This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8292.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8691.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10392.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4280.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8489.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10489.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 10988.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
9.1488.26 1492.84 6391.52 4294.75 173.93 12288.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7374.62 10788.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7888.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16174.31 11289.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6185.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2574.75 10488.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9786.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5473.01 14088.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6384.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 17087.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15487.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5984.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13884.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6384.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3776.73 6684.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9484.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3176.07 8183.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6883.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5382.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4775.41 9084.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10886.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3876.62 6884.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-286.63 4286.53 4186.95 4889.33 12571.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
Regformer-186.41 4686.33 4286.64 5589.33 12570.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 9083.97 4790.63 9293.97 43
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 6082.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3875.53 8883.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3892.28 7575.07 9886.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21785.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 12083.16 8191.07 10275.94 1595.19 8179.94 8394.38 5693.55 67
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14385.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
CANet86.45 4386.10 4987.51 3790.09 10570.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 21284.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3392.99 4473.54 13085.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
canonicalmvs85.91 5185.87 5286.04 6989.84 11169.44 10290.45 6593.00 4276.70 6788.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17780.36 7994.35 5790.16 175
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3492.27 7673.53 13185.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
RE-MVS-def85.48 5593.06 5770.63 7691.88 3492.27 7673.53 13185.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
Regformer-485.68 5685.45 5686.35 5988.95 14269.67 9488.29 12891.29 11781.73 585.36 4590.01 12472.62 4495.35 7883.28 5387.57 12594.03 39
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6380.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22376.41 7185.80 4090.22 11974.15 3495.37 7781.82 6791.88 7692.65 100
alignmvs85.48 5785.32 5985.96 7089.51 11969.47 9989.74 8292.47 6776.17 7987.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
DELS-MVS85.41 6085.30 6085.77 7188.49 15967.93 13385.52 20793.44 2778.70 2883.63 7889.03 15074.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 22284.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
casdiffmvs85.11 6585.14 6285.01 8687.20 19965.77 17187.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
Regformer-385.23 6285.07 6385.70 7288.95 14269.01 10688.29 12889.91 15580.95 885.01 4990.01 12472.45 4594.19 11982.50 6487.57 12593.90 47
baseline84.93 6784.98 6484.80 9687.30 19765.39 17887.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13189.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 8071.39 15690.88 9093.07 85
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13385.26 4694.16 3962.75 13895.92 5382.46 6591.30 8691.81 126
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3191.62 10673.89 12382.67 8994.09 4262.60 13995.54 6580.93 7392.93 6693.57 66
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14376.11 8082.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 119
ETV-MVS84.90 6984.67 6985.59 7389.39 12368.66 12088.74 11092.64 6479.97 1784.10 6985.71 23769.32 7495.38 7480.82 7591.37 8492.72 95
CS-MVS84.76 7084.61 7085.22 8189.66 11366.43 15790.23 6993.56 2276.52 7082.59 9085.93 23270.41 6295.80 5579.93 8492.68 7193.42 71
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17593.37 5760.40 18096.75 2277.20 10693.73 6395.29 2
DPM-MVS84.93 6784.29 7286.84 5090.20 10373.04 2287.12 15893.04 3869.80 19082.85 8591.22 9773.06 4196.02 4876.72 11394.63 4991.46 135
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7688.18 16867.85 13487.66 14589.73 16080.05 1682.95 8289.59 13470.74 6094.82 9980.66 7884.72 16093.28 77
nrg03083.88 7283.53 7484.96 8886.77 20769.28 10390.46 6492.67 6074.79 10282.95 8291.33 9572.70 4393.09 17180.79 7779.28 22692.50 103
MG-MVS83.41 8083.45 7583.28 14292.74 6662.28 23488.17 13389.50 16575.22 9581.49 10292.74 7366.75 9395.11 8472.85 14691.58 8192.45 106
EI-MVSNet-UG-set83.81 7383.38 7685.09 8487.87 17767.53 13987.44 15189.66 16279.74 1882.23 9289.41 14370.24 6594.74 10279.95 8283.92 16892.99 90
CPTT-MVS83.73 7483.33 7784.92 9193.28 5070.86 7292.09 3290.38 13968.75 21679.57 12092.83 7060.60 17693.04 17580.92 7491.56 8290.86 151
HQP_MVS83.64 7683.14 7885.14 8290.08 10668.71 11691.25 4692.44 6879.12 2378.92 12891.00 10660.42 17895.38 7478.71 8986.32 14691.33 137
Effi-MVS+83.62 7783.08 7985.24 7988.38 16467.45 14088.89 10289.15 17775.50 8982.27 9188.28 16969.61 7194.45 10977.81 10087.84 12393.84 51
MVS_Test83.15 8483.06 8083.41 13986.86 20363.21 22086.11 18992.00 9074.31 11282.87 8489.44 14270.03 6693.21 16277.39 10588.50 11993.81 53
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10464.47 19492.32 2690.73 13174.45 11179.35 12391.10 10069.05 7895.12 8372.78 14787.22 13394.13 34
OPM-MVS83.50 7882.95 8285.14 8288.79 15070.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17294.50 10879.67 8586.51 14489.97 191
EPNet83.72 7582.92 8386.14 6684.22 24269.48 9891.05 5085.27 24681.30 776.83 17091.65 8566.09 10195.56 6276.00 11893.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8482.81 8484.18 11589.94 10963.30 21891.59 3988.46 20079.04 2579.49 12192.16 7665.10 11194.28 11267.71 18691.86 7994.95 5
EIA-MVS83.31 8382.80 8584.82 9489.59 11565.59 17388.21 13192.68 5974.66 10678.96 12686.42 22469.06 7795.26 7975.54 12390.09 10093.62 64
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10268.74 11490.30 6890.13 14976.33 7780.87 11192.89 6861.00 16994.20 11872.45 15090.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 9982.42 8781.04 20988.80 14958.34 27288.26 13093.49 2576.93 5878.47 13791.04 10369.92 6892.34 19469.87 17084.97 15792.44 107
VNet82.21 9682.41 8881.62 19190.82 9360.93 24884.47 22689.78 15776.36 7684.07 7091.88 8264.71 11690.26 24570.68 16188.89 11193.66 57
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15987.93 14091.80 10073.82 12477.32 16090.66 11167.90 8494.90 9570.37 16489.48 10793.19 82
VDD-MVS83.01 8882.36 9084.96 8891.02 8966.40 15888.91 10188.11 20377.57 3884.39 6593.29 5952.19 23593.91 13377.05 10888.70 11594.57 21
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17672.94 2790.64 5692.14 8477.21 4975.47 20092.83 7058.56 18794.72 10373.24 14392.71 7092.13 118
MVS_111021_LR82.61 9382.11 9284.11 11688.82 14771.58 5685.15 21086.16 23974.69 10580.47 11591.04 10362.29 14690.55 24380.33 8090.08 10190.20 174
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17779.17 12491.03 10564.12 11996.03 4768.39 18390.14 9991.50 132
test_part182.78 9082.08 9484.89 9290.66 9566.97 15190.96 5192.93 5077.19 5080.53 11490.04 12363.44 12495.39 7376.04 11776.90 24692.31 110
MVSFormer82.85 8982.05 9585.24 7987.35 19270.21 8290.50 6090.38 13968.55 21981.32 10389.47 13761.68 15493.46 15578.98 8790.26 9792.05 120
FC-MVSNet-test81.52 10982.02 9680.03 22688.42 16355.97 30887.95 13893.42 2977.10 5477.38 15890.98 10869.96 6791.79 21268.46 18284.50 16292.33 108
HQP-MVS82.61 9382.02 9684.37 10789.33 12566.98 14989.17 9292.19 8276.41 7177.23 16390.23 11860.17 18195.11 8477.47 10385.99 15191.03 145
OMC-MVS82.69 9181.97 9884.85 9388.75 15267.42 14187.98 13690.87 12974.92 10179.72 11991.65 8562.19 14993.96 12675.26 12586.42 14593.16 83
diffmvs82.10 9781.88 9982.76 17283.00 26863.78 20683.68 24289.76 15872.94 14182.02 9489.85 12765.96 10590.79 23982.38 6687.30 13293.71 56
PVSNet_Blended_VisFu82.62 9281.83 10084.96 8890.80 9469.76 9288.74 11091.70 10569.39 19778.96 12688.46 16465.47 10894.87 9874.42 12888.57 11690.24 173
CLD-MVS82.31 9581.65 10184.29 11288.47 16067.73 13785.81 19892.35 7375.78 8378.33 14086.58 21964.01 12094.35 11076.05 11687.48 13090.79 152
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10281.54 10282.92 16188.46 16163.46 21487.13 15792.37 7280.19 1478.38 13889.14 14571.66 5393.05 17370.05 16776.46 25492.25 113
PS-MVSNAJss82.07 9981.31 10384.34 11086.51 21067.27 14589.27 9091.51 11071.75 15579.37 12290.22 11963.15 13294.27 11377.69 10182.36 19191.49 133
LPG-MVS_test82.08 9881.27 10484.50 10289.23 13368.76 11290.22 7191.94 9475.37 9276.64 17691.51 9054.29 21894.91 9378.44 9383.78 16989.83 196
LFMVS81.82 10481.23 10583.57 13491.89 7963.43 21689.84 7781.85 29277.04 5683.21 7993.10 6252.26 23493.43 15771.98 15189.95 10393.85 49
API-MVS81.99 10181.23 10584.26 11390.94 9070.18 8791.10 4989.32 16971.51 16178.66 13388.28 16965.26 10995.10 8764.74 21491.23 8787.51 255
UniMVSNet (Re)81.60 10881.11 10783.09 15288.38 16464.41 19587.60 14693.02 4178.42 3178.56 13488.16 17269.78 6993.26 16169.58 17376.49 25391.60 128
xiu_mvs_v2_base81.69 10581.05 10883.60 13289.15 13668.03 13284.46 22890.02 15170.67 17481.30 10686.53 22263.17 13194.19 11975.60 12288.54 11788.57 235
PS-MVSNAJ81.69 10581.02 10983.70 13189.51 11968.21 12984.28 23490.09 15070.79 17181.26 10785.62 24163.15 13294.29 11175.62 12188.87 11288.59 234
PAPR81.66 10780.89 11083.99 12690.27 10164.00 20186.76 17291.77 10468.84 21577.13 16889.50 13567.63 8694.88 9767.55 18888.52 11893.09 84
MAR-MVS81.84 10380.70 11185.27 7891.32 8571.53 5789.82 7890.92 12769.77 19178.50 13586.21 22862.36 14594.52 10765.36 20892.05 7589.77 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 10980.67 11284.05 12090.44 9964.13 20089.73 8385.91 24271.11 16583.18 8093.48 5450.54 25893.49 15373.40 14088.25 12194.54 22
ACMP74.13 681.51 11180.57 11384.36 10889.42 12168.69 11989.97 7691.50 11374.46 11075.04 21890.41 11553.82 22394.54 10577.56 10282.91 18389.86 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13180.55 11480.76 21488.07 17260.80 25186.86 16691.58 10875.67 8780.24 11689.45 14163.34 12690.25 24670.51 16379.22 22791.23 140
DU-MVS81.12 11680.52 11582.90 16287.80 18063.46 21487.02 16191.87 9879.01 2678.38 13889.07 14865.02 11293.05 17370.05 16776.46 25492.20 115
test_yl81.17 11480.47 11683.24 14589.13 13763.62 20786.21 18689.95 15372.43 14681.78 9989.61 13257.50 19693.58 14770.75 15986.90 13792.52 101
DCV-MVSNet81.17 11480.47 11683.24 14589.13 13763.62 20786.21 18689.95 15372.43 14681.78 9989.61 13257.50 19693.58 14770.75 15986.90 13792.52 101
PVSNet_Blended80.98 11780.34 11882.90 16288.85 14465.40 17684.43 23092.00 9067.62 22578.11 14585.05 25466.02 10394.27 11371.52 15389.50 10689.01 218
TranMVSNet+NR-MVSNet80.84 12080.31 11982.42 17787.85 17862.33 23287.74 14491.33 11680.55 1177.99 14889.86 12665.23 11092.62 18367.05 19675.24 27892.30 111
jason81.39 11280.29 12084.70 9886.63 20969.90 8985.95 19286.77 23063.24 27381.07 10989.47 13761.08 16892.15 20178.33 9690.07 10292.05 120
jason: jason.
lupinMVS81.39 11280.27 12184.76 9787.35 19270.21 8285.55 20386.41 23462.85 28081.32 10388.61 15961.68 15492.24 19878.41 9590.26 9791.83 124
PVSNet_BlendedMVS80.60 13180.02 12282.36 17988.85 14465.40 17686.16 18892.00 9069.34 19978.11 14586.09 23166.02 10394.27 11371.52 15382.06 19387.39 257
EI-MVSNet80.52 13479.98 12382.12 18084.28 24063.19 22286.41 18088.95 18774.18 11778.69 13187.54 18766.62 9492.43 18972.57 14980.57 21090.74 155
Fast-Effi-MVS+80.81 12379.92 12483.47 13588.85 14464.51 19185.53 20589.39 16770.79 17178.49 13685.06 25367.54 8793.58 14767.03 19786.58 14292.32 109
CANet_DTU80.61 13079.87 12582.83 16485.60 22163.17 22387.36 15288.65 19676.37 7575.88 19488.44 16553.51 22593.07 17273.30 14189.74 10592.25 113
ACMM73.20 880.78 12879.84 12683.58 13389.31 13068.37 12489.99 7591.60 10770.28 18177.25 16189.66 13053.37 22693.53 15274.24 13182.85 18488.85 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
112180.84 12079.77 12784.05 12093.11 5570.78 7384.66 22085.42 24557.37 32281.76 10192.02 7863.41 12594.12 12267.28 19192.93 6687.26 262
XVG-OURS-SEG-HR80.81 12379.76 12883.96 12885.60 22168.78 11183.54 24890.50 13670.66 17576.71 17491.66 8460.69 17391.26 22676.94 11081.58 19891.83 124
xiu_mvs_v1_base_debu80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
xiu_mvs_v1_base80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
xiu_mvs_v1_base_debi80.80 12579.72 12984.03 12387.35 19270.19 8485.56 20088.77 19169.06 20881.83 9588.16 17250.91 25292.85 17978.29 9787.56 12789.06 213
UGNet80.83 12279.59 13284.54 10188.04 17368.09 13089.42 8788.16 20276.95 5776.22 18589.46 13949.30 27293.94 12968.48 18190.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 12979.51 13384.20 11494.09 3667.27 14589.64 8591.11 12458.75 31474.08 22890.72 11058.10 18995.04 8969.70 17189.42 10890.30 171
QAPM80.88 11879.50 13485.03 8588.01 17568.97 10891.59 3992.00 9066.63 23775.15 21492.16 7657.70 19395.45 6863.52 21888.76 11490.66 157
AdaColmapbinary80.58 13379.42 13584.06 11993.09 5668.91 10989.36 8888.97 18669.27 20075.70 19789.69 12957.20 20195.77 5763.06 22488.41 12087.50 256
mvs-test180.88 11879.40 13685.29 7785.13 23069.75 9389.28 8988.10 20474.99 9976.44 18186.72 20857.27 19994.26 11773.53 13683.18 18091.87 123
NR-MVSNet80.23 13979.38 13782.78 17087.80 18063.34 21786.31 18391.09 12579.01 2672.17 24689.07 14867.20 9192.81 18266.08 20375.65 26592.20 115
IterMVS-LS80.06 14279.38 13782.11 18185.89 21663.20 22186.79 16989.34 16874.19 11675.45 20386.72 20866.62 9492.39 19172.58 14876.86 24890.75 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 13879.32 13983.27 14383.98 24765.37 17990.50 6090.38 13968.55 21976.19 18688.70 15556.44 20593.46 15578.98 8780.14 21690.97 148
v2v48280.23 13979.29 14083.05 15583.62 25264.14 19987.04 16089.97 15273.61 12778.18 14487.22 19661.10 16793.82 13676.11 11576.78 25191.18 141
XVG-OURS80.41 13579.23 14183.97 12785.64 22069.02 10583.03 25590.39 13871.09 16677.63 15491.49 9254.62 21791.35 22475.71 11983.47 17691.54 130
WR-MVS79.49 15279.22 14280.27 22388.79 15058.35 27185.06 21288.61 19878.56 2977.65 15388.34 16763.81 12390.66 24264.98 21277.22 24291.80 127
mvs_anonymous79.42 15579.11 14380.34 22184.45 23957.97 27882.59 25787.62 21667.40 22876.17 18988.56 16268.47 8089.59 25670.65 16286.05 15093.47 70
v114480.03 14379.03 14483.01 15783.78 25064.51 19187.11 15990.57 13571.96 15378.08 14786.20 22961.41 15993.94 12974.93 12677.23 24190.60 160
v879.97 14579.02 14582.80 16784.09 24464.50 19387.96 13790.29 14674.13 11975.24 21286.81 20562.88 13793.89 13574.39 12975.40 27290.00 187
ab-mvs79.51 15178.97 14681.14 20688.46 16160.91 24983.84 24089.24 17470.36 17979.03 12588.87 15363.23 13090.21 24765.12 21082.57 18992.28 112
Anonymous2024052980.19 14178.89 14784.10 11790.60 9664.75 18888.95 10090.90 12865.97 24580.59 11391.17 9949.97 26393.73 14469.16 17782.70 18893.81 53
PCF-MVS73.52 780.38 13678.84 14885.01 8687.71 18468.99 10783.65 24391.46 11463.00 27777.77 15290.28 11666.10 10095.09 8861.40 24088.22 12290.94 149
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 14878.67 14982.97 16084.06 24564.95 18587.88 14290.62 13373.11 13775.11 21586.56 22061.46 15894.05 12573.68 13475.55 26789.90 193
VPNet78.69 17378.66 15078.76 24788.31 16655.72 31084.45 22986.63 23276.79 6278.26 14190.55 11359.30 18389.70 25566.63 19877.05 24490.88 150
BH-untuned79.47 15378.60 15182.05 18389.19 13565.91 16786.07 19088.52 19972.18 14975.42 20487.69 18261.15 16693.54 15160.38 24786.83 13986.70 276
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 23068.74 11488.77 10788.10 20474.99 9974.97 21983.49 27357.27 19993.36 15873.53 13680.88 20491.18 141
WR-MVS_H78.51 17778.49 15378.56 25088.02 17456.38 30388.43 11892.67 6077.14 5273.89 22987.55 18666.25 9989.24 26258.92 26073.55 29390.06 185
Vis-MVSNet (Re-imp)78.36 18178.45 15478.07 25888.64 15551.78 32986.70 17379.63 31374.14 11875.11 21590.83 10961.29 16389.75 25358.10 26991.60 8092.69 98
BH-RMVSNet79.61 14978.44 15583.14 15089.38 12465.93 16684.95 21587.15 22573.56 12978.19 14389.79 12856.67 20493.36 15859.53 25486.74 14090.13 177
v119279.59 15078.43 15683.07 15483.55 25464.52 19086.93 16490.58 13470.83 16977.78 15185.90 23359.15 18493.94 12973.96 13377.19 24390.76 153
RRT_MVS79.88 14678.38 15784.38 10685.42 22470.60 7888.71 11288.75 19572.30 14878.83 13089.14 14544.44 30292.18 20078.50 9279.33 22590.35 169
v14419279.47 15378.37 15882.78 17083.35 25663.96 20286.96 16290.36 14269.99 18577.50 15585.67 23960.66 17493.77 14074.27 13076.58 25290.62 158
CP-MVSNet78.22 18378.34 15977.84 26087.83 17954.54 31587.94 13991.17 12277.65 3573.48 23188.49 16362.24 14888.43 27562.19 23174.07 28690.55 162
Baseline_NR-MVSNet78.15 18778.33 16077.61 26585.79 21756.21 30686.78 17085.76 24373.60 12877.93 14987.57 18565.02 11288.99 26667.14 19575.33 27487.63 251
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22769.91 8890.57 5890.97 12666.70 23372.17 24691.91 8054.70 21593.96 12661.81 23790.95 8988.41 239
UniMVSNet_ETH3D79.10 16478.24 16281.70 19086.85 20460.24 25887.28 15588.79 19074.25 11576.84 16990.53 11449.48 26991.56 21867.98 18482.15 19293.29 76
V4279.38 15878.24 16282.83 16481.10 30365.50 17585.55 20389.82 15671.57 16078.21 14286.12 23060.66 17493.18 16675.64 12075.46 27089.81 198
PS-CasMVS78.01 19278.09 16477.77 26287.71 18454.39 31788.02 13591.22 11977.50 4373.26 23388.64 15860.73 17188.41 27661.88 23573.88 29090.53 163
v192192079.22 16078.03 16582.80 16783.30 25863.94 20386.80 16890.33 14369.91 18877.48 15685.53 24258.44 18893.75 14273.60 13576.85 24990.71 156
jajsoiax79.29 15977.96 16683.27 14384.68 23666.57 15689.25 9190.16 14869.20 20475.46 20289.49 13645.75 29693.13 16976.84 11180.80 20690.11 179
TAPA-MVS73.13 979.15 16277.94 16782.79 16989.59 11562.99 22788.16 13491.51 11065.77 24677.14 16791.09 10160.91 17093.21 16250.26 30887.05 13592.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 15677.91 16883.90 13088.10 17163.84 20488.37 12584.05 26271.45 16276.78 17289.12 14749.93 26694.89 9670.18 16683.18 18092.96 91
cl_fuxian78.75 17177.91 16881.26 20282.89 27261.56 24384.09 23889.13 17969.97 18675.56 19884.29 26166.36 9892.09 20373.47 13975.48 26990.12 178
MVSTER79.01 16677.88 17082.38 17883.07 26564.80 18784.08 23988.95 18769.01 21178.69 13187.17 19954.70 21592.43 18974.69 12780.57 21089.89 194
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7612.47 35767.45 8896.60 3183.06 5594.50 5294.07 37
v14878.72 17277.80 17281.47 19582.73 27561.96 23886.30 18488.08 20673.26 13676.18 18785.47 24462.46 14392.36 19371.92 15273.82 29190.09 181
v124078.99 16777.78 17382.64 17383.21 26063.54 21186.62 17590.30 14569.74 19477.33 15985.68 23857.04 20293.76 14173.13 14476.92 24590.62 158
mvs_tets79.13 16377.77 17483.22 14784.70 23566.37 15989.17 9290.19 14769.38 19875.40 20589.46 13944.17 30493.15 16776.78 11280.70 20890.14 176
miper_ehance_all_eth78.59 17677.76 17581.08 20882.66 27761.56 24383.65 24389.15 17768.87 21475.55 19983.79 26966.49 9692.03 20473.25 14276.39 25689.64 202
thisisatest053079.40 15677.76 17584.31 11187.69 18665.10 18487.36 15284.26 26070.04 18477.42 15788.26 17149.94 26494.79 10170.20 16584.70 16193.03 87
CDS-MVSNet79.07 16577.70 17783.17 14987.60 18768.23 12884.40 23286.20 23867.49 22776.36 18286.54 22161.54 15790.79 23961.86 23687.33 13190.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 16877.69 17882.81 16690.54 9764.29 19790.11 7391.51 11065.01 25676.16 19088.13 17750.56 25793.03 17669.68 17277.56 23991.11 143
PEN-MVS77.73 19777.69 17877.84 26087.07 20253.91 31987.91 14191.18 12177.56 4073.14 23588.82 15461.23 16489.17 26359.95 25072.37 29990.43 166
AUN-MVS79.21 16177.60 18084.05 12088.71 15367.61 13885.84 19687.26 22469.08 20777.23 16388.14 17653.20 22893.47 15475.50 12473.45 29491.06 144
v7n78.97 16877.58 18183.14 15083.45 25565.51 17488.32 12691.21 12073.69 12672.41 24386.32 22757.93 19093.81 13769.18 17675.65 26590.11 179
TAMVS78.89 17077.51 18283.03 15687.80 18067.79 13684.72 21985.05 24967.63 22476.75 17387.70 18162.25 14790.82 23858.53 26587.13 13490.49 164
RRT_test8_iter0578.38 18077.40 18381.34 20086.00 21558.86 26786.55 17891.26 11872.13 15275.91 19287.42 19044.97 29993.73 14477.02 10975.30 27591.45 136
GBi-Net78.40 17877.40 18381.40 19787.60 18763.01 22488.39 12289.28 17071.63 15775.34 20787.28 19254.80 21191.11 22962.72 22579.57 21990.09 181
test178.40 17877.40 18381.40 19787.60 18763.01 22488.39 12289.28 17071.63 15775.34 20787.28 19254.80 21191.11 22962.72 22579.57 21990.09 181
BH-w/o78.21 18477.33 18680.84 21288.81 14865.13 18384.87 21687.85 21369.75 19274.52 22484.74 25761.34 16193.11 17058.24 26885.84 15384.27 305
FMVSNet278.20 18577.21 18781.20 20487.60 18762.89 22887.47 15089.02 18271.63 15775.29 21187.28 19254.80 21191.10 23262.38 22979.38 22389.61 203
anonymousdsp78.60 17577.15 18882.98 15980.51 30967.08 14787.24 15689.53 16465.66 24875.16 21387.19 19852.52 22992.25 19777.17 10779.34 22489.61 203
HY-MVS69.67 1277.95 19377.15 18880.36 22087.57 19160.21 25983.37 25087.78 21466.11 24175.37 20687.06 20363.27 12890.48 24461.38 24182.43 19090.40 168
cl-mvsnet278.07 18977.01 19081.23 20382.37 28461.83 24083.55 24787.98 20868.96 21275.06 21783.87 26561.40 16091.88 21173.53 13676.39 25689.98 190
Anonymous20240521178.25 18277.01 19081.99 18591.03 8860.67 25284.77 21883.90 26470.65 17680.00 11791.20 9841.08 32191.43 22265.21 20985.26 15593.85 49
MVS78.19 18676.99 19281.78 18885.66 21966.99 14884.66 22090.47 13755.08 33272.02 24885.27 24763.83 12294.11 12466.10 20289.80 10484.24 306
LCM-MVSNet-Re77.05 20976.94 19377.36 26887.20 19951.60 33080.06 28180.46 30575.20 9667.69 28786.72 20862.48 14288.98 26763.44 22089.25 10991.51 131
miper_enhance_ethall77.87 19676.86 19480.92 21181.65 29161.38 24582.68 25688.98 18465.52 25075.47 20082.30 28765.76 10792.00 20672.95 14576.39 25689.39 207
FMVSNet377.88 19576.85 19580.97 21086.84 20562.36 23186.52 17988.77 19171.13 16475.34 20786.66 21554.07 22191.10 23262.72 22579.57 21989.45 206
DTE-MVSNet76.99 21076.80 19677.54 26786.24 21253.06 32687.52 14890.66 13277.08 5572.50 24188.67 15760.48 17789.52 25757.33 27670.74 31090.05 186
CNLPA78.08 18876.79 19781.97 18690.40 10071.07 6487.59 14784.55 25466.03 24472.38 24489.64 13157.56 19586.04 29459.61 25383.35 17788.79 229
cl-mvsnet_77.72 19876.76 19880.58 21682.49 28160.48 25583.09 25287.87 21169.22 20274.38 22685.22 24962.10 15091.53 21971.09 15775.41 27189.73 201
cl-mvsnet177.72 19876.76 19880.58 21682.48 28260.48 25583.09 25287.86 21269.22 20274.38 22685.24 24862.10 15091.53 21971.09 15775.40 27289.74 200
baseline176.98 21176.75 20077.66 26388.13 16955.66 31185.12 21181.89 29073.04 13976.79 17188.90 15162.43 14487.78 28363.30 22271.18 30889.55 205
eth_miper_zixun_eth77.92 19476.69 20181.61 19383.00 26861.98 23783.15 25189.20 17669.52 19674.86 22184.35 26061.76 15392.56 18671.50 15572.89 29790.28 172
pm-mvs177.25 20776.68 20278.93 24584.22 24258.62 27086.41 18088.36 20171.37 16373.31 23288.01 17861.22 16589.15 26464.24 21673.01 29689.03 217
ET-MVSNet_ETH3D78.63 17476.63 20384.64 9986.73 20869.47 9985.01 21384.61 25369.54 19566.51 30386.59 21750.16 26191.75 21376.26 11484.24 16692.69 98
Fast-Effi-MVS+-dtu78.02 19176.49 20482.62 17483.16 26466.96 15286.94 16387.45 22172.45 14371.49 25384.17 26254.79 21491.58 21767.61 18780.31 21389.30 209
1112_ss77.40 20576.43 20580.32 22289.11 14160.41 25783.65 24387.72 21562.13 28873.05 23686.72 20862.58 14189.97 25062.11 23480.80 20690.59 161
PAPM77.68 20076.40 20681.51 19487.29 19861.85 23983.78 24189.59 16364.74 25871.23 25488.70 15562.59 14093.66 14652.66 29587.03 13689.01 218
PLCcopyleft70.83 1178.05 19076.37 20783.08 15391.88 8067.80 13588.19 13289.46 16664.33 26469.87 27288.38 16653.66 22493.58 14758.86 26182.73 18687.86 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 20376.18 20881.20 20488.24 16763.24 21984.61 22486.40 23567.55 22677.81 15086.48 22354.10 22093.15 16757.75 27282.72 18787.20 263
FMVSNet177.44 20376.12 20981.40 19786.81 20663.01 22488.39 12289.28 17070.49 17874.39 22587.28 19249.06 27591.11 22960.91 24478.52 22990.09 181
CHOSEN 1792x268877.63 20175.69 21083.44 13689.98 10868.58 12278.70 29687.50 21956.38 32775.80 19686.84 20458.67 18691.40 22361.58 23985.75 15490.34 170
WTY-MVS75.65 23075.68 21175.57 28486.40 21156.82 29477.92 30482.40 28665.10 25376.18 18787.72 18063.13 13580.90 32160.31 24881.96 19489.00 220
XXY-MVS75.41 23475.56 21274.96 29083.59 25357.82 28280.59 27783.87 26566.54 23874.93 22088.31 16863.24 12980.09 32462.16 23276.85 24986.97 270
thres100view90076.50 21775.55 21379.33 23989.52 11856.99 29285.83 19783.23 27673.94 12176.32 18387.12 20051.89 24391.95 20748.33 31683.75 17189.07 211
bset_n11_16_dypcd77.12 20875.47 21482.06 18281.12 30265.99 16481.37 27183.20 27869.94 18776.09 19183.38 27547.75 28092.26 19678.51 9177.91 23587.95 243
thres600view776.50 21775.44 21579.68 23389.40 12257.16 28985.53 20583.23 27673.79 12576.26 18487.09 20151.89 24391.89 21048.05 32183.72 17490.00 187
Test_1112_low_res76.40 22175.44 21579.27 24089.28 13158.09 27481.69 26687.07 22659.53 30772.48 24286.67 21461.30 16289.33 26060.81 24680.15 21590.41 167
HyFIR lowres test77.53 20275.40 21783.94 12989.59 11566.62 15480.36 27888.64 19756.29 32876.45 17885.17 25057.64 19493.28 16061.34 24283.10 18291.91 122
thisisatest051577.33 20675.38 21883.18 14885.27 22663.80 20582.11 26283.27 27565.06 25475.91 19283.84 26749.54 26894.27 11367.24 19386.19 14891.48 134
tfpn200view976.42 22075.37 21979.55 23889.13 13757.65 28485.17 20883.60 26773.41 13476.45 17886.39 22552.12 23691.95 20748.33 31683.75 17189.07 211
thres40076.50 21775.37 21979.86 22989.13 13757.65 28485.17 20883.60 26773.41 13476.45 17886.39 22552.12 23691.95 20748.33 31683.75 17190.00 187
131476.53 21675.30 22180.21 22483.93 24862.32 23384.66 22088.81 18960.23 30070.16 26684.07 26455.30 20990.73 24167.37 19083.21 17987.59 254
GA-MVS76.87 21375.17 22281.97 18682.75 27462.58 22981.44 27086.35 23772.16 15174.74 22282.89 27946.20 29192.02 20568.85 18081.09 20291.30 139
EPNet_dtu75.46 23274.86 22377.23 27282.57 27954.60 31486.89 16583.09 28071.64 15666.25 30585.86 23555.99 20688.04 28054.92 28686.55 14389.05 216
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 21274.82 22483.37 14090.45 9867.36 14489.15 9686.94 22861.87 29069.52 27590.61 11251.71 24694.53 10646.38 32886.71 14188.21 241
cascas76.72 21574.64 22582.99 15885.78 21865.88 16882.33 26089.21 17560.85 29672.74 23881.02 29847.28 28393.75 14267.48 18985.02 15689.34 208
DP-MVS76.78 21474.57 22683.42 13793.29 4969.46 10188.55 11783.70 26663.98 27070.20 26388.89 15254.01 22294.80 10046.66 32581.88 19686.01 288
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22357.10 29186.78 17086.09 24172.17 15071.53 25287.34 19163.01 13689.31 26156.84 27961.83 33287.17 264
LTVRE_ROB69.57 1376.25 22374.54 22881.41 19688.60 15664.38 19679.24 28989.12 18070.76 17369.79 27487.86 17949.09 27493.20 16456.21 28380.16 21486.65 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 23174.47 22978.82 24687.78 18357.85 28183.07 25483.51 27072.44 14575.84 19584.42 25952.08 23891.75 21347.41 32383.64 17586.86 272
MVP-Stereo76.12 22474.46 23081.13 20785.37 22569.79 9184.42 23187.95 20965.03 25567.46 28985.33 24653.28 22791.73 21558.01 27083.27 17881.85 325
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 22274.33 23182.50 17689.28 13166.95 15388.41 12189.03 18164.05 26866.83 29788.61 15946.78 28692.89 17857.48 27378.55 22887.67 250
XVG-ACMP-BASELINE76.11 22574.27 23281.62 19183.20 26164.67 18983.60 24689.75 15969.75 19271.85 24987.09 20132.78 34392.11 20269.99 16980.43 21288.09 242
ACMH+68.96 1476.01 22674.01 23382.03 18488.60 15665.31 18088.86 10387.55 21770.25 18267.75 28687.47 18941.27 31993.19 16558.37 26675.94 26287.60 252
ACMH67.68 1675.89 22773.93 23481.77 18988.71 15366.61 15588.62 11489.01 18369.81 18966.78 29886.70 21341.95 31891.51 22155.64 28478.14 23487.17 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 23673.90 23579.27 24082.65 27858.27 27380.80 27282.73 28461.57 29175.33 21083.13 27755.52 20791.07 23564.98 21278.34 23388.45 237
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 27664.85 18681.57 26883.47 27269.16 20570.49 26084.15 26351.95 24188.15 27869.23 17572.14 30287.34 259
baseline275.70 22973.83 23781.30 20183.26 25961.79 24182.57 25880.65 30166.81 23066.88 29583.42 27457.86 19292.19 19963.47 21979.57 21989.91 192
sss73.60 24873.64 23873.51 30082.80 27355.01 31376.12 31081.69 29362.47 28574.68 22385.85 23657.32 19878.11 33160.86 24580.93 20387.39 257
pmmvs674.69 23873.39 23978.61 24981.38 29757.48 28786.64 17487.95 20964.99 25770.18 26486.61 21650.43 25989.52 25762.12 23370.18 31288.83 227
IB-MVS68.01 1575.85 22873.36 24083.31 14184.76 23466.03 16283.38 24985.06 24870.21 18369.40 27681.05 29745.76 29594.66 10465.10 21175.49 26889.25 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 23773.21 24179.64 23579.81 31662.56 23080.34 27987.35 22264.37 26368.86 27982.66 28346.37 28890.10 24967.91 18581.24 20186.25 281
tfpnnormal74.39 23973.16 24278.08 25786.10 21458.05 27584.65 22387.53 21870.32 18071.22 25585.63 24054.97 21089.86 25143.03 33775.02 27986.32 280
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31259.62 26272.23 32686.92 22966.76 23270.40 26182.92 27856.93 20382.92 31569.06 17872.63 29888.87 225
IterMVS74.29 24072.94 24478.35 25481.53 29463.49 21381.58 26782.49 28568.06 22369.99 26983.69 27151.66 24785.54 29765.85 20571.64 30586.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 24672.67 24577.30 27083.87 24966.02 16381.82 26384.66 25261.37 29468.61 28282.82 28147.29 28288.21 27759.27 25584.32 16577.68 339
CVMVSNet72.99 25772.58 24674.25 29784.28 24050.85 33586.41 18083.45 27344.56 34373.23 23487.54 18749.38 27085.70 29665.90 20478.44 23186.19 283
test-LLR72.94 25872.43 24774.48 29481.35 29858.04 27678.38 29777.46 32266.66 23469.95 27079.00 31548.06 27879.24 32566.13 20084.83 15886.15 284
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25159.59 26385.92 19486.64 23166.39 23966.96 29487.58 18439.46 32591.60 21665.76 20669.27 31488.22 240
SCA74.22 24272.33 24979.91 22884.05 24662.17 23579.96 28379.29 31566.30 24072.38 24480.13 30651.95 24188.60 27359.25 25677.67 23888.96 222
tpmrst72.39 26172.13 25073.18 30480.54 30849.91 33879.91 28479.08 31663.11 27571.69 25179.95 30855.32 20882.77 31665.66 20773.89 28986.87 271
pmmvs474.03 24571.91 25180.39 21981.96 28868.32 12581.45 26982.14 28859.32 30869.87 27285.13 25152.40 23288.13 27960.21 24974.74 28284.73 302
DWT-MVSNet_test73.70 24771.86 25279.21 24282.91 27158.94 26682.34 25982.17 28765.21 25171.05 25778.31 32044.21 30390.17 24863.29 22377.28 24088.53 236
EG-PatchMatch MVS74.04 24471.82 25380.71 21584.92 23367.42 14185.86 19588.08 20666.04 24364.22 31783.85 26635.10 33992.56 18657.44 27480.83 20582.16 324
tpm72.37 26371.71 25474.35 29682.19 28652.00 32779.22 29077.29 32464.56 26072.95 23783.68 27251.35 24883.26 31458.33 26775.80 26387.81 248
CL-MVSNet_2432*160072.37 26371.46 25575.09 28979.49 32253.53 32180.76 27485.01 25069.12 20670.51 25982.05 29157.92 19184.13 30752.27 29666.00 32587.60 252
tpm273.26 25371.46 25578.63 24883.34 25756.71 29780.65 27680.40 30656.63 32673.55 23082.02 29251.80 24591.24 22756.35 28278.42 23287.95 243
RPSCF73.23 25471.46 25578.54 25182.50 28059.85 26082.18 26182.84 28358.96 31171.15 25689.41 14345.48 29884.77 30458.82 26271.83 30491.02 147
PatchmatchNetpermissive73.12 25571.33 25878.49 25383.18 26260.85 25079.63 28578.57 31764.13 26571.73 25079.81 31151.20 25085.97 29557.40 27576.36 25988.66 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 25071.27 25979.67 23481.32 30065.19 18175.92 31280.30 30759.92 30372.73 23981.19 29552.50 23086.69 28959.84 25177.71 23687.11 268
SixPastTwentyTwo73.37 25071.26 26079.70 23285.08 23257.89 28085.57 19983.56 26971.03 16765.66 30785.88 23442.10 31692.57 18559.11 25863.34 33188.65 233
MSDG73.36 25270.99 26180.49 21884.51 23865.80 16980.71 27586.13 24065.70 24765.46 30883.74 27044.60 30090.91 23751.13 30176.89 24784.74 301
PatchMatch-RL72.38 26270.90 26276.80 27688.60 15667.38 14379.53 28676.17 32862.75 28269.36 27782.00 29345.51 29784.89 30353.62 29180.58 20978.12 338
MVS_030472.48 26070.89 26377.24 27182.20 28559.68 26184.11 23783.49 27167.10 22966.87 29680.59 30235.00 34087.40 28559.07 25979.58 21884.63 303
PVSNet64.34 1872.08 26570.87 26475.69 28286.21 21356.44 30174.37 32280.73 30062.06 28970.17 26582.23 28942.86 31083.31 31354.77 28784.45 16487.32 260
RPMNet73.51 24970.49 26582.58 17581.32 30065.19 18175.92 31292.27 7657.60 32072.73 23976.45 33152.30 23395.43 7048.14 32077.71 23687.11 268
test_040272.79 25970.44 26679.84 23088.13 16965.99 16485.93 19384.29 25865.57 24967.40 29185.49 24346.92 28592.61 18435.88 34674.38 28580.94 330
COLMAP_ROBcopyleft66.92 1773.01 25670.41 26780.81 21387.13 20165.63 17288.30 12784.19 26162.96 27863.80 32187.69 18238.04 33192.56 18646.66 32574.91 28084.24 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 26770.39 26874.48 29481.35 29858.04 27678.38 29777.46 32260.32 29969.95 27079.00 31536.08 33779.24 32566.13 20084.83 15886.15 284
pmmvs571.55 26670.20 26975.61 28377.83 32856.39 30281.74 26580.89 29757.76 31867.46 28984.49 25849.26 27385.32 30057.08 27875.29 27685.11 298
MDTV_nov1_ep1369.97 27083.18 26253.48 32277.10 30880.18 31060.45 29769.33 27880.44 30348.89 27686.90 28851.60 29978.51 230
MIMVSNet70.69 27269.30 27174.88 29184.52 23756.35 30475.87 31479.42 31464.59 25967.76 28582.41 28541.10 32081.54 32046.64 32781.34 19986.75 275
tpmvs71.09 26969.29 27276.49 27782.04 28756.04 30778.92 29481.37 29664.05 26867.18 29378.28 32149.74 26789.77 25249.67 31172.37 29983.67 311
Patchmtry70.74 27169.16 27375.49 28680.72 30554.07 31874.94 32180.30 30758.34 31570.01 26781.19 29552.50 23086.54 29053.37 29271.09 30985.87 291
TESTMET0.1,169.89 28169.00 27472.55 30579.27 32556.85 29378.38 29774.71 33457.64 31968.09 28477.19 32837.75 33276.70 33663.92 21784.09 16784.10 309
PMMVS69.34 28368.67 27571.35 31275.67 33662.03 23675.17 31673.46 33650.00 34168.68 28079.05 31352.07 23978.13 33061.16 24382.77 18573.90 342
K. test v371.19 26868.51 27679.21 24283.04 26757.78 28384.35 23376.91 32672.90 14262.99 32482.86 28039.27 32691.09 23461.65 23852.66 34488.75 230
USDC70.33 27668.37 27776.21 27980.60 30756.23 30579.19 29186.49 23360.89 29561.29 32785.47 24431.78 34689.47 25953.37 29276.21 26082.94 321
tpm cat170.57 27368.31 27877.35 26982.41 28357.95 27978.08 30180.22 30952.04 33868.54 28377.66 32652.00 24087.84 28251.77 29772.07 30386.25 281
OpenMVS_ROBcopyleft64.09 1970.56 27468.19 27977.65 26480.26 31059.41 26585.01 21382.96 28258.76 31365.43 30982.33 28637.63 33391.23 22845.34 33376.03 26182.32 322
EPMVS69.02 28568.16 28071.59 30879.61 32049.80 34077.40 30666.93 34862.82 28170.01 26779.05 31345.79 29477.86 33356.58 28075.26 27787.13 267
CMPMVSbinary51.72 2170.19 27868.16 28076.28 27873.15 34757.55 28679.47 28783.92 26348.02 34256.48 34184.81 25543.13 30886.42 29262.67 22881.81 19784.89 299
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 27068.09 28279.58 23685.15 22863.62 20784.58 22579.83 31162.31 28660.32 33086.73 20632.02 34488.96 26950.28 30671.57 30686.15 284
gg-mvs-nofinetune69.95 28067.96 28375.94 28083.07 26554.51 31677.23 30770.29 34163.11 27570.32 26262.33 34443.62 30688.69 27253.88 29087.76 12484.62 304
FMVSNet569.50 28267.96 28374.15 29882.97 27055.35 31280.01 28282.12 28962.56 28463.02 32281.53 29436.92 33481.92 31848.42 31574.06 28785.17 297
PatchT68.46 29067.85 28570.29 31680.70 30643.93 34872.47 32574.88 33160.15 30170.55 25876.57 33049.94 26481.59 31950.58 30274.83 28185.34 294
pmmvs-eth3d70.50 27567.83 28678.52 25277.37 33166.18 16181.82 26381.51 29458.90 31263.90 32080.42 30442.69 31186.28 29358.56 26465.30 32783.11 317
Anonymous2023120668.60 28767.80 28771.02 31480.23 31150.75 33678.30 30080.47 30456.79 32566.11 30682.63 28446.35 28978.95 32743.62 33675.70 26483.36 314
Patchmatch-RL test70.24 27767.78 28877.61 26577.43 33059.57 26471.16 32870.33 34062.94 27968.65 28172.77 33850.62 25685.49 29869.58 17366.58 32387.77 249
test0.0.03 168.00 29167.69 28968.90 32177.55 32947.43 34275.70 31572.95 33866.66 23466.56 29982.29 28848.06 27875.87 34044.97 33474.51 28483.41 313
EU-MVSNet68.53 28967.61 29071.31 31378.51 32747.01 34484.47 22684.27 25942.27 34466.44 30484.79 25640.44 32383.76 30958.76 26368.54 31983.17 315
DIV-MVS_2432*160068.81 28667.59 29172.46 30674.29 34145.45 34577.93 30387.00 22763.12 27463.99 31978.99 31742.32 31384.77 30456.55 28164.09 33087.16 266
ppachtmachnet_test70.04 27967.34 29278.14 25679.80 31761.13 24679.19 29180.59 30259.16 31065.27 31079.29 31246.75 28787.29 28649.33 31266.72 32186.00 290
our_test_369.14 28467.00 29375.57 28479.80 31758.80 26877.96 30277.81 32059.55 30662.90 32578.25 32247.43 28183.97 30851.71 29867.58 32083.93 310
test20.0367.45 29366.95 29468.94 32075.48 33844.84 34777.50 30577.67 32166.66 23463.01 32383.80 26847.02 28478.40 32942.53 33968.86 31883.58 312
MIMVSNet168.58 28866.78 29573.98 29980.07 31351.82 32880.77 27384.37 25564.40 26259.75 33382.16 29036.47 33583.63 31142.73 33870.33 31186.48 279
testgi66.67 29866.53 29667.08 32675.62 33741.69 35175.93 31176.50 32766.11 24165.20 31386.59 21735.72 33874.71 34443.71 33573.38 29584.84 300
UnsupCasMVSNet_eth67.33 29465.99 29771.37 31073.48 34451.47 33275.16 31785.19 24765.20 25260.78 32980.93 30142.35 31277.20 33557.12 27753.69 34385.44 293
dp66.80 29665.43 29870.90 31579.74 31948.82 34175.12 31974.77 33259.61 30564.08 31877.23 32742.89 30980.72 32248.86 31466.58 32383.16 316
TinyColmap67.30 29564.81 29974.76 29381.92 28956.68 29880.29 28081.49 29560.33 29856.27 34283.22 27624.77 34987.66 28445.52 33169.47 31379.95 334
CHOSEN 280x42066.51 29964.71 30071.90 30781.45 29563.52 21257.98 34968.95 34753.57 33462.59 32676.70 32946.22 29075.29 34355.25 28579.68 21776.88 341
TDRefinement67.49 29264.34 30176.92 27473.47 34561.07 24784.86 21782.98 28159.77 30458.30 33685.13 25126.06 34887.89 28147.92 32260.59 33681.81 326
PM-MVS66.41 30064.14 30273.20 30373.92 34256.45 30078.97 29364.96 35263.88 27264.72 31480.24 30519.84 35383.44 31266.24 19964.52 32979.71 335
KD-MVS_2432*160066.22 30263.89 30373.21 30175.47 33953.42 32370.76 33184.35 25664.10 26666.52 30178.52 31834.55 34184.98 30150.40 30450.33 34781.23 328
miper_refine_blended66.22 30263.89 30373.21 30175.47 33953.42 32370.76 33184.35 25664.10 26666.52 30178.52 31834.55 34184.98 30150.40 30450.33 34781.23 328
MDA-MVSNet-bldmvs66.68 29763.66 30575.75 28179.28 32460.56 25473.92 32378.35 31864.43 26150.13 34779.87 31044.02 30583.67 31046.10 32956.86 33983.03 319
ADS-MVSNet266.20 30463.33 30674.82 29279.92 31458.75 26967.55 34175.19 33053.37 33565.25 31175.86 33242.32 31380.53 32341.57 34068.91 31685.18 295
Patchmatch-test64.82 30763.24 30769.57 31879.42 32349.82 33963.49 34769.05 34651.98 33959.95 33280.13 30650.91 25270.98 34940.66 34273.57 29287.90 246
MDA-MVSNet_test_wron65.03 30562.92 30871.37 31075.93 33456.73 29569.09 33974.73 33357.28 32354.03 34477.89 32345.88 29274.39 34649.89 31061.55 33382.99 320
YYNet165.03 30562.91 30971.38 30975.85 33556.60 29969.12 33874.66 33557.28 32354.12 34377.87 32445.85 29374.48 34549.95 30961.52 33483.05 318
ADS-MVSNet64.36 30862.88 31068.78 32379.92 31447.17 34367.55 34171.18 33953.37 33565.25 31175.86 33242.32 31373.99 34741.57 34068.91 31685.18 295
JIA-IIPM66.32 30162.82 31176.82 27577.09 33261.72 24265.34 34475.38 32958.04 31764.51 31562.32 34542.05 31786.51 29151.45 30069.22 31582.21 323
LF4IMVS64.02 30962.19 31269.50 31970.90 34953.29 32576.13 30977.18 32552.65 33758.59 33480.98 29923.55 35076.52 33753.06 29466.66 32278.68 337
new-patchmatchnet61.73 31161.73 31361.70 32972.74 34824.50 36169.16 33778.03 31961.40 29256.72 34075.53 33438.42 32976.48 33845.95 33057.67 33884.13 308
UnsupCasMVSNet_bld63.70 31061.53 31470.21 31773.69 34351.39 33372.82 32481.89 29055.63 33057.81 33771.80 34038.67 32878.61 32849.26 31352.21 34580.63 331
PVSNet_057.27 2061.67 31259.27 31568.85 32279.61 32057.44 28868.01 34073.44 33755.93 32958.54 33570.41 34144.58 30177.55 33447.01 32435.91 35071.55 344
MVS-HIRNet59.14 31357.67 31663.57 32881.65 29143.50 34971.73 32765.06 35139.59 34851.43 34657.73 34838.34 33082.58 31739.53 34373.95 28864.62 347
DSMNet-mixed57.77 31556.90 31760.38 33067.70 35135.61 35469.18 33653.97 35532.30 35357.49 33879.88 30940.39 32468.57 35138.78 34472.37 29976.97 340
pmmvs357.79 31454.26 31868.37 32464.02 35356.72 29675.12 31965.17 35040.20 34652.93 34569.86 34220.36 35275.48 34245.45 33255.25 34272.90 343
N_pmnet52.79 31853.26 31951.40 33578.99 3267.68 36469.52 3343.89 36351.63 34057.01 33974.98 33540.83 32265.96 35237.78 34564.67 32880.56 333
FPMVS53.68 31751.64 32059.81 33165.08 35251.03 33469.48 33569.58 34441.46 34540.67 34972.32 33916.46 35670.00 35024.24 35165.42 32658.40 348
new_pmnet50.91 31950.29 32152.78 33468.58 35034.94 35663.71 34656.63 35439.73 34744.95 34865.47 34321.93 35158.48 35334.98 34756.62 34064.92 346
LCM-MVSNet54.25 31649.68 32267.97 32553.73 35645.28 34666.85 34380.78 29935.96 35039.45 35062.23 3468.70 36178.06 33248.24 31951.20 34680.57 332
ANet_high50.57 32046.10 32363.99 32748.67 35939.13 35270.99 33080.85 29861.39 29331.18 35257.70 34917.02 35573.65 34831.22 34815.89 35679.18 336
Gipumacopyleft45.18 32141.86 32455.16 33377.03 33351.52 33132.50 35580.52 30332.46 35227.12 35335.02 3539.52 36075.50 34122.31 35260.21 33738.45 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 32240.28 32555.82 33240.82 36142.54 35065.12 34563.99 35334.43 35124.48 35457.12 3503.92 36376.17 33917.10 35455.52 34148.75 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 32338.86 32646.69 33653.84 35516.45 36248.61 35249.92 35637.49 34931.67 35160.97 3478.14 36256.42 35428.42 34930.72 35167.19 345
E-PMN31.77 32430.64 32735.15 33852.87 35727.67 35857.09 35047.86 35724.64 35416.40 35833.05 35411.23 35854.90 35514.46 35618.15 35422.87 353
EMVS30.81 32529.65 32834.27 33950.96 35825.95 36056.58 35146.80 35824.01 35515.53 35930.68 35512.47 35754.43 35612.81 35717.05 35522.43 354
cdsmvs_eth3d_5k19.96 32726.61 3290.00 3450.00 3660.00 3670.00 35789.26 1730.00 3620.00 36388.61 15961.62 1560.00 3630.00 3610.00 3610.00 359
MVEpermissive26.22 2330.37 32625.89 33043.81 33744.55 36035.46 35528.87 35639.07 35918.20 35618.58 35740.18 3522.68 36447.37 35717.07 35523.78 35348.60 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 32821.40 33110.23 3424.82 36310.11 36334.70 35430.74 3611.48 35923.91 35626.07 35628.42 34713.41 36027.12 35015.35 3577.17 355
wuyk23d16.82 32915.94 33219.46 34158.74 35431.45 35739.22 3533.74 3646.84 3586.04 3602.70 3601.27 36524.29 35910.54 35814.40 3582.63 356
ab-mvs-re7.23 3309.64 3330.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36386.72 2080.00 3680.00 3630.00 3610.00 3610.00 359
test1236.12 3318.11 3340.14 3430.06 3650.09 36571.05 3290.03 3660.04 3610.25 3621.30 3620.05 3660.03 3620.21 3600.01 3600.29 357
testmvs6.04 3328.02 3350.10 3440.08 3640.03 36669.74 3330.04 3650.05 3600.31 3611.68 3610.02 3670.04 3610.24 3590.02 3590.25 358
pcd_1.5k_mvsjas5.26 3337.02 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36363.15 1320.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS94.38 2572.22 4592.67 6070.98 16887.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
IU-MVS95.30 271.25 5992.95 4966.81 23092.39 588.94 896.63 294.85 10
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5193.10 195.39 982.99 197.27 7
save fliter93.80 3972.35 4290.47 6291.17 12274.31 112
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
GSMVS88.96 222
test_part295.06 772.65 3191.80 10
sam_mvs151.32 24988.96 222
sam_mvs50.01 262
ambc75.24 28873.16 34650.51 33763.05 34887.47 22064.28 31677.81 32517.80 35489.73 25457.88 27160.64 33585.49 292
MTGPAbinary92.02 87
test_post178.90 2955.43 35948.81 27785.44 29959.25 256
test_post5.46 35850.36 26084.24 306
patchmatchnet-post74.00 33651.12 25188.60 273
GG-mvs-BLEND75.38 28781.59 29355.80 30979.32 28869.63 34367.19 29273.67 33743.24 30788.90 27150.41 30384.50 16281.45 327
MTMP92.18 3032.83 360
gm-plane-assit81.40 29653.83 32062.72 28380.94 30092.39 19163.40 221
test9_res84.90 3095.70 2792.87 93
TEST993.26 5172.96 2488.75 10891.89 9668.44 22185.00 5093.10 6274.36 3095.41 71
test_893.13 5372.57 3488.68 11391.84 9968.69 21784.87 5693.10 6274.43 2795.16 82
agg_prior282.91 5895.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
TestCases79.58 23685.15 22863.62 20779.83 31162.31 28660.32 33086.73 20632.02 34488.96 26950.28 30671.57 30686.15 284
test_prior472.60 3389.01 99
test_prior288.85 10475.41 9084.91 5293.54 5174.28 3183.31 5095.86 18
test_prior86.33 6092.61 6969.59 9592.97 4795.48 6693.91 45
旧先验286.56 17758.10 31687.04 3188.98 26774.07 132
新几何286.29 185
新几何183.42 13793.13 5370.71 7485.48 24457.43 32181.80 9891.98 7963.28 12792.27 19564.60 21592.99 6587.27 261
旧先验191.96 7765.79 17086.37 23693.08 6669.31 7592.74 6988.74 231
无先验87.48 14988.98 18460.00 30294.12 12267.28 19188.97 221
原ACMM286.86 166
原ACMM184.35 10993.01 5968.79 11092.44 6863.96 27181.09 10891.57 8966.06 10295.45 6867.19 19494.82 4788.81 228
test22291.50 8368.26 12784.16 23583.20 27854.63 33379.74 11891.63 8758.97 18591.42 8386.77 274
testdata291.01 23662.37 230
segment_acmp73.08 40
testdata79.97 22790.90 9164.21 19884.71 25159.27 30985.40 4492.91 6762.02 15289.08 26568.95 17991.37 8486.63 278
testdata184.14 23675.71 84
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
plane_prior790.08 10668.51 123
plane_prior689.84 11168.70 11860.42 178
plane_prior592.44 6895.38 7478.71 8986.32 14691.33 137
plane_prior491.00 106
plane_prior368.60 12178.44 3078.92 128
plane_prior291.25 4679.12 23
plane_prior189.90 110
plane_prior68.71 11690.38 6677.62 3686.16 149
n20.00 367
nn0.00 367
door-mid69.98 342
lessismore_v078.97 24481.01 30457.15 29065.99 34961.16 32882.82 28139.12 32791.34 22559.67 25246.92 34988.43 238
LGP-MVS_train84.50 10289.23 13368.76 11291.94 9475.37 9276.64 17691.51 9054.29 21894.91 9378.44 9383.78 16989.83 196
test1192.23 79
door69.44 345
HQP5-MVS66.98 149
HQP-NCC89.33 12589.17 9276.41 7177.23 163
ACMP_Plane89.33 12589.17 9276.41 7177.23 163
BP-MVS77.47 103
HQP4-MVS77.24 16295.11 8491.03 145
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 181
NP-MVS89.62 11468.32 12590.24 117
MDTV_nov1_ep13_2view37.79 35375.16 31755.10 33166.53 30049.34 27153.98 28987.94 245
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117
ITE_SJBPF78.22 25581.77 29060.57 25383.30 27469.25 20167.54 28887.20 19736.33 33687.28 28754.34 28874.62 28386.80 273
DeepMVS_CXcopyleft27.40 34040.17 36226.90 35924.59 36217.44 35723.95 35548.61 3519.77 35926.48 35818.06 35324.47 35228.83 352