This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net99.42 3899.29 4699.80 4099.62 12699.55 7699.50 12899.70 1598.79 4999.77 3399.96 197.45 11899.96 1998.92 7099.90 2399.89 2
DeepC-MVS98.35 299.30 5799.19 6399.64 7799.82 3799.23 11699.62 6899.55 6698.94 3399.63 7399.95 295.82 17499.94 5499.37 2399.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OurMVSNet-221017-097.88 21897.77 21198.19 27398.71 31296.53 29199.88 199.00 29997.79 14898.78 24999.94 391.68 29699.35 26397.21 24596.99 25998.69 251
SixPastTwentyTwo97.50 27197.33 26798.03 28198.65 31796.23 30199.77 2498.68 33397.14 21497.90 31199.93 490.45 31199.18 29197.00 25996.43 26998.67 263
SD-MVS99.41 4299.52 699.05 16799.74 7099.68 4999.46 15299.52 9099.11 799.88 599.91 599.43 197.70 34998.72 10399.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 18897.99 18698.44 25299.41 18196.96 27799.60 7599.56 5698.09 11498.15 30299.91 590.87 31099.70 20398.88 7497.45 24398.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet97.55 26597.02 28299.16 15899.49 16198.12 22299.38 18999.30 26095.35 31099.68 5399.90 782.62 35599.93 6999.31 3198.13 21599.42 172
QAPM98.67 14698.30 16399.80 4099.20 23599.67 5299.77 2499.72 1194.74 32198.73 25399.90 795.78 17599.98 696.96 26399.88 3699.76 68
3Dnovator97.25 999.24 6899.05 7699.81 3899.12 25399.66 5499.84 699.74 1099.09 1098.92 22899.90 795.94 16899.98 698.95 6599.92 1199.79 53
Anonymous2024052998.09 18997.68 22199.34 13099.66 11098.44 20699.40 18099.43 19993.67 33199.22 17299.89 1090.23 31699.93 6999.26 3798.33 20099.66 109
CHOSEN 1792x268899.19 7199.10 7199.45 11799.89 898.52 19899.39 18499.94 198.73 5399.11 19399.89 1095.50 18499.94 5499.50 1099.97 399.89 2
RPSCF98.22 17398.62 14096.99 31899.82 3791.58 35399.72 3299.44 19196.61 25799.66 6599.89 1095.92 16999.82 15297.46 23299.10 16099.57 139
3Dnovator+97.12 1399.18 7398.97 9399.82 3599.17 24699.68 4999.81 1399.51 10399.20 498.72 25499.89 1095.68 17999.97 1198.86 8199.86 5199.81 41
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15799.88 1198.53 19499.34 20599.59 4397.55 17398.70 26199.89 1095.83 17399.90 10698.10 17199.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_djsdf98.67 14698.57 14798.98 17698.70 31398.91 16199.88 199.46 17097.55 17399.22 17299.88 1595.73 17799.28 27399.03 5797.62 22798.75 235
DP-MVS99.16 7798.95 9799.78 4599.77 4999.53 8199.41 17299.50 12297.03 22899.04 20999.88 1597.39 11999.92 8098.66 11399.90 2399.87 10
TDRefinement95.42 30994.57 31597.97 28789.83 36396.11 30399.48 14498.75 32296.74 24696.68 33499.88 1588.65 33299.71 19698.37 15182.74 35398.09 331
EPP-MVSNet99.13 8198.99 8999.53 9999.65 11599.06 13899.81 1399.33 24597.43 18999.60 8499.88 1597.14 12899.84 13699.13 4998.94 17299.69 99
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10599.04 26999.53 8199.82 1199.72 1194.56 32498.08 30499.88 1594.73 21699.98 697.47 23199.76 9699.06 203
lessismore_v097.79 29998.69 31495.44 31994.75 36395.71 34399.87 2088.69 33199.32 26895.89 29394.93 30698.62 285
Vis-MVSNetpermissive99.12 8798.97 9399.56 9099.78 4499.10 13399.68 4299.66 2798.49 6799.86 1199.87 2094.77 21399.84 13699.19 4299.41 13799.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 21597.78 20998.32 26399.46 17096.68 28799.56 10099.54 7398.41 7597.79 31699.87 2090.18 31799.66 21198.05 18097.18 25598.62 285
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12499.76 3799.86 2398.82 4499.93 6998.82 9299.91 1699.84 18
RRT_MVS98.60 15198.44 15299.05 16798.88 28799.14 12899.49 13899.38 21997.76 15199.29 15499.86 2395.38 18799.36 25998.81 9397.16 25698.64 275
casdiffmvs99.13 8198.98 9299.56 9099.65 11599.16 12399.56 10099.50 12298.33 8799.41 12599.86 2395.92 16999.83 14599.45 1999.16 15299.70 96
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8299.86 2199.07 13799.47 14999.93 297.66 16499.71 4699.86 2397.73 11399.96 1999.47 1799.82 7899.79 53
IS-MVSNet99.05 10298.87 10699.57 8899.73 7599.32 10499.75 2899.20 27898.02 12899.56 9299.86 2396.54 14999.67 20898.09 17299.13 15699.73 81
USDC97.34 27897.20 27697.75 30099.07 26395.20 32398.51 33699.04 29797.99 12998.31 29599.86 2389.02 32799.55 23195.67 30097.36 25098.49 305
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6299.39 21398.91 3899.78 3199.85 2999.36 299.94 5498.84 8599.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 32981.52 33286.66 34266.61 37068.44 36892.79 36297.92 34768.96 36080.04 36399.85 2985.77 34896.15 35997.86 19143.89 36495.39 355
AllTest98.87 11898.72 12499.31 13699.86 2198.48 20499.56 10099.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
TestCases99.31 13699.86 2198.48 20499.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
VDD-MVS97.73 24697.35 26298.88 19899.47 16997.12 25999.34 20598.85 31798.19 10199.67 6099.85 2982.98 35399.92 8099.49 1498.32 20499.60 130
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3999.92 1199.90 1
DeepPCF-MVS98.18 398.81 13399.37 1997.12 31799.60 13491.75 35298.61 32999.44 19199.35 199.83 1799.85 2998.70 6299.81 15699.02 5999.91 1699.81 41
ACMM97.58 598.37 16498.34 15998.48 24399.41 18197.10 26099.56 10099.45 18298.53 6499.04 20999.85 2993.00 25999.71 19698.74 9997.45 24398.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6299.12 6999.74 5699.18 24099.75 3899.56 10099.57 5198.45 7199.49 10799.85 2997.77 11299.94 5498.33 15599.84 6599.52 148
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6099.96 1998.16 16899.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 14198.68 12998.88 19899.70 9397.73 24198.92 30199.55 6698.52 6599.45 11399.84 3895.27 19299.91 9198.08 17698.84 18099.00 209
baseline99.15 7899.02 8499.53 9999.66 11099.14 12899.72 3299.48 14298.35 8299.42 12199.84 3896.07 16299.79 16499.51 999.14 15599.67 106
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6899.69 1898.12 10999.63 7399.84 3898.73 5999.96 1998.55 13499.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12899.60 7599.45 18299.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet98.67 14698.67 13098.68 22599.35 19697.97 22799.50 12899.38 21996.93 23799.20 17899.83 4297.87 10899.36 25998.38 14997.56 23298.71 243
CVMVSNet98.57 15298.67 13098.30 26599.35 19695.59 31299.50 12899.55 6698.60 6199.39 13299.83 4294.48 22799.45 23898.75 9898.56 19399.85 14
LPG-MVS_test98.22 17398.13 17198.49 24199.33 20197.05 26699.58 8899.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LGP-MVS_train98.49 24199.33 20197.05 26699.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2699.83 4299.28 399.97 1198.48 13999.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 16398.09 17699.24 15199.26 22199.32 10499.56 10099.55 6697.45 18598.71 25599.83 4293.23 25599.63 22398.88 7496.32 27298.76 233
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.53 7299.95 4398.61 12099.81 8099.77 63
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.75 5698.61 12099.81 8099.77 63
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 31
SMA-MVScopyleft99.44 3099.30 4299.85 2599.73 7599.83 1499.56 10099.47 16097.45 18599.78 3199.82 4999.18 899.91 9198.79 9499.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 14998.42 15499.28 14699.05 26899.69 4799.81 1399.46 17098.04 12599.01 21299.82 4996.69 14599.38 25299.34 2894.59 31098.78 227
FC-MVSNet-test98.75 14098.62 14099.15 16099.08 26299.45 9499.86 599.60 4098.23 9798.70 26199.82 4996.80 13999.22 28399.07 5596.38 27098.79 226
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12799.61 7499.45 18299.01 1899.89 499.82 4999.01 1699.92 8099.56 599.95 699.85 14
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6299.54 7398.36 8199.79 2699.82 4998.86 4099.95 4398.62 11799.81 8099.78 61
EU-MVSNet97.98 20798.03 18297.81 29898.72 31096.65 28899.66 5099.66 2798.09 11498.35 29399.82 4995.25 19598.01 34297.41 23795.30 29798.78 227
APD-MVScopyleft99.27 6299.08 7499.84 3299.75 6299.79 3099.50 12899.50 12297.16 21399.77 3399.82 4998.78 4899.94 5497.56 22299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8799.08 7499.24 15199.46 17098.55 19299.51 12299.46 17098.09 11499.45 11399.82 4998.34 9099.51 23398.70 10598.93 17399.67 106
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6999.36 19699.46 17099.07 1399.79 2699.82 4998.85 4199.92 8098.68 11099.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 8199.02 8499.45 11799.57 14098.63 18699.07 26599.34 23898.99 2599.61 8099.82 4997.98 10799.87 12297.00 25999.80 8499.85 14
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 599.96 1998.91 7199.85 5899.79 53
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3199.96 1998.91 7199.84 6599.88 5
OPM-MVS98.19 17798.10 17398.45 24998.88 28797.07 26499.28 21799.38 21998.57 6299.22 17299.81 6292.12 28699.66 21198.08 17697.54 23498.61 294
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
FIs98.78 13798.63 13599.23 15399.18 24099.54 7899.83 1099.59 4398.28 9198.79 24899.81 6296.75 14399.37 25599.08 5496.38 27098.78 227
mvs_tets98.40 16298.23 16698.91 19098.67 31698.51 20099.66 5099.53 8498.19 10198.65 27099.81 6292.75 26599.44 24399.31 3197.48 24298.77 231
mvs_anonymous99.03 10598.99 8999.16 15899.38 19198.52 19899.51 12299.38 21997.79 14899.38 13599.81 6297.30 12499.45 23899.35 2498.99 17099.51 154
TSAR-MVS + GP.99.36 5099.36 2199.36 12999.67 10198.61 18999.07 26599.33 24599.00 2299.82 2099.81 6299.06 1399.84 13699.09 5399.42 13699.65 113
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 5099.59 4398.13 10799.82 2099.81 6298.60 6999.96 1998.46 14399.88 3699.79 53
RRT_test8_iter0597.72 24897.60 22998.08 27899.23 22796.08 30499.63 6299.49 13097.54 17698.94 22599.81 6287.99 34099.35 26399.21 4196.51 26798.81 223
EPNet98.86 12198.71 12699.30 14097.20 34898.18 21799.62 6898.91 31199.28 298.63 27299.81 6295.96 16599.99 199.24 3899.72 10599.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 12198.63 13599.54 9399.64 11799.19 11899.44 15799.54 7397.77 15099.30 15199.81 6294.20 23599.93 6999.17 4598.82 18199.49 158
OMC-MVS99.08 9899.04 7999.20 15499.67 10198.22 21699.28 21799.52 9098.07 11999.66 6599.81 6297.79 11199.78 16997.79 19799.81 8099.60 130
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6999.14 25399.53 8499.00 2299.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
SF-MVS99.38 4899.24 5799.79 4399.79 4299.68 4999.57 9399.54 7397.82 14799.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2299.80 7698.94 3199.96 1998.93 6899.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8399.90 2399.88 5
jajsoiax98.43 15798.28 16498.88 19898.60 32398.43 20799.82 1199.53 8498.19 10198.63 27299.80 7693.22 25799.44 24399.22 3997.50 23898.77 231
Regformer-399.57 799.53 599.68 6599.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2499.91 9199.44 2199.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2299.94 5499.45 1999.92 1199.84 18
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8899.65 3297.84 14199.71 4699.80 7699.12 1199.97 1198.33 15599.87 4099.83 29
TransMVSNet (Re)97.15 28396.58 28798.86 20599.12 25398.85 16799.49 13898.91 31195.48 30897.16 32899.80 7693.38 25399.11 30294.16 32391.73 33898.62 285
K. test v397.10 28596.79 28698.01 28498.72 31096.33 29899.87 497.05 35597.59 16896.16 33999.80 7688.71 33099.04 30896.69 27896.55 26598.65 273
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 10099.05 27099.66 2799.14 699.57 9199.80 7698.46 7999.94 5499.57 499.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5599.32 3199.32 13599.85 2598.29 21299.71 3499.66 2798.11 11199.41 12599.80 7698.37 8899.96 1998.99 6199.96 599.72 87
test117299.43 3399.29 4699.85 2599.75 6299.82 2099.60 7599.56 5698.28 9199.74 4199.79 8898.53 7299.95 4398.55 13499.78 9099.79 53
SR-MVS99.43 3399.29 4699.86 1899.75 6299.83 1499.59 8199.62 3398.21 10099.73 4399.79 8898.68 6399.96 1998.44 14599.77 9399.79 53
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21199.60 8499.79 8898.79 4799.95 4398.83 8899.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 25697.28 27198.88 19899.06 26598.62 18799.50 12899.45 18296.32 27897.87 31299.79 8892.47 27999.35 26397.54 22493.54 32598.67 263
LFMVS97.90 21797.35 26299.54 9399.52 14999.01 14399.39 18498.24 34197.10 22199.65 7099.79 8884.79 35199.91 9199.28 3498.38 19999.69 99
TinyColmap97.12 28496.89 28497.83 29699.07 26395.52 31698.57 33298.74 32597.58 17097.81 31599.79 8888.16 33899.56 22995.10 31097.21 25398.39 319
ACMP97.20 1198.06 19297.94 19498.45 24999.37 19397.01 27199.44 15799.49 13097.54 17698.45 28599.79 8891.95 28999.72 19097.91 18797.49 24198.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 12998.62 14099.53 9999.61 13099.08 13599.80 1799.51 10397.10 22199.31 14999.78 9595.23 19699.77 17198.21 16199.03 16699.75 69
9.1499.10 7199.72 8099.40 18099.51 10397.53 17899.64 7299.78 9598.84 4299.91 9197.63 21399.82 78
pmmvs696.53 29396.09 29697.82 29798.69 31495.47 31799.37 19299.47 16093.46 33597.41 32199.78 9587.06 34599.33 26796.92 26892.70 33598.65 273
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12399.41 17299.71 1398.98 2799.45 11399.78 9599.19 799.54 23299.28 3499.84 6599.63 124
VNet99.11 9298.90 10299.73 5899.52 14999.56 7499.41 17299.39 21399.01 1899.74 4199.78 9595.56 18299.92 8099.52 798.18 21099.72 87
114514_t98.93 11598.67 13099.72 6199.85 2599.53 8199.62 6899.59 4392.65 34099.71 4699.78 9598.06 10599.90 10698.84 8599.91 1699.74 74
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13699.71 8698.88 16399.80 1799.44 19197.91 13599.36 14099.78 9595.49 18599.43 24797.91 18799.11 15799.62 126
UniMVSNet_ETH3D97.32 27996.81 28598.87 20299.40 18697.46 24899.51 12299.53 8495.86 30598.54 28099.77 10282.44 35699.66 21198.68 11097.52 23599.50 157
anonymousdsp98.44 15698.28 16498.94 18298.50 32898.96 15299.77 2499.50 12297.07 22398.87 23699.77 10294.76 21499.28 27398.66 11397.60 22898.57 300
CDS-MVSNet99.09 9699.03 8199.25 14999.42 17898.73 17899.45 15399.46 17098.11 11199.46 11299.77 10298.01 10699.37 25598.70 10598.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 11198.80 11799.53 9999.76 5299.19 11898.75 31899.55 6697.25 20599.47 10999.77 10297.82 11099.87 12296.93 26699.90 2399.54 143
CHOSEN 280x42099.12 8799.13 6899.08 16399.66 11097.89 23398.43 33999.71 1398.88 3999.62 7799.76 10696.63 14699.70 20399.46 1899.99 199.66 109
PS-MVSNAJss98.92 11698.92 9998.90 19298.78 30298.53 19499.78 2299.54 7398.07 11999.00 21799.76 10699.01 1699.37 25599.13 4997.23 25298.81 223
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9599.49 13899.46 17098.95 3299.83 1799.76 10699.01 1699.93 6999.17 4599.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8499.49 13899.49 13098.94 3399.83 1799.76 10699.01 1699.94 5499.15 4899.87 4099.80 49
MVS_Test99.10 9598.97 9399.48 11199.49 16199.14 12899.67 4599.34 23897.31 19999.58 8999.76 10697.65 11599.82 15298.87 7899.07 16399.46 166
ETH3D-3000-0.199.21 6999.02 8499.77 4799.73 7599.69 4799.38 18999.51 10397.45 18599.61 8099.75 11198.51 7599.91 9197.45 23499.83 7299.71 94
CANet_DTU98.97 11398.87 10699.25 14999.33 20198.42 20999.08 26499.30 26099.16 599.43 11899.75 11195.27 19299.97 1198.56 13199.95 699.36 177
mPP-MVS99.44 3099.30 4299.86 1899.88 1199.79 3099.69 3799.48 14298.12 10999.50 10499.75 11198.78 4899.97 1198.57 12899.89 3399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15699.76 3799.75 11199.13 1099.92 8099.07 5599.92 1199.85 14
HyFIR lowres test99.11 9298.92 9999.65 7299.90 399.37 10199.02 27999.91 397.67 16399.59 8799.75 11195.90 17199.73 18699.53 699.02 16899.86 11
ITE_SJBPF98.08 27899.29 21496.37 29698.92 30898.34 8498.83 24299.75 11191.09 30799.62 22495.82 29497.40 24898.25 326
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 599.76 175
testtj99.12 8798.87 10699.86 1899.72 8099.79 3099.44 15799.51 10397.29 20199.59 8799.74 11798.15 10299.96 1996.74 27499.69 11199.81 41
Anonymous20240521198.30 16997.98 18799.26 14899.57 14098.16 21899.41 17298.55 33796.03 30399.19 18199.74 11791.87 29099.92 8099.16 4798.29 20599.70 96
tttt051798.42 15898.14 17099.28 14699.66 11098.38 21099.74 3196.85 35697.68 16099.79 2699.74 11791.39 30399.89 11498.83 8899.56 12999.57 139
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13799.74 11798.81 4599.94 5498.79 9499.86 5199.84 18
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11499.48 10899.74 11798.29 9399.96 1997.93 18699.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4299.33 2999.65 7299.77 4999.51 8698.94 30099.85 698.82 4499.65 7099.74 11798.51 7599.80 16198.83 8899.89 3399.64 120
VPNet97.84 22697.44 25099.01 17299.21 23398.94 15799.48 14499.57 5198.38 7899.28 15699.73 12488.89 32999.39 25099.19 4293.27 32898.71 243
MVSTER98.49 15398.32 16199.00 17499.35 19699.02 14199.54 11299.38 21997.41 19299.20 17899.73 12493.86 24799.36 25998.87 7897.56 23298.62 285
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9198.95 29899.85 698.82 4499.54 9799.73 12498.51 7599.74 17998.91 7199.88 3699.77 63
PHI-MVS99.30 5799.17 6599.70 6499.56 14499.52 8499.58 8899.80 897.12 21799.62 7799.73 12498.58 7099.90 10698.61 12099.91 1699.68 103
IterMVS-SCA-FT97.82 23197.75 21598.06 28099.57 14096.36 29799.02 27999.49 13097.18 21198.71 25599.72 12892.72 26899.14 29497.44 23595.86 28498.67 263
diffmvs99.14 7999.02 8499.51 10799.61 13098.96 15299.28 21799.49 13098.46 7099.72 4599.71 12996.50 15099.88 11999.31 3199.11 15799.67 106
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19599.71 8697.74 24099.12 25599.54 7398.44 7499.42 12199.71 12994.20 23599.92 8098.54 13698.90 17799.00 209
EPNet_dtu98.03 19897.96 19098.23 27198.27 33295.54 31599.23 23698.75 32299.02 1597.82 31499.71 12996.11 16199.48 23493.04 33499.65 12299.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 3899.30 4299.78 4599.62 12699.71 4499.26 23199.52 9098.82 4499.39 13299.71 12998.96 2599.85 13198.59 12599.80 8499.77 63
OPU-MVS99.64 7799.56 14499.72 4299.60 7599.70 13399.27 499.42 24898.24 16099.80 8499.79 53
tfpnnormal97.84 22697.47 24298.98 17699.20 23599.22 11799.64 6099.61 3596.32 27898.27 29899.70 13393.35 25499.44 24395.69 29895.40 29598.27 324
v7n97.87 22097.52 23698.92 18698.76 30698.58 19099.84 699.46 17096.20 28898.91 22999.70 13394.89 20599.44 24396.03 29193.89 32198.75 235
testdata99.54 9399.75 6298.95 15499.51 10397.07 22399.43 11899.70 13398.87 3999.94 5497.76 20099.64 12399.72 87
IterMVS97.83 22897.77 21198.02 28399.58 13896.27 30099.02 27999.48 14297.22 20998.71 25599.70 13392.75 26599.13 29797.46 23296.00 27898.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 26097.06 28199.47 11499.61 13099.09 13498.04 35299.25 27091.24 34598.51 28199.70 13394.55 22599.91 9192.76 33899.85 5899.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25699.23 22796.80 28399.70 3599.60 4097.12 21798.18 30199.70 13391.73 29599.72 19098.39 14797.45 24398.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part197.75 24297.24 27599.29 14399.59 13699.63 6099.65 5799.49 13096.17 29198.44 28699.69 14089.80 32099.47 23598.68 11093.66 32398.78 227
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 5099.67 2298.15 10599.68 5399.69 14099.06 1399.96 1998.69 10899.87 4099.84 18
#test#99.43 3399.29 4699.86 1899.87 1599.80 2699.55 10999.67 2297.83 14299.68 5399.69 14099.06 1399.96 1998.39 14799.87 4099.84 18
旧先验199.74 7099.59 6999.54 7399.69 14098.47 7899.68 11699.73 81
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 5099.67 2298.15 10599.67 6099.69 14098.95 2899.96 1998.69 10899.87 4099.84 18
CPTT-MVS99.11 9298.90 10299.74 5699.80 4199.46 9399.59 8199.49 13097.03 22899.63 7399.69 14097.27 12699.96 1997.82 19599.84 6599.81 41
GST-MVS99.40 4599.24 5799.85 2599.86 2199.79 3099.60 7599.67 2297.97 13099.63 7399.68 14698.52 7499.95 4398.38 14999.86 5199.81 41
Anonymous2023121197.88 21897.54 23598.90 19299.71 8698.53 19499.48 14499.57 5194.16 32798.81 24499.68 14693.23 25599.42 24898.84 8594.42 31398.76 233
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5799.66 2798.13 10799.66 6599.68 14698.96 2599.96 1998.62 11799.87 4099.84 18
PS-CasMVS97.93 21297.59 23198.95 18198.99 27599.06 13899.68 4299.52 9097.13 21598.31 29599.68 14692.44 28399.05 30798.51 13794.08 31998.75 235
HY-MVS97.30 798.85 12998.64 13499.47 11499.42 17899.08 13599.62 6899.36 22997.39 19499.28 15699.68 14696.44 15399.92 8098.37 15198.22 20699.40 175
DP-MVS Recon99.12 8798.95 9799.65 7299.74 7099.70 4699.27 22299.57 5196.40 27699.42 12199.68 14698.75 5699.80 16197.98 18299.72 10599.44 169
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6199.51 15299.60 6599.23 23699.44 19197.04 22699.39 13299.67 15298.30 9299.92 8097.27 24199.69 11199.64 120
ADS-MVSNet298.02 20098.07 18097.87 29399.33 20195.19 32499.23 23699.08 29296.24 28599.10 19699.67 15294.11 23998.93 32796.81 27199.05 16499.48 159
ADS-MVSNet98.20 17698.08 17798.56 23599.33 20196.48 29399.23 23699.15 28496.24 28599.10 19699.67 15294.11 23999.71 19696.81 27199.05 16499.48 159
DTE-MVSNet97.51 27097.19 27798.46 24898.63 31998.13 22199.84 699.48 14296.68 25097.97 31099.67 15292.92 26198.56 33496.88 27092.60 33698.70 247
Baseline_NR-MVSNet97.76 23897.45 24598.68 22599.09 26098.29 21299.41 17298.85 31795.65 30798.63 27299.67 15294.82 20799.10 30498.07 17992.89 33298.64 275
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33897.24 34780.01 36198.52 33599.48 14289.01 34991.99 35399.67 15285.67 34999.13 29795.44 30397.03 25896.39 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7299.73 7599.33 10399.47 16097.46 18299.12 19199.66 15898.67 6699.91 9197.70 20999.69 11199.71 94
thisisatest053098.35 16598.03 18299.31 13699.63 12098.56 19199.54 11296.75 35897.53 17899.73 4399.65 15991.25 30699.89 11498.62 11799.56 12999.48 159
test22299.75 6299.49 8898.91 30399.49 13096.42 27499.34 14699.65 15998.28 9499.69 11199.72 87
112199.09 9698.87 10699.75 5199.74 7099.60 6599.27 22299.48 14296.82 24499.25 16699.65 15998.38 8699.93 6997.53 22599.67 11899.73 81
MVSFormer99.17 7599.12 6999.29 14399.51 15298.94 15799.88 199.46 17097.55 17399.80 2499.65 15997.39 11999.28 27399.03 5799.85 5899.65 113
jason99.13 8199.03 8199.45 11799.46 17098.87 16499.12 25599.26 26898.03 12799.79 2699.65 15997.02 13399.85 13199.02 5999.90 2399.65 113
jason: jason.
BH-RMVSNet98.41 16098.08 17799.40 12499.41 18198.83 17199.30 21198.77 32197.70 15898.94 22599.65 15992.91 26399.74 17996.52 28299.55 13199.64 120
sss99.17 7599.05 7699.53 9999.62 12698.97 14899.36 19699.62 3397.83 14299.67 6099.65 15997.37 12399.95 4399.19 4299.19 15199.68 103
hse-mvs397.70 25397.28 27198.97 17899.70 9397.27 25399.36 19699.45 18298.94 3399.66 6599.64 16694.93 20199.99 199.48 1584.36 35099.65 113
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11899.55 9699.64 16698.91 3699.96 1998.72 10399.90 2399.82 36
新几何199.75 5199.75 6299.59 6999.54 7396.76 24599.29 15499.64 16698.43 8199.94 5496.92 26899.66 11999.72 87
PEN-MVS97.76 23897.44 25098.72 22298.77 30598.54 19399.78 2299.51 10397.06 22598.29 29799.64 16692.63 27498.89 33098.09 17293.16 32998.72 241
CP-MVSNet98.09 18997.78 20999.01 17298.97 28099.24 11599.67 4599.46 17097.25 20598.48 28499.64 16693.79 24899.06 30698.63 11694.10 31898.74 239
DROMVSNet99.40 4599.35 2499.55 9299.52 14999.50 8799.84 699.58 4998.35 8299.68 5399.64 16698.19 9899.71 19699.59 199.80 8499.43 171
LF4IMVS97.52 26897.46 24497.70 30398.98 27895.55 31399.29 21598.82 32098.07 11998.66 26499.64 16689.97 31899.61 22597.01 25896.68 26097.94 342
bset_n11_16_dypcd98.16 18197.97 18898.73 22098.26 33398.28 21497.99 35398.01 34697.68 16099.10 19699.63 17395.68 17999.15 29398.78 9796.55 26598.75 235
HPM-MVScopyleft99.42 3899.28 5099.83 3399.90 399.72 4299.81 1399.54 7397.59 16899.68 5399.63 17398.91 3699.94 5498.58 12699.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5299.19 6399.79 4399.61 13099.65 5799.30 21199.48 14298.86 4099.21 17599.63 17398.72 6099.90 10698.25 15999.63 12599.80 49
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 9098.07 11999.53 9999.63 17398.93 3599.97 1198.74 9999.91 1699.83 29
AdaColmapbinary99.01 10998.80 11799.66 6899.56 14499.54 7899.18 24599.70 1598.18 10499.35 14399.63 17396.32 15699.90 10697.48 22999.77 9399.55 141
TAPA-MVS97.07 1597.74 24597.34 26598.94 18299.70 9397.53 24699.25 23399.51 10391.90 34299.30 15199.63 17398.78 4899.64 21888.09 35399.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 27497.45 24597.61 30498.62 32095.24 32298.80 31399.46 17096.11 29898.22 29999.62 17996.45 15298.97 32493.77 32595.97 28298.61 294
MCST-MVS99.43 3399.30 4299.82 3599.79 4299.74 4199.29 21599.40 20998.79 4999.52 10199.62 17998.91 3699.90 10698.64 11599.75 9899.82 36
WTY-MVS99.06 10098.88 10599.61 8299.62 12699.16 12399.37 19299.56 5698.04 12599.53 9999.62 17996.84 13899.94 5498.85 8398.49 19799.72 87
MDTV_nov1_ep1398.32 16199.11 25594.44 33599.27 22298.74 32597.51 18099.40 13099.62 17994.78 21099.76 17597.59 21698.81 183
CANet99.25 6799.14 6799.59 8499.41 18199.16 12399.35 20299.57 5198.82 4499.51 10399.61 18396.46 15199.95 4399.59 199.98 299.65 113
HQP_MVS98.27 17298.22 16798.44 25299.29 21496.97 27599.39 18499.47 16098.97 3099.11 19399.61 18392.71 27099.69 20697.78 19897.63 22598.67 263
plane_prior499.61 183
ETH3 D test640098.70 14298.35 15899.73 5899.69 9699.60 6599.16 24799.45 18295.42 30999.27 15999.60 18697.39 11999.91 9195.36 30799.83 7299.70 96
baseline198.31 16797.95 19299.38 12899.50 15998.74 17799.59 8198.93 30698.41 7599.14 18899.60 18694.59 22299.79 16498.48 13993.29 32799.61 128
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 21998.78 30298.62 18799.65 5799.49 13097.76 15198.49 28399.60 18694.23 23498.97 32498.00 18192.90 33198.70 247
tpmrst98.33 16698.48 15197.90 29299.16 24894.78 33299.31 20999.11 28897.27 20399.45 11399.59 18995.33 19099.84 13698.48 13998.61 18799.09 196
IterMVS-LS98.46 15598.42 15498.58 23299.59 13698.00 22599.37 19299.43 19996.94 23699.07 20399.59 18997.87 10899.03 31098.32 15795.62 29098.71 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 7199.04 7999.64 7799.78 4499.27 11299.42 17099.54 7397.29 20199.41 12599.59 18998.42 8499.93 6998.19 16399.69 11199.73 81
pmmvs498.13 18597.90 19798.81 21398.61 32298.87 16498.99 28699.21 27796.44 27299.06 20799.58 19295.90 17199.11 30297.18 25196.11 27698.46 312
1112_ss98.98 11198.77 12099.59 8499.68 10099.02 14199.25 23399.48 14297.23 20899.13 18999.58 19296.93 13799.90 10698.87 7898.78 18499.84 18
ab-mvs-re8.30 33911.06 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.58 1920.00 3750.00 3700.00 3680.00 3680.00 366
PatchmatchNetpermissive98.31 16798.36 15698.19 27399.16 24895.32 32199.27 22298.92 30897.37 19599.37 13799.58 19294.90 20499.70 20397.43 23699.21 14999.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17798.16 16898.27 27099.30 21095.55 31399.07 26598.97 30297.57 17199.43 11899.57 19692.72 26899.74 17997.58 21799.20 15099.52 148
Patchmatch-test97.93 21297.65 22498.77 21899.18 24097.07 26499.03 27699.14 28696.16 29398.74 25299.57 19694.56 22499.72 19093.36 33099.11 15799.52 148
PVSNet96.02 1798.85 12998.84 11298.89 19599.73 7597.28 25298.32 34599.60 4097.86 13799.50 10499.57 19696.75 14399.86 12598.56 13199.70 11099.54 143
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3520.00 3730.00 3740.00 36499.51 1030.00 3690.00 37099.56 19996.58 1470.00 3700.00 3680.00 3680.00 366
131498.68 14598.54 14999.11 16298.89 28698.65 18499.27 22299.49 13096.89 23897.99 30999.56 19997.72 11499.83 14597.74 20399.27 14698.84 222
lupinMVS99.13 8199.01 8899.46 11699.51 15298.94 15799.05 27099.16 28397.86 13799.80 2499.56 19997.39 11999.86 12598.94 6699.85 5899.58 138
miper_lstm_enhance98.00 20597.91 19698.28 26999.34 20097.43 24998.88 30599.36 22996.48 26998.80 24699.55 20295.98 16498.91 32897.27 24195.50 29498.51 304
DPM-MVS98.95 11498.71 12699.66 6899.63 12099.55 7698.64 32899.10 28997.93 13399.42 12199.55 20298.67 6699.80 16195.80 29699.68 11699.61 128
CDPH-MVS99.13 8198.91 10199.80 4099.75 6299.71 4499.15 25199.41 20396.60 25999.60 8499.55 20298.83 4399.90 10697.48 22999.83 7299.78 61
dp97.75 24297.80 20597.59 30599.10 25893.71 34299.32 20798.88 31596.48 26999.08 20299.55 20292.67 27399.82 15296.52 28298.58 19099.24 185
CLD-MVS98.16 18198.10 17398.33 26199.29 21496.82 28298.75 31899.44 19197.83 14299.13 18999.55 20292.92 26199.67 20898.32 15797.69 22498.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 8699.79 3099.61 3596.84 24199.56 9299.54 20798.58 7099.96 1996.93 26699.75 98
cl-mvsnet____98.01 20397.84 20498.55 23799.25 22597.97 22798.71 32299.34 23896.47 27198.59 27899.54 20795.65 18199.21 28897.21 24595.77 28598.46 312
cl-mvsnet198.01 20397.85 20398.48 24399.24 22697.95 23198.71 32299.35 23496.50 26498.60 27799.54 20795.72 17899.03 31097.21 24595.77 28598.46 312
MVS97.28 28096.55 28899.48 11198.78 30298.95 15499.27 22299.39 21383.53 35598.08 30499.54 20796.97 13599.87 12294.23 32199.16 15299.63 124
pmmvs597.52 26897.30 27098.16 27598.57 32596.73 28499.27 22298.90 31396.14 29698.37 29199.53 21191.54 30299.14 29497.51 22795.87 28398.63 283
HPM-MVS++copyleft99.39 4799.23 5999.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 15999.53 21198.64 6899.96 1998.44 14599.80 8499.79 53
PatchMatch-RL98.84 13298.62 14099.52 10599.71 8699.28 11099.06 26899.77 997.74 15599.50 10499.53 21195.41 18699.84 13697.17 25299.64 12399.44 169
eth_miper_zixun_eth98.05 19797.96 19098.33 26199.26 22197.38 25098.56 33499.31 25696.65 25398.88 23499.52 21496.58 14799.12 30197.39 23895.53 29398.47 308
test_prior399.21 6999.05 7699.68 6599.67 10199.48 8998.96 29499.56 5698.34 8499.01 21299.52 21498.68 6399.83 14597.96 18399.74 10199.74 74
test_prior298.96 29498.34 8499.01 21299.52 21498.68 6397.96 18399.74 101
test_040296.64 29196.24 29397.85 29498.85 29596.43 29599.44 15799.26 26893.52 33396.98 33299.52 21488.52 33499.20 29092.58 34097.50 23897.93 343
test_yl98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
DCV-MVSNet98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
v14897.79 23697.55 23298.50 24098.74 30797.72 24299.54 11299.33 24596.26 28398.90 23199.51 21894.68 21899.14 29497.83 19493.15 33098.63 283
DU-MVS98.08 19197.79 20698.96 17998.87 29198.98 14599.41 17299.45 18297.87 13698.71 25599.50 22194.82 20799.22 28398.57 12892.87 33398.68 256
NR-MVSNet97.97 21097.61 22899.02 17198.87 29199.26 11399.47 14999.42 20197.63 16697.08 33099.50 22195.07 19999.13 29797.86 19193.59 32498.68 256
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27299.11 25596.33 29899.41 17299.52 9098.06 12399.05 20899.50 22189.64 32399.73 18697.73 20497.38 24998.53 302
MSP-MVS99.42 3899.27 5299.88 699.89 899.80 2699.67 4599.50 12298.70 5599.77 3399.49 22498.21 9799.95 4398.46 14399.77 9399.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 10199.65 5799.05 27099.41 20396.22 28798.95 22399.49 22498.77 5199.91 91
train_agg99.02 10698.77 12099.77 4799.67 10199.65 5799.05 27099.41 20396.28 28098.95 22399.49 22498.76 5399.91 9197.63 21399.72 10599.75 69
agg_prior199.01 10998.76 12299.76 5099.67 10199.62 6198.99 28699.40 20996.26 28398.87 23699.49 22498.77 5199.91 9197.69 21099.72 10599.75 69
PVSNet_Blended99.08 9898.97 9399.42 12399.76 5298.79 17598.78 31599.91 396.74 24699.67 6099.49 22497.53 11699.88 11998.98 6299.85 5899.60 130
CNLPA99.14 7998.99 8999.59 8499.58 13899.41 9899.16 24799.44 19198.45 7199.19 18199.49 22498.08 10499.89 11497.73 20499.75 9899.48 159
test_899.67 10199.61 6399.03 27699.41 20396.28 28098.93 22799.48 23098.76 5399.91 91
EPMVS97.82 23197.65 22498.35 26098.88 28795.98 30599.49 13894.71 36497.57 17199.26 16499.48 23092.46 28299.71 19697.87 19099.08 16299.35 178
PLCcopyleft97.94 499.02 10698.85 11199.53 9999.66 11099.01 14399.24 23599.52 9096.85 24099.27 15999.48 23098.25 9699.91 9197.76 20099.62 12699.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base_debi99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
v192192097.80 23597.45 24598.84 20998.80 29898.53 19499.52 11899.34 23896.15 29599.24 16799.47 23393.98 24399.29 27295.40 30595.13 30198.69 251
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 17998.92 28498.98 14599.48 14499.53 8497.76 15198.71 25599.46 23796.43 15499.22 28398.57 12892.87 33398.69 251
testgi97.65 26197.50 23998.13 27799.36 19596.45 29499.42 17099.48 14297.76 15197.87 31299.45 23891.09 30798.81 33194.53 31798.52 19599.13 191
EIA-MVS99.18 7399.09 7399.45 11799.49 16199.18 12099.67 4599.53 8497.66 16499.40 13099.44 23998.10 10399.81 15698.94 6699.62 12699.35 178
tpm297.44 27697.34 26597.74 30199.15 25194.36 33699.45 15398.94 30593.45 33698.90 23199.44 23991.35 30499.59 22797.31 23998.07 21799.29 183
thisisatest051598.14 18497.79 20699.19 15599.50 15998.50 20198.61 32996.82 35796.95 23499.54 9799.43 24191.66 29999.86 12598.08 17699.51 13399.22 186
mvs-test198.86 12198.84 11298.89 19599.33 20197.77 23999.44 15799.30 26098.47 6899.10 19699.43 24196.78 14099.95 4398.73 10199.02 16898.96 215
WR-MVS98.06 19297.73 21799.06 16598.86 29499.25 11499.19 24499.35 23497.30 20098.66 26499.43 24193.94 24499.21 28898.58 12694.28 31598.71 243
hse-mvs297.50 27197.14 27898.59 22999.49 16197.05 26699.28 21799.22 27498.94 3399.66 6599.42 24494.93 20199.65 21599.48 1583.80 35299.08 197
v897.95 21197.63 22798.93 18498.95 28298.81 17499.80 1799.41 20396.03 30399.10 19699.42 24494.92 20399.30 27196.94 26594.08 31998.66 271
tpmvs97.98 20798.02 18497.84 29599.04 26994.73 33399.31 20999.20 27896.10 30298.76 25199.42 24494.94 20099.81 15696.97 26298.45 19898.97 213
UGNet98.87 11898.69 12899.40 12499.22 23198.72 17999.44 15799.68 1999.24 399.18 18499.42 24492.74 26799.96 1999.34 2899.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 28796.31 29298.59 22999.48 16897.04 26999.27 22299.22 27497.44 18898.51 28199.41 24891.97 28899.66 21197.71 20783.83 35199.07 202
CS-MVS99.34 5299.31 3899.43 12299.44 17699.47 9199.68 4299.56 5698.41 7599.62 7799.41 24898.35 8999.76 17599.52 799.76 9699.05 204
Effi-MVS+98.81 13398.59 14699.48 11199.46 17099.12 13298.08 35199.50 12297.50 18199.38 13599.41 24896.37 15599.81 15699.11 5198.54 19499.51 154
v1097.85 22397.52 23698.86 20598.99 27598.67 18299.75 2899.41 20395.70 30698.98 21999.41 24894.75 21599.23 28096.01 29294.63 30998.67 263
v14419297.92 21597.60 22998.87 20298.83 29798.65 18499.55 10999.34 23896.20 28899.32 14899.40 25294.36 23099.26 27796.37 28795.03 30398.70 247
NP-MVS99.23 22796.92 27899.40 252
HQP-MVS98.02 20097.90 19798.37 25999.19 23796.83 28098.98 29099.39 21398.24 9498.66 26499.40 25292.47 27999.64 21897.19 24997.58 23098.64 275
MAR-MVS98.86 12198.63 13599.54 9399.37 19399.66 5499.45 15399.54 7396.61 25799.01 21299.40 25297.09 13099.86 12597.68 21299.53 13299.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10399.03 8199.06 16599.40 18699.31 10799.55 10999.56 5698.54 6399.33 14799.39 25698.76 5399.78 16996.98 26199.78 9098.07 332
CR-MVSNet98.17 18097.93 19598.87 20299.18 24098.49 20299.22 24199.33 24596.96 23299.56 9299.38 25794.33 23199.00 31594.83 31598.58 19099.14 189
Patchmtry97.75 24297.40 25698.81 21399.10 25898.87 16499.11 26199.33 24594.83 31998.81 24499.38 25794.33 23199.02 31296.10 28995.57 29198.53 302
BH-untuned98.42 15898.36 15698.59 22999.49 16196.70 28599.27 22299.13 28797.24 20798.80 24699.38 25795.75 17699.74 17997.07 25799.16 15299.33 181
V4298.06 19297.79 20698.86 20598.98 27898.84 16899.69 3799.34 23896.53 26399.30 15199.37 26094.67 21999.32 26897.57 22194.66 30898.42 315
VPA-MVSNet98.29 17097.95 19299.30 14099.16 24899.54 7899.50 12899.58 4998.27 9399.35 14399.37 26092.53 27799.65 21599.35 2494.46 31198.72 241
PVSNet_BlendedMVS98.86 12198.80 11799.03 17099.76 5298.79 17599.28 21799.91 397.42 19199.67 6099.37 26097.53 11699.88 11998.98 6297.29 25198.42 315
D2MVS98.41 16098.50 15098.15 27699.26 22196.62 28999.40 18099.61 3597.71 15798.98 21999.36 26396.04 16399.67 20898.70 10597.41 24798.15 330
MVP-Stereo97.81 23397.75 21597.99 28697.53 34196.60 29098.96 29498.85 31797.22 20997.23 32599.36 26395.28 19199.46 23795.51 30299.78 9097.92 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 25497.32 26898.79 21698.85 29598.43 20799.48 14499.36 22996.11 29899.27 15999.36 26393.76 25099.24 27994.46 31895.23 29898.70 247
v114497.98 20797.69 22098.85 20898.87 29198.66 18399.54 11299.35 23496.27 28299.23 17199.35 26694.67 21999.23 28096.73 27595.16 30098.68 256
v2v48298.06 19297.77 21198.92 18698.90 28598.82 17299.57 9399.36 22996.65 25399.19 18199.35 26694.20 23599.25 27897.72 20694.97 30498.69 251
CostFormer97.72 24897.73 21797.71 30299.15 25194.02 33999.54 11299.02 29894.67 32299.04 20999.35 26692.35 28599.77 17198.50 13897.94 21999.34 180
our_test_397.65 26197.68 22197.55 30798.62 32094.97 32898.84 30999.30 26096.83 24398.19 30099.34 26997.01 13499.02 31295.00 31396.01 27798.64 275
cl_fuxian98.12 18798.04 18198.38 25899.30 21097.69 24598.81 31299.33 24596.67 25198.83 24299.34 26997.11 12998.99 31697.58 21795.34 29698.48 306
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22899.41 18196.99 27399.52 11899.49 13098.11 11199.24 16799.34 26996.96 13699.79 16497.95 18599.45 13499.02 208
Fast-Effi-MVS+98.70 14298.43 15399.51 10799.51 15299.28 11099.52 11899.47 16096.11 29899.01 21299.34 26996.20 16099.84 13697.88 18998.82 18199.39 176
v119297.81 23397.44 25098.91 19098.88 28798.68 18199.51 12299.34 23896.18 29099.20 17899.34 26994.03 24299.36 25995.32 30895.18 29998.69 251
tpm97.67 25997.55 23298.03 28199.02 27295.01 32799.43 16398.54 33896.44 27299.12 19199.34 26991.83 29299.60 22697.75 20296.46 26899.48 159
PAPM97.59 26497.09 28099.07 16499.06 26598.26 21598.30 34699.10 28994.88 31898.08 30499.34 26996.27 15899.64 21889.87 34798.92 17599.31 182
GBi-Net97.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
test197.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
FMVSNet196.84 28896.36 29198.29 26699.32 20897.26 25599.43 16399.48 14295.11 31398.55 27999.32 27683.95 35298.98 31795.81 29596.26 27398.62 285
MS-PatchMatch97.24 28297.32 26896.99 31898.45 33093.51 34698.82 31199.32 25397.41 19298.13 30399.30 27988.99 32899.56 22995.68 29999.80 8497.90 345
GA-MVS97.85 22397.47 24299.00 17499.38 19197.99 22698.57 33299.15 28497.04 22698.90 23199.30 27989.83 31999.38 25296.70 27798.33 20099.62 126
miper_ehance_all_eth98.18 17998.10 17398.41 25499.23 22797.72 24298.72 32199.31 25696.60 25998.88 23499.29 28197.29 12599.13 29797.60 21595.99 27998.38 320
FMVSNet297.72 24897.36 26098.80 21599.51 15298.84 16899.45 15399.42 20196.49 26598.86 24199.29 28190.26 31398.98 31796.44 28496.56 26498.58 299
TESTMET0.1,197.55 26597.27 27498.40 25698.93 28396.53 29198.67 32497.61 35296.96 23298.64 27199.28 28388.63 33399.45 23897.30 24099.38 13899.21 187
FMVSNet398.03 19897.76 21498.84 20999.39 18998.98 14599.40 18099.38 21996.67 25199.07 20399.28 28392.93 26098.98 31797.10 25496.65 26198.56 301
PAPM_NR99.04 10398.84 11299.66 6899.74 7099.44 9599.39 18499.38 21997.70 15899.28 15699.28 28398.34 9099.85 13196.96 26399.45 13499.69 99
ETV-MVS99.26 6599.21 6199.40 12499.46 17099.30 10899.56 10099.52 9098.52 6599.44 11799.27 28698.41 8599.86 12599.10 5299.59 12899.04 205
xiu_mvs_v2_base99.26 6599.25 5699.29 14399.53 14798.91 16199.02 27999.45 18298.80 4899.71 4699.26 28798.94 3199.98 699.34 2899.23 14898.98 212
CS-MVS-test99.27 6299.22 6099.40 12499.39 18999.60 6599.67 4599.56 5698.30 8999.47 10999.25 28898.27 9599.79 16499.41 2299.66 11998.81 223
test20.0396.12 30295.96 29996.63 32697.44 34295.45 31899.51 12299.38 21996.55 26296.16 33999.25 28893.76 25096.17 35887.35 35594.22 31698.27 324
PS-MVSNAJ99.32 5599.32 3199.30 14099.57 14098.94 15798.97 29399.46 17098.92 3799.71 4699.24 29099.01 1699.98 699.35 2499.66 11998.97 213
Test_1112_low_res98.89 11798.66 13399.57 8899.69 9698.95 15499.03 27699.47 16096.98 23099.15 18799.23 29196.77 14299.89 11498.83 8898.78 18499.86 11
cl-mvsnet297.85 22397.64 22698.48 24399.09 26097.87 23498.60 33199.33 24597.11 22098.87 23699.22 29292.38 28499.17 29298.21 16195.99 27998.42 315
EG-PatchMatch MVS95.97 30495.69 30496.81 32497.78 33992.79 34999.16 24798.93 30696.16 29394.08 34899.22 29282.72 35499.47 23595.67 30097.50 23898.17 329
TR-MVS97.76 23897.41 25598.82 21199.06 26597.87 23498.87 30798.56 33696.63 25698.68 26399.22 29292.49 27899.65 21595.40 30597.79 22298.95 218
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16799.53 14798.82 17298.84 30997.51 35397.63 16684.77 35699.21 29592.09 28798.91 32898.98 6292.21 33799.41 174
WR-MVS_H98.13 18597.87 20298.90 19299.02 27298.84 16899.70 3599.59 4397.27 20398.40 28999.19 29695.53 18399.23 28098.34 15493.78 32298.61 294
miper_enhance_ethall98.16 18198.08 17798.41 25498.96 28197.72 24298.45 33899.32 25396.95 23498.97 22199.17 29797.06 13299.22 28397.86 19195.99 27998.29 323
baseline297.87 22097.55 23298.82 21199.18 24098.02 22499.41 17296.58 36096.97 23196.51 33599.17 29793.43 25299.57 22897.71 20799.03 16698.86 220
MIMVSNet195.51 30795.04 31196.92 32297.38 34395.60 31199.52 11899.50 12293.65 33296.97 33399.17 29785.28 35096.56 35788.36 35295.55 29298.60 297
gm-plane-assit98.54 32792.96 34894.65 32399.15 30099.64 21897.56 222
MIMVSNet97.73 24697.45 24598.57 23399.45 17597.50 24799.02 27998.98 30196.11 29899.41 12599.14 30190.28 31298.74 33295.74 29798.93 17399.47 164
LCM-MVSNet-Re97.83 22898.15 16996.87 32399.30 21092.25 35199.59 8198.26 34097.43 18996.20 33899.13 30296.27 15898.73 33398.17 16798.99 17099.64 120
UniMVSNet (Re)98.29 17098.00 18599.13 16199.00 27499.36 10299.49 13899.51 10397.95 13198.97 22199.13 30296.30 15799.38 25298.36 15393.34 32698.66 271
N_pmnet94.95 31495.83 30292.31 33798.47 32979.33 36299.12 25592.81 36993.87 32997.68 31799.13 30293.87 24699.01 31491.38 34296.19 27498.59 298
PAPR98.63 15098.34 15999.51 10799.40 18699.03 14098.80 31399.36 22996.33 27799.00 21799.12 30598.46 7999.84 13695.23 30999.37 14299.66 109
tpm cat197.39 27797.36 26097.50 30999.17 24693.73 34199.43 16399.31 25691.27 34498.71 25599.08 30694.31 23399.77 17196.41 28698.50 19699.00 209
FMVSNet596.43 29696.19 29497.15 31499.11 25595.89 30799.32 20799.52 9094.47 32698.34 29499.07 30787.54 34497.07 35392.61 33995.72 28898.47 308
PMMVS98.80 13698.62 14099.34 13099.27 21998.70 18098.76 31799.31 25697.34 19699.21 17599.07 30797.20 12799.82 15298.56 13198.87 17899.52 148
Anonymous2023120696.22 29896.03 29796.79 32597.31 34694.14 33899.63 6299.08 29296.17 29197.04 33199.06 30993.94 24497.76 34886.96 35695.06 30298.47 308
DeepMVS_CXcopyleft93.34 33599.29 21482.27 35999.22 27485.15 35396.33 33799.05 31090.97 30999.73 18693.57 32897.77 22398.01 336
YYNet195.36 31094.51 31697.92 29097.89 33797.10 26099.10 26399.23 27393.26 33780.77 36099.04 31192.81 26498.02 34194.30 31994.18 31798.64 275
Anonymous2024052196.20 30095.89 30197.13 31697.72 34094.96 32999.79 2199.29 26593.01 33897.20 32799.03 31289.69 32298.36 33691.16 34396.13 27598.07 332
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29098.24 33497.27 25399.15 25199.33 24593.80 33080.09 36299.03 31288.31 33697.86 34693.49 32994.36 31498.62 285
test_method91.10 32491.36 32790.31 34195.85 35373.72 36794.89 35999.25 27068.39 36195.82 34299.02 31480.50 35898.95 32693.64 32794.89 30798.25 326
BH-w/o98.00 20597.89 20198.32 26399.35 19696.20 30299.01 28498.90 31396.42 27498.38 29099.00 31595.26 19499.72 19096.06 29098.61 18799.03 206
Effi-MVS+-dtu98.78 13798.89 10498.47 24799.33 20196.91 27999.57 9399.30 26098.47 6899.41 12598.99 31696.78 14099.74 17998.73 10199.38 13898.74 239
MVS_030496.79 28996.52 28997.59 30599.22 23194.92 33099.04 27599.59 4396.49 26598.43 28798.99 31680.48 35999.39 25097.15 25399.27 14698.47 308
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31198.65 31795.65 31099.36 19699.51 10397.13 21596.04 34198.99 31688.40 33598.17 33896.71 27690.27 34198.40 318
test0.0.03 197.71 25297.42 25498.56 23598.41 33197.82 23798.78 31598.63 33497.34 19698.05 30898.98 31994.45 22898.98 31795.04 31297.15 25798.89 219
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28498.16 33597.21 25899.11 26199.24 27293.49 33480.73 36198.98 31993.02 25898.18 33794.22 32294.45 31298.64 275
FPMVS84.93 32885.65 32982.75 34686.77 36563.39 36998.35 34198.92 30874.11 35883.39 35898.98 31950.85 36692.40 36284.54 35994.97 30492.46 356
alignmvs98.81 13398.56 14899.58 8799.43 17799.42 9799.51 12298.96 30498.61 6099.35 14398.92 32294.78 21099.77 17199.35 2498.11 21699.54 143
test-LLR98.06 19297.90 19798.55 23798.79 29997.10 26098.67 32497.75 34997.34 19698.61 27598.85 32394.45 22899.45 23897.25 24399.38 13899.10 192
test-mter97.49 27497.13 27998.55 23798.79 29997.10 26098.67 32497.75 34996.65 25398.61 27598.85 32388.23 33799.45 23897.25 24399.38 13899.10 192
canonicalmvs99.02 10698.86 11099.51 10799.42 17899.32 10499.80 1799.48 14298.63 5899.31 14998.81 32597.09 13099.75 17899.27 3697.90 22099.47 164
DWT-MVSNet_test97.53 26797.40 25697.93 28999.03 27194.86 33199.57 9398.63 33496.59 26198.36 29298.79 32689.32 32599.74 17998.14 17098.16 21499.20 188
new_pmnet96.38 29796.03 29797.41 31098.13 33695.16 32699.05 27099.20 27893.94 32897.39 32298.79 32691.61 30199.04 30890.43 34595.77 28598.05 334
cascas97.69 25497.43 25398.48 24398.60 32397.30 25198.18 35099.39 21392.96 33998.41 28898.78 32893.77 24999.27 27698.16 16898.61 18798.86 220
PVSNet_094.43 1996.09 30395.47 30697.94 28899.31 20994.34 33797.81 35499.70 1597.12 21797.46 32098.75 32989.71 32199.79 16497.69 21081.69 35499.68 103
patchmatchnet-post98.70 33094.79 20999.74 179
Patchmatch-RL test95.84 30595.81 30395.95 33195.61 35490.57 35498.24 34798.39 33995.10 31595.20 34498.67 33194.78 21097.77 34796.28 28890.02 34299.51 154
thres100view90097.76 23897.45 24598.69 22499.72 8097.86 23699.59 8198.74 32597.93 13399.26 16498.62 33291.75 29399.83 14593.22 33198.18 21098.37 321
thres600view797.86 22297.51 23898.92 18699.72 8097.95 23199.59 8198.74 32597.94 13299.27 15998.62 33291.75 29399.86 12593.73 32698.19 20998.96 215
DSMNet-mixed97.25 28197.35 26296.95 32197.84 33893.61 34599.57 9396.63 35996.13 29798.87 23698.61 33494.59 22297.70 34995.08 31198.86 17999.55 141
IB-MVS95.67 1896.22 29895.44 30898.57 23399.21 23396.70 28598.65 32797.74 35196.71 24897.27 32498.54 33586.03 34799.92 8098.47 14286.30 34899.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24998.55 32698.16 21899.43 16393.68 36697.23 32598.46 33689.30 32699.22 28395.43 30498.22 20697.98 340
tfpn200view997.72 24897.38 25898.72 22299.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.37 321
thres40097.77 23797.38 25898.92 18699.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.96 215
KD-MVS_2432*160094.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
miper_refine_blended94.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
thres20097.61 26397.28 27198.62 22799.64 11798.03 22399.26 23198.74 32597.68 16099.09 20198.32 34191.66 29999.81 15692.88 33598.22 20698.03 335
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 32997.38 34393.17 34799.06 26898.75 32286.58 35294.84 34798.26 34281.53 35799.32 26889.01 34997.87 22196.76 351
CL-MVSNet_2432*160094.49 31793.97 32096.08 33096.16 35293.67 34498.33 34499.38 21995.13 31197.33 32398.15 34392.69 27296.57 35688.67 35079.87 35697.99 339
pmmvs394.09 32193.25 32496.60 32794.76 35894.49 33498.92 30198.18 34489.66 34896.48 33698.06 34486.28 34697.33 35189.68 34887.20 34797.97 341
PM-MVS92.96 32392.23 32695.14 33395.61 35489.98 35699.37 19298.21 34294.80 32095.04 34697.69 34565.06 36297.90 34594.30 31989.98 34397.54 350
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 35695.94 30699.35 20299.10 28995.13 31193.55 34997.54 34688.15 33997.91 34494.58 31689.69 34497.61 347
ambc93.06 33692.68 35982.36 35898.47 33798.73 33095.09 34597.41 34755.55 36599.10 30496.42 28591.32 33997.71 346
RPMNet96.72 29095.90 30099.19 15599.18 24098.49 20299.22 24199.52 9088.72 35199.56 9297.38 34894.08 24199.95 4386.87 35798.58 19099.14 189
new-patchmatchnet94.48 31894.08 31895.67 33295.08 35792.41 35099.18 24599.28 26794.55 32593.49 35097.37 34987.86 34397.01 35491.57 34188.36 34597.61 347
DIV-MVS_2432*160095.00 31294.34 31796.96 32097.07 35195.39 32099.56 10099.44 19195.11 31397.13 32997.32 35091.86 29197.27 35290.35 34681.23 35598.23 328
PatchT97.03 28696.44 29098.79 21698.99 27598.34 21199.16 24799.07 29492.13 34199.52 10197.31 35194.54 22698.98 31788.54 35198.73 18699.03 206
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32897.38 34393.82 34098.24 34799.48 14291.10 34693.10 35196.66 35274.89 36098.37 33594.03 32487.71 34697.56 349
LCM-MVSNet86.80 32785.22 33191.53 33987.81 36480.96 36098.23 34998.99 30071.05 35990.13 35596.51 35348.45 36896.88 35590.51 34485.30 34996.76 351
PMMVS286.87 32685.37 33091.35 34090.21 36283.80 35798.89 30497.45 35483.13 35691.67 35495.03 35448.49 36794.70 36085.86 35877.62 35795.54 354
Gipumacopyleft90.99 32590.15 32893.51 33498.73 30890.12 35593.98 36099.45 18279.32 35792.28 35294.91 35569.61 36197.98 34387.42 35495.67 28992.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 27197.02 28298.93 18498.73 30897.80 23899.30 21198.97 30291.73 34398.91 22994.86 35695.10 19899.71 19697.58 21797.98 21899.28 184
PMVScopyleft70.75 2275.98 33474.97 33579.01 34870.98 36955.18 37093.37 36198.21 34265.08 36561.78 36693.83 35721.74 37392.53 36178.59 36091.12 34089.34 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 30695.16 31097.51 30899.30 21093.69 34398.88 30595.78 36185.09 35498.78 24992.65 35891.29 30599.37 25594.85 31499.85 5899.46 166
E-PMN80.61 33079.88 33382.81 34590.75 36176.38 36597.69 35595.76 36266.44 36383.52 35792.25 35962.54 36487.16 36468.53 36361.40 36184.89 362
EMVS80.02 33179.22 33482.43 34791.19 36076.40 36497.55 35792.49 37066.36 36483.01 35991.27 36064.63 36385.79 36565.82 36460.65 36285.08 361
gg-mvs-nofinetune96.17 30195.32 30998.73 22098.79 29998.14 22099.38 18994.09 36591.07 34798.07 30791.04 36189.62 32499.35 26396.75 27399.09 16198.68 256
ANet_high77.30 33274.86 33684.62 34475.88 36877.61 36397.63 35693.15 36888.81 35064.27 36589.29 36236.51 36983.93 36675.89 36152.31 36392.33 358
MVEpermissive76.82 2176.91 33374.31 33784.70 34385.38 36776.05 36696.88 35893.17 36767.39 36271.28 36489.01 36321.66 37487.69 36371.74 36272.29 36090.35 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 33643.78 33825.37 35136.04 37216.84 37398.36 34026.56 37120.06 36738.51 36867.32 36429.64 37115.30 36937.59 36639.90 36543.98 364
test12339.01 33742.50 33928.53 35039.17 37120.91 37298.75 31819.17 37319.83 36838.57 36766.67 36533.16 37015.42 36837.50 36729.66 36649.26 363
test_post65.99 36694.65 22199.73 186
test_post199.23 23665.14 36794.18 23899.71 19697.58 217
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13764.01 36898.81 4599.94 5498.79 9499.86 5199.84 18
wuyk23d40.18 33541.29 34036.84 34986.18 36649.12 37179.73 36322.81 37227.64 36625.46 36928.45 36921.98 37248.89 36755.80 36523.56 36712.51 365
uanet_test0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 37099.01 160.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
IU-MVS99.84 3299.88 799.32 25398.30 8999.84 1398.86 8199.85 5899.89 2
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 5
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20699.52 148
sam_mvs94.72 217
MTGPAbinary99.47 160
MTMP99.54 11298.88 315
test9_res97.49 22899.72 10599.75 69
agg_prior297.21 24599.73 10499.75 69
agg_prior99.67 10199.62 6199.40 20998.87 23699.91 91
test_prior499.56 7498.99 286
test_prior99.68 6599.67 10199.48 8999.56 5699.83 14599.74 74
旧先验298.96 29496.70 24999.47 10999.94 5498.19 163
新几何299.01 284
无先验98.99 28699.51 10396.89 23899.93 6997.53 22599.72 87
原ACMM298.95 298
testdata299.95 4396.67 279
segment_acmp98.96 25
testdata198.85 30898.32 88
test1299.75 5199.64 11799.61 6399.29 26599.21 17598.38 8699.89 11499.74 10199.74 74
plane_prior799.29 21497.03 270
plane_prior699.27 21996.98 27492.71 270
plane_prior599.47 16099.69 20697.78 19897.63 22598.67 263
plane_prior397.00 27298.69 5699.11 193
plane_prior299.39 18498.97 30
plane_prior199.26 221
plane_prior96.97 27599.21 24398.45 7197.60 228
n20.00 374
nn0.00 374
door-mid98.05 345
test1199.35 234
door97.92 347
HQP5-MVS96.83 280
HQP-NCC99.19 23798.98 29098.24 9498.66 264
ACMP_Plane99.19 23798.98 29098.24 9498.66 264
BP-MVS97.19 249
HQP4-MVS98.66 26499.64 21898.64 275
HQP3-MVS99.39 21397.58 230
HQP2-MVS92.47 279
MDTV_nov1_ep13_2view95.18 32599.35 20296.84 24199.58 8995.19 19797.82 19599.46 166
ACMMP++_ref97.19 254
ACMMP++97.43 246
Test By Simon98.75 56