9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 43 | 94.75 1 | 73.93 126 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 55 | 86.77 20 | 95.76 24 | |
|
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 87 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 44 | 94.70 3 | 74.47 113 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 158 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 46 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 40 | 94.10 8 | 75.90 85 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 27 | 94.07 9 | 72.45 147 | 85.22 48 | 91.90 81 | 69.47 74 | 96.42 35 | 83.28 54 | 95.94 16 | 94.35 26 |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 48 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 48 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 58 | 94.05 13 | 70.80 175 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 51 | 95.77 22 | 94.72 15 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 89 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 68 | 93.94 15 | 77.12 54 | 82.82 90 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 142 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 62 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
3Dnovator+ | | 77.84 4 | 85.48 58 | 84.47 73 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 180 | 93.37 57 | 60.40 185 | 96.75 22 | 77.20 110 | 93.73 64 | 95.29 2 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 107 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DROMVSNet | | | 85.71 55 | 86.07 51 | 84.64 99 | 88.97 143 | 65.71 173 | 91.73 39 | 93.61 21 | 78.20 33 | 83.66 80 | 91.40 95 | 69.66 72 | 95.45 68 | 83.71 50 | 93.74 63 | 92.75 95 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 53 | 93.59 22 | 76.27 78 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
CS-MVS-test | | | 84.27 72 | 84.52 72 | 83.55 138 | 87.94 179 | 64.55 192 | 88.65 116 | 93.57 23 | 75.26 97 | 81.78 102 | 88.17 177 | 70.27 65 | 95.22 82 | 81.41 74 | 93.62 66 | 90.87 155 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 54 | 93.56 24 | 73.95 124 | 83.16 84 | 91.07 104 | 75.94 15 | 95.19 84 | 79.94 88 | 94.38 56 | 93.55 68 |
|
CS-MVS | | | 84.53 71 | 84.97 66 | 83.23 151 | 87.54 196 | 63.27 223 | 88.82 107 | 93.50 25 | 75.98 84 | 83.07 85 | 89.73 132 | 70.29 64 | 95.23 81 | 82.07 70 | 93.70 65 | 91.18 143 |
|
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 25 | 75.17 101 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 27 | 74.75 108 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
FIs | | | 82.07 102 | 82.42 89 | 81.04 214 | 88.80 151 | 58.34 277 | 88.26 133 | 93.49 27 | 76.93 59 | 78.47 142 | 91.04 105 | 69.92 69 | 92.34 199 | 69.87 175 | 84.97 160 | 92.44 108 |
|
DELS-MVS | | | 85.41 61 | 85.30 61 | 85.77 72 | 88.49 162 | 67.93 134 | 85.52 212 | 93.44 29 | 78.70 28 | 83.63 81 | 89.03 154 | 74.57 25 | 95.71 58 | 80.26 86 | 94.04 61 | 93.66 58 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 30 | 76.89 60 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
FC-MVSNet-test | | | 81.52 114 | 82.02 99 | 80.03 231 | 88.42 166 | 55.97 313 | 87.95 142 | 93.42 31 | 77.10 55 | 77.38 163 | 90.98 110 | 69.96 68 | 91.79 217 | 68.46 187 | 84.50 165 | 92.33 109 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 32 | 77.53 43 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 29 | 93.33 33 | 76.07 81 | 83.81 76 | 93.95 48 | 69.77 71 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 34 | 76.78 64 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 58 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 34 | 75.23 98 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 58 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 36 | 76.78 64 | 84.66 61 | 94.52 21 | 68.81 81 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 37 | 93.19 37 | 77.87 34 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 141 | 87.63 14 | 94.27 59 | 93.65 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMP |  | | 85.89 52 | 85.39 58 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 38 | 76.78 64 | 80.73 116 | 93.82 50 | 64.33 120 | 96.29 37 | 82.67 66 | 90.69 93 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 39 | 76.73 67 | 84.45 64 | 94.52 21 | 69.09 78 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
DPM-MVS | | | 84.93 68 | 84.29 74 | 86.84 50 | 90.20 104 | 73.04 22 | 87.12 162 | 93.04 40 | 69.80 195 | 82.85 89 | 91.22 99 | 73.06 41 | 96.02 48 | 76.72 117 | 94.63 49 | 91.46 137 |
|
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 40 | 75.53 91 | 83.86 74 | 94.42 31 | 67.87 87 | 96.64 27 | 82.70 65 | 94.57 51 | 93.66 58 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 46 | 93.04 40 | 76.62 69 | 84.22 69 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 80 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UniMVSNet (Re) | | | 81.60 113 | 81.11 110 | 83.09 157 | 88.38 167 | 64.41 199 | 87.60 150 | 93.02 43 | 78.42 31 | 78.56 139 | 88.16 178 | 69.78 70 | 93.26 165 | 69.58 178 | 76.49 256 | 91.60 130 |
|
canonicalmvs | | | 85.91 51 | 85.87 53 | 86.04 69 | 89.84 112 | 69.44 103 | 90.45 66 | 93.00 44 | 76.70 68 | 88.01 25 | 91.23 98 | 73.28 38 | 93.91 136 | 81.50 73 | 88.80 115 | 94.77 14 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 60 | 93.00 44 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 46 | 79.14 21 | 83.67 78 | 94.17 38 | 67.45 90 | 96.60 31 | 83.06 56 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 142 | 77.83 176 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 46 | 79.14 21 | 83.67 78 | 12.47 364 | 67.45 90 | 96.60 31 | 83.06 56 | 94.50 52 | 94.07 37 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 52 | 86.22 64 | 92.69 67 | 69.53 98 | 91.93 33 | 92.99 46 | 73.54 134 | 85.94 37 | 94.51 24 | 65.80 109 | 95.61 59 | 83.04 58 | 92.51 76 | 93.53 70 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 96 | 88.85 105 | 92.97 49 | 75.41 93 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 51 | 95.86 18 | 93.91 45 |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 96 | | 92.97 49 | | | | | 95.48 66 | | | 93.91 45 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 51 | 66.81 235 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_part1 | | | 82.78 93 | 82.08 97 | 84.89 92 | 90.66 95 | 66.97 153 | 90.96 52 | 92.93 52 | 77.19 51 | 80.53 118 | 90.04 125 | 63.44 127 | 95.39 74 | 76.04 121 | 76.90 249 | 92.31 111 |
|
baseline | | | 84.93 68 | 84.98 65 | 84.80 96 | 87.30 202 | 65.39 180 | 87.30 158 | 92.88 53 | 77.62 37 | 84.04 73 | 92.26 75 | 71.81 50 | 93.96 129 | 81.31 75 | 90.30 98 | 95.03 4 |
|
MSLP-MVS++ | | | 85.43 60 | 85.76 54 | 84.45 105 | 91.93 78 | 70.24 82 | 90.71 56 | 92.86 54 | 77.46 45 | 84.22 69 | 92.81 72 | 67.16 94 | 92.94 182 | 80.36 84 | 94.35 57 | 90.16 180 |
|
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 55 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
casdiffmvs | | | 85.11 66 | 85.14 63 | 85.01 86 | 87.20 204 | 65.77 172 | 87.75 147 | 92.83 56 | 77.84 35 | 84.36 68 | 92.38 74 | 72.15 48 | 93.93 135 | 81.27 76 | 90.48 96 | 95.33 1 |
|
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 36 | 92.83 56 | 73.01 144 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 97 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 49 | 92.83 56 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 59 | 76.62 69 | 83.68 77 | 94.46 25 | 67.93 85 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 60 | 77.33 46 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
EIA-MVS | | | 83.31 85 | 82.80 87 | 84.82 94 | 89.59 115 | 65.59 175 | 88.21 134 | 92.68 61 | 74.66 110 | 78.96 130 | 86.42 230 | 69.06 79 | 95.26 80 | 75.54 127 | 90.09 102 | 93.62 65 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 62 | 70.98 173 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
nrg030 | | | 83.88 74 | 83.53 76 | 84.96 88 | 86.77 212 | 69.28 104 | 90.46 65 | 92.67 62 | 74.79 106 | 82.95 86 | 91.33 97 | 72.70 43 | 93.09 176 | 80.79 82 | 79.28 229 | 92.50 104 |
|
WR-MVS_H | | | 78.51 182 | 78.49 158 | 78.56 255 | 88.02 177 | 56.38 308 | 88.43 121 | 92.67 62 | 77.14 53 | 73.89 234 | 87.55 192 | 66.25 102 | 89.24 267 | 58.92 265 | 73.55 297 | 90.06 190 |
|
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 65 | 77.57 39 | 83.84 75 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 65 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ETV-MVS | | | 84.90 70 | 84.67 71 | 85.59 74 | 89.39 124 | 68.66 121 | 88.74 112 | 92.64 66 | 79.97 17 | 84.10 71 | 85.71 242 | 69.32 76 | 95.38 75 | 80.82 80 | 91.37 86 | 92.72 96 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 106 | 70.94 69 | 89.70 84 | 92.59 67 | 81.78 4 | 81.32 107 | 91.43 94 | 70.34 62 | 97.23 9 | 84.26 42 | 93.36 67 | 94.37 25 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 68 | 74.50 112 | 86.84 33 | 94.65 18 | 67.31 92 | 95.77 56 | 84.80 34 | 92.85 71 | 92.84 94 |
|
alignmvs | | | 85.48 58 | 85.32 60 | 85.96 71 | 89.51 119 | 69.47 100 | 89.74 82 | 92.47 69 | 76.17 79 | 87.73 28 | 91.46 93 | 70.32 63 | 93.78 141 | 81.51 72 | 88.95 112 | 94.63 18 |
|
原ACMM1 | | | | | 84.35 110 | 93.01 59 | 68.79 111 | | 92.44 70 | 63.96 276 | 81.09 112 | 91.57 89 | 66.06 105 | 95.45 68 | 67.19 199 | 94.82 47 | 88.81 233 |
|
HQP_MVS | | | 83.64 78 | 83.14 80 | 85.14 82 | 90.08 107 | 68.71 117 | 91.25 47 | 92.44 70 | 79.12 23 | 78.92 132 | 91.00 108 | 60.42 183 | 95.38 75 | 78.71 93 | 86.32 148 | 91.33 139 |
|
plane_prior5 | | | | | | | | | 92.44 70 | | | | | 95.38 75 | 78.71 93 | 86.32 148 | 91.33 139 |
|
CDPH-MVS | | | 85.76 54 | 85.29 62 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 119 | 92.42 73 | 68.32 227 | 84.61 62 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 90 | 95.43 30 | 94.28 30 |
|
UniMVSNet_NR-MVSNet | | | 81.88 105 | 81.54 105 | 82.92 166 | 88.46 164 | 63.46 218 | 87.13 161 | 92.37 74 | 80.19 14 | 78.38 143 | 89.14 149 | 71.66 53 | 93.05 178 | 70.05 171 | 76.46 257 | 92.25 114 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 45 | 92.35 75 | 74.62 111 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CLD-MVS | | | 82.31 98 | 81.65 104 | 84.29 113 | 88.47 163 | 67.73 138 | 85.81 203 | 92.35 75 | 75.78 86 | 78.33 145 | 86.58 225 | 64.01 123 | 94.35 113 | 76.05 120 | 87.48 132 | 90.79 157 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 91 | 91.79 38 | 92.28 77 | 75.07 102 | 86.40 35 | 94.58 20 | 65.00 117 | 95.56 61 | 84.34 41 | 92.60 74 | 92.90 92 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 55 | 86.23 63 | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 78 | 73.53 135 | 85.69 42 | 94.45 26 | 65.00 117 | 95.56 61 | 82.75 61 | 91.87 79 | 92.50 104 |
|
RE-MVS-def | | | | 85.48 56 | | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 78 | 73.53 135 | 85.69 42 | 94.45 26 | 63.87 124 | | 82.75 61 | 91.87 79 | 92.50 104 |
|
RPMNet | | | 73.51 254 | 70.49 270 | 82.58 180 | 81.32 305 | 65.19 183 | 75.92 318 | 92.27 78 | 57.60 326 | 72.73 244 | 76.45 337 | 52.30 238 | 95.43 71 | 48.14 326 | 77.71 239 | 87.11 273 |
|
test11 | | | | | | | | | 92.23 81 | | | | | | | | |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 82 | 76.87 61 | 82.81 91 | 94.25 36 | 66.44 99 | 96.24 39 | 82.88 60 | 94.28 58 | 93.38 72 |
|
DP-MVS Recon | | | 83.11 89 | 82.09 96 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 108 | 92.20 83 | 70.53 182 | 79.17 128 | 91.03 107 | 64.12 122 | 96.03 47 | 68.39 188 | 90.14 101 | 91.50 134 |
|
HQP3-MVS | | | | | | | | | 92.19 84 | | | | | | | 85.99 154 | |
|
HQP-MVS | | | 82.61 96 | 82.02 99 | 84.37 108 | 89.33 126 | 66.98 151 | 89.17 92 | 92.19 84 | 76.41 71 | 77.23 168 | 90.23 120 | 60.17 186 | 95.11 87 | 77.47 107 | 85.99 154 | 91.03 149 |
|
3Dnovator | | 76.31 5 | 83.38 84 | 82.31 93 | 86.59 57 | 87.94 179 | 72.94 27 | 90.64 57 | 92.14 86 | 77.21 50 | 75.47 205 | 92.83 70 | 58.56 192 | 94.72 106 | 73.24 147 | 92.71 73 | 92.13 119 |
|
abl_6 | | | 85.23 63 | 84.95 68 | 86.07 68 | 92.23 74 | 70.48 81 | 90.80 55 | 92.08 87 | 73.51 137 | 85.26 46 | 94.16 39 | 62.75 141 | 95.92 53 | 82.46 68 | 91.30 88 | 91.81 127 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 126 | 71.24 62 | 88.43 121 | 92.05 88 | 82.50 1 | 86.88 32 | 90.09 123 | 74.45 26 | 95.61 59 | 84.38 39 | 90.63 94 | 94.01 41 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 70 | 92.02 89 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 83 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MTGPA |  | | | | | | | | 92.02 89 | | | | | | | | |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 180 | 92.02 89 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 83 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MVS_Test | | | 83.15 86 | 83.06 82 | 83.41 143 | 86.86 208 | 63.21 225 | 86.11 193 | 92.00 92 | 74.31 116 | 82.87 88 | 89.44 146 | 70.03 67 | 93.21 166 | 77.39 109 | 88.50 121 | 93.81 53 |
|
PVSNet_BlendedMVS | | | 80.60 136 | 80.02 127 | 82.36 184 | 88.85 146 | 65.40 178 | 86.16 192 | 92.00 92 | 69.34 204 | 78.11 150 | 86.09 237 | 66.02 106 | 94.27 116 | 71.52 157 | 82.06 196 | 87.39 262 |
|
PVSNet_Blended | | | 80.98 122 | 80.34 123 | 82.90 167 | 88.85 146 | 65.40 178 | 84.43 235 | 92.00 92 | 67.62 230 | 78.11 150 | 85.05 259 | 66.02 106 | 94.27 116 | 71.52 157 | 89.50 108 | 89.01 223 |
|
QAPM | | | 80.88 123 | 79.50 139 | 85.03 85 | 88.01 178 | 68.97 109 | 91.59 40 | 92.00 92 | 66.63 242 | 75.15 219 | 92.16 76 | 57.70 198 | 95.45 68 | 63.52 223 | 88.76 116 | 90.66 162 |
|
LPG-MVS_test | | | 82.08 101 | 81.27 107 | 84.50 103 | 89.23 134 | 68.76 113 | 90.22 71 | 91.94 96 | 75.37 95 | 76.64 181 | 91.51 90 | 54.29 223 | 94.91 96 | 78.44 97 | 83.78 172 | 89.83 201 |
|
LGP-MVS_train | | | | | 84.50 103 | 89.23 134 | 68.76 113 | | 91.94 96 | 75.37 95 | 76.64 181 | 91.51 90 | 54.29 223 | 94.91 96 | 78.44 97 | 83.78 172 | 89.83 201 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 110 | 91.89 98 | 68.44 226 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 72 | | | |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 110 | 91.89 98 | 68.69 222 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 72 | 84.97 29 | 95.71 26 | 93.02 88 |
|
DU-MVS | | | 81.12 121 | 80.52 120 | 82.90 167 | 87.80 184 | 63.46 218 | 87.02 165 | 91.87 100 | 79.01 26 | 78.38 143 | 89.07 152 | 65.02 115 | 93.05 178 | 70.05 171 | 76.46 257 | 92.20 116 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 115 | 91.84 101 | 68.69 222 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 85 | | | |
|
PAPM_NR | | | 83.02 90 | 82.41 90 | 84.82 94 | 92.47 72 | 66.37 160 | 87.93 144 | 91.80 102 | 73.82 128 | 77.32 165 | 90.66 113 | 67.90 86 | 94.90 98 | 70.37 168 | 89.48 109 | 93.19 82 |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 76 | | 91.79 103 | | 82.71 92 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 69 |
|
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 118 | 91.78 104 | 68.96 217 | 84.41 65 | 93.18 61 | 74.94 23 | 94.93 94 | 84.75 35 | 95.33 34 | 93.01 89 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 104 | | 84.41 65 | | | 94.93 94 | | | |
|
PAPR | | | 81.66 112 | 80.89 115 | 83.99 128 | 90.27 102 | 64.00 205 | 86.76 176 | 91.77 106 | 68.84 220 | 77.13 173 | 89.50 139 | 67.63 88 | 94.88 100 | 67.55 193 | 88.52 120 | 93.09 84 |
|
PVSNet_Blended_VisFu | | | 82.62 95 | 81.83 103 | 84.96 88 | 90.80 94 | 69.76 93 | 88.74 112 | 91.70 107 | 69.39 202 | 78.96 130 | 88.46 168 | 65.47 111 | 94.87 101 | 74.42 132 | 88.57 118 | 90.24 178 |
|
HPM-MVS_fast | | | 85.35 62 | 84.95 68 | 86.57 58 | 93.69 43 | 70.58 80 | 92.15 31 | 91.62 108 | 73.89 127 | 82.67 93 | 94.09 42 | 62.60 142 | 95.54 64 | 80.93 78 | 92.93 69 | 93.57 67 |
|
ACMM | | 73.20 8 | 80.78 133 | 79.84 131 | 83.58 136 | 89.31 131 | 68.37 125 | 89.99 75 | 91.60 109 | 70.28 186 | 77.25 166 | 89.66 134 | 53.37 231 | 93.53 155 | 74.24 135 | 82.85 187 | 88.85 231 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPA-MVSNet | | | 80.60 136 | 80.55 119 | 80.76 219 | 88.07 175 | 60.80 256 | 86.86 170 | 91.58 110 | 75.67 90 | 80.24 120 | 89.45 145 | 63.34 129 | 90.25 251 | 70.51 167 | 79.22 230 | 91.23 142 |
|
OPM-MVS | | | 83.50 80 | 82.95 84 | 85.14 82 | 88.79 152 | 70.95 68 | 89.13 97 | 91.52 111 | 77.55 42 | 80.96 114 | 91.75 83 | 60.71 177 | 94.50 111 | 79.67 89 | 86.51 146 | 89.97 196 |
|
Anonymous20231211 | | | 78.97 173 | 77.69 183 | 82.81 171 | 90.54 98 | 64.29 201 | 90.11 73 | 91.51 112 | 65.01 261 | 76.16 195 | 88.13 183 | 50.56 262 | 93.03 181 | 69.68 177 | 77.56 242 | 91.11 146 |
|
PS-MVSNAJss | | | 82.07 102 | 81.31 106 | 84.34 111 | 86.51 215 | 67.27 147 | 89.27 90 | 91.51 112 | 71.75 159 | 79.37 126 | 90.22 121 | 63.15 135 | 94.27 116 | 77.69 105 | 82.36 194 | 91.49 135 |
|
TAPA-MVS | | 73.13 9 | 79.15 167 | 77.94 172 | 82.79 174 | 89.59 115 | 62.99 232 | 88.16 137 | 91.51 112 | 65.77 251 | 77.14 172 | 91.09 103 | 60.91 175 | 93.21 166 | 50.26 314 | 87.05 137 | 92.17 118 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMP | | 74.13 6 | 81.51 116 | 80.57 118 | 84.36 109 | 89.42 122 | 68.69 120 | 89.97 76 | 91.50 115 | 74.46 114 | 75.04 223 | 90.41 117 | 53.82 228 | 94.54 108 | 77.56 106 | 82.91 186 | 89.86 200 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 73.52 7 | 80.38 141 | 78.84 153 | 85.01 86 | 87.71 188 | 68.99 108 | 83.65 248 | 91.46 116 | 63.00 282 | 77.77 157 | 90.28 118 | 66.10 103 | 95.09 91 | 61.40 245 | 88.22 124 | 90.94 153 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 126 | 70.93 70 | 88.43 121 | 91.39 117 | 82.14 3 | 86.65 34 | 90.09 123 | 74.39 29 | 95.01 93 | 83.97 47 | 90.63 94 | 93.97 43 |
|
TranMVSNet+NR-MVSNet | | | 80.84 125 | 80.31 124 | 82.42 182 | 87.85 182 | 62.33 237 | 87.74 148 | 91.33 118 | 80.55 11 | 77.99 153 | 89.86 128 | 65.23 113 | 92.62 188 | 67.05 201 | 75.24 282 | 92.30 112 |
|
Regformer-4 | | | 85.68 57 | 85.45 57 | 86.35 59 | 88.95 144 | 69.67 95 | 88.29 131 | 91.29 119 | 81.73 5 | 85.36 45 | 90.01 126 | 72.62 44 | 95.35 79 | 83.28 54 | 87.57 127 | 94.03 39 |
|
RRT_test8_iter05 | | | 78.38 185 | 77.40 188 | 81.34 205 | 86.00 220 | 58.86 272 | 86.55 182 | 91.26 120 | 72.13 156 | 75.91 197 | 87.42 196 | 44.97 304 | 93.73 147 | 77.02 113 | 75.30 279 | 91.45 138 |
|
PS-CasMVS | | | 78.01 197 | 78.09 169 | 77.77 267 | 87.71 188 | 54.39 322 | 88.02 139 | 91.22 121 | 77.50 44 | 73.26 238 | 88.64 162 | 60.73 176 | 88.41 281 | 61.88 240 | 73.88 294 | 90.53 168 |
|
v7n | | | 78.97 173 | 77.58 186 | 83.14 155 | 83.45 260 | 65.51 176 | 88.32 129 | 91.21 122 | 73.69 130 | 72.41 248 | 86.32 233 | 57.93 195 | 93.81 140 | 69.18 181 | 75.65 268 | 90.11 184 |
|
PEN-MVS | | | 77.73 202 | 77.69 183 | 77.84 265 | 87.07 207 | 53.91 325 | 87.91 145 | 91.18 123 | 77.56 41 | 73.14 240 | 88.82 158 | 61.23 169 | 89.17 268 | 59.95 255 | 72.37 305 | 90.43 171 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 63 | 91.17 124 | 74.31 116 | | | | | | | |
|
CP-MVSNet | | | 78.22 188 | 78.34 164 | 77.84 265 | 87.83 183 | 54.54 320 | 87.94 143 | 91.17 124 | 77.65 36 | 73.48 236 | 88.49 167 | 62.24 151 | 88.43 280 | 62.19 236 | 74.07 290 | 90.55 167 |
|
114514_t | | | 80.68 134 | 79.51 138 | 84.20 115 | 94.09 36 | 67.27 147 | 89.64 85 | 91.11 126 | 58.75 319 | 74.08 233 | 90.72 112 | 58.10 194 | 95.04 92 | 69.70 176 | 89.42 110 | 90.30 176 |
|
NR-MVSNet | | | 80.23 144 | 79.38 142 | 82.78 175 | 87.80 184 | 63.34 221 | 86.31 187 | 91.09 127 | 79.01 26 | 72.17 251 | 89.07 152 | 67.20 93 | 92.81 187 | 66.08 208 | 75.65 268 | 92.20 116 |
|
OpenMVS |  | 72.83 10 | 79.77 152 | 78.33 165 | 84.09 119 | 85.17 232 | 69.91 89 | 90.57 59 | 90.97 128 | 66.70 238 | 72.17 251 | 91.91 80 | 54.70 220 | 93.96 129 | 61.81 242 | 90.95 91 | 88.41 244 |
|
MAR-MVS | | | 81.84 106 | 80.70 116 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 129 | 69.77 196 | 78.50 140 | 86.21 234 | 62.36 148 | 94.52 110 | 65.36 213 | 92.05 77 | 89.77 204 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Anonymous20240529 | | | 80.19 146 | 78.89 152 | 84.10 118 | 90.60 96 | 64.75 190 | 88.95 101 | 90.90 130 | 65.97 250 | 80.59 117 | 91.17 101 | 49.97 268 | 93.73 147 | 69.16 182 | 82.70 191 | 93.81 53 |
|
OMC-MVS | | | 82.69 94 | 81.97 101 | 84.85 93 | 88.75 154 | 67.42 143 | 87.98 140 | 90.87 131 | 74.92 105 | 79.72 123 | 91.65 85 | 62.19 152 | 93.96 129 | 75.26 129 | 86.42 147 | 93.16 83 |
|
UA-Net | | | 85.08 67 | 84.96 67 | 85.45 75 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 132 | 82.48 2 | 84.60 63 | 93.20 60 | 69.35 75 | 95.22 82 | 71.39 160 | 90.88 92 | 93.07 85 |
|
EPP-MVSNet | | | 83.40 83 | 83.02 83 | 84.57 101 | 90.13 105 | 64.47 197 | 92.32 26 | 90.73 133 | 74.45 115 | 79.35 127 | 91.10 102 | 69.05 80 | 95.12 86 | 72.78 151 | 87.22 135 | 94.13 34 |
|
DTE-MVSNet | | | 76.99 215 | 76.80 201 | 77.54 272 | 86.24 217 | 53.06 332 | 87.52 152 | 90.66 134 | 77.08 56 | 72.50 246 | 88.67 161 | 60.48 182 | 89.52 262 | 57.33 281 | 70.74 316 | 90.05 191 |
|
v10 | | | 79.74 153 | 78.67 154 | 82.97 165 | 84.06 250 | 64.95 187 | 87.88 146 | 90.62 135 | 73.11 141 | 75.11 220 | 86.56 226 | 61.46 163 | 94.05 128 | 73.68 138 | 75.55 270 | 89.90 198 |
|
v1192 | | | 79.59 155 | 78.43 161 | 83.07 159 | 83.55 259 | 64.52 193 | 86.93 168 | 90.58 136 | 70.83 174 | 77.78 156 | 85.90 238 | 59.15 189 | 93.94 132 | 73.96 137 | 77.19 246 | 90.76 158 |
|
v1144 | | | 80.03 148 | 79.03 149 | 83.01 162 | 83.78 255 | 64.51 194 | 87.11 163 | 90.57 137 | 71.96 157 | 78.08 152 | 86.20 235 | 61.41 164 | 93.94 132 | 74.93 130 | 77.23 244 | 90.60 165 |
|
XVG-OURS-SEG-HR | | | 80.81 128 | 79.76 133 | 83.96 130 | 85.60 226 | 68.78 112 | 83.54 253 | 90.50 138 | 70.66 180 | 76.71 179 | 91.66 84 | 60.69 178 | 91.26 231 | 76.94 114 | 81.58 201 | 91.83 125 |
|
MVS | | | 78.19 191 | 76.99 197 | 81.78 193 | 85.66 224 | 66.99 150 | 84.66 225 | 90.47 139 | 55.08 338 | 72.02 253 | 85.27 252 | 63.83 125 | 94.11 127 | 66.10 207 | 89.80 106 | 84.24 312 |
|
XVG-OURS | | | 80.41 140 | 79.23 146 | 83.97 129 | 85.64 225 | 69.02 106 | 83.03 261 | 90.39 140 | 71.09 171 | 77.63 159 | 91.49 92 | 54.62 222 | 91.35 229 | 75.71 123 | 83.47 179 | 91.54 132 |
|
MVSFormer | | | 82.85 92 | 82.05 98 | 85.24 80 | 87.35 197 | 70.21 83 | 90.50 61 | 90.38 141 | 68.55 224 | 81.32 107 | 89.47 141 | 61.68 157 | 93.46 159 | 78.98 91 | 90.26 99 | 92.05 121 |
|
test_djsdf | | | 80.30 143 | 79.32 144 | 83.27 147 | 83.98 252 | 65.37 181 | 90.50 61 | 90.38 141 | 68.55 224 | 76.19 191 | 88.70 159 | 56.44 210 | 93.46 159 | 78.98 91 | 80.14 219 | 90.97 152 |
|
CPTT-MVS | | | 83.73 76 | 83.33 79 | 84.92 91 | 93.28 50 | 70.86 72 | 92.09 32 | 90.38 141 | 68.75 221 | 79.57 124 | 92.83 70 | 60.60 181 | 93.04 180 | 80.92 79 | 91.56 84 | 90.86 156 |
|
v144192 | | | 79.47 158 | 78.37 163 | 82.78 175 | 83.35 261 | 63.96 206 | 86.96 166 | 90.36 144 | 69.99 190 | 77.50 160 | 85.67 244 | 60.66 179 | 93.77 143 | 74.27 134 | 76.58 255 | 90.62 163 |
|
v1921920 | | | 79.22 165 | 78.03 170 | 82.80 172 | 83.30 263 | 63.94 207 | 86.80 172 | 90.33 145 | 69.91 193 | 77.48 161 | 85.53 247 | 58.44 193 | 93.75 145 | 73.60 139 | 76.85 252 | 90.71 161 |
|
MVS_111021_HR | | | 85.14 65 | 84.75 70 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 195 | 90.33 145 | 76.11 80 | 82.08 96 | 91.61 88 | 71.36 55 | 94.17 124 | 81.02 77 | 92.58 75 | 92.08 120 |
|
v1240 | | | 78.99 172 | 77.78 178 | 82.64 178 | 83.21 265 | 63.54 215 | 86.62 179 | 90.30 147 | 69.74 199 | 77.33 164 | 85.68 243 | 57.04 207 | 93.76 144 | 73.13 148 | 76.92 248 | 90.62 163 |
|
v8 | | | 79.97 150 | 79.02 150 | 82.80 172 | 84.09 249 | 64.50 196 | 87.96 141 | 90.29 148 | 74.13 123 | 75.24 217 | 86.81 211 | 62.88 140 | 93.89 138 | 74.39 133 | 75.40 276 | 90.00 192 |
|
mvs_tets | | | 79.13 168 | 77.77 179 | 83.22 152 | 84.70 240 | 66.37 160 | 89.17 92 | 90.19 149 | 69.38 203 | 75.40 210 | 89.46 143 | 44.17 309 | 93.15 172 | 76.78 116 | 80.70 211 | 90.14 181 |
|
jajsoiax | | | 79.29 164 | 77.96 171 | 83.27 147 | 84.68 241 | 66.57 158 | 89.25 91 | 90.16 150 | 69.20 209 | 75.46 207 | 89.49 140 | 45.75 301 | 93.13 174 | 76.84 115 | 80.80 209 | 90.11 184 |
|
Vis-MVSNet |  | | 83.46 81 | 82.80 87 | 85.43 76 | 90.25 103 | 68.74 115 | 90.30 69 | 90.13 151 | 76.33 77 | 80.87 115 | 92.89 68 | 61.00 174 | 94.20 121 | 72.45 154 | 90.97 90 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PS-MVSNAJ | | | 81.69 110 | 81.02 112 | 83.70 134 | 89.51 119 | 68.21 130 | 84.28 239 | 90.09 152 | 70.79 176 | 81.26 111 | 85.62 246 | 63.15 135 | 94.29 114 | 75.62 125 | 88.87 114 | 88.59 239 |
|
xiu_mvs_v2_base | | | 81.69 110 | 81.05 111 | 83.60 135 | 89.15 137 | 68.03 133 | 84.46 233 | 90.02 153 | 70.67 179 | 81.30 110 | 86.53 228 | 63.17 134 | 94.19 122 | 75.60 126 | 88.54 119 | 88.57 240 |
|
v2v482 | | | 80.23 144 | 79.29 145 | 83.05 160 | 83.62 257 | 64.14 203 | 87.04 164 | 89.97 154 | 73.61 131 | 78.18 149 | 87.22 202 | 61.10 172 | 93.82 139 | 76.11 119 | 76.78 254 | 91.18 143 |
|
test_yl | | | 81.17 119 | 80.47 121 | 83.24 149 | 89.13 138 | 63.62 211 | 86.21 190 | 89.95 155 | 72.43 150 | 81.78 102 | 89.61 136 | 57.50 201 | 93.58 150 | 70.75 163 | 86.90 139 | 92.52 102 |
|
DCV-MVSNet | | | 81.17 119 | 80.47 121 | 83.24 149 | 89.13 138 | 63.62 211 | 86.21 190 | 89.95 155 | 72.43 150 | 81.78 102 | 89.61 136 | 57.50 201 | 93.58 150 | 70.75 163 | 86.90 139 | 92.52 102 |
|
Regformer-3 | | | 85.23 63 | 85.07 64 | 85.70 73 | 88.95 144 | 69.01 107 | 88.29 131 | 89.91 157 | 80.95 8 | 85.01 49 | 90.01 126 | 72.45 45 | 94.19 122 | 82.50 67 | 87.57 127 | 93.90 47 |
|
V42 | | | 79.38 163 | 78.24 167 | 82.83 169 | 81.10 308 | 65.50 177 | 85.55 208 | 89.82 158 | 71.57 164 | 78.21 147 | 86.12 236 | 60.66 179 | 93.18 171 | 75.64 124 | 75.46 274 | 89.81 203 |
|
VNet | | | 82.21 99 | 82.41 90 | 81.62 196 | 90.82 93 | 60.93 253 | 84.47 231 | 89.78 159 | 76.36 76 | 84.07 72 | 91.88 82 | 64.71 119 | 90.26 250 | 70.68 165 | 88.89 113 | 93.66 58 |
|
diffmvs | | | 82.10 100 | 81.88 102 | 82.76 177 | 83.00 273 | 63.78 210 | 83.68 247 | 89.76 160 | 72.94 145 | 82.02 97 | 89.85 129 | 65.96 108 | 90.79 244 | 82.38 69 | 87.30 134 | 93.71 57 |
|
XVG-ACMP-BASELINE | | | 76.11 230 | 74.27 237 | 81.62 196 | 83.20 266 | 64.67 191 | 83.60 251 | 89.75 161 | 69.75 197 | 71.85 254 | 87.09 207 | 32.78 348 | 92.11 207 | 69.99 173 | 80.43 215 | 88.09 247 |
|
EI-MVSNet-Vis-set | | | 84.19 73 | 83.81 75 | 85.31 77 | 88.18 171 | 67.85 135 | 87.66 149 | 89.73 162 | 80.05 16 | 82.95 86 | 89.59 138 | 70.74 60 | 94.82 102 | 80.66 83 | 84.72 163 | 93.28 77 |
|
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 63 | 89.69 163 | 74.31 116 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
EI-MVSNet-UG-set | | | 83.81 75 | 83.38 78 | 85.09 84 | 87.87 181 | 67.53 141 | 87.44 155 | 89.66 164 | 79.74 18 | 82.23 95 | 89.41 147 | 70.24 66 | 94.74 105 | 79.95 87 | 83.92 171 | 92.99 90 |
|
PAPM | | | 77.68 205 | 76.40 211 | 81.51 199 | 87.29 203 | 61.85 244 | 83.78 246 | 89.59 165 | 64.74 263 | 71.23 259 | 88.70 159 | 62.59 143 | 93.66 149 | 52.66 301 | 87.03 138 | 89.01 223 |
|
anonymousdsp | | | 78.60 180 | 77.15 193 | 82.98 164 | 80.51 314 | 67.08 149 | 87.24 160 | 89.53 166 | 65.66 253 | 75.16 218 | 87.19 204 | 52.52 234 | 92.25 202 | 77.17 111 | 79.34 227 | 89.61 208 |
|
MG-MVS | | | 83.41 82 | 83.45 77 | 83.28 146 | 92.74 66 | 62.28 239 | 88.17 136 | 89.50 167 | 75.22 99 | 81.49 106 | 92.74 73 | 66.75 95 | 95.11 87 | 72.85 150 | 91.58 83 | 92.45 107 |
|
PLC |  | 70.83 11 | 78.05 195 | 76.37 212 | 83.08 158 | 91.88 80 | 67.80 136 | 88.19 135 | 89.46 168 | 64.33 269 | 69.87 277 | 88.38 170 | 53.66 229 | 93.58 150 | 58.86 266 | 82.73 189 | 87.86 252 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Fast-Effi-MVS+ | | | 80.81 128 | 79.92 129 | 83.47 139 | 88.85 146 | 64.51 194 | 85.53 210 | 89.39 169 | 70.79 176 | 78.49 141 | 85.06 258 | 67.54 89 | 93.58 150 | 67.03 202 | 86.58 144 | 92.32 110 |
|
IterMVS-LS | | | 80.06 147 | 79.38 142 | 82.11 186 | 85.89 221 | 63.20 226 | 86.79 173 | 89.34 170 | 74.19 120 | 75.45 208 | 86.72 214 | 66.62 96 | 92.39 196 | 72.58 152 | 76.86 251 | 90.75 159 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
API-MVS | | | 81.99 104 | 81.23 108 | 84.26 114 | 90.94 90 | 70.18 88 | 91.10 50 | 89.32 171 | 71.51 165 | 78.66 137 | 88.28 173 | 65.26 112 | 95.10 90 | 64.74 219 | 91.23 89 | 87.51 260 |
|
GBi-Net | | | 78.40 183 | 77.40 188 | 81.40 202 | 87.60 191 | 63.01 229 | 88.39 125 | 89.28 172 | 71.63 161 | 75.34 212 | 87.28 198 | 54.80 216 | 91.11 234 | 62.72 230 | 79.57 222 | 90.09 186 |
|
test1 | | | 78.40 183 | 77.40 188 | 81.40 202 | 87.60 191 | 63.01 229 | 88.39 125 | 89.28 172 | 71.63 161 | 75.34 212 | 87.28 198 | 54.80 216 | 91.11 234 | 62.72 230 | 79.57 222 | 90.09 186 |
|
FMVSNet1 | | | 77.44 208 | 76.12 214 | 81.40 202 | 86.81 211 | 63.01 229 | 88.39 125 | 89.28 172 | 70.49 183 | 74.39 230 | 87.28 198 | 49.06 280 | 91.11 234 | 60.91 249 | 78.52 232 | 90.09 186 |
|
cdsmvs_eth3d_5k | | | 19.96 334 | 26.61 336 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 89.26 175 | 0.00 369 | 0.00 370 | 88.61 163 | 61.62 159 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs | | | 79.51 156 | 78.97 151 | 81.14 211 | 88.46 164 | 60.91 254 | 83.84 245 | 89.24 176 | 70.36 184 | 79.03 129 | 88.87 157 | 63.23 133 | 90.21 252 | 65.12 215 | 82.57 192 | 92.28 113 |
|
cascas | | | 76.72 220 | 74.64 230 | 82.99 163 | 85.78 223 | 65.88 169 | 82.33 266 | 89.21 177 | 60.85 301 | 72.74 243 | 81.02 303 | 47.28 288 | 93.75 145 | 67.48 194 | 85.02 159 | 89.34 213 |
|
eth_miper_zixun_eth | | | 77.92 199 | 76.69 206 | 81.61 198 | 83.00 273 | 61.98 242 | 83.15 257 | 89.20 178 | 69.52 201 | 74.86 226 | 84.35 265 | 61.76 156 | 92.56 191 | 71.50 159 | 72.89 303 | 90.28 177 |
|
hse-mvs3 | | | 83.15 86 | 82.19 94 | 86.02 70 | 90.56 97 | 70.85 73 | 88.15 138 | 89.16 179 | 76.02 82 | 84.67 59 | 91.39 96 | 61.54 160 | 95.50 65 | 82.71 63 | 75.48 272 | 91.72 129 |
|
miper_ehance_all_eth | | | 78.59 181 | 77.76 180 | 81.08 213 | 82.66 282 | 61.56 248 | 83.65 248 | 89.15 180 | 68.87 219 | 75.55 204 | 83.79 274 | 66.49 98 | 92.03 209 | 73.25 146 | 76.39 259 | 89.64 207 |
|
Effi-MVS+ | | | 83.62 79 | 83.08 81 | 85.24 80 | 88.38 167 | 67.45 142 | 88.89 103 | 89.15 180 | 75.50 92 | 82.27 94 | 88.28 173 | 69.61 73 | 94.45 112 | 77.81 104 | 87.84 125 | 93.84 51 |
|
cl_fuxian | | | 78.75 176 | 77.91 173 | 81.26 207 | 82.89 277 | 61.56 248 | 84.09 243 | 89.13 182 | 69.97 191 | 75.56 203 | 84.29 266 | 66.36 100 | 92.09 208 | 73.47 143 | 75.48 272 | 90.12 183 |
|
LTVRE_ROB | | 69.57 13 | 76.25 228 | 74.54 233 | 81.41 201 | 88.60 159 | 64.38 200 | 79.24 295 | 89.12 183 | 70.76 178 | 69.79 279 | 87.86 185 | 49.09 279 | 93.20 168 | 56.21 289 | 80.16 217 | 86.65 282 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 76.38 227 | 74.33 236 | 82.50 181 | 89.28 132 | 66.95 155 | 88.41 124 | 89.03 184 | 64.05 273 | 66.83 302 | 88.61 163 | 46.78 291 | 92.89 183 | 57.48 278 | 78.55 231 | 87.67 255 |
|
FMVSNet2 | | | 78.20 190 | 77.21 192 | 81.20 209 | 87.60 191 | 62.89 233 | 87.47 154 | 89.02 185 | 71.63 161 | 75.29 216 | 87.28 198 | 54.80 216 | 91.10 237 | 62.38 234 | 79.38 226 | 89.61 208 |
|
ACMH | | 67.68 16 | 75.89 232 | 73.93 239 | 81.77 194 | 88.71 156 | 66.61 157 | 88.62 117 | 89.01 186 | 69.81 194 | 66.78 303 | 86.70 219 | 41.95 323 | 91.51 226 | 55.64 290 | 78.14 237 | 87.17 269 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
miper_enhance_ethall | | | 77.87 201 | 76.86 199 | 80.92 216 | 81.65 296 | 61.38 250 | 82.68 262 | 88.98 187 | 65.52 255 | 75.47 205 | 82.30 292 | 65.76 110 | 92.00 211 | 72.95 149 | 76.39 259 | 89.39 212 |
|
无先验 | | | | | | | | 87.48 153 | 88.98 187 | 60.00 307 | | | | 94.12 125 | 67.28 196 | | 88.97 226 |
|
AdaColmap |  | | 80.58 138 | 79.42 140 | 84.06 121 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 189 | 69.27 205 | 75.70 202 | 89.69 133 | 57.20 206 | 95.77 56 | 63.06 229 | 88.41 122 | 87.50 261 |
|
EI-MVSNet | | | 80.52 139 | 79.98 128 | 82.12 185 | 84.28 245 | 63.19 227 | 86.41 184 | 88.95 190 | 74.18 121 | 78.69 135 | 87.54 193 | 66.62 96 | 92.43 194 | 72.57 153 | 80.57 213 | 90.74 160 |
|
MVSTER | | | 79.01 171 | 77.88 175 | 82.38 183 | 83.07 270 | 64.80 189 | 84.08 244 | 88.95 190 | 69.01 216 | 78.69 135 | 87.17 205 | 54.70 220 | 92.43 194 | 74.69 131 | 80.57 213 | 89.89 199 |
|
1314 | | | 76.53 221 | 75.30 226 | 80.21 229 | 83.93 253 | 62.32 238 | 84.66 225 | 88.81 192 | 60.23 305 | 70.16 271 | 84.07 269 | 55.30 214 | 90.73 246 | 67.37 195 | 83.21 182 | 87.59 259 |
|
UniMVSNet_ETH3D | | | 79.10 169 | 78.24 167 | 81.70 195 | 86.85 209 | 60.24 263 | 87.28 159 | 88.79 193 | 74.25 119 | 76.84 174 | 90.53 116 | 49.48 274 | 91.56 223 | 67.98 189 | 82.15 195 | 93.29 76 |
|
xiu_mvs_v1_base_debu | | | 80.80 130 | 79.72 134 | 84.03 125 | 87.35 197 | 70.19 85 | 85.56 205 | 88.77 194 | 69.06 213 | 81.83 98 | 88.16 178 | 50.91 257 | 92.85 184 | 78.29 101 | 87.56 129 | 89.06 218 |
|
xiu_mvs_v1_base | | | 80.80 130 | 79.72 134 | 84.03 125 | 87.35 197 | 70.19 85 | 85.56 205 | 88.77 194 | 69.06 213 | 81.83 98 | 88.16 178 | 50.91 257 | 92.85 184 | 78.29 101 | 87.56 129 | 89.06 218 |
|
xiu_mvs_v1_base_debi | | | 80.80 130 | 79.72 134 | 84.03 125 | 87.35 197 | 70.19 85 | 85.56 205 | 88.77 194 | 69.06 213 | 81.83 98 | 88.16 178 | 50.91 257 | 92.85 184 | 78.29 101 | 87.56 129 | 89.06 218 |
|
FMVSNet3 | | | 77.88 200 | 76.85 200 | 80.97 215 | 86.84 210 | 62.36 236 | 86.52 183 | 88.77 194 | 71.13 169 | 75.34 212 | 86.66 221 | 54.07 226 | 91.10 237 | 62.72 230 | 79.57 222 | 89.45 211 |
|
RRT_MVS | | | 79.88 151 | 78.38 162 | 84.38 107 | 85.42 229 | 70.60 79 | 88.71 114 | 88.75 198 | 72.30 152 | 78.83 134 | 89.14 149 | 44.44 307 | 92.18 205 | 78.50 96 | 79.33 228 | 90.35 174 |
|
GeoE | | | 81.71 109 | 81.01 113 | 83.80 133 | 89.51 119 | 64.45 198 | 88.97 100 | 88.73 199 | 71.27 168 | 78.63 138 | 89.76 131 | 66.32 101 | 93.20 168 | 69.89 174 | 86.02 153 | 93.74 56 |
|
CANet_DTU | | | 80.61 135 | 79.87 130 | 82.83 169 | 85.60 226 | 63.17 228 | 87.36 156 | 88.65 200 | 76.37 75 | 75.88 199 | 88.44 169 | 53.51 230 | 93.07 177 | 73.30 145 | 89.74 107 | 92.25 114 |
|
HyFIR lowres test | | | 77.53 207 | 75.40 222 | 83.94 131 | 89.59 115 | 66.62 156 | 80.36 284 | 88.64 201 | 56.29 334 | 76.45 183 | 85.17 255 | 57.64 199 | 93.28 164 | 61.34 247 | 83.10 185 | 91.91 123 |
|
WR-MVS | | | 79.49 157 | 79.22 147 | 80.27 228 | 88.79 152 | 58.35 276 | 85.06 217 | 88.61 202 | 78.56 29 | 77.65 158 | 88.34 171 | 63.81 126 | 90.66 247 | 64.98 217 | 77.22 245 | 91.80 128 |
|
BH-untuned | | | 79.47 158 | 78.60 156 | 82.05 188 | 89.19 136 | 65.91 168 | 86.07 194 | 88.52 203 | 72.18 153 | 75.42 209 | 87.69 188 | 61.15 171 | 93.54 154 | 60.38 252 | 86.83 141 | 86.70 281 |
|
IS-MVSNet | | | 83.15 86 | 82.81 86 | 84.18 116 | 89.94 110 | 63.30 222 | 91.59 40 | 88.46 204 | 79.04 25 | 79.49 125 | 92.16 76 | 65.10 114 | 94.28 115 | 67.71 191 | 91.86 81 | 94.95 5 |
|
pm-mvs1 | | | 77.25 212 | 76.68 207 | 78.93 250 | 84.22 247 | 58.62 275 | 86.41 184 | 88.36 205 | 71.37 167 | 73.31 237 | 88.01 184 | 61.22 170 | 89.15 269 | 64.24 221 | 73.01 302 | 89.03 222 |
|
UGNet | | | 80.83 127 | 79.59 137 | 84.54 102 | 88.04 176 | 68.09 131 | 89.42 87 | 88.16 206 | 76.95 58 | 76.22 190 | 89.46 143 | 49.30 277 | 93.94 132 | 68.48 186 | 90.31 97 | 91.60 130 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDD-MVS | | | 83.01 91 | 82.36 92 | 84.96 88 | 91.02 89 | 66.40 159 | 88.91 102 | 88.11 207 | 77.57 39 | 84.39 67 | 93.29 59 | 52.19 240 | 93.91 136 | 77.05 112 | 88.70 117 | 94.57 21 |
|
Effi-MVS+-dtu | | | 80.03 148 | 78.57 157 | 84.42 106 | 85.13 235 | 68.74 115 | 88.77 109 | 88.10 208 | 74.99 103 | 74.97 224 | 83.49 278 | 57.27 204 | 93.36 162 | 73.53 140 | 80.88 207 | 91.18 143 |
|
mvs-test1 | | | 80.88 123 | 79.40 141 | 85.29 78 | 85.13 235 | 69.75 94 | 89.28 89 | 88.10 208 | 74.99 103 | 76.44 186 | 86.72 214 | 57.27 204 | 94.26 120 | 73.53 140 | 83.18 183 | 91.87 124 |
|
v148 | | | 78.72 177 | 77.80 177 | 81.47 200 | 82.73 280 | 61.96 243 | 86.30 188 | 88.08 210 | 73.26 140 | 76.18 192 | 85.47 249 | 62.46 146 | 92.36 198 | 71.92 156 | 73.82 295 | 90.09 186 |
|
EG-PatchMatch MVS | | | 74.04 249 | 71.82 258 | 80.71 220 | 84.92 238 | 67.42 143 | 85.86 200 | 88.08 210 | 66.04 248 | 64.22 322 | 83.85 271 | 35.10 344 | 92.56 191 | 57.44 279 | 80.83 208 | 82.16 330 |
|
cl-mvsnet2 | | | 78.07 194 | 77.01 195 | 81.23 208 | 82.37 289 | 61.83 245 | 83.55 252 | 87.98 212 | 68.96 217 | 75.06 222 | 83.87 270 | 61.40 165 | 91.88 216 | 73.53 140 | 76.39 259 | 89.98 195 |
|
pmmvs6 | | | 74.69 243 | 73.39 244 | 78.61 254 | 81.38 302 | 57.48 292 | 86.64 178 | 87.95 213 | 64.99 262 | 70.18 269 | 86.61 222 | 50.43 264 | 89.52 262 | 62.12 238 | 70.18 318 | 88.83 232 |
|
MVP-Stereo | | | 76.12 229 | 74.46 235 | 81.13 212 | 85.37 230 | 69.79 92 | 84.42 236 | 87.95 213 | 65.03 260 | 67.46 294 | 85.33 251 | 53.28 232 | 91.73 220 | 58.01 275 | 83.27 181 | 81.85 331 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
cl-mvsnet____ | | | 77.72 203 | 76.76 203 | 80.58 221 | 82.49 286 | 60.48 260 | 83.09 258 | 87.87 215 | 69.22 207 | 74.38 231 | 85.22 254 | 62.10 153 | 91.53 224 | 71.09 161 | 75.41 275 | 89.73 206 |
|
cl-mvsnet1 | | | 77.72 203 | 76.76 203 | 80.58 221 | 82.48 287 | 60.48 260 | 83.09 258 | 87.86 216 | 69.22 207 | 74.38 231 | 85.24 253 | 62.10 153 | 91.53 224 | 71.09 161 | 75.40 276 | 89.74 205 |
|
BH-w/o | | | 78.21 189 | 77.33 191 | 80.84 217 | 88.81 150 | 65.13 185 | 84.87 221 | 87.85 217 | 69.75 197 | 74.52 229 | 84.74 262 | 61.34 166 | 93.11 175 | 58.24 273 | 85.84 156 | 84.27 311 |
|
HY-MVS | | 69.67 12 | 77.95 198 | 77.15 193 | 80.36 225 | 87.57 195 | 60.21 264 | 83.37 255 | 87.78 218 | 66.11 246 | 75.37 211 | 87.06 209 | 63.27 131 | 90.48 249 | 61.38 246 | 82.43 193 | 90.40 173 |
|
1112_ss | | | 77.40 210 | 76.43 210 | 80.32 227 | 89.11 142 | 60.41 262 | 83.65 248 | 87.72 219 | 62.13 293 | 73.05 241 | 86.72 214 | 62.58 144 | 89.97 255 | 62.11 239 | 80.80 209 | 90.59 166 |
|
mvs_anonymous | | | 79.42 160 | 79.11 148 | 80.34 226 | 84.45 244 | 57.97 283 | 82.59 263 | 87.62 220 | 67.40 233 | 76.17 194 | 88.56 166 | 68.47 82 | 89.59 261 | 70.65 166 | 86.05 152 | 93.47 71 |
|
ACMH+ | | 68.96 14 | 76.01 231 | 74.01 238 | 82.03 189 | 88.60 159 | 65.31 182 | 88.86 104 | 87.55 221 | 70.25 187 | 67.75 291 | 87.47 195 | 41.27 324 | 93.19 170 | 58.37 271 | 75.94 265 | 87.60 257 |
|
tfpnnormal | | | 74.39 244 | 73.16 247 | 78.08 262 | 86.10 219 | 58.05 280 | 84.65 228 | 87.53 222 | 70.32 185 | 71.22 260 | 85.63 245 | 54.97 215 | 89.86 256 | 43.03 343 | 75.02 283 | 86.32 285 |
|
CHOSEN 1792x2688 | | | 77.63 206 | 75.69 215 | 83.44 140 | 89.98 109 | 68.58 123 | 78.70 302 | 87.50 223 | 56.38 333 | 75.80 201 | 86.84 210 | 58.67 191 | 91.40 228 | 61.58 244 | 85.75 157 | 90.34 175 |
|
ambc | | | | | 75.24 293 | 73.16 352 | 50.51 343 | 63.05 354 | 87.47 224 | | 64.28 321 | 77.81 331 | 17.80 360 | 89.73 259 | 57.88 276 | 60.64 341 | 85.49 297 |
|
Fast-Effi-MVS+-dtu | | | 78.02 196 | 76.49 209 | 82.62 179 | 83.16 269 | 66.96 154 | 86.94 167 | 87.45 225 | 72.45 147 | 71.49 258 | 84.17 267 | 54.79 219 | 91.58 222 | 67.61 192 | 80.31 216 | 89.30 214 |
|
D2MVS | | | 74.82 242 | 73.21 246 | 79.64 240 | 79.81 321 | 62.56 235 | 80.34 285 | 87.35 226 | 64.37 268 | 68.86 284 | 82.66 288 | 46.37 293 | 90.10 254 | 67.91 190 | 81.24 204 | 86.25 286 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 59 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 227 | 76.41 71 | 85.80 40 | 90.22 121 | 74.15 34 | 95.37 78 | 81.82 71 | 91.88 78 | 92.65 101 |
|
hse-mvs2 | | | 81.72 108 | 80.94 114 | 84.07 120 | 88.72 155 | 67.68 139 | 85.87 199 | 87.26 228 | 76.02 82 | 84.67 59 | 88.22 176 | 61.54 160 | 93.48 157 | 82.71 63 | 73.44 299 | 91.06 147 |
|
AUN-MVS | | | 79.21 166 | 77.60 185 | 84.05 122 | 88.71 156 | 67.61 140 | 85.84 201 | 87.26 228 | 69.08 212 | 77.23 168 | 88.14 182 | 53.20 233 | 93.47 158 | 75.50 128 | 73.45 298 | 91.06 147 |
|
BH-RMVSNet | | | 79.61 154 | 78.44 160 | 83.14 155 | 89.38 125 | 65.93 167 | 84.95 220 | 87.15 230 | 73.56 133 | 78.19 148 | 89.79 130 | 56.67 209 | 93.36 162 | 59.53 259 | 86.74 142 | 90.13 182 |
|
Test_1112_low_res | | | 76.40 226 | 75.44 220 | 79.27 245 | 89.28 132 | 58.09 279 | 81.69 272 | 87.07 231 | 59.53 312 | 72.48 247 | 86.67 220 | 61.30 167 | 89.33 265 | 60.81 251 | 80.15 218 | 90.41 172 |
|
DIV-MVS_2432*1600 | | | 68.81 291 | 67.59 296 | 72.46 312 | 74.29 347 | 45.45 351 | 77.93 309 | 87.00 232 | 63.12 279 | 63.99 324 | 78.99 323 | 42.32 318 | 84.77 309 | 56.55 287 | 64.09 336 | 87.16 271 |
|
LS3D | | | 76.95 217 | 74.82 229 | 83.37 144 | 90.45 99 | 67.36 146 | 89.15 96 | 86.94 233 | 61.87 295 | 69.52 280 | 90.61 114 | 51.71 251 | 94.53 109 | 46.38 334 | 86.71 143 | 88.21 246 |
|
miper_lstm_enhance | | | 74.11 248 | 73.11 248 | 77.13 278 | 80.11 317 | 59.62 267 | 72.23 332 | 86.92 234 | 66.76 237 | 70.40 266 | 82.92 283 | 56.93 208 | 82.92 320 | 69.06 183 | 72.63 304 | 88.87 230 |
|
jason | | | 81.39 117 | 80.29 125 | 84.70 98 | 86.63 214 | 69.90 90 | 85.95 196 | 86.77 235 | 63.24 278 | 81.07 113 | 89.47 141 | 61.08 173 | 92.15 206 | 78.33 100 | 90.07 104 | 92.05 121 |
jason: jason. |
OurMVSNet-221017-0 | | | 74.26 246 | 72.42 253 | 79.80 236 | 83.76 256 | 59.59 268 | 85.92 198 | 86.64 236 | 66.39 244 | 66.96 299 | 87.58 190 | 39.46 330 | 91.60 221 | 65.76 211 | 69.27 320 | 88.22 245 |
|
VPNet | | | 78.69 178 | 78.66 155 | 78.76 252 | 88.31 169 | 55.72 315 | 84.45 234 | 86.63 237 | 76.79 63 | 78.26 146 | 90.55 115 | 59.30 188 | 89.70 260 | 66.63 203 | 77.05 247 | 90.88 154 |
|
USDC | | | 70.33 281 | 68.37 282 | 76.21 284 | 80.60 312 | 56.23 310 | 79.19 297 | 86.49 238 | 60.89 300 | 61.29 333 | 85.47 249 | 31.78 351 | 89.47 264 | 53.37 298 | 76.21 263 | 82.94 327 |
|
lupinMVS | | | 81.39 117 | 80.27 126 | 84.76 97 | 87.35 197 | 70.21 83 | 85.55 208 | 86.41 239 | 62.85 285 | 81.32 107 | 88.61 163 | 61.68 157 | 92.24 203 | 78.41 99 | 90.26 99 | 91.83 125 |
|
TR-MVS | | | 77.44 208 | 76.18 213 | 81.20 209 | 88.24 170 | 63.24 224 | 84.61 229 | 86.40 240 | 67.55 231 | 77.81 155 | 86.48 229 | 54.10 225 | 93.15 172 | 57.75 277 | 82.72 190 | 87.20 268 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 171 | | 86.37 241 | | | 93.08 66 | 69.31 77 | | | 92.74 72 | 88.74 236 |
|
GA-MVS | | | 76.87 218 | 75.17 227 | 81.97 191 | 82.75 279 | 62.58 234 | 81.44 276 | 86.35 242 | 72.16 155 | 74.74 227 | 82.89 284 | 46.20 296 | 92.02 210 | 68.85 185 | 81.09 205 | 91.30 141 |
|
CDS-MVSNet | | | 79.07 170 | 77.70 182 | 83.17 154 | 87.60 191 | 68.23 129 | 84.40 237 | 86.20 243 | 67.49 232 | 76.36 187 | 86.54 227 | 61.54 160 | 90.79 244 | 61.86 241 | 87.33 133 | 90.49 169 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS_111021_LR | | | 82.61 96 | 82.11 95 | 84.11 117 | 88.82 149 | 71.58 56 | 85.15 215 | 86.16 244 | 74.69 109 | 80.47 119 | 91.04 105 | 62.29 149 | 90.55 248 | 80.33 85 | 90.08 103 | 90.20 179 |
|
MSDG | | | 73.36 257 | 70.99 266 | 80.49 223 | 84.51 243 | 65.80 170 | 80.71 281 | 86.13 245 | 65.70 252 | 65.46 313 | 83.74 275 | 44.60 305 | 90.91 242 | 51.13 307 | 76.89 250 | 84.74 307 |
|
TransMVSNet (Re) | | | 75.39 240 | 74.56 232 | 77.86 264 | 85.50 228 | 57.10 296 | 86.78 174 | 86.09 246 | 72.17 154 | 71.53 257 | 87.34 197 | 63.01 139 | 89.31 266 | 56.84 285 | 61.83 338 | 87.17 269 |
|
VDDNet | | | 81.52 114 | 80.67 117 | 84.05 122 | 90.44 100 | 64.13 204 | 89.73 83 | 85.91 247 | 71.11 170 | 83.18 83 | 93.48 54 | 50.54 263 | 93.49 156 | 73.40 144 | 88.25 123 | 94.54 22 |
|
Baseline_NR-MVSNet | | | 78.15 192 | 78.33 165 | 77.61 270 | 85.79 222 | 56.21 311 | 86.78 174 | 85.76 248 | 73.60 132 | 77.93 154 | 87.57 191 | 65.02 115 | 88.99 271 | 67.14 200 | 75.33 278 | 87.63 256 |
|
Anonymous20240521 | | | 68.80 292 | 67.22 298 | 73.55 305 | 74.33 346 | 54.11 323 | 83.18 256 | 85.61 249 | 58.15 321 | 61.68 332 | 80.94 305 | 30.71 352 | 81.27 326 | 57.00 284 | 73.34 301 | 85.28 300 |
|
新几何1 | | | | | 83.42 141 | 93.13 53 | 70.71 75 | | 85.48 250 | 57.43 327 | 81.80 101 | 91.98 79 | 63.28 130 | 92.27 200 | 64.60 220 | 92.99 68 | 87.27 266 |
|
1121 | | | 80.84 125 | 79.77 132 | 84.05 122 | 93.11 55 | 70.78 74 | 84.66 225 | 85.42 251 | 57.37 328 | 81.76 105 | 92.02 78 | 63.41 128 | 94.12 125 | 67.28 196 | 92.93 69 | 87.26 267 |
|
EPNet | | | 83.72 77 | 82.92 85 | 86.14 66 | 84.22 247 | 69.48 99 | 91.05 51 | 85.27 252 | 81.30 7 | 76.83 175 | 91.65 85 | 66.09 104 | 95.56 61 | 76.00 122 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UnsupCasMVSNet_eth | | | 67.33 300 | 65.99 303 | 71.37 316 | 73.48 350 | 51.47 338 | 75.16 323 | 85.19 253 | 65.20 257 | 60.78 335 | 80.93 307 | 42.35 317 | 77.20 341 | 57.12 282 | 53.69 349 | 85.44 298 |
|
IB-MVS | | 68.01 15 | 75.85 233 | 73.36 245 | 83.31 145 | 84.76 239 | 66.03 163 | 83.38 254 | 85.06 254 | 70.21 188 | 69.40 281 | 81.05 302 | 45.76 300 | 94.66 107 | 65.10 216 | 75.49 271 | 89.25 215 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TAMVS | | | 78.89 175 | 77.51 187 | 83.03 161 | 87.80 184 | 67.79 137 | 84.72 224 | 85.05 255 | 67.63 229 | 76.75 178 | 87.70 187 | 62.25 150 | 90.82 243 | 58.53 270 | 87.13 136 | 90.49 169 |
|
CL-MVSNet_2432*1600 | | | 72.37 268 | 71.46 260 | 75.09 294 | 79.49 327 | 53.53 327 | 80.76 280 | 85.01 256 | 69.12 211 | 70.51 264 | 82.05 296 | 57.92 196 | 84.13 312 | 52.27 302 | 66.00 331 | 87.60 257 |
|
testdata | | | | | 79.97 232 | 90.90 91 | 64.21 202 | | 84.71 257 | 59.27 314 | 85.40 44 | 92.91 67 | 62.02 155 | 89.08 270 | 68.95 184 | 91.37 86 | 86.63 283 |
|
MS-PatchMatch | | | 73.83 251 | 72.67 250 | 77.30 275 | 83.87 254 | 66.02 164 | 81.82 269 | 84.66 258 | 61.37 299 | 68.61 287 | 82.82 286 | 47.29 287 | 88.21 282 | 59.27 260 | 84.32 168 | 77.68 345 |
|
ET-MVSNet_ETH3D | | | 78.63 179 | 76.63 208 | 84.64 99 | 86.73 213 | 69.47 100 | 85.01 218 | 84.61 259 | 69.54 200 | 66.51 308 | 86.59 223 | 50.16 266 | 91.75 218 | 76.26 118 | 84.24 169 | 92.69 99 |
|
CNLPA | | | 78.08 193 | 76.79 202 | 81.97 191 | 90.40 101 | 71.07 64 | 87.59 151 | 84.55 260 | 66.03 249 | 72.38 249 | 89.64 135 | 57.56 200 | 86.04 299 | 59.61 258 | 83.35 180 | 88.79 234 |
|
MIMVSNet1 | | | 68.58 294 | 66.78 301 | 73.98 304 | 80.07 318 | 51.82 334 | 80.77 279 | 84.37 261 | 64.40 267 | 59.75 339 | 82.16 295 | 36.47 340 | 83.63 316 | 42.73 344 | 70.33 317 | 86.48 284 |
|
KD-MVS_2432*1600 | | | 66.22 308 | 63.89 309 | 73.21 307 | 75.47 344 | 53.42 329 | 70.76 337 | 84.35 262 | 64.10 271 | 66.52 306 | 78.52 324 | 34.55 346 | 84.98 306 | 50.40 310 | 50.33 353 | 81.23 334 |
|
miper_refine_blended | | | 66.22 308 | 63.89 309 | 73.21 307 | 75.47 344 | 53.42 329 | 70.76 337 | 84.35 262 | 64.10 271 | 66.52 306 | 78.52 324 | 34.55 346 | 84.98 306 | 50.40 310 | 50.33 353 | 81.23 334 |
|
test_0402 | | | 72.79 264 | 70.44 271 | 79.84 235 | 88.13 172 | 65.99 165 | 85.93 197 | 84.29 264 | 65.57 254 | 67.40 296 | 85.49 248 | 46.92 290 | 92.61 189 | 35.88 352 | 74.38 289 | 80.94 336 |
|
EU-MVSNet | | | 68.53 295 | 67.61 295 | 71.31 319 | 78.51 332 | 47.01 350 | 84.47 231 | 84.27 265 | 42.27 350 | 66.44 309 | 84.79 261 | 40.44 328 | 83.76 314 | 58.76 268 | 68.54 325 | 83.17 321 |
|
thisisatest0530 | | | 79.40 161 | 77.76 180 | 84.31 112 | 87.69 190 | 65.10 186 | 87.36 156 | 84.26 266 | 70.04 189 | 77.42 162 | 88.26 175 | 49.94 269 | 94.79 104 | 70.20 169 | 84.70 164 | 93.03 87 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 261 | 70.41 272 | 80.81 218 | 87.13 206 | 65.63 174 | 88.30 130 | 84.19 267 | 62.96 283 | 63.80 326 | 87.69 188 | 38.04 336 | 92.56 191 | 46.66 331 | 74.91 284 | 84.24 312 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tttt0517 | | | 79.40 161 | 77.91 173 | 83.90 132 | 88.10 174 | 63.84 208 | 88.37 128 | 84.05 268 | 71.45 166 | 76.78 177 | 89.12 151 | 49.93 271 | 94.89 99 | 70.18 170 | 83.18 183 | 92.96 91 |
|
CMPMVS |  | 51.72 21 | 70.19 283 | 68.16 285 | 76.28 283 | 73.15 353 | 57.55 291 | 79.47 293 | 83.92 269 | 48.02 348 | 56.48 347 | 84.81 260 | 43.13 313 | 86.42 297 | 62.67 233 | 81.81 200 | 84.89 305 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous202405211 | | | 78.25 187 | 77.01 195 | 81.99 190 | 91.03 88 | 60.67 257 | 84.77 223 | 83.90 270 | 70.65 181 | 80.00 121 | 91.20 100 | 41.08 326 | 91.43 227 | 65.21 214 | 85.26 158 | 93.85 49 |
|
XXY-MVS | | | 75.41 239 | 75.56 217 | 74.96 295 | 83.59 258 | 57.82 287 | 80.59 283 | 83.87 271 | 66.54 243 | 74.93 225 | 88.31 172 | 63.24 132 | 80.09 330 | 62.16 237 | 76.85 252 | 86.97 275 |
|
DP-MVS | | | 76.78 219 | 74.57 231 | 83.42 141 | 93.29 49 | 69.46 102 | 88.55 120 | 83.70 272 | 63.98 275 | 70.20 268 | 88.89 156 | 54.01 227 | 94.80 103 | 46.66 331 | 81.88 199 | 86.01 293 |
|
tfpn200view9 | | | 76.42 225 | 75.37 224 | 79.55 243 | 89.13 138 | 57.65 289 | 85.17 213 | 83.60 273 | 73.41 138 | 76.45 183 | 86.39 231 | 52.12 241 | 91.95 212 | 48.33 322 | 83.75 174 | 89.07 216 |
|
thres400 | | | 76.50 222 | 75.37 224 | 79.86 234 | 89.13 138 | 57.65 289 | 85.17 213 | 83.60 273 | 73.41 138 | 76.45 183 | 86.39 231 | 52.12 241 | 91.95 212 | 48.33 322 | 83.75 174 | 90.00 192 |
|
SixPastTwentyTwo | | | 73.37 255 | 71.26 265 | 79.70 237 | 85.08 237 | 57.89 285 | 85.57 204 | 83.56 275 | 71.03 172 | 65.66 312 | 85.88 239 | 42.10 321 | 92.57 190 | 59.11 263 | 63.34 337 | 88.65 238 |
|
thres200 | | | 75.55 236 | 74.47 234 | 78.82 251 | 87.78 187 | 57.85 286 | 83.07 260 | 83.51 276 | 72.44 149 | 75.84 200 | 84.42 264 | 52.08 243 | 91.75 218 | 47.41 329 | 83.64 178 | 86.86 277 |
|
MVS_0304 | | | 72.48 265 | 70.89 268 | 77.24 276 | 82.20 290 | 59.68 266 | 84.11 242 | 83.49 277 | 67.10 234 | 66.87 301 | 80.59 308 | 35.00 345 | 87.40 290 | 59.07 264 | 79.58 221 | 84.63 309 |
|
IterMVS-SCA-FT | | | 75.43 238 | 73.87 241 | 80.11 230 | 82.69 281 | 64.85 188 | 81.57 274 | 83.47 278 | 69.16 210 | 70.49 265 | 84.15 268 | 51.95 246 | 88.15 283 | 69.23 180 | 72.14 308 | 87.34 264 |
|
CVMVSNet | | | 72.99 262 | 72.58 251 | 74.25 302 | 84.28 245 | 50.85 341 | 86.41 184 | 83.45 279 | 44.56 349 | 73.23 239 | 87.54 193 | 49.38 275 | 85.70 301 | 65.90 209 | 78.44 234 | 86.19 288 |
|
ITE_SJBPF | | | | | 78.22 260 | 81.77 295 | 60.57 258 | | 83.30 280 | 69.25 206 | 67.54 293 | 87.20 203 | 36.33 341 | 87.28 292 | 54.34 294 | 74.62 287 | 86.80 278 |
|
thisisatest0515 | | | 77.33 211 | 75.38 223 | 83.18 153 | 85.27 231 | 63.80 209 | 82.11 268 | 83.27 281 | 65.06 259 | 75.91 197 | 83.84 272 | 49.54 273 | 94.27 116 | 67.24 198 | 86.19 150 | 91.48 136 |
|
thres100view900 | | | 76.50 222 | 75.55 218 | 79.33 244 | 89.52 118 | 56.99 297 | 85.83 202 | 83.23 282 | 73.94 125 | 76.32 188 | 87.12 206 | 51.89 248 | 91.95 212 | 48.33 322 | 83.75 174 | 89.07 216 |
|
thres600view7 | | | 76.50 222 | 75.44 220 | 79.68 238 | 89.40 123 | 57.16 294 | 85.53 210 | 83.23 282 | 73.79 129 | 76.26 189 | 87.09 207 | 51.89 248 | 91.89 215 | 48.05 327 | 83.72 177 | 90.00 192 |
|
bset_n11_16_dypcd | | | 77.12 213 | 75.47 219 | 82.06 187 | 81.12 307 | 65.99 165 | 81.37 277 | 83.20 284 | 69.94 192 | 76.09 196 | 83.38 280 | 47.75 285 | 92.26 201 | 78.51 95 | 77.91 238 | 87.95 248 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 240 | 83.20 284 | 54.63 339 | 79.74 122 | 91.63 87 | 58.97 190 | | | 91.42 85 | 86.77 279 |
|
EPNet_dtu | | | 75.46 237 | 74.86 228 | 77.23 277 | 82.57 284 | 54.60 319 | 86.89 169 | 83.09 286 | 71.64 160 | 66.25 310 | 85.86 240 | 55.99 211 | 88.04 285 | 54.92 292 | 86.55 145 | 89.05 221 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TDRefinement | | | 67.49 298 | 64.34 307 | 76.92 279 | 73.47 351 | 61.07 252 | 84.86 222 | 82.98 287 | 59.77 309 | 58.30 342 | 85.13 256 | 26.06 354 | 87.89 286 | 47.92 328 | 60.59 342 | 81.81 332 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 279 | 68.19 284 | 77.65 269 | 80.26 315 | 59.41 270 | 85.01 218 | 82.96 288 | 58.76 318 | 65.43 314 | 82.33 291 | 37.63 338 | 91.23 233 | 45.34 339 | 76.03 264 | 82.32 328 |
|
RPSCF | | | 73.23 259 | 71.46 260 | 78.54 256 | 82.50 285 | 59.85 265 | 82.18 267 | 82.84 289 | 58.96 316 | 71.15 261 | 89.41 147 | 45.48 303 | 84.77 309 | 58.82 267 | 71.83 310 | 91.02 151 |
|
CostFormer | | | 75.24 241 | 73.90 240 | 79.27 245 | 82.65 283 | 58.27 278 | 80.80 278 | 82.73 290 | 61.57 296 | 75.33 215 | 83.13 282 | 55.52 212 | 91.07 240 | 64.98 217 | 78.34 236 | 88.45 242 |
|
IterMVS | | | 74.29 245 | 72.94 249 | 78.35 259 | 81.53 299 | 63.49 217 | 81.58 273 | 82.49 291 | 68.06 228 | 69.99 274 | 83.69 276 | 51.66 252 | 85.54 302 | 65.85 210 | 71.64 311 | 86.01 293 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WTY-MVS | | | 75.65 235 | 75.68 216 | 75.57 289 | 86.40 216 | 56.82 299 | 77.92 310 | 82.40 292 | 65.10 258 | 76.18 192 | 87.72 186 | 63.13 138 | 80.90 327 | 60.31 253 | 81.96 197 | 89.00 225 |
|
DWT-MVSNet_test | | | 73.70 252 | 71.86 257 | 79.21 247 | 82.91 276 | 58.94 271 | 82.34 265 | 82.17 293 | 65.21 256 | 71.05 262 | 78.31 326 | 44.21 308 | 90.17 253 | 63.29 228 | 77.28 243 | 88.53 241 |
|
pmmvs4 | | | 74.03 250 | 71.91 256 | 80.39 224 | 81.96 293 | 68.32 126 | 81.45 275 | 82.14 294 | 59.32 313 | 69.87 277 | 85.13 256 | 52.40 237 | 88.13 284 | 60.21 254 | 74.74 286 | 84.73 308 |
|
FMVSNet5 | | | 69.50 287 | 67.96 288 | 74.15 303 | 82.97 275 | 55.35 317 | 80.01 288 | 82.12 295 | 62.56 289 | 63.02 327 | 81.53 299 | 36.92 339 | 81.92 323 | 48.42 321 | 74.06 291 | 85.17 303 |
|
baseline1 | | | 76.98 216 | 76.75 205 | 77.66 268 | 88.13 172 | 55.66 316 | 85.12 216 | 81.89 296 | 73.04 143 | 76.79 176 | 88.90 155 | 62.43 147 | 87.78 288 | 63.30 227 | 71.18 314 | 89.55 210 |
|
UnsupCasMVSNet_bld | | | 63.70 316 | 61.53 320 | 70.21 323 | 73.69 349 | 51.39 339 | 72.82 330 | 81.89 296 | 55.63 336 | 57.81 343 | 71.80 346 | 38.67 333 | 78.61 334 | 49.26 319 | 52.21 351 | 80.63 337 |
|
LFMVS | | | 81.82 107 | 81.23 108 | 83.57 137 | 91.89 79 | 63.43 220 | 89.84 77 | 81.85 298 | 77.04 57 | 83.21 82 | 93.10 62 | 52.26 239 | 93.43 161 | 71.98 155 | 89.95 105 | 93.85 49 |
|
sss | | | 73.60 253 | 73.64 243 | 73.51 306 | 82.80 278 | 55.01 318 | 76.12 316 | 81.69 299 | 62.47 290 | 74.68 228 | 85.85 241 | 57.32 203 | 78.11 337 | 60.86 250 | 80.93 206 | 87.39 262 |
|
pmmvs-eth3d | | | 70.50 280 | 67.83 291 | 78.52 257 | 77.37 336 | 66.18 162 | 81.82 269 | 81.51 300 | 58.90 317 | 63.90 325 | 80.42 310 | 42.69 316 | 86.28 298 | 58.56 269 | 65.30 333 | 83.11 323 |
|
TinyColmap | | | 67.30 301 | 64.81 305 | 74.76 298 | 81.92 294 | 56.68 303 | 80.29 286 | 81.49 301 | 60.33 303 | 56.27 348 | 83.22 281 | 24.77 355 | 87.66 289 | 45.52 337 | 69.47 319 | 79.95 340 |
|
tpmvs | | | 71.09 274 | 69.29 277 | 76.49 282 | 82.04 292 | 56.04 312 | 78.92 300 | 81.37 302 | 64.05 273 | 67.18 298 | 78.28 327 | 49.74 272 | 89.77 257 | 49.67 317 | 72.37 305 | 83.67 317 |
|
pmmvs5 | | | 71.55 271 | 70.20 274 | 75.61 288 | 77.83 333 | 56.39 307 | 81.74 271 | 80.89 303 | 57.76 324 | 67.46 294 | 84.49 263 | 49.26 278 | 85.32 305 | 57.08 283 | 75.29 280 | 85.11 304 |
|
ANet_high | | | 50.57 326 | 46.10 329 | 63.99 333 | 48.67 365 | 39.13 358 | 70.99 336 | 80.85 304 | 61.39 298 | 31.18 358 | 57.70 355 | 17.02 361 | 73.65 354 | 31.22 354 | 15.89 363 | 79.18 342 |
|
LCM-MVSNet | | | 54.25 322 | 49.68 328 | 67.97 331 | 53.73 362 | 45.28 352 | 66.85 349 | 80.78 305 | 35.96 356 | 39.45 356 | 62.23 352 | 8.70 368 | 78.06 338 | 48.24 325 | 51.20 352 | 80.57 338 |
|
PVSNet | | 64.34 18 | 72.08 270 | 70.87 269 | 75.69 287 | 86.21 218 | 56.44 306 | 74.37 328 | 80.73 306 | 62.06 294 | 70.17 270 | 82.23 294 | 42.86 315 | 83.31 318 | 54.77 293 | 84.45 167 | 87.32 265 |
|
baseline2 | | | 75.70 234 | 73.83 242 | 81.30 206 | 83.26 264 | 61.79 246 | 82.57 264 | 80.65 307 | 66.81 235 | 66.88 300 | 83.42 279 | 57.86 197 | 92.19 204 | 63.47 224 | 79.57 222 | 89.91 197 |
|
ppachtmachnet_test | | | 70.04 284 | 67.34 297 | 78.14 261 | 79.80 322 | 61.13 251 | 79.19 297 | 80.59 308 | 59.16 315 | 65.27 315 | 79.29 318 | 46.75 292 | 87.29 291 | 49.33 318 | 66.72 327 | 86.00 295 |
|
Gipuma |  | | 45.18 327 | 41.86 330 | 55.16 339 | 77.03 338 | 51.52 337 | 32.50 361 | 80.52 309 | 32.46 358 | 27.12 359 | 35.02 360 | 9.52 367 | 75.50 347 | 22.31 359 | 60.21 343 | 38.45 358 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Anonymous20231206 | | | 68.60 293 | 67.80 292 | 71.02 320 | 80.23 316 | 50.75 342 | 78.30 306 | 80.47 310 | 56.79 331 | 66.11 311 | 82.63 289 | 46.35 294 | 78.95 333 | 43.62 342 | 75.70 267 | 83.36 320 |
|
LCM-MVSNet-Re | | | 77.05 214 | 76.94 198 | 77.36 273 | 87.20 204 | 51.60 336 | 80.06 287 | 80.46 311 | 75.20 100 | 67.69 292 | 86.72 214 | 62.48 145 | 88.98 272 | 63.44 225 | 89.25 111 | 91.51 133 |
|
tpm2 | | | 73.26 258 | 71.46 260 | 78.63 253 | 83.34 262 | 56.71 302 | 80.65 282 | 80.40 312 | 56.63 332 | 73.55 235 | 82.02 297 | 51.80 250 | 91.24 232 | 56.35 288 | 78.42 235 | 87.95 248 |
|
CR-MVSNet | | | 73.37 255 | 71.27 264 | 79.67 239 | 81.32 305 | 65.19 183 | 75.92 318 | 80.30 313 | 59.92 308 | 72.73 244 | 81.19 300 | 52.50 235 | 86.69 294 | 59.84 256 | 77.71 239 | 87.11 273 |
|
Patchmtry | | | 70.74 276 | 69.16 278 | 75.49 291 | 80.72 310 | 54.07 324 | 74.94 327 | 80.30 313 | 58.34 320 | 70.01 272 | 81.19 300 | 52.50 235 | 86.54 295 | 53.37 298 | 71.09 315 | 85.87 296 |
|
tpm cat1 | | | 70.57 278 | 68.31 283 | 77.35 274 | 82.41 288 | 57.95 284 | 78.08 307 | 80.22 315 | 52.04 344 | 68.54 288 | 77.66 332 | 52.00 245 | 87.84 287 | 51.77 303 | 72.07 309 | 86.25 286 |
|
MDTV_nov1_ep13 | | | | 69.97 275 | | 83.18 267 | 53.48 328 | 77.10 314 | 80.18 316 | 60.45 302 | 69.33 283 | 80.44 309 | 48.89 281 | 86.90 293 | 51.60 305 | 78.51 233 | |
|
AllTest | | | 70.96 275 | 68.09 287 | 79.58 241 | 85.15 233 | 63.62 211 | 84.58 230 | 79.83 317 | 62.31 291 | 60.32 336 | 86.73 212 | 32.02 349 | 88.96 274 | 50.28 312 | 71.57 312 | 86.15 289 |
|
TestCases | | | | | 79.58 241 | 85.15 233 | 63.62 211 | | 79.83 317 | 62.31 291 | 60.32 336 | 86.73 212 | 32.02 349 | 88.96 274 | 50.28 312 | 71.57 312 | 86.15 289 |
|
Vis-MVSNet (Re-imp) | | | 78.36 186 | 78.45 159 | 78.07 263 | 88.64 158 | 51.78 335 | 86.70 177 | 79.63 319 | 74.14 122 | 75.11 220 | 90.83 111 | 61.29 168 | 89.75 258 | 58.10 274 | 91.60 82 | 92.69 99 |
|
MIMVSNet | | | 70.69 277 | 69.30 276 | 74.88 296 | 84.52 242 | 56.35 309 | 75.87 320 | 79.42 320 | 64.59 264 | 67.76 290 | 82.41 290 | 41.10 325 | 81.54 325 | 46.64 333 | 81.34 202 | 86.75 280 |
|
SCA | | | 74.22 247 | 72.33 254 | 79.91 233 | 84.05 251 | 62.17 240 | 79.96 289 | 79.29 321 | 66.30 245 | 72.38 249 | 80.13 312 | 51.95 246 | 88.60 278 | 59.25 261 | 77.67 241 | 88.96 227 |
|
tpmrst | | | 72.39 266 | 72.13 255 | 73.18 310 | 80.54 313 | 49.91 344 | 79.91 290 | 79.08 322 | 63.11 280 | 71.69 256 | 79.95 314 | 55.32 213 | 82.77 321 | 65.66 212 | 73.89 293 | 86.87 276 |
|
PatchmatchNet |  | | 73.12 260 | 71.33 263 | 78.49 258 | 83.18 267 | 60.85 255 | 79.63 291 | 78.57 323 | 64.13 270 | 71.73 255 | 79.81 317 | 51.20 255 | 85.97 300 | 57.40 280 | 76.36 262 | 88.66 237 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDA-MVSNet-bldmvs | | | 66.68 303 | 63.66 311 | 75.75 286 | 79.28 329 | 60.56 259 | 73.92 329 | 78.35 324 | 64.43 266 | 50.13 353 | 79.87 316 | 44.02 310 | 83.67 315 | 46.10 335 | 56.86 345 | 83.03 325 |
|
new-patchmatchnet | | | 61.73 317 | 61.73 319 | 61.70 335 | 72.74 354 | 24.50 367 | 69.16 343 | 78.03 325 | 61.40 297 | 56.72 346 | 75.53 340 | 38.42 334 | 76.48 344 | 45.95 336 | 57.67 344 | 84.13 314 |
|
our_test_3 | | | 69.14 289 | 67.00 299 | 75.57 289 | 79.80 322 | 58.80 273 | 77.96 308 | 77.81 326 | 59.55 311 | 62.90 330 | 78.25 328 | 47.43 286 | 83.97 313 | 51.71 304 | 67.58 326 | 83.93 316 |
|
test20.03 | | | 67.45 299 | 66.95 300 | 68.94 326 | 75.48 343 | 44.84 353 | 77.50 311 | 77.67 327 | 66.66 239 | 63.01 328 | 83.80 273 | 47.02 289 | 78.40 335 | 42.53 345 | 68.86 324 | 83.58 318 |
|
test-LLR | | | 72.94 263 | 72.43 252 | 74.48 299 | 81.35 303 | 58.04 281 | 78.38 303 | 77.46 328 | 66.66 239 | 69.95 275 | 79.00 321 | 48.06 283 | 79.24 331 | 66.13 205 | 84.83 161 | 86.15 289 |
|
test-mter | | | 71.41 272 | 70.39 273 | 74.48 299 | 81.35 303 | 58.04 281 | 78.38 303 | 77.46 328 | 60.32 304 | 69.95 275 | 79.00 321 | 36.08 342 | 79.24 331 | 66.13 205 | 84.83 161 | 86.15 289 |
|
tpm | | | 72.37 268 | 71.71 259 | 74.35 301 | 82.19 291 | 52.00 333 | 79.22 296 | 77.29 330 | 64.56 265 | 72.95 242 | 83.68 277 | 51.35 253 | 83.26 319 | 58.33 272 | 75.80 266 | 87.81 253 |
|
LF4IMVS | | | 64.02 315 | 62.19 318 | 69.50 325 | 70.90 355 | 53.29 331 | 76.13 315 | 77.18 331 | 52.65 343 | 58.59 340 | 80.98 304 | 23.55 356 | 76.52 343 | 53.06 300 | 66.66 328 | 78.68 343 |
|
K. test v3 | | | 71.19 273 | 68.51 281 | 79.21 247 | 83.04 272 | 57.78 288 | 84.35 238 | 76.91 332 | 72.90 146 | 62.99 329 | 82.86 285 | 39.27 331 | 91.09 239 | 61.65 243 | 52.66 350 | 88.75 235 |
|
testgi | | | 66.67 304 | 66.53 302 | 67.08 332 | 75.62 342 | 41.69 357 | 75.93 317 | 76.50 333 | 66.11 246 | 65.20 318 | 86.59 223 | 35.72 343 | 74.71 350 | 43.71 341 | 73.38 300 | 84.84 306 |
|
PatchMatch-RL | | | 72.38 267 | 70.90 267 | 76.80 281 | 88.60 159 | 67.38 145 | 79.53 292 | 76.17 334 | 62.75 287 | 69.36 282 | 82.00 298 | 45.51 302 | 84.89 308 | 53.62 297 | 80.58 212 | 78.12 344 |
|
JIA-IIPM | | | 66.32 307 | 62.82 317 | 76.82 280 | 77.09 337 | 61.72 247 | 65.34 350 | 75.38 335 | 58.04 323 | 64.51 320 | 62.32 351 | 42.05 322 | 86.51 296 | 51.45 306 | 69.22 321 | 82.21 329 |
|
ADS-MVSNet2 | | | 66.20 310 | 63.33 312 | 74.82 297 | 79.92 319 | 58.75 274 | 67.55 347 | 75.19 336 | 53.37 341 | 65.25 316 | 75.86 338 | 42.32 318 | 80.53 329 | 41.57 346 | 68.91 322 | 85.18 301 |
|
PatchT | | | 68.46 296 | 67.85 290 | 70.29 322 | 80.70 311 | 43.93 354 | 72.47 331 | 74.88 337 | 60.15 306 | 70.55 263 | 76.57 336 | 49.94 269 | 81.59 324 | 50.58 308 | 74.83 285 | 85.34 299 |
|
dp | | | 66.80 302 | 65.43 304 | 70.90 321 | 79.74 324 | 48.82 347 | 75.12 325 | 74.77 338 | 59.61 310 | 64.08 323 | 77.23 333 | 42.89 314 | 80.72 328 | 48.86 320 | 66.58 329 | 83.16 322 |
|
MDA-MVSNet_test_wron | | | 65.03 311 | 62.92 314 | 71.37 316 | 75.93 339 | 56.73 300 | 69.09 345 | 74.73 339 | 57.28 329 | 54.03 350 | 77.89 329 | 45.88 297 | 74.39 352 | 49.89 316 | 61.55 339 | 82.99 326 |
|
TESTMET0.1,1 | | | 69.89 286 | 69.00 279 | 72.55 311 | 79.27 330 | 56.85 298 | 78.38 303 | 74.71 340 | 57.64 325 | 68.09 289 | 77.19 334 | 37.75 337 | 76.70 342 | 63.92 222 | 84.09 170 | 84.10 315 |
|
YYNet1 | | | 65.03 311 | 62.91 315 | 71.38 315 | 75.85 340 | 56.60 304 | 69.12 344 | 74.66 341 | 57.28 329 | 54.12 349 | 77.87 330 | 45.85 298 | 74.48 351 | 49.95 315 | 61.52 340 | 83.05 324 |
|
PMMVS | | | 69.34 288 | 68.67 280 | 71.35 318 | 75.67 341 | 62.03 241 | 75.17 322 | 73.46 342 | 50.00 347 | 68.68 285 | 79.05 319 | 52.07 244 | 78.13 336 | 61.16 248 | 82.77 188 | 73.90 348 |
|
PVSNet_0 | | 57.27 20 | 61.67 318 | 59.27 321 | 68.85 328 | 79.61 325 | 57.44 293 | 68.01 346 | 73.44 343 | 55.93 335 | 58.54 341 | 70.41 347 | 44.58 306 | 77.55 340 | 47.01 330 | 35.91 356 | 71.55 350 |
|
test0.0.03 1 | | | 68.00 297 | 67.69 294 | 68.90 327 | 77.55 334 | 47.43 348 | 75.70 321 | 72.95 344 | 66.66 239 | 66.56 304 | 82.29 293 | 48.06 283 | 75.87 346 | 44.97 340 | 74.51 288 | 83.41 319 |
|
ADS-MVSNet | | | 64.36 314 | 62.88 316 | 68.78 329 | 79.92 319 | 47.17 349 | 67.55 347 | 71.18 345 | 53.37 341 | 65.25 316 | 75.86 338 | 42.32 318 | 73.99 353 | 41.57 346 | 68.91 322 | 85.18 301 |
|
Patchmatch-RL test | | | 70.24 282 | 67.78 293 | 77.61 270 | 77.43 335 | 59.57 269 | 71.16 334 | 70.33 346 | 62.94 284 | 68.65 286 | 72.77 344 | 50.62 261 | 85.49 303 | 69.58 178 | 66.58 329 | 87.77 254 |
|
gg-mvs-nofinetune | | | 69.95 285 | 67.96 288 | 75.94 285 | 83.07 270 | 54.51 321 | 77.23 313 | 70.29 347 | 63.11 280 | 70.32 267 | 62.33 350 | 43.62 311 | 88.69 277 | 53.88 296 | 87.76 126 | 84.62 310 |
|
door-mid | | | | | | | | | 69.98 348 | | | | | | | | |
|
GG-mvs-BLEND | | | | | 75.38 292 | 81.59 298 | 55.80 314 | 79.32 294 | 69.63 349 | | 67.19 297 | 73.67 343 | 43.24 312 | 88.90 276 | 50.41 309 | 84.50 165 | 81.45 333 |
|
FPMVS | | | 53.68 323 | 51.64 326 | 59.81 337 | 65.08 358 | 51.03 340 | 69.48 341 | 69.58 350 | 41.46 351 | 40.67 355 | 72.32 345 | 16.46 362 | 70.00 356 | 24.24 358 | 65.42 332 | 58.40 355 |
|
door | | | | | | | | | 69.44 351 | | | | | | | | |
|
Patchmatch-test | | | 64.82 313 | 63.24 313 | 69.57 324 | 79.42 328 | 49.82 345 | 63.49 353 | 69.05 352 | 51.98 345 | 59.95 338 | 80.13 312 | 50.91 257 | 70.98 355 | 40.66 348 | 73.57 296 | 87.90 251 |
|
CHOSEN 280x420 | | | 66.51 305 | 64.71 306 | 71.90 313 | 81.45 300 | 63.52 216 | 57.98 355 | 68.95 353 | 53.57 340 | 62.59 331 | 76.70 335 | 46.22 295 | 75.29 349 | 55.25 291 | 79.68 220 | 76.88 347 |
|
EPMVS | | | 69.02 290 | 68.16 285 | 71.59 314 | 79.61 325 | 49.80 346 | 77.40 312 | 66.93 354 | 62.82 286 | 70.01 272 | 79.05 319 | 45.79 299 | 77.86 339 | 56.58 286 | 75.26 281 | 87.13 272 |
|
lessismore_v0 | | | | | 78.97 249 | 81.01 309 | 57.15 295 | | 65.99 355 | | 61.16 334 | 82.82 286 | 39.12 332 | 91.34 230 | 59.67 257 | 46.92 355 | 88.43 243 |
|
pmmvs3 | | | 57.79 320 | 54.26 324 | 68.37 330 | 64.02 359 | 56.72 301 | 75.12 325 | 65.17 356 | 40.20 352 | 52.93 351 | 69.86 348 | 20.36 358 | 75.48 348 | 45.45 338 | 55.25 348 | 72.90 349 |
|
MVS-HIRNet | | | 59.14 319 | 57.67 322 | 63.57 334 | 81.65 296 | 43.50 355 | 71.73 333 | 65.06 357 | 39.59 354 | 51.43 352 | 57.73 354 | 38.34 335 | 82.58 322 | 39.53 349 | 73.95 292 | 64.62 353 |
|
PM-MVS | | | 66.41 306 | 64.14 308 | 73.20 309 | 73.92 348 | 56.45 305 | 78.97 299 | 64.96 358 | 63.88 277 | 64.72 319 | 80.24 311 | 19.84 359 | 83.44 317 | 66.24 204 | 64.52 335 | 79.71 341 |
|
PMVS |  | 37.38 22 | 44.16 328 | 40.28 331 | 55.82 338 | 40.82 367 | 42.54 356 | 65.12 351 | 63.99 359 | 34.43 357 | 24.48 360 | 57.12 356 | 3.92 370 | 76.17 345 | 17.10 361 | 55.52 347 | 48.75 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 31.52 331 | 29.28 335 | 38.23 344 | 27.03 369 | 6.50 371 | 20.94 363 | 62.21 360 | 4.05 365 | 22.35 363 | 52.50 357 | 13.33 363 | 47.58 363 | 27.04 357 | 34.04 357 | 60.62 354 |
|
new_pmnet | | | 50.91 325 | 50.29 327 | 52.78 340 | 68.58 356 | 34.94 362 | 63.71 352 | 56.63 361 | 39.73 353 | 44.95 354 | 65.47 349 | 21.93 357 | 58.48 359 | 34.98 353 | 56.62 346 | 64.92 352 |
|
DSMNet-mixed | | | 57.77 321 | 56.90 323 | 60.38 336 | 67.70 357 | 35.61 360 | 69.18 342 | 53.97 362 | 32.30 359 | 57.49 344 | 79.88 315 | 40.39 329 | 68.57 357 | 38.78 350 | 72.37 305 | 76.97 346 |
|
PMMVS2 | | | 40.82 329 | 38.86 332 | 46.69 342 | 53.84 361 | 16.45 368 | 48.61 358 | 49.92 363 | 37.49 355 | 31.67 357 | 60.97 353 | 8.14 369 | 56.42 360 | 28.42 355 | 30.72 358 | 67.19 351 |
|
E-PMN | | | 31.77 330 | 30.64 333 | 35.15 345 | 52.87 363 | 27.67 364 | 57.09 356 | 47.86 364 | 24.64 360 | 16.40 365 | 33.05 361 | 11.23 365 | 54.90 361 | 14.46 363 | 18.15 361 | 22.87 360 |
|
EMVS | | | 30.81 332 | 29.65 334 | 34.27 346 | 50.96 364 | 25.95 366 | 56.58 357 | 46.80 365 | 24.01 361 | 15.53 366 | 30.68 362 | 12.47 364 | 54.43 362 | 12.81 364 | 17.05 362 | 22.43 361 |
|
MVE |  | 26.22 23 | 30.37 333 | 25.89 337 | 43.81 343 | 44.55 366 | 35.46 361 | 28.87 362 | 39.07 366 | 18.20 362 | 18.58 364 | 40.18 359 | 2.68 371 | 47.37 364 | 17.07 362 | 23.78 360 | 48.60 357 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 92.18 30 | 32.83 367 | | | | | | | | |
|
tmp_tt | | | 18.61 335 | 21.40 338 | 10.23 349 | 4.82 370 | 10.11 369 | 34.70 360 | 30.74 368 | 1.48 366 | 23.91 362 | 26.07 363 | 28.42 353 | 13.41 367 | 27.12 356 | 15.35 364 | 7.17 362 |
|
DeepMVS_CX |  | | | | 27.40 347 | 40.17 368 | 26.90 365 | | 24.59 369 | 17.44 363 | 23.95 361 | 48.61 358 | 9.77 366 | 26.48 365 | 18.06 360 | 24.47 359 | 28.83 359 |
|
N_pmnet | | | 52.79 324 | 53.26 325 | 51.40 341 | 78.99 331 | 7.68 370 | 69.52 340 | 3.89 370 | 51.63 346 | 57.01 345 | 74.98 341 | 40.83 327 | 65.96 358 | 37.78 351 | 64.67 334 | 80.56 339 |
|
wuyk23d | | | 16.82 336 | 15.94 339 | 19.46 348 | 58.74 360 | 31.45 363 | 39.22 359 | 3.74 371 | 6.84 364 | 6.04 367 | 2.70 367 | 1.27 372 | 24.29 366 | 10.54 365 | 14.40 365 | 2.63 363 |
|
testmvs | | | 6.04 339 | 8.02 342 | 0.10 351 | 0.08 371 | 0.03 373 | 69.74 339 | 0.04 372 | 0.05 367 | 0.31 368 | 1.68 368 | 0.02 374 | 0.04 368 | 0.24 366 | 0.02 366 | 0.25 365 |
|
test123 | | | 6.12 338 | 8.11 341 | 0.14 350 | 0.06 372 | 0.09 372 | 71.05 335 | 0.03 373 | 0.04 368 | 0.25 369 | 1.30 369 | 0.05 373 | 0.03 369 | 0.21 367 | 0.01 367 | 0.29 364 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 5.26 340 | 7.02 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 63.15 135 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
ab-mvs-re | | | 7.23 337 | 9.64 340 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 86.72 214 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 227 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 254 | | | | 88.96 227 |
|
sam_mvs | | | | | | | | | | | | | 50.01 267 | | | | |
|
test_post1 | | | | | | | | 78.90 301 | | | | 5.43 366 | 48.81 282 | 85.44 304 | 59.25 261 | | |
|
test_post | | | | | | | | | | | | 5.46 365 | 50.36 265 | 84.24 311 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 342 | 51.12 256 | 88.60 278 | | | |
|
gm-plane-assit | | | | | | 81.40 301 | 53.83 326 | | | 62.72 288 | | 80.94 305 | | 92.39 196 | 63.40 226 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 59 | 95.45 29 | 92.70 97 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 105 | | 75.41 93 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 51 | 95.86 18 | |
|
旧先验2 | | | | | | | | 86.56 181 | | 58.10 322 | 87.04 31 | | | 88.98 272 | 74.07 136 | | |
|
新几何2 | | | | | | | | 86.29 189 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 86.86 170 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 241 | 62.37 235 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata1 | | | | | | | | 84.14 241 | | 75.71 87 | | | | | | | |
|
plane_prior7 | | | | | | 90.08 107 | 68.51 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 112 | 68.70 119 | | | | | | 60.42 183 | | | | |
|
plane_prior4 | | | | | | | | | | | | 91.00 108 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 132 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 47 | | 79.12 23 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 117 | 90.38 67 | | 77.62 37 | | | | | | 86.16 151 | |
|
HQP5-MVS | | | | | | | 66.98 151 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 168 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 168 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 107 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 167 | | | 95.11 87 | | | 91.03 149 |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 186 | | | | |
|
NP-MVS | | | | | | 89.62 114 | 68.32 126 | | | | | 90.24 119 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 359 | 75.16 323 | | 55.10 337 | 66.53 305 | | 49.34 276 | | 53.98 295 | | 87.94 250 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 198 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 203 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 120 | | | | |
|