This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33299.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
CANet99.25 6499.14 6499.59 8499.41 17699.16 12099.35 19799.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
CANet_DTU98.97 11198.87 10499.25 14599.33 19598.42 20699.08 25799.30 25499.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
UGNet98.87 11698.69 12699.40 12299.22 22598.72 17699.44 15299.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14799.52 8999.11 799.88 599.91 599.43 197.70 33998.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24799.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8997.18 20599.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14499.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 32899.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21199.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30899.60 13291.75 34198.61 32299.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12399.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
jason99.13 7999.03 7999.45 11599.46 16598.87 16199.12 24899.26 26298.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16899.50 12097.03 22199.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31199.55 6497.25 19999.47 10599.77 10197.82 10899.87 12296.93 26099.90 2399.54 141
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20099.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29399.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20898.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
QAPM98.67 14398.30 16099.80 4099.20 22999.67 5299.77 2199.72 1194.74 31098.73 24799.90 795.78 17399.98 596.96 25799.88 3699.76 68
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29199.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10399.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13399.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13399.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22699.51 10291.90 33099.30 14599.63 17098.78 4899.64 21288.09 34199.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22299.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28595.45 29999.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35698.81 4599.94 5398.79 9099.86 5199.84 18
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12399.50 12097.16 20799.77 3399.82 4998.78 4899.94 5397.56 21699.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24099.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
IU-MVS99.84 3299.88 799.32 24798.30 8599.84 1398.86 7799.85 5899.89 2
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26799.03 5299.85 5899.65 112
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26399.16 27297.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30899.91 396.74 23999.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
MVS-HIRNet95.75 29895.16 30297.51 30299.30 20493.69 33398.88 29895.78 34985.09 34398.78 24392.65 34691.29 29699.37 24994.85 30899.85 5899.46 164
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34299.25 26491.24 33498.51 27599.70 13394.55 21999.91 9092.76 32999.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24699.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22699.28 2999.84 6599.63 122
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26399.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22199.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
LS3D99.27 6099.12 6799.74 5699.18 23499.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24099.45 17995.42 30299.27 15399.60 18297.39 11799.91 9095.36 30199.83 7299.70 95
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22899.83 7299.71 93
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24499.41 19896.60 25299.60 8099.55 19898.83 4399.90 10597.48 22399.83 7299.78 61
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 6999.72 8099.40 17699.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20799.82 78
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14499.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21299.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24298.24 15599.80 8499.79 53
MS-PatchMatch97.24 27597.32 26496.99 30998.45 32493.51 33598.82 30499.32 24797.41 18698.13 29599.30 27288.99 31799.56 22395.68 29399.80 8497.90 333
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15899.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22499.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 25899.34 23298.99 2599.61 7699.82 4997.98 10599.87 12297.00 25399.80 8499.85 14
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
MVP-Stereo97.81 22997.75 21197.99 28097.53 33396.60 28498.96 28798.85 30697.22 20397.23 31599.36 25695.28 18899.46 23095.51 29699.78 8997.92 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 10199.03 7999.06 16199.40 18199.31 10499.55 10399.56 5698.54 6199.33 14299.39 24998.76 5399.78 16896.98 25599.78 8998.07 324
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 23899.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22399.77 9299.55 139
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26399.53 7999.82 1099.72 1194.56 31398.08 29699.88 1594.73 21099.98 597.47 22599.76 9599.06 199
ZD-MVS99.71 8699.79 3099.61 3696.84 23499.56 8899.54 20398.58 7099.96 1896.93 26099.75 96
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20498.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24099.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28799.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28798.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
test1299.75 5199.64 11699.61 6299.29 25999.21 16998.38 8699.89 11399.74 9999.74 73
agg_prior297.21 23999.73 10299.75 69
test9_res97.49 22299.72 10399.75 69
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26399.41 19896.28 27498.95 21799.49 22098.76 5399.91 9097.63 20799.72 10399.75 69
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 27999.40 20496.26 27798.87 23099.49 22098.77 5199.91 9097.69 20499.72 10399.75 69
EPNet98.86 11998.71 12499.30 13797.20 34098.18 21399.62 6398.91 30099.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5196.40 27099.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33599.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 22999.44 18797.04 21999.39 12799.67 15198.30 9199.92 7997.27 23599.69 10999.64 118
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15299.51 10297.29 19599.59 8399.74 11798.15 10099.96 1896.74 26899.69 10999.81 41
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20399.69 10999.71 93
test22299.75 6299.49 8598.91 29699.49 12896.42 26899.34 14199.65 15898.28 9399.69 10999.72 86
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16599.54 7197.29 19599.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32199.10 27897.93 12999.42 11699.55 19898.67 6699.80 16195.80 29099.68 11499.61 126
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21699.48 13996.82 23799.25 16099.65 15898.38 8699.93 6897.53 21999.67 11699.73 80
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28699.46 16798.92 3599.71 4699.24 28299.01 1699.98 599.35 1999.66 11798.97 208
新几何199.75 5199.75 6299.59 6799.54 7196.76 23899.29 14899.64 16598.43 8199.94 5396.92 26299.66 11799.72 86
EPNet_dtu98.03 19497.96 18698.23 26598.27 32695.54 30799.23 22998.75 31199.02 1597.82 30699.71 12996.11 15999.48 22893.04 32799.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 9299.75 6298.95 15199.51 10297.07 21699.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26199.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24699.64 12099.44 167
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28298.25 9499.88 11898.98 5799.63 12299.12 189
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 22899.52 8996.85 23399.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6299.21 5899.40 12299.46 16599.30 10599.56 9599.52 8998.52 6399.44 11299.27 27998.41 8599.86 12599.10 4799.59 12699.04 200
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10696.75 34697.53 17399.73 4399.65 15891.25 29799.89 11398.62 11199.56 12799.48 157
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34497.68 15699.79 2699.74 11791.39 29499.89 11398.83 8499.56 12799.57 137
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17698.83 16899.30 20698.77 31097.70 15498.94 21999.65 15892.91 25799.74 17696.52 27699.55 12999.64 118
MAR-MVS98.86 11998.63 13399.54 9299.37 18799.66 5499.45 14899.54 7196.61 25099.01 20599.40 24597.09 12899.86 12597.68 20699.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32296.82 34596.95 22799.54 9399.43 23791.66 29099.86 12598.08 17199.51 13199.22 183
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17696.99 26699.52 11299.49 12898.11 10799.24 16199.34 26296.96 13499.79 16497.95 18099.45 13299.02 203
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18099.38 21497.70 15499.28 15099.28 27698.34 8999.85 13196.96 25799.45 13299.69 98
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25899.33 23999.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 13498.89 10298.47 24099.33 19596.91 27299.57 8899.30 25498.47 6699.41 12098.99 30796.78 13899.74 17698.73 9699.38 13698.74 232
test-LLR98.06 18897.90 19398.55 23098.79 29397.10 25598.67 31797.75 33797.34 19098.61 26998.85 31494.45 22299.45 23197.25 23799.38 13699.10 190
TESTMET0.1,197.55 25997.27 26998.40 24998.93 27796.53 28598.67 31797.61 34096.96 22598.64 26599.28 27688.63 32299.45 23197.30 23499.38 13699.21 184
test-mter97.49 26797.13 27298.55 23098.79 29397.10 25598.67 31797.75 33796.65 24698.61 26998.85 31488.23 32699.45 23197.25 23799.38 13699.10 190
PAPR98.63 14798.34 15699.51 10599.40 18199.03 13698.80 30699.36 22396.33 27199.00 21099.12 29898.46 7999.84 13695.23 30399.37 14099.66 108
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
MVS_030496.79 28296.52 28297.59 29999.22 22594.92 32099.04 26899.59 4496.49 25998.43 27998.99 30780.48 34699.39 24497.15 24799.27 14498.47 302
131498.68 14298.54 14699.11 15898.89 28098.65 18199.27 21699.49 12896.89 23197.99 30199.56 19597.72 11299.83 14597.74 19899.27 14498.84 217
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27299.45 17998.80 4699.71 4699.26 28098.94 3199.98 599.34 2399.23 14698.98 207
PatchmatchNetpermissive98.31 16498.36 15398.19 26799.16 24295.32 31299.27 21698.92 29797.37 18999.37 13299.58 18894.90 19899.70 19997.43 23099.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17498.16 16598.27 26499.30 20495.55 30599.07 25898.97 29197.57 16699.43 11399.57 19292.72 26299.74 17697.58 21199.20 14899.52 146
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
MVS97.28 27396.55 28199.48 10998.78 29698.95 15199.27 21699.39 20883.53 34498.08 29699.54 20396.97 13399.87 12294.23 31599.16 15099.63 122
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 27999.27 21699.13 27697.24 20198.80 24099.38 25095.75 17499.74 17697.07 25199.16 15099.33 178
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 26998.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
Patchmatch-test97.93 20897.65 22098.77 21499.18 23497.07 25999.03 26999.14 27596.16 28698.74 24699.57 19294.56 21899.72 18793.36 32399.11 15599.52 146
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24197.91 18299.11 15599.62 124
RPSCF98.22 17098.62 13896.99 30999.82 3791.58 34299.72 2999.44 18796.61 25099.66 6499.89 1095.92 16799.82 15297.46 22699.10 15899.57 137
gg-mvs-nofinetune96.17 29395.32 30198.73 21698.79 29398.14 21699.38 18594.09 35391.07 33698.07 29991.04 34989.62 31399.35 25796.75 26799.09 15998.68 249
EPMVS97.82 22797.65 22098.35 25398.88 28195.98 29999.49 13394.71 35297.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23297.31 19399.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
ADS-MVSNet298.02 19698.07 17797.87 28799.33 19595.19 31599.23 22999.08 28196.24 27999.10 19099.67 15194.11 23398.93 32096.81 26599.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22899.33 19596.48 28799.23 22999.15 27396.24 27999.10 19099.67 15194.11 23399.71 19396.81 26599.05 16299.48 157
baseline297.87 21697.55 22898.82 20799.18 23498.02 22099.41 16896.58 34896.97 22496.51 32399.17 29093.43 24699.57 22297.71 20299.03 16498.86 215
mvs-test198.86 11998.84 11098.89 19199.33 19597.77 23599.44 15299.30 25498.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 210
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27299.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
LCM-MVSNet-Re97.83 22498.15 16696.87 31399.30 20492.25 34099.59 7698.26 32997.43 18396.20 32699.13 29596.27 15698.73 32698.17 16298.99 16799.64 118
mvs_anonymous99.03 10398.99 8799.16 15499.38 18598.52 19599.51 11799.38 21497.79 14499.38 13099.81 6297.30 12299.45 23199.35 1998.99 16799.51 152
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 23997.43 18399.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
MIMVSNet97.73 24197.45 24198.57 22699.45 17197.50 24399.02 27298.98 29096.11 29199.41 12099.14 29490.28 30398.74 32595.74 29198.93 17099.47 162
TAMVS99.12 8599.08 7299.24 14799.46 16598.55 18999.51 11799.46 16798.09 11099.45 10899.82 4998.34 8999.51 22798.70 10098.93 17099.67 105
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17398.73 17599.45 14899.46 16798.11 10799.46 10799.77 10198.01 10499.37 24998.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 25897.09 27399.07 16099.06 25998.26 21198.30 33699.10 27894.88 30798.08 29699.34 26296.27 15699.64 21289.87 33698.92 17299.31 179
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 24899.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 204
PMMVS98.80 13398.62 13899.34 12799.27 21398.70 17798.76 31099.31 25097.34 19099.21 16999.07 30097.20 12599.82 15298.56 12598.87 17599.52 146
DSMNet-mixed97.25 27497.35 25896.95 31197.84 33193.61 33499.57 8896.63 34796.13 29098.87 23098.61 32594.59 21697.70 33995.08 30598.86 17699.55 139
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29499.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 204
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11299.47 15796.11 29199.01 20599.34 26296.20 15899.84 13697.88 18498.82 17899.39 173
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15299.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
MDTV_nov1_ep1398.32 15899.11 24994.44 32599.27 21698.74 31497.51 17599.40 12599.62 17594.78 20499.76 17397.59 21098.81 180
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 26999.47 15796.98 22399.15 18199.23 28496.77 14099.89 11398.83 8498.78 18199.86 11
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22699.48 13997.23 20299.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
PatchT97.03 27996.44 28398.79 21298.99 26998.34 20899.16 24099.07 28392.13 32999.52 9797.31 33894.54 22098.98 31188.54 33998.73 18399.03 201
tpmrst98.33 16398.48 14897.90 28699.16 24294.78 32299.31 20499.11 27797.27 19799.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
BH-w/o98.00 20197.89 19798.32 25799.35 19096.20 29699.01 27798.90 30296.42 26898.38 28299.00 30695.26 19199.72 18796.06 28498.61 18499.03 201
cascas97.69 24897.43 24998.48 23698.60 31797.30 24798.18 34099.39 20892.96 32798.41 28098.78 31993.77 24399.27 27098.16 16398.61 18498.86 215
CR-MVSNet98.17 17797.93 19198.87 19899.18 23498.49 19999.22 23499.33 23996.96 22599.56 8899.38 25094.33 22599.00 30994.83 30998.58 18799.14 186
RPMNet96.72 28395.90 29399.19 15199.18 23498.49 19999.22 23499.52 8988.72 34099.56 8897.38 33694.08 23599.95 4286.87 34598.58 18799.14 186
dp97.75 23897.80 20197.59 29999.10 25293.71 33299.32 20298.88 30496.48 26399.08 19599.55 19892.67 26699.82 15296.52 27698.58 18799.24 182
CVMVSNet98.57 14998.67 12898.30 25999.35 19095.59 30499.50 12399.55 6498.60 5999.39 12799.83 4294.48 22199.45 23198.75 9398.56 19099.85 14
Effi-MVS+98.81 13098.59 14399.48 10999.46 16599.12 12998.08 34199.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
testgi97.65 25597.50 23598.13 27199.36 18996.45 28899.42 16599.48 13997.76 14797.87 30499.45 23491.09 29898.81 32494.53 31198.52 19299.13 188
tpm cat197.39 27097.36 25697.50 30399.17 24093.73 33199.43 15899.31 25091.27 33398.71 24999.08 29994.31 22799.77 17096.41 28098.50 19399.00 204
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18899.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
tpmvs97.98 20398.02 18197.84 28999.04 26394.73 32399.31 20499.20 26996.10 29598.76 24599.42 24094.94 19699.81 15696.97 25698.45 19598.97 208
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18098.24 33097.10 21599.65 6799.79 8884.79 33999.91 9099.28 2998.38 19699.69 98
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17699.43 19493.67 32099.22 16699.89 1090.23 30799.93 6899.26 3298.33 19799.66 108
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
GA-MVS97.85 21997.47 23899.00 17099.38 18597.99 22298.57 32599.15 27397.04 21998.90 22599.30 27289.83 31099.38 24696.70 27198.33 19799.62 124
VDD-MVS97.73 24197.35 25898.88 19499.47 16497.12 25499.34 20098.85 30698.19 9799.67 5999.85 2982.98 34199.92 7999.49 1298.32 20199.60 128
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16898.55 32696.03 29699.19 17599.74 11791.87 28299.92 7999.16 4298.29 20299.70 95
GG-mvs-BLEND98.45 24298.55 32098.16 21499.43 15893.68 35497.23 31598.46 32789.30 31599.22 27895.43 29898.22 20397.98 328
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22498.74 31497.68 15699.09 19498.32 33091.66 29099.81 15692.88 32898.22 20398.03 326
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17399.08 13299.62 6399.36 22397.39 18899.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31497.94 12899.27 15398.62 32391.75 28499.86 12593.73 32098.19 20698.96 210
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31497.93 12999.26 15898.62 32391.75 28499.83 14593.22 32498.18 20798.37 315
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.37 315
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16899.39 20899.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.96 210
DWT-MVSNet_test97.53 26197.40 25297.93 28399.03 26594.86 32199.57 8898.63 32396.59 25598.36 28498.79 31789.32 31499.74 17698.14 16598.16 21199.20 185
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18599.30 25495.35 30399.68 5399.90 782.62 34399.93 6899.31 2698.13 21299.42 169
alignmvs98.81 13098.56 14599.58 8799.43 17299.42 9399.51 11798.96 29398.61 5899.35 13898.92 31394.78 20499.77 17099.35 1998.11 21399.54 141
tpm297.44 26997.34 26197.74 29599.15 24594.36 32699.45 14898.94 29493.45 32598.90 22599.44 23591.35 29599.59 22197.31 23398.07 21499.29 180
JIA-IIPM97.50 26597.02 27598.93 18098.73 30297.80 23499.30 20698.97 29191.73 33198.91 22394.86 34495.10 19499.71 19397.58 21197.98 21599.28 181
CostFormer97.72 24397.73 21397.71 29699.15 24594.02 32999.54 10699.02 28794.67 31199.04 20299.35 25992.35 27899.77 17098.50 13297.94 21699.34 177
canonicalmvs99.02 10498.86 10899.51 10599.42 17399.32 10199.80 1699.48 13998.63 5699.31 14498.81 31697.09 12899.75 17599.27 3197.90 21799.47 162
OpenMVS_ROBcopyleft92.34 2094.38 30893.70 31196.41 31997.38 33593.17 33699.06 26198.75 31186.58 34194.84 33498.26 33181.53 34599.32 26289.01 33897.87 21896.76 339
TR-MVS97.76 23497.41 25198.82 20799.06 25997.87 23098.87 30098.56 32596.63 24998.68 25799.22 28592.49 27199.65 21095.40 29997.79 21998.95 213
DeepMVS_CXcopyleft93.34 32499.29 20882.27 34899.22 26785.15 34296.33 32599.05 30390.97 30099.73 18393.57 32197.77 22098.01 327
CLD-MVS98.16 17898.10 17098.33 25499.29 20896.82 27598.75 31199.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS98.27 16998.22 16498.44 24599.29 20896.97 26899.39 18099.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 257
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 257
test_djsdf98.67 14398.57 14498.98 17298.70 30798.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26799.03 5297.62 22498.75 229
anonymousdsp98.44 15398.28 16198.94 17898.50 32298.96 14999.77 2199.50 12097.07 21698.87 23099.77 10194.76 20899.28 26798.66 10797.60 22598.57 294
plane_prior96.97 26899.21 23698.45 6997.60 225
HQP3-MVS99.39 20897.58 227
HQP-MVS98.02 19697.90 19398.37 25299.19 23196.83 27398.98 28399.39 20898.24 9098.66 25899.40 24592.47 27299.64 21297.19 24397.58 22798.64 269
EI-MVSNet98.67 14398.67 12898.68 22099.35 19097.97 22399.50 12399.38 21496.93 23099.20 17299.83 4297.87 10699.36 25398.38 14397.56 22998.71 236
MVSTER98.49 15098.32 15899.00 17099.35 19099.02 13799.54 10699.38 21497.41 18699.20 17299.73 12493.86 24199.36 25398.87 7497.56 22998.62 279
OPM-MVS98.19 17498.10 17098.45 24298.88 28197.07 25999.28 21299.38 21498.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 288
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18197.46 24499.51 11799.53 8395.86 29898.54 27499.77 10182.44 34499.66 20798.68 10597.52 23299.50 155
LPG-MVS_test98.22 17098.13 16898.49 23499.33 19597.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
LGP-MVS_train98.49 23499.33 19597.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
jajsoiax98.43 15498.28 16198.88 19498.60 31798.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23699.22 3497.50 23598.77 225
EG-PatchMatch MVS95.97 29695.69 29696.81 31497.78 33292.79 33899.16 24098.93 29596.16 28694.08 33599.22 28582.72 34299.47 22995.67 29497.50 23598.17 321
test_040296.64 28496.24 28697.85 28898.85 28996.43 28999.44 15299.26 26293.52 32296.98 32099.52 21088.52 32399.20 28592.58 33197.50 23597.93 331
ACMP97.20 1198.06 18897.94 19098.45 24299.37 18797.01 26499.44 15299.49 12897.54 17198.45 27899.79 8891.95 28199.72 18797.91 18297.49 23898.62 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets98.40 15998.23 16398.91 18698.67 31098.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23699.31 2697.48 23998.77 225
ACMM97.58 598.37 16198.34 15698.48 23699.41 17697.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18497.99 18398.44 24599.41 17696.96 27099.60 7099.56 5698.09 11098.15 29499.91 590.87 30199.70 19998.88 7097.45 24098.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 19697.90 19398.40 24999.23 22196.80 27699.70 3399.60 4197.12 21198.18 29399.70 13391.73 28699.72 18798.39 14197.45 24098.68 249
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 243
D2MVS98.41 15798.50 14798.15 27099.26 21596.62 28399.40 17699.61 3697.71 15398.98 21399.36 25696.04 16199.67 20498.70 10097.41 24498.15 322
ITE_SJBPF98.08 27299.29 20896.37 29098.92 29798.34 8098.83 23699.75 11191.09 29899.62 21895.82 28897.40 24598.25 320
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26699.11 24996.33 29299.41 16899.52 8998.06 11999.05 20199.50 21789.64 31299.73 18397.73 19997.38 24698.53 296
USDC97.34 27197.20 27097.75 29499.07 25795.20 31498.51 32999.04 28697.99 12598.31 28799.86 2389.02 31699.55 22595.67 29497.36 24798.49 299
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21299.91 397.42 18599.67 5999.37 25397.53 11499.88 11898.98 5797.29 24898.42 309
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29698.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 24999.13 4497.23 24998.81 219
TinyColmap97.12 27796.89 27797.83 29099.07 25795.52 30898.57 32598.74 31497.58 16597.81 30799.79 8888.16 32799.56 22395.10 30497.21 25098.39 313
ACMMP++_ref97.19 251
ACMH+97.24 1097.92 21197.78 20598.32 25799.46 16596.68 28199.56 9599.54 7198.41 7397.79 30899.87 2090.18 30899.66 20798.05 17597.18 25298.62 279
RRT_MVS98.60 14898.44 14999.05 16398.88 28199.14 12599.49 13399.38 21497.76 14799.29 14899.86 2395.38 18499.36 25398.81 8997.16 25398.64 269
test0.0.03 197.71 24797.42 25098.56 22898.41 32597.82 23398.78 30898.63 32397.34 19098.05 30098.98 31094.45 22298.98 31195.04 30697.15 25498.89 214
CMPMVSbinary69.68 2394.13 30994.90 30491.84 32797.24 33980.01 35098.52 32899.48 13989.01 33891.99 34099.67 15185.67 33799.13 29195.44 29797.03 25596.39 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-097.88 21497.77 20798.19 26798.71 30696.53 28599.88 199.00 28897.79 14498.78 24399.94 391.68 28799.35 25797.21 23996.99 25698.69 244
LF4IMVS97.52 26297.46 24097.70 29798.98 27295.55 30599.29 21098.82 30998.07 11598.66 25899.64 16589.97 30999.61 21997.01 25296.68 25797.94 330
GBi-Net97.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
test197.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
FMVSNet398.03 19497.76 21098.84 20599.39 18498.98 14299.40 17699.38 21496.67 24499.07 19699.28 27692.93 25498.98 31197.10 24896.65 25898.56 295
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14899.42 19696.49 25998.86 23599.29 27490.26 30498.98 31196.44 27896.56 26198.58 293
K. test v397.10 27896.79 27998.01 27898.72 30496.33 29299.87 497.05 34397.59 16396.16 32799.80 7688.71 31999.04 30296.69 27296.55 26298.65 267
RRT_test8_iter0597.72 24397.60 22598.08 27299.23 22196.08 29899.63 5799.49 12897.54 17198.94 21999.81 6287.99 32999.35 25799.21 3696.51 26398.81 219
tpm97.67 25397.55 22898.03 27599.02 26695.01 31899.43 15898.54 32796.44 26699.12 18599.34 26291.83 28399.60 22097.75 19796.46 26499.48 157
SixPastTwentyTwo97.50 26597.33 26398.03 27598.65 31196.23 29599.77 2198.68 32297.14 20897.90 30399.93 490.45 30299.18 28697.00 25396.43 26598.67 257
FIs98.78 13498.63 13399.23 14999.18 23499.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 24999.08 4996.38 26698.78 222
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25699.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27899.07 5096.38 26698.79 221
XXY-MVS98.38 16098.09 17399.24 14799.26 21599.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21798.88 7096.32 26898.76 227
FMVSNet196.84 28096.36 28498.29 26099.32 20297.26 25099.43 15899.48 13995.11 30598.55 27399.32 26983.95 34098.98 31195.81 28996.26 26998.62 279
N_pmnet94.95 30595.83 29492.31 32698.47 32379.33 35199.12 24892.81 35793.87 31897.68 31099.13 29593.87 24099.01 30891.38 33396.19 27098.59 292
pmmvs498.13 18197.90 19398.81 20998.61 31698.87 16198.99 27999.21 26896.44 26699.06 20099.58 18895.90 16999.11 29697.18 24596.11 27198.46 306
testing_294.44 30792.93 31398.98 17294.16 34699.00 14199.42 16599.28 26096.60 25284.86 34396.84 33970.91 34899.27 27098.23 15696.08 27298.68 249
our_test_397.65 25597.68 21797.55 30198.62 31494.97 31998.84 30299.30 25496.83 23698.19 29299.34 26297.01 13299.02 30695.00 30796.01 27398.64 269
IterMVS97.83 22497.77 20798.02 27799.58 13596.27 29499.02 27299.48 13997.22 20398.71 24999.70 13392.75 25999.13 29197.46 22696.00 27498.67 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet297.85 21997.64 22298.48 23699.09 25497.87 23098.60 32499.33 23997.11 21498.87 23099.22 28592.38 27799.17 28798.21 15795.99 27598.42 309
miper_ehance_all_eth98.18 17698.10 17098.41 24799.23 22197.72 23898.72 31499.31 25096.60 25298.88 22899.29 27497.29 12399.13 29197.60 20995.99 27598.38 314
miper_enhance_ethall98.16 17898.08 17498.41 24798.96 27597.72 23898.45 33199.32 24796.95 22798.97 21599.17 29097.06 13099.22 27897.86 18695.99 27598.29 317
ppachtmachnet_test97.49 26797.45 24197.61 29898.62 31495.24 31398.80 30699.46 16796.11 29198.22 29199.62 17596.45 15098.97 31893.77 31995.97 27898.61 288
pmmvs597.52 26297.30 26698.16 26998.57 31996.73 27799.27 21698.90 30296.14 28998.37 28399.53 20791.54 29399.14 28897.51 22195.87 27998.63 277
IterMVS-SCA-FT97.82 22797.75 21198.06 27499.57 13796.36 29199.02 27299.49 12897.18 20598.71 24999.72 12892.72 26299.14 28897.44 22995.86 28098.67 257
cl-mvsnet_98.01 19997.84 20098.55 23099.25 21997.97 22398.71 31599.34 23296.47 26598.59 27299.54 20395.65 17899.21 28397.21 23995.77 28198.46 306
cl-mvsnet198.01 19997.85 19998.48 23699.24 22097.95 22798.71 31599.35 22896.50 25898.60 27199.54 20395.72 17699.03 30497.21 23995.77 28198.46 306
new_pmnet96.38 29096.03 29097.41 30498.13 32995.16 31799.05 26399.20 26993.94 31797.39 31398.79 31791.61 29299.04 30290.43 33595.77 28198.05 325
FMVSNet596.43 28996.19 28797.15 30699.11 24995.89 30199.32 20299.52 8994.47 31598.34 28699.07 30087.54 33197.07 34292.61 33095.72 28498.47 302
Gipumacopyleft90.99 31390.15 31693.51 32398.73 30290.12 34493.98 34899.45 17979.32 34692.28 33994.91 34369.61 34997.98 33387.42 34295.67 28592.45 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 15298.42 15198.58 22599.59 13498.00 22199.37 18899.43 19496.94 22999.07 19699.59 18597.87 10699.03 30498.32 15295.62 28698.71 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 23897.40 25298.81 20999.10 25298.87 16199.11 25499.33 23994.83 30898.81 23899.38 25094.33 22599.02 30696.10 28395.57 28798.53 296
MIMVSNet195.51 29995.04 30396.92 31297.38 33595.60 30399.52 11299.50 12093.65 32196.97 32199.17 29085.28 33896.56 34588.36 34095.55 28898.60 291
eth_miper_zixun_eth98.05 19397.96 18698.33 25499.26 21597.38 24698.56 32799.31 25096.65 24698.88 22899.52 21096.58 14599.12 29597.39 23295.53 28998.47 302
miper_lstm_enhance98.00 20197.91 19298.28 26399.34 19497.43 24598.88 29899.36 22396.48 26398.80 24099.55 19895.98 16298.91 32197.27 23595.50 29098.51 298
tfpnnormal97.84 22297.47 23898.98 17299.20 22999.22 11499.64 5599.61 3696.32 27298.27 29099.70 13393.35 24899.44 23695.69 29295.40 29198.27 318
cl_fuxian98.12 18398.04 17898.38 25199.30 20497.69 24198.81 30599.33 23996.67 24498.83 23699.34 26297.11 12798.99 31097.58 21195.34 29298.48 300
EU-MVSNet97.98 20398.03 17997.81 29298.72 30496.65 28299.66 4699.66 2798.09 11098.35 28599.82 4995.25 19298.01 33297.41 23195.30 29398.78 222
v124097.69 24897.32 26498.79 21298.85 28998.43 20499.48 13999.36 22396.11 29199.27 15399.36 25693.76 24499.24 27494.46 31295.23 29498.70 240
v119297.81 22997.44 24698.91 18698.88 28198.68 17899.51 11799.34 23296.18 28499.20 17299.34 26294.03 23699.36 25395.32 30295.18 29598.69 244
v114497.98 20397.69 21698.85 20498.87 28598.66 18099.54 10699.35 22896.27 27699.23 16599.35 25994.67 21399.23 27596.73 26995.16 29698.68 249
v192192097.80 23197.45 24198.84 20598.80 29298.53 19199.52 11299.34 23296.15 28899.24 16199.47 22993.98 23799.29 26695.40 29995.13 29798.69 244
Anonymous2023120696.22 29196.03 29096.79 31597.31 33894.14 32899.63 5799.08 28196.17 28597.04 31999.06 30293.94 23897.76 33886.96 34495.06 29898.47 302
v14419297.92 21197.60 22598.87 19898.83 29198.65 18199.55 10399.34 23296.20 28299.32 14399.40 24594.36 22499.26 27296.37 28195.03 29998.70 240
v2v48298.06 18897.77 20798.92 18298.90 27998.82 16999.57 8899.36 22396.65 24699.19 17599.35 25994.20 22999.25 27397.72 20194.97 30098.69 244
FPMVS84.93 31685.65 31782.75 33486.77 35363.39 35798.35 33498.92 29774.11 34783.39 34698.98 31050.85 35492.40 35084.54 34794.97 30092.46 344
lessismore_v097.79 29398.69 30895.44 31194.75 35195.71 33099.87 2088.69 32099.32 26295.89 28794.93 30298.62 279
V4298.06 18897.79 20298.86 20198.98 27298.84 16599.69 3599.34 23296.53 25799.30 14599.37 25394.67 21399.32 26297.57 21594.66 30398.42 309
v1097.85 21997.52 23298.86 20198.99 26998.67 17999.75 2599.41 19895.70 29998.98 21399.41 24394.75 20999.23 27596.01 28694.63 30498.67 257
nrg03098.64 14698.42 15199.28 14299.05 26299.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24699.34 2394.59 30598.78 222
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24299.54 7699.50 12399.58 5098.27 8899.35 13899.37 25392.53 27099.65 21099.35 1994.46 30698.72 234
MDA-MVSNet_test_wron95.45 30094.60 30698.01 27898.16 32897.21 25399.11 25499.24 26593.49 32380.73 34998.98 31093.02 25298.18 32994.22 31694.45 30798.64 269
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 13999.57 5194.16 31698.81 23899.68 14593.23 24999.42 24298.84 8194.42 30898.76 227
MDA-MVSNet-bldmvs94.96 30493.98 31097.92 28498.24 32797.27 24999.15 24499.33 23993.80 31980.09 35099.03 30588.31 32597.86 33693.49 32294.36 30998.62 279
WR-MVS98.06 18897.73 21399.06 16198.86 28899.25 11199.19 23799.35 22897.30 19498.66 25899.43 23793.94 23899.21 28398.58 12094.28 31098.71 236
test20.0396.12 29495.96 29296.63 31697.44 33495.45 31099.51 11799.38 21496.55 25696.16 32799.25 28193.76 24496.17 34687.35 34394.22 31198.27 318
YYNet195.36 30294.51 30897.92 28497.89 33097.10 25599.10 25699.23 26693.26 32680.77 34899.04 30492.81 25898.02 33194.30 31394.18 31298.64 269
CP-MVSNet98.09 18597.78 20599.01 16898.97 27499.24 11299.67 4299.46 16797.25 19998.48 27799.64 16593.79 24299.06 30098.63 11094.10 31398.74 232
v897.95 20797.63 22398.93 18098.95 27698.81 17199.80 1699.41 19896.03 29699.10 19099.42 24094.92 19799.30 26596.94 25994.08 31498.66 265
PS-CasMVS97.93 20897.59 22798.95 17798.99 26999.06 13499.68 4099.52 8997.13 20998.31 28799.68 14592.44 27699.05 30198.51 13194.08 31498.75 229
v7n97.87 21697.52 23298.92 18298.76 30098.58 18799.84 699.46 16796.20 28298.91 22399.70 13394.89 19999.44 23696.03 28593.89 31698.75 229
WR-MVS_H98.13 18197.87 19898.90 18899.02 26698.84 16599.70 3399.59 4497.27 19798.40 28199.19 28995.53 18099.23 27598.34 14993.78 31798.61 288
NR-MVSNet97.97 20697.61 22499.02 16798.87 28599.26 11099.47 14499.42 19697.63 16197.08 31899.50 21795.07 19599.13 29197.86 18693.59 31898.68 249
test_part196.83 28196.34 28598.33 25499.46 16596.71 27899.52 11299.63 3391.48 33297.75 30999.76 10587.49 33299.44 23698.37 14593.55 31998.82 218
pm-mvs197.68 25097.28 26798.88 19499.06 25998.62 18499.50 12399.45 17996.32 27297.87 30499.79 8892.47 27299.35 25797.54 21893.54 32098.67 257
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26899.36 9899.49 13399.51 10297.95 12798.97 21599.13 29596.30 15599.38 24698.36 14893.34 32198.66 265
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29598.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
VPNet97.84 22297.44 24699.01 16899.21 22798.94 15499.48 13999.57 5198.38 7599.28 15099.73 12488.89 31899.39 24499.19 3793.27 32398.71 236
PEN-MVS97.76 23497.44 24698.72 21798.77 29998.54 19099.78 1999.51 10297.06 21898.29 28999.64 16592.63 26798.89 32398.09 16793.16 32498.72 234
v14897.79 23297.55 22898.50 23398.74 30197.72 23899.54 10699.33 23996.26 27798.90 22599.51 21494.68 21299.14 28897.83 18993.15 32598.63 277
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29698.62 18499.65 5399.49 12897.76 14798.49 27699.60 18294.23 22898.97 31898.00 17692.90 32698.70 240
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25498.29 20999.41 16898.85 30695.65 30098.63 26699.67 15194.82 20199.10 29898.07 17492.89 32798.64 269
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27898.98 14299.48 13999.53 8397.76 14798.71 24999.46 23396.43 15299.22 27898.57 12292.87 32898.69 244
DU-MVS98.08 18797.79 20298.96 17598.87 28598.98 14299.41 16899.45 17997.87 13298.71 24999.50 21794.82 20199.22 27898.57 12292.87 32898.68 249
pmmvs696.53 28696.09 28997.82 29198.69 30895.47 30999.37 18899.47 15793.46 32497.41 31299.78 9587.06 33399.33 26196.92 26292.70 33098.65 267
DTE-MVSNet97.51 26497.19 27198.46 24198.63 31398.13 21799.84 699.48 13996.68 24397.97 30299.67 15192.92 25598.56 32796.88 26492.60 33198.70 240
ET-MVSNet_ETH3D96.49 28795.64 29799.05 16399.53 14598.82 16998.84 30297.51 34197.63 16184.77 34499.21 28892.09 28098.91 32198.98 5792.21 33299.41 171
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24798.85 16499.49 13398.91 30095.48 30197.16 31799.80 7693.38 24799.11 29694.16 31791.73 33398.62 279
ambc93.06 32592.68 34782.36 34798.47 33098.73 31995.09 33297.41 33555.55 35399.10 29896.42 27991.32 33497.71 334
PMVScopyleft70.75 2275.98 32274.97 32379.01 33670.98 35755.18 35893.37 34998.21 33165.08 35361.78 35493.83 34521.74 36192.53 34978.59 34891.12 33589.34 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth96.44 28896.12 28897.40 30598.65 31195.65 30299.36 19299.51 10297.13 20996.04 32998.99 30788.40 32498.17 33096.71 27090.27 33698.40 312
Patchmatch-RL test95.84 29795.81 29595.95 32095.61 34190.57 34398.24 33798.39 32895.10 30695.20 33198.67 32294.78 20497.77 33796.28 28290.02 33799.51 152
PM-MVS92.96 31292.23 31595.14 32295.61 34189.98 34599.37 18898.21 33194.80 30995.04 33397.69 33365.06 35097.90 33594.30 31389.98 33897.54 338
pmmvs-eth3d95.34 30394.73 30597.15 30695.53 34395.94 30099.35 19799.10 27895.13 30493.55 33697.54 33488.15 32897.91 33494.58 31089.69 33997.61 335
new-patchmatchnet94.48 30694.08 30995.67 32195.08 34492.41 33999.18 23899.28 26094.55 31493.49 33797.37 33787.86 33097.01 34391.57 33288.36 34097.61 335
UnsupCasMVSNet_bld93.53 31192.51 31496.58 31897.38 33593.82 33098.24 33799.48 13991.10 33593.10 33896.66 34074.89 34798.37 32894.03 31887.71 34197.56 337
pmmvs394.09 31093.25 31296.60 31794.76 34594.49 32498.92 29498.18 33389.66 33796.48 32498.06 33286.28 33497.33 34189.68 33787.20 34297.97 329
IB-MVS95.67 1896.22 29195.44 30098.57 22699.21 22796.70 27998.65 32097.74 33996.71 24197.27 31498.54 32686.03 33599.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 31585.22 31991.53 32887.81 35280.96 34998.23 33998.99 28971.05 34890.13 34296.51 34148.45 35696.88 34490.51 33485.30 34496.76 339
TDRefinement95.42 30194.57 30797.97 28189.83 35196.11 29799.48 13998.75 31196.74 23996.68 32299.88 1588.65 32199.71 19398.37 14582.74 34598.09 323
PVSNet_094.43 1996.09 29595.47 29897.94 28299.31 20394.34 32797.81 34399.70 1597.12 21197.46 31198.75 32089.71 31199.79 16497.69 20481.69 34699.68 102
PMMVS286.87 31485.37 31891.35 32990.21 35083.80 34698.89 29797.45 34283.13 34591.67 34195.03 34248.49 35594.70 34885.86 34677.62 34795.54 342
MVEpermissive76.82 2176.91 32174.31 32584.70 33185.38 35576.05 35596.88 34793.17 35567.39 35071.28 35289.01 35121.66 36287.69 35171.74 35072.29 34890.35 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 31879.88 32182.81 33390.75 34976.38 35497.69 34495.76 35066.44 35183.52 34592.25 34762.54 35287.16 35268.53 35161.40 34984.89 350
EMVS80.02 31979.22 32282.43 33591.19 34876.40 35397.55 34692.49 35866.36 35283.01 34791.27 34864.63 35185.79 35365.82 35260.65 35085.08 349
ANet_high77.30 32074.86 32484.62 33275.88 35677.61 35297.63 34593.15 35688.81 33964.27 35389.29 35036.51 35783.93 35475.89 34952.31 35192.33 346
tmp_tt82.80 31781.52 32086.66 33066.61 35868.44 35692.79 35097.92 33568.96 34980.04 35199.85 2985.77 33696.15 34797.86 18643.89 35295.39 343
testmvs39.17 32443.78 32625.37 33936.04 36016.84 36198.36 33326.56 35920.06 35538.51 35667.32 35229.64 35915.30 35737.59 35439.90 35343.98 352
test12339.01 32542.50 32728.53 33839.17 35920.91 36098.75 31119.17 36119.83 35638.57 35566.67 35333.16 35815.42 35637.50 35529.66 35449.26 351
wuyk23d40.18 32341.29 32836.84 33786.18 35449.12 35979.73 35122.81 36027.64 35425.46 35728.45 35721.98 36048.89 35555.80 35323.56 35512.51 353
uanet_test0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.64 32632.85 3290.00 3400.00 3610.00 3620.00 35299.51 1020.00 3570.00 35899.56 19596.58 1450.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.27 32811.03 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 35899.01 160.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.30 32711.06 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.58 1880.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
save fliter99.76 5299.59 6799.14 24699.40 20499.00 22
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
test_post199.23 22965.14 35594.18 23299.71 19397.58 211
test_post65.99 35494.65 21599.73 183
patchmatchnet-post98.70 32194.79 20399.74 176
MTMP99.54 10698.88 304
gm-plane-assit98.54 32192.96 33794.65 31299.15 29399.64 21297.56 216
TEST999.67 10099.65 5799.05 26399.41 19896.22 28198.95 21799.49 22098.77 5199.91 90
test_899.67 10099.61 6299.03 26999.41 19896.28 27498.93 22199.48 22698.76 5399.91 90
agg_prior99.67 10099.62 6099.40 20498.87 23099.91 90
test_prior499.56 7298.99 279
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
旧先验298.96 28796.70 24299.47 10599.94 5398.19 158
新几何299.01 277
无先验98.99 27999.51 10296.89 23199.93 6897.53 21999.72 86
原ACMM298.95 291
testdata299.95 4296.67 273
segment_acmp98.96 25
testdata198.85 30198.32 84
plane_prior799.29 20897.03 263
plane_prior699.27 21396.98 26792.71 264
plane_prior499.61 179
plane_prior397.00 26598.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 215
n20.00 362
nn0.00 362
door-mid98.05 334
test1199.35 228
door97.92 335
HQP5-MVS96.83 273
HQP-NCC99.19 23198.98 28398.24 9098.66 258
ACMP_Plane99.19 23198.98 28398.24 9098.66 258
BP-MVS97.19 243
HQP4-MVS98.66 25899.64 21298.64 269
HQP2-MVS92.47 272
NP-MVS99.23 22196.92 27199.40 245
MDTV_nov1_ep13_2view95.18 31699.35 19796.84 23499.58 8595.19 19397.82 19099.46 164
Test By Simon98.75 56