This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
test_241102_ONE95.30 270.98 6594.06 1077.17 5193.10 195.39 982.99 197.27 7
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
IU-MVS95.30 271.25 5992.95 4966.81 23092.39 588.94 896.63 294.85 10
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10392.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8292.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test_part295.06 772.65 3191.80 10
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8691.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10489.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16174.31 11289.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8489.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7374.62 10788.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 10988.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5473.01 14088.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1492.84 6391.52 4294.75 173.93 12288.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2574.75 10488.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7888.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4280.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
canonicalmvs85.91 5185.87 5286.04 6989.84 11169.44 10290.45 6593.00 4276.70 6788.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
ZD-MVS94.38 2572.22 4592.67 6070.98 16887.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
alignmvs85.48 5785.32 5985.96 7089.51 11969.47 9989.74 8292.47 6776.17 7987.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 17087.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15487.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
旧先验286.56 17758.10 31687.04 3188.98 26774.07 132
Regformer-286.63 4286.53 4186.95 4889.33 12571.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10886.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
Regformer-186.41 4686.33 4286.64 5589.33 12570.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 9083.97 4790.63 9293.97 43
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3892.28 7575.07 9886.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9786.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3392.99 4473.54 13085.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22376.41 7185.80 4090.22 11974.15 3495.37 7781.82 6791.88 7692.65 100
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3492.27 7673.53 13185.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
RE-MVS-def85.48 5593.06 5770.63 7691.88 3492.27 7673.53 13185.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
testdata79.97 22790.90 9164.21 19884.71 25159.27 30985.40 4492.91 6762.02 15289.08 26568.95 17991.37 8486.63 278
Regformer-485.68 5685.45 5686.35 5988.95 14269.67 9488.29 12891.29 11781.73 585.36 4590.01 12472.62 4495.35 7883.28 5387.57 12594.03 39
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13385.26 4694.16 3962.75 13895.92 5382.46 6591.30 8691.81 126
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6185.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14385.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
Regformer-385.23 6285.07 6385.70 7288.95 14269.01 10688.29 12889.91 15580.95 885.01 4990.01 12472.45 4594.19 11982.50 6487.57 12593.90 47
TEST993.26 5172.96 2488.75 10891.89 9668.44 22185.00 5093.10 6274.36 3095.41 71
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21785.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6384.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9484.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4775.41 9084.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior288.85 10475.41 9084.91 5293.54 5174.28 3183.31 5095.86 18
test_893.13 5372.57 3488.68 11391.84 9968.69 21784.87 5693.10 6274.43 2795.16 82
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13884.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5984.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6384.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 22284.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13189.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 8071.39 15690.88 9093.07 85
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3776.73 6684.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 21284.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
VDD-MVS83.01 8882.36 9084.96 8891.02 8966.40 15888.91 10188.11 20377.57 3884.39 6593.29 5952.19 23593.91 13377.05 10888.70 11594.57 21
casdiffmvs85.11 6585.14 6285.01 8687.20 19965.77 17187.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17780.36 7994.35 5790.16 175
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3876.62 6884.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.90 6984.67 6985.59 7389.39 12368.66 12088.74 11092.64 6479.97 1784.10 6985.71 23769.32 7495.38 7480.82 7591.37 8492.72 95
VNet82.21 9682.41 8881.62 19190.82 9360.93 24884.47 22689.78 15776.36 7684.07 7091.88 8264.71 11690.26 24570.68 16188.89 11193.66 57
baseline84.93 6784.98 6484.80 9687.30 19765.39 17887.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3875.53 8883.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3176.07 8183.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6883.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7612.47 35767.45 8896.60 3183.06 5594.50 5294.07 37
DELS-MVS85.41 6085.30 6085.77 7188.49 15967.93 13385.52 20793.44 2778.70 2883.63 7889.03 15074.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LFMVS81.82 10481.23 10583.57 13491.89 7963.43 21689.84 7781.85 29277.04 5683.21 7993.10 6252.26 23493.43 15771.98 15189.95 10393.85 49
VDDNet81.52 10980.67 11284.05 12090.44 9964.13 20089.73 8385.91 24271.11 16583.18 8093.48 5450.54 25893.49 15373.40 14088.25 12194.54 22
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 12083.16 8191.07 10275.94 1595.19 8179.94 8394.38 5693.55 67
nrg03083.88 7283.53 7484.96 8886.77 20769.28 10390.46 6492.67 6074.79 10282.95 8291.33 9572.70 4393.09 17180.79 7779.28 22692.50 103
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7688.18 16867.85 13487.66 14589.73 16080.05 1682.95 8289.59 13470.74 6094.82 9980.66 7884.72 16093.28 77
MVS_Test83.15 8483.06 8083.41 13986.86 20363.21 22086.11 18992.00 9074.31 11282.87 8489.44 14270.03 6693.21 16277.39 10588.50 11993.81 53
DPM-MVS84.93 6784.29 7286.84 5090.20 10373.04 2287.12 15893.04 3869.80 19082.85 8591.22 9773.06 4196.02 4876.72 11394.63 4991.46 135
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5382.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 6082.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3191.62 10673.89 12382.67 8994.09 4262.60 13995.54 6580.93 7392.93 6693.57 66
CS-MVS84.76 7084.61 7085.22 8189.66 11366.43 15790.23 6993.56 2276.52 7082.59 9085.93 23270.41 6295.80 5579.93 8492.68 7193.42 71
Effi-MVS+83.62 7783.08 7985.24 7988.38 16467.45 14088.89 10289.15 17775.50 8982.27 9188.28 16969.61 7194.45 10977.81 10087.84 12393.84 51
EI-MVSNet-UG-set83.81 7383.38 7685.09 8487.87 17767.53 13987.44 15189.66 16279.74 1882.23 9289.41 14370.24 6594.74 10279.95 8283.92 16892.99 90
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14376.11 8082.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 119
diffmvs82.10 9781.88 9982.76 17283.00 26863.78 20683.68 24289.76 15872.94 14182.02 9489.85 12765.96 10590.79 23982.38 6687.30 13293.71 56
xiu_mvs_v1_base_debu80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
xiu_mvs_v1_base80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
xiu_mvs_v1_base_debi80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
新几何183.42 13793.13 5370.71 7485.48 24457.43 32181.80 9891.98 7963.28 12792.27 19564.60 21592.99 6587.27 261
test_yl81.17 11480.47 11683.24 14589.13 13763.62 20786.21 18689.95 15372.43 14681.78 9989.61 13257.50 19693.58 14770.75 15986.90 13792.52 101
DCV-MVSNet81.17 11480.47 11683.24 14589.13 13763.62 20786.21 18689.95 15372.43 14681.78 9989.61 13257.50 19693.58 14770.75 15986.90 13792.52 101
112180.84 12079.77 12784.05 12093.11 5570.78 7384.66 22085.42 24557.37 32281.76 10192.02 7863.41 12594.12 12267.28 19192.93 6687.26 262
MG-MVS83.41 8083.45 7583.28 14292.74 6662.28 23488.17 13389.50 16575.22 9581.49 10292.74 7366.75 9395.11 8472.85 14691.58 8192.45 106
CANet86.45 4386.10 4987.51 3790.09 10570.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
MVSFormer82.85 8982.05 9585.24 7987.35 19270.21 8290.50 6090.38 13968.55 21981.32 10389.47 13761.68 15493.46 15578.98 8790.26 9792.05 120
lupinMVS81.39 11280.27 12184.76 9787.35 19270.21 8285.55 20386.41 23462.85 28081.32 10388.61 15961.68 15492.24 19878.41 9590.26 9791.83 124
xiu_mvs_v2_base81.69 10581.05 10883.60 13289.15 13668.03 13284.46 22890.02 15170.67 17481.30 10686.53 22263.17 13194.19 11975.60 12288.54 11788.57 235
PS-MVSNAJ81.69 10581.02 10983.70 13189.51 11968.21 12984.28 23490.09 15070.79 17181.26 10785.62 24163.15 13294.29 11175.62 12188.87 11288.59 234
原ACMM184.35 10993.01 5968.79 11092.44 6863.96 27181.09 10891.57 8966.06 10295.45 6867.19 19494.82 4788.81 228
jason81.39 11280.29 12084.70 9886.63 20969.90 8985.95 19286.77 23063.24 27381.07 10989.47 13761.08 16892.15 20178.33 9690.07 10292.05 120
jason: jason.
OPM-MVS83.50 7882.95 8285.14 8288.79 15070.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17294.50 10879.67 8586.51 14489.97 191
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10268.74 11490.30 6890.13 14976.33 7780.87 11192.89 6861.00 16994.20 11872.45 15090.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6380.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 14178.89 14784.10 11790.60 9664.75 18888.95 10090.90 12865.97 24580.59 11391.17 9949.97 26393.73 14469.16 17782.70 18893.81 53
test_part182.78 9082.08 9484.89 9290.66 9566.97 15190.96 5192.93 5077.19 5080.53 11490.04 12363.44 12495.39 7376.04 11776.90 24692.31 110
MVS_111021_LR82.61 9382.11 9284.11 11688.82 14771.58 5685.15 21086.16 23974.69 10580.47 11591.04 10362.29 14690.55 24380.33 8090.08 10190.20 174
VPA-MVSNet80.60 13180.55 11480.76 21488.07 17260.80 25186.86 16691.58 10875.67 8780.24 11689.45 14163.34 12690.25 24670.51 16379.22 22791.23 140
Anonymous20240521178.25 18277.01 19081.99 18591.03 8860.67 25284.77 21883.90 26470.65 17680.00 11791.20 9841.08 32191.43 22265.21 20985.26 15593.85 49
test22291.50 8368.26 12784.16 23583.20 27854.63 33379.74 11891.63 8758.97 18591.42 8386.77 274
OMC-MVS82.69 9181.97 9884.85 9388.75 15267.42 14187.98 13690.87 12974.92 10179.72 11991.65 8562.19 14993.96 12675.26 12586.42 14593.16 83
CPTT-MVS83.73 7483.33 7784.92 9193.28 5070.86 7292.09 3290.38 13968.75 21679.57 12092.83 7060.60 17693.04 17580.92 7491.56 8290.86 151
IS-MVSNet83.15 8482.81 8484.18 11589.94 10963.30 21891.59 3988.46 20079.04 2579.49 12192.16 7665.10 11194.28 11267.71 18691.86 7994.95 5
PS-MVSNAJss82.07 9981.31 10384.34 11086.51 21067.27 14589.27 9091.51 11071.75 15579.37 12290.22 11963.15 13294.27 11377.69 10182.36 19191.49 133
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10464.47 19492.32 2690.73 13174.45 11179.35 12391.10 10069.05 7895.12 8372.78 14787.22 13394.13 34
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17779.17 12491.03 10564.12 11996.03 4768.39 18390.14 9991.50 132
ab-mvs79.51 15178.97 14681.14 20688.46 16160.91 24983.84 24089.24 17470.36 17979.03 12588.87 15363.23 13090.21 24765.12 21082.57 18992.28 112
EIA-MVS83.31 8382.80 8584.82 9489.59 11565.59 17388.21 13192.68 5974.66 10678.96 12686.42 22469.06 7795.26 7975.54 12390.09 10093.62 64
PVSNet_Blended_VisFu82.62 9281.83 10084.96 8890.80 9469.76 9288.74 11091.70 10569.39 19778.96 12688.46 16465.47 10894.87 9874.42 12888.57 11690.24 173
HQP_MVS83.64 7683.14 7885.14 8290.08 10668.71 11691.25 4692.44 6879.12 2378.92 12891.00 10660.42 17895.38 7478.71 8986.32 14691.33 137
plane_prior368.60 12178.44 3078.92 128
RRT_MVS79.88 14678.38 15784.38 10685.42 22470.60 7888.71 11288.75 19572.30 14878.83 13089.14 14544.44 30292.18 20078.50 9279.33 22590.35 169
EI-MVSNet80.52 13479.98 12382.12 18084.28 24063.19 22286.41 18088.95 18774.18 11778.69 13187.54 18766.62 9492.43 18972.57 14980.57 21090.74 155
MVSTER79.01 16677.88 17082.38 17883.07 26564.80 18784.08 23988.95 18769.01 21178.69 13187.17 19954.70 21592.43 18974.69 12780.57 21089.89 194
API-MVS81.99 10181.23 10584.26 11390.94 9070.18 8791.10 4989.32 16971.51 16178.66 13388.28 16965.26 10995.10 8764.74 21491.23 8787.51 255
UniMVSNet (Re)81.60 10881.11 10783.09 15288.38 16464.41 19587.60 14693.02 4178.42 3178.56 13488.16 17269.78 6993.26 16169.58 17376.49 25391.60 128
MAR-MVS81.84 10380.70 11185.27 7891.32 8571.53 5789.82 7890.92 12769.77 19178.50 13586.21 22862.36 14594.52 10765.36 20892.05 7589.77 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 12379.92 12483.47 13588.85 14464.51 19185.53 20589.39 16770.79 17178.49 13685.06 25367.54 8793.58 14767.03 19786.58 14292.32 109
FIs82.07 9982.42 8781.04 20988.80 14958.34 27288.26 13093.49 2576.93 5878.47 13791.04 10369.92 6892.34 19469.87 17084.97 15792.44 107
UniMVSNet_NR-MVSNet81.88 10281.54 10282.92 16188.46 16163.46 21487.13 15792.37 7280.19 1478.38 13889.14 14571.66 5393.05 17370.05 16776.46 25492.25 113
DU-MVS81.12 11680.52 11582.90 16287.80 18063.46 21487.02 16191.87 9879.01 2678.38 13889.07 14865.02 11293.05 17370.05 16776.46 25492.20 115
CLD-MVS82.31 9581.65 10184.29 11288.47 16067.73 13785.81 19892.35 7375.78 8378.33 14086.58 21964.01 12094.35 11076.05 11687.48 13090.79 152
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 17378.66 15078.76 24788.31 16655.72 31084.45 22986.63 23276.79 6278.26 14190.55 11359.30 18389.70 25566.63 19877.05 24490.88 150
V4279.38 15878.24 16282.83 16481.10 30365.50 17585.55 20389.82 15671.57 16078.21 14286.12 23060.66 17493.18 16675.64 12075.46 27089.81 198
BH-RMVSNet79.61 14978.44 15583.14 15089.38 12465.93 16684.95 21587.15 22573.56 12978.19 14389.79 12856.67 20493.36 15859.53 25486.74 14090.13 177
v2v48280.23 13979.29 14083.05 15583.62 25264.14 19987.04 16089.97 15273.61 12778.18 14487.22 19661.10 16793.82 13676.11 11576.78 25191.18 141
PVSNet_BlendedMVS80.60 13180.02 12282.36 17988.85 14465.40 17686.16 18892.00 9069.34 19978.11 14586.09 23166.02 10394.27 11371.52 15382.06 19387.39 257
PVSNet_Blended80.98 11780.34 11882.90 16288.85 14465.40 17684.43 23092.00 9067.62 22578.11 14585.05 25466.02 10394.27 11371.52 15389.50 10689.01 218
v114480.03 14379.03 14483.01 15783.78 25064.51 19187.11 15990.57 13571.96 15378.08 14786.20 22961.41 15993.94 12974.93 12677.23 24190.60 160
TranMVSNet+NR-MVSNet80.84 12080.31 11982.42 17787.85 17862.33 23287.74 14491.33 11680.55 1177.99 14889.86 12665.23 11092.62 18367.05 19675.24 27892.30 111
Baseline_NR-MVSNet78.15 18778.33 16077.61 26585.79 21756.21 30686.78 17085.76 24373.60 12877.93 14987.57 18565.02 11288.99 26667.14 19575.33 27487.63 251
TR-MVS77.44 20376.18 20881.20 20488.24 16763.24 21984.61 22486.40 23567.55 22677.81 15086.48 22354.10 22093.15 16757.75 27282.72 18787.20 263
v119279.59 15078.43 15683.07 15483.55 25464.52 19086.93 16490.58 13470.83 16977.78 15185.90 23359.15 18493.94 12973.96 13377.19 24390.76 153
PCF-MVS73.52 780.38 13678.84 14885.01 8687.71 18468.99 10783.65 24391.46 11463.00 27777.77 15290.28 11666.10 10095.09 8861.40 24088.22 12290.94 149
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 15279.22 14280.27 22388.79 15058.35 27185.06 21288.61 19878.56 2977.65 15388.34 16763.81 12390.66 24264.98 21277.22 24291.80 127
XVG-OURS80.41 13579.23 14183.97 12785.64 22069.02 10583.03 25590.39 13871.09 16677.63 15491.49 9254.62 21791.35 22475.71 11983.47 17691.54 130
v14419279.47 15378.37 15882.78 17083.35 25663.96 20286.96 16290.36 14269.99 18577.50 15585.67 23960.66 17493.77 14074.27 13076.58 25290.62 158
v192192079.22 16078.03 16582.80 16783.30 25863.94 20386.80 16890.33 14369.91 18877.48 15685.53 24258.44 18893.75 14273.60 13576.85 24990.71 156
thisisatest053079.40 15677.76 17584.31 11187.69 18665.10 18487.36 15284.26 26070.04 18477.42 15788.26 17149.94 26494.79 10170.20 16584.70 16193.03 87
FC-MVSNet-test81.52 10982.02 9680.03 22688.42 16355.97 30887.95 13893.42 2977.10 5477.38 15890.98 10869.96 6791.79 21268.46 18284.50 16292.33 108
v124078.99 16777.78 17382.64 17383.21 26063.54 21186.62 17590.30 14569.74 19477.33 15985.68 23857.04 20293.76 14173.13 14476.92 24590.62 158
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15987.93 14091.80 10073.82 12477.32 16090.66 11167.90 8494.90 9570.37 16489.48 10793.19 82
ACMM73.20 880.78 12879.84 12683.58 13389.31 13068.37 12489.99 7591.60 10770.28 18177.25 16189.66 13053.37 22693.53 15274.24 13182.85 18488.85 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 16295.11 8491.03 145
AUN-MVS79.21 16177.60 18084.05 12088.71 15367.61 13885.84 19687.26 22469.08 20777.23 16388.14 17653.20 22893.47 15475.50 12473.45 29491.06 144
HQP-NCC89.33 12589.17 9276.41 7177.23 163
ACMP_Plane89.33 12589.17 9276.41 7177.23 163
HQP-MVS82.61 9382.02 9684.37 10789.33 12566.98 14989.17 9292.19 8276.41 7177.23 16390.23 11860.17 18195.11 8477.47 10385.99 15191.03 145
TAPA-MVS73.13 979.15 16277.94 16782.79 16989.59 11562.99 22788.16 13491.51 11065.77 24677.14 16791.09 10160.91 17093.21 16250.26 30887.05 13592.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 10780.89 11083.99 12690.27 10164.00 20186.76 17291.77 10468.84 21577.13 16889.50 13567.63 8694.88 9767.55 18888.52 11893.09 84
UniMVSNet_ETH3D79.10 16478.24 16281.70 19086.85 20460.24 25887.28 15588.79 19074.25 11576.84 16990.53 11449.48 26991.56 21867.98 18482.15 19293.29 76
EPNet83.72 7582.92 8386.14 6684.22 24269.48 9891.05 5085.27 24681.30 776.83 17091.65 8566.09 10195.56 6276.00 11893.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 21176.75 20077.66 26388.13 16955.66 31185.12 21181.89 29073.04 13976.79 17188.90 15162.43 14487.78 28363.30 22271.18 30889.55 205
tttt051779.40 15677.91 16883.90 13088.10 17163.84 20488.37 12584.05 26271.45 16276.78 17289.12 14749.93 26694.89 9670.18 16683.18 18092.96 91
TAMVS78.89 17077.51 18283.03 15687.80 18067.79 13684.72 21985.05 24967.63 22476.75 17387.70 18162.25 14790.82 23858.53 26587.13 13490.49 164
XVG-OURS-SEG-HR80.81 12379.76 12883.96 12885.60 22168.78 11183.54 24890.50 13670.66 17576.71 17491.66 8460.69 17391.26 22676.94 11081.58 19891.83 124
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17593.37 5760.40 18096.75 2277.20 10693.73 6395.29 2
LPG-MVS_test82.08 9881.27 10484.50 10289.23 13368.76 11290.22 7191.94 9475.37 9276.64 17691.51 9054.29 21894.91 9378.44 9383.78 16989.83 196
LGP-MVS_train84.50 10289.23 13368.76 11291.94 9475.37 9276.64 17691.51 9054.29 21894.91 9378.44 9383.78 16989.83 196
tfpn200view976.42 22075.37 21979.55 23889.13 13757.65 28485.17 20883.60 26773.41 13476.45 17886.39 22552.12 23691.95 20748.33 31683.75 17189.07 211
thres40076.50 21775.37 21979.86 22989.13 13757.65 28485.17 20883.60 26773.41 13476.45 17886.39 22552.12 23691.95 20748.33 31683.75 17190.00 187
HyFIR lowres test77.53 20275.40 21783.94 12989.59 11566.62 15480.36 27888.64 19756.29 32876.45 17885.17 25057.64 19493.28 16061.34 24283.10 18291.91 122
mvs-test180.88 11879.40 13685.29 7785.13 23069.75 9389.28 8988.10 20474.99 9976.44 18186.72 20857.27 19994.26 11773.53 13683.18 18091.87 123
CDS-MVSNet79.07 16577.70 17783.17 14987.60 18768.23 12884.40 23286.20 23867.49 22776.36 18286.54 22161.54 15790.79 23961.86 23687.33 13190.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 21775.55 21379.33 23989.52 11856.99 29285.83 19783.23 27673.94 12176.32 18387.12 20051.89 24391.95 20748.33 31683.75 17189.07 211
thres600view776.50 21775.44 21579.68 23389.40 12257.16 28985.53 20583.23 27673.79 12576.26 18487.09 20151.89 24391.89 21048.05 32183.72 17490.00 187
UGNet80.83 12279.59 13284.54 10188.04 17368.09 13089.42 8788.16 20276.95 5776.22 18589.46 13949.30 27293.94 12968.48 18190.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 13879.32 13983.27 14383.98 24765.37 17990.50 6090.38 13968.55 21976.19 18688.70 15556.44 20593.46 15578.98 8780.14 21690.97 148
v14878.72 17277.80 17281.47 19582.73 27561.96 23886.30 18488.08 20673.26 13676.18 18785.47 24462.46 14392.36 19371.92 15273.82 29190.09 181
WTY-MVS75.65 23075.68 21175.57 28486.40 21156.82 29477.92 30482.40 28665.10 25376.18 18787.72 18063.13 13580.90 32160.31 24881.96 19489.00 220
mvs_anonymous79.42 15579.11 14380.34 22184.45 23957.97 27882.59 25787.62 21667.40 22876.17 18988.56 16268.47 8089.59 25670.65 16286.05 15093.47 70
Anonymous2023121178.97 16877.69 17882.81 16690.54 9764.29 19790.11 7391.51 11065.01 25676.16 19088.13 17750.56 25793.03 17669.68 17277.56 23991.11 143
bset_n11_16_dypcd77.12 20875.47 21482.06 18281.12 30265.99 16481.37 27183.20 27869.94 18776.09 19183.38 27547.75 28092.26 19678.51 9177.91 23587.95 243
thisisatest051577.33 20675.38 21883.18 14885.27 22663.80 20582.11 26283.27 27565.06 25475.91 19283.84 26749.54 26894.27 11367.24 19386.19 14891.48 134
RRT_test8_iter0578.38 18077.40 18381.34 20086.00 21558.86 26786.55 17891.26 11872.13 15275.91 19287.42 19044.97 29993.73 14477.02 10975.30 27591.45 136
CANet_DTU80.61 13079.87 12582.83 16485.60 22163.17 22387.36 15288.65 19676.37 7575.88 19488.44 16553.51 22593.07 17273.30 14189.74 10592.25 113
thres20075.55 23174.47 22978.82 24687.78 18357.85 28183.07 25483.51 27072.44 14575.84 19584.42 25952.08 23891.75 21347.41 32383.64 17586.86 272
CHOSEN 1792x268877.63 20175.69 21083.44 13689.98 10868.58 12278.70 29687.50 21956.38 32775.80 19686.84 20458.67 18691.40 22361.58 23985.75 15490.34 170
AdaColmapbinary80.58 13379.42 13584.06 11993.09 5668.91 10989.36 8888.97 18669.27 20075.70 19789.69 12957.20 20195.77 5763.06 22488.41 12087.50 256
cl_fuxian78.75 17177.91 16881.26 20282.89 27261.56 24384.09 23889.13 17969.97 18675.56 19884.29 26166.36 9892.09 20373.47 13975.48 26990.12 178
miper_ehance_all_eth78.59 17677.76 17581.08 20882.66 27761.56 24383.65 24389.15 17768.87 21475.55 19983.79 26966.49 9692.03 20473.25 14276.39 25689.64 202
miper_enhance_ethall77.87 19676.86 19480.92 21181.65 29161.38 24582.68 25688.98 18465.52 25075.47 20082.30 28765.76 10792.00 20672.95 14576.39 25689.39 207
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17672.94 2790.64 5692.14 8477.21 4975.47 20092.83 7058.56 18794.72 10373.24 14392.71 7092.13 118
jajsoiax79.29 15977.96 16683.27 14384.68 23666.57 15689.25 9190.16 14869.20 20475.46 20289.49 13645.75 29693.13 16976.84 11180.80 20690.11 179
IterMVS-LS80.06 14279.38 13782.11 18185.89 21663.20 22186.79 16989.34 16874.19 11675.45 20386.72 20866.62 9492.39 19172.58 14876.86 24890.75 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 15378.60 15182.05 18389.19 13565.91 16786.07 19088.52 19972.18 14975.42 20487.69 18261.15 16693.54 15160.38 24786.83 13986.70 276
mvs_tets79.13 16377.77 17483.22 14784.70 23566.37 15989.17 9290.19 14769.38 19875.40 20589.46 13944.17 30493.15 16776.78 11280.70 20890.14 176
HY-MVS69.67 1277.95 19377.15 18880.36 22087.57 19160.21 25983.37 25087.78 21466.11 24175.37 20687.06 20363.27 12890.48 24461.38 24182.43 19090.40 168
GBi-Net78.40 17877.40 18381.40 19787.60 18763.01 22488.39 12289.28 17071.63 15775.34 20787.28 19254.80 21191.11 22962.72 22579.57 21990.09 181
test178.40 17877.40 18381.40 19787.60 18763.01 22488.39 12289.28 17071.63 15775.34 20787.28 19254.80 21191.11 22962.72 22579.57 21990.09 181
FMVSNet377.88 19576.85 19580.97 21086.84 20562.36 23186.52 17988.77 19171.13 16475.34 20786.66 21554.07 22191.10 23262.72 22579.57 21989.45 206
CostFormer75.24 23673.90 23579.27 24082.65 27858.27 27380.80 27282.73 28461.57 29175.33 21083.13 27755.52 20791.07 23564.98 21278.34 23388.45 237
FMVSNet278.20 18577.21 18781.20 20487.60 18762.89 22887.47 15089.02 18271.63 15775.29 21187.28 19254.80 21191.10 23262.38 22979.38 22389.61 203
v879.97 14579.02 14582.80 16784.09 24464.50 19387.96 13790.29 14674.13 11975.24 21286.81 20562.88 13793.89 13574.39 12975.40 27290.00 187
anonymousdsp78.60 17577.15 18882.98 15980.51 30967.08 14787.24 15689.53 16465.66 24875.16 21387.19 19852.52 22992.25 19777.17 10779.34 22489.61 203
QAPM80.88 11879.50 13485.03 8588.01 17568.97 10891.59 3992.00 9066.63 23775.15 21492.16 7657.70 19395.45 6863.52 21888.76 11490.66 157
v1079.74 14878.67 14982.97 16084.06 24564.95 18587.88 14290.62 13373.11 13775.11 21586.56 22061.46 15894.05 12573.68 13475.55 26789.90 193
Vis-MVSNet (Re-imp)78.36 18178.45 15478.07 25888.64 15551.78 32986.70 17379.63 31374.14 11875.11 21590.83 10961.29 16389.75 25358.10 26991.60 8092.69 98
cl-mvsnet278.07 18977.01 19081.23 20382.37 28461.83 24083.55 24787.98 20868.96 21275.06 21783.87 26561.40 16091.88 21173.53 13676.39 25689.98 190
ACMP74.13 681.51 11180.57 11384.36 10889.42 12168.69 11989.97 7691.50 11374.46 11075.04 21890.41 11553.82 22394.54 10577.56 10282.91 18389.86 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 23068.74 11488.77 10788.10 20474.99 9974.97 21983.49 27357.27 19993.36 15873.53 13680.88 20491.18 141
XXY-MVS75.41 23475.56 21274.96 29083.59 25357.82 28280.59 27783.87 26566.54 23874.93 22088.31 16863.24 12980.09 32462.16 23276.85 24986.97 270
eth_miper_zixun_eth77.92 19476.69 20181.61 19383.00 26861.98 23783.15 25189.20 17669.52 19674.86 22184.35 26061.76 15392.56 18671.50 15572.89 29790.28 172
GA-MVS76.87 21375.17 22281.97 18682.75 27462.58 22981.44 27086.35 23772.16 15174.74 22282.89 27946.20 29192.02 20568.85 18081.09 20291.30 139
sss73.60 24873.64 23873.51 30082.80 27355.01 31376.12 31081.69 29362.47 28574.68 22385.85 23657.32 19878.11 33160.86 24580.93 20387.39 257
BH-w/o78.21 18477.33 18680.84 21288.81 14865.13 18384.87 21687.85 21369.75 19274.52 22484.74 25761.34 16193.11 17058.24 26885.84 15384.27 305
FMVSNet177.44 20376.12 20981.40 19786.81 20663.01 22488.39 12289.28 17070.49 17874.39 22587.28 19249.06 27591.11 22960.91 24478.52 22990.09 181
cl-mvsnet_77.72 19876.76 19880.58 21682.49 28160.48 25583.09 25287.87 21169.22 20274.38 22685.22 24962.10 15091.53 21971.09 15775.41 27189.73 201
cl-mvsnet177.72 19876.76 19880.58 21682.48 28260.48 25583.09 25287.86 21269.22 20274.38 22685.24 24862.10 15091.53 21971.09 15775.40 27289.74 200
114514_t80.68 12979.51 13384.20 11494.09 3667.27 14589.64 8591.11 12458.75 31474.08 22890.72 11058.10 18995.04 8969.70 17189.42 10890.30 171
WR-MVS_H78.51 17778.49 15378.56 25088.02 17456.38 30388.43 11892.67 6077.14 5273.89 22987.55 18666.25 9989.24 26258.92 26073.55 29390.06 185
tpm273.26 25371.46 25578.63 24883.34 25756.71 29780.65 27680.40 30656.63 32673.55 23082.02 29251.80 24591.24 22756.35 28278.42 23287.95 243
CP-MVSNet78.22 18378.34 15977.84 26087.83 17954.54 31587.94 13991.17 12277.65 3573.48 23188.49 16362.24 14888.43 27562.19 23174.07 28690.55 162
pm-mvs177.25 20776.68 20278.93 24584.22 24258.62 27086.41 18088.36 20171.37 16373.31 23288.01 17861.22 16589.15 26464.24 21673.01 29689.03 217
PS-CasMVS78.01 19278.09 16477.77 26287.71 18454.39 31788.02 13591.22 11977.50 4373.26 23388.64 15860.73 17188.41 27661.88 23573.88 29090.53 163
CVMVSNet72.99 25772.58 24674.25 29784.28 24050.85 33586.41 18083.45 27344.56 34373.23 23487.54 18749.38 27085.70 29665.90 20478.44 23186.19 283
PEN-MVS77.73 19777.69 17877.84 26087.07 20253.91 31987.91 14191.18 12177.56 4073.14 23588.82 15461.23 16489.17 26359.95 25072.37 29990.43 166
1112_ss77.40 20576.43 20580.32 22289.11 14160.41 25783.65 24387.72 21562.13 28873.05 23686.72 20862.58 14189.97 25062.11 23480.80 20690.59 161
tpm72.37 26371.71 25474.35 29682.19 28652.00 32779.22 29077.29 32464.56 26072.95 23783.68 27251.35 24883.26 31458.33 26775.80 26387.81 248
cascas76.72 21574.64 22582.99 15885.78 21865.88 16882.33 26089.21 17560.85 29672.74 23881.02 29847.28 28393.75 14267.48 18985.02 15689.34 208
CR-MVSNet73.37 25071.27 25979.67 23481.32 30065.19 18175.92 31280.30 30759.92 30372.73 23981.19 29552.50 23086.69 28959.84 25177.71 23687.11 268
RPMNet73.51 24970.49 26582.58 17581.32 30065.19 18175.92 31292.27 7657.60 32072.73 23976.45 33152.30 23395.43 7048.14 32077.71 23687.11 268
DTE-MVSNet76.99 21076.80 19677.54 26786.24 21253.06 32687.52 14890.66 13277.08 5572.50 24188.67 15760.48 17789.52 25757.33 27670.74 31090.05 186
Test_1112_low_res76.40 22175.44 21579.27 24089.28 13158.09 27481.69 26687.07 22659.53 30772.48 24286.67 21461.30 16289.33 26060.81 24680.15 21590.41 167
v7n78.97 16877.58 18183.14 15083.45 25565.51 17488.32 12691.21 12073.69 12672.41 24386.32 22757.93 19093.81 13769.18 17675.65 26590.11 179
SCA74.22 24272.33 24979.91 22884.05 24662.17 23579.96 28379.29 31566.30 24072.38 24480.13 30651.95 24188.60 27359.25 25677.67 23888.96 222
CNLPA78.08 18876.79 19781.97 18690.40 10071.07 6487.59 14784.55 25466.03 24472.38 24489.64 13157.56 19586.04 29459.61 25383.35 17788.79 229
NR-MVSNet80.23 13979.38 13782.78 17087.80 18063.34 21786.31 18391.09 12579.01 2672.17 24689.07 14867.20 9192.81 18266.08 20375.65 26592.20 115
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22769.91 8890.57 5890.97 12666.70 23372.17 24691.91 8054.70 21593.96 12661.81 23790.95 8988.41 239
MVS78.19 18676.99 19281.78 18885.66 21966.99 14884.66 22090.47 13755.08 33272.02 24885.27 24763.83 12294.11 12466.10 20289.80 10484.24 306
XVG-ACMP-BASELINE76.11 22574.27 23281.62 19183.20 26164.67 18983.60 24689.75 15969.75 19271.85 24987.09 20132.78 34392.11 20269.99 16980.43 21288.09 242
PatchmatchNetpermissive73.12 25571.33 25878.49 25383.18 26260.85 25079.63 28578.57 31764.13 26571.73 25079.81 31151.20 25085.97 29557.40 27576.36 25988.66 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 26172.13 25073.18 30480.54 30849.91 33879.91 28479.08 31663.11 27571.69 25179.95 30855.32 20882.77 31665.66 20773.89 28986.87 271
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22357.10 29186.78 17086.09 24172.17 15071.53 25287.34 19163.01 13689.31 26156.84 27961.83 33287.17 264
Fast-Effi-MVS+-dtu78.02 19176.49 20482.62 17483.16 26466.96 15286.94 16387.45 22172.45 14371.49 25384.17 26254.79 21491.58 21767.61 18780.31 21389.30 209
PAPM77.68 20076.40 20681.51 19487.29 19861.85 23983.78 24189.59 16364.74 25871.23 25488.70 15562.59 14093.66 14652.66 29587.03 13689.01 218
tfpnnormal74.39 23973.16 24278.08 25786.10 21458.05 27584.65 22387.53 21870.32 18071.22 25585.63 24054.97 21089.86 25143.03 33775.02 27986.32 280
RPSCF73.23 25471.46 25578.54 25182.50 28059.85 26082.18 26182.84 28358.96 31171.15 25689.41 14345.48 29884.77 30458.82 26271.83 30491.02 147
DWT-MVSNet_test73.70 24771.86 25279.21 24282.91 27158.94 26682.34 25982.17 28765.21 25171.05 25778.31 32044.21 30390.17 24863.29 22377.28 24088.53 236
PatchT68.46 29067.85 28570.29 31680.70 30643.93 34872.47 32574.88 33160.15 30170.55 25876.57 33049.94 26481.59 31950.58 30274.83 28185.34 294
CL-MVSNet_2432*160072.37 26371.46 25575.09 28979.49 32253.53 32180.76 27485.01 25069.12 20670.51 25982.05 29157.92 19184.13 30752.27 29666.00 32587.60 252
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 27664.85 18681.57 26883.47 27269.16 20570.49 26084.15 26351.95 24188.15 27869.23 17572.14 30287.34 259
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31259.62 26272.23 32686.92 22966.76 23270.40 26182.92 27856.93 20382.92 31569.06 17872.63 29888.87 225
gg-mvs-nofinetune69.95 28067.96 28375.94 28083.07 26554.51 31677.23 30770.29 34163.11 27570.32 26262.33 34443.62 30688.69 27253.88 29087.76 12484.62 304
DP-MVS76.78 21474.57 22683.42 13793.29 4969.46 10188.55 11783.70 26663.98 27070.20 26388.89 15254.01 22294.80 10046.66 32581.88 19686.01 288
pmmvs674.69 23873.39 23978.61 24981.38 29757.48 28786.64 17487.95 20964.99 25770.18 26486.61 21650.43 25989.52 25762.12 23370.18 31288.83 227
PVSNet64.34 1872.08 26570.87 26475.69 28286.21 21356.44 30174.37 32280.73 30062.06 28970.17 26582.23 28942.86 31083.31 31354.77 28784.45 16487.32 260
131476.53 21675.30 22180.21 22483.93 24862.32 23384.66 22088.81 18960.23 30070.16 26684.07 26455.30 20990.73 24167.37 19083.21 17987.59 254
Patchmtry70.74 27169.16 27375.49 28680.72 30554.07 31874.94 32180.30 30758.34 31570.01 26781.19 29552.50 23086.54 29053.37 29271.09 30985.87 291
EPMVS69.02 28568.16 28071.59 30879.61 32049.80 34077.40 30666.93 34862.82 28170.01 26779.05 31345.79 29477.86 33356.58 28075.26 27787.13 267
IterMVS74.29 24072.94 24478.35 25481.53 29463.49 21381.58 26782.49 28568.06 22369.99 26983.69 27151.66 24785.54 29765.85 20571.64 30586.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 25872.43 24774.48 29481.35 29858.04 27678.38 29777.46 32266.66 23469.95 27079.00 31548.06 27879.24 32566.13 20084.83 15886.15 284
test-mter71.41 26770.39 26874.48 29481.35 29858.04 27678.38 29777.46 32260.32 29969.95 27079.00 31536.08 33779.24 32566.13 20084.83 15886.15 284
pmmvs474.03 24571.91 25180.39 21981.96 28868.32 12581.45 26982.14 28859.32 30869.87 27285.13 25152.40 23288.13 27960.21 24974.74 28284.73 302
PLCcopyleft70.83 1178.05 19076.37 20783.08 15391.88 8067.80 13588.19 13289.46 16664.33 26469.87 27288.38 16653.66 22493.58 14758.86 26182.73 18687.86 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 22374.54 22881.41 19688.60 15664.38 19679.24 28989.12 18070.76 17369.79 27487.86 17949.09 27493.20 16456.21 28380.16 21486.65 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 21274.82 22483.37 14090.45 9867.36 14489.15 9686.94 22861.87 29069.52 27590.61 11251.71 24694.53 10646.38 32886.71 14188.21 241
IB-MVS68.01 1575.85 22873.36 24083.31 14184.76 23466.03 16283.38 24985.06 24870.21 18369.40 27681.05 29745.76 29594.66 10465.10 21175.49 26889.25 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 26270.90 26276.80 27688.60 15667.38 14379.53 28676.17 32862.75 28269.36 27782.00 29345.51 29784.89 30353.62 29180.58 20978.12 338
MDTV_nov1_ep1369.97 27083.18 26253.48 32277.10 30880.18 31060.45 29769.33 27880.44 30348.89 27686.90 28851.60 29978.51 230
D2MVS74.82 23773.21 24179.64 23579.81 31662.56 23080.34 27987.35 22264.37 26368.86 27982.66 28346.37 28890.10 24967.91 18581.24 20186.25 281
PMMVS69.34 28368.67 27571.35 31275.67 33662.03 23675.17 31673.46 33650.00 34168.68 28079.05 31352.07 23978.13 33061.16 24382.77 18573.90 342
Patchmatch-RL test70.24 27767.78 28877.61 26577.43 33059.57 26471.16 32870.33 34062.94 27968.65 28172.77 33850.62 25685.49 29869.58 17366.58 32387.77 249
MS-PatchMatch73.83 24672.67 24577.30 27083.87 24966.02 16381.82 26384.66 25261.37 29468.61 28282.82 28147.29 28288.21 27759.27 25584.32 16577.68 339
tpm cat170.57 27368.31 27877.35 26982.41 28357.95 27978.08 30180.22 30952.04 33868.54 28377.66 32652.00 24087.84 28251.77 29772.07 30386.25 281
TESTMET0.1,169.89 28169.00 27472.55 30579.27 32556.85 29378.38 29774.71 33457.64 31968.09 28477.19 32837.75 33276.70 33663.92 21784.09 16784.10 309
MIMVSNet70.69 27269.30 27174.88 29184.52 23756.35 30475.87 31479.42 31464.59 25967.76 28582.41 28541.10 32081.54 32046.64 32781.34 19986.75 275
ACMH+68.96 1476.01 22674.01 23382.03 18488.60 15665.31 18088.86 10387.55 21770.25 18267.75 28687.47 18941.27 31993.19 16558.37 26675.94 26287.60 252
LCM-MVSNet-Re77.05 20976.94 19377.36 26887.20 19951.60 33080.06 28180.46 30575.20 9667.69 28786.72 20862.48 14288.98 26763.44 22089.25 10991.51 131
ITE_SJBPF78.22 25581.77 29060.57 25383.30 27469.25 20167.54 28887.20 19736.33 33687.28 28754.34 28874.62 28386.80 273
pmmvs571.55 26670.20 26975.61 28377.83 32856.39 30281.74 26580.89 29757.76 31867.46 28984.49 25849.26 27385.32 30057.08 27875.29 27685.11 298
MVP-Stereo76.12 22474.46 23081.13 20785.37 22569.79 9184.42 23187.95 20965.03 25567.46 28985.33 24653.28 22791.73 21558.01 27083.27 17881.85 325
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 25970.44 26679.84 23088.13 16965.99 16485.93 19384.29 25865.57 24967.40 29185.49 24346.92 28592.61 18435.88 34674.38 28580.94 330
GG-mvs-BLEND75.38 28781.59 29355.80 30979.32 28869.63 34367.19 29273.67 33743.24 30788.90 27150.41 30384.50 16281.45 327
tpmvs71.09 26969.29 27276.49 27782.04 28756.04 30778.92 29481.37 29664.05 26867.18 29378.28 32149.74 26789.77 25249.67 31172.37 29983.67 311
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25159.59 26385.92 19486.64 23166.39 23966.96 29487.58 18439.46 32591.60 21665.76 20669.27 31488.22 240
baseline275.70 22973.83 23781.30 20183.26 25961.79 24182.57 25880.65 30166.81 23066.88 29583.42 27457.86 19292.19 19963.47 21979.57 21989.91 192
MVS_030472.48 26070.89 26377.24 27182.20 28559.68 26184.11 23783.49 27167.10 22966.87 29680.59 30235.00 34087.40 28559.07 25979.58 21884.63 303
F-COLMAP76.38 22274.33 23182.50 17689.28 13166.95 15388.41 12189.03 18164.05 26866.83 29788.61 15946.78 28692.89 17857.48 27378.55 22887.67 250
ACMH67.68 1675.89 22773.93 23481.77 18988.71 15366.61 15588.62 11489.01 18369.81 18966.78 29886.70 21341.95 31891.51 22155.64 28478.14 23487.17 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 168.00 29167.69 28968.90 32177.55 32947.43 34275.70 31572.95 33866.66 23466.56 29982.29 28848.06 27875.87 34044.97 33474.51 28483.41 313
MDTV_nov1_ep13_2view37.79 35375.16 31755.10 33166.53 30049.34 27153.98 28987.94 245
KD-MVS_2432*160066.22 30263.89 30373.21 30175.47 33953.42 32370.76 33184.35 25664.10 26666.52 30178.52 31834.55 34184.98 30150.40 30450.33 34781.23 328
miper_refine_blended66.22 30263.89 30373.21 30175.47 33953.42 32370.76 33184.35 25664.10 26666.52 30178.52 31834.55 34184.98 30150.40 30450.33 34781.23 328
ET-MVSNet_ETH3D78.63 17476.63 20384.64 9986.73 20869.47 9985.01 21384.61 25369.54 19566.51 30386.59 21750.16 26191.75 21376.26 11484.24 16692.69 98
EU-MVSNet68.53 28967.61 29071.31 31378.51 32747.01 34484.47 22684.27 25942.27 34466.44 30484.79 25640.44 32383.76 30958.76 26368.54 31983.17 315
EPNet_dtu75.46 23274.86 22377.23 27282.57 27954.60 31486.89 16583.09 28071.64 15666.25 30585.86 23555.99 20688.04 28054.92 28686.55 14389.05 216
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 28767.80 28771.02 31480.23 31150.75 33678.30 30080.47 30456.79 32566.11 30682.63 28446.35 28978.95 32743.62 33675.70 26483.36 314
SixPastTwentyTwo73.37 25071.26 26079.70 23285.08 23257.89 28085.57 19983.56 26971.03 16765.66 30785.88 23442.10 31692.57 18559.11 25863.34 33188.65 233
MSDG73.36 25270.99 26180.49 21884.51 23865.80 16980.71 27586.13 24065.70 24765.46 30883.74 27044.60 30090.91 23751.13 30176.89 24784.74 301
OpenMVS_ROBcopyleft64.09 1970.56 27468.19 27977.65 26480.26 31059.41 26585.01 21382.96 28258.76 31365.43 30982.33 28637.63 33391.23 22845.34 33376.03 26182.32 322
ppachtmachnet_test70.04 27967.34 29278.14 25679.80 31761.13 24679.19 29180.59 30259.16 31065.27 31079.29 31246.75 28787.29 28649.33 31266.72 32186.00 290
ADS-MVSNet266.20 30463.33 30674.82 29279.92 31458.75 26967.55 34175.19 33053.37 33565.25 31175.86 33242.32 31380.53 32341.57 34068.91 31685.18 295
ADS-MVSNet64.36 30862.88 31068.78 32379.92 31447.17 34367.55 34171.18 33953.37 33565.25 31175.86 33242.32 31373.99 34741.57 34068.91 31685.18 295
testgi66.67 29866.53 29667.08 32675.62 33741.69 35175.93 31176.50 32766.11 24165.20 31386.59 21735.72 33874.71 34443.71 33573.38 29584.84 300
PM-MVS66.41 30064.14 30273.20 30373.92 34256.45 30078.97 29364.96 35263.88 27264.72 31480.24 30519.84 35383.44 31266.24 19964.52 32979.71 335
JIA-IIPM66.32 30162.82 31176.82 27577.09 33261.72 24265.34 34475.38 32958.04 31764.51 31562.32 34542.05 31786.51 29151.45 30069.22 31582.21 323
ambc75.24 28873.16 34650.51 33763.05 34887.47 22064.28 31677.81 32517.80 35489.73 25457.88 27160.64 33585.49 292
EG-PatchMatch MVS74.04 24471.82 25380.71 21584.92 23367.42 14185.86 19588.08 20666.04 24364.22 31783.85 26635.10 33992.56 18657.44 27480.83 20582.16 324
dp66.80 29665.43 29870.90 31579.74 31948.82 34175.12 31974.77 33259.61 30564.08 31877.23 32742.89 30980.72 32248.86 31466.58 32383.16 316
DIV-MVS_2432*160068.81 28667.59 29172.46 30674.29 34145.45 34577.93 30387.00 22763.12 27463.99 31978.99 31742.32 31384.77 30456.55 28164.09 33087.16 266
pmmvs-eth3d70.50 27567.83 28678.52 25277.37 33166.18 16181.82 26381.51 29458.90 31263.90 32080.42 30442.69 31186.28 29358.56 26465.30 32783.11 317
COLMAP_ROBcopyleft66.92 1773.01 25670.41 26780.81 21387.13 20165.63 17288.30 12784.19 26162.96 27863.80 32187.69 18238.04 33192.56 18646.66 32574.91 28084.24 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 28267.96 28374.15 29882.97 27055.35 31280.01 28282.12 28962.56 28463.02 32281.53 29436.92 33481.92 31848.42 31574.06 28785.17 297
test20.0367.45 29366.95 29468.94 32075.48 33844.84 34777.50 30577.67 32166.66 23463.01 32383.80 26847.02 28478.40 32942.53 33968.86 31883.58 312
K. test v371.19 26868.51 27679.21 24283.04 26757.78 28384.35 23376.91 32672.90 14262.99 32482.86 28039.27 32691.09 23461.65 23852.66 34488.75 230
our_test_369.14 28467.00 29375.57 28479.80 31758.80 26877.96 30277.81 32059.55 30662.90 32578.25 32247.43 28183.97 30851.71 29867.58 32083.93 310
CHOSEN 280x42066.51 29964.71 30071.90 30781.45 29563.52 21257.98 34968.95 34753.57 33462.59 32676.70 32946.22 29075.29 34355.25 28579.68 21776.88 341
USDC70.33 27668.37 27776.21 27980.60 30756.23 30579.19 29186.49 23360.89 29561.29 32785.47 24431.78 34689.47 25953.37 29276.21 26082.94 321
lessismore_v078.97 24481.01 30457.15 29065.99 34961.16 32882.82 28139.12 32791.34 22559.67 25246.92 34988.43 238
UnsupCasMVSNet_eth67.33 29465.99 29771.37 31073.48 34451.47 33275.16 31785.19 24765.20 25260.78 32980.93 30142.35 31277.20 33557.12 27753.69 34385.44 293
AllTest70.96 27068.09 28279.58 23685.15 22863.62 20784.58 22579.83 31162.31 28660.32 33086.73 20632.02 34488.96 26950.28 30671.57 30686.15 284
TestCases79.58 23685.15 22863.62 20779.83 31162.31 28660.32 33086.73 20632.02 34488.96 26950.28 30671.57 30686.15 284
Patchmatch-test64.82 30763.24 30769.57 31879.42 32349.82 33963.49 34769.05 34651.98 33959.95 33280.13 30650.91 25270.98 34940.66 34273.57 29287.90 246
MIMVSNet168.58 28866.78 29573.98 29980.07 31351.82 32880.77 27384.37 25564.40 26259.75 33382.16 29036.47 33583.63 31142.73 33870.33 31186.48 279
LF4IMVS64.02 30962.19 31269.50 31970.90 34953.29 32576.13 30977.18 32552.65 33758.59 33480.98 29923.55 35076.52 33753.06 29466.66 32278.68 337
PVSNet_057.27 2061.67 31259.27 31568.85 32279.61 32057.44 28868.01 34073.44 33755.93 32958.54 33570.41 34144.58 30177.55 33447.01 32435.91 35071.55 344
TDRefinement67.49 29264.34 30176.92 27473.47 34561.07 24784.86 21782.98 28159.77 30458.30 33685.13 25126.06 34887.89 28147.92 32260.59 33681.81 326
UnsupCasMVSNet_bld63.70 31061.53 31470.21 31773.69 34351.39 33372.82 32481.89 29055.63 33057.81 33771.80 34038.67 32878.61 32849.26 31352.21 34580.63 331
DSMNet-mixed57.77 31556.90 31760.38 33067.70 35135.61 35469.18 33653.97 35532.30 35357.49 33879.88 30940.39 32468.57 35138.78 34472.37 29976.97 340
N_pmnet52.79 31853.26 31951.40 33578.99 3267.68 36469.52 3343.89 36351.63 34057.01 33974.98 33540.83 32265.96 35237.78 34564.67 32880.56 333
new-patchmatchnet61.73 31161.73 31361.70 32972.74 34824.50 36169.16 33778.03 31961.40 29256.72 34075.53 33438.42 32976.48 33845.95 33057.67 33884.13 308
CMPMVSbinary51.72 2170.19 27868.16 28076.28 27873.15 34757.55 28679.47 28783.92 26348.02 34256.48 34184.81 25543.13 30886.42 29262.67 22881.81 19784.89 299
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 29564.81 29974.76 29381.92 28956.68 29880.29 28081.49 29560.33 29856.27 34283.22 27624.77 34987.66 28445.52 33169.47 31379.95 334
YYNet165.03 30562.91 30971.38 30975.85 33556.60 29969.12 33874.66 33557.28 32354.12 34377.87 32445.85 29374.48 34549.95 30961.52 33483.05 318
MDA-MVSNet_test_wron65.03 30562.92 30871.37 31075.93 33456.73 29569.09 33974.73 33357.28 32354.03 34477.89 32345.88 29274.39 34649.89 31061.55 33382.99 320
pmmvs357.79 31454.26 31868.37 32464.02 35356.72 29675.12 31965.17 35040.20 34652.93 34569.86 34220.36 35275.48 34245.45 33255.25 34272.90 343
MVS-HIRNet59.14 31357.67 31663.57 32881.65 29143.50 34971.73 32765.06 35139.59 34851.43 34657.73 34838.34 33082.58 31739.53 34373.95 28864.62 347
MDA-MVSNet-bldmvs66.68 29763.66 30575.75 28179.28 32460.56 25473.92 32378.35 31864.43 26150.13 34779.87 31044.02 30583.67 31046.10 32956.86 33983.03 319
new_pmnet50.91 31950.29 32152.78 33468.58 35034.94 35663.71 34656.63 35439.73 34744.95 34865.47 34321.93 35158.48 35334.98 34756.62 34064.92 346
FPMVS53.68 31751.64 32059.81 33165.08 35251.03 33469.48 33569.58 34441.46 34540.67 34972.32 33916.46 35670.00 35024.24 35165.42 32658.40 348
LCM-MVSNet54.25 31649.68 32267.97 32553.73 35645.28 34666.85 34380.78 29935.96 35039.45 35062.23 3468.70 36178.06 33248.24 31951.20 34680.57 332
PMMVS240.82 32338.86 32646.69 33653.84 35516.45 36248.61 35249.92 35637.49 34931.67 35160.97 3478.14 36256.42 35428.42 34930.72 35167.19 345
ANet_high50.57 32046.10 32363.99 32748.67 35939.13 35270.99 33080.85 29861.39 29331.18 35257.70 34917.02 35573.65 34831.22 34815.89 35679.18 336
Gipumacopyleft45.18 32141.86 32455.16 33377.03 33351.52 33132.50 35580.52 30332.46 35227.12 35335.02 3539.52 36075.50 34122.31 35260.21 33738.45 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 32240.28 32555.82 33240.82 36142.54 35065.12 34563.99 35334.43 35124.48 35457.12 3503.92 36376.17 33917.10 35455.52 34148.75 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 34040.17 36226.90 35924.59 36217.44 35723.95 35548.61 3519.77 35926.48 35818.06 35324.47 35228.83 352
tmp_tt18.61 32821.40 33110.23 3424.82 36310.11 36334.70 35430.74 3611.48 35923.91 35626.07 35628.42 34713.41 36027.12 35015.35 3577.17 355
MVEpermissive26.22 2330.37 32625.89 33043.81 33744.55 36035.46 35528.87 35639.07 35918.20 35618.58 35740.18 3522.68 36447.37 35717.07 35523.78 35348.60 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 32430.64 32735.15 33852.87 35727.67 35857.09 35047.86 35724.64 35416.40 35833.05 35411.23 35854.90 35514.46 35618.15 35422.87 353
EMVS30.81 32529.65 32834.27 33950.96 35825.95 36056.58 35146.80 35824.01 35515.53 35930.68 35512.47 35754.43 35612.81 35717.05 35522.43 354
wuyk23d16.82 32915.94 33219.46 34158.74 35431.45 35739.22 3533.74 3646.84 3586.04 3602.70 3601.27 36524.29 35910.54 35814.40 3582.63 356
testmvs6.04 3328.02 3350.10 3440.08 3640.03 36669.74 3330.04 3650.05 3600.31 3611.68 3610.02 3670.04 3610.24 3590.02 3590.25 358
test1236.12 3318.11 3340.14 3430.06 3650.09 36571.05 3290.03 3660.04 3610.25 3621.30 3620.05 3660.03 3620.21 3600.01 3600.29 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k19.96 32726.61 3290.00 3450.00 3660.00 3670.00 35789.26 1730.00 3620.00 36388.61 15961.62 1560.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas5.26 3337.02 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36363.15 1320.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.23 3309.64 3330.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36386.72 2080.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
save fliter93.80 3972.35 4290.47 6291.17 12274.31 112
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
GSMVS88.96 222
sam_mvs151.32 24988.96 222
sam_mvs50.01 262
MTGPAbinary92.02 87
test_post178.90 2955.43 35948.81 27785.44 29959.25 256
test_post5.46 35850.36 26084.24 306
patchmatchnet-post74.00 33651.12 25188.60 273
MTMP92.18 3032.83 360
gm-plane-assit81.40 29653.83 32062.72 28380.94 30092.39 19163.40 221
test9_res84.90 3095.70 2792.87 93
agg_prior282.91 5895.45 2992.70 96
test_prior472.60 3389.01 99
test_prior86.33 6092.61 6969.59 9592.97 4795.48 6693.91 45
新几何286.29 185
旧先验191.96 7765.79 17086.37 23693.08 6669.31 7592.74 6988.74 231
无先验87.48 14988.98 18460.00 30294.12 12267.28 19188.97 221
原ACMM286.86 166
testdata291.01 23662.37 230
segment_acmp73.08 40
testdata184.14 23675.71 84
plane_prior790.08 10668.51 123
plane_prior689.84 11168.70 11860.42 178
plane_prior592.44 6895.38 7478.71 8986.32 14691.33 137
plane_prior491.00 106
plane_prior291.25 4679.12 23
plane_prior189.90 110
plane_prior68.71 11690.38 6677.62 3686.16 149
n20.00 367
nn0.00 367
door-mid69.98 342
test1192.23 79
door69.44 345
HQP5-MVS66.98 149
BP-MVS77.47 103
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 181
NP-MVS89.62 11468.32 12590.24 117
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117