This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6999.36 19699.46 17099.07 1399.79 2699.82 4998.85 4199.92 8098.68 11099.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS98.35 299.30 5799.19 6399.64 7799.82 3799.23 11699.62 6899.55 6698.94 3399.63 7399.95 295.82 17499.94 5499.37 2399.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.18 398.81 13399.37 1997.12 31799.60 13491.75 35298.61 32999.44 19199.35 199.83 1799.85 2998.70 6299.81 15699.02 5999.91 1699.81 41
PLCcopyleft97.94 499.02 10698.85 11199.53 9999.66 11099.01 14399.24 23599.52 9096.85 24099.27 15999.48 23098.25 9699.91 9197.76 20099.62 12699.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM97.58 598.37 16498.34 15998.48 24399.41 18197.10 26099.56 10099.45 18298.53 6499.04 20999.85 2993.00 25999.71 19698.74 9997.45 24398.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15799.88 1198.53 19499.34 20599.59 4397.55 17398.70 26199.89 1095.83 17399.90 10698.10 17199.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS97.30 798.85 12998.64 13499.47 11499.42 17899.08 13599.62 6899.36 22997.39 19499.28 15699.68 14696.44 15399.92 8098.37 15198.22 20699.40 175
ACMH97.28 898.10 18897.99 18698.44 25299.41 18196.96 27799.60 7599.56 5698.09 11498.15 30299.91 590.87 31099.70 20398.88 7497.45 24398.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator97.25 999.24 6899.05 7699.81 3899.12 25399.66 5499.84 699.74 1099.09 1098.92 22899.90 795.94 16899.98 698.95 6599.92 1199.79 53
ACMH+97.24 1097.92 21597.78 20998.32 26399.46 17096.68 28799.56 10099.54 7398.41 7597.79 31699.87 2090.18 31799.66 21198.05 18097.18 25598.62 285
ACMP97.20 1198.06 19297.94 19498.45 24999.37 19397.01 27199.44 15799.49 13097.54 17698.45 28599.79 8891.95 28999.72 19097.91 18797.49 24198.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25699.23 22796.80 28399.70 3599.60 4097.12 21798.18 30199.70 13391.73 29599.72 19098.39 14797.45 24398.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+97.12 1399.18 7398.97 9399.82 3599.17 24699.68 4999.81 1399.51 10399.20 498.72 25499.89 1095.68 17999.97 1198.86 8199.86 5199.81 41
PCF-MVS97.08 1497.66 26097.06 28199.47 11499.61 13099.09 13498.04 35299.25 27091.24 34598.51 28199.70 13394.55 22599.91 9192.76 33899.85 5899.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS97.07 1597.74 24597.34 26598.94 18299.70 9397.53 24699.25 23399.51 10391.90 34299.30 15199.63 17398.78 4899.64 21888.09 35399.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10599.04 26999.53 8199.82 1199.72 1194.56 32498.08 30499.88 1594.73 21699.98 697.47 23199.76 9699.06 203
PVSNet96.02 1798.85 12998.84 11298.89 19599.73 7597.28 25298.32 34599.60 4097.86 13799.50 10499.57 19696.75 14399.86 12598.56 13199.70 11099.54 143
IB-MVS95.67 1896.22 29895.44 30898.57 23399.21 23396.70 28598.65 32797.74 35196.71 24897.27 32498.54 33586.03 34799.92 8098.47 14286.30 34899.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_094.43 1996.09 30395.47 30697.94 28899.31 20994.34 33797.81 35499.70 1597.12 21797.46 32098.75 32989.71 32199.79 16497.69 21081.69 35499.68 103
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 32997.38 34393.17 34799.06 26898.75 32286.58 35294.84 34798.26 34281.53 35799.32 26889.01 34997.87 22196.76 351
MVEpermissive76.82 2176.91 33374.31 33784.70 34385.38 36776.05 36696.88 35893.17 36767.39 36271.28 36489.01 36321.66 37487.69 36371.74 36272.29 36090.35 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 33474.97 33579.01 34870.98 36955.18 37093.37 36198.21 34265.08 36561.78 36693.83 35721.74 37392.53 36178.59 36091.12 34089.34 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33897.24 34780.01 36198.52 33599.48 14289.01 34991.99 35399.67 15285.67 34999.13 29795.44 30397.03 25896.39 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth-test20.00 373
eth-test0.00 373
GeoE98.85 12998.62 14099.53 9999.61 13099.08 13599.80 1799.51 10397.10 22199.31 14999.78 9595.23 19699.77 17198.21 16199.03 16699.75 69
test_method91.10 32491.36 32790.31 34195.85 35373.72 36794.89 35999.25 27068.39 36195.82 34299.02 31480.50 35898.95 32693.64 32794.89 30798.25 326
Anonymous2024052196.20 30095.89 30197.13 31697.72 34094.96 32999.79 2199.29 26593.01 33897.20 32799.03 31289.69 32298.36 33691.16 34396.13 27598.07 332
hse-mvs397.70 25397.28 27198.97 17899.70 9397.27 25399.36 19699.45 18298.94 3399.66 6599.64 16694.93 20199.99 199.48 1584.36 35099.65 113
hse-mvs297.50 27197.14 27898.59 22999.49 16197.05 26699.28 21799.22 27498.94 3399.66 6599.42 24494.93 20199.65 21599.48 1583.80 35299.08 197
CL-MVSNet_2432*160094.49 31793.97 32096.08 33096.16 35293.67 34498.33 34499.38 21995.13 31197.33 32398.15 34392.69 27296.57 35688.67 35079.87 35697.99 339
KD-MVS_2432*160094.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
DIV-MVS_2432*160095.00 31294.34 31796.96 32097.07 35195.39 32099.56 10099.44 19195.11 31397.13 32997.32 35091.86 29197.27 35290.35 34681.23 35598.23 328
AUN-MVS96.88 28796.31 29298.59 22999.48 16897.04 26999.27 22299.22 27497.44 18898.51 28199.41 24891.97 28899.66 21197.71 20783.83 35199.07 202
ZD-MVS99.71 8699.79 3099.61 3596.84 24199.56 9299.54 20798.58 7099.96 1996.93 26699.75 98
test117299.43 3399.29 4699.85 2599.75 6299.82 2099.60 7599.56 5698.28 9199.74 4199.79 8898.53 7299.95 4398.55 13499.78 9099.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.53 7299.95 4398.61 12099.81 8099.77 63
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.75 5698.61 12099.81 8099.77 63
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 599.96 1998.91 7199.85 5899.79 53
IU-MVS99.84 3299.88 799.32 25398.30 8999.84 1398.86 8199.85 5899.89 2
OPU-MVS99.64 7799.56 14499.72 4299.60 7599.70 13399.27 499.42 24898.24 16099.80 8499.79 53
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3199.96 1998.91 7199.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 599.76 175
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6999.14 25399.53 8499.00 2299.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
SF-MVS99.38 4899.24 5799.79 4399.79 4299.68 4999.57 9399.54 7397.82 14799.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6199.51 15299.60 6599.23 23699.44 19197.04 22699.39 13299.67 15298.30 9299.92 8097.27 24199.69 11199.64 120
cl-mvsnet297.85 22397.64 22698.48 24399.09 26097.87 23498.60 33199.33 24597.11 22098.87 23699.22 29292.38 28499.17 29298.21 16195.99 27998.42 315
miper_ehance_all_eth98.18 17998.10 17398.41 25499.23 22797.72 24298.72 32199.31 25696.60 25998.88 23499.29 28197.29 12599.13 29797.60 21595.99 27998.38 320
miper_enhance_ethall98.16 18198.08 17798.41 25498.96 28197.72 24298.45 33899.32 25396.95 23498.97 22199.17 29797.06 13299.22 28397.86 19195.99 27998.29 323
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11899.55 9699.64 16698.91 3699.96 1998.72 10399.90 2399.82 36
ETH3 D test640098.70 14298.35 15899.73 5899.69 9699.60 6599.16 24799.45 18295.42 30999.27 15999.60 18697.39 11999.91 9195.36 30799.83 7299.70 96
cl-mvsnet____98.01 20397.84 20498.55 23799.25 22597.97 22798.71 32299.34 23896.47 27198.59 27899.54 20795.65 18199.21 28897.21 24595.77 28598.46 312
cl-mvsnet198.01 20397.85 20398.48 24399.24 22697.95 23198.71 32299.35 23496.50 26498.60 27799.54 20795.72 17899.03 31097.21 24595.77 28598.46 312
eth_miper_zixun_eth98.05 19797.96 19098.33 26199.26 22197.38 25098.56 33499.31 25696.65 25398.88 23499.52 21496.58 14799.12 30197.39 23895.53 29398.47 308
9.1499.10 7199.72 8099.40 18099.51 10397.53 17899.64 7299.78 9598.84 4299.91 9197.63 21399.82 78
testtj99.12 8798.87 10699.86 1899.72 8099.79 3099.44 15799.51 10397.29 20199.59 8799.74 11798.15 10299.96 1996.74 27499.69 11199.81 41
uanet_test0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
ETH3D-3000-0.199.21 6999.02 8499.77 4799.73 7599.69 4799.38 18999.51 10397.45 18599.61 8099.75 11198.51 7599.91 9197.45 23499.83 7299.71 94
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16799.53 14798.82 17298.84 30997.51 35397.63 16684.77 35699.21 29592.09 28798.91 32898.98 6292.21 33799.41 174
UniMVSNet_ETH3D97.32 27996.81 28598.87 20299.40 18697.46 24899.51 12299.53 8495.86 30598.54 28099.77 10282.44 35699.66 21198.68 11097.52 23599.50 157
EIA-MVS99.18 7399.09 7399.45 11799.49 16199.18 12099.67 4599.53 8497.66 16499.40 13099.44 23998.10 10399.81 15698.94 6699.62 12699.35 178
miper_refine_blended94.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
miper_lstm_enhance98.00 20597.91 19698.28 26999.34 20097.43 24998.88 30599.36 22996.48 26998.80 24699.55 20295.98 16498.91 32897.27 24195.50 29498.51 304
ETV-MVS99.26 6599.21 6199.40 12499.46 17099.30 10899.56 10099.52 9098.52 6599.44 11799.27 28698.41 8599.86 12599.10 5299.59 12899.04 205
CS-MVS99.34 5299.31 3899.43 12299.44 17699.47 9199.68 4299.56 5698.41 7599.62 7799.41 24898.35 8999.76 17599.52 799.76 9699.05 204
D2MVS98.41 16098.50 15098.15 27699.26 22196.62 28999.40 18099.61 3597.71 15798.98 21999.36 26396.04 16399.67 20898.70 10597.41 24798.15 330
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2299.80 7698.94 3199.96 1998.93 6899.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8399.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 5
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 31
SR-MVS99.43 3399.29 4699.86 1899.75 6299.83 1499.59 8199.62 3398.21 10099.73 4399.79 8898.68 6399.96 1998.44 14599.77 9399.79 53
DPM-MVS98.95 11498.71 12699.66 6899.63 12099.55 7698.64 32899.10 28997.93 13399.42 12199.55 20298.67 6699.80 16195.80 29699.68 11699.61 128
GST-MVS99.40 4599.24 5799.85 2599.86 2199.79 3099.60 7599.67 2297.97 13099.63 7399.68 14698.52 7499.95 4398.38 14999.86 5199.81 41
test_yl98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
thisisatest053098.35 16598.03 18299.31 13699.63 12098.56 19199.54 11296.75 35897.53 17899.73 4399.65 15991.25 30699.89 11498.62 11799.56 12999.48 159
Anonymous2024052998.09 18997.68 22199.34 13099.66 11098.44 20699.40 18099.43 19993.67 33199.22 17299.89 1090.23 31699.93 6999.26 3798.33 20099.66 109
Anonymous20240521198.30 16997.98 18799.26 14899.57 14098.16 21899.41 17298.55 33796.03 30399.19 18199.74 11791.87 29099.92 8099.16 4798.29 20599.70 96
DCV-MVSNet98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
tttt051798.42 15898.14 17099.28 14699.66 11098.38 21099.74 3196.85 35697.68 16099.79 2699.74 11791.39 30399.89 11498.83 8899.56 12999.57 139
our_test_397.65 26197.68 22197.55 30798.62 32094.97 32898.84 30999.30 26096.83 24398.19 30099.34 26997.01 13499.02 31295.00 31396.01 27798.64 275
thisisatest051598.14 18497.79 20699.19 15599.50 15998.50 20198.61 32996.82 35796.95 23499.54 9799.43 24191.66 29999.86 12598.08 17699.51 13399.22 186
ppachtmachnet_test97.49 27497.45 24597.61 30498.62 32095.24 32298.80 31399.46 17096.11 29898.22 29999.62 17996.45 15298.97 32493.77 32595.97 28298.61 294
SMA-MVScopyleft99.44 3099.30 4299.85 2599.73 7599.83 1499.56 10099.47 16097.45 18599.78 3199.82 4999.18 899.91 9198.79 9499.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.52 148
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6099.96 1998.16 16899.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.81 4099.83 1499.77 33
test_part197.75 24297.24 27599.29 14399.59 13699.63 6099.65 5799.49 13096.17 29198.44 28699.69 14089.80 32099.47 23598.68 11093.66 32398.78 227
thres100view90097.76 23897.45 24598.69 22499.72 8097.86 23699.59 8198.74 32597.93 13399.26 16498.62 33291.75 29399.83 14593.22 33198.18 21098.37 321
tfpnnormal97.84 22697.47 24298.98 17699.20 23599.22 11799.64 6099.61 3596.32 27898.27 29899.70 13393.35 25499.44 24395.69 29895.40 29598.27 324
tfpn200view997.72 24897.38 25898.72 22299.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.37 321
cl_fuxian98.12 18798.04 18198.38 25899.30 21097.69 24598.81 31299.33 24596.67 25198.83 24299.34 26997.11 12998.99 31697.58 21795.34 29698.48 306
CHOSEN 280x42099.12 8799.13 6899.08 16399.66 11097.89 23398.43 33999.71 1398.88 3999.62 7799.76 10696.63 14699.70 20399.46 1899.99 199.66 109
CANet99.25 6799.14 6799.59 8499.41 18199.16 12399.35 20299.57 5198.82 4499.51 10399.61 18396.46 15199.95 4399.59 199.98 299.65 113
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22899.41 18196.99 27399.52 11899.49 13098.11 11199.24 16799.34 26996.96 13699.79 16497.95 18599.45 13499.02 208
Effi-MVS+-dtu98.78 13798.89 10498.47 24799.33 20196.91 27999.57 9399.30 26098.47 6899.41 12598.99 31696.78 14099.74 17998.73 10199.38 13898.74 239
CANet_DTU98.97 11398.87 10699.25 14999.33 20198.42 20999.08 26499.30 26099.16 599.43 11899.75 11195.27 19299.97 1198.56 13199.95 699.36 177
MVS_030496.79 28996.52 28997.59 30599.22 23194.92 33099.04 27599.59 4396.49 26598.43 28798.99 31680.48 35999.39 25097.15 25399.27 14698.47 308
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21199.60 8499.79 8898.79 4799.95 4398.83 8899.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3899.27 5299.88 699.89 899.80 2699.67 4599.50 12298.70 5599.77 3399.49 22498.21 9799.95 4398.46 14399.77 9399.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.86 20699.52 148
sam_mvs94.72 217
IterMVS-SCA-FT97.82 23197.75 21598.06 28099.57 14096.36 29799.02 27999.49 13097.18 21198.71 25599.72 12892.72 26899.14 29497.44 23595.86 28498.67 263
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6299.39 21398.91 3899.78 3199.85 2999.36 299.94 5498.84 8599.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
OPM-MVS98.19 17798.10 17398.45 24998.88 28797.07 26499.28 21799.38 21998.57 6299.22 17299.81 6292.12 28699.66 21198.08 17697.54 23498.61 294
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12499.76 3799.86 2398.82 4499.93 6998.82 9299.91 1699.84 18
ambc93.06 33692.68 35982.36 35898.47 33798.73 33095.09 34597.41 34755.55 36599.10 30496.42 28591.32 33997.71 346
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTGPAbinary99.47 160
mvs-test198.86 12198.84 11298.89 19599.33 20197.77 23999.44 15799.30 26098.47 6899.10 19699.43 24196.78 14099.95 4398.73 10199.02 16898.96 215
CS-MVS-test99.27 6299.22 6099.40 12499.39 18999.60 6599.67 4599.56 5698.30 8999.47 10999.25 28898.27 9599.79 16499.41 2299.66 11998.81 223
Effi-MVS+98.81 13398.59 14699.48 11199.46 17099.12 13298.08 35199.50 12297.50 18199.38 13599.41 24896.37 15599.81 15699.11 5198.54 19499.51 154
xiu_mvs_v2_base99.26 6599.25 5699.29 14399.53 14798.91 16199.02 27999.45 18298.80 4899.71 4699.26 28798.94 3199.98 699.34 2899.23 14898.98 212
xiu_mvs_v1_base99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
new-patchmatchnet94.48 31894.08 31895.67 33295.08 35792.41 35099.18 24599.28 26794.55 32593.49 35097.37 34987.86 34397.01 35491.57 34188.36 34597.61 347
pmmvs696.53 29396.09 29697.82 29798.69 31495.47 31799.37 19299.47 16093.46 33597.41 32199.78 9587.06 34599.33 26796.92 26892.70 33598.65 273
pmmvs597.52 26897.30 27098.16 27598.57 32596.73 28499.27 22298.90 31396.14 29698.37 29199.53 21191.54 30299.14 29497.51 22795.87 28398.63 283
test_post199.23 23665.14 36794.18 23899.71 19697.58 217
test_post65.99 36694.65 22199.73 186
Fast-Effi-MVS+98.70 14298.43 15399.51 10799.51 15299.28 11099.52 11899.47 16096.11 29899.01 21299.34 26996.20 16099.84 13697.88 18998.82 18199.39 176
patchmatchnet-post98.70 33094.79 20999.74 179
Anonymous2023121197.88 21897.54 23598.90 19299.71 8698.53 19499.48 14499.57 5194.16 32798.81 24499.68 14693.23 25599.42 24898.84 8594.42 31398.76 233
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 35695.94 30699.35 20299.10 28995.13 31193.55 34997.54 34688.15 33997.91 34494.58 31689.69 34497.61 347
GG-mvs-BLEND98.45 24998.55 32698.16 21899.43 16393.68 36697.23 32598.46 33689.30 32699.22 28395.43 30498.22 20697.98 340
xiu_mvs_v1_base_debi99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
Anonymous2023120696.22 29896.03 29796.79 32597.31 34694.14 33899.63 6299.08 29296.17 29197.04 33199.06 30993.94 24497.76 34886.96 35695.06 30298.47 308
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTMP99.54 11298.88 315
gm-plane-assit98.54 32792.96 34894.65 32399.15 30099.64 21897.56 222
test9_res97.49 22899.72 10599.75 69
MVP-Stereo97.81 23397.75 21597.99 28697.53 34196.60 29098.96 29498.85 31797.22 20997.23 32599.36 26395.28 19199.46 23795.51 30299.78 9097.92 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.67 10199.65 5799.05 27099.41 20396.22 28798.95 22399.49 22498.77 5199.91 91
train_agg99.02 10698.77 12099.77 4799.67 10199.65 5799.05 27099.41 20396.28 28098.95 22399.49 22498.76 5399.91 9197.63 21399.72 10599.75 69
gg-mvs-nofinetune96.17 30195.32 30998.73 22098.79 29998.14 22099.38 18994.09 36591.07 34798.07 30791.04 36189.62 32499.35 26396.75 27399.09 16198.68 256
SCA98.19 17798.16 16898.27 27099.30 21095.55 31399.07 26598.97 30297.57 17199.43 11899.57 19692.72 26899.74 17997.58 21799.20 15099.52 148
Patchmatch-test97.93 21297.65 22498.77 21899.18 24097.07 26499.03 27699.14 28696.16 29398.74 25299.57 19694.56 22499.72 19093.36 33099.11 15799.52 148
test_899.67 10199.61 6399.03 27699.41 20396.28 28098.93 22799.48 23098.76 5399.91 91
MS-PatchMatch97.24 28297.32 26896.99 31898.45 33093.51 34698.82 31199.32 25397.41 19298.13 30399.30 27988.99 32899.56 22995.68 29999.80 8497.90 345
Patchmatch-RL test95.84 30595.81 30395.95 33195.61 35490.57 35498.24 34798.39 33995.10 31595.20 34498.67 33194.78 21097.77 34796.28 28890.02 34299.51 154
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3520.00 3730.00 3740.00 36499.51 1030.00 3690.00 37099.56 19996.58 1470.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 37099.01 160.00 3700.00 3680.00 3680.00 366
agg_prior199.01 10998.76 12299.76 5099.67 10199.62 6198.99 28699.40 20996.26 28398.87 23699.49 22498.77 5199.91 9197.69 21099.72 10599.75 69
agg_prior297.21 24599.73 10499.75 69
agg_prior99.67 10199.62 6199.40 20998.87 23699.91 91
tmp_tt82.80 32981.52 33286.66 34266.61 37068.44 36892.79 36297.92 34768.96 36080.04 36399.85 2985.77 34896.15 35997.86 19143.89 36495.39 355
canonicalmvs99.02 10698.86 11099.51 10799.42 17899.32 10499.80 1799.48 14298.63 5899.31 14998.81 32597.09 13099.75 17899.27 3697.90 22099.47 164
anonymousdsp98.44 15698.28 16498.94 18298.50 32898.96 15299.77 2499.50 12297.07 22398.87 23699.77 10294.76 21499.28 27398.66 11397.60 22898.57 300
alignmvs98.81 13398.56 14899.58 8799.43 17799.42 9799.51 12298.96 30498.61 6099.35 14398.92 32294.78 21099.77 17199.35 2498.11 21699.54 143
nrg03098.64 14998.42 15499.28 14699.05 26899.69 4799.81 1399.46 17098.04 12599.01 21299.82 4996.69 14599.38 25299.34 2894.59 31098.78 227
v14419297.92 21597.60 22998.87 20298.83 29798.65 18499.55 10999.34 23896.20 28899.32 14899.40 25294.36 23099.26 27796.37 28795.03 30398.70 247
FIs98.78 13798.63 13599.23 15399.18 24099.54 7899.83 1099.59 4398.28 9198.79 24899.81 6296.75 14399.37 25599.08 5496.38 27098.78 227
v192192097.80 23597.45 24598.84 20998.80 29898.53 19499.52 11899.34 23896.15 29599.24 16799.47 23393.98 24399.29 27295.40 30595.13 30198.69 251
UA-Net99.42 3899.29 4699.80 4099.62 12699.55 7699.50 12899.70 1598.79 4999.77 3399.96 197.45 11899.96 1998.92 7099.90 2399.89 2
v119297.81 23397.44 25098.91 19098.88 28798.68 18199.51 12299.34 23896.18 29099.20 17899.34 26994.03 24299.36 25995.32 30895.18 29998.69 251
FC-MVSNet-test98.75 14098.62 14099.15 16099.08 26299.45 9499.86 599.60 4098.23 9798.70 26199.82 4996.80 13999.22 28399.07 5596.38 27098.79 226
v114497.98 20797.69 22098.85 20898.87 29198.66 18399.54 11299.35 23496.27 28299.23 17199.35 26694.67 21999.23 28096.73 27595.16 30098.68 256
sosnet-low-res0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 5099.67 2298.15 10599.68 5399.69 14099.06 1399.96 1998.69 10899.87 4099.84 18
v14897.79 23697.55 23298.50 24098.74 30797.72 24299.54 11299.33 24596.26 28398.90 23199.51 21894.68 21899.14 29497.83 19493.15 33098.63 283
sosnet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
AllTest98.87 11898.72 12499.31 13699.86 2198.48 20499.56 10099.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
TestCases99.31 13699.86 2198.48 20499.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
v7n97.87 22097.52 23698.92 18698.76 30698.58 19099.84 699.46 17096.20 28898.91 22999.70 13394.89 20599.44 24396.03 29193.89 32198.75 235
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5799.66 2798.13 10799.66 6599.68 14698.96 2599.96 1998.62 11799.87 4099.84 18
bset_n11_16_dypcd98.16 18197.97 18898.73 22098.26 33398.28 21497.99 35398.01 34697.68 16099.10 19699.63 17395.68 17999.15 29398.78 9796.55 26598.75 235
RRT_MVS98.60 15198.44 15299.05 16798.88 28799.14 12899.49 13899.38 21997.76 15199.29 15499.86 2395.38 18799.36 25998.81 9397.16 25698.64 275
PS-MVSNAJss98.92 11698.92 9998.90 19298.78 30298.53 19499.78 2299.54 7398.07 11999.00 21799.76 10699.01 1699.37 25599.13 4997.23 25298.81 223
PS-MVSNAJ99.32 5599.32 3199.30 14099.57 14098.94 15798.97 29399.46 17098.92 3799.71 4699.24 29099.01 1699.98 699.35 2499.66 11998.97 213
jajsoiax98.43 15798.28 16498.88 19898.60 32398.43 20799.82 1199.53 8498.19 10198.63 27299.80 7693.22 25799.44 24399.22 3997.50 23898.77 231
mvs_tets98.40 16298.23 16698.91 19098.67 31698.51 20099.66 5099.53 8498.19 10198.65 27099.81 6292.75 26599.44 24399.31 3197.48 24298.77 231
#test#99.43 3399.29 4699.86 1899.87 1599.80 2699.55 10999.67 2297.83 14299.68 5399.69 14099.06 1399.96 1998.39 14799.87 4099.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12899.60 7599.45 18299.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12799.61 7499.45 18299.01 1899.89 499.82 4999.01 1699.92 8099.56 599.95 699.85 14
Regformer-399.57 799.53 599.68 6599.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2499.91 9199.44 2199.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2299.94 5499.45 1999.92 1199.84 18
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9599.49 13899.46 17098.95 3299.83 1799.76 10699.01 1699.93 6999.17 4599.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8499.49 13899.49 13098.94 3399.83 1799.76 10699.01 1699.94 5499.15 4899.87 4099.80 49
HPM-MVS++copyleft99.39 4799.23 5999.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 15999.53 21198.64 6899.96 1998.44 14599.80 8499.79 53
test_prior499.56 7498.99 286
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13799.74 11798.81 4599.94 5498.79 9499.86 5199.84 18
v124097.69 25497.32 26898.79 21698.85 29598.43 20799.48 14499.36 22996.11 29899.27 15999.36 26393.76 25099.24 27994.46 31895.23 29898.70 247
test_prior399.21 6999.05 7699.68 6599.67 10199.48 8998.96 29499.56 5698.34 8499.01 21299.52 21498.68 6399.83 14597.96 18399.74 10199.74 74
pm-mvs197.68 25697.28 27198.88 19899.06 26598.62 18799.50 12899.45 18296.32 27897.87 31299.79 8892.47 27999.35 26397.54 22493.54 32598.67 263
test_prior298.96 29498.34 8499.01 21299.52 21498.68 6397.96 18399.74 101
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13764.01 36898.81 4599.94 5498.79 9499.86 5199.84 18
test_prior99.68 6599.67 10199.48 8999.56 5699.83 14599.74 74
旧先验298.96 29496.70 24999.47 10999.94 5498.19 163
新几何299.01 284
新几何199.75 5199.75 6299.59 6999.54 7396.76 24599.29 15499.64 16698.43 8199.94 5496.92 26899.66 11999.72 87
旧先验199.74 7099.59 6999.54 7399.69 14098.47 7899.68 11699.73 81
无先验98.99 28699.51 10396.89 23899.93 6997.53 22599.72 87
原ACMM298.95 298
原ACMM199.65 7299.73 7599.33 10399.47 16097.46 18299.12 19199.66 15898.67 6699.91 9197.70 20999.69 11199.71 94
test22299.75 6299.49 8898.91 30399.49 13096.42 27499.34 14699.65 15998.28 9499.69 11199.72 87
testdata299.95 4396.67 279
segment_acmp98.96 25
testdata99.54 9399.75 6298.95 15499.51 10397.07 22399.43 11899.70 13398.87 3999.94 5497.76 20099.64 12399.72 87
testdata198.85 30898.32 88
v897.95 21197.63 22798.93 18498.95 28298.81 17499.80 1799.41 20396.03 30399.10 19699.42 24494.92 20399.30 27196.94 26594.08 31998.66 271
131498.68 14598.54 14999.11 16298.89 28698.65 18499.27 22299.49 13096.89 23897.99 30999.56 19997.72 11499.83 14597.74 20399.27 14698.84 222
112199.09 9698.87 10699.75 5199.74 7099.60 6599.27 22299.48 14296.82 24499.25 16699.65 15998.38 8699.93 6997.53 22599.67 11899.73 81
LFMVS97.90 21797.35 26299.54 9399.52 14999.01 14399.39 18498.24 34197.10 22199.65 7099.79 8884.79 35199.91 9199.28 3498.38 19999.69 99
VDD-MVS97.73 24697.35 26298.88 19899.47 16997.12 25999.34 20598.85 31798.19 10199.67 6099.85 2982.98 35399.92 8099.49 1498.32 20499.60 130
VDDNet97.55 26597.02 28299.16 15899.49 16198.12 22299.38 18999.30 26095.35 31099.68 5399.90 782.62 35599.93 6999.31 3198.13 21599.42 172
v1097.85 22397.52 23698.86 20598.99 27598.67 18299.75 2899.41 20395.70 30698.98 21999.41 24894.75 21599.23 28096.01 29294.63 30998.67 263
VPNet97.84 22697.44 25099.01 17299.21 23398.94 15799.48 14499.57 5198.38 7899.28 15699.73 12488.89 32999.39 25099.19 4293.27 32898.71 243
MVS97.28 28096.55 28899.48 11198.78 30298.95 15499.27 22299.39 21383.53 35598.08 30499.54 20796.97 13599.87 12294.23 32199.16 15299.63 124
v2v48298.06 19297.77 21198.92 18698.90 28598.82 17299.57 9399.36 22996.65 25399.19 18199.35 26694.20 23599.25 27897.72 20694.97 30498.69 251
V4298.06 19297.79 20698.86 20598.98 27898.84 16899.69 3799.34 23896.53 26399.30 15199.37 26094.67 21999.32 26897.57 22194.66 30898.42 315
SD-MVS99.41 4299.52 699.05 16799.74 7099.68 4999.46 15299.52 9099.11 799.88 599.91 599.43 197.70 34998.72 10399.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.85 22397.47 24299.00 17499.38 19197.99 22698.57 33299.15 28497.04 22698.90 23199.30 27989.83 31999.38 25296.70 27798.33 20099.62 126
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12399.41 17299.71 1398.98 2799.45 11399.78 9599.19 799.54 23299.28 3499.84 6599.63 124
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3999.92 1199.90 1
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6299.54 7398.36 8199.79 2699.82 4998.86 4099.95 4398.62 11799.81 8099.78 61
ADS-MVSNet298.02 20098.07 18097.87 29399.33 20195.19 32499.23 23699.08 29296.24 28599.10 19699.67 15294.11 23998.93 32796.81 27199.05 16499.48 159
EI-MVSNet98.67 14698.67 13098.68 22599.35 19697.97 22799.50 12899.38 21996.93 23799.20 17899.83 4297.87 10899.36 25998.38 14997.56 23298.71 243
Regformer0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
CVMVSNet98.57 15298.67 13098.30 26599.35 19695.59 31299.50 12899.55 6698.60 6199.39 13299.83 4294.48 22799.45 23898.75 9898.56 19399.85 14
pmmvs498.13 18597.90 19798.81 21398.61 32298.87 16498.99 28699.21 27796.44 27299.06 20799.58 19295.90 17199.11 30297.18 25196.11 27698.46 312
EU-MVSNet97.98 20798.03 18297.81 29898.72 31096.65 28899.66 5099.66 2798.09 11498.35 29399.82 4995.25 19598.01 34297.41 23795.30 29798.78 227
VNet99.11 9298.90 10299.73 5899.52 14999.56 7499.41 17299.39 21399.01 1899.74 4199.78 9595.56 18299.92 8099.52 798.18 21099.72 87
test-LLR98.06 19297.90 19798.55 23798.79 29997.10 26098.67 32497.75 34997.34 19698.61 27598.85 32394.45 22899.45 23897.25 24399.38 13899.10 192
TESTMET0.1,197.55 26597.27 27498.40 25698.93 28396.53 29198.67 32497.61 35296.96 23298.64 27199.28 28388.63 33399.45 23897.30 24099.38 13899.21 187
test-mter97.49 27497.13 27998.55 23798.79 29997.10 26098.67 32497.75 34996.65 25398.61 27598.85 32388.23 33799.45 23897.25 24399.38 13899.10 192
VPA-MVSNet98.29 17097.95 19299.30 14099.16 24899.54 7899.50 12899.58 4998.27 9399.35 14399.37 26092.53 27799.65 21599.35 2494.46 31198.72 241
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 5099.67 2298.15 10599.67 6099.69 14098.95 2899.96 1998.69 10899.87 4099.84 18
testgi97.65 26197.50 23998.13 27799.36 19596.45 29499.42 17099.48 14297.76 15197.87 31299.45 23891.09 30798.81 33194.53 31798.52 19599.13 191
test20.0396.12 30295.96 29996.63 32697.44 34295.45 31899.51 12299.38 21996.55 26296.16 33999.25 28893.76 25096.17 35887.35 35594.22 31698.27 324
thres600view797.86 22297.51 23898.92 18699.72 8097.95 23199.59 8198.74 32597.94 13299.27 15998.62 33291.75 29399.86 12593.73 32698.19 20998.96 215
ADS-MVSNet98.20 17698.08 17798.56 23599.33 20196.48 29399.23 23699.15 28496.24 28599.10 19699.67 15294.11 23999.71 19696.81 27199.05 16499.48 159
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11499.48 10899.74 11798.29 9399.96 1997.93 18699.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs39.17 33643.78 33825.37 35136.04 37216.84 37398.36 34026.56 37120.06 36738.51 36867.32 36429.64 37115.30 36937.59 36639.90 36543.98 364
thres40097.77 23797.38 25898.92 18699.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.96 215
test12339.01 33742.50 33928.53 35039.17 37120.91 37298.75 31819.17 37319.83 36838.57 36766.67 36533.16 37015.42 36837.50 36729.66 36649.26 363
thres20097.61 26397.28 27198.62 22799.64 11798.03 22399.26 23198.74 32597.68 16099.09 20198.32 34191.66 29999.81 15692.88 33598.22 20698.03 335
test0.0.03 197.71 25297.42 25498.56 23598.41 33197.82 23798.78 31598.63 33497.34 19698.05 30898.98 31994.45 22898.98 31795.04 31297.15 25798.89 219
pmmvs394.09 32193.25 32496.60 32794.76 35894.49 33498.92 30198.18 34489.66 34896.48 33698.06 34486.28 34697.33 35189.68 34887.20 34797.97 341
EMVS80.02 33179.22 33482.43 34791.19 36076.40 36497.55 35792.49 37066.36 36483.01 35991.27 36064.63 36385.79 36565.82 36460.65 36285.08 361
E-PMN80.61 33079.88 33382.81 34590.75 36176.38 36597.69 35595.76 36266.44 36383.52 35792.25 35962.54 36487.16 36468.53 36361.40 36184.89 362
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8899.65 3297.84 14199.71 4699.80 7699.12 1199.97 1198.33 15599.87 4099.83 29
LCM-MVSNet-Re97.83 22898.15 16996.87 32399.30 21092.25 35199.59 8198.26 34097.43 18996.20 33899.13 30296.27 15898.73 33398.17 16798.99 17099.64 120
LCM-MVSNet86.80 32785.22 33191.53 33987.81 36480.96 36098.23 34998.99 30071.05 35990.13 35596.51 35348.45 36896.88 35590.51 34485.30 34996.76 351
MCST-MVS99.43 3399.30 4299.82 3599.79 4299.74 4199.29 21599.40 20998.79 4999.52 10199.62 17998.91 3699.90 10698.64 11599.75 9899.82 36
mvs_anonymous99.03 10598.99 8999.16 15899.38 19198.52 19899.51 12299.38 21997.79 14899.38 13599.81 6297.30 12499.45 23899.35 2498.99 17099.51 154
MVS_Test99.10 9598.97 9399.48 11199.49 16199.14 12899.67 4599.34 23897.31 19999.58 8999.76 10697.65 11599.82 15298.87 7899.07 16399.46 166
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29098.24 33497.27 25399.15 25199.33 24593.80 33080.09 36299.03 31288.31 33697.86 34693.49 32994.36 31498.62 285
CDPH-MVS99.13 8198.91 10199.80 4099.75 6299.71 4499.15 25199.41 20396.60 25999.60 8499.55 20298.83 4399.90 10697.48 22999.83 7299.78 61
test1299.75 5199.64 11799.61 6399.29 26599.21 17598.38 8699.89 11499.74 10199.74 74
casdiffmvs99.13 8198.98 9299.56 9099.65 11599.16 12399.56 10099.50 12298.33 8799.41 12599.86 2395.92 16999.83 14599.45 1999.16 15299.70 96
diffmvs99.14 7999.02 8499.51 10799.61 13098.96 15299.28 21799.49 13098.46 7099.72 4599.71 12996.50 15099.88 11999.31 3199.11 15799.67 106
baseline297.87 22097.55 23298.82 21199.18 24098.02 22499.41 17296.58 36096.97 23196.51 33599.17 29793.43 25299.57 22897.71 20799.03 16698.86 220
baseline198.31 16797.95 19299.38 12899.50 15998.74 17799.59 8198.93 30698.41 7599.14 18899.60 18694.59 22299.79 16498.48 13993.29 32799.61 128
YYNet195.36 31094.51 31697.92 29097.89 33797.10 26099.10 26399.23 27393.26 33780.77 36099.04 31192.81 26498.02 34194.30 31994.18 31798.64 275
PMMVS286.87 32685.37 33091.35 34090.21 36283.80 35798.89 30497.45 35483.13 35691.67 35495.03 35448.49 36794.70 36085.86 35877.62 35795.54 354
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28498.16 33597.21 25899.11 26199.24 27293.49 33480.73 36198.98 31993.02 25898.18 33794.22 32294.45 31298.64 275
tpmvs97.98 20798.02 18497.84 29599.04 26994.73 33399.31 20999.20 27896.10 30298.76 25199.42 24494.94 20099.81 15696.97 26298.45 19898.97 213
PM-MVS92.96 32392.23 32695.14 33395.61 35489.98 35699.37 19298.21 34294.80 32095.04 34697.69 34565.06 36297.90 34594.30 31989.98 34397.54 350
HQP_MVS98.27 17298.22 16798.44 25299.29 21496.97 27599.39 18499.47 16098.97 3099.11 19399.61 18392.71 27099.69 20697.78 19897.63 22598.67 263
plane_prior799.29 21497.03 270
plane_prior699.27 21996.98 27492.71 270
plane_prior599.47 16099.69 20697.78 19897.63 22598.67 263
plane_prior499.61 183
plane_prior397.00 27298.69 5699.11 193
plane_prior299.39 18498.97 30
plane_prior199.26 221
plane_prior96.97 27599.21 24398.45 7197.60 228
PS-CasMVS97.93 21297.59 23198.95 18198.99 27599.06 13899.68 4299.52 9097.13 21598.31 29599.68 14692.44 28399.05 30798.51 13794.08 31998.75 235
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 17998.92 28498.98 14599.48 14499.53 8497.76 15198.71 25599.46 23796.43 15499.22 28398.57 12892.87 33398.69 251
PEN-MVS97.76 23897.44 25098.72 22298.77 30598.54 19399.78 2299.51 10397.06 22598.29 29799.64 16692.63 27498.89 33098.09 17293.16 32998.72 241
TransMVSNet (Re)97.15 28396.58 28798.86 20599.12 25398.85 16799.49 13898.91 31195.48 30897.16 32899.80 7693.38 25399.11 30294.16 32391.73 33898.62 285
DTE-MVSNet97.51 27097.19 27798.46 24898.63 31998.13 22199.84 699.48 14296.68 25097.97 31099.67 15292.92 26198.56 33496.88 27092.60 33698.70 247
DU-MVS98.08 19197.79 20698.96 17998.87 29198.98 14599.41 17299.45 18297.87 13698.71 25599.50 22194.82 20799.22 28398.57 12892.87 33398.68 256
UniMVSNet (Re)98.29 17098.00 18599.13 16199.00 27499.36 10299.49 13899.51 10397.95 13198.97 22199.13 30296.30 15799.38 25298.36 15393.34 32698.66 271
CP-MVSNet98.09 18997.78 20999.01 17298.97 28099.24 11599.67 4599.46 17097.25 20598.48 28499.64 16693.79 24899.06 30698.63 11694.10 31898.74 239
WR-MVS_H98.13 18597.87 20298.90 19299.02 27298.84 16899.70 3599.59 4397.27 20398.40 28999.19 29695.53 18399.23 28098.34 15493.78 32298.61 294
WR-MVS98.06 19297.73 21799.06 16598.86 29499.25 11499.19 24499.35 23497.30 20098.66 26499.43 24193.94 24499.21 28898.58 12694.28 31598.71 243
NR-MVSNet97.97 21097.61 22899.02 17198.87 29199.26 11399.47 14999.42 20197.63 16697.08 33099.50 22195.07 19999.13 29797.86 19193.59 32498.68 256
Baseline_NR-MVSNet97.76 23897.45 24598.68 22599.09 26098.29 21299.41 17298.85 31795.65 30798.63 27299.67 15294.82 20799.10 30498.07 17992.89 33298.64 275
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 21998.78 30298.62 18799.65 5799.49 13097.76 15198.49 28399.60 18694.23 23498.97 32498.00 18192.90 33198.70 247
TSAR-MVS + GP.99.36 5099.36 2199.36 12999.67 10198.61 18999.07 26599.33 24599.00 2299.82 2099.81 6299.06 1399.84 13699.09 5399.42 13699.65 113
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 5099.59 4398.13 10799.82 2099.81 6298.60 6999.96 1998.46 14399.88 3699.79 53
n20.00 374
nn0.00 374
mPP-MVS99.44 3099.30 4299.86 1899.88 1199.79 3099.69 3799.48 14298.12 10999.50 10499.75 11198.78 4899.97 1198.57 12899.89 3399.83 29
door-mid98.05 345
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19599.71 8697.74 24099.12 25599.54 7398.44 7499.42 12199.71 12994.20 23599.92 8098.54 13698.90 17799.00 209
DWT-MVSNet_test97.53 26797.40 25697.93 28999.03 27194.86 33199.57 9398.63 33496.59 26198.36 29298.79 32689.32 32599.74 17998.14 17098.16 21499.20 188
MVSFormer99.17 7599.12 6999.29 14399.51 15298.94 15799.88 199.46 17097.55 17399.80 2499.65 15997.39 11999.28 27399.03 5799.85 5899.65 113
jason99.13 8199.03 8199.45 11799.46 17098.87 16499.12 25599.26 26898.03 12799.79 2699.65 15997.02 13399.85 13199.02 5999.90 2399.65 113
jason: jason.
lupinMVS99.13 8199.01 8899.46 11699.51 15298.94 15799.05 27099.16 28397.86 13799.80 2499.56 19997.39 11999.86 12598.94 6699.85 5899.58 138
test_djsdf98.67 14698.57 14798.98 17698.70 31398.91 16199.88 199.46 17097.55 17399.22 17299.88 1595.73 17799.28 27399.03 5797.62 22798.75 235
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15699.76 3799.75 11199.13 1099.92 8099.07 5599.92 1199.85 14
RRT_test8_iter0597.72 24897.60 22998.08 27899.23 22796.08 30499.63 6299.49 13097.54 17698.94 22599.81 6287.99 34099.35 26399.21 4196.51 26798.81 223
K. test v397.10 28596.79 28698.01 28498.72 31096.33 29899.87 497.05 35597.59 16896.16 33999.80 7688.71 33099.04 30896.69 27896.55 26598.65 273
lessismore_v097.79 29998.69 31495.44 31994.75 36395.71 34399.87 2088.69 33199.32 26895.89 29394.93 30698.62 285
SixPastTwentyTwo97.50 27197.33 26798.03 28198.65 31796.23 30199.77 2498.68 33397.14 21497.90 31199.93 490.45 31199.18 29197.00 25996.43 26998.67 263
OurMVSNet-221017-097.88 21897.77 21198.19 27398.71 31296.53 29199.88 199.00 29997.79 14898.78 24999.94 391.68 29699.35 26397.21 24596.99 25998.69 251
HPM-MVScopyleft99.42 3899.28 5099.83 3399.90 399.72 4299.81 1399.54 7397.59 16899.68 5399.63 17398.91 3699.94 5498.58 12699.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.73 14198.68 12998.88 19899.70 9397.73 24198.92 30199.55 6698.52 6599.45 11399.84 3895.27 19299.91 9198.08 17698.84 18099.00 209
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27299.11 25596.33 29899.41 17299.52 9098.06 12399.05 20899.50 22189.64 32399.73 18697.73 20497.38 24998.53 302
LPG-MVS_test98.22 17398.13 17198.49 24199.33 20197.05 26699.58 8899.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LGP-MVS_train98.49 24199.33 20197.05 26699.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
baseline99.15 7899.02 8499.53 9999.66 11099.14 12899.72 3299.48 14298.35 8299.42 12199.84 3896.07 16299.79 16499.51 999.14 15599.67 106
test1199.35 234
door97.92 347
EPNet_dtu98.03 19897.96 19098.23 27198.27 33295.54 31599.23 23698.75 32299.02 1597.82 31499.71 12996.11 16199.48 23493.04 33499.65 12299.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.19 7199.10 7199.45 11799.89 898.52 19899.39 18499.94 198.73 5399.11 19399.89 1095.50 18499.94 5499.50 1099.97 399.89 2
EPNet98.86 12198.71 12699.30 14097.20 34898.18 21799.62 6898.91 31199.28 298.63 27299.81 6295.96 16599.99 199.24 3899.72 10599.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.83 280
HQP-NCC99.19 23798.98 29098.24 9498.66 264
ACMP_Plane99.19 23798.98 29098.24 9498.66 264
APD-MVScopyleft99.27 6299.08 7499.84 3299.75 6299.79 3099.50 12899.50 12297.16 21399.77 3399.82 4998.78 4899.94 5497.56 22299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.19 249
HQP4-MVS98.66 26499.64 21898.64 275
HQP3-MVS99.39 21397.58 230
HQP2-MVS92.47 279
CNVR-MVS99.42 3899.30 4299.78 4599.62 12699.71 4499.26 23199.52 9098.82 4499.39 13299.71 12998.96 2599.85 13198.59 12599.80 8499.77 63
NCCC99.34 5299.19 6399.79 4399.61 13099.65 5799.30 21199.48 14298.86 4099.21 17599.63 17398.72 6099.90 10698.25 15999.63 12599.80 49
114514_t98.93 11598.67 13099.72 6199.85 2599.53 8199.62 6899.59 4392.65 34099.71 4699.78 9598.06 10599.90 10698.84 8599.91 1699.74 74
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 9098.07 11999.53 9999.63 17398.93 3599.97 1198.74 9999.91 1699.83 29
DSMNet-mixed97.25 28197.35 26296.95 32197.84 33893.61 34599.57 9396.63 35996.13 29798.87 23698.61 33494.59 22297.70 34995.08 31198.86 17999.55 141
tpm297.44 27697.34 26597.74 30199.15 25194.36 33699.45 15398.94 30593.45 33698.90 23199.44 23991.35 30499.59 22797.31 23998.07 21799.29 183
NP-MVS99.23 22796.92 27899.40 252
EG-PatchMatch MVS95.97 30495.69 30496.81 32497.78 33992.79 34999.16 24798.93 30696.16 29394.08 34899.22 29282.72 35499.47 23595.67 30097.50 23898.17 329
tpm cat197.39 27797.36 26097.50 30999.17 24693.73 34199.43 16399.31 25691.27 34498.71 25599.08 30694.31 23399.77 17196.41 28698.50 19699.00 209
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2699.83 4299.28 399.97 1198.48 13999.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
CostFormer97.72 24897.73 21797.71 30299.15 25194.02 33999.54 11299.02 29894.67 32299.04 20999.35 26692.35 28599.77 17198.50 13897.94 21999.34 180
CR-MVSNet98.17 18097.93 19598.87 20299.18 24098.49 20299.22 24199.33 24596.96 23299.56 9299.38 25794.33 23199.00 31594.83 31598.58 19099.14 189
JIA-IIPM97.50 27197.02 28298.93 18498.73 30897.80 23899.30 21198.97 30291.73 34398.91 22994.86 35695.10 19899.71 19697.58 21797.98 21899.28 184
Patchmtry97.75 24297.40 25698.81 21399.10 25898.87 16499.11 26199.33 24594.83 31998.81 24499.38 25794.33 23199.02 31296.10 28995.57 29198.53 302
PatchT97.03 28696.44 29098.79 21698.99 27598.34 21199.16 24799.07 29492.13 34199.52 10197.31 35194.54 22698.98 31788.54 35198.73 18699.03 206
tpmrst98.33 16698.48 15197.90 29299.16 24894.78 33299.31 20999.11 28897.27 20399.45 11399.59 18995.33 19099.84 13698.48 13998.61 18799.09 196
BH-w/o98.00 20597.89 20198.32 26399.35 19696.20 30299.01 28498.90 31396.42 27498.38 29099.00 31595.26 19499.72 19096.06 29098.61 18799.03 206
tpm97.67 25997.55 23298.03 28199.02 27295.01 32799.43 16398.54 33896.44 27299.12 19199.34 26991.83 29299.60 22697.75 20296.46 26899.48 159
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 10099.05 27099.66 2799.14 699.57 9199.80 7698.46 7999.94 5499.57 499.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.42 15898.36 15698.59 22999.49 16196.70 28599.27 22299.13 28797.24 20798.80 24699.38 25795.75 17699.74 17997.07 25799.16 15299.33 181
RPMNet96.72 29095.90 30099.19 15599.18 24098.49 20299.22 24199.52 9088.72 35199.56 9297.38 34894.08 24199.95 4386.87 35798.58 19099.14 189
MVSTER98.49 15398.32 16199.00 17499.35 19699.02 14199.54 11299.38 21997.41 19299.20 17899.73 12493.86 24799.36 25998.87 7897.56 23298.62 285
CPTT-MVS99.11 9298.90 10299.74 5699.80 4199.46 9399.59 8199.49 13097.03 22899.63 7399.69 14097.27 12699.96 1997.82 19599.84 6599.81 41
GBi-Net97.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8299.86 2199.07 13799.47 14999.93 297.66 16499.71 4699.86 2397.73 11399.96 1999.47 1799.82 7899.79 53
PVSNet_BlendedMVS98.86 12198.80 11799.03 17099.76 5298.79 17599.28 21799.91 397.42 19199.67 6099.37 26097.53 11699.88 11998.98 6297.29 25198.42 315
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31198.65 31795.65 31099.36 19699.51 10397.13 21596.04 34198.99 31688.40 33598.17 33896.71 27690.27 34198.40 318
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32897.38 34393.82 34098.24 34799.48 14291.10 34693.10 35196.66 35274.89 36098.37 33594.03 32487.71 34697.56 349
PVSNet_Blended99.08 9898.97 9399.42 12399.76 5298.79 17598.78 31599.91 396.74 24699.67 6099.49 22497.53 11699.88 11998.98 6299.85 5899.60 130
FMVSNet596.43 29696.19 29497.15 31499.11 25595.89 30799.32 20799.52 9094.47 32698.34 29499.07 30787.54 34497.07 35392.61 33995.72 28898.47 308
test197.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
new_pmnet96.38 29796.03 29797.41 31098.13 33695.16 32699.05 27099.20 27893.94 32897.39 32298.79 32691.61 30199.04 30890.43 34595.77 28598.05 334
FMVSNet398.03 19897.76 21498.84 20999.39 18998.98 14599.40 18099.38 21996.67 25199.07 20399.28 28392.93 26098.98 31797.10 25496.65 26198.56 301
dp97.75 24297.80 20597.59 30599.10 25893.71 34299.32 20798.88 31596.48 26999.08 20299.55 20292.67 27399.82 15296.52 28298.58 19099.24 185
FMVSNet297.72 24897.36 26098.80 21599.51 15298.84 16899.45 15399.42 20196.49 26598.86 24199.29 28190.26 31398.98 31796.44 28496.56 26498.58 299
FMVSNet196.84 28896.36 29198.29 26699.32 20897.26 25599.43 16399.48 14295.11 31398.55 27999.32 27683.95 35298.98 31795.81 29596.26 27398.62 285
N_pmnet94.95 31495.83 30292.31 33798.47 32979.33 36299.12 25592.81 36993.87 32997.68 31799.13 30293.87 24699.01 31491.38 34296.19 27498.59 298
cascas97.69 25497.43 25398.48 24398.60 32397.30 25198.18 35099.39 21392.96 33998.41 28898.78 32893.77 24999.27 27698.16 16898.61 18798.86 220
BH-RMVSNet98.41 16098.08 17799.40 12499.41 18198.83 17199.30 21198.77 32197.70 15898.94 22599.65 15992.91 26399.74 17996.52 28299.55 13199.64 120
UGNet98.87 11898.69 12899.40 12499.22 23198.72 17999.44 15799.68 1999.24 399.18 18499.42 24492.74 26799.96 1999.34 2899.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS99.06 10098.88 10599.61 8299.62 12699.16 12399.37 19299.56 5698.04 12599.53 9999.62 17996.84 13899.94 5498.85 8398.49 19799.72 87
XXY-MVS98.38 16398.09 17699.24 15199.26 22199.32 10499.56 10099.55 6697.45 18598.71 25599.83 4293.23 25599.63 22398.88 7496.32 27298.76 233
DROMVSNet99.40 4599.35 2499.55 9299.52 14999.50 8799.84 699.58 4998.35 8299.68 5399.64 16698.19 9899.71 19699.59 199.80 8499.43 171
sss99.17 7599.05 7699.53 9999.62 12698.97 14899.36 19699.62 3397.83 14299.67 6099.65 15997.37 12399.95 4399.19 4299.19 15199.68 103
Test_1112_low_res98.89 11798.66 13399.57 8899.69 9698.95 15499.03 27699.47 16096.98 23099.15 18799.23 29196.77 14299.89 11498.83 8898.78 18499.86 11
1112_ss98.98 11198.77 12099.59 8499.68 10099.02 14199.25 23399.48 14297.23 20899.13 18999.58 19296.93 13799.90 10698.87 7898.78 18499.84 18
ab-mvs-re8.30 33911.06 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.58 1920.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs98.86 12198.63 13599.54 9399.64 11799.19 11899.44 15799.54 7397.77 15099.30 15199.81 6294.20 23599.93 6999.17 4598.82 18199.49 158
TR-MVS97.76 23897.41 25598.82 21199.06 26597.87 23498.87 30798.56 33696.63 25698.68 26399.22 29292.49 27899.65 21595.40 30597.79 22298.95 218
MDTV_nov1_ep13_2view95.18 32599.35 20296.84 24199.58 8995.19 19797.82 19599.46 166
MDTV_nov1_ep1398.32 16199.11 25594.44 33599.27 22298.74 32597.51 18099.40 13099.62 17994.78 21099.76 17597.59 21698.81 183
MIMVSNet195.51 30795.04 31196.92 32297.38 34395.60 31199.52 11899.50 12293.65 33296.97 33399.17 29785.28 35096.56 35788.36 35295.55 29298.60 297
MIMVSNet97.73 24697.45 24598.57 23399.45 17597.50 24799.02 27998.98 30196.11 29899.41 12599.14 30190.28 31298.74 33295.74 29798.93 17399.47 164
IterMVS-LS98.46 15598.42 15498.58 23299.59 13698.00 22599.37 19299.43 19996.94 23699.07 20399.59 18997.87 10899.03 31098.32 15795.62 29098.71 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.09 9699.03 8199.25 14999.42 17898.73 17899.45 15399.46 17098.11 11199.46 11299.77 10298.01 10699.37 25598.70 10598.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref97.19 254
IterMVS97.83 22897.77 21198.02 28399.58 13896.27 30099.02 27999.48 14297.22 20998.71 25599.70 13392.75 26599.13 29797.46 23296.00 27898.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon99.12 8798.95 9799.65 7299.74 7099.70 4699.27 22299.57 5196.40 27699.42 12199.68 14698.75 5699.80 16197.98 18299.72 10599.44 169
MVS_111021_LR99.41 4299.33 2999.65 7299.77 4999.51 8698.94 30099.85 698.82 4499.65 7099.74 11798.51 7599.80 16198.83 8899.89 3399.64 120
DP-MVS99.16 7798.95 9799.78 4599.77 4999.53 8199.41 17299.50 12297.03 22899.04 20999.88 1597.39 11999.92 8098.66 11399.90 2399.87 10
ACMMP++97.43 246
HQP-MVS98.02 20097.90 19798.37 25999.19 23796.83 28098.98 29099.39 21398.24 9498.66 26499.40 25292.47 27999.64 21897.19 24997.58 23098.64 275
QAPM98.67 14698.30 16399.80 4099.20 23599.67 5299.77 2499.72 1194.74 32198.73 25399.90 795.78 17599.98 696.96 26399.88 3699.76 68
Vis-MVSNetpermissive99.12 8798.97 9399.56 9099.78 4499.10 13399.68 4299.66 2798.49 6799.86 1199.87 2094.77 21399.84 13699.19 4299.41 13799.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet95.75 30695.16 31097.51 30899.30 21093.69 34398.88 30595.78 36185.09 35498.78 24992.65 35891.29 30599.37 25594.85 31499.85 5899.46 166
IS-MVSNet99.05 10298.87 10699.57 8899.73 7599.32 10499.75 2899.20 27898.02 12899.56 9299.86 2396.54 14999.67 20898.09 17299.13 15699.73 81
HyFIR lowres test99.11 9298.92 9999.65 7299.90 399.37 10199.02 27999.91 397.67 16399.59 8799.75 11195.90 17199.73 18699.53 699.02 16899.86 11
EPMVS97.82 23197.65 22498.35 26098.88 28795.98 30599.49 13894.71 36497.57 17199.26 16499.48 23092.46 28299.71 19697.87 19099.08 16299.35 178
PAPM_NR99.04 10398.84 11299.66 6899.74 7099.44 9599.39 18499.38 21997.70 15899.28 15699.28 28398.34 9099.85 13196.96 26399.45 13499.69 99
TAMVS99.12 8799.08 7499.24 15199.46 17098.55 19299.51 12299.46 17098.09 11499.45 11399.82 4998.34 9099.51 23398.70 10598.93 17399.67 106
PAPR98.63 15098.34 15999.51 10799.40 18699.03 14098.80 31399.36 22996.33 27799.00 21799.12 30598.46 7999.84 13695.23 30999.37 14299.66 109
RPSCF98.22 17398.62 14096.99 31899.82 3791.58 35399.72 3299.44 19196.61 25799.66 6599.89 1095.92 16999.82 15297.46 23299.10 16099.57 139
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13699.71 8698.88 16399.80 1799.44 19197.91 13599.36 14099.78 9595.49 18599.43 24797.91 18799.11 15799.62 126
test_040296.64 29196.24 29397.85 29498.85 29596.43 29599.44 15799.26 26893.52 33396.98 33299.52 21488.52 33499.20 29092.58 34097.50 23897.93 343
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9198.95 29899.85 698.82 4499.54 9799.73 12498.51 7599.74 17998.91 7199.88 3699.77 63
CSCG99.32 5599.32 3199.32 13599.85 2598.29 21299.71 3499.66 2798.11 11199.41 12599.80 7698.37 8899.96 1998.99 6199.96 599.72 87
PatchMatch-RL98.84 13298.62 14099.52 10599.71 8699.28 11099.06 26899.77 997.74 15599.50 10499.53 21195.41 18699.84 13697.17 25299.64 12399.44 169
API-MVS99.04 10399.03 8199.06 16599.40 18699.31 10799.55 10999.56 5698.54 6399.33 14799.39 25698.76 5399.78 16996.98 26199.78 9098.07 332
Test By Simon98.75 56
TDRefinement95.42 30994.57 31597.97 28789.83 36396.11 30399.48 14498.75 32296.74 24696.68 33499.88 1588.65 33299.71 19698.37 15182.74 35398.09 331
USDC97.34 27897.20 27697.75 30099.07 26395.20 32398.51 33699.04 29797.99 12998.31 29599.86 2389.02 32799.55 23195.67 30097.36 25098.49 305
EPP-MVSNet99.13 8198.99 8999.53 9999.65 11599.06 13899.81 1399.33 24597.43 18999.60 8499.88 1597.14 12899.84 13699.13 4998.94 17299.69 99
PMMVS98.80 13698.62 14099.34 13099.27 21998.70 18098.76 31799.31 25697.34 19699.21 17599.07 30797.20 12799.82 15298.56 13198.87 17899.52 148
PAPM97.59 26497.09 28099.07 16499.06 26598.26 21598.30 34699.10 28994.88 31898.08 30499.34 26996.27 15899.64 21889.87 34798.92 17599.31 182
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6899.69 1898.12 10999.63 7399.84 3898.73 5999.96 1998.55 13499.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.14 7998.99 8999.59 8499.58 13899.41 9899.16 24799.44 19198.45 7199.19 18199.49 22498.08 10499.89 11497.73 20499.75 9899.48 159
PatchmatchNetpermissive98.31 16798.36 15698.19 27399.16 24895.32 32199.27 22298.92 30897.37 19599.37 13799.58 19294.90 20499.70 20397.43 23699.21 14999.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.30 5799.17 6599.70 6499.56 14499.52 8499.58 8899.80 897.12 21799.62 7799.73 12498.58 7099.90 10698.61 12099.91 1699.68 103
F-COLMAP99.19 7199.04 7999.64 7799.78 4499.27 11299.42 17099.54 7397.29 20199.41 12599.59 18998.42 8499.93 6998.19 16399.69 11199.73 81
ANet_high77.30 33274.86 33684.62 34475.88 36877.61 36397.63 35693.15 36888.81 35064.27 36589.29 36236.51 36983.93 36675.89 36152.31 36392.33 358
wuyk23d40.18 33541.29 34036.84 34986.18 36649.12 37179.73 36322.81 37227.64 36625.46 36928.45 36921.98 37248.89 36755.80 36523.56 36712.51 365
OMC-MVS99.08 9899.04 7999.20 15499.67 10198.22 21699.28 21799.52 9098.07 11999.66 6599.81 6297.79 11199.78 16997.79 19799.81 8099.60 130
MG-MVS99.13 8199.02 8499.45 11799.57 14098.63 18699.07 26599.34 23898.99 2599.61 8099.82 4997.98 10799.87 12297.00 25999.80 8499.85 14
AdaColmapbinary99.01 10998.80 11799.66 6899.56 14499.54 7899.18 24599.70 1598.18 10499.35 14399.63 17396.32 15699.90 10697.48 22999.77 9399.55 141
uanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
ITE_SJBPF98.08 27899.29 21496.37 29698.92 30898.34 8498.83 24299.75 11191.09 30799.62 22495.82 29497.40 24898.25 326
DeepMVS_CXcopyleft93.34 33599.29 21482.27 35999.22 27485.15 35396.33 33799.05 31090.97 30999.73 18693.57 32897.77 22398.01 336
TinyColmap97.12 28496.89 28497.83 29699.07 26395.52 31698.57 33298.74 32597.58 17097.81 31599.79 8888.16 33899.56 22995.10 31097.21 25398.39 319
MAR-MVS98.86 12198.63 13599.54 9399.37 19399.66 5499.45 15399.54 7396.61 25799.01 21299.40 25297.09 13099.86 12597.68 21299.53 13299.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.52 26897.46 24497.70 30398.98 27895.55 31399.29 21598.82 32098.07 11998.66 26499.64 16689.97 31899.61 22597.01 25896.68 26097.94 342
MSDG98.98 11198.80 11799.53 9999.76 5299.19 11898.75 31899.55 6697.25 20599.47 10999.77 10297.82 11099.87 12296.93 26699.90 2399.54 143
LS3D99.27 6299.12 6999.74 5699.18 24099.75 3899.56 10099.57 5198.45 7199.49 10799.85 2997.77 11299.94 5498.33 15599.84 6599.52 148
CLD-MVS98.16 18198.10 17398.33 26199.29 21496.82 28298.75 31899.44 19197.83 14299.13 18999.55 20292.92 26199.67 20898.32 15797.69 22498.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.93 32885.65 32982.75 34686.77 36563.39 36998.35 34198.92 30874.11 35883.39 35898.98 31950.85 36692.40 36284.54 35994.97 30492.46 356
Gipumacopyleft90.99 32590.15 32893.51 33498.73 30890.12 35593.98 36099.45 18279.32 35792.28 35294.91 35569.61 36197.98 34387.42 35495.67 28992.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015