This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31199.60 13291.75 34698.61 32399.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
EPNet98.86 11998.71 12499.30 13797.20 34298.18 21499.62 6498.91 30499.28 298.63 26799.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24192.74 26299.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10199.20 498.72 24999.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
CANet_DTU98.97 11198.87 10499.25 14699.33 19698.42 20699.08 25899.30 25699.16 599.43 11399.75 11095.27 19099.97 1098.56 12799.95 699.36 174
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26499.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14899.52 8899.11 799.88 599.91 599.43 197.70 34298.72 9999.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8999.37 22499.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 399.62 6499.50 11999.10 899.86 1199.82 4998.94 31
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22399.90 795.94 16699.98 598.95 6199.92 1199.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7199.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 173
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6899.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10699.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8499.49 12799.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5599.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
EPNet_dtu98.03 19597.96 18798.23 26698.27 32795.54 31099.23 23098.75 31599.02 1597.82 30999.71 12896.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7199.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7099.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8499.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
VNet99.11 9098.90 10099.73 5899.52 14899.56 7399.41 16899.39 20999.01 1899.74 4199.78 9595.56 18099.92 7999.52 698.18 20799.72 86
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24799.53 8299.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
save fliter99.76 5299.59 6899.14 24799.40 20599.00 22
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25999.33 24199.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
MG-MVS99.13 7999.02 8299.45 11599.57 13898.63 18399.07 25999.34 23498.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11698.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28795.45 30199.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 36198.81 4599.94 5398.79 9099.86 5199.84 18
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12199.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
HQP_MVS98.27 16998.22 16498.44 24799.29 20996.97 27099.39 18099.47 15798.97 3099.11 18799.61 18092.71 26599.69 20297.78 19397.63 22298.67 258
plane_prior299.39 18098.97 30
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13499.49 12798.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6499.55 6398.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13898.94 15498.97 28799.46 16798.92 3599.71 4699.24 28499.01 1699.98 599.35 1999.66 11798.97 209
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5899.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 10997.89 23098.43 33399.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15599.63 12299.80 49
CANet99.25 6499.14 6499.59 8499.41 17799.16 12199.35 19799.57 5098.82 4299.51 9999.61 18096.46 14999.95 4299.59 199.98 299.65 112
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22599.52 8898.82 4299.39 12799.71 12898.96 2599.85 13198.59 12199.80 8499.77 63
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29499.85 698.82 4299.65 6799.74 11698.51 7599.80 16198.83 8499.89 3399.64 118
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29299.85 698.82 4299.54 9399.73 12398.51 7599.74 17698.91 6799.88 3699.77 63
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14698.91 15899.02 27399.45 17998.80 4699.71 4699.26 28298.94 3199.98 599.34 2399.23 14698.98 208
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7599.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20598.79 4799.52 9799.62 17698.91 3699.90 10598.64 11199.75 9699.82 36
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10198.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18299.94 5399.50 899.97 399.89 2
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 11998.70 5399.77 3399.49 22198.21 9699.95 4298.46 13999.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
plane_prior397.00 26798.69 5499.11 187
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10198.68 5599.27 15399.53 20898.64 6899.96 1898.44 14199.80 8499.79 53
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10299.80 1699.48 13998.63 5699.31 14498.81 31897.09 12899.75 17599.27 3197.90 21799.47 162
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7799.51 10198.62 5799.79 2699.83 4299.28 399.97 1098.48 13599.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9499.51 11898.96 29798.61 5899.35 13898.92 31594.78 20599.77 17099.35 1998.11 21399.54 141
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30799.50 12499.55 6398.60 5999.39 12799.83 4294.48 22299.45 23398.75 9498.56 19099.85 14
OPM-MVS98.19 17498.10 17098.45 24498.88 28297.07 26099.28 21299.38 21598.57 6099.22 16699.81 6292.12 28199.66 20798.08 17197.54 23198.61 289
API-MVS99.04 10199.03 7999.06 16299.40 18299.31 10599.55 10599.56 5598.54 6199.33 14299.39 25198.76 5399.78 16896.98 25699.78 8998.07 326
ACMM97.58 598.37 16198.34 15698.48 23899.41 17797.10 25699.56 9699.45 17998.53 6299.04 20399.85 2993.00 25499.71 19398.74 9597.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.26 6299.21 5899.40 12299.46 16799.30 10699.56 9699.52 8898.52 6399.44 11299.27 28198.41 8599.86 12599.10 4799.59 12699.04 201
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23898.92 29599.55 6398.52 6399.45 10899.84 3895.27 19099.91 9098.08 17198.84 17799.00 205
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4099.66 2798.49 6599.86 1199.87 2094.77 20899.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 13498.89 10298.47 24299.33 19696.91 27499.57 8999.30 25698.47 6699.41 12098.99 30996.78 13899.74 17698.73 9799.38 13698.74 234
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23699.44 15399.30 25698.47 6699.10 19099.43 23896.78 13899.95 4298.73 9799.02 16598.96 211
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12798.46 6899.72 4599.71 12896.50 14899.88 11899.31 2699.11 15599.67 105
plane_prior96.97 27099.21 23798.45 6997.60 225
CNLPA99.14 7798.99 8799.59 8499.58 13699.41 9599.16 24199.44 18798.45 6999.19 17599.49 22198.08 10299.89 11397.73 19999.75 9699.48 157
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9699.57 5098.45 6999.49 10399.85 2997.77 11099.94 5398.33 15199.84 6599.52 146
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23799.12 24999.54 7098.44 7299.42 11699.71 12894.20 23099.92 7998.54 13298.90 17499.00 205
baseline198.31 16497.95 18999.38 12599.50 15798.74 17499.59 7798.93 29998.41 7399.14 18299.60 18394.59 21799.79 16498.48 13593.29 32299.61 126
ACMH+97.24 1097.92 21297.78 20698.32 25899.46 16796.68 28299.56 9699.54 7098.41 7397.79 31199.87 2090.18 31299.66 20798.05 17597.18 25298.62 280
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.53 7299.95 4298.61 11699.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.75 5698.61 11699.81 8099.77 63
VPNet97.84 22397.44 24799.01 16999.21 22898.94 15499.48 14099.57 5098.38 7599.28 15099.73 12388.89 32399.39 24599.19 3793.27 32398.71 238
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5899.54 7098.36 7899.79 2699.82 4998.86 4099.95 4298.62 11399.81 8099.78 61
baseline99.15 7699.02 8299.53 9899.66 10999.14 12699.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8798.96 28899.56 5598.34 8099.01 20699.52 21198.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28898.34 8099.01 20699.52 21198.68 6397.96 17899.74 99
ITE_SJBPF98.08 27399.29 20996.37 29198.92 30198.34 8098.83 23799.75 11091.09 30299.62 21995.82 28997.40 24598.25 321
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12199.56 9699.50 11998.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
testdata198.85 30298.32 84
IU-MVS99.84 3299.88 799.32 24998.30 8599.84 1398.86 7799.85 5899.89 2
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7199.56 5598.28 8699.74 4199.79 8898.53 7299.95 4298.55 13099.78 8999.79 53
FIs98.78 13498.63 13399.23 15099.18 23599.54 7799.83 999.59 4398.28 8698.79 24399.81 6296.75 14199.37 25099.08 4996.38 26798.78 222
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24399.54 7799.50 12499.58 4998.27 8899.35 13899.37 25592.53 27299.65 21199.35 1994.46 30698.72 236
CS-MVS99.21 6699.13 6599.45 11599.54 14599.34 10099.71 3199.54 7098.26 8998.99 21399.24 28498.25 9499.88 11898.98 5799.63 12299.12 189
HQP-NCC99.19 23298.98 28498.24 9098.66 259
ACMP_Plane99.19 23298.98 28498.24 9098.66 259
HQP-MVS98.02 19797.90 19498.37 25499.19 23296.83 27598.98 28499.39 20998.24 9098.66 25999.40 24792.47 27499.64 21397.19 24497.58 22798.64 270
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25799.45 9199.86 599.60 4098.23 9398.70 25699.82 4996.80 13799.22 27899.07 5096.38 26798.79 221
test_yl98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7799.62 3398.21 9699.73 4399.79 8898.68 6399.96 1898.44 14199.77 9299.79 53
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8298.19 9798.63 26799.80 7693.22 25299.44 23899.22 3497.50 23598.77 226
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8298.19 9798.65 26599.81 6292.75 26099.44 23899.31 2697.48 23998.77 226
VDD-MVS97.73 24397.35 25998.88 19499.47 16697.12 25599.34 20098.85 31098.19 9799.67 5999.85 2982.98 34799.92 7999.49 1298.32 20199.60 128
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14299.54 7799.18 23999.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 13999.06 1399.96 1898.69 10499.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 13998.95 2899.96 1898.69 10499.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11399.87 4099.84 18
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4398.13 10399.82 2099.81 6298.60 6999.96 1898.46 13999.88 3699.79 53
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11098.78 4899.97 1098.57 12499.89 3399.83 29
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6499.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 13099.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22499.41 17796.99 26899.52 11499.49 12798.11 10799.24 16199.34 26496.96 13499.79 16497.95 18099.45 13299.02 204
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10198.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
EU-MVSNet97.98 20498.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28899.82 4995.25 19398.01 33597.41 23295.30 29398.78 222
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11698.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TAMVS99.12 8599.08 7299.24 14899.46 16798.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10198.93 17099.67 105
ACMH97.28 898.10 18597.99 18398.44 24799.41 17796.96 27299.60 7199.56 5598.09 11098.15 29799.91 590.87 30599.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5699.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9999.90 2399.82 36
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7098.07 11599.00 21199.76 10599.01 1699.37 25099.13 4497.23 24998.81 219
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8898.07 11599.53 9599.63 17098.93 3599.97 1098.74 9599.91 1699.83 29
OMC-MVS99.08 9699.04 7799.20 15199.67 10098.22 21399.28 21299.52 8898.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
LF4IMVS97.52 26497.46 24197.70 29898.98 27395.55 30899.29 21098.82 31398.07 11598.66 25999.64 16589.97 31399.61 22097.01 25396.68 25797.94 335
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26799.11 25096.33 29399.41 16899.52 8898.06 11999.05 20299.50 21889.64 31799.73 18397.73 19997.38 24698.53 297
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
nrg03098.64 14698.42 15199.28 14399.05 26399.69 4799.81 1299.46 16798.04 12199.01 20699.82 4996.69 14399.38 24799.34 2394.59 30598.78 222
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12199.37 18899.56 5598.04 12199.53 9599.62 17696.84 13699.94 5398.85 7998.49 19499.72 86
jason99.13 7999.03 7999.45 11599.46 16798.87 16199.12 24999.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
USDC97.34 27397.20 27297.75 29599.07 25895.20 31898.51 33099.04 29097.99 12598.31 29099.86 2389.02 32199.55 22695.67 29597.36 24798.49 300
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7199.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14599.86 5199.81 41
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 26999.36 9999.49 13499.51 10197.95 12798.97 21699.13 29796.30 15599.38 24798.36 14993.34 32198.66 266
thres600view797.86 21997.51 23598.92 18299.72 8097.95 22899.59 7798.74 31897.94 12899.27 15398.62 32591.75 28899.86 12593.73 32198.19 20698.96 211
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7598.64 32299.10 28297.93 12999.42 11699.55 19998.67 6699.80 16195.80 29199.68 11499.61 126
thres100view90097.76 23597.45 24298.69 22099.72 8097.86 23399.59 7798.74 31897.93 12999.26 15898.62 32591.75 28899.83 14593.22 32598.18 20798.37 316
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18399.43 24297.91 18299.11 15599.62 124
DU-MVS98.08 18897.79 20398.96 17598.87 28698.98 14299.41 16899.45 17997.87 13298.71 25099.50 21894.82 20299.22 27898.57 12492.87 32898.68 251
lupinMVS99.13 7999.01 8699.46 11499.51 15098.94 15499.05 26499.16 27697.86 13399.80 2499.56 19697.39 11799.86 12598.94 6299.85 5899.58 136
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24998.32 33999.60 4097.86 13399.50 10099.57 19396.75 14199.86 12598.56 12799.70 10899.54 141
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9699.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8499.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15199.87 4099.83 29
tfpn200view997.72 24597.38 25598.72 21899.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.37 316
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10599.67 2297.83 13899.68 5399.69 13999.06 1399.96 1898.39 14399.87 4099.84 18
thres40097.77 23497.38 25598.92 18299.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.96 211
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3397.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
CLD-MVS98.16 17898.10 17098.33 25699.29 20996.82 27798.75 31299.44 18797.83 13899.13 18399.55 19992.92 25699.67 20498.32 15397.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8999.54 7097.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
mvs_anonymous99.03 10398.99 8799.16 15599.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23399.35 1998.99 16799.51 152
OurMVSNet-221017-097.88 21597.77 20898.19 26898.71 30796.53 28699.88 199.00 29297.79 14498.78 24499.94 391.68 29199.35 25897.21 24096.99 25698.69 246
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11699.44 15399.54 7097.77 14699.30 14599.81 6294.20 23099.93 6899.17 4098.82 17899.49 156
RRT_MVS98.60 14898.44 14999.05 16498.88 28299.14 12699.49 13499.38 21597.76 14799.29 14899.86 2395.38 18599.36 25498.81 8997.16 25398.64 270
testgi97.65 25797.50 23698.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30799.45 23591.09 30298.81 32594.53 31298.52 19299.13 188
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8297.76 14798.71 25099.46 23496.43 15299.22 27898.57 12492.87 32898.69 246
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21598.78 29798.62 18499.65 5399.49 12797.76 14798.49 27899.60 18394.23 22998.97 31998.00 17692.90 32698.70 242
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26299.77 997.74 15199.50 10099.53 20895.41 18499.84 13697.17 24799.64 12099.44 167
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5597.72 15299.76 3799.75 11099.13 1099.92 7999.07 5099.92 1199.85 14
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17699.61 3597.71 15398.98 21499.36 25896.04 16199.67 20498.70 10197.41 24498.15 324
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20698.77 31497.70 15498.94 22099.65 15892.91 25899.74 17696.52 27799.55 12999.64 118
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18099.38 21597.70 15499.28 15099.28 27898.34 8999.85 13196.96 25899.45 13299.69 98
tttt051798.42 15598.14 16799.28 14399.66 10998.38 20799.74 2896.85 34997.68 15699.79 2699.74 11691.39 29899.89 11398.83 8499.56 12799.57 137
bset_n11_16_dypcd98.16 17897.97 18598.73 21698.26 32898.28 21197.99 34798.01 33997.68 15699.10 19099.63 17095.68 17799.15 28898.78 9396.55 26298.75 230
thres20097.61 25997.28 26898.62 22399.64 11698.03 22099.26 22598.74 31897.68 15699.09 19598.32 33491.66 29499.81 15692.88 32998.22 20398.03 328
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27399.91 397.67 15999.59 8399.75 11095.90 16999.73 18399.53 599.02 16599.86 11
EIA-MVS99.18 7199.09 7199.45 11599.49 15999.18 11899.67 4299.53 8297.66 16099.40 12599.44 23698.10 10199.81 15698.94 6299.62 12499.35 175
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14599.93 297.66 16099.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
ET-MVSNet_ETH3D96.49 28995.64 29999.05 16499.53 14698.82 16998.84 30397.51 34697.63 16284.77 34999.21 29092.09 28298.91 32298.98 5792.21 33299.41 171
NR-MVSNet97.97 20797.61 22599.02 16898.87 28699.26 11199.47 14599.42 19797.63 16297.08 32499.50 21895.07 19699.13 29297.86 18693.59 31998.68 251
K. test v397.10 28096.79 28198.01 27998.72 30596.33 29399.87 497.05 34897.59 16496.16 33399.80 7688.71 32499.04 30396.69 27396.55 26298.65 268
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16499.68 5399.63 17098.91 3699.94 5398.58 12299.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TinyColmap97.12 27996.89 27997.83 29199.07 25895.52 31198.57 32698.74 31897.58 16697.81 31099.79 8888.16 33299.56 22495.10 30597.21 25098.39 314
SCA98.19 17498.16 16598.27 26599.30 20595.55 30899.07 25998.97 29597.57 16799.43 11399.57 19392.72 26399.74 17697.58 21299.20 14899.52 146
EPMVS97.82 22897.65 22198.35 25598.88 28295.98 30099.49 13494.71 35797.57 16799.26 15899.48 22792.46 27799.71 19397.87 18599.08 16099.35 175
MVSFormer99.17 7399.12 6799.29 14099.51 15098.94 15499.88 199.46 16797.55 16999.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17398.70 30898.91 15899.88 199.46 16797.55 16999.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20099.59 4397.55 16998.70 25699.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0597.72 24597.60 22698.08 27399.23 22296.08 29999.63 5899.49 12797.54 17298.94 22099.81 6287.99 33499.35 25899.21 3696.51 26498.81 219
ACMP97.20 1198.06 18997.94 19198.45 24499.37 18897.01 26699.44 15399.49 12797.54 17298.45 28099.79 8891.95 28499.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 6999.72 8099.40 17699.51 10197.53 17499.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10896.75 35197.53 17499.73 4399.65 15891.25 30199.89 11398.62 11399.56 12799.48 157
MDTV_nov1_ep1398.32 15899.11 25094.44 32999.27 21698.74 31897.51 17699.40 12599.62 17694.78 20599.76 17397.59 21198.81 180
Effi-MVS+98.81 13098.59 14399.48 10999.46 16799.12 13098.08 34599.50 11997.50 17799.38 13099.41 24496.37 15399.81 15699.11 4698.54 19199.51 152
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17899.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
LPG-MVS_test98.22 17098.13 16898.49 23699.33 19697.05 26299.58 8499.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
LGP-MVS_train98.49 23699.33 19697.05 26299.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10197.45 18199.61 7699.75 11098.51 7599.91 9097.45 22999.83 7299.71 93
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9699.47 15797.45 18199.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XXY-MVS98.38 16098.09 17399.24 14899.26 21699.32 10299.56 9699.55 6397.45 18198.71 25099.83 4293.23 25099.63 21898.88 7096.32 26998.76 228
AUN-MVS96.88 28296.31 28798.59 22599.48 16597.04 26499.27 21699.22 26897.44 18498.51 27699.41 24491.97 28399.66 20797.71 20283.83 34599.07 199
LCM-MVSNet-Re97.83 22598.15 16696.87 31799.30 20592.25 34599.59 7798.26 33397.43 18596.20 33299.13 29796.27 15698.73 32798.17 16298.99 16799.64 118
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13599.81 1299.33 24197.43 18599.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21299.91 397.42 18799.67 5999.37 25597.53 11499.88 11898.98 5797.29 24898.42 310
MS-PatchMatch97.24 27797.32 26596.99 31298.45 32593.51 34098.82 30599.32 24997.41 18898.13 29899.30 27488.99 32299.56 22495.68 29499.80 8497.90 338
MVSTER98.49 15098.32 15899.00 17199.35 19199.02 13899.54 10899.38 21597.41 18899.20 17299.73 12393.86 24299.36 25498.87 7497.56 22998.62 280
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13399.62 6499.36 22597.39 19099.28 15099.68 14596.44 15199.92 7998.37 14798.22 20399.40 172
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31699.27 21698.92 30197.37 19199.37 13299.58 18994.90 19999.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR98.06 18997.90 19498.55 23298.79 29497.10 25698.67 31897.75 34297.34 19298.61 27098.85 31694.45 22399.45 23397.25 23899.38 13699.10 190
test0.0.03 197.71 24997.42 25198.56 23098.41 32697.82 23498.78 30998.63 32797.34 19298.05 30398.98 31294.45 22398.98 31295.04 30797.15 25498.89 215
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31199.31 25297.34 19299.21 16999.07 30297.20 12599.82 15298.56 12798.87 17599.52 146
MVS_Test99.10 9398.97 9199.48 10999.49 15999.14 12699.67 4299.34 23497.31 19599.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
WR-MVS98.06 18997.73 21499.06 16298.86 28999.25 11299.19 23899.35 23097.30 19698.66 25999.43 23893.94 23999.21 28398.58 12294.28 31098.71 238
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10197.29 19799.59 8399.74 11698.15 10099.96 1896.74 26999.69 10999.81 41
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16699.54 7097.29 19799.41 12099.59 18698.42 8499.93 6898.19 15899.69 10999.73 80
WR-MVS_H98.13 18297.87 19998.90 18899.02 26798.84 16599.70 3399.59 4397.27 19998.40 28499.19 29195.53 18199.23 27598.34 15093.78 31798.61 289
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32699.31 20499.11 28197.27 19999.45 10899.59 18695.33 18899.84 13698.48 13598.61 18499.09 194
CP-MVSNet98.09 18697.78 20699.01 16998.97 27599.24 11399.67 4299.46 16797.25 20198.48 27999.64 16593.79 24399.06 30198.63 11294.10 31398.74 234
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31299.55 6397.25 20199.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
BH-untuned98.42 15598.36 15398.59 22599.49 15996.70 28099.27 21699.13 28097.24 20398.80 24199.38 25295.75 17499.74 17697.07 25299.16 15099.33 178
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13899.25 22799.48 13997.23 20499.13 18399.58 18996.93 13599.90 10598.87 7498.78 18199.84 18
MVP-Stereo97.81 23097.75 21297.99 28197.53 33596.60 28598.96 28898.85 31097.22 20597.23 32099.36 25895.28 18999.46 23295.51 29799.78 8997.92 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS97.83 22597.77 20898.02 27899.58 13696.27 29599.02 27399.48 13997.22 20598.71 25099.70 13292.75 26099.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8897.18 20799.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-SCA-FT97.82 22897.75 21298.06 27599.57 13896.36 29299.02 27399.49 12797.18 20798.71 25099.72 12792.72 26399.14 28997.44 23095.86 28098.67 258
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 11997.16 20999.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SixPastTwentyTwo97.50 26797.33 26498.03 27698.65 31296.23 29699.77 2198.68 32697.14 21097.90 30699.93 490.45 30699.18 28697.00 25496.43 26698.67 258
PS-CasMVS97.93 20997.59 22898.95 17798.99 27099.06 13599.68 4099.52 8897.13 21198.31 29099.68 14592.44 27899.05 30298.51 13394.08 31498.75 230
UnsupCasMVSNet_eth96.44 29096.12 29097.40 30698.65 31295.65 30599.36 19299.51 10197.13 21196.04 33598.99 30988.40 32998.17 33196.71 27190.27 33698.40 313
PHI-MVS99.30 5599.17 6299.70 6499.56 14299.52 8399.58 8499.80 897.12 21399.62 7499.73 12398.58 7099.90 10598.61 11699.91 1699.68 102
PVSNet_094.43 1996.09 29795.47 30097.94 28399.31 20494.34 33197.81 34899.70 1597.12 21397.46 31598.75 32289.71 31699.79 16497.69 20581.69 34799.68 102
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25199.23 22296.80 27899.70 3399.60 4097.12 21398.18 29699.70 13291.73 29099.72 18798.39 14397.45 24098.68 251
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet297.85 22097.64 22398.48 23899.09 25597.87 23198.60 32599.33 24197.11 21698.87 23199.22 28792.38 27999.17 28798.21 15795.99 27598.42 310
LFMVS97.90 21497.35 25999.54 9299.52 14899.01 14099.39 18098.24 33497.10 21799.65 6799.79 8884.79 34599.91 9099.28 2998.38 19699.69 98
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 11997.07 21898.87 23199.77 10194.76 20999.28 26898.66 10997.60 22598.57 295
testdata99.54 9299.75 6298.95 15199.51 10197.07 21899.43 11399.70 13298.87 3999.94 5397.76 19599.64 12099.72 86
PEN-MVS97.76 23597.44 24798.72 21898.77 30098.54 19099.78 1999.51 10197.06 22098.29 29299.64 16592.63 26998.89 32498.09 16793.16 32498.72 236
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15099.60 6599.23 23099.44 18797.04 22199.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
GA-MVS97.85 22097.47 23999.00 17199.38 18697.99 22398.57 32699.15 27797.04 22198.90 22699.30 27489.83 31499.38 24796.70 27298.33 19799.62 124
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7799.49 12797.03 22399.63 7099.69 13997.27 12499.96 1897.82 19099.84 6599.81 41
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16899.50 11997.03 22399.04 20399.88 1597.39 11799.92 7998.66 10999.90 2399.87 10
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27099.47 15796.98 22599.15 18199.23 28696.77 14099.89 11398.83 8498.78 18199.86 11
baseline297.87 21797.55 22998.82 20799.18 23598.02 22199.41 16896.58 35396.97 22696.51 32999.17 29293.43 24799.57 22397.71 20299.03 16498.86 216
TESTMET0.1,197.55 26197.27 27098.40 25198.93 27896.53 28698.67 31897.61 34596.96 22798.64 26699.28 27888.63 32799.45 23397.30 23599.38 13699.21 184
CR-MVSNet98.17 17797.93 19298.87 19899.18 23598.49 19999.22 23599.33 24196.96 22799.56 8899.38 25294.33 22699.00 31094.83 31098.58 18799.14 186
miper_enhance_ethall98.16 17898.08 17498.41 24998.96 27697.72 23998.45 33299.32 24996.95 22998.97 21699.17 29297.06 13099.22 27897.86 18695.99 27598.29 318
thisisatest051598.14 18197.79 20399.19 15299.50 15798.50 19898.61 32396.82 35096.95 22999.54 9399.43 23891.66 29499.86 12598.08 17199.51 13199.22 183
IterMVS-LS98.46 15298.42 15198.58 22799.59 13498.00 22299.37 18899.43 19596.94 23199.07 19799.59 18697.87 10699.03 30598.32 15395.62 28698.71 238
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet98.67 14398.67 12898.68 22199.35 19197.97 22499.50 12499.38 21596.93 23299.20 17299.83 4297.87 10699.36 25498.38 14597.56 22998.71 238
无先验98.99 28099.51 10196.89 23399.93 6897.53 22099.72 86
131498.68 14298.54 14699.11 15998.89 28198.65 18199.27 21699.49 12796.89 23397.99 30499.56 19697.72 11299.83 14597.74 19899.27 14498.84 218
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 14099.24 22999.52 8896.85 23599.27 15399.48 22798.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ZD-MVS99.71 8699.79 3099.61 3596.84 23699.56 8899.54 20498.58 7099.96 1896.93 26199.75 96
MDTV_nov1_ep13_2view95.18 32099.35 19796.84 23699.58 8595.19 19497.82 19099.46 164
our_test_397.65 25797.68 21897.55 30298.62 31594.97 32398.84 30399.30 25696.83 23898.19 29599.34 26497.01 13299.02 30795.00 30896.01 27398.64 270
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21699.48 13996.82 23999.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
新几何199.75 5199.75 6299.59 6899.54 7096.76 24099.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30999.91 396.74 24199.67 5999.49 22197.53 11499.88 11898.98 5799.85 5899.60 128
TDRefinement95.42 30394.57 30997.97 28289.83 35696.11 29899.48 14098.75 31596.74 24196.68 32899.88 1588.65 32699.71 19398.37 14782.74 34698.09 325
IB-MVS95.67 1896.22 29395.44 30298.57 22899.21 22896.70 28098.65 32197.74 34496.71 24397.27 31998.54 32886.03 34199.92 7998.47 13886.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
旧先验298.96 28896.70 24499.47 10599.94 5398.19 158
DTE-MVSNet97.51 26697.19 27398.46 24398.63 31498.13 21899.84 699.48 13996.68 24597.97 30599.67 15192.92 25698.56 32896.88 26592.60 33198.70 242
cl_fuxian98.12 18498.04 17898.38 25399.30 20597.69 24298.81 30699.33 24196.67 24698.83 23799.34 26497.11 12798.99 31197.58 21295.34 29298.48 301
FMVSNet398.03 19597.76 21198.84 20599.39 18598.98 14299.40 17699.38 21596.67 24699.07 19799.28 27892.93 25598.98 31297.10 24996.65 25898.56 296
eth_miper_zixun_eth98.05 19497.96 18798.33 25699.26 21697.38 24798.56 32899.31 25296.65 24898.88 22999.52 21196.58 14599.12 29697.39 23395.53 28998.47 303
v2v48298.06 18997.77 20898.92 18298.90 28098.82 16999.57 8999.36 22596.65 24899.19 17599.35 26194.20 23099.25 27397.72 20194.97 30098.69 246
test-mter97.49 26997.13 27498.55 23298.79 29497.10 25698.67 31897.75 34296.65 24898.61 27098.85 31688.23 33199.45 23397.25 23899.38 13699.10 190
TR-MVS97.76 23597.41 25298.82 20799.06 26097.87 23198.87 30198.56 32996.63 25198.68 25899.22 28792.49 27399.65 21195.40 30097.79 21998.95 214
RPSCF98.22 17098.62 13896.99 31299.82 3791.58 34799.72 2999.44 18796.61 25299.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7096.61 25299.01 20699.40 24797.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.18 17698.10 17098.41 24999.23 22297.72 23998.72 31599.31 25296.60 25498.88 22999.29 27697.29 12399.13 29297.60 21095.99 27598.38 315
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24599.41 19996.60 25499.60 8099.55 19998.83 4399.90 10597.48 22499.83 7299.78 61
DWT-MVSNet_test97.53 26397.40 25397.93 28499.03 26694.86 32599.57 8998.63 32796.59 25698.36 28798.79 31989.32 31999.74 17698.14 16598.16 21199.20 185
test20.0396.12 29695.96 29496.63 32097.44 33695.45 31399.51 11899.38 21596.55 25796.16 33399.25 28393.76 24596.17 35187.35 34894.22 31198.27 319
V4298.06 18997.79 20398.86 20198.98 27398.84 16599.69 3599.34 23496.53 25899.30 14599.37 25594.67 21499.32 26397.57 21694.66 30398.42 310
cl-mvsnet198.01 20097.85 20098.48 23899.24 22197.95 22898.71 31699.35 23096.50 25998.60 27299.54 20495.72 17699.03 30597.21 24095.77 28198.46 307
MVS_030496.79 28496.52 28497.59 30099.22 22694.92 32499.04 26999.59 4396.49 26098.43 28298.99 30980.48 35299.39 24597.15 24899.27 14498.47 303
GBi-Net97.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
test197.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
FMVSNet297.72 24597.36 25798.80 21199.51 15098.84 16599.45 14999.42 19796.49 26098.86 23699.29 27690.26 30898.98 31296.44 27996.56 26198.58 294
miper_lstm_enhance98.00 20297.91 19398.28 26499.34 19597.43 24698.88 29999.36 22596.48 26498.80 24199.55 19995.98 16298.91 32297.27 23695.50 29098.51 299
dp97.75 23997.80 20297.59 30099.10 25393.71 33699.32 20298.88 30896.48 26499.08 19699.55 19992.67 26899.82 15296.52 27798.58 18799.24 182
cl-mvsnet_98.01 20097.84 20198.55 23299.25 22097.97 22498.71 31699.34 23496.47 26698.59 27399.54 20495.65 17999.21 28397.21 24095.77 28198.46 307
pmmvs498.13 18297.90 19498.81 20998.61 31798.87 16198.99 28099.21 27096.44 26799.06 20199.58 18995.90 16999.11 29797.18 24696.11 27298.46 307
tpm97.67 25597.55 22998.03 27699.02 26795.01 32299.43 15998.54 33196.44 26799.12 18599.34 26491.83 28799.60 22197.75 19796.46 26599.48 157
test22299.75 6299.49 8698.91 29799.49 12796.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
BH-w/o98.00 20297.89 19898.32 25899.35 19196.20 29799.01 27898.90 30696.42 26998.38 28599.00 30895.26 19299.72 18796.06 28598.61 18499.03 202
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5096.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13798.80 30799.36 22596.33 27299.00 21199.12 30098.46 7999.84 13695.23 30499.37 14099.66 108
tfpnnormal97.84 22397.47 23998.98 17399.20 23099.22 11599.64 5699.61 3596.32 27398.27 29399.70 13293.35 24999.44 23895.69 29395.40 29198.27 319
pm-mvs197.68 25297.28 26898.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30799.79 8892.47 27499.35 25897.54 21993.54 32098.67 258
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26499.41 19996.28 27598.95 21899.49 22198.76 5399.91 9097.63 20899.72 10399.75 69
test_899.67 10099.61 6399.03 27099.41 19996.28 27598.93 22299.48 22798.76 5399.91 90
v114497.98 20497.69 21798.85 20498.87 28698.66 18099.54 10899.35 23096.27 27799.23 16599.35 26194.67 21499.23 27596.73 27095.16 29698.68 251
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6198.99 28099.40 20596.26 27898.87 23199.49 22198.77 5199.91 9097.69 20599.72 10399.75 69
v14897.79 23397.55 22998.50 23598.74 30297.72 23999.54 10899.33 24196.26 27898.90 22699.51 21594.68 21399.14 28997.83 18993.15 32598.63 278
ADS-MVSNet298.02 19798.07 17797.87 28899.33 19695.19 31999.23 23099.08 28596.24 28099.10 19099.67 15194.11 23498.93 32196.81 26699.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 23099.33 19696.48 28899.23 23099.15 27796.24 28099.10 19099.67 15194.11 23499.71 19396.81 26699.05 16299.48 157
TEST999.67 10099.65 5799.05 26499.41 19996.22 28298.95 21899.49 22198.77 5199.91 90
v14419297.92 21297.60 22698.87 19898.83 29298.65 18199.55 10599.34 23496.20 28399.32 14399.40 24794.36 22599.26 27296.37 28295.03 29998.70 242
v7n97.87 21797.52 23398.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22499.70 13294.89 20099.44 23896.03 28693.89 31698.75 230
v119297.81 23097.44 24798.91 18698.88 28298.68 17899.51 11899.34 23496.18 28599.20 17299.34 26494.03 23799.36 25495.32 30395.18 29598.69 246
test_part197.75 23997.24 27199.29 14099.59 13499.63 6099.65 5399.49 12796.17 28698.44 28199.69 13989.80 31599.47 23098.68 10693.66 31898.78 222
Anonymous2023120696.22 29396.03 29296.79 31997.31 34094.14 33299.63 5899.08 28596.17 28697.04 32599.06 30493.94 23997.76 34186.96 34995.06 29898.47 303
Patchmatch-test97.93 20997.65 22198.77 21499.18 23597.07 26099.03 27099.14 27996.16 28898.74 24799.57 19394.56 21999.72 18793.36 32499.11 15599.52 146
EG-PatchMatch MVS95.97 29895.69 29896.81 31897.78 33492.79 34399.16 24198.93 29996.16 28894.08 34199.22 28782.72 34899.47 23095.67 29597.50 23598.17 323
v192192097.80 23297.45 24298.84 20598.80 29398.53 19199.52 11499.34 23496.15 29099.24 16199.47 23093.98 23899.29 26795.40 30095.13 29798.69 246
pmmvs597.52 26497.30 26798.16 27098.57 32096.73 27999.27 21698.90 30696.14 29198.37 28699.53 20891.54 29799.14 28997.51 22295.87 27998.63 278
DSMNet-mixed97.25 27697.35 25996.95 31597.84 33393.61 33999.57 8996.63 35296.13 29298.87 23198.61 32794.59 21797.70 34295.08 30698.86 17699.55 139
ppachtmachnet_test97.49 26997.45 24297.61 29998.62 31595.24 31798.80 30799.46 16796.11 29398.22 29499.62 17696.45 15098.97 31993.77 32095.97 27898.61 289
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15099.28 10899.52 11499.47 15796.11 29399.01 20699.34 26496.20 15899.84 13697.88 18498.82 17899.39 173
v124097.69 25097.32 26598.79 21298.85 29098.43 20499.48 14099.36 22596.11 29399.27 15399.36 25893.76 24599.24 27494.46 31395.23 29498.70 242
MIMVSNet97.73 24397.45 24298.57 22899.45 17297.50 24499.02 27398.98 29496.11 29399.41 12099.14 29690.28 30798.74 32695.74 29298.93 17099.47 162
tpmvs97.98 20498.02 18197.84 29099.04 26494.73 32799.31 20499.20 27196.10 29798.76 24699.42 24194.94 19799.81 15696.97 25798.45 19598.97 209
Anonymous20240521198.30 16697.98 18499.26 14599.57 13898.16 21599.41 16898.55 33096.03 29899.19 17599.74 11691.87 28599.92 7999.16 4298.29 20299.70 95
v897.95 20897.63 22498.93 18098.95 27798.81 17199.80 1699.41 19996.03 29899.10 19099.42 24194.92 19899.30 26696.94 26094.08 31498.66 266
UniMVSNet_ETH3D97.32 27496.81 28098.87 19899.40 18297.46 24599.51 11899.53 8295.86 30098.54 27599.77 10182.44 35099.66 20798.68 10697.52 23299.50 155
v1097.85 22097.52 23398.86 20198.99 27098.67 17999.75 2599.41 19995.70 30198.98 21499.41 24494.75 21099.23 27596.01 28794.63 30498.67 258
Baseline_NR-MVSNet97.76 23597.45 24298.68 22199.09 25598.29 20999.41 16898.85 31095.65 30298.63 26799.67 15194.82 20299.10 29998.07 17492.89 32798.64 270
TransMVSNet (Re)97.15 27896.58 28298.86 20199.12 24898.85 16499.49 13498.91 30495.48 30397.16 32299.80 7693.38 24899.11 29794.16 31891.73 33398.62 280
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6599.16 24199.45 17995.42 30499.27 15399.60 18397.39 11799.91 9095.36 30299.83 7299.70 95
VDDNet97.55 26197.02 27799.16 15599.49 15998.12 21999.38 18599.30 25695.35 30599.68 5399.90 782.62 34999.93 6899.31 2698.13 21299.42 169
CL-MVSNet_2432*160094.49 31193.97 31496.08 32496.16 34693.67 33898.33 33899.38 21595.13 30697.33 31898.15 33692.69 26796.57 34988.67 34379.87 34997.99 332
pmmvs-eth3d95.34 30594.73 30797.15 30995.53 34995.94 30199.35 19799.10 28295.13 30693.55 34297.54 33988.15 33397.91 33794.58 31189.69 33997.61 340
DIV-MVS_2432*160095.00 30694.34 31196.96 31497.07 34595.39 31599.56 9699.44 18795.11 30897.13 32397.32 34391.86 28697.27 34590.35 33981.23 34898.23 322
FMVSNet196.84 28396.36 28698.29 26199.32 20397.26 25199.43 15999.48 13995.11 30898.55 27499.32 27183.95 34698.98 31295.81 29096.26 27098.62 280
Patchmatch-RL test95.84 29995.81 29795.95 32595.61 34790.57 34898.24 34198.39 33295.10 31095.20 33798.67 32494.78 20597.77 34096.28 28390.02 33799.51 152
KD-MVS_2432*160094.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
miper_refine_blended94.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
PAPM97.59 26097.09 27599.07 16199.06 26098.26 21298.30 34099.10 28294.88 31398.08 29999.34 26496.27 15699.64 21389.87 34098.92 17299.31 179
Patchmtry97.75 23997.40 25398.81 20999.10 25398.87 16199.11 25599.33 24194.83 31498.81 23999.38 25294.33 22699.02 30796.10 28495.57 28798.53 297
PM-MVS92.96 31792.23 32095.14 32795.61 34789.98 35099.37 18898.21 33594.80 31595.04 33997.69 33865.06 35597.90 33894.30 31489.98 33897.54 343
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31698.73 24899.90 795.78 17399.98 596.96 25899.88 3699.76 68
CostFormer97.72 24597.73 21497.71 29799.15 24694.02 33399.54 10899.02 29194.67 31799.04 20399.35 26192.35 28099.77 17098.50 13497.94 21699.34 177
gm-plane-assit98.54 32292.96 34294.65 31899.15 29599.64 21397.56 217
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 8099.82 1099.72 1194.56 31998.08 29999.88 1594.73 21199.98 597.47 22699.76 9599.06 200
new-patchmatchnet94.48 31294.08 31295.67 32695.08 35092.41 34499.18 23999.28 26294.55 32093.49 34397.37 34287.86 33797.01 34791.57 33588.36 34097.61 340
FMVSNet596.43 29196.19 28997.15 30999.11 25095.89 30299.32 20299.52 8894.47 32198.34 28999.07 30287.54 33897.07 34692.61 33395.72 28498.47 303
Anonymous2023121197.88 21597.54 23298.90 18899.71 8698.53 19199.48 14099.57 5094.16 32298.81 23999.68 14593.23 25099.42 24398.84 8194.42 30898.76 228
new_pmnet96.38 29296.03 29297.41 30598.13 33195.16 32199.05 26499.20 27193.94 32397.39 31798.79 31991.61 29699.04 30390.43 33895.77 28198.05 327
N_pmnet94.95 30895.83 29692.31 33198.47 32479.33 35699.12 24992.81 36293.87 32497.68 31299.13 29793.87 24199.01 30991.38 33696.19 27198.59 293
MDA-MVSNet-bldmvs94.96 30793.98 31397.92 28598.24 32997.27 25099.15 24599.33 24193.80 32580.09 35599.03 30788.31 33097.86 33993.49 32394.36 30998.62 280
Anonymous2024052998.09 18697.68 21899.34 12799.66 10998.44 20399.40 17699.43 19593.67 32699.22 16699.89 1090.23 31199.93 6899.26 3298.33 19799.66 108
MIMVSNet195.51 30195.04 30596.92 31697.38 33795.60 30699.52 11499.50 11993.65 32796.97 32799.17 29285.28 34496.56 35088.36 34595.55 28898.60 292
test_040296.64 28696.24 28897.85 28998.85 29096.43 29099.44 15399.26 26393.52 32896.98 32699.52 21188.52 32899.20 28592.58 33497.50 23597.93 336
MDA-MVSNet_test_wron95.45 30294.60 30898.01 27998.16 33097.21 25499.11 25599.24 26693.49 32980.73 35498.98 31293.02 25398.18 33094.22 31794.45 30798.64 270
pmmvs696.53 28896.09 29197.82 29298.69 30995.47 31299.37 18899.47 15793.46 33097.41 31699.78 9587.06 33999.33 26296.92 26392.70 33098.65 268
tpm297.44 27197.34 26297.74 29699.15 24694.36 33099.45 14998.94 29893.45 33198.90 22699.44 23691.35 29999.59 22297.31 23498.07 21499.29 180
YYNet195.36 30494.51 31097.92 28597.89 33297.10 25699.10 25799.23 26793.26 33280.77 35399.04 30692.81 25998.02 33494.30 31494.18 31298.64 270
cascas97.69 25097.43 25098.48 23898.60 31897.30 24898.18 34499.39 20992.96 33398.41 28398.78 32193.77 24499.27 27198.16 16398.61 18498.86 216
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6499.59 4392.65 33499.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
PatchT97.03 28196.44 28598.79 21298.99 27098.34 20899.16 24199.07 28792.13 33599.52 9797.31 34494.54 22198.98 31288.54 34498.73 18399.03 202
TAPA-MVS97.07 1597.74 24297.34 26298.94 17899.70 9397.53 24399.25 22799.51 10191.90 33699.30 14599.63 17098.78 4899.64 21388.09 34699.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
JIA-IIPM97.50 26797.02 27798.93 18098.73 30397.80 23599.30 20698.97 29591.73 33798.91 22494.86 34995.10 19599.71 19397.58 21297.98 21599.28 181
tpm cat197.39 27297.36 25797.50 30499.17 24193.73 33599.43 15999.31 25291.27 33898.71 25099.08 30194.31 22899.77 17096.41 28198.50 19399.00 205
PCF-MVS97.08 1497.66 25697.06 27699.47 11299.61 12999.09 13298.04 34699.25 26591.24 33998.51 27699.70 13294.55 22099.91 9092.76 33299.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld93.53 31692.51 31996.58 32297.38 33793.82 33498.24 34199.48 13991.10 34093.10 34496.66 34574.89 35398.37 32994.03 31987.71 34197.56 342
gg-mvs-nofinetune96.17 29595.32 30398.73 21698.79 29498.14 21799.38 18594.09 35891.07 34198.07 30291.04 35489.62 31899.35 25896.75 26899.09 15998.68 251
pmmvs394.09 31593.25 31896.60 32194.76 35194.49 32898.92 29598.18 33789.66 34296.48 33098.06 33786.28 34097.33 34489.68 34187.20 34297.97 334
CMPMVSbinary69.68 2394.13 31494.90 30691.84 33297.24 34180.01 35598.52 32999.48 13989.01 34391.99 34699.67 15185.67 34399.13 29295.44 29897.03 25596.39 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ANet_high77.30 32574.86 32984.62 33775.88 36177.61 35797.63 35093.15 36188.81 34464.27 35889.29 35536.51 36283.93 35975.89 35452.31 35692.33 351
RPMNet96.72 28595.90 29599.19 15299.18 23598.49 19999.22 23599.52 8888.72 34599.56 8897.38 34194.08 23699.95 4286.87 35098.58 18799.14 186
OpenMVS_ROBcopyleft92.34 2094.38 31393.70 31796.41 32397.38 33793.17 34199.06 26298.75 31586.58 34694.84 34098.26 33581.53 35199.32 26389.01 34297.87 21896.76 344
DeepMVS_CXcopyleft93.34 32999.29 20982.27 35399.22 26885.15 34796.33 33199.05 30590.97 30499.73 18393.57 32297.77 22098.01 329
MVS-HIRNet95.75 30095.16 30497.51 30399.30 20593.69 33798.88 29995.78 35485.09 34898.78 24492.65 35191.29 30099.37 25094.85 30999.85 5899.46 164
MVS97.28 27596.55 28399.48 10998.78 29798.95 15199.27 21699.39 20983.53 34998.08 29999.54 20496.97 13399.87 12294.23 31699.16 15099.63 122
PMMVS286.87 31985.37 32391.35 33490.21 35583.80 35198.89 29897.45 34783.13 35091.67 34795.03 34748.49 36094.70 35385.86 35177.62 35095.54 347
Gipumacopyleft90.99 31890.15 32193.51 32898.73 30390.12 34993.98 35399.45 17979.32 35192.28 34594.91 34869.61 35497.98 33687.42 34795.67 28592.45 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 32185.65 32282.75 33986.77 35863.39 36298.35 33598.92 30174.11 35283.39 35198.98 31250.85 35992.40 35584.54 35294.97 30092.46 349
LCM-MVSNet86.80 32085.22 32491.53 33387.81 35780.96 35498.23 34398.99 29371.05 35390.13 34896.51 34648.45 36196.88 34890.51 33785.30 34496.76 344
tmp_tt82.80 32281.52 32586.66 33566.61 36368.44 36192.79 35597.92 34068.96 35480.04 35699.85 2985.77 34296.15 35297.86 18643.89 35795.39 348
MVEpermissive76.82 2176.91 32674.31 33084.70 33685.38 36076.05 36096.88 35293.17 36067.39 35571.28 35789.01 35621.66 36787.69 35671.74 35572.29 35390.35 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 32379.88 32682.81 33890.75 35476.38 35997.69 34995.76 35566.44 35683.52 35092.25 35262.54 35787.16 35768.53 35661.40 35484.89 355
EMVS80.02 32479.22 32782.43 34091.19 35376.40 35897.55 35192.49 36366.36 35783.01 35291.27 35364.63 35685.79 35865.82 35760.65 35585.08 354
PMVScopyleft70.75 2275.98 32774.97 32879.01 34170.98 36255.18 36393.37 35498.21 33565.08 35861.78 35993.83 35021.74 36692.53 35478.59 35391.12 33589.34 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 32841.29 33336.84 34286.18 35949.12 36479.73 35622.81 36527.64 35925.46 36228.45 36221.98 36548.89 36055.80 35823.56 36012.51 358
testmvs39.17 32943.78 33125.37 34436.04 36516.84 36698.36 33426.56 36420.06 36038.51 36167.32 35729.64 36415.30 36237.59 35939.90 35843.98 357
test12339.01 33042.50 33228.53 34339.17 36420.91 36598.75 31219.17 36619.83 36138.57 36066.67 35833.16 36315.42 36137.50 36029.66 35949.26 356
uanet_test0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.64 33132.85 3340.00 3450.00 3660.00 3670.00 35799.51 1010.00 3620.00 36399.56 19696.58 1450.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.27 33311.03 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 36399.01 160.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.30 33211.06 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.58 1890.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.64 7799.56 14299.72 4299.60 7199.70 13299.27 499.42 24398.24 15699.80 8499.79 53
test_0728_SECOND99.91 299.84 3299.89 399.57 8999.51 10199.96 1898.93 6499.86 5199.88 5
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20199.52 146
sam_mvs94.72 212
ambc93.06 33092.68 35282.36 35298.47 33198.73 32395.09 33897.41 34055.55 35899.10 29996.42 28091.32 33497.71 339
MTGPAbinary99.47 157
test_post199.23 23065.14 36094.18 23399.71 19397.58 212
test_post65.99 35994.65 21699.73 183
patchmatchnet-post98.70 32394.79 20499.74 176
GG-mvs-BLEND98.45 24498.55 32198.16 21599.43 15993.68 35997.23 32098.46 32989.30 32099.22 27895.43 29998.22 20397.98 333
MTMP99.54 10898.88 308
test9_res97.49 22399.72 10399.75 69
agg_prior297.21 24099.73 10299.75 69
agg_prior99.67 10099.62 6199.40 20598.87 23199.91 90
test_prior499.56 7398.99 280
test_prior99.68 6599.67 10099.48 8799.56 5599.83 14599.74 73
新几何299.01 278
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
原ACMM298.95 292
testdata299.95 4296.67 274
segment_acmp98.96 25
test1299.75 5199.64 11699.61 6399.29 26199.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20997.03 265
plane_prior699.27 21496.98 26992.71 265
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
plane_prior499.61 180
plane_prior199.26 216
n20.00 367
nn0.00 367
door-mid98.05 338
lessismore_v097.79 29498.69 30995.44 31494.75 35695.71 33699.87 2088.69 32599.32 26395.89 28894.93 30298.62 280
test1199.35 230
door97.92 340
HQP5-MVS96.83 275
BP-MVS97.19 244
HQP4-MVS98.66 25999.64 21398.64 270
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 274
NP-MVS99.23 22296.92 27399.40 247
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56