This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net97.96 5997.62 6798.98 6598.86 12197.47 8498.89 8699.08 2196.67 6098.72 5699.54 193.15 10799.81 7194.87 17098.83 12599.65 67
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 698.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7498.80 8793.67 20099.37 1399.52 396.52 1799.89 3598.06 3699.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
DeepC-MVS95.98 397.88 6697.58 6998.77 7599.25 8696.93 10698.83 9898.75 10296.96 5196.89 15299.50 490.46 16199.87 4497.84 5199.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6098.87 5597.65 999.73 199.48 697.53 499.94 398.43 2099.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 2099.80 1799.83 5
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 10198.81 7695.80 9499.16 2699.47 895.37 5799.92 2197.89 4699.75 3899.79 10
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 7098.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1799.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1799.86 199.85 2
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6599.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17298.78 9594.10 17097.69 12099.42 1295.25 6699.92 2198.09 3599.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5499.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 20198.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 13199.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15698.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8298.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
VDDNet95.36 18494.53 20197.86 13798.10 18495.13 18898.85 9497.75 26990.46 30098.36 8099.39 1473.27 35099.64 12697.98 3996.58 19298.81 169
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8298.85 6497.28 3199.72 399.39 1496.63 1597.60 32398.17 3199.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24799.00 11089.54 31797.43 27098.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2899.77 2699.72 40
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13598.28 19598.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 999.54 8499.73 36
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5699.67 5499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8199.26 1899.37 2293.33 10499.93 1596.96 9499.67 5499.69 51
LS3D97.16 10996.66 11898.68 7998.53 14997.19 9898.93 7998.90 4492.83 23495.99 18699.37 2292.12 12499.87 4493.67 21299.57 7598.97 159
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12798.30 19298.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
ACMMPcopyleft98.23 5497.95 5699.09 5999.74 797.62 7999.03 5799.41 695.98 8797.60 12899.36 2694.45 9099.93 1597.14 8698.85 12499.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5799.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5799.65 5899.71 44
DP-MVS96.59 12995.93 14198.57 8599.34 6296.19 14198.70 13098.39 18589.45 31994.52 21199.35 2891.85 13099.85 5092.89 23798.88 12199.68 57
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6799.05 3299.34 3195.34 5999.82 6497.86 4899.64 6299.73 36
VDD-MVS95.82 16095.23 17197.61 16098.84 12493.98 23498.68 13397.40 29795.02 13797.95 10399.34 3174.37 34899.78 9698.64 496.80 18599.08 149
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6299.63 6499.72 40
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6699.49 595.43 11299.03 3399.32 3395.56 4799.94 396.80 10999.77 2699.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2799.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10298.40 17698.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17698.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
XVG-OURS96.55 13296.41 12596.99 18998.75 12993.76 24097.50 26798.52 15895.67 10096.83 15399.30 3888.95 19599.53 14395.88 14096.26 20697.69 216
9.1498.06 4999.47 4898.71 12698.82 7094.36 16499.16 2699.29 3996.05 3299.81 7197.00 9099.71 50
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11298.71 12699.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1599.70 5199.47 98
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16398.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7399.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF94.87 21495.40 15893.26 32498.89 11882.06 35598.33 18498.06 25290.30 30596.56 16599.26 4287.09 23599.49 14693.82 20796.32 20198.24 198
ETH3D-3000-0.198.35 4698.00 5499.38 1799.47 4898.68 2198.67 13698.84 6594.66 15499.11 2899.25 4395.46 5199.81 7196.80 10999.73 4399.63 73
APD-MVScopyleft98.35 4698.00 5499.42 1599.51 3998.72 1798.80 10898.82 7094.52 15999.23 2099.25 4395.54 4999.80 8096.52 11999.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5098.01 5399.28 3599.75 398.18 5399.22 2798.79 9296.13 8297.92 10899.23 4594.54 8499.94 396.74 11399.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8199.23 4595.46 5199.94 397.42 7899.81 1099.77 20
MG-MVS97.81 6997.60 6898.44 9899.12 10395.97 15097.75 25398.78 9596.89 5298.46 7299.22 4793.90 10099.68 12194.81 17499.52 8799.67 61
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17898.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2299.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17898.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2499.73 4399.75 28
casdiffmvs97.63 7997.41 8298.28 10898.33 16496.14 14298.82 10198.32 19796.38 7397.95 10399.21 4891.23 14799.23 16798.12 3398.37 14699.48 96
Vis-MVSNetpermissive97.42 9597.11 9398.34 10698.66 13996.23 13899.22 2799.00 2796.63 6298.04 9299.21 4888.05 21699.35 15896.01 13799.21 10999.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7299.20 5295.90 4099.89 3597.85 4999.74 4199.78 13
LFMVS95.86 15794.98 18398.47 9698.87 12096.32 13598.84 9796.02 33493.40 21098.62 6599.20 5274.99 34499.63 12997.72 5797.20 17999.46 102
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 598.82 7094.46 16298.94 3999.20 5295.16 6999.74 10797.58 6999.85 399.77 20
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8598.93 4399.19 5595.70 4499.94 397.62 6699.79 1999.78 13
testtj98.33 5097.95 5699.47 1199.49 4598.70 1998.83 9898.86 6195.48 10998.91 4599.17 5695.48 5099.93 1595.80 14499.53 8599.76 26
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8598.94 3999.17 5696.06 3099.92 2197.62 6699.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 8098.94 3999.17 5695.91 3999.94 397.55 7399.79 1999.78 13
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6998.96 3295.65 10298.94 3999.17 5696.06 3099.92 2197.21 8599.78 2399.75 28
baseline97.64 7897.44 8198.25 11298.35 15896.20 13999.00 6498.32 19796.33 7598.03 9399.17 5691.35 14399.16 17398.10 3498.29 15199.39 109
OPU-MVS99.37 2099.24 9299.05 1099.02 6099.16 6197.81 299.37 15797.24 8399.73 4399.70 48
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16698.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3699.66 5799.69 51
3Dnovator94.51 597.46 8996.93 10299.07 6097.78 20497.64 7799.35 1199.06 2297.02 4993.75 25199.16 6189.25 18299.92 2197.22 8499.75 3899.64 70
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3199.05 10598.52 2798.33 18498.68 12193.18 21898.68 5799.13 6494.62 8199.83 5696.45 12199.55 8399.52 85
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8998.60 6799.13 6496.05 3299.94 397.77 5499.86 199.77 20
3Dnovator+94.38 697.43 9496.78 10999.38 1797.83 20298.52 2799.37 898.71 11497.09 4792.99 27799.13 6489.36 17999.89 3596.97 9299.57 7599.71 44
EPNet97.28 10296.87 10598.51 9294.98 33196.14 14298.90 8297.02 31498.28 195.99 18699.11 6791.36 14299.89 3596.98 9199.19 11199.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 11796.27 13098.92 6999.50 4197.63 7898.85 9498.90 4484.80 34497.77 11399.11 6792.84 10999.66 12394.85 17199.77 2699.47 98
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9598.31 8499.10 6995.46 5199.93 1597.57 7299.81 1099.74 33
testdata98.26 11199.20 9795.36 17798.68 12191.89 26498.60 6799.10 6994.44 9199.82 6494.27 19399.44 9699.58 82
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21398.83 4899.10 6996.54 1699.83 5697.70 6299.76 3299.59 80
OMC-MVS97.55 8797.34 8598.20 11599.33 6595.92 15798.28 19598.59 14295.52 10897.97 10299.10 6993.28 10699.49 14695.09 16798.88 12199.19 133
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20899.29 7893.24 26398.58 14898.11 23689.92 31193.57 25599.10 6986.37 24999.79 9290.78 27998.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9199.61 75
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18898.77 12893.76 24097.79 25198.50 16695.45 11196.94 14799.09 7487.87 22199.55 14296.76 11295.83 21597.74 213
CPTT-MVS97.72 7497.32 8698.92 6999.64 2897.10 10199.12 4398.81 7692.34 24998.09 8899.08 7693.01 10899.92 2196.06 13499.77 2699.75 28
EPP-MVSNet97.46 8997.28 8797.99 13198.64 14195.38 17699.33 1598.31 19993.61 20397.19 13699.07 7794.05 9699.23 16796.89 9998.43 14599.37 111
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9898.73 5599.06 7895.27 6499.93 1597.07 8999.63 6499.72 40
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10797.18 25297.32 8899.21 3098.97 3089.96 31091.14 31199.05 7986.64 24399.92 2193.38 21899.47 9197.73 214
EI-MVSNet95.96 15295.83 14496.36 24397.93 19693.70 24698.12 21898.27 20893.70 19595.07 19599.02 8092.23 12098.54 25094.68 17693.46 24496.84 254
CVMVSNet95.43 17796.04 13893.57 31897.93 19683.62 35098.12 21898.59 14295.68 9996.56 16599.02 8087.51 22797.51 32793.56 21697.44 17599.60 78
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 22098.29 20797.19 4098.99 3899.02 8096.22 2099.67 12298.52 1598.56 13799.51 89
QAPM96.29 14095.40 15898.96 6797.85 20197.60 8099.23 2398.93 3789.76 31493.11 27499.02 8089.11 18799.93 1591.99 26099.62 6699.34 112
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10897.95 23399.58 397.14 4398.44 7699.01 8495.03 7399.62 13197.91 4399.75 3899.50 91
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23799.58 397.20 3998.33 8299.00 8595.99 3599.64 12698.05 3899.76 3299.69 51
IS-MVSNet97.22 10496.88 10498.25 11298.85 12396.36 13399.19 3397.97 25795.39 11497.23 13598.99 8691.11 14998.93 21194.60 18098.59 13599.47 98
ZD-MVS99.46 5198.70 1998.79 9293.21 21798.67 5998.97 8795.70 4499.83 5696.07 13199.58 74
Anonymous2024052995.10 19994.22 21897.75 14799.01 10994.26 22898.87 9198.83 6885.79 34196.64 16198.97 8778.73 32399.85 5096.27 12694.89 21999.12 143
原ACMM198.65 8199.32 6896.62 11898.67 12993.27 21697.81 11298.97 8795.18 6899.83 5693.84 20699.46 9499.50 91
112197.37 9996.77 11399.16 5099.34 6297.99 6598.19 20898.68 12190.14 30898.01 9898.97 8794.80 7999.87 4493.36 22099.46 9499.61 75
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15598.61 6698.97 8795.13 7099.77 10197.65 6499.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25398.89 4697.71 898.33 8298.97 8794.97 7499.88 4398.42 2299.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 5797.76 6398.90 7198.73 13097.27 9198.35 18198.78 9597.37 2897.72 11898.96 9391.53 14099.92 2198.79 299.65 5899.51 89
test22299.23 9397.17 10097.40 27198.66 13288.68 32598.05 9098.96 9394.14 9599.53 8599.61 75
新几何199.16 5099.34 6298.01 6298.69 11890.06 30998.13 8698.95 9594.60 8299.89 3591.97 26199.47 9199.59 80
DP-MVS Recon97.86 6797.46 7999.06 6199.53 3698.35 4398.33 18498.89 4692.62 23898.05 9098.94 9695.34 5999.65 12496.04 13599.42 9899.19 133
CANet_DTU96.96 11696.55 12198.21 11498.17 18096.07 14497.98 23198.21 21597.24 3797.13 13898.93 9786.88 24099.91 3095.00 16999.37 10398.66 180
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16798.76 9997.82 598.45 7598.93 9796.65 1499.83 5697.38 8099.41 9999.71 44
CSCG97.85 6897.74 6498.20 11599.67 2695.16 18499.22 2799.32 793.04 22497.02 14598.92 9995.36 5899.91 3097.43 7799.64 6299.52 85
CHOSEN 1792x268897.12 11196.80 10698.08 12599.30 7594.56 21798.05 22499.71 193.57 20497.09 13998.91 10088.17 21199.89 3596.87 10599.56 8099.81 8
diffmvs97.58 8497.40 8398.13 12098.32 16695.81 16398.06 22398.37 18996.20 7898.74 5398.89 10191.31 14599.25 16498.16 3298.52 13899.34 112
PVSNet_Blended_VisFu97.70 7597.46 7998.44 9899.27 8395.91 15898.63 14299.16 1794.48 16197.67 12198.88 10292.80 11099.91 3097.11 8799.12 11399.50 91
GeoE96.58 13196.07 13698.10 12398.35 15895.89 16099.34 1298.12 23393.12 22296.09 18298.87 10389.71 17398.97 20292.95 23398.08 15699.43 106
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 13998.73 13095.46 17499.20 3198.30 20594.96 14096.60 16498.87 10390.05 16798.59 24693.67 21298.60 13499.46 102
ETH3 D test640097.59 8397.01 9899.34 2399.40 5998.56 2598.20 20498.81 7691.63 27298.44 7698.85 10593.98 9999.82 6494.11 19999.69 5299.64 70
CDPH-MVS97.94 6397.49 7799.28 3599.47 4898.44 3197.91 23798.67 12992.57 24198.77 5198.85 10595.93 3899.72 10995.56 15499.69 5299.68 57
VNet97.79 7097.40 8398.96 6798.88 11997.55 8198.63 14298.93 3796.74 5799.02 3498.84 10790.33 16499.83 5698.53 1196.66 18999.50 91
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12598.66 13297.51 1698.15 8598.83 10895.70 4499.92 2197.53 7599.67 5499.66 65
MVSFormer97.57 8597.49 7797.84 13898.07 18595.76 16499.47 398.40 18394.98 13898.79 4998.83 10892.34 11598.41 26996.91 9699.59 7199.34 112
jason97.32 10197.08 9598.06 12797.45 23395.59 16797.87 24397.91 26394.79 14698.55 6998.83 10891.12 14899.23 16797.58 6999.60 6899.34 112
jason: jason.
Anonymous20240521195.28 18994.49 20397.67 15599.00 11093.75 24298.70 13097.04 31190.66 29696.49 17298.80 11178.13 32899.83 5696.21 12995.36 21899.44 105
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17598.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4299.61 6799.74 33
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5399.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 16795.33 16696.76 20596.16 30494.63 21098.43 17298.39 18596.64 6195.02 19798.78 11385.15 26899.05 19095.21 16694.20 22596.60 282
AllTest95.24 19194.65 19696.99 18999.25 8693.21 26498.59 14698.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
TestCases96.99 18999.25 8693.21 26498.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
LPG-MVS_test95.62 17095.34 16496.47 23497.46 22993.54 24998.99 6698.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
LGP-MVS_train96.47 23497.46 22993.54 24998.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
MSDG95.93 15495.30 16997.83 13998.90 11795.36 17796.83 31698.37 18991.32 28394.43 21898.73 11990.27 16599.60 13290.05 29098.82 12698.52 187
hse-mvs396.17 14595.62 15497.81 14299.03 10894.45 21998.64 14198.75 10297.48 1898.67 5998.72 12089.76 17199.86 4997.95 4081.59 34299.11 144
DROMVSNet98.12 5698.02 5298.42 10198.25 16997.23 9699.49 298.42 17996.55 6698.68 5798.70 12193.82 10199.01 20098.79 299.48 9099.03 152
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24998.84 6596.12 8397.89 11098.69 12295.96 3699.70 11596.89 9999.60 6899.65 67
test_prior297.80 24996.12 8397.89 11098.69 12295.96 3696.89 9999.60 68
TEST999.31 7098.50 2997.92 23598.73 10892.63 23797.74 11698.68 12496.20 2399.80 80
train_agg97.97 5897.52 7499.33 2799.31 7098.50 2997.92 23598.73 10892.98 22697.74 11698.68 12496.20 2399.80 8096.59 11599.57 7599.68 57
AdaColmapbinary97.15 11096.70 11498.48 9599.16 9996.69 11798.01 22898.89 4694.44 16396.83 15398.68 12490.69 15899.76 10394.36 18899.29 10798.98 158
test_899.29 7898.44 3197.89 24198.72 11092.98 22697.70 11998.66 12796.20 2399.80 80
agg_prior197.95 6297.51 7699.28 3599.30 7598.38 3597.81 24898.72 11093.16 22097.57 12998.66 12796.14 2699.81 7196.63 11499.56 8099.66 65
tttt051796.07 14795.51 15797.78 14498.41 15594.84 20199.28 1894.33 35394.26 16797.64 12598.64 12984.05 28899.47 15195.34 15897.60 17399.03 152
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3520.00 3730.00 3740.00 36498.59 1420.00 3690.00 37098.61 13090.60 1590.00 3700.00 3680.00 3680.00 366
lupinMVS97.44 9397.22 9098.12 12298.07 18595.76 16497.68 25797.76 26894.50 16098.79 4998.61 13092.34 11599.30 16197.58 6999.59 7199.31 118
BH-RMVSNet95.92 15595.32 16797.69 15398.32 16694.64 20998.19 20897.45 29394.56 15696.03 18498.61 13085.02 26999.12 17990.68 28199.06 11499.30 121
TAMVS97.02 11496.79 10897.70 15298.06 18795.31 18198.52 15898.31 19993.95 17997.05 14498.61 13093.49 10398.52 25295.33 15997.81 16499.29 123
TAPA-MVS93.98 795.35 18594.56 20097.74 14899.13 10294.83 20398.33 18498.64 13786.62 33396.29 17898.61 13094.00 9899.29 16280.00 34899.41 9999.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 25393.33 26996.97 19297.19 25193.38 25898.74 11798.57 14891.21 29093.81 24898.58 13572.85 35198.77 23195.05 16893.93 23698.77 172
DPM-MVS97.55 8796.99 10099.23 4299.04 10798.55 2697.17 29298.35 19394.85 14597.93 10798.58 13595.07 7299.71 11492.60 24199.34 10499.43 106
F-COLMAP97.09 11396.80 10697.97 13299.45 5594.95 19898.55 15698.62 13993.02 22596.17 18198.58 13594.01 9799.81 7193.95 20398.90 11999.14 141
WTY-MVS97.37 9996.92 10398.72 7798.86 12196.89 11098.31 19098.71 11495.26 12397.67 12198.56 13892.21 12199.78 9695.89 13996.85 18499.48 96
CNLPA97.45 9297.03 9798.73 7699.05 10597.44 8698.07 22298.53 15695.32 12096.80 15798.53 13993.32 10599.72 10994.31 19299.31 10699.02 154
ACMP93.49 1095.34 18694.98 18396.43 23997.67 21193.48 25398.73 12198.44 17594.94 14392.53 29098.53 13984.50 28099.14 17795.48 15794.00 23396.66 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 23493.95 23796.34 24597.63 21493.26 26298.81 10798.49 17093.43 20989.74 32398.53 13981.91 30399.08 18893.69 20993.30 25096.70 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 25494.00 23394.85 29695.60 32089.22 32298.89 8697.43 29595.29 12192.18 30098.52 14282.86 29898.59 24693.46 21791.76 26596.74 264
CDS-MVSNet96.99 11596.69 11597.90 13698.05 18895.98 14598.20 20498.33 19693.67 20096.95 14698.49 14393.54 10298.42 26295.24 16597.74 16899.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 9796.98 10198.61 8398.60 14596.61 12098.22 20098.93 3793.97 17898.01 9898.48 14491.98 12899.85 5096.45 12198.15 15399.39 109
ACMH+92.99 1494.30 24993.77 25095.88 26597.81 20392.04 27998.71 12698.37 18993.99 17790.60 31798.47 14580.86 31199.05 19092.75 23992.40 25996.55 290
ACMM93.85 995.69 16795.38 16296.61 21897.61 21593.84 23898.91 8198.44 17595.25 12494.28 22598.47 14586.04 25699.12 17995.50 15693.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS96.04 14995.53 15597.56 16397.07 25997.32 8898.57 15398.09 24395.15 12995.02 19798.44 14788.20 21098.58 24896.17 13093.09 25396.79 258
1112_ss96.63 12696.00 14098.50 9398.56 14696.37 13298.18 21298.10 23892.92 22994.84 20198.43 14892.14 12399.58 13494.35 18996.51 19599.56 84
ab-mvs-re8.20 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.43 1480.00 3750.00 3700.00 3680.00 3680.00 366
test_yl97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
DCV-MVSNet97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
mvs_tets95.41 18095.00 18196.65 21395.58 32194.42 22199.00 6498.55 15295.73 9793.21 26998.38 15583.45 29798.63 24197.09 8894.00 23396.91 245
FC-MVSNet-test96.42 13696.05 13797.53 16596.95 26497.27 9199.36 999.23 1295.83 9393.93 24198.37 15692.00 12798.32 27896.02 13692.72 25797.00 234
jajsoiax95.45 17695.03 18096.73 20795.42 32894.63 21099.14 3898.52 15895.74 9693.22 26898.36 15783.87 29398.65 24096.95 9594.04 23196.91 245
nrg03096.28 14295.72 14697.96 13496.90 26998.15 5699.39 698.31 19995.47 11094.42 21998.35 15892.09 12598.69 23497.50 7689.05 30297.04 232
FIs96.51 13396.12 13597.67 15597.13 25597.54 8299.36 999.22 1495.89 9094.03 23998.35 15891.98 12898.44 26096.40 12492.76 25697.01 233
ITE_SJBPF95.44 27997.42 23491.32 29497.50 28895.09 13593.59 25398.35 15881.70 30498.88 21989.71 29693.39 24896.12 317
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21297.41 23794.42 22198.52 15898.59 14291.69 27091.21 31098.35 15884.87 27299.04 19391.06 27493.44 24796.60 282
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 13596.26 13196.92 19895.84 31595.08 19099.16 3698.50 16695.87 9293.84 24798.34 16294.51 8598.61 24296.88 10293.45 24697.06 231
EPNet_dtu95.21 19394.95 18595.99 25796.17 30290.45 30898.16 21497.27 30396.77 5593.14 27398.33 16390.34 16398.42 26285.57 32898.81 12799.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 22393.43 26798.42 10198.62 14396.77 11495.48 34198.20 21784.63 34593.34 26598.32 16488.55 20399.81 7184.80 33598.96 11798.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 15095.36 16397.97 13298.38 15695.52 17298.88 8994.19 35594.04 17297.64 12598.31 16583.82 29599.46 15295.29 16297.70 17098.93 163
PLCcopyleft95.07 497.20 10796.78 10998.44 9899.29 7896.31 13798.14 21598.76 9992.41 24796.39 17698.31 16594.92 7699.78 9694.06 20198.77 12899.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS97.94 6397.90 5998.06 12798.04 18996.85 11199.04 5498.39 18596.17 7998.50 7198.29 16794.60 8299.02 19798.61 899.43 9798.30 197
HQP_MVS96.14 14695.90 14296.85 20197.42 23494.60 21598.80 10898.56 15097.28 3195.34 19198.28 16887.09 23599.03 19496.07 13194.27 22296.92 240
plane_prior498.28 168
API-MVS97.41 9697.25 8897.91 13598.70 13596.80 11298.82 10198.69 11894.53 15798.11 8798.28 16894.50 8899.57 13594.12 19899.49 8897.37 224
mvs_anonymous96.70 12596.53 12397.18 17998.19 17693.78 23998.31 19098.19 21894.01 17594.47 21398.27 17192.08 12698.46 25797.39 7997.91 16099.31 118
XXY-MVS95.20 19494.45 20897.46 16696.75 27796.56 12498.86 9398.65 13693.30 21593.27 26798.27 17184.85 27398.87 22094.82 17391.26 27396.96 237
SixPastTwentyTwo93.34 27892.86 27794.75 30095.67 31889.41 32098.75 11496.67 33193.89 18190.15 32198.25 17380.87 31098.27 28890.90 27790.64 28096.57 286
VPNet94.99 20594.19 22097.40 17197.16 25396.57 12398.71 12698.97 3095.67 10094.84 20198.24 17480.36 31498.67 23896.46 12087.32 32296.96 237
PVSNet_Blended97.38 9897.12 9298.14 11899.25 8695.35 17997.28 28499.26 893.13 22197.94 10598.21 17592.74 11199.81 7196.88 10299.40 10199.27 125
HyFIR lowres test96.90 11996.49 12498.14 11899.33 6595.56 16997.38 27399.65 292.34 24997.61 12798.20 17689.29 18199.10 18696.97 9297.60 17399.77 20
baseline195.84 15895.12 17698.01 13098.49 15295.98 14598.73 12197.03 31295.37 11796.22 17998.19 17789.96 16999.16 17394.60 18087.48 31998.90 165
ab-mvs96.42 13695.71 14998.55 8798.63 14296.75 11597.88 24298.74 10493.84 18496.54 16998.18 17885.34 26699.75 10595.93 13896.35 19999.15 139
xiu_mvs_v2_base97.66 7797.70 6597.56 16398.61 14495.46 17497.44 26898.46 17197.15 4298.65 6498.15 17994.33 9299.80 8097.84 5198.66 13397.41 220
USDC93.33 27992.71 28095.21 28496.83 27390.83 30196.91 30697.50 28893.84 18490.72 31598.14 18077.69 33198.82 22689.51 30193.21 25295.97 321
EU-MVSNet93.66 27294.14 22592.25 33095.96 31183.38 35198.52 15898.12 23394.69 15092.61 28798.13 18187.36 23296.39 34691.82 26390.00 28796.98 235
CHOSEN 280x42097.18 10897.18 9197.20 17798.81 12693.27 26195.78 33699.15 1895.25 12496.79 15898.11 18292.29 11799.07 18998.56 1099.85 399.25 127
MVSTER96.06 14895.72 14697.08 18698.23 17195.93 15698.73 12198.27 20894.86 14495.07 19598.09 18388.21 20998.54 25096.59 11593.46 24496.79 258
MVS_Test97.28 10297.00 9998.13 12098.33 16495.97 15098.74 11798.07 24794.27 16698.44 7698.07 18492.48 11399.26 16396.43 12398.19 15299.16 138
PAPM_NR97.46 8997.11 9398.50 9399.50 4196.41 13198.63 14298.60 14095.18 12797.06 14398.06 18594.26 9499.57 13593.80 20898.87 12399.52 85
PatchMatch-RL96.59 12996.03 13998.27 10999.31 7096.51 12697.91 23799.06 2293.72 19296.92 15098.06 18588.50 20599.65 12491.77 26599.00 11698.66 180
Effi-MVS+97.12 11196.69 11598.39 10498.19 17696.72 11697.37 27598.43 17893.71 19397.65 12498.02 18792.20 12299.25 16496.87 10597.79 16599.19 133
MVS94.67 22693.54 26398.08 12596.88 27096.56 12498.19 20898.50 16678.05 35392.69 28598.02 18791.07 15199.63 12990.09 28798.36 14898.04 204
BH-untuned95.95 15395.72 14696.65 21398.55 14892.26 27498.23 19997.79 26793.73 19194.62 20898.01 18988.97 19499.00 20193.04 23098.51 13998.68 177
CLD-MVS95.62 17095.34 16496.46 23797.52 22693.75 24297.27 28598.46 17195.53 10694.42 21998.00 19086.21 25198.97 20296.25 12894.37 22096.66 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 16495.30 16996.93 19598.50 15093.53 25198.36 18098.10 23897.48 1898.67 5997.99 19189.76 17199.02 19797.95 4080.91 34698.22 199
HY-MVS93.96 896.82 12296.23 13398.57 8598.46 15397.00 10398.14 21598.21 21593.95 17996.72 15997.99 19191.58 13599.76 10394.51 18596.54 19498.95 162
AUN-MVS94.53 23693.73 25496.92 19898.50 15093.52 25298.34 18298.10 23893.83 18695.94 18897.98 19385.59 26199.03 19494.35 18980.94 34598.22 199
MAR-MVS96.91 11896.40 12698.45 9798.69 13796.90 10898.66 13998.68 12192.40 24897.07 14297.96 19491.54 13999.75 10593.68 21098.92 11898.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 22693.99 23596.71 20896.68 28195.26 18299.13 4199.03 2593.68 19892.33 29797.95 19585.35 26598.10 29793.59 21488.16 31496.79 258
mvs-test196.60 12796.68 11796.37 24297.89 19991.81 28198.56 15498.10 23896.57 6496.52 17197.94 19690.81 15399.45 15395.72 14798.01 15797.86 210
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18496.45 29296.36 13399.03 5799.03 2595.04 13693.58 25497.93 19788.27 20898.03 30494.13 19786.90 32896.95 239
testgi93.06 28692.45 28594.88 29596.43 29389.90 31198.75 11497.54 28595.60 10391.63 30897.91 19874.46 34797.02 33386.10 32493.67 23997.72 215
CP-MVSNet94.94 21194.30 21596.83 20296.72 27995.56 16999.11 4498.95 3493.89 18192.42 29697.90 19987.19 23398.12 29694.32 19188.21 31296.82 257
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27096.55 28691.65 28798.11 22098.44 17594.96 14094.22 22997.90 19979.18 32199.11 18294.05 20293.85 23796.48 303
test_part194.82 21593.82 24597.82 14198.84 12497.82 7299.03 5798.81 7692.31 25392.51 29297.89 20181.96 30298.67 23894.80 17588.24 31196.98 235
PS-MVSNAJ97.73 7397.77 6297.62 15998.68 13895.58 16897.34 27998.51 16197.29 3098.66 6397.88 20294.51 8599.90 3397.87 4799.17 11297.39 222
RRT_test8_iter0594.56 23394.19 22095.67 27297.60 21691.34 29198.93 7998.42 17994.75 14793.39 26397.87 20379.00 32298.61 24296.78 11190.99 27797.07 230
TransMVSNet (Re)92.67 29091.51 29596.15 25296.58 28594.65 20898.90 8296.73 32790.86 29589.46 32797.86 20485.62 26098.09 29986.45 32281.12 34395.71 326
test_djsdf96.00 15195.69 15196.93 19595.72 31795.49 17399.47 398.40 18394.98 13894.58 20997.86 20489.16 18598.41 26996.91 9694.12 23096.88 249
TinyColmap92.31 29391.53 29494.65 30396.92 26689.75 31396.92 30496.68 33090.45 30189.62 32497.85 20676.06 34098.81 22786.74 32092.51 25895.41 330
CS-MVS-test97.78 7197.68 6698.09 12497.94 19597.19 9898.95 7498.37 18995.98 8797.99 10197.84 20794.50 8899.11 18298.30 2899.28 10897.97 207
pm-mvs193.94 27093.06 27496.59 22196.49 29095.16 18498.95 7498.03 25492.32 25191.08 31297.84 20784.54 27998.41 26992.16 25386.13 33496.19 316
UGNet96.78 12396.30 12998.19 11798.24 17095.89 16098.88 8998.93 3797.39 2596.81 15697.84 20782.60 29999.90 3396.53 11899.49 8898.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 30389.68 30895.21 28485.35 36091.49 29098.51 16297.07 30991.47 27588.83 33297.84 20777.31 33599.09 18792.79 23877.98 34995.04 338
PEN-MVS94.42 24393.73 25496.49 23296.28 29894.84 20199.17 3599.00 2793.51 20592.23 29997.83 21186.10 25397.90 31392.55 24686.92 32796.74 264
131496.25 14495.73 14597.79 14397.13 25595.55 17198.19 20898.59 14293.47 20792.03 30397.82 21291.33 14499.49 14694.62 17998.44 14398.32 196
DTE-MVSNet93.98 26993.26 27296.14 25396.06 30794.39 22399.20 3198.86 6193.06 22391.78 30597.81 21385.87 25797.58 32490.53 28286.17 33296.46 305
PAPM94.95 20994.00 23397.78 14497.04 26095.65 16696.03 33298.25 21391.23 28894.19 23197.80 21491.27 14698.86 22282.61 34297.61 17298.84 168
PVSNet91.96 1896.35 13896.15 13496.96 19399.17 9892.05 27896.08 32998.68 12193.69 19697.75 11597.80 21488.86 19699.69 12094.26 19499.01 11599.15 139
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33493.19 34776.56 35797.00 30098.35 19380.97 35081.57 35197.75 21674.75 34598.61 24289.85 29393.63 24194.17 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 24294.51 21897.73 217
HQP-MVS95.72 16395.40 15896.69 21197.20 24894.25 22998.05 22498.46 17196.43 7094.45 21497.73 21786.75 24198.96 20695.30 16094.18 22696.86 253
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17196.84 27296.97 10498.74 11799.24 1095.16 12893.88 24497.72 21991.68 13398.31 28095.81 14287.25 32396.92 240
DU-MVS95.42 17894.76 19197.40 17196.53 28796.97 10498.66 13998.99 2995.43 11293.88 24497.69 22088.57 20198.31 28095.81 14287.25 32396.92 240
WR-MVS95.15 19694.46 20697.22 17696.67 28296.45 12898.21 20198.81 7694.15 16893.16 27097.69 22087.51 22798.30 28295.29 16288.62 30896.90 247
NR-MVSNet94.98 20794.16 22397.44 16796.53 28797.22 9798.74 11798.95 3494.96 14089.25 32897.69 22089.32 18098.18 29194.59 18287.40 32196.92 240
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26297.74 20891.74 28598.69 13298.15 22995.56 10594.92 19997.68 22388.98 19398.79 22993.19 22597.78 16697.20 228
alignmvs97.56 8697.07 9699.01 6298.66 13998.37 4198.83 9898.06 25296.74 5798.00 10097.65 22490.80 15599.48 15098.37 2596.56 19399.19 133
LF4IMVS93.14 28592.79 27994.20 31395.88 31388.67 33097.66 25997.07 30993.81 18791.71 30697.65 22477.96 33098.81 22791.47 27091.92 26495.12 335
lessismore_v094.45 31194.93 33388.44 33491.03 36286.77 34097.64 22676.23 33998.42 26290.31 28585.64 33596.51 299
TR-MVS94.94 21194.20 21997.17 18097.75 20594.14 23197.59 26397.02 31492.28 25495.75 18997.64 22683.88 29298.96 20689.77 29496.15 21098.40 191
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16198.22 17296.20 13997.31 28295.37 34294.53 15779.56 35397.63 22886.51 24497.53 32696.91 9690.74 27999.02 154
Baseline_NR-MVSNet94.35 24693.81 24695.96 26096.20 30094.05 23398.61 14596.67 33191.44 27793.85 24697.60 22988.57 20198.14 29494.39 18786.93 32695.68 327
pmmvs494.69 22193.99 23596.81 20395.74 31695.94 15397.40 27197.67 27290.42 30293.37 26497.59 23089.08 18898.20 29092.97 23291.67 26696.30 313
K. test v392.55 29191.91 29394.48 30895.64 31989.24 32199.07 5194.88 34794.04 17286.78 33997.59 23077.64 33497.64 32292.08 25589.43 29796.57 286
Anonymous2023121194.10 26393.26 27296.61 21899.11 10494.28 22699.01 6298.88 4986.43 33592.81 28097.57 23281.66 30598.68 23794.83 17289.02 30496.88 249
PAPR96.84 12196.24 13298.65 8198.72 13496.92 10797.36 27798.57 14893.33 21296.67 16097.57 23294.30 9399.56 13791.05 27698.59 13599.47 98
pmmvs691.77 29690.63 30095.17 28694.69 33791.24 29698.67 13697.92 26286.14 33789.62 32497.56 23475.79 34198.34 27690.75 28084.56 33695.94 322
EIA-MVS97.75 7297.58 6998.27 10998.38 15696.44 12999.01 6298.60 14095.88 9197.26 13497.53 23594.97 7499.33 16097.38 8099.20 11099.05 151
bset_n11_16_dypcd94.89 21394.27 21696.76 20594.41 33895.15 18695.67 33795.64 34195.53 10694.65 20797.52 23687.10 23498.29 28596.58 11791.35 26996.83 256
MS-PatchMatch93.84 27193.63 25994.46 31096.18 30189.45 31897.76 25298.27 20892.23 25592.13 30197.49 23779.50 31898.69 23489.75 29599.38 10295.25 332
IterMVS-SCA-FT94.11 26293.87 24294.85 29697.98 19490.56 30797.18 29098.11 23693.75 18892.58 28897.48 23883.97 29097.41 32892.48 25091.30 27196.58 284
anonymousdsp95.42 17894.91 18696.94 19495.10 33095.90 15999.14 3898.41 18193.75 18893.16 27097.46 23987.50 22998.41 26995.63 15394.03 23296.50 301
PVSNet_BlendedMVS96.73 12496.60 11997.12 18399.25 8695.35 17998.26 19899.26 894.28 16597.94 10597.46 23992.74 11199.81 7196.88 10293.32 24996.20 315
PMMVS96.60 12796.33 12897.41 16997.90 19893.93 23597.35 27898.41 18192.84 23397.76 11497.45 24191.10 15099.20 17096.26 12797.91 16099.11 144
ETV-MVS97.96 5997.81 6198.40 10398.42 15497.27 9198.73 12198.55 15296.84 5398.38 7997.44 24295.39 5599.35 15897.62 6698.89 12098.58 186
thisisatest051595.61 17294.89 18797.76 14698.15 18195.15 18696.77 31794.41 35192.95 22897.18 13797.43 24384.78 27499.45 15394.63 17797.73 16998.68 177
baseline295.11 19894.52 20296.87 20096.65 28393.56 24898.27 19794.10 35793.45 20892.02 30497.43 24387.45 23199.19 17193.88 20597.41 17797.87 209
canonicalmvs97.67 7697.23 8998.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 12197.40 24592.26 11899.49 14698.28 3096.28 20599.08 149
tfpnnormal93.66 27292.70 28196.55 22896.94 26595.94 15398.97 7099.19 1591.04 29391.38 30997.34 24684.94 27198.61 24285.45 33089.02 30495.11 336
IterMVS94.09 26493.85 24494.80 29997.99 19290.35 30997.18 29098.12 23393.68 19892.46 29597.34 24684.05 28897.41 32892.51 24891.33 27096.62 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 16295.11 17797.69 15397.24 24497.27 9198.94 7799.23 1295.13 13095.51 19097.32 24885.73 25898.91 21397.33 8289.55 29496.89 248
IterMVS-LS95.46 17495.21 17296.22 25098.12 18293.72 24598.32 18998.13 23293.71 19394.26 22697.31 24992.24 11998.10 29794.63 17790.12 28596.84 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 13995.66 15398.36 10598.56 14695.94 15397.71 25598.07 24792.10 25994.79 20597.29 25091.75 13299.56 13794.17 19696.50 19699.58 82
ppachtmachnet_test93.22 28292.63 28294.97 29295.45 32690.84 30096.88 31297.88 26490.60 29792.08 30297.26 25188.08 21597.86 31885.12 33290.33 28296.22 314
pmmvs593.65 27492.97 27695.68 27195.49 32492.37 27398.20 20497.28 30289.66 31692.58 28897.26 25182.14 30098.09 29993.18 22690.95 27896.58 284
MDTV_nov1_ep1395.40 15897.48 22788.34 33596.85 31497.29 30193.74 19097.48 13297.26 25189.18 18499.05 19091.92 26297.43 176
Fast-Effi-MVS+96.28 14295.70 15098.03 12998.29 16895.97 15098.58 14898.25 21391.74 26795.29 19497.23 25491.03 15299.15 17692.90 23597.96 15998.97 159
BH-w/o95.38 18195.08 17896.26 24998.34 16391.79 28297.70 25697.43 29592.87 23294.24 22897.22 25588.66 19998.84 22391.55 26997.70 17098.16 202
eth_miper_zixun_eth94.68 22394.41 21195.47 27797.64 21391.71 28696.73 32098.07 24792.71 23693.64 25297.21 25690.54 16098.17 29293.38 21889.76 28996.54 291
v192192094.20 25593.47 26696.40 24195.98 31094.08 23298.52 15898.15 22991.33 28294.25 22797.20 25786.41 24898.42 26290.04 29189.39 29896.69 276
v2v48294.69 22194.03 22996.65 21396.17 30294.79 20698.67 13698.08 24592.72 23594.00 24097.16 25887.69 22698.45 25892.91 23488.87 30696.72 267
v7n94.19 25693.43 26796.47 23495.90 31294.38 22499.26 2098.34 19591.99 26192.76 28297.13 25988.31 20798.52 25289.48 30287.70 31796.52 296
cl-mvsnet194.52 23794.03 22995.99 25797.57 22293.38 25897.05 29797.94 26091.74 26792.81 28097.10 26089.12 18698.07 30192.60 24190.30 28396.53 293
SCA95.46 17495.13 17596.46 23797.67 21191.29 29597.33 28097.60 27794.68 15196.92 15097.10 26083.97 29098.89 21792.59 24398.32 15099.20 130
Patchmatch-test94.42 24393.68 25896.63 21697.60 21691.76 28394.83 34797.49 29089.45 31994.14 23397.10 26088.99 19098.83 22585.37 33198.13 15499.29 123
FMVSNet394.97 20894.26 21797.11 18498.18 17896.62 11898.56 15498.26 21293.67 20094.09 23597.10 26084.25 28398.01 30592.08 25592.14 26096.70 271
MVP-Stereo94.28 25293.92 23895.35 28194.95 33292.60 27297.97 23297.65 27391.61 27390.68 31697.09 26486.32 25098.42 26289.70 29799.34 10495.02 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 24193.61 26097.04 18798.21 17396.43 13098.79 11298.27 20892.46 24293.50 26097.09 26481.16 30698.00 30791.09 27291.93 26396.70 271
cl-mvsnet____94.51 23894.01 23296.02 25697.58 21893.40 25797.05 29797.96 25991.73 26992.76 28297.08 26689.06 18998.13 29592.61 24090.29 28496.52 296
GBi-Net94.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
test194.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
FMVSNet193.19 28492.07 28996.56 22597.54 22395.00 19298.82 10198.18 22190.38 30392.27 29897.07 26773.68 34997.95 30989.36 30491.30 27196.72 267
v119294.32 24893.58 26196.53 22996.10 30594.45 21998.50 16398.17 22691.54 27494.19 23197.06 27086.95 23998.43 26190.14 28689.57 29296.70 271
V4294.78 21994.14 22596.70 21096.33 29795.22 18398.97 7098.09 24392.32 25194.31 22497.06 27088.39 20698.55 24992.90 23588.87 30696.34 309
cl_fuxian94.79 21894.43 21095.89 26497.75 20593.12 26797.16 29398.03 25492.23 25593.46 26297.05 27291.39 14198.01 30593.58 21589.21 30096.53 293
GA-MVS94.81 21794.03 22997.14 18197.15 25493.86 23796.76 31897.58 27894.00 17694.76 20697.04 27380.91 30998.48 25491.79 26496.25 20799.09 146
UniMVSNet (Re)95.78 16195.19 17397.58 16196.99 26397.47 8498.79 11299.18 1695.60 10393.92 24297.04 27391.68 13398.48 25495.80 14487.66 31896.79 258
v14419294.39 24593.70 25696.48 23396.06 30794.35 22598.58 14898.16 22891.45 27694.33 22397.02 27587.50 22998.45 25891.08 27389.11 30196.63 279
v114494.59 23193.92 23896.60 22096.21 29994.78 20798.59 14698.14 23191.86 26694.21 23097.02 27587.97 21798.41 26991.72 26689.57 29296.61 281
v124094.06 26793.29 27196.34 24596.03 30993.90 23698.44 17098.17 22691.18 29194.13 23497.01 27786.05 25498.42 26289.13 30789.50 29696.70 271
v1094.29 25093.55 26296.51 23196.39 29494.80 20598.99 6698.19 21891.35 28193.02 27696.99 27888.09 21498.41 26990.50 28388.41 31096.33 311
test_040291.32 29990.27 30494.48 30896.60 28491.12 29798.50 16397.22 30586.10 33888.30 33496.98 27977.65 33397.99 30878.13 35492.94 25594.34 343
miper_lstm_enhance94.33 24794.07 22895.11 28897.75 20590.97 29997.22 28798.03 25491.67 27192.76 28296.97 28090.03 16897.78 31992.51 24889.64 29196.56 288
v894.47 24193.77 25096.57 22496.36 29594.83 20399.05 5398.19 21891.92 26393.16 27096.97 28088.82 19898.48 25491.69 26787.79 31696.39 307
miper_ehance_all_eth95.01 20394.69 19595.97 25997.70 21093.31 26097.02 29998.07 24792.23 25593.51 25996.96 28291.85 13098.15 29393.68 21091.16 27496.44 306
PatchmatchNetpermissive95.71 16495.52 15696.29 24897.58 21890.72 30496.84 31597.52 28694.06 17197.08 14096.96 28289.24 18398.90 21692.03 25998.37 14699.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 25093.76 25295.91 26296.10 30592.93 26998.58 14897.97 25792.59 24093.47 26196.95 28488.53 20498.32 27892.56 24587.06 32596.49 302
gm-plane-assit95.88 31387.47 34289.74 31596.94 28599.19 17193.32 222
tpmrst95.63 16995.69 15195.44 27997.54 22388.54 33296.97 30197.56 27993.50 20697.52 13196.93 28689.49 17599.16 17395.25 16496.42 19898.64 182
thres600view795.49 17394.77 19097.67 15598.98 11395.02 19198.85 9496.90 32095.38 11596.63 16296.90 28784.29 28199.59 13388.65 31096.33 20098.40 191
our_test_393.65 27493.30 27094.69 30195.45 32689.68 31696.91 30697.65 27391.97 26291.66 30796.88 28889.67 17497.93 31288.02 31491.49 26896.48 303
thres100view90095.38 18194.70 19497.41 16998.98 11394.92 19998.87 9196.90 32095.38 11596.61 16396.88 28884.29 28199.56 13788.11 31196.29 20297.76 211
cl-mvsnet294.68 22394.19 22096.13 25498.11 18393.60 24796.94 30398.31 19992.43 24693.32 26696.87 29086.51 24498.28 28794.10 20091.16 27496.51 299
LCM-MVSNet-Re95.22 19295.32 16794.91 29398.18 17887.85 34198.75 11495.66 34095.11 13288.96 32996.85 29190.26 16697.65 32195.65 15298.44 14399.22 129
WR-MVS_H95.05 20294.46 20696.81 20396.86 27195.82 16299.24 2299.24 1093.87 18392.53 29096.84 29290.37 16298.24 28993.24 22387.93 31596.38 308
EPMVS94.99 20594.48 20496.52 23097.22 24691.75 28497.23 28691.66 36194.11 16997.28 13396.81 29385.70 25998.84 22393.04 23097.28 17898.97 159
tpm294.19 25693.76 25295.46 27897.23 24589.04 32597.31 28296.85 32687.08 33296.21 18096.79 29483.75 29698.74 23292.43 25196.23 20898.59 184
D2MVS95.18 19595.08 17895.48 27697.10 25792.07 27798.30 19299.13 1994.02 17492.90 27896.73 29589.48 17698.73 23394.48 18693.60 24395.65 328
CostFormer94.95 20994.73 19395.60 27497.28 24289.06 32497.53 26696.89 32289.66 31696.82 15596.72 29686.05 25498.95 21095.53 15596.13 21198.79 170
test20.0390.89 30590.38 30392.43 32893.48 34688.14 33898.33 18497.56 27993.40 21087.96 33596.71 29780.69 31394.13 35679.15 35186.17 33295.01 340
Effi-MVS+-dtu96.29 14096.56 12095.51 27597.89 19990.22 31098.80 10898.10 23896.57 6496.45 17596.66 29890.81 15398.91 21395.72 14797.99 15897.40 221
test0.0.03 194.08 26593.51 26495.80 26795.53 32392.89 27097.38 27395.97 33695.11 13292.51 29296.66 29887.71 22396.94 33587.03 31993.67 23997.57 218
miper_enhance_ethall95.10 19994.75 19296.12 25597.53 22593.73 24496.61 32398.08 24592.20 25893.89 24396.65 30092.44 11498.30 28294.21 19591.16 27496.34 309
ADS-MVSNet294.58 23294.40 21295.11 28898.00 19088.74 32996.04 33097.30 30090.15 30696.47 17396.64 30187.89 21997.56 32590.08 28897.06 18099.02 154
ADS-MVSNet95.00 20494.45 20896.63 21698.00 19091.91 28096.04 33097.74 27090.15 30696.47 17396.64 30187.89 21998.96 20690.08 28897.06 18099.02 154
dp94.15 25993.90 24094.90 29497.31 24186.82 34696.97 30197.19 30691.22 28996.02 18596.61 30385.51 26299.02 19790.00 29294.30 22198.85 166
tfpn200view995.32 18894.62 19797.43 16898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20297.76 211
thres40095.38 18194.62 19797.65 15898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20298.40 191
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 33689.00 32698.13 21797.81 26689.22 32285.32 34696.46 30667.71 35498.42 26287.89 31693.82 23895.08 337
TESTMET0.1,194.18 25893.69 25795.63 27396.92 26689.12 32396.91 30694.78 34893.17 21994.88 20096.45 30778.52 32498.92 21293.09 22798.50 14098.85 166
DWT-MVSNet_test94.82 21594.36 21396.20 25197.35 23990.79 30298.34 18296.57 33392.91 23095.33 19396.44 30882.00 30199.12 17994.52 18495.78 21698.70 175
tpmvs94.60 22994.36 21395.33 28297.46 22988.60 33196.88 31297.68 27191.29 28593.80 24996.42 30988.58 20099.24 16691.06 27496.04 21398.17 201
Anonymous2023120691.66 29791.10 29793.33 32294.02 34487.35 34398.58 14897.26 30490.48 29990.16 32096.31 31083.83 29496.53 34479.36 35089.90 28896.12 317
tpm94.13 26093.80 24795.12 28796.50 28987.91 34097.44 26895.89 33992.62 23896.37 17796.30 31184.13 28798.30 28293.24 22391.66 26799.14 141
CR-MVSNet94.76 22094.15 22496.59 22197.00 26193.43 25494.96 34397.56 27992.46 24296.93 14896.24 31288.15 21297.88 31787.38 31796.65 19098.46 189
Patchmtry93.22 28292.35 28695.84 26696.77 27493.09 26894.66 34897.56 27987.37 33192.90 27896.24 31288.15 21297.90 31387.37 31890.10 28696.53 293
tmp_tt68.90 33066.97 33274.68 34550.78 37059.95 36687.13 35883.47 36838.80 36562.21 36196.23 31464.70 35876.91 36688.91 30830.49 36487.19 356
cascas94.63 22893.86 24396.93 19596.91 26894.27 22796.00 33398.51 16185.55 34294.54 21096.23 31484.20 28698.87 22095.80 14496.98 18397.66 217
thres20095.25 19094.57 19997.28 17498.81 12694.92 19998.20 20497.11 30795.24 12696.54 16996.22 31684.58 27899.53 14387.93 31596.50 19697.39 222
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34189.83 31297.13 29598.67 12993.69 19685.83 34496.19 31775.15 34396.74 33889.14 30679.41 34796.00 320
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 32991.34 29197.64 26097.51 28788.36 32771.17 35996.13 31879.22 32096.63 34383.65 33986.27 33196.52 296
MIMVSNet93.26 28192.21 28896.41 24097.73 20993.13 26695.65 33897.03 31291.27 28794.04 23896.06 31975.33 34297.19 33186.56 32196.23 20898.92 164
tpm cat193.36 27692.80 27895.07 29097.58 21887.97 33996.76 31897.86 26582.17 34993.53 25696.04 32086.13 25299.13 17889.24 30595.87 21498.10 203
N_pmnet87.12 32287.77 32185.17 33995.46 32561.92 36497.37 27570.66 37085.83 34088.73 33396.04 32085.33 26797.76 32080.02 34790.48 28195.84 323
MIMVSNet189.67 31488.28 31893.82 31692.81 35091.08 29898.01 22897.45 29387.95 32887.90 33695.87 32267.63 35594.56 35578.73 35388.18 31395.83 324
YYNet190.70 30789.39 31094.62 30494.79 33590.65 30597.20 28897.46 29187.54 33072.54 35795.74 32386.51 24496.66 34286.00 32586.76 33096.54 291
DSMNet-mixed92.52 29292.58 28392.33 32994.15 34082.65 35398.30 19294.26 35489.08 32392.65 28695.73 32485.01 27095.76 34886.24 32397.76 16798.59 184
IB-MVS91.98 1793.27 28091.97 29197.19 17897.47 22893.41 25697.09 29695.99 33593.32 21392.47 29495.73 32478.06 32999.53 14394.59 18282.98 33798.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 19994.87 18895.80 26796.77 27489.70 31496.91 30695.21 34395.11 13294.83 20395.72 32687.71 22398.97 20293.06 22898.50 14098.72 173
test-mter94.08 26593.51 26495.80 26796.77 27489.70 31496.91 30695.21 34392.89 23194.83 20395.72 32677.69 33198.97 20293.06 22898.50 14098.72 173
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 33490.78 30397.19 28997.46 29187.60 32972.41 35895.72 32686.51 24496.71 34185.92 32686.80 32996.56 288
MVS_030492.81 28892.01 29095.23 28397.46 22991.33 29398.17 21398.81 7691.13 29293.80 24995.68 32966.08 35798.06 30290.79 27896.13 21196.32 312
FMVSNet591.81 29590.92 29894.49 30797.21 24792.09 27698.00 23097.55 28489.31 32190.86 31495.61 33074.48 34695.32 35185.57 32889.70 29096.07 319
test_method79.03 32478.17 32781.63 34186.06 35954.40 36982.75 36196.89 32239.54 36480.98 35295.57 33158.37 36094.73 35484.74 33678.61 34895.75 325
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19287.29 34494.84 34698.50 16692.06 26089.86 32295.19 33279.81 31799.39 15692.27 25269.79 35698.33 195
DeepMVS_CXcopyleft86.78 33697.09 25872.30 36095.17 34675.92 35484.34 34895.19 33270.58 35295.35 34979.98 34989.04 30392.68 353
patchmatchnet-post95.10 33489.42 17898.89 217
Anonymous2024052191.18 30190.44 30293.42 31993.70 34588.47 33398.94 7797.56 27988.46 32689.56 32695.08 33577.15 33796.97 33483.92 33889.55 29494.82 341
Patchmatch-RL test91.49 29890.85 29993.41 32091.37 35384.40 34892.81 35395.93 33891.87 26587.25 33794.87 33688.99 19096.53 34492.54 24782.00 33999.30 121
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31793.08 34889.42 31997.91 23796.89 32278.58 35285.86 34394.69 33769.48 35398.29 28577.13 35593.29 25193.36 352
CL-MVSNet_2432*160090.11 31089.14 31393.02 32691.86 35288.23 33796.51 32698.07 24790.49 29890.49 31894.41 33884.75 27595.34 35080.79 34674.95 35395.50 329
FPMVS77.62 32877.14 32879.05 34379.25 36460.97 36595.79 33595.94 33765.96 35767.93 36094.40 33937.73 36688.88 36168.83 35888.46 30987.29 355
KD-MVS_2432*160089.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
miper_refine_blended89.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
GG-mvs-BLEND96.59 22196.34 29694.98 19596.51 32688.58 36593.10 27594.34 34280.34 31598.05 30389.53 30096.99 18296.74 264
DIV-MVS_2432*160090.38 30889.38 31193.40 32192.85 34988.94 32797.95 23397.94 26090.35 30490.25 31993.96 34379.82 31695.94 34784.62 33776.69 35195.33 331
new_pmnet90.06 31189.00 31593.22 32594.18 33988.32 33696.42 32896.89 32286.19 33685.67 34593.62 34477.18 33697.10 33281.61 34489.29 29994.23 344
PM-MVS87.77 32086.55 32491.40 33391.03 35583.36 35296.92 30495.18 34591.28 28686.48 34293.42 34553.27 36196.74 33889.43 30381.97 34094.11 346
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 35492.12 27597.63 26296.95 31788.86 32484.91 34793.13 34678.32 32596.74 33888.70 30981.81 34194.09 347
new-patchmatchnet88.50 31987.45 32291.67 33290.31 35685.89 34797.16 29397.33 29989.47 31883.63 34992.77 34776.38 33895.06 35382.70 34177.29 35094.06 348
pmmvs386.67 32384.86 32692.11 33188.16 35787.19 34596.63 32294.75 34979.88 35187.22 33892.75 34866.56 35695.20 35281.24 34576.56 35293.96 349
ambc89.49 33586.66 35875.78 35892.66 35496.72 32886.55 34192.50 34946.01 36297.90 31390.32 28482.09 33894.80 342
PatchT93.06 28691.97 29196.35 24496.69 28092.67 27194.48 34997.08 30886.62 33397.08 14092.23 35087.94 21897.90 31378.89 35296.69 18898.49 188
RPMNet92.81 28891.34 29697.24 17597.00 26193.43 25494.96 34398.80 8782.27 34896.93 14892.12 35186.98 23899.82 6476.32 35696.65 19098.46 189
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32391.94 35188.77 32894.92 34598.30 20584.30 34682.30 35090.04 35263.96 35997.25 33085.85 32774.47 35593.93 350
LCM-MVSNet78.70 32576.24 33086.08 33777.26 36671.99 36194.34 35096.72 32861.62 35976.53 35489.33 35333.91 36892.78 35881.85 34374.60 35493.46 351
PMMVS277.95 32775.44 33185.46 33882.54 36174.95 35994.23 35193.08 35972.80 35674.68 35587.38 35436.36 36791.56 35973.95 35763.94 35989.87 354
JIA-IIPM93.35 27792.49 28495.92 26196.48 29190.65 30595.01 34296.96 31685.93 33996.08 18387.33 35587.70 22598.78 23091.35 27195.58 21798.34 194
PMVScopyleft61.03 2365.95 33163.57 33573.09 34657.90 36951.22 37085.05 36093.93 35854.45 36044.32 36683.57 35613.22 37089.15 36058.68 36181.00 34478.91 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 31788.40 31692.64 32797.58 21882.15 35494.16 35293.05 36075.73 35590.90 31382.52 35779.42 31998.33 27783.53 34098.68 12997.43 219
gg-mvs-nofinetune92.21 29490.58 30197.13 18296.75 27795.09 18995.85 33489.40 36485.43 34394.50 21281.98 35880.80 31298.40 27592.16 25398.33 14997.88 208
Gipumacopyleft78.40 32676.75 32983.38 34095.54 32280.43 35679.42 36297.40 29764.67 35873.46 35680.82 35945.65 36393.14 35766.32 35987.43 32076.56 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 32965.37 33380.22 34265.99 36871.96 36290.91 35790.09 36382.62 34749.93 36578.39 36029.36 36981.75 36262.49 36038.52 36386.95 357
E-PMN64.94 33264.25 33467.02 34782.28 36259.36 36791.83 35685.63 36652.69 36160.22 36277.28 36141.06 36580.12 36446.15 36341.14 36161.57 362
EMVS64.07 33363.26 33666.53 34881.73 36358.81 36891.85 35584.75 36751.93 36359.09 36375.13 36243.32 36479.09 36542.03 36439.47 36261.69 361
MVEpermissive62.14 2263.28 33459.38 33774.99 34474.33 36765.47 36385.55 35980.50 36952.02 36251.10 36475.00 36310.91 37380.50 36351.60 36253.40 36078.99 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 26792.30 28799.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7243.50 36495.90 4099.89 3597.85 4999.74 4199.78 13
testmvs21.48 33724.95 34011.09 35114.89 3716.47 37396.56 3249.87 3727.55 36717.93 36739.02 3659.43 3745.90 36916.56 36712.72 36620.91 364
test12320.95 33823.72 34112.64 35013.54 3728.19 37296.55 3256.13 3737.48 36816.74 36837.98 36612.97 3716.05 36816.69 3665.43 36723.68 363
test_post31.83 36788.83 19798.91 213
test_post196.68 32130.43 36887.85 22298.69 23492.59 243
wuyk23d30.17 33530.18 33930.16 34978.61 36543.29 37166.79 36314.21 37117.31 36614.82 36911.93 36911.55 37241.43 36737.08 36519.30 3655.76 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37094.51 850.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2699.81 1099.83 5
save fliter99.46 5198.38 3598.21 20198.71 11497.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 7098.88 4999.94 398.47 1799.81 1099.84 4
GSMVS99.20 130
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17799.20 130
sam_mvs88.99 190
MTGPAbinary98.74 104
MTMP98.89 8694.14 356
test9_res96.39 12599.57 7599.69 51
agg_prior295.87 14199.57 7599.68 57
agg_prior99.30 7598.38 3598.72 11097.57 12999.81 71
test_prior498.01 6297.86 244
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
旧先验297.57 26591.30 28498.67 5999.80 8095.70 151
新几何297.64 260
无先验97.58 26498.72 11091.38 27899.87 4493.36 22099.60 78
原ACMM297.67 258
testdata299.89 3591.65 268
segment_acmp96.85 11
testdata197.32 28196.34 74
test1299.18 4799.16 9998.19 5298.53 15698.07 8995.13 7099.72 10999.56 8099.63 73
plane_prior797.42 23494.63 210
plane_prior697.35 23994.61 21387.09 235
plane_prior598.56 15099.03 19496.07 13194.27 22296.92 240
plane_prior394.61 21397.02 4995.34 191
plane_prior298.80 10897.28 31
plane_prior197.37 238
plane_prior94.60 21598.44 17096.74 5794.22 224
n20.00 374
nn0.00 374
door-mid94.37 352
test1198.66 132
door94.64 350
HQP5-MVS94.25 229
HQP-NCC97.20 24898.05 22496.43 7094.45 214
ACMP_Plane97.20 24898.05 22496.43 7094.45 214
BP-MVS95.30 160
HQP4-MVS94.45 21498.96 20696.87 251
HQP3-MVS98.46 17194.18 226
HQP2-MVS86.75 241
MDTV_nov1_ep13_2view84.26 34996.89 31190.97 29497.90 10989.89 17093.91 20499.18 137
ACMMP++_ref92.97 254
ACMMP++93.61 242
Test By Simon94.64 80