This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4599.63 11599.59 6399.36 18899.46 16299.07 1399.79 2699.82 4998.85 4199.92 7598.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS98.35 299.30 5399.19 5799.64 7599.82 3799.23 10999.62 6199.55 6198.94 3399.63 6799.95 295.82 16899.94 4999.37 1899.97 399.73 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.18 398.81 12899.37 1997.12 30599.60 12891.75 33698.61 31899.44 18299.35 199.83 1799.85 2998.70 6199.81 15299.02 5499.91 1699.81 41
PLCcopyleft97.94 499.02 10298.85 10699.53 9699.66 10599.01 13599.24 22499.52 8696.85 23099.27 14999.48 22198.25 9099.91 8697.76 19199.62 12099.65 109
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM97.58 598.37 15998.34 15398.48 23499.41 17197.10 25199.56 9299.45 17498.53 6299.04 19899.85 2993.00 24999.71 18998.74 9497.45 23698.64 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft97.56 698.86 11798.75 11899.17 15099.88 1198.53 18799.34 19699.59 4297.55 16598.70 25199.89 1095.83 16799.90 10198.10 16299.90 2399.08 192
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS97.30 798.85 12598.64 12999.47 11099.42 16899.08 12899.62 6199.36 21897.39 18599.28 14699.68 14196.44 14799.92 7598.37 14298.22 19999.40 169
ACMH97.28 898.10 18297.99 18098.44 24399.41 17196.96 26699.60 6899.56 5498.09 10798.15 29099.91 590.87 29799.70 19598.88 7097.45 23698.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator97.25 999.24 6399.05 7199.81 3699.12 24299.66 5099.84 699.74 1099.09 1098.92 21899.90 795.94 16299.98 598.95 6199.92 1199.79 53
ACMH+97.24 1097.92 20997.78 20298.32 25499.46 16196.68 27699.56 9299.54 6898.41 7397.79 30499.87 2090.18 30499.66 20398.05 17197.18 24898.62 275
ACMP97.20 1198.06 18697.94 18798.45 24099.37 18297.01 26099.44 14899.49 12297.54 16898.45 27499.79 8691.95 27799.72 18397.91 17897.49 23498.62 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 19497.90 19098.40 24799.23 21696.80 27299.70 3399.60 3997.12 20898.18 28999.70 12991.73 28299.72 18398.39 13897.45 23698.68 245
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+97.12 1399.18 6998.97 8899.82 3399.17 23599.68 4599.81 1299.51 9699.20 498.72 24499.89 1095.68 17399.97 1098.86 7799.86 5199.81 41
PCF-MVS97.08 1497.66 25297.06 27199.47 11099.61 12599.09 12798.04 33899.25 25991.24 32998.51 27199.70 12994.55 21599.91 8692.76 32499.85 5899.42 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS97.07 1597.74 23897.34 25898.94 17599.70 8997.53 23899.25 22299.51 9691.90 32699.30 14199.63 16698.78 4899.64 20888.09 33699.87 4099.65 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft96.50 1698.47 14998.12 16699.52 10199.04 25899.53 7599.82 1099.72 1194.56 30998.08 29299.88 1594.73 20699.98 597.47 22199.76 9299.06 196
PVSNet96.02 1798.85 12598.84 10798.89 18899.73 7297.28 24498.32 33199.60 3997.86 13099.50 9699.57 18896.75 13799.86 12198.56 12399.70 10499.54 138
IB-MVS95.67 1896.22 28895.44 29698.57 22499.21 22296.70 27498.65 31697.74 33596.71 23797.27 30998.54 32186.03 33099.92 7598.47 13386.30 33899.10 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_094.43 1996.09 29295.47 29497.94 27999.31 19894.34 32297.81 33999.70 1597.12 20897.46 30698.75 31589.71 30799.79 16097.69 20081.69 34199.68 99
OpenMVS_ROBcopyleft92.34 2094.38 30593.70 30796.41 31697.38 33093.17 33199.06 25798.75 30786.58 33694.84 32998.26 32681.53 34099.32 25789.01 33397.87 21496.76 335
MVEpermissive76.82 2176.91 31874.31 32184.70 32885.38 35076.05 35096.88 34393.17 35167.39 34571.28 34789.01 34621.66 35787.69 34771.74 34572.29 34390.35 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 31974.97 31979.01 33370.98 35255.18 35393.37 34598.21 32765.08 34861.78 34993.83 34021.74 35692.53 34578.59 34391.12 33089.34 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary69.68 2394.13 30694.90 30091.84 32497.24 33480.01 34598.52 32499.48 13389.01 33391.99 33599.67 14785.67 33299.13 28695.44 29297.03 25196.39 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 6899.48 13399.08 1199.91 199.81 6099.20 599.96 1898.91 6799.85 5899.79 53
IU-MVS99.84 3299.88 799.32 24298.30 8399.84 1398.86 7799.85 5899.89 2
OPU-MVS99.64 7599.56 13799.72 3899.60 6899.70 12999.27 499.42 23798.24 15199.80 8299.79 53
test_241102_TWO99.48 13399.08 1199.88 599.81 6098.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13399.07 1399.91 199.74 11399.20 599.76 169
xxxxxxxxxxxxxcwj99.43 3299.32 2999.75 4999.76 5299.59 6399.14 24299.53 8099.00 2299.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
SF-MVS99.38 4599.24 5299.79 4199.79 4299.68 4599.57 8599.54 6897.82 14099.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
ETH3D cwj APD-0.1699.06 9698.84 10799.72 5999.51 14599.60 6099.23 22599.44 18297.04 21699.39 12399.67 14798.30 8799.92 7597.27 23199.69 10599.64 115
cl-mvsnet297.85 21797.64 21998.48 23499.09 24997.87 22698.60 32099.33 23497.11 21198.87 22699.22 28092.38 27399.17 28298.21 15395.99 27198.42 305
miper_ehance_all_eth98.18 17498.10 16798.41 24599.23 21697.72 23498.72 31099.31 24596.60 24898.88 22499.29 26997.29 11999.13 28697.60 20595.99 27198.38 310
miper_enhance_ethall98.16 17698.08 17198.41 24598.96 27097.72 23498.45 32799.32 24296.95 22498.97 21199.17 28597.06 12699.22 27397.86 18295.99 27198.29 313
ZNCC-MVS99.47 2299.33 2799.87 1199.87 1599.81 2199.64 5599.67 2298.08 11199.55 8899.64 16198.91 3699.96 1898.72 9899.90 2399.82 36
ETH3 D test640098.70 13798.35 15299.73 5699.69 9199.60 6099.16 23699.45 17495.42 29899.27 14999.60 17897.39 11399.91 8695.36 29699.83 7299.70 92
cl-mvsnet_98.01 19797.84 19798.55 22899.25 21497.97 21998.71 31199.34 22796.47 26198.59 26899.54 19995.65 17499.21 27897.21 23595.77 27798.46 302
cl-mvsnet198.01 19797.85 19698.48 23499.24 21597.95 22398.71 31199.35 22396.50 25498.60 26799.54 19995.72 17299.03 29997.21 23595.77 27798.46 302
eth_miper_zixun_eth98.05 19197.96 18398.33 25299.26 21097.38 24298.56 32399.31 24596.65 24298.88 22499.52 20596.58 14199.12 29097.39 22895.53 28598.47 298
9.1499.10 6699.72 7799.40 17299.51 9697.53 17099.64 6699.78 9298.84 4299.91 8697.63 20399.82 78
testtj99.12 8398.87 10199.86 1899.72 7799.79 2799.44 14899.51 9697.29 19299.59 8099.74 11398.15 9699.96 1896.74 26399.69 10599.81 41
uanet_test0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
ETH3D-3000-0.199.21 6499.02 7999.77 4599.73 7299.69 4399.38 18199.51 9697.45 17799.61 7399.75 10798.51 7199.91 8697.45 22499.83 7299.71 90
save fliter99.76 5299.59 6399.14 24299.40 19999.00 22
ET-MVSNet_ETH3D96.49 28495.64 29399.05 16099.53 14198.82 16598.84 29897.51 33797.63 15884.77 33999.21 28392.09 27698.91 31798.98 5792.21 32799.41 168
UniMVSNet_ETH3D97.32 27096.81 27598.87 19599.40 17697.46 24099.51 11399.53 8095.86 29498.54 27099.77 9882.44 33999.66 20398.68 10597.52 22899.50 152
EIA-MVS99.18 6999.09 6899.45 11399.49 15499.18 11399.67 4299.53 8097.66 15699.40 12199.44 23098.10 9799.81 15298.94 6299.62 12099.35 172
miper_lstm_enhance98.00 19997.91 18998.28 26099.34 18997.43 24198.88 29499.36 21896.48 25998.80 23699.55 19495.98 15898.91 31797.27 23195.50 28698.51 294
ETV-MVS99.26 6099.21 5599.40 12099.46 16199.30 10199.56 9299.52 8698.52 6399.44 10899.27 27498.41 8199.86 12199.10 4799.59 12299.04 197
CS-MVS99.21 6499.13 6299.45 11399.54 14099.34 9599.71 3199.54 6898.26 8698.99 20899.24 27798.25 9099.88 11498.98 5799.63 11899.12 186
D2MVS98.41 15598.50 14498.15 26799.26 21096.62 27899.40 17299.61 3597.71 15098.98 20999.36 25196.04 15799.67 20098.70 10097.41 24098.15 318
MSP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8599.37 21799.10 899.81 2299.80 7498.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7499.09 1299.96 1898.85 7999.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 8599.51 9699.96 1898.93 6499.86 5199.88 5
test072699.85 2599.89 399.62 6199.50 11499.10 899.86 1199.82 4998.94 31
SR-MVS99.43 3299.29 4299.86 1899.75 6099.83 1499.59 7399.62 3398.21 9399.73 4099.79 8698.68 6299.96 1898.44 13699.77 8999.79 53
DPM-MVS98.95 11098.71 12199.66 6699.63 11599.55 7098.64 31799.10 27397.93 12699.42 11299.55 19498.67 6599.80 15795.80 28599.68 11099.61 123
GST-MVS99.40 4399.24 5299.85 2599.86 2199.79 2799.60 6899.67 2297.97 12399.63 6799.68 14198.52 7099.95 4198.38 14099.86 5199.81 41
test_yl98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
thisisatest053098.35 16098.03 17699.31 13199.63 11598.56 18499.54 10396.75 34297.53 17099.73 4099.65 15491.25 29399.89 10998.62 11199.56 12399.48 154
Anonymous2024052998.09 18397.68 21499.34 12599.66 10598.44 19999.40 17299.43 18993.67 31699.22 16299.89 1090.23 30399.93 6499.26 3298.33 19399.66 105
Anonymous20240521198.30 16497.98 18199.26 14299.57 13398.16 21099.41 16498.55 32296.03 29299.19 17199.74 11391.87 27899.92 7599.16 4298.29 19899.70 92
DCV-MVSNet98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
tttt051798.42 15398.14 16499.28 14099.66 10598.38 20399.74 2896.85 34097.68 15399.79 2699.74 11391.39 29099.89 10998.83 8499.56 12399.57 134
our_test_397.65 25397.68 21497.55 29898.62 30994.97 31498.84 29899.30 24996.83 23298.19 28899.34 25797.01 12899.02 30195.00 30296.01 26998.64 265
thisisatest051598.14 17897.79 19999.19 14999.50 15298.50 19498.61 31896.82 34196.95 22499.54 8999.43 23291.66 28699.86 12198.08 16799.51 12799.22 180
ppachtmachnet_test97.49 26597.45 23897.61 29598.62 30995.24 30898.80 30299.46 16296.11 28798.22 28799.62 17196.45 14698.97 31493.77 31495.97 27498.61 284
SMA-MVS99.44 2999.30 3899.85 2599.73 7299.83 1499.56 9299.47 15297.45 17799.78 3199.82 4999.18 899.91 8698.79 9099.89 3399.81 41
GSMVS99.52 143
DPE-MVS99.46 2499.32 2999.91 299.78 4499.88 799.36 18899.51 9698.73 5199.88 599.84 3898.72 5999.96 1898.16 15999.87 4099.88 5
test_part299.81 4099.83 1499.77 33
test_part10.00 3370.00 3570.00 34899.48 1330.00 3580.00 3540.00 3510.00 3510.00 350
thres100view90097.76 23297.45 23898.69 21799.72 7797.86 22899.59 7398.74 31097.93 12699.26 15498.62 31891.75 28099.83 14193.22 31998.18 20398.37 311
tfpnnormal97.84 22097.47 23598.98 16999.20 22499.22 11099.64 5599.61 3596.32 26898.27 28699.70 12993.35 24499.44 23295.69 28795.40 28798.27 314
tfpn200view997.72 24197.38 25198.72 21599.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.37 311
cl_fuxian98.12 18198.04 17598.38 24999.30 19997.69 23798.81 30199.33 23496.67 24098.83 23299.34 25797.11 12398.99 30697.58 20795.34 28898.48 296
CHOSEN 280x42099.12 8399.13 6299.08 15699.66 10597.89 22598.43 32899.71 1398.88 3799.62 7199.76 10296.63 14099.70 19599.46 1499.99 199.66 105
CANet99.25 6299.14 6199.59 8299.41 17199.16 11699.35 19399.57 4998.82 4299.51 9599.61 17596.46 14599.95 4199.59 199.98 299.65 109
Fast-Effi-MVS+-dtu98.77 13498.83 11198.60 22199.41 17196.99 26299.52 10999.49 12298.11 10499.24 15799.34 25796.96 13099.79 16097.95 17699.45 12899.02 200
Effi-MVS+-dtu98.78 13298.89 9998.47 23899.33 19096.91 26899.57 8599.30 24998.47 6699.41 11698.99 30296.78 13499.74 17298.73 9699.38 13298.74 228
CANet_DTU98.97 10998.87 10199.25 14399.33 19098.42 20299.08 25399.30 24999.16 599.43 10999.75 10795.27 18599.97 1098.56 12399.95 699.36 171
MVS_030496.79 27996.52 27997.59 29699.22 22094.92 31599.04 26499.59 4296.49 25598.43 27598.99 30280.48 34199.39 23997.15 24399.27 14098.47 298
MP-MVS-pluss99.37 4699.20 5699.88 699.90 399.87 999.30 20299.52 8697.18 20299.60 7799.79 8698.79 4799.95 4198.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DVP-MVS99.42 3699.27 4799.88 699.89 899.80 2399.67 4299.50 11498.70 5399.77 3399.49 21598.21 9299.95 4198.46 13499.77 8999.88 5
sam_mvs194.86 19699.52 143
sam_mvs94.72 207
IterMVS-SCA-FT97.82 22597.75 20898.06 27199.57 13396.36 28699.02 26899.49 12297.18 20298.71 24599.72 12492.72 25899.14 28397.44 22595.86 27698.67 253
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5099.63 5799.39 20398.91 3699.78 3199.85 2999.36 299.94 4998.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
OPM-MVS98.19 17298.10 16798.45 24098.88 27697.07 25599.28 20899.38 20998.57 6099.22 16299.81 6092.12 27599.66 20398.08 16797.54 22798.61 284
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14099.48 13398.05 11799.76 3799.86 2398.82 4499.93 6498.82 8899.91 1699.84 18
ambc93.06 32292.68 34282.36 34298.47 32698.73 31595.09 32797.41 33055.55 34899.10 29396.42 27491.32 32997.71 330
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 18899.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTGPAbinary99.47 152
mvs-test198.86 11798.84 10798.89 18899.33 19097.77 23199.44 14899.30 24998.47 6699.10 18699.43 23296.78 13499.95 4198.73 9699.02 16198.96 207
Effi-MVS+98.81 12898.59 14099.48 10799.46 16199.12 12598.08 33799.50 11497.50 17399.38 12699.41 23896.37 14999.81 15299.11 4698.54 18799.51 149
xiu_mvs_v2_base99.26 6099.25 5199.29 13899.53 14198.91 15499.02 26899.45 17498.80 4699.71 4399.26 27598.94 3199.98 599.34 2399.23 14298.98 204
xiu_mvs_v1_base99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
new-patchmatchnet94.48 30394.08 30595.67 31895.08 33992.41 33499.18 23499.28 25594.55 31093.49 33297.37 33287.86 32697.01 33991.57 32788.36 33597.61 331
pmmvs696.53 28396.09 28597.82 28898.69 30395.47 30499.37 18499.47 15293.46 32097.41 30799.78 9287.06 32899.33 25696.92 25792.70 32598.65 263
pmmvs597.52 26097.30 26398.16 26698.57 31496.73 27399.27 21298.90 29896.14 28598.37 27999.53 20291.54 28999.14 28397.51 21795.87 27598.63 273
test_post199.23 22565.14 35094.18 22899.71 18997.58 207
test_post65.99 34994.65 21199.73 179
Fast-Effi-MVS+98.70 13798.43 14799.51 10399.51 14599.28 10399.52 10999.47 15296.11 28799.01 20199.34 25796.20 15499.84 13297.88 18098.82 17499.39 170
patchmatchnet-post98.70 31694.79 19999.74 172
Anonymous2023121197.88 21297.54 22898.90 18599.71 8398.53 18799.48 13599.57 4994.16 31298.81 23499.68 14193.23 24599.42 23798.84 8194.42 30498.76 223
pmmvs-eth3d95.34 30094.73 30197.15 30395.53 33895.94 29599.35 19399.10 27395.13 30093.55 33197.54 32988.15 32497.91 33094.58 30589.69 33497.61 331
GG-mvs-BLEND98.45 24098.55 31598.16 21099.43 15493.68 35097.23 31098.46 32289.30 31199.22 27395.43 29398.22 19997.98 324
xiu_mvs_v1_base_debi99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
Anonymous2023120696.22 28896.03 28696.79 31297.31 33394.14 32399.63 5799.08 27696.17 28197.04 31499.06 29793.94 23497.76 33486.96 33995.06 29498.47 298
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTMP99.54 10398.88 300
gm-plane-assit98.54 31692.96 33294.65 30899.15 28899.64 20897.56 212
test9_res97.49 21899.72 9999.75 66
MVP-Stereo97.81 22797.75 20897.99 27797.53 32896.60 27998.96 28398.85 30297.22 20097.23 31099.36 25195.28 18499.46 22695.51 29199.78 8797.92 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.67 9699.65 5399.05 25999.41 19396.22 27798.95 21399.49 21598.77 5199.91 86
train_agg99.02 10298.77 11599.77 4599.67 9699.65 5399.05 25999.41 19396.28 27098.95 21399.49 21598.76 5399.91 8697.63 20399.72 9999.75 66
gg-mvs-nofinetune96.17 29095.32 29798.73 21498.79 28898.14 21299.38 18194.09 34991.07 33198.07 29591.04 34489.62 30999.35 25296.75 26299.09 15598.68 245
SCA98.19 17298.16 16298.27 26199.30 19995.55 30099.07 25498.97 28797.57 16399.43 10999.57 18892.72 25899.74 17297.58 20799.20 14499.52 143
Patchmatch-test97.93 20697.65 21798.77 21299.18 22997.07 25599.03 26599.14 27096.16 28298.74 24299.57 18894.56 21499.72 18393.36 31899.11 15199.52 143
test_899.67 9699.61 5899.03 26599.41 19396.28 27098.93 21799.48 22198.76 5399.91 86
MS-PatchMatch97.24 27397.32 26196.99 30698.45 31993.51 33098.82 30099.32 24297.41 18398.13 29199.30 26788.99 31399.56 21995.68 28899.80 8297.90 329
Patchmatch-RL test95.84 29495.81 29195.95 31795.61 33690.57 33898.24 33398.39 32495.10 30295.20 32698.67 31794.78 20097.77 33396.28 27790.02 33299.51 149
cdsmvs_eth3d_5k24.64 32332.85 3250.00 3370.00 3560.00 3570.00 34899.51 960.00 3520.00 35399.56 19196.58 1410.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.27 32511.03 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 35399.01 160.00 3540.00 3510.00 3510.00 350
agg_prior199.01 10598.76 11799.76 4899.67 9699.62 5698.99 27599.40 19996.26 27398.87 22699.49 21598.77 5199.91 8697.69 20099.72 9999.75 66
agg_prior297.21 23599.73 9899.75 66
agg_prior99.67 9699.62 5699.40 19998.87 22699.91 86
tmp_tt82.80 31481.52 31686.66 32766.61 35368.44 35192.79 34697.92 33168.96 34480.04 34699.85 2985.77 33196.15 34397.86 18243.89 34795.39 339
canonicalmvs99.02 10298.86 10599.51 10399.42 16899.32 9799.80 1699.48 13398.63 5699.31 14098.81 31197.09 12499.75 17199.27 3197.90 21399.47 159
anonymousdsp98.44 15198.28 15898.94 17598.50 31798.96 14599.77 2199.50 11497.07 21398.87 22699.77 9894.76 20499.28 26298.66 10797.60 22198.57 290
alignmvs98.81 12898.56 14299.58 8599.43 16799.42 8999.51 11398.96 28998.61 5899.35 13498.92 30894.78 20099.77 16699.35 1998.11 20999.54 138
nrg03098.64 14498.42 14899.28 14099.05 25799.69 4399.81 1299.46 16298.04 11899.01 20199.82 4996.69 13999.38 24199.34 2394.59 30198.78 218
v14419297.92 20997.60 22298.87 19598.83 28698.65 17799.55 10099.34 22796.20 27899.32 13999.40 24094.36 22099.26 26796.37 27695.03 29598.70 236
FIs98.78 13298.63 13099.23 14799.18 22999.54 7299.83 999.59 4298.28 8498.79 23899.81 6096.75 13799.37 24499.08 4996.38 26298.78 218
v192192097.80 22997.45 23898.84 20398.80 28798.53 18799.52 10999.34 22796.15 28499.24 15799.47 22493.98 23399.29 26195.40 29495.13 29398.69 240
UA-Net99.42 3699.29 4299.80 3899.62 12199.55 7099.50 11999.70 1598.79 4799.77 3399.96 197.45 11299.96 1898.92 6699.90 2399.89 2
v119297.81 22797.44 24398.91 18398.88 27698.68 17499.51 11399.34 22796.18 28099.20 16899.34 25794.03 23299.36 24895.32 29795.18 29198.69 240
FC-MVSNet-test98.75 13598.62 13599.15 15399.08 25199.45 8699.86 599.60 3998.23 9098.70 25199.82 4996.80 13399.22 27399.07 5096.38 26298.79 217
v114497.98 20197.69 21398.85 20298.87 28098.66 17699.54 10399.35 22396.27 27299.23 16199.35 25494.67 20999.23 27096.73 26495.16 29298.68 245
sosnet-low-res0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2399.66 4699.67 2298.15 9899.68 5099.69 13699.06 1399.96 1898.69 10399.87 4099.84 18
v14897.79 23097.55 22598.50 23198.74 29697.72 23499.54 10399.33 23496.26 27398.90 22199.51 20994.68 20899.14 28397.83 18593.15 32098.63 273
sosnet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
AllTest98.87 11498.72 11999.31 13199.86 2198.48 19799.56 9299.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
TestCases99.31 13199.86 2198.48 19799.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
v7n97.87 21497.52 22998.92 17998.76 29598.58 18399.84 699.46 16296.20 27898.91 21999.70 12994.89 19599.44 23296.03 28093.89 31298.75 225
region2R99.48 1999.35 2499.87 1199.88 1199.80 2399.65 5399.66 2798.13 10099.66 6199.68 14198.96 2599.96 1898.62 11199.87 4099.84 18
testing_294.44 30492.93 30998.98 16994.16 34199.00 13799.42 16199.28 25596.60 24884.86 33896.84 33470.91 34399.27 26598.23 15296.08 26898.68 245
RRT_MVS98.60 14698.44 14699.05 16098.88 27699.14 12199.49 12999.38 20997.76 14499.29 14499.86 2395.38 18099.36 24898.81 8997.16 24998.64 265
PS-MVSNAJss98.92 11298.92 9498.90 18598.78 29198.53 18799.78 1999.54 6898.07 11299.00 20699.76 10299.01 1699.37 24499.13 4497.23 24598.81 215
PS-MVSNAJ99.32 5199.32 2999.30 13599.57 13398.94 15098.97 28299.46 16298.92 3599.71 4399.24 27799.01 1699.98 599.35 1999.66 11398.97 205
jajsoiax98.43 15298.28 15898.88 19198.60 31298.43 20099.82 1099.53 8098.19 9498.63 26299.80 7493.22 24799.44 23299.22 3497.50 23198.77 221
mvs_tets98.40 15798.23 16098.91 18398.67 30598.51 19399.66 4699.53 8098.19 9498.65 26099.81 6092.75 25599.44 23299.31 2697.48 23598.77 221
#test#99.43 3299.29 4299.86 1899.87 1599.80 2399.55 10099.67 2297.83 13599.68 5099.69 13699.06 1399.96 1898.39 13899.87 4099.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7599.78 4499.14 12199.60 6899.45 17499.01 1899.90 399.83 4298.98 2399.93 6499.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7599.78 4499.15 12099.61 6799.45 17499.01 1899.89 499.82 4999.01 1699.92 7599.56 499.95 699.85 14
Regformer-399.57 799.53 599.68 6399.76 5299.29 10299.58 8099.44 18299.01 1899.87 1099.80 7498.97 2499.91 8699.44 1799.92 1199.83 29
Regformer-499.59 399.54 499.73 5699.76 5299.41 9099.58 8099.49 12299.02 1599.88 599.80 7499.00 2299.94 4999.45 1599.92 1199.84 18
Regformer-199.53 1199.47 999.72 5999.71 8399.44 8799.49 12999.46 16298.95 3299.83 1799.76 10299.01 1699.93 6499.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 4999.71 8399.52 7899.49 12999.49 12298.94 3399.83 1799.76 10299.01 1699.94 4999.15 4399.87 4099.80 49
HPM-MVS++copyleft99.39 4499.23 5499.87 1199.75 6099.84 1399.43 15499.51 9698.68 5599.27 14999.53 20298.64 6799.96 1898.44 13699.80 8299.79 53
test_prior499.56 6898.99 275
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12899.74 11398.81 4599.94 4998.79 9099.86 5199.84 18
v124097.69 24697.32 26198.79 21098.85 28498.43 20099.48 13599.36 21896.11 28799.27 14999.36 25193.76 24099.24 26994.46 30795.23 29098.70 236
test_prior399.21 6499.05 7199.68 6399.67 9699.48 8298.96 28399.56 5498.34 7899.01 20199.52 20598.68 6299.83 14197.96 17499.74 9599.74 70
pm-mvs197.68 24897.28 26498.88 19199.06 25498.62 18099.50 11999.45 17496.32 26897.87 30099.79 8692.47 26899.35 25297.54 21493.54 31598.67 253
test_prior298.96 28398.34 7899.01 20199.52 20598.68 6297.96 17499.74 95
X-MVStestdata96.55 28295.45 29599.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12864.01 35198.81 4599.94 4998.79 9099.86 5199.84 18
test_prior99.68 6399.67 9699.48 8299.56 5499.83 14199.74 70
旧先验298.96 28396.70 23899.47 10199.94 4998.19 154
新几何299.01 273
新几何199.75 4999.75 6099.59 6399.54 6896.76 23499.29 14499.64 16198.43 7799.94 4996.92 25799.66 11399.72 83
旧先验199.74 6799.59 6399.54 6899.69 13698.47 7499.68 11099.73 77
无先验98.99 27599.51 9696.89 22899.93 6497.53 21599.72 83
原ACMM298.95 287
原ACMM199.65 7099.73 7299.33 9699.47 15297.46 17499.12 18199.66 15398.67 6599.91 8697.70 19999.69 10599.71 90
test22299.75 6099.49 8198.91 29299.49 12296.42 26499.34 13799.65 15498.28 8999.69 10599.72 83
testdata299.95 4196.67 268
segment_acmp98.96 25
testdata99.54 9099.75 6098.95 14799.51 9697.07 21399.43 10999.70 12998.87 3999.94 4997.76 19199.64 11699.72 83
testdata198.85 29798.32 82
v897.95 20597.63 22098.93 17798.95 27198.81 16799.80 1699.41 19396.03 29299.10 18699.42 23594.92 19399.30 26096.94 25594.08 31098.66 261
131498.68 14098.54 14399.11 15598.89 27598.65 17799.27 21299.49 12296.89 22897.99 29799.56 19197.72 10899.83 14197.74 19499.27 14098.84 214
112199.09 9298.87 10199.75 4999.74 6799.60 6099.27 21299.48 13396.82 23399.25 15699.65 15498.38 8299.93 6497.53 21599.67 11299.73 77
LFMVS97.90 21197.35 25599.54 9099.52 14399.01 13599.39 17698.24 32697.10 21299.65 6499.79 8684.79 33499.91 8699.28 2998.38 19299.69 95
VDD-MVS97.73 23997.35 25598.88 19199.47 16097.12 25099.34 19698.85 30298.19 9499.67 5699.85 2982.98 33699.92 7599.49 1298.32 19799.60 125
VDDNet97.55 25797.02 27299.16 15199.49 15498.12 21499.38 18199.30 24995.35 29999.68 5099.90 782.62 33899.93 6499.31 2698.13 20899.42 166
v1097.85 21797.52 22998.86 19998.99 26498.67 17599.75 2599.41 19395.70 29598.98 20999.41 23894.75 20599.23 27096.01 28194.63 30098.67 253
VPNet97.84 22097.44 24399.01 16599.21 22298.94 15099.48 13599.57 4998.38 7599.28 14699.73 12088.89 31499.39 23999.19 3793.27 31898.71 232
MVS97.28 27196.55 27899.48 10798.78 29198.95 14799.27 21299.39 20383.53 33998.08 29299.54 19996.97 12999.87 11894.23 31099.16 14699.63 119
v2v48298.06 18697.77 20498.92 17998.90 27498.82 16599.57 8599.36 21896.65 24299.19 17199.35 25494.20 22599.25 26897.72 19794.97 29698.69 240
V4298.06 18697.79 19998.86 19998.98 26798.84 16199.69 3599.34 22796.53 25399.30 14199.37 24894.67 20999.32 25797.57 21194.66 29998.42 305
SD-MVS99.41 4099.52 699.05 16099.74 6799.68 4599.46 14399.52 8699.11 799.88 599.91 599.43 197.70 33598.72 9899.93 1099.77 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.85 21797.47 23599.00 16799.38 18097.99 21898.57 32199.15 26897.04 21698.90 22199.30 26789.83 30699.38 24196.70 26698.33 19399.62 121
MSLP-MVS++99.46 2499.47 999.44 11899.60 12899.16 11699.41 16499.71 1398.98 2799.45 10499.78 9299.19 799.54 22299.28 2999.84 6599.63 119
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5499.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 6898.36 7699.79 2699.82 4998.86 4099.95 4198.62 11199.81 8099.78 60
ADS-MVSNet298.02 19498.07 17497.87 28499.33 19095.19 31099.23 22599.08 27696.24 27599.10 18699.67 14794.11 22998.93 31696.81 26099.05 15899.48 154
EI-MVSNet98.67 14198.67 12598.68 21899.35 18597.97 21999.50 11999.38 20996.93 22799.20 16899.83 4297.87 10299.36 24898.38 14097.56 22598.71 232
Regformer0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
CVMVSNet98.57 14798.67 12598.30 25699.35 18595.59 29999.50 11999.55 6198.60 5999.39 12399.83 4294.48 21799.45 22798.75 9398.56 18699.85 14
pmmvs498.13 17997.90 19098.81 20798.61 31198.87 15798.99 27599.21 26396.44 26299.06 19699.58 18495.90 16599.11 29197.18 24196.11 26798.46 302
EU-MVSNet97.98 20198.03 17697.81 28998.72 29996.65 27799.66 4699.66 2798.09 10798.35 28199.82 4995.25 18898.01 32897.41 22795.30 28998.78 218
VNet99.11 8898.90 9799.73 5699.52 14399.56 6899.41 16499.39 20399.01 1899.74 3999.78 9295.56 17599.92 7599.52 698.18 20399.72 83
test-LLR98.06 18697.90 19098.55 22898.79 28897.10 25198.67 31397.75 33397.34 18798.61 26598.85 30994.45 21899.45 22797.25 23399.38 13299.10 187
TESTMET0.1,197.55 25797.27 26698.40 24798.93 27296.53 28098.67 31397.61 33696.96 22298.64 26199.28 27188.63 31899.45 22797.30 23099.38 13299.21 181
test-mter97.49 26597.13 26998.55 22898.79 28897.10 25198.67 31397.75 33396.65 24298.61 26598.85 30988.23 32299.45 22797.25 23399.38 13299.10 187
VPA-MVSNet98.29 16597.95 18599.30 13599.16 23799.54 7299.50 11999.58 4898.27 8599.35 13499.37 24892.53 26699.65 20699.35 1994.46 30298.72 230
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 2799.66 4699.67 2298.15 9899.67 5699.69 13698.95 2899.96 1898.69 10399.87 4099.84 18
testgi97.65 25397.50 23298.13 26899.36 18496.45 28399.42 16199.48 13397.76 14497.87 30099.45 22991.09 29498.81 32094.53 30698.52 18899.13 185
test20.0396.12 29195.96 28896.63 31397.44 32995.45 30599.51 11399.38 20996.55 25296.16 32299.25 27693.76 24096.17 34287.35 33894.22 30798.27 314
thres600view797.86 21697.51 23198.92 17999.72 7797.95 22399.59 7398.74 31097.94 12599.27 14998.62 31891.75 28099.86 12193.73 31598.19 20298.96 207
ADS-MVSNet98.20 17198.08 17198.56 22699.33 19096.48 28299.23 22599.15 26896.24 27599.10 18699.67 14794.11 22999.71 18996.81 26099.05 15899.48 154
MP-MVScopyleft99.33 5099.15 6099.87 1199.88 1199.82 2099.66 4699.46 16298.09 10799.48 10099.74 11398.29 8899.96 1897.93 17799.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs39.17 32143.78 32225.37 33636.04 35516.84 35698.36 32926.56 35520.06 35038.51 35167.32 34729.64 35415.30 35337.59 34939.90 34843.98 348
thres40097.77 23197.38 25198.92 17999.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.96 207
test12339.01 32242.50 32328.53 33539.17 35420.91 35598.75 30719.17 35719.83 35138.57 35066.67 34833.16 35315.42 35237.50 35029.66 34949.26 347
thres20097.61 25597.28 26498.62 22099.64 11298.03 21599.26 22098.74 31097.68 15399.09 19098.32 32591.66 28699.81 15292.88 32398.22 19998.03 322
test0.0.03 197.71 24597.42 24798.56 22698.41 32097.82 22998.78 30498.63 31997.34 18798.05 29698.98 30594.45 21898.98 30795.04 30197.15 25098.89 211
pmmvs394.09 30793.25 30896.60 31494.76 34094.49 31998.92 29098.18 32989.66 33296.48 31998.06 32786.28 32997.33 33789.68 33287.20 33797.97 325
EMVS80.02 31679.22 31882.43 33291.19 34376.40 34897.55 34292.49 35466.36 34783.01 34291.27 34364.63 34685.79 34965.82 34760.65 34585.08 345
E-PMN80.61 31579.88 31782.81 33090.75 34476.38 34997.69 34095.76 34666.44 34683.52 34092.25 34262.54 34787.16 34868.53 34661.40 34484.89 346
PGM-MVS99.45 2699.31 3699.86 1899.87 1599.78 3399.58 8099.65 3297.84 13499.71 4399.80 7499.12 1199.97 1098.33 14699.87 4099.83 29
LCM-MVSNet-Re97.83 22298.15 16396.87 31099.30 19992.25 33599.59 7398.26 32597.43 18096.20 32199.13 29096.27 15298.73 32298.17 15898.99 16399.64 115
LCM-MVSNet86.80 31285.22 31591.53 32587.81 34780.96 34498.23 33598.99 28571.05 34390.13 33796.51 33648.45 35196.88 34090.51 32985.30 33996.76 335
MCST-MVS99.43 3299.30 3899.82 3399.79 4299.74 3799.29 20699.40 19998.79 4799.52 9399.62 17198.91 3699.90 10198.64 10999.75 9399.82 36
mvs_anonymous99.03 10198.99 8499.16 15199.38 18098.52 19199.51 11399.38 20997.79 14199.38 12699.81 6097.30 11899.45 22799.35 1998.99 16399.51 149
MVS_Test99.10 9198.97 8899.48 10799.49 15499.14 12199.67 4299.34 22797.31 19099.58 8299.76 10297.65 10999.82 14898.87 7499.07 15799.46 161
MDA-MVSNet-bldmvs94.96 30193.98 30697.92 28198.24 32297.27 24599.15 24099.33 23493.80 31580.09 34599.03 30088.31 32197.86 33293.49 31794.36 30598.62 275
CDPH-MVS99.13 7798.91 9699.80 3899.75 6099.71 4099.15 24099.41 19396.60 24899.60 7799.55 19498.83 4399.90 10197.48 21999.83 7299.78 60
test1299.75 4999.64 11299.61 5899.29 25499.21 16598.38 8299.89 10999.74 9599.74 70
casdiffmvs99.13 7798.98 8799.56 8899.65 11099.16 11699.56 9299.50 11498.33 8199.41 11699.86 2395.92 16399.83 14199.45 1599.16 14699.70 92
diffmvs99.14 7599.02 7999.51 10399.61 12598.96 14599.28 20899.49 12298.46 6899.72 4299.71 12596.50 14499.88 11499.31 2699.11 15199.67 102
baseline297.87 21497.55 22598.82 20599.18 22998.02 21699.41 16496.58 34496.97 22196.51 31899.17 28593.43 24299.57 21897.71 19899.03 16098.86 212
baseline198.31 16297.95 18599.38 12399.50 15298.74 17099.59 7398.93 29198.41 7399.14 17899.60 17894.59 21299.79 16098.48 13093.29 31799.61 123
YYNet195.36 29994.51 30497.92 28197.89 32597.10 25199.10 25299.23 26193.26 32280.77 34399.04 29992.81 25498.02 32794.30 30894.18 30898.64 265
PMMVS286.87 31185.37 31491.35 32690.21 34583.80 34198.89 29397.45 33883.13 34091.67 33695.03 33748.49 35094.70 34485.86 34177.62 34295.54 338
MDA-MVSNet_test_wron95.45 29794.60 30298.01 27598.16 32397.21 24999.11 25099.24 26093.49 31980.73 34498.98 30593.02 24898.18 32594.22 31194.45 30398.64 265
tpmvs97.98 20198.02 17897.84 28699.04 25894.73 31899.31 20099.20 26496.10 29198.76 24199.42 23594.94 19299.81 15296.97 25298.45 19198.97 205
PM-MVS92.96 30992.23 31195.14 31995.61 33689.98 34099.37 18498.21 32794.80 30595.04 32897.69 32865.06 34597.90 33194.30 30889.98 33397.54 334
HQP_MVS98.27 16798.22 16198.44 24399.29 20396.97 26499.39 17699.47 15298.97 3099.11 18399.61 17592.71 26099.69 19897.78 18997.63 21898.67 253
plane_prior799.29 20397.03 259
plane_prior699.27 20896.98 26392.71 260
plane_prior599.47 15299.69 19897.78 18997.63 21898.67 253
plane_prior499.61 175
plane_prior397.00 26198.69 5499.11 183
plane_prior299.39 17698.97 30
plane_prior199.26 210
plane_prior96.97 26499.21 23298.45 6997.60 221
PS-CasMVS97.93 20697.59 22498.95 17498.99 26499.06 13099.68 4099.52 8697.13 20698.31 28399.68 14192.44 27299.05 29698.51 12894.08 31098.75 225
UniMVSNet_NR-MVSNet98.22 16897.97 18298.96 17298.92 27398.98 13899.48 13599.53 8097.76 14498.71 24599.46 22896.43 14899.22 27398.57 12092.87 32398.69 240
PEN-MVS97.76 23297.44 24398.72 21598.77 29498.54 18699.78 1999.51 9697.06 21598.29 28599.64 16192.63 26398.89 31998.09 16393.16 31998.72 230
TransMVSNet (Re)97.15 27496.58 27798.86 19999.12 24298.85 16099.49 12998.91 29695.48 29797.16 31299.80 7493.38 24399.11 29194.16 31291.73 32898.62 275
DTE-MVSNet97.51 26297.19 26898.46 23998.63 30898.13 21399.84 699.48 13396.68 23997.97 29899.67 14792.92 25198.56 32396.88 25992.60 32698.70 236
DU-MVS98.08 18597.79 19998.96 17298.87 28098.98 13899.41 16499.45 17497.87 12998.71 24599.50 21294.82 19799.22 27398.57 12092.87 32398.68 245
UniMVSNet (Re)98.29 16598.00 17999.13 15499.00 26399.36 9499.49 12999.51 9697.95 12498.97 21199.13 29096.30 15199.38 24198.36 14493.34 31698.66 261
CP-MVSNet98.09 18397.78 20299.01 16598.97 26999.24 10899.67 4299.46 16297.25 19698.48 27399.64 16193.79 23899.06 29598.63 11094.10 30998.74 228
WR-MVS_H98.13 17997.87 19598.90 18599.02 26198.84 16199.70 3399.59 4297.27 19498.40 27799.19 28495.53 17699.23 27098.34 14593.78 31398.61 284
WR-MVS98.06 18697.73 21099.06 15898.86 28399.25 10799.19 23399.35 22397.30 19198.66 25499.43 23293.94 23499.21 27898.58 11894.28 30698.71 232
NR-MVSNet97.97 20497.61 22199.02 16498.87 28099.26 10699.47 14099.42 19197.63 15897.08 31399.50 21295.07 19199.13 28697.86 18293.59 31498.68 245
Baseline_NR-MVSNet97.76 23297.45 23898.68 21899.09 24998.29 20599.41 16498.85 30295.65 29698.63 26299.67 14794.82 19799.10 29398.07 17092.89 32298.64 265
TranMVSNet+NR-MVSNet97.93 20697.66 21698.76 21398.78 29198.62 18099.65 5399.49 12297.76 14498.49 27299.60 17894.23 22498.97 31498.00 17292.90 32198.70 236
TSAR-MVS + GP.99.36 4799.36 2199.36 12499.67 9698.61 18299.07 25499.33 23499.00 2299.82 2099.81 6099.06 1399.84 13299.09 4899.42 13099.65 109
abl_699.44 2999.31 3699.83 3199.85 2599.75 3499.66 4699.59 4298.13 10099.82 2099.81 6098.60 6899.96 1898.46 13499.88 3699.79 53
n20.00 358
nn0.00 358
mPP-MVS99.44 2999.30 3899.86 1899.88 1199.79 2799.69 3599.48 13398.12 10299.50 9699.75 10798.78 4899.97 1098.57 12099.89 3399.83 29
door-mid98.05 330
XVG-OURS-SEG-HR98.69 13998.62 13598.89 18899.71 8397.74 23299.12 24499.54 6898.44 7299.42 11299.71 12594.20 22599.92 7598.54 12798.90 17099.00 201
DWT-MVSNet_test97.53 25997.40 24997.93 28099.03 26094.86 31699.57 8598.63 31996.59 25198.36 28098.79 31289.32 31099.74 17298.14 16198.16 20799.20 182
MVSFormer99.17 7199.12 6499.29 13899.51 14598.94 15099.88 199.46 16297.55 16599.80 2499.65 15497.39 11399.28 26299.03 5299.85 5899.65 109
jason99.13 7799.03 7699.45 11399.46 16198.87 15799.12 24499.26 25798.03 12099.79 2699.65 15497.02 12799.85 12799.02 5499.90 2399.65 109
jason: jason.
lupinMVS99.13 7799.01 8399.46 11299.51 14598.94 15099.05 25999.16 26797.86 13099.80 2499.56 19197.39 11399.86 12198.94 6299.85 5899.58 133
test_djsdf98.67 14198.57 14198.98 16998.70 30298.91 15499.88 199.46 16297.55 16599.22 16299.88 1595.73 17199.28 26299.03 5297.62 22098.75 225
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 2799.76 2499.56 5497.72 14999.76 3799.75 10799.13 1099.92 7599.07 5099.92 1199.85 14
RRT_test8_iter0597.72 24197.60 22298.08 26999.23 21696.08 29399.63 5799.49 12297.54 16898.94 21599.81 6087.99 32599.35 25299.21 3696.51 25998.81 215
K. test v397.10 27696.79 27698.01 27598.72 29996.33 28799.87 497.05 33997.59 16096.16 32299.80 7488.71 31599.04 29796.69 26796.55 25898.65 263
lessismore_v097.79 29098.69 30395.44 30694.75 34795.71 32599.87 2088.69 31699.32 25795.89 28294.93 29898.62 275
SixPastTwentyTwo97.50 26397.33 26098.03 27298.65 30696.23 29099.77 2198.68 31897.14 20597.90 29999.93 490.45 29899.18 28197.00 24996.43 26198.67 253
OurMVSNet-221017-097.88 21297.77 20498.19 26498.71 30196.53 28099.88 199.00 28497.79 14198.78 23999.94 391.68 28399.35 25297.21 23596.99 25298.69 240
HPM-MVScopyleft99.42 3699.28 4599.83 3199.90 399.72 3899.81 1299.54 6897.59 16099.68 5099.63 16698.91 3699.94 4998.58 11899.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.73 13698.68 12498.88 19199.70 8997.73 23398.92 29099.55 6198.52 6399.45 10499.84 3895.27 18599.91 8698.08 16798.84 17399.00 201
XVG-ACMP-BASELINE97.83 22297.71 21298.20 26399.11 24496.33 28799.41 16499.52 8698.06 11699.05 19799.50 21289.64 30899.73 17997.73 19597.38 24298.53 292
LPG-MVS_test98.22 16898.13 16598.49 23299.33 19097.05 25799.58 8099.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
LGP-MVS_train98.49 23299.33 19097.05 25799.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
baseline99.15 7499.02 7999.53 9699.66 10599.14 12199.72 2999.48 13398.35 7799.42 11299.84 3896.07 15699.79 16099.51 799.14 14999.67 102
test1199.35 223
door97.92 331
EPNet_dtu98.03 19297.96 18398.23 26298.27 32195.54 30299.23 22598.75 30799.02 1597.82 30299.71 12596.11 15599.48 22493.04 32299.65 11599.69 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.19 6799.10 6699.45 11399.89 898.52 19199.39 17699.94 198.73 5199.11 18399.89 1095.50 17799.94 4999.50 899.97 399.89 2
EPNet98.86 11798.71 12199.30 13597.20 33598.18 20999.62 6198.91 29699.28 298.63 26299.81 6095.96 15999.99 199.24 3399.72 9999.73 77
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.83 269
HQP-NCC99.19 22698.98 27998.24 8798.66 254
ACMP_Plane99.19 22698.98 27998.24 8798.66 254
APD-MVScopyleft99.27 5899.08 6999.84 3099.75 6099.79 2799.50 11999.50 11497.16 20499.77 3399.82 4998.78 4899.94 4997.56 21299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.19 239
HQP4-MVS98.66 25499.64 20898.64 265
HQP3-MVS99.39 20397.58 223
HQP2-MVS92.47 268
CNVR-MVS99.42 3699.30 3899.78 4399.62 12199.71 4099.26 22099.52 8698.82 4299.39 12399.71 12598.96 2599.85 12798.59 11799.80 8299.77 62
NCCC99.34 4999.19 5799.79 4199.61 12599.65 5399.30 20299.48 13398.86 3899.21 16599.63 16698.72 5999.90 10198.25 15099.63 11899.80 49
114514_t98.93 11198.67 12599.72 5999.85 2599.53 7599.62 6199.59 4292.65 32499.71 4399.78 9298.06 9999.90 10198.84 8199.91 1699.74 70
CP-MVS99.45 2699.32 2999.85 2599.83 3699.75 3499.69 3599.52 8698.07 11299.53 9199.63 16698.93 3599.97 1098.74 9499.91 1699.83 29
DSMNet-mixed97.25 27297.35 25596.95 30897.84 32693.61 32999.57 8596.63 34396.13 28698.87 22698.61 32094.59 21297.70 33595.08 30098.86 17299.55 136
tpm297.44 26797.34 25897.74 29299.15 24094.36 32199.45 14498.94 29093.45 32198.90 22199.44 23091.35 29199.59 21797.31 22998.07 21099.29 177
NP-MVS99.23 21696.92 26799.40 240
EG-PatchMatch MVS95.97 29395.69 29296.81 31197.78 32792.79 33399.16 23698.93 29196.16 28294.08 33099.22 28082.72 33799.47 22595.67 28997.50 23198.17 317
tpm cat197.39 26897.36 25397.50 30099.17 23593.73 32699.43 15499.31 24591.27 32898.71 24599.08 29494.31 22399.77 16696.41 27598.50 18999.00 201
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2199.59 7399.51 9698.62 5799.79 2699.83 4299.28 399.97 1098.48 13099.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
CostFormer97.72 24197.73 21097.71 29399.15 24094.02 32499.54 10399.02 28394.67 30799.04 19899.35 25492.35 27499.77 16698.50 12997.94 21299.34 174
CR-MVSNet98.17 17597.93 18898.87 19599.18 22998.49 19599.22 23099.33 23496.96 22299.56 8599.38 24594.33 22199.00 30494.83 30498.58 18399.14 183
JIA-IIPM97.50 26397.02 27298.93 17798.73 29797.80 23099.30 20298.97 28791.73 32798.91 21994.86 33995.10 19099.71 18997.58 20797.98 21199.28 178
Patchmtry97.75 23697.40 24998.81 20799.10 24798.87 15799.11 25099.33 23494.83 30498.81 23499.38 24594.33 22199.02 30196.10 27895.57 28398.53 292
PatchT97.03 27796.44 28098.79 21098.99 26498.34 20499.16 23699.07 27992.13 32599.52 9397.31 33394.54 21698.98 30788.54 33498.73 17999.03 198
tpmrst98.33 16198.48 14597.90 28399.16 23794.78 31799.31 20099.11 27297.27 19499.45 10499.59 18195.33 18399.84 13298.48 13098.61 18099.09 191
BH-w/o98.00 19997.89 19498.32 25499.35 18596.20 29199.01 27398.90 29896.42 26498.38 27899.00 30195.26 18799.72 18396.06 27998.61 18099.03 198
tpm97.67 25197.55 22598.03 27299.02 26195.01 31399.43 15498.54 32396.44 26299.12 18199.34 25791.83 27999.60 21697.75 19396.46 26099.48 154
DELS-MVS99.48 1999.42 1399.65 7099.72 7799.40 9299.05 25999.66 2799.14 699.57 8499.80 7498.46 7599.94 4999.57 399.84 6599.60 125
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.42 15398.36 15098.59 22299.49 15496.70 27499.27 21299.13 27197.24 19898.80 23699.38 24595.75 17099.74 17297.07 24799.16 14699.33 175
RPMNet96.61 28195.85 28998.87 19599.18 22998.49 19599.22 23099.08 27688.72 33599.56 8597.38 33194.08 23199.00 30486.87 34098.58 18399.14 183
MVSTER98.49 14898.32 15599.00 16799.35 18599.02 13399.54 10399.38 20997.41 18399.20 16899.73 12093.86 23799.36 24898.87 7497.56 22598.62 275
CPTT-MVS99.11 8898.90 9799.74 5499.80 4199.46 8599.59 7399.49 12297.03 21899.63 6799.69 13697.27 12099.96 1897.82 18699.84 6599.81 41
GBi-Net97.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
PVSNet_Blended_VisFu99.36 4799.28 4599.61 8099.86 2199.07 12999.47 14099.93 297.66 15699.71 4399.86 2397.73 10799.96 1899.47 1399.82 7899.79 53
PVSNet_BlendedMVS98.86 11798.80 11299.03 16399.76 5298.79 16899.28 20899.91 397.42 18299.67 5699.37 24897.53 11099.88 11498.98 5797.29 24498.42 305
UnsupCasMVSNet_eth96.44 28596.12 28497.40 30298.65 30695.65 29799.36 18899.51 9697.13 20696.04 32498.99 30288.40 32098.17 32696.71 26590.27 33198.40 308
UnsupCasMVSNet_bld93.53 30892.51 31096.58 31597.38 33093.82 32598.24 33399.48 13391.10 33093.10 33396.66 33574.89 34298.37 32494.03 31387.71 33697.56 333
PVSNet_Blended99.08 9498.97 8899.42 11999.76 5298.79 16898.78 30499.91 396.74 23599.67 5699.49 21597.53 11099.88 11498.98 5799.85 5899.60 125
FMVSNet596.43 28696.19 28397.15 30399.11 24495.89 29699.32 19899.52 8694.47 31198.34 28299.07 29587.54 32797.07 33892.61 32595.72 28098.47 298
test197.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
new_pmnet96.38 28796.03 28697.41 30198.13 32495.16 31299.05 25999.20 26493.94 31397.39 30898.79 31291.61 28899.04 29790.43 33095.77 27798.05 321
FMVSNet398.03 19297.76 20798.84 20399.39 17998.98 13899.40 17299.38 20996.67 24099.07 19299.28 27192.93 25098.98 30797.10 24496.65 25498.56 291
dp97.75 23697.80 19897.59 29699.10 24793.71 32799.32 19898.88 30096.48 25999.08 19199.55 19492.67 26299.82 14896.52 27198.58 18399.24 179
FMVSNet297.72 24197.36 25398.80 20999.51 14598.84 16199.45 14499.42 19196.49 25598.86 23199.29 26990.26 30098.98 30796.44 27396.56 25798.58 289
FMVSNet196.84 27896.36 28198.29 25799.32 19797.26 24699.43 15499.48 13395.11 30198.55 26999.32 26483.95 33598.98 30795.81 28496.26 26598.62 275
N_pmnet94.95 30295.83 29092.31 32398.47 31879.33 34699.12 24492.81 35393.87 31497.68 30599.13 29093.87 23699.01 30391.38 32896.19 26698.59 288
cascas97.69 24697.43 24698.48 23498.60 31297.30 24398.18 33699.39 20392.96 32398.41 27698.78 31493.77 23999.27 26598.16 15998.61 18098.86 212
BH-RMVSNet98.41 15598.08 17199.40 12099.41 17198.83 16499.30 20298.77 30697.70 15198.94 21599.65 15492.91 25399.74 17296.52 27199.55 12599.64 115
UGNet98.87 11498.69 12399.40 12099.22 22098.72 17299.44 14899.68 1999.24 399.18 17499.42 23592.74 25799.96 1899.34 2399.94 999.53 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS99.06 9698.88 10099.61 8099.62 12199.16 11699.37 18499.56 5498.04 11899.53 9199.62 17196.84 13299.94 4998.85 7998.49 19099.72 83
XXY-MVS98.38 15898.09 17099.24 14599.26 21099.32 9799.56 9299.55 6197.45 17798.71 24599.83 4293.23 24599.63 21398.88 7096.32 26498.76 223
sss99.17 7199.05 7199.53 9699.62 12198.97 14199.36 18899.62 3397.83 13599.67 5699.65 15497.37 11799.95 4199.19 3799.19 14599.68 99
Test_1112_low_res98.89 11398.66 12899.57 8699.69 9198.95 14799.03 26599.47 15296.98 22099.15 17799.23 27996.77 13699.89 10998.83 8498.78 17799.86 11
1112_ss98.98 10798.77 11599.59 8299.68 9599.02 13399.25 22299.48 13397.23 19999.13 17999.58 18496.93 13199.90 10198.87 7498.78 17799.84 18
ab-mvs-re8.30 32411.06 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.58 1840.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs98.86 11798.63 13099.54 9099.64 11299.19 11199.44 14899.54 6897.77 14399.30 14199.81 6094.20 22599.93 6499.17 4098.82 17499.49 153
TR-MVS97.76 23297.41 24898.82 20599.06 25497.87 22698.87 29698.56 32196.63 24598.68 25399.22 28092.49 26799.65 20695.40 29497.79 21598.95 210
MDTV_nov1_ep13_2view95.18 31199.35 19396.84 23199.58 8295.19 18997.82 18699.46 161
MDTV_nov1_ep1398.32 15599.11 24494.44 32099.27 21298.74 31097.51 17299.40 12199.62 17194.78 20099.76 16997.59 20698.81 176
MIMVSNet195.51 29695.04 29996.92 30997.38 33095.60 29899.52 10999.50 11493.65 31796.97 31699.17 28585.28 33396.56 34188.36 33595.55 28498.60 287
MIMVSNet97.73 23997.45 23898.57 22499.45 16697.50 23999.02 26898.98 28696.11 28799.41 11699.14 28990.28 29998.74 32195.74 28698.93 16699.47 159
IterMVS-LS98.46 15098.42 14898.58 22399.59 13098.00 21799.37 18499.43 18996.94 22699.07 19299.59 18197.87 10299.03 29998.32 14895.62 28298.71 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.09 9299.03 7699.25 14399.42 16898.73 17199.45 14499.46 16298.11 10499.46 10399.77 9898.01 10099.37 24498.70 10098.92 16899.66 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref97.19 247
IterMVS97.83 22297.77 20498.02 27499.58 13196.27 28999.02 26899.48 13397.22 20098.71 24599.70 12992.75 25599.13 28697.46 22296.00 27098.67 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon99.12 8398.95 9299.65 7099.74 6799.70 4299.27 21299.57 4996.40 26699.42 11299.68 14198.75 5699.80 15797.98 17399.72 9999.44 164
MVS_111021_LR99.41 4099.33 2799.65 7099.77 4999.51 8098.94 28999.85 698.82 4299.65 6499.74 11398.51 7199.80 15798.83 8499.89 3399.64 115
DP-MVS99.16 7398.95 9299.78 4399.77 4999.53 7599.41 16499.50 11497.03 21899.04 19899.88 1597.39 11399.92 7598.66 10799.90 2399.87 10
ACMMP++97.43 239
HQP-MVS98.02 19497.90 19098.37 25099.19 22696.83 26998.98 27999.39 20398.24 8798.66 25499.40 24092.47 26899.64 20897.19 23997.58 22398.64 265
QAPM98.67 14198.30 15799.80 3899.20 22499.67 4899.77 2199.72 1194.74 30698.73 24399.90 795.78 16999.98 596.96 25399.88 3699.76 65
Vis-MVSNetpermissive99.12 8398.97 8899.56 8899.78 4499.10 12699.68 4099.66 2798.49 6599.86 1199.87 2094.77 20399.84 13299.19 3799.41 13199.74 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet95.75 29595.16 29897.51 29999.30 19993.69 32898.88 29495.78 34585.09 33898.78 23992.65 34191.29 29299.37 24494.85 30399.85 5899.46 161
IS-MVSNet99.05 9898.87 10199.57 8699.73 7299.32 9799.75 2599.20 26498.02 12199.56 8599.86 2396.54 14399.67 20098.09 16399.13 15099.73 77
HyFIR lowres test99.11 8898.92 9499.65 7099.90 399.37 9399.02 26899.91 397.67 15599.59 8099.75 10795.90 16599.73 17999.53 599.02 16199.86 11
EPMVS97.82 22597.65 21798.35 25198.88 27695.98 29499.49 12994.71 34897.57 16399.26 15499.48 22192.46 27199.71 18997.87 18199.08 15699.35 172
PAPM_NR99.04 9998.84 10799.66 6699.74 6799.44 8799.39 17699.38 20997.70 15199.28 14699.28 27198.34 8599.85 12796.96 25399.45 12899.69 95
TAMVS99.12 8399.08 6999.24 14599.46 16198.55 18599.51 11399.46 16298.09 10799.45 10499.82 4998.34 8599.51 22398.70 10098.93 16699.67 102
PAPR98.63 14598.34 15399.51 10399.40 17699.03 13298.80 30299.36 21896.33 26799.00 20699.12 29398.46 7599.84 13295.23 29899.37 13699.66 105
RPSCF98.22 16898.62 13596.99 30699.82 3791.58 33799.72 2999.44 18296.61 24699.66 6199.89 1095.92 16399.82 14897.46 22299.10 15499.57 134
Vis-MVSNet (Re-imp)98.87 11498.72 11999.31 13199.71 8398.88 15699.80 1699.44 18297.91 12899.36 13199.78 9295.49 17899.43 23697.91 17899.11 15199.62 121
test_040296.64 28096.24 28297.85 28598.85 28496.43 28499.44 14899.26 25793.52 31896.98 31599.52 20588.52 31999.20 28092.58 32697.50 23197.93 327
MVS_111021_HR99.41 4099.32 2999.66 6699.72 7799.47 8498.95 28799.85 698.82 4299.54 8999.73 12098.51 7199.74 17298.91 6799.88 3699.77 62
CSCG99.32 5199.32 2999.32 13099.85 2598.29 20599.71 3199.66 2798.11 10499.41 11699.80 7498.37 8499.96 1898.99 5699.96 599.72 83
PatchMatch-RL98.84 12798.62 13599.52 10199.71 8399.28 10399.06 25799.77 997.74 14899.50 9699.53 20295.41 17999.84 13297.17 24299.64 11699.44 164
API-MVS99.04 9999.03 7699.06 15899.40 17699.31 10099.55 10099.56 5498.54 6199.33 13899.39 24498.76 5399.78 16496.98 25199.78 8798.07 320
Test By Simon98.75 56
TDRefinement95.42 29894.57 30397.97 27889.83 34696.11 29299.48 13598.75 30796.74 23596.68 31799.88 1588.65 31799.71 18998.37 14282.74 34098.09 319
USDC97.34 26997.20 26797.75 29199.07 25295.20 30998.51 32599.04 28297.99 12298.31 28399.86 2389.02 31299.55 22195.67 28997.36 24398.49 295
EPP-MVSNet99.13 7798.99 8499.53 9699.65 11099.06 13099.81 1299.33 23497.43 18099.60 7799.88 1597.14 12299.84 13299.13 4498.94 16599.69 95
PMMVS98.80 13198.62 13599.34 12599.27 20898.70 17398.76 30699.31 24597.34 18799.21 16599.07 29597.20 12199.82 14898.56 12398.87 17199.52 143
PAPM97.59 25697.09 27099.07 15799.06 25498.26 20798.30 33299.10 27394.88 30398.08 29299.34 25796.27 15299.64 20889.87 33198.92 16899.31 176
ACMMPcopyleft99.45 2699.32 2999.82 3399.89 899.67 4899.62 6199.69 1898.12 10299.63 6799.84 3898.73 5899.96 1898.55 12699.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.14 7598.99 8499.59 8299.58 13199.41 9099.16 23699.44 18298.45 6999.19 17199.49 21598.08 9899.89 10997.73 19599.75 9399.48 154
PatchmatchNetpermissive98.31 16298.36 15098.19 26499.16 23795.32 30799.27 21298.92 29397.37 18699.37 12899.58 18494.90 19499.70 19597.43 22699.21 14399.54 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.30 5399.17 5999.70 6299.56 13799.52 7899.58 8099.80 897.12 20899.62 7199.73 12098.58 6999.90 10198.61 11499.91 1699.68 99
F-COLMAP99.19 6799.04 7499.64 7599.78 4499.27 10599.42 16199.54 6897.29 19299.41 11699.59 18198.42 8099.93 6498.19 15499.69 10599.73 77
ANet_high77.30 31774.86 32084.62 32975.88 35177.61 34797.63 34193.15 35288.81 33464.27 34889.29 34536.51 35283.93 35075.89 34452.31 34692.33 342
wuyk23d40.18 32041.29 32436.84 33486.18 34949.12 35479.73 34722.81 35627.64 34925.46 35228.45 35221.98 35548.89 35155.80 34823.56 35012.51 349
OMC-MVS99.08 9499.04 7499.20 14899.67 9698.22 20899.28 20899.52 8698.07 11299.66 6199.81 6097.79 10599.78 16497.79 18899.81 8099.60 125
MG-MVS99.13 7799.02 7999.45 11399.57 13398.63 17999.07 25499.34 22798.99 2599.61 7399.82 4997.98 10199.87 11897.00 24999.80 8299.85 14
AdaColmapbinary99.01 10598.80 11299.66 6699.56 13799.54 7299.18 23499.70 1598.18 9799.35 13499.63 16696.32 15099.90 10197.48 21999.77 8999.55 136
uanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
ITE_SJBPF98.08 26999.29 20396.37 28598.92 29398.34 7898.83 23299.75 10791.09 29499.62 21495.82 28397.40 24198.25 316
DeepMVS_CXcopyleft93.34 32199.29 20382.27 34399.22 26285.15 33796.33 32099.05 29890.97 29699.73 17993.57 31697.77 21698.01 323
TinyColmap97.12 27596.89 27497.83 28799.07 25295.52 30398.57 32198.74 31097.58 16297.81 30399.79 8688.16 32399.56 21995.10 29997.21 24698.39 309
MAR-MVS98.86 11798.63 13099.54 9099.37 18299.66 5099.45 14499.54 6896.61 24699.01 20199.40 24097.09 12499.86 12197.68 20299.53 12699.10 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.52 26097.46 23797.70 29498.98 26795.55 30099.29 20698.82 30598.07 11298.66 25499.64 16189.97 30599.61 21597.01 24896.68 25397.94 326
MSDG98.98 10798.80 11299.53 9699.76 5299.19 11198.75 30799.55 6197.25 19699.47 10199.77 9897.82 10499.87 11896.93 25699.90 2399.54 138
LS3D99.27 5899.12 6499.74 5499.18 22999.75 3499.56 9299.57 4998.45 6999.49 9999.85 2997.77 10699.94 4998.33 14699.84 6599.52 143
CLD-MVS98.16 17698.10 16798.33 25299.29 20396.82 27198.75 30799.44 18297.83 13599.13 17999.55 19492.92 25199.67 20098.32 14897.69 21798.48 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.93 31385.65 31382.75 33186.77 34863.39 35298.35 33098.92 29374.11 34283.39 34198.98 30550.85 34992.40 34684.54 34294.97 29692.46 340
Gipumacopyleft90.99 31090.15 31293.51 32098.73 29790.12 33993.98 34499.45 17479.32 34192.28 33494.91 33869.61 34497.98 32987.42 33795.67 28192.45 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015