 5299.19 11198.75 30799.55 6197.25 19699.47 10199.77 9897.82 10499.87 11896.93 25699.90 2399.54 138
OMC-MVS99.08 9499.04 7499.20 14899.67 9698.22 20899.28 20899.52 8698.07 11299.66 6199.81 6097.79 10599.78 16497.79 18899.81 8099.60 125
LS3D99.27 5899.12 6499.74 5499.18 22999.75 3499.56 9299.57 4998.45 6999.49 9999.85 2997.77 10699.94 4998.33 14699.84 6599.52 143
PVSNet_Blended_VisFu99.36 4799.28 4599.61 8099.86 2199.07 12999.47 14099.93 297.66 15699.71 4399.86 2397.73 10799.96 1899.47 1399.82 7899.79 53
131498.68 14098.54 14399.11 15598.89 27598.65 17799.27 21299.49 12296.89 22897.99 29799.56 19197.72 10899.83 14197.74 19499.27 14098.84 214
MVS_Test99.10 9198.97 8899.48 10799.49 15499.14 12199.67 4299.34 22797.31 19099.58 8299.76 10297.65 10999.82 14898.87 7499.07 15799.46 161
PVSNet_BlendedMVS98.86 11798.80 11299.03 16399.76 5298.79 16899.28 20899.91 397.42 18299.67 5699.37 24897.53 11099.88 11498.98 5797.29 24498.42 305
PVSNet_Blended99.08 9498.97 8899.42 11999.76 5298.79 16898.78 30499.91 396.74 23599.67 5699.49 21597.53 11099.88 11498.98 5799.85 5899.60 125
UA-Net99.42 3699.29 4299.80 3899.62 12199.55 7099.50 11999.70 1598.79 4799.77 3399.96 197.45 11299.96 1898.92 6699.90 2399.89 2
ETH3 D test640098.70 13798.35 15299.73 5699.69 9199.60 6099.16 23699.45 17495.42 29899.27 14999.60 17897.39 11399.91 8695.36 29699.83 7299.70 92
MVSFormer99.17 7199.12 6499.29 13899.51 14598.94 15099.88 199.46 16297.55 16599.80 2499.65 15497.39 11399.28 26299.03 5299.85 5899.65 109
lupinMVS99.13 7799.01 8399.46 11299.51 14598.94 15099.05 25999.16 26797.86 13099.80 2499.56 19197.39 11399.86 12198.94 6299.85 5899.58 133
DP-MVS99.16 7398.95 9299.78 4399.77 4999.53 7599.41 16499.50 11497.03 21899.04 19899.88 1597.39 11399.92 7598.66 10799.90 2399.87 10
sss99.17 7199.05 7199.53 9699.62 12198.97 14199.36 18899.62 3397.83 13599.67 5699.65 15497.37 11799.95 4199.19 3799.19 14599.68 99
mvs_anonymous99.03 10198.99 8499.16 15199.38 18098.52 19199.51 11399.38 20997.79 14199.38 12699.81 6097.30 11899.45 22799.35 1998.99 16399.51 149
miper_ehance_all_eth98.18 17498.10 16798.41 24599.23 21697.72 23498.72 31099.31 24596.60 24898.88 22499.29 26997.29 11999.13 28697.60 20595.99 27198.38 310
CPTT-MVS99.11 8898.90 9799.74 5499.80 4199.46 8599.59 7399.49 12297.03 21899.63 6799.69 13697.27 12099.96 1897.82 18699.84 6599.81 41
PMMVS98.80 13198.62 13599.34 12599.27 20898.70 17398.76 30699.31 24597.34 18799.21 16599.07 29597.20 12199.82 14898.56 12398.87 17199.52 143
EPP-MVSNet99.13 7798.99 8499.53 9699.65 11099.06 13099.81 1299.33 23497.43 18099.60 7799.88 1597.14 12299.84 13299.13 4498.94 16599.69 95
cl_fuxian98.12 18198.04 17598.38 24999.30 19997.69 23798.81 30199.33 23496.67 24098.83 23299.34 25797.11 12398.99 30697.58 20795.34 28898.48 296
canonicalmvs99.02 10298.86 10599.51 10399.42 16899.32 9799.80 1699.48 13398.63 5699.31 14098.81 31197.09 12499.75 17199.27 3197.90 21399.47 159
MAR-MVS98.86 11798.63 13099.54 9099.37 18299.66 5099.45 14499.54 6896.61 24699.01 20199.40 24097.09 12499.86 12197.68 20299.53 12699.10 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 17698.08 17198.41 24598.96 27097.72 23498.45 32799.32 24296.95 22498.97 21199.17 28597.06 12699.22 27397.86 18295.99 27198.29 313
jason99.13 7799.03 7699.45 11399.46 16198.87 15799.12 24499.26 25798.03 12099.79 2699.65 15497.02 12799.85 12799.02 5499.90 2399.65 109
jason: jason.
our_test_397.65 25397.68 21497.55 29898.62 30994.97 31498.84 29899.30 24996.83 23298.19 28899.34 25797.01 12899.02 30195.00 30296.01 26998.64 265
MVS97.28 27196.55 27899.48 10798.78 29198.95 14799.27 21299.39 20383.53 33998.08 29299.54 19996.97 12999.87 11894.23 31099.16 14699.63 119
Fast-Effi-MVS+-dtu98.77 13498.83 11198.60 22199.41 17196.99 26299.52 10999.49 12298.11 10499.24 15799.34 25796.96 13099.79 16097.95 17699.45 12899.02 200
1112_ss98.98 10798.77 11599.59 8299.68 9599.02 13399.25 22299.48 13397.23 19999.13 17999.58 18496.93 13199.90 10198.87 7498.78 17799.84 18
WTY-MVS99.06 9698.88 10099.61 8099.62 12199.16 11699.37 18499.56 5498.04 11899.53 9199.62 17196.84 13299.94 4998.85 7998.49 19099.72 83
FC-MVSNet-test98.75 13598.62 13599.15 15399.08 25199.45 8699.86 599.60 3998.23 9098.70 25199.82 4996.80 13399.22 27399.07 5096.38 26298.79 217
Effi-MVS+-dtu98.78 13298.89 9998.47 23899.33 19096.91 26899.57 8599.30 24998.47 6699.41 11698.99 30296.78 13499.74 17298.73 9699.38 13298.74 228
mvs-test198.86 11798.84 10798.89 18899.33 19097.77 23199.44 14899.30 24998.47 6699.10 18699.43 23296.78 13499.95 4198.73 9699.02 16198.96 207
Test_1112_low_res98.89 11398.66 12899.57 8699.69 9198.95 14799.03 26599.47 15296.98 22099.15 17799.23 27996.77 13699.89 10998.83 8498.78 17799.86 11
FIs98.78 13298.63 13099.23 14799.18 22999.54 7299.83 999.59 4298.28 8498.79 23899.81 6096.75 13799.37 24499.08 4996.38 26298.78 218
PVSNet96.02 1798.85 12598.84 10798.89 18899.73 7297.28 24498.32 33199.60 3997.86 13099.50 9699.57 18896.75 13799.86 12198.56 12399.70 10499.54 138
nrg03098.64 14498.42 14899.28 14099.05 25799.69 4399.81 1299.46 16298.04 11899.01 20199.82 4996.69 13999.38 24199.34 2394.59 30198.78 218
CHOSEN 280x42099.12 8399.13 6299.08 15699.66 10597.89 22598.43 32899.71 1398.88 3799.62 7199.76 10296.63 14099.70 19599.46 1499.99 199.66 105
eth_miper_zixun_eth98.05 19197.96 18398.33 25299.26 21097.38 24298.56 32399.31 24596.65 24298.88 22499.52 20596.58 14199.12 29097.39 22895.53 28598.47 298
cdsmvs_eth3d_5k24.64 32332.85 3250.00 3370.00 3560.00 3570.00 34899.51 960.00 3520.00 35399.56 19196.58 1410.00 3540.00 3510.00 3510.00 350
IS-MVSNet99.05 9898.87 10199.57 8699.73 7299.32 9799.75 2599.20 26498.02 12199.56 8599.86 2396.54 14399.67 20098.09 16399.13 15099.73 77
diffmvs99.14 7599.02 7999.51 10399.61 12598.96 14599.28 20899.49 12298.46 6899.72 4299.71 12596.50 14499.88 11499.31 2699.11 15199.67 102
CANet99.25 6299.14 6199.59 8299.41 17199.16 11699.35 19399.57 4998.82 4299.51 9599.61 17596.46 14599.95 4199.59 199.98 299.65 109
ppachtmachnet_test97.49 26597.45 23897.61 29598.62 30995.24 30898.80 30299.46 16296.11 28798.22 28799.62 17196.45 14698.97 31493.77 31495.97 27498.61 284
HY-MVS97.30 798.85 12598.64 12999.47 11099.42 16899.08 12899.62 6199.36 21897.39 18599.28 14699.68 14196.44 14799.92 7598.37 14298.22 19999.40 169
UniMVSNet_NR-MVSNet98.22 16897.97 18298.96 17298.92 27398.98 13899.48 13599.53 8097.76 14498.71 24599.46 22896.43 14899.22 27398.57 12092.87 32398.69 240
Effi-MVS+98.81 12898.59 14099.48 10799.46 16199.12 12598.08 33799.50 11497.50 17399.38 12699.41 23896.37 14999.81 15299.11 4698.54 18799.51 149
AdaColmapbinary99.01 10598.80 11299.66 6699.56 13799.54 7299.18 23499.70 1598.18 9799.35 13499.63 16696.32 15099.90 10197.48 21999.77 8999.55 136
UniMVSNet (Re)98.29 16598.00 17999.13 15499.00 26399.36 9499.49 12999.51 9697.95 12498.97 21199.13 29096.30 15199.38 24198.36 14493.34 31698.66 261
LCM-MVSNet-Re97.83 22298.15 16396.87 31099.30 19992.25 33599.59 7398.26 32597.43 18096.20 32199.13 29096.27 15298.73 32298.17 15898.99 16399.64 115
PAPM97.59 25697.09 27099.07 15799.06 25498.26 20798.30 33299.10 27394.88 30398.08 29299.34 25796.27 15299.64 20889.87 33198.92 16899.31 176
Fast-Effi-MVS+98.70 13798.43 14799.51 10399.51 14599.28 10399.52 10999.47 15296.11 28799.01 20199.34 25796.20 15499.84 13297.88 18098.82 17499.39 170
EPNet_dtu98.03 19297.96 18398.23 26298.27 32195.54 30299.23 22598.75 30799.02 1597.82 30299.71 12596.11 15599.48 22493.04 32299.65 11599.69 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7499.02 7999.53 9699.66 10599.14 12199.72 2999.48 13398.35 7799.42 11299.84 3896.07 15699.79 16099.51 799.14 14999.67 102
D2MVS98.41 15598.50 14498.15 26799.26 21096.62 27899.40 17299.61 3597.71 15098.98 20999.36 25196.04 15799.67 20098.70 10097.41 24098.15 318
miper_lstm_enhance98.00 19997.91 18998.28 26099.34 18997.43 24198.88 29499.36 21896.48 25998.80 23699.55 19495.98 15898.91 31797.27 23195.50 28698.51 294
EPNet98.86 11798.71 12199.30 13597.20 33598.18 20999.62 6198.91 29699.28 298.63 26299.81 6095.96 15999.99 199.24 3399.72 9999.73 77
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11498.72 11999.31 13199.86 2198.48 19799.56 9299.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
TestCases99.31 13199.86 2198.48 19799.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
3Dnovator97.25 999.24 6399.05 7199.81 3699.12 24299.66 5099.84 699.74 1099.09 1098.92 21899.90 795.94 16299.98 598.95 6199.92 1199.79 53
casdiffmvs99.13 7798.98 8799.56 8899.65 11099.16 11699.56 9299.50 11498.33 8199.41 11699.86 2395.92 16399.83 14199.45 1599.16 14699.70 92
RPSCF98.22 16898.62 13596.99 30699.82 3791.58 33799.72 2999.44 18296.61 24699.66 6199.89 1095.92 16399.82 14897.46 22299.10 15499.57 134
pmmvs498.13 17997.90 19098.81 20798.61 31198.87 15798.99 27599.21 26396.44 26299.06 19699.58 18495.90 16599.11 29197.18 24196.11 26798.46 302
HyFIR lowres test99.11 8898.92 9499.65 7099.90 399.37 9399.02 26899.91 397.67 15599.59 8099.75 10795.90 16599.73 17999.53 599.02 16199.86 11
COLMAP_ROBcopyleft97.56 698.86 11798.75 11899.17 15099.88 1198.53 18799.34 19699.59 4297.55 16598.70 25199.89 1095.83 16799.90 10198.10 16299.90 2399.08 192
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5399.19 5799.64 7599.82 3799.23 10999.62 6199.55 6198.94 3399.63 6799.95 295.82 16899.94 4999.37 1899.97 399.73 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14198.30 15799.80 3899.20 22499.67 4899.77 2199.72 1194.74 30698.73 24399.90 795.78 16999.98 596.96 25399.88 3699.76 65
BH-untuned98.42 15398.36 15098.59 22299.49 15496.70 27499.27 21299.13 27197.24 19898.80 23699.38 24595.75 17099.74 17297.07 24799.16 14699.33 175
test_djsdf98.67 14198.57 14198.98 16998.70 30298.91 15499.88 199.46 16297.55 16599.22 16299.88 1595.73 17199.28 26299.03 5297.62 22098.75 225
cl-mvsnet198.01 19797.85 19698.48 23499.24 21597.95 22398.71 31199.35 22396.50 25498.60 26799.54 19995.72 17299.03 29997.21 23595.77 27798.46 302
3Dnovator+97.12 1399.18 6998.97 8899.82 3399.17 23599.68 4599.81 1299.51 9699.20 498.72 24499.89 1095.68 17399.97 1098.86 7799.86 5199.81 41
cl-mvsnet_98.01 19797.84 19798.55 22899.25 21497.97 21998.71 31199.34 22796.47 26198.59 26899.54 19995.65 17499.21 27897.21 23595.77 27798.46 302
VNet99.11 8898.90 9799.73 5699.52 14399.56 6899.41 16499.39 20399.01 1899.74 3999.78 9295.56 17599.92 7599.52 698.18 20399.72 83
WR-MVS_H98.13 17997.87 19598.90 18599.02 26198.84 16199.70 3399.59 4297.27 19498.40 27799.19 28495.53 17699.23 27098.34 14593.78 31398.61 284
CHOSEN 1792x268899.19 6799.10 6699.45 11399.89 898.52 19199.39 17699.94 198.73 5199.11 18399.89 1095.50 17799.94 4999.50 899.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11498.72 11999.31 13199.71 8398.88 15699.80 1699.44 18297.91 12899.36 13199.78 9295.49 17899.43 23697.91 17899.11 15199.62 121
PatchMatch-RL98.84 12798.62 13599.52 10199.71 8399.28 10399.06 25799.77 997.74 14899.50 9699.53 20295.41 17999.84 13297.17 24299.64 11699.44 164
RRT_MVS98.60 14698.44 14699.05 16098.88 27699.14 12199.49 12999.38 20997.76 14499.29 14499.86 2395.38 18099.36 24898.81 8997.16 24998.64 265
test_yl98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
DCV-MVSNet98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
tpmrst98.33 16198.48 14597.90 28399.16 23794.78 31799.31 20099.11 27297.27 19499.45 10499.59 18195.33 18399.84 13298.48 13098.61 18099.09 191
MVP-Stereo97.81 22797.75 20897.99 27797.53 32896.60 27998.96 28398.85 30297.22 20097.23 31099.36 25195.28 18499.46 22695.51 29199.78 8797.92 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 10998.87 10199.25 14399.33 19098.42 20299.08 25399.30 24999.16 599.43 10999.75 10795.27 18599.97 1098.56 12399.95 699.36 171
XVG-OURS98.73 13698.68 12498.88 19199.70 8997.73 23398.92 29099.55 6198.52 6399.45 10499.84 3895.27 18599.91 8698.08 16798.84 17399.00 201
BH-w/o98.00 19997.89 19498.32 25499.35 18596.20 29199.01 27398.90 29896.42 26498.38 27899.00 30195.26 18799.72 18396.06 27998.61 18099.03 198
EU-MVSNet97.98 20198.03 17697.81 28998.72 29996.65 27799.66 4699.66 2798.09 10798.35 28199.82 4995.25 18898.01 32897.41 22795.30 28998.78 218
MDTV_nov1_ep13_2view95.18 31199.35 19396.84 23199.58 8295.19 18997.82 18699.46 161
JIA-IIPM97.50 26397.02 27298.93 17798.73 29797.80 23099.30 20298.97 28791.73 32798.91 21994.86 33995.10 19099.71 18997.58 20797.98 21199.28 178
NR-MVSNet97.97 20497.61 22199.02 16498.87 28099.26 10699.47 14099.42 19197.63 15897.08 31399.50 21295.07 19199.13 28697.86 18293.59 31498.68 245
tpmvs97.98 20198.02 17897.84 28699.04 25894.73 31899.31 20099.20 26496.10 29198.76 24199.42 23594.94 19299.81 15296.97 25298.45 19198.97 205
v897.95 20597.63 22098.93 17798.95 27198.81 16799.80 1699.41 19396.03 29299.10 18699.42 23594.92 19399.30 26096.94 25594.08 31098.66 261
PatchmatchNetpermissive98.31 16298.36 15098.19 26499.16 23795.32 30799.27 21298.92 29397.37 18699.37 12899.58 18494.90 19499.70 19597.43 22699.21 14399.54 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 21497.52 22998.92 17998.76 29598.58 18399.84 699.46 16296.20 27898.91 21999.70 12994.89 19599.44 23296.03 28093.89 31298.75 225
sam_mvs194.86 19699.52 143
DU-MVS98.08 18597.79 19998.96 17298.87 28098.98 13899.41 16499.45 17497.87 12998.71 24599.50 21294.82 19799.22 27398.57 12092.87 32398.68 245
Baseline_NR-MVSNet97.76 23297.45 23898.68 21899.09 24998.29 20599.41 16498.85 30295.65 29698.63 26299.67 14794.82 19799.10 29398.07 17092.89 32298.64 265
patchmatchnet-post98.70 31694.79 19999.74 172
Patchmatch-RL test95.84 29495.81 29195.95 31795.61 33690.57 33898.24 33398.39 32495.10 30295.20 32698.67 31794.78 20097.77 33396.28 27790.02 33299.51 149
alignmvs98.81 12898.56 14299.58 8599.43 16799.42 8999.51 11398.96 28998.61 5899.35 13498.92 30894.78 20099.77 16699.35 1998.11 20999.54 138
MDTV_nov1_ep1398.32 15599.11 24494.44 32099.27 21298.74 31097.51 17299.40 12199.62 17194.78 20099.76 16997.59 20698.81 176
Vis-MVSNetpermissive99.12 8398.97 8899.56 8899.78 4499.10 12699.68 4099.66 2798.49 6599.86 1199.87 2094.77 20399.84 13299.19 3799.41 13199.74 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15198.28 15898.94 17598.50 31798.96 14599.77 2199.50 11497.07 21398.87 22699.77 9894.76 20499.28 26298.66 10797.60 22198.57 290
v1097.85 21797.52 22998.86 19998.99 26498.67 17599.75 2599.41 19395.70 29598.98 20999.41 23894.75 20599.23 27096.01 28194.63 30098.67 253
OpenMVScopyleft96.50 1698.47 14998.12 16699.52 10199.04 25899.53 7599.82 1099.72 1194.56 30998.08 29299.88 1594.73 20699.98 597.47 22199.76 9299.06 196
sam_mvs94.72 207
v14897.79 23097.55 22598.50 23198.74 29697.72 23499.54 10399.33 23496.26 27398.90 22199.51 20994.68 20899.14 28397.83 18593.15 32098.63 273
v114497.98 20197.69 21398.85 20298.87 28098.66 17699.54 10399.35 22396.27 27299.23 16199.35 25494.67 20999.23 27096.73 26495.16 29298.68 245
V4298.06 18697.79 19998.86 19998.98 26798.84 16199.69 3599.34 22796.53 25399.30 14199.37 24894.67 20999.32 25797.57 21194.66 29998.42 305
test_post65.99 34994.65 21199.73 179
baseline198.31 16297.95 18599.38 12399.50 15298.74 17099.59 7398.93 29198.41 7399.14 17899.60 17894.59 21299.79 16098.48 13093.29 31799.61 123
DSMNet-mixed97.25 27297.35 25596.95 30897.84 32693.61 32999.57 8596.63 34396.13 28698.87 22698.61 32094.59 21297.70 33595.08 30098.86 17299.55 136
Patchmatch-test97.93 20697.65 21798.77 21299.18 22997.07 25599.03 26599.14 27096.16 28298.74 24299.57 18894.56 21499.72 18393.36 31899.11 15199.52 143
PCF-MVS97.08 1497.66 25297.06 27199.47 11099.61 12599.09 12798.04 33899.25 25991.24 32998.51 27199.70 12994.55 21599.91 8692.76 32499.85 5899.42 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 27796.44 28098.79 21098.99 26498.34 20499.16 23699.07 27992.13 32599.52 9397.31 33394.54 21698.98 30788.54 33498.73 17999.03 198
CVMVSNet98.57 14798.67 12598.30 25699.35 18595.59 29999.50 11999.55 6198.60 5999.39 12399.83 4294.48 21799.45 22798.75 9398.56 18699.85 14
test-LLR98.06 18697.90 19098.55 22898.79 28897.10 25198.67 31397.75 33397.34 18798.61 26598.85 30994.45 21899.45 22797.25 23399.38 13299.10 187
test0.0.03 197.71 24597.42 24798.56 22698.41 32097.82 22998.78 30498.63 31997.34 18798.05 29698.98 30594.45 21898.98 30795.04 30197.15 25098.89 211
v14419297.92 20997.60 22298.87 19598.83 28698.65 17799.55 10099.34 22796.20 27899.32 13999.40 24094.36 22099.26 26796.37 27695.03 29598.70 236
CR-MVSNet98.17 17597.93 18898.87 19599.18 22998.49 19599.22 23099.33 23496.96 22299.56 8599.38 24594.33 22199.00 30494.83 30498.58 18399.14 183
Patchmtry97.75 23697.40 24998.81 20799.10 24798.87 15799.11 25099.33 23494.83 30498.81 23499.38 24594.33 22199.02 30196.10 27895.57 28398.53 292
tpm cat197.39 26897.36 25397.50 30099.17 23593.73 32699.43 15499.31 24591.27 32898.71 24599.08 29494.31 22399.77 16696.41 27598.50 18999.00 201
TranMVSNet+NR-MVSNet97.93 20697.66 21698.76 21398.78 29198.62 18099.65 5399.49 12297.76 14498.49 27299.60 17894.23 22498.97 31498.00 17292.90 32198.70 236
v2v48298.06 18697.77 20498.92 17998.90 27498.82 16599.57 8599.36 21896.65 24299.19 17199.35 25494.20 22599.25 26897.72 19794.97 29698.69 240
XVG-OURS-SEG-HR98.69 13998.62 13598.89 18899.71 8397.74 23299.12 24499.54 6898.44 7299.42 11299.71 12594.20 22599.92 7598.54 12798.90 17099.00 201
ab-mvs98.86 11798.63 13099.54 9099.64 11299.19 11199.44 14899.54 6897.77 14399.30 14199.81 6094.20 22599.93 6499.17 4098.82 17499.49 153
test_post199.23 22565.14 35094.18 22899.71 18997.58 207
ADS-MVSNet298.02 19498.07 17497.87 28499.33 19095.19 31099.23 22599.08 27696.24 27599.10 18699.67 14794.11 22998.93 31696.81 26099.05 15899.48 154
ADS-MVSNet98.20 17198.08 17198.56 22699.33 19096.48 28299.23 22599.15 26896.24 27599.10 18699.67 14794.11 22999.71 18996.81 26099.05 15899.48 154
RPMNet96.61 28195.85 28998.87 19599.18 22998.49 19599.22 23099.08 27688.72 33599.56 8597.38 33194.08 23199.00 30486.87 34098.58 18399.14 183
v119297.81 22797.44 24398.91 18398.88 27698.68 17499.51 11399.34 22796.18 28099.20 16899.34 25794.03 23299.36 24895.32 29795.18 29198.69 240
v192192097.80 22997.45 23898.84 20398.80 28798.53 18799.52 10999.34 22796.15 28499.24 15799.47 22493.98 23399.29 26195.40 29495.13 29398.69 240
Anonymous2023120696.22 28896.03 28696.79 31297.31 33394.14 32399.63 5799.08 27696.17 28197.04 31499.06 29793.94 23497.76 33486.96 33995.06 29498.47 298
WR-MVS98.06 18697.73 21099.06 15898.86 28399.25 10799.19 23399.35 22397.30 19198.66 25499.43 23293.94 23499.21 27898.58 11894.28 30698.71 232
N_pmnet94.95 30295.83 29092.31 32398.47 31879.33 34699.12 24492.81 35393.87 31497.68 30599.13 29093.87 23699.01 30391.38 32896.19 26698.59 288
MVSTER98.49 14898.32 15599.00 16799.35 18599.02 13399.54 10399.38 20997.41 18399.20 16899.73 12093.86 23799.36 24898.87 7497.56 22598.62 275
CP-MVSNet98.09 18397.78 20299.01 16598.97 26999.24 10899.67 4299.46 16297.25 19698.48 27399.64 16193.79 23899.06 29598.63 11094.10 30998.74 228
cascas97.69 24697.43 24698.48 23498.60 31297.30 24398.18 33699.39 20392.96 32398.41 27698.78 31493.77 23999.27 26598.16 15998.61 18098.86 212
v124097.69 24697.32 26198.79 21098.85 28498.43 20099.48 13599.36 21896.11 28799.27 14999.36 25193.76 24099.24 26994.46 30795.23 29098.70 236
test20.0396.12 29195.96 28896.63 31397.44 32995.45 30599.51 11399.38 20996.55 25296.16 32299.25 27693.76 24096.17 34287.35 33894.22 30798.27 314
baseline297.87 21497.55 22598.82 20599.18 22998.02 21699.41 16496.58 34496.97 22196.51 31899.17 28593.43 24299.57 21897.71 19899.03 16098.86 212
TransMVSNet (Re)97.15 27496.58 27798.86 19999.12 24298.85 16099.49 12998.91 29695.48 29797.16 31299.80 7493.38 24399.11 29194.16 31291.73 32898.62 275
tfpnnormal97.84 22097.47 23598.98 16999.20 22499.22 11099.64 5599.61 3596.32 26898.27 28699.70 12993.35 24499.44 23295.69 28795.40 28798.27 314
Anonymous2023121197.88 21297.54 22898.90 18599.71 8398.53 18799.48 13599.57 4994.16 31298.81 23499.68 14193.23 24599.42 23798.84 8194.42 30498.76 223
XXY-MVS98.38 15898.09 17099.24 14599.26 21099.32 9799.56 9299.55 6197.45 17798.71 24599.83 4293.23 24599.63 21398.88 7096.32 26498.76 223
jajsoiax98.43 15298.28 15898.88 19198.60 31298.43 20099.82 1099.53 8098.19 9498.63 26299.80 7493.22 24799.44 23299.22 3497.50 23198.77 221
MDA-MVSNet_test_wron95.45 29794.60 30298.01 27598.16 32397.21 24999.11 25099.24 26093.49 31980.73 34498.98 30593.02 24898.18 32594.22 31194.45 30398.64 265
ACMM97.58 598.37 15998.34 15398.48 23499.41 17197.10 25199.56 9299.45 17498.53 6299.04 19899.85 2993.00 24999.71 18998.74 9497.45 23698.64 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 19297.76 20798.84 20399.39 17998.98 13899.40 17299.38 20996.67 24099.07 19299.28 27192.93 25098.98 30797.10 24496.65 25498.56 291
DTE-MVSNet97.51 26297.19 26898.46 23998.63 30898.13 21399.84 699.48 13396.68 23997.97 29899.67 14792.92 25198.56 32396.88 25992.60 32698.70 236
CLD-MVS98.16 17698.10 16798.33 25299.29 20396.82 27198.75 30799.44 18297.83 13599.13 17999.55 19492.92 25199.67 20098.32 14897.69 21798.48 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 15598.08 17199.40 12099.41 17198.83 16499.30 20298.77 30697.70 15198.94 21599.65 15492.91 25399.74 17296.52 27199.55 12599.64 115
YYNet195.36 29994.51 30497.92 28197.89 32597.10 25199.10 25299.23 26193.26 32280.77 34399.04 29992.81 25498.02 32794.30 30894.18 30898.64 265
mvs_tets98.40 15798.23 16098.91 18398.67 30598.51 19399.66 4699.53 8098.19 9498.65 26099.81 6092.75 25599.44 23299.31 2697.48 23598.77 221
IterMVS97.83 22297.77 20498.02 27499.58 13196.27 28999.02 26899.48 13397.22 20098.71 24599.70 12992.75 25599.13 28697.46 22296.00 27098.67 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11498.69 12399.40 12099.22 22098.72 17299.44 14899.68 1999.24 399.18 17499.42 23592.74 25799.96 1899.34 2399.94 999.53 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 22597.75 20898.06 27199.57 13396.36 28699.02 26899.49 12297.18 20298.71 24599.72 12492.72 25899.14 28397.44 22595.86 27698.67 253
SCA98.19 17298.16 16298.27 26199.30 19995.55 30099.07 25498.97 28797.57 16399.43 10999.57 18892.72 25899.74 17297.58 20799.20 14499.52 143
HQP_MVS98.27 16798.22 16198.44 24399.29 20396.97 26499.39 17699.47 15298.97 3099.11 18399.61 17592.71 26099.69 19897.78 18997.63 21898.67 253
plane_prior699.27 20896.98 26392.71 260
dp97.75 23697.80 19897.59 29699.10 24793.71 32799.32 19898.88 30096.48 25999.08 19199.55 19492.67 26299.82 14896.52 27198.58 18399.24 179
PEN-MVS97.76 23297.44 24398.72 21598.77 29498.54 18699.78 1999.51 9697.06 21598.29 28599.64 16192.63 26398.89 31998.09 16393.16 31998.72 230
LPG-MVS_test98.22 16898.13 16598.49 23299.33 19097.05 25799.58 8099.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
LGP-MVS_train98.49 23299.33 19097.05 25799.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
VPA-MVSNet98.29 16597.95 18599.30 13599.16 23799.54 7299.50 11999.58 4898.27 8599.35 13499.37 24892.53 26699.65 20699.35 1994.46 30298.72 230
TR-MVS97.76 23297.41 24898.82 20599.06 25497.87 22698.87 29698.56 32196.63 24598.68 25399.22 28092.49 26799.65 20695.40 29497.79 21598.95 210
pm-mvs197.68 24897.28 26498.88 19199.06 25498.62 18099.50 11999.45 17496.32 26897.87 30099.79 8692.47 26899.35 25297.54 21493.54 31598.67 253
HQP2-MVS92.47 268
HQP-MVS98.02 19497.90 19098.37 25099.19 22696.83 26998.98 27999.39 20398.24 8798.66 25499.40 24092.47 26899.64 20897.19 23997.58 22398.64 265
EPMVS97.82 22597.65 21798.35 25198.88 27695.98 29499.49 12994.71 34897.57 16399.26 15499.48 22192.46 27199.71 18997.87 18199.08 15699.35 172
PS-CasMVS97.93 20697.59 22498.95 17498.99 26499.06 13099.68 4099.52 8697.13 20698.31 28399.68 14192.44 27299.05 29698.51 12894.08 31098.75 225
cl-mvsnet297.85 21797.64 21998.48 23499.09 24997.87 22698.60 32099.33 23497.11 21198.87 22699.22 28092.38 27399.17 28298.21 15395.99 27198.42 305
CostFormer97.72 24197.73 21097.71 29399.15 24094.02 32499.54 10399.02 28394.67 30799.04 19899.35 25492.35 27499.77 16698.50 12997.94 21299.34 174
OPM-MVS98.19 17298.10 16798.45 24098.88 27697.07 25599.28 20899.38 20998.57 6099.22 16299.81 6092.12 27599.66 20398.08 16797.54 22798.61 284
ET-MVSNet_ETH3D96.49 28495.64 29399.05 16099.53 14198.82 16598.84 29897.51 33797.63 15884.77 33999.21 28392.09 27698.91 31798.98 5792.21 32799.41 168
ACMP97.20 1198.06 18697.94 18798.45 24099.37 18297.01 26099.44 14899.49 12297.54 16898.45 27499.79 8691.95 27799.72 18397.91 17897.49 23498.62 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 16497.98 18199.26 14299.57 13398.16 21099.41 16498.55 32296.03 29299.19 17199.74 11391.87 27899.92 7599.16 4298.29 19899.70 92
tpm97.67 25197.55 22598.03 27299.02 26195.01 31399.43 15498.54 32396.44 26299.12 18199.34 25791.83 27999.60 21697.75 19396.46 26099.48 154
thres100view90097.76 23297.45 23898.69 21799.72 7797.86 22899.59 7398.74 31097.93 12699.26 15498.62 31891.75 28099.83 14193.22 31998.18 20398.37 311
thres600view797.86 21697.51 23198.92 17999.72 7797.95 22399.59 7398.74 31097.94 12599.27 14998.62 31891.75 28099.86 12193.73 31598.19 20298.96 207
LTVRE_ROB97.16 1298.02 19497.90 19098.40 24799.23 21696.80 27299.70 3399.60 3997.12 20898.18 28999.70 12991.73 28299.72 18398.39 13897.45 23698.68 245
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 21297.77 20498.19 26498.71 30196.53 28099.88 199.00 28497.79 14198.78 23999.94 391.68 28399.35 25297.21 23596.99 25298.69 240
tfpn200view997.72 24197.38 25198.72 21599.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.37 311
thres40097.77 23197.38 25198.92 17999.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.96 207
thisisatest051598.14 17897.79 19999.19 14999.50 15298.50 19498.61 31896.82 34196.95 22499.54 8999.43 23291.66 28699.86 12198.08 16799.51 12799.22 180
thres20097.61 25597.28 26498.62 22099.64 11298.03 21599.26 22098.74 31097.68 15399.09 19098.32 32591.66 28699.81 15292.88 32398.22 19998.03 322
new_pmnet96.38 28796.03 28697.41 30198.13 32495.16 31299.05 25999.20 26493.94 31397.39 30898.79 31291.61 28899.04 29790.43 33095.77 27798.05 321
pmmvs597.52 26097.30 26398.16 26698.57 31496.73 27399.27 21298.90 29896.14 28598.37 27999.53 20291.54 28999.14 28397.51 21795.87 27598.63 273
tttt051798.42 15398.14 16499.28 14099.66 10598.38 20399.74 2896.85 34097.68 15399.79 2699.74 11391.39 29099.89 10998.83 8499.56 12399.57 134
tpm297.44 26797.34 25897.74 29299.15 24094.36 32199.45 14498.94 29093.45 32198.90 22199.44 23091.35 29199.59 21797.31 22998.07 21099.29 177
MVS-HIRNet95.75 29595.16 29897.51 29999.30 19993.69 32898.88 29495.78 34585.09 33898.78 23992.65 34191.29 29299.37 24494.85 30399.85 5899.46 161
thisisatest053098.35 16098.03 17699.31 13199.63 11598.56 18499.54 10396.75 34297.53 17099.73 4099.65 15491.25 29399.89 10998.62 11199.56 12399.48 154
testgi97.65 25397.50 23298.13 26899.36 18496.45 28399.42 16199.48 13397.76 14497.87 30099.45 22991.09 29498.81 32094.53 30698.52 18899.13 185
ITE_SJBPF98.08 26999.29 20396.37 28598.92 29398.34 7898.83 23299.75 10791.09 29499.62 21495.82 28397.40 24198.25 316
DeepMVS_CXcopyleft93.34 32199.29 20382.27 34399.22 26285.15 33796.33 32099.05 29890.97 29699.73 17993.57 31697.77 21698.01 323
ACMH97.28 898.10 18297.99 18098.44 24399.41 17196.96 26699.60 6899.56 5498.09 10798.15 29099.91 590.87 29799.70 19598.88 7097.45 23698.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo97.50 26397.33 26098.03 27298.65 30696.23 29099.77 2198.68 31897.14 20597.90 29999.93 490.45 29899.18 28197.00 24996.43 26198.67 253
MIMVSNet97.73 23997.45 23898.57 22499.45 16697.50 23999.02 26898.98 28696.11 28799.41 11699.14 28990.28 29998.74 32195.74 28698.93 16699.47 159
GBi-Net97.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
test197.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
FMVSNet297.72 24197.36 25398.80 20999.51 14598.84 16199.45 14499.42 19196.49 25598.86 23199.29 26990.26 30098.98 30796.44 27396.56 25798.58 289
Anonymous2024052998.09 18397.68 21499.34 12599.66 10598.44 19999.40 17299.43 18993.67 31699.22 16299.89 1090.23 30399.93 6499.26 3298.33 19399.66 105
ACMH+97.24 1097.92 20997.78 20298.32 25499.46 16196.68 27699.56 9299.54 6898.41 7397.79 30499.87 2090.18 30499.66 20398.05 17197.18 24898.62 275
LF4IMVS97.52 26097.46 23797.70 29498.98 26795.55 30099.29 20698.82 30598.07 11298.66 25499.64 16189.97 30599.61 21597.01 24896.68 25397.94 326
GA-MVS97.85 21797.47 23599.00 16799.38 18097.99 21898.57 32199.15 26897.04 21698.90 22199.30 26789.83 30699.38 24196.70 26698.33 19399.62 121
PVSNet_094.43 1996.09 29295.47 29497.94 27999.31 19894.34 32297.81 33999.70 1597.12 20897.46 30698.75 31589.71 30799.79 16097.69 20081.69 34199.68 99
XVG-ACMP-BASELINE97.83 22297.71 21298.20 26399.11 24496.33 28799.41 16499.52 8698.06 11699.05 19799.50 21289.64 30899.73 17997.73 19597.38 24298.53 292
gg-mvs-nofinetune96.17 29095.32 29798.73 21498.79 28898.14 21299.38 18194.09 34991.07 33198.07 29591.04 34489.62 30999.35 25296.75 26299.09 15598.68 245
DWT-MVSNet_test97.53 25997.40 24997.93 28099.03 26094.86 31699.57 8598.63 31996.59 25198.36 28098.79 31289.32 31099.74 17298.14 16198.16 20799.20 182
GG-mvs-BLEND98.45 24098.55 31598.16 21099.43 15493.68 35097.23 31098.46 32289.30 31199.22 27395.43 29398.22 19997.98 324
USDC97.34 26997.20 26797.75 29199.07 25295.20 30998.51 32599.04 28297.99 12298.31 28399.86 2389.02 31299.55 22195.67 28997.36 24398.49 295
MS-PatchMatch97.24 27397.32 26196.99 30698.45 31993.51 33098.82 30099.32 24297.41 18398.13 29199.30 26788.99 31399.56 21995.68 28899.80 8297.90 329
VPNet97.84 22097.44 24399.01 16599.21 22298.94 15099.48 13599.57 4998.38 7599.28 14699.73 12088.89 31499.39 23999.19 3793.27 31898.71 232
K. test v397.10 27696.79 27698.01 27598.72 29996.33 28799.87 497.05 33997.59 16096.16 32299.80 7488.71 31599.04 29796.69 26796.55 25898.65 263
lessismore_v097.79 29098.69 30395.44 30694.75 34795.71 32599.87 2088.69 31699.32 25795.89 28294.93 29898.62 275
TDRefinement95.42 29894.57 30397.97 27889.83 34696.11 29299.48 13598.75 30796.74 23596.68 31799.88 1588.65 31799.71 18998.37 14282.74 34098.09 319
TESTMET0.1,197.55 25797.27 26698.40 24798.93 27296.53 28098.67 31397.61 33696.96 22298.64 26199.28 27188.63 31899.45 22797.30 23099.38 13299.21 181
test_040296.64 28096.24 28297.85 28598.85 28496.43 28499.44 14899.26 25793.52 31896.98 31599.52 20588.52 31999.20 28092.58 32697.50 23197.93 327
UnsupCasMVSNet_eth96.44 28596.12 28497.40 30298.65 30695.65 29799.36 18899.51 9697.13 20696.04 32498.99 30288.40 32098.17 32696.71 26590.27 33198.40 308
MDA-MVSNet-bldmvs94.96 30193.98 30697.92 28198.24 32297.27 24599.15 24099.33 23493.80 31580.09 34599.03 30088.31 32197.86 33293.49 31794.36 30598.62 275
test-mter97.49 26597.13 26998.55 22898.79 28897.10 25198.67 31397.75 33396.65 24298.61 26598.85 30988.23 32299.45 22797.25 23399.38 13299.10 187
TinyColmap97.12 27596.89 27497.83 28799.07 25295.52 30398.57 32198.74 31097.58 16297.81 30399.79 8688.16 32399.56 21995.10 29997.21 24698.39 309
pmmvs-eth3d95.34 30094.73 30197.15 30395.53 33895.94 29599.35 19399.10 27395.13 30093.55 33197.54 32988.15 32497.91 33094.58 30589.69 33497.61 331
RRT_test8_iter0597.72 24197.60 22298.08 26999.23 21696.08 29399.63 5799.49 12297.54 16898.94 21599.81 6087.99 32599.35 25299.21 3696.51 25998.81 215
new-patchmatchnet94.48 30394.08 30595.67 31895.08 33992.41 33499.18 23499.28 25594.55 31093.49 33297.37 33287.86 32697.01 33991.57 32788.36 33597.61 331
FMVSNet596.43 28696.19 28397.15 30399.11 24495.89 29699.32 19899.52 8694.47 31198.34 28299.07 29587.54 32797.07 33892.61 32595.72 28098.47 298
pmmvs696.53 28396.09 28597.82 28898.69 30395.47 30499.37 18499.47 15293.46 32097.41 30799.78 9287.06 32899.33 25696.92 25792.70 32598.65 263
pmmvs394.09 30793.25 30896.60 31494.76 34094.49 31998.92 29098.18 32989.66 33296.48 31998.06 32786.28 32997.33 33789.68 33287.20 33797.97 325
IB-MVS95.67 1896.22 28895.44 29698.57 22499.21 22296.70 27498.65 31697.74 33596.71 23797.27 30998.54 32186.03 33099.92 7598.47 13386.30 33899.10 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 31481.52 31686.66 32766.61 35368.44 35192.79 34697.92 33168.96 34480.04 34699.85 2985.77 33196.15 34397.86 18243.89 34795.39 339
CMPMVSbinary69.68 2394.13 30694.90 30091.84 32497.24 33480.01 34598.52 32499.48 13389.01 33391.99 33599.67 14785.67 33299.13 28695.44 29297.03 25196.39 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 29695.04 29996.92 30997.38 33095.60 29899.52 10999.50 11493.65 31796.97 31699.17 28585.28 33396.56 34188.36 33595.55 28498.60 287
LFMVS97.90 21197.35 25599.54 9099.52 14399.01 13599.39 17698.24 32697.10 21299.65 6499.79 8684.79 33499.91 8699.28 2998.38 19299.69 95
FMVSNet196.84 27896.36 28198.29 25799.32 19797.26 24699.43 15499.48 13395.11 30198.55 26999.32 26483.95 33598.98 30795.81 28496.26 26598.62 275
VDD-MVS97.73 23997.35 25598.88 19199.47 16097.12 25099.34 19698.85 30298.19 9499.67 5699.85 2982.98 33699.92 7599.49 1298.32 19799.60 125
EG-PatchMatch MVS95.97 29395.69 29296.81 31197.78 32792.79 33399.16 23698.93 29196.16 28294.08 33099.22 28082.72 33799.47 22595.67 28997.50 23198.17 317
VDDNet97.55 25797.02 27299.16 15199.49 15498.12 21499.38 18199.30 24995.35 29999.68 5099.90 782.62 33899.93 6499.31 2698.13 20899.42 166
UniMVSNet_ETH3D97.32 27096.81 27598.87 19599.40 17697.46 24099.51 11399.53 8095.86 29498.54 27099.77 9882.44 33999.66 20398.68 10597.52 22899.50 152
OpenMVS_ROBcopyleft92.34 2094.38 30593.70 30796.41 31697.38 33093.17 33199.06 25798.75 30786.58 33694.84 32998.26 32681.53 34099.32 25789.01 33397.87 21496.76 335
MVS_030496.79 27996.52 27997.59 29699.22 22094.92 31599.04 26499.59 4296.49 25598.43 27598.99 30280.48 34199.39 23997.15 24399.27 14098.47 298
UnsupCasMVSNet_bld93.53 30892.51 31096.58 31597.38 33093.82 32598.24 33399.48 13391.10 33093.10 33396.66 33574.89 34298.37 32494.03 31387.71 33697.56 333
testing_294.44 30492.93 30998.98 16994.16 34199.00 13799.42 16199.28 25596.60 24884.86 33896.84 33470.91 34399.27 26598.23 15296.08 26898.68 245
Gipumacopyleft90.99 31090.15 31293.51 32098.73 29790.12 33993.98 34499.45 17479.32 34192.28 33494.91 33869.61 34497.98 32987.42 33795.67 28192.45 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 30992.23 31195.14 31995.61 33689.98 34099.37 18498.21 32794.80 30595.04 32897.69 32865.06 34597.90 33194.30 30889.98 33397.54 334
EMVS80.02 31679.22 31882.43 33291.19 34376.40 34897.55 34292.49 35466.36 34783.01 34291.27 34364.63 34685.79 34965.82 34760.65 34585.08 345
E-PMN80.61 31579.88 31782.81 33090.75 34476.38 34997.69 34095.76 34666.44 34683.52 34092.25 34262.54 34787.16 34868.53 34661.40 34484.89 346
ambc93.06 32292.68 34282.36 34298.47 32698.73 31595.09 32797.41 33055.55 34899.10 29396.42 27491.32 32997.71 330
FPMVS84.93 31385.65 31382.75 33186.77 34863.39 35298.35 33098.92 29374.11 34283.39 34198.98 30550.85 34992.40 34684.54 34294.97 29692.46 340
PMMVS286.87 31185.37 31491.35 32690.21 34583.80 34198.89 29397.45 33883.13 34091.67 33695.03 33748.49 35094.70 34485.86 34177.62 34295.54 338
LCM-MVSNet86.80 31285.22 31591.53 32587.81 34780.96 34498.23 33598.99 28571.05 34390.13 33796.51 33648.45 35196.88 34090.51 32985.30 33996.76 335
ANet_high77.30 31774.86 32084.62 32975.88 35177.61 34797.63 34193.15 35288.81 33464.27 34889.29 34536.51 35283.93 35075.89 34452.31 34692.33 342
test12339.01 32242.50 32328.53 33539.17 35420.91 35598.75 30719.17 35719.83 35138.57 35066.67 34833.16 35315.42 35237.50 35029.66 34949.26 347
testmvs39.17 32143.78 32225.37 33636.04 35516.84 35698.36 32926.56 35520.06 35038.51 35167.32 34729.64 35415.30 35337.59 34939.90 34843.98 348
wuyk23d40.18 32041.29 32436.84 33486.18 34949.12 35479.73 34722.81 35627.64 34925.46 35228.45 35221.98 35548.89 35155.80 34823.56 35012.51 349
PMVScopyleft70.75 2275.98 31974.97 31979.01 33370.98 35255.18 35393.37 34598.21 32765.08 34861.78 34993.83 34021.74 35692.53 34578.59 34391.12 33089.34 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 31874.31 32184.70 32885.38 35076.05 35096.88 34393.17 35167.39 34571.28 34789.01 34621.66 35787.69 34771.74 34572.29 34390.35 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34899.48 1330.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.30 32411.06 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.58 1840.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.84 3299.88 799.32 24298.30 8399.84 1398.86 7799.85 5899.89 2
save fliter99.76 5299.59 6399.14 24299.40 19999.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 8599.51 9699.96 1898.93 6499.86 5199.88 5
GSMVS99.52 143
test_part299.81 4099.83 1499.77 33
MTGPAbinary99.47 152
MTMP99.54 10398.88 300
gm-plane-assit98.54 31692.96 33294.65 30899.15 28899.64 20897.56 212
test9_res97.49 21899.72 9999.75 66
agg_prior297.21 23599.73 9899.75 66
agg_prior99.67 9699.62 5699.40 19998.87 22699.91 86
test_prior499.56 6898.99 275
test_prior99.68 6399.67 9699.48 8299.56 5499.83 14199.74 70
旧先验298.96 28396.70 23899.47 10199.94 4998.19 154
新几何299.01 273
无先验98.99 27599.51 9696.89 22899.93 6497.53 21599.72 83
原ACMM298.95 287
testdata299.95 4196.67 268
testdata198.85 29798.32 82
plane_prior799.29 20397.03 259
plane_prior599.47 15299.69 19897.78 18997.63 21898.67 253
plane_prior499.61 175
plane_prior397.00 26198.69 5499.11 183
plane_prior299.39 17698.97 30
plane_prior199.26 210
plane_prior96.97 26499.21 23298.45 6997.60 221
n20.00 358
nn0.00 358
door-mid98.05 330
test1199.35 223
door97.92 331
HQP5-MVS96.83 269
HQP-NCC99.19 22698.98 27998.24 8798.66 254
ACMP_Plane99.19 22698.98 27998.24 8798.66 254
BP-MVS97.19 239
HQP4-MVS98.66 25499.64 20898.64 265
HQP3-MVS99.39 20397.58 223
NP-MVS99.23 21696.92 26799.40 240
ACMMP++_ref97.19 247
ACMMP++97.43 239