This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
Regformer-286.63 4386.53 4286.95 5189.33 13371.24 6788.43 12392.05 9382.50 186.88 3690.09 12874.45 2995.61 6384.38 4390.63 10094.01 47
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9893.07 91
Regformer-186.41 4786.33 4486.64 5889.33 13370.93 7588.43 12391.39 12282.14 386.65 3890.09 12874.39 3295.01 9783.97 5190.63 10093.97 49
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 10070.34 6697.23 1284.26 4693.36 7094.37 31
Regformer-485.68 5885.45 5886.35 6288.95 15269.67 10088.29 13391.29 12481.73 585.36 4990.01 13172.62 4795.35 8483.28 5887.57 13394.03 45
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 41
EPNet83.72 7882.92 8686.14 6984.22 25469.48 10491.05 5485.27 25781.30 776.83 18191.65 9166.09 10795.56 6676.00 12693.85 6693.38 78
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-385.23 6485.07 6685.70 7688.95 15269.01 11288.29 13389.91 16280.95 885.01 5390.01 13172.45 4894.19 12682.50 7187.57 13393.90 53
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 33
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18693.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 18962.33 24287.74 15191.33 12380.55 1177.99 15989.86 13465.23 11692.62 19267.05 20775.24 28892.30 118
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 92
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17263.46 22387.13 16592.37 7980.19 1478.38 14989.14 15571.66 5693.05 18270.05 17576.46 26392.25 120
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 17967.85 14087.66 15289.73 16780.05 1682.95 9089.59 14470.74 6394.82 10680.66 8684.72 16993.28 83
ETV-MVS84.90 7284.67 7385.59 7789.39 13168.66 12688.74 11592.64 7179.97 1784.10 7685.71 24769.32 7895.38 8080.82 8391.37 9292.72 102
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18867.53 14687.44 15889.66 16979.74 1882.23 9989.41 15370.24 6994.74 10979.95 9183.92 17792.99 97
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18492.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
DROMVSNet86.01 5186.38 4384.91 9589.31 13866.27 16792.32 2893.63 2379.37 2184.17 7591.88 8769.04 8395.43 7583.93 5293.77 6793.01 95
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 43
X-MVStestdata80.37 14377.83 17988.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 36967.45 9396.60 3483.06 6094.50 5694.07 43
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13891.00 11360.42 18695.38 8078.71 9786.32 15491.33 146
plane_prior291.25 4979.12 24
IS-MVSNet83.15 8782.81 8784.18 12089.94 11763.30 22791.59 4288.46 20979.04 2679.49 13192.16 8165.10 11794.28 11967.71 19791.86 8794.95 5
DU-MVS81.12 12280.52 12182.90 17087.80 19163.46 22387.02 16991.87 10579.01 2778.38 14989.07 15865.02 11893.05 18270.05 17576.46 26392.20 122
NR-MVSNet80.23 14579.38 14382.78 17887.80 19163.34 22686.31 19191.09 13279.01 2772.17 25789.07 15867.20 9692.81 19166.08 21475.65 27492.20 122
DELS-MVS85.41 6285.30 6285.77 7588.49 17067.93 13985.52 21693.44 3278.70 2983.63 8589.03 16074.57 2895.71 6280.26 9094.04 6593.66 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 15979.22 14980.27 23288.79 16058.35 28185.06 22188.61 20778.56 3077.65 16488.34 17763.81 12990.66 25364.98 22377.22 25191.80 135
plane_prior368.60 12778.44 3178.92 138
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17564.41 20487.60 15393.02 4678.42 3278.56 14588.16 18369.78 7393.26 16969.58 18276.49 26291.60 137
DVP-MVS++.90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 20
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs85.11 6785.14 6585.01 8987.20 21165.77 17887.75 15092.83 6177.84 3784.36 7292.38 7972.15 5193.93 13981.27 7990.48 10295.33 1
CS-MVS-test85.02 6985.21 6484.46 10889.28 14065.70 17991.16 5293.56 2677.83 3881.80 10589.89 13370.67 6495.61 6380.39 8792.34 8292.06 127
CP-MVSNet78.22 19178.34 16777.84 27087.83 19054.54 32687.94 14591.17 12977.65 3973.48 24288.49 17362.24 15488.43 28662.19 24274.07 29690.55 173
plane_prior68.71 12290.38 7077.62 4086.16 157
baseline84.93 7084.98 6784.80 10087.30 20965.39 18687.30 16292.88 5877.62 4084.04 7892.26 8071.81 5393.96 13381.31 7890.30 10495.03 4
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12394.57 25
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 20577.69 18677.84 27087.07 21453.91 33187.91 14791.18 12877.56 4473.14 24688.82 16461.23 17289.17 27459.95 26172.37 31190.43 177
OPM-MVS83.50 8182.95 8585.14 8588.79 16070.95 7389.13 10091.52 11677.55 4580.96 11891.75 8960.71 18094.50 11579.67 9386.51 15289.97 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 23
PS-CasMVS78.01 20078.09 17277.77 27287.71 19554.39 32888.02 14191.22 12677.50 4773.26 24488.64 16860.73 17988.41 28761.88 24673.88 30090.53 174
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 186
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 81
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 37
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18772.94 2990.64 6092.14 9177.21 5375.47 21192.83 7358.56 19594.72 11073.24 15192.71 7692.13 125
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 13063.44 13095.39 7976.04 12576.90 25592.31 117
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
WR-MVS_H78.51 18578.49 16178.56 26088.02 18556.38 31388.43 12392.67 6777.14 5673.89 24087.55 19766.25 10589.24 27358.92 27173.55 30390.06 196
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 11582.02 10080.03 23688.42 17455.97 31887.95 14493.42 3477.10 5877.38 16990.98 11569.96 7191.79 22368.46 19384.50 17192.33 115
DTE-MVSNet76.99 21876.80 20477.54 27786.24 22453.06 33987.52 15590.66 13977.08 5972.50 25288.67 16760.48 18589.52 26857.33 28770.74 32290.05 197
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 11193.85 55
UGNet80.83 12879.59 13884.54 10588.04 18468.09 13689.42 9088.16 21176.95 6176.22 19689.46 14949.30 28093.94 13668.48 19290.31 10391.60 137
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 10382.42 9081.04 21788.80 15958.34 28288.26 13593.49 3076.93 6278.47 14891.04 11069.92 7292.34 20469.87 17984.97 16692.44 114
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 53
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 78
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 34
VPNet78.69 18178.66 15878.76 25788.31 17755.72 32084.45 23886.63 24276.79 6678.26 15290.55 12059.30 19189.70 26666.63 20977.05 25390.88 161
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 64
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 48
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 9993.23 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 45
canonicalmvs85.91 5385.87 5486.04 7289.84 11969.44 10890.45 6993.00 4776.70 7188.01 2991.23 10373.28 4193.91 14081.50 7788.80 12194.77 18
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 84
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12674.15 3795.37 8381.82 7591.88 8492.65 107
HQP-NCC89.33 13389.17 9576.41 7477.23 174
ACMP_Plane89.33 13389.17 9576.41 7477.23 174
HQP-MVS82.61 9782.02 10084.37 11289.33 13366.98 15689.17 9592.19 8976.41 7477.23 17490.23 12560.17 18995.11 9177.47 11185.99 16091.03 156
CANet_DTU80.61 13679.87 13182.83 17285.60 23363.17 23387.36 15988.65 20576.37 7875.88 20588.44 17553.51 23393.07 18173.30 14989.74 11392.25 120
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23589.78 16476.36 7984.07 7791.88 8764.71 12290.26 25670.68 16988.89 11993.66 64
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9693.35 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 42
alignmvs85.48 5985.32 6185.96 7489.51 12669.47 10589.74 8592.47 7476.17 8287.73 3291.46 9970.32 6793.78 14581.51 7688.95 11894.63 22
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 19990.33 15076.11 8382.08 10091.61 9471.36 5894.17 12881.02 8092.58 7892.08 126
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 34
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 10161.54 16395.50 7082.71 6775.48 27891.72 136
hse-mvs281.72 10980.94 11584.07 12488.72 16367.68 14485.87 20387.26 23376.02 8584.67 6388.22 18261.54 16393.48 16182.71 6773.44 30591.06 154
CS-MVS84.53 7384.97 6883.23 15487.54 20363.27 22888.82 11093.50 2875.98 8783.07 8989.73 13870.29 6895.23 8682.07 7493.70 6991.18 150
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 9981.65 10584.29 11788.47 17167.73 14385.81 20792.35 8075.78 8978.33 15186.58 23064.01 12694.35 11776.05 12487.48 13890.79 163
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
testdata184.14 24575.71 90
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 27
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18360.80 26186.86 17491.58 11575.67 9380.24 12589.45 15163.34 13290.25 25770.51 17179.22 23691.23 149
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 64
Effi-MVS+83.62 8083.08 8285.24 8388.38 17567.45 14788.89 10689.15 18575.50 9582.27 9888.28 17969.61 7594.45 11677.81 10887.84 13193.84 57
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 51
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14368.76 11890.22 7491.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
LGP-MVS_train84.50 10689.23 14368.76 11891.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 64
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7866.75 9895.11 9172.85 15491.58 8992.45 113
LCM-MVSNet-Re77.05 21776.94 20177.36 27887.20 21151.60 34380.06 29180.46 31675.20 10267.69 29886.72 21962.48 14888.98 27863.44 23189.25 11791.51 140
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 23
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 99
ECVR-MVS1179.43 16279.18 15080.15 23489.99 11553.31 33787.33 16177.05 33875.04 10580.23 12692.77 7748.97 28492.33 20568.87 18992.40 8194.81 14
Effi-MVS+-dtu80.03 14978.57 16084.42 11085.13 24268.74 12088.77 11288.10 21374.99 10674.97 23083.49 28357.27 20793.36 16673.53 14480.88 21391.18 150
mvs-test180.88 12479.40 14285.29 8185.13 24269.75 9989.28 9288.10 21374.99 10676.44 19286.72 21957.27 20794.26 12473.53 14483.18 18991.87 131
OMC-MVS82.69 9581.97 10284.85 9788.75 16267.42 14887.98 14290.87 13674.92 10879.72 12991.65 9162.19 15593.96 13375.26 13386.42 15393.16 89
ECVR-MVScopyleft79.61 15579.26 14780.67 22490.08 11254.69 32487.89 14877.44 33574.88 10980.27 12492.79 7648.96 28592.45 19868.55 19192.50 8094.86 12
nrg03083.88 7583.53 7784.96 9186.77 21969.28 10990.46 6892.67 6774.79 11082.95 9091.33 10272.70 4693.09 18080.79 8579.28 23592.50 110
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 11192.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11288.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 58
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15771.58 5985.15 21986.16 24974.69 11380.47 12391.04 11062.29 15290.55 25480.33 8990.08 10990.20 185
EIA-MVS83.31 8682.80 8884.82 9889.59 12265.59 18188.21 13692.68 6674.66 11478.96 13686.42 23569.06 8195.26 8575.54 13190.09 10893.62 71
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11588.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11686.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 101
FOURS195.00 1072.39 4295.06 193.84 1874.49 11791.30 15
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11888.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 17
ACMP74.13 681.51 11780.57 11984.36 11389.42 12968.69 12589.97 7991.50 12074.46 11975.04 22990.41 12253.82 23194.54 11277.56 11082.91 19289.86 206
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 12079.35 13391.10 10769.05 8295.12 9072.78 15587.22 14194.13 40
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 12189.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
save fliter93.80 4472.35 4590.47 6691.17 12974.31 121
MVS_Test83.15 8783.06 8383.41 14686.86 21563.21 23086.11 19792.00 9774.31 12182.87 9289.44 15270.03 7093.21 17077.39 11388.50 12793.81 59
UniMVSNet_ETH3D79.10 17278.24 17081.70 19886.85 21660.24 26887.28 16388.79 19874.25 12476.84 18090.53 12149.48 27791.56 22967.98 19582.15 20193.29 82
IterMVS-LS80.06 14879.38 14382.11 18985.89 22863.20 23186.79 17789.34 17574.19 12575.45 21486.72 21966.62 9992.39 20172.58 15676.86 25790.75 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14079.98 12982.12 18884.28 25263.19 23286.41 18888.95 19574.18 12678.69 14187.54 19866.62 9992.43 19972.57 15780.57 21990.74 166
Vis-MVSNet (Re-imp)78.36 18978.45 16278.07 26888.64 16651.78 34286.70 18179.63 32474.14 12775.11 22690.83 11661.29 17189.75 26458.10 28091.60 8892.69 105
v879.97 15179.02 15382.80 17584.09 25664.50 20187.96 14390.29 15374.13 12875.24 22386.81 21662.88 14393.89 14274.39 13775.40 28290.00 198
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 12983.16 8891.07 10975.94 1895.19 8879.94 9294.38 6093.55 74
thres100view90076.50 22575.55 22179.33 24989.52 12556.99 30285.83 20683.23 28773.94 13076.32 19487.12 21151.89 25191.95 21848.33 32883.75 18089.07 222
9.1488.26 1592.84 6891.52 4594.75 173.93 13188.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13282.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 73
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13377.32 17190.66 11867.90 8994.90 10270.37 17289.48 11593.19 88
thres600view776.50 22575.44 22379.68 24389.40 13057.16 29985.53 21483.23 28773.79 13476.26 19587.09 21251.89 25191.89 22148.05 33383.72 18390.00 198
v7n78.97 17677.58 18983.14 15883.45 26765.51 18288.32 13191.21 12773.69 13572.41 25486.32 23857.93 19893.81 14469.18 18575.65 27490.11 190
v2v48280.23 14579.29 14683.05 16383.62 26464.14 20887.04 16889.97 15973.61 13678.18 15587.22 20761.10 17593.82 14376.11 12376.78 26091.18 150
Baseline_NR-MVSNet78.15 19578.33 16877.61 27585.79 22956.21 31686.78 17885.76 25373.60 13777.93 16087.57 19665.02 11888.99 27767.14 20675.33 28487.63 262
BH-RMVSNet79.61 15578.44 16383.14 15889.38 13265.93 17384.95 22487.15 23573.56 13878.19 15489.79 13656.67 21293.36 16659.53 26586.74 14890.13 188
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 13985.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 76
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2865.00 12095.56 6682.75 6591.87 8592.50 110
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2863.87 12782.75 6591.87 8592.50 110
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14285.26 5094.16 4162.75 14495.92 5782.46 7291.30 9491.81 134
tfpn200view976.42 22875.37 22779.55 24889.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18089.07 222
thres40076.50 22575.37 22779.86 23989.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18090.00 198
v14878.72 18077.80 18081.47 20382.73 28761.96 24886.30 19288.08 21573.26 14576.18 19885.47 25462.46 14992.36 20371.92 16073.82 30190.09 192
v1079.74 15478.67 15782.97 16884.06 25764.95 19387.88 14990.62 14073.11 14675.11 22686.56 23161.46 16694.05 13273.68 14275.55 27689.90 204
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14784.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 30
baseline176.98 21976.75 20877.66 27388.13 18055.66 32185.12 22081.89 30173.04 14876.79 18288.90 16162.43 15087.78 29463.30 23371.18 32089.55 216
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 14988.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvs82.10 10181.88 10382.76 18083.00 28063.78 21583.68 25189.76 16572.94 15082.02 10189.85 13565.96 11190.79 25082.38 7387.30 14093.71 63
K. test v371.19 27668.51 28479.21 25283.04 27957.78 29384.35 24276.91 33972.90 15162.99 33582.86 29039.27 33691.09 24561.65 24952.66 35688.75 241
Fast-Effi-MVS+-dtu78.02 19976.49 21282.62 18283.16 27666.96 15986.94 17187.45 23072.45 15271.49 26484.17 27254.79 22291.58 22867.61 19880.31 22289.30 220
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15285.22 5291.90 8669.47 7696.42 3883.28 5895.94 2094.35 32
thres20075.55 23974.47 23778.82 25687.78 19457.85 29183.07 26483.51 28172.44 15475.84 20684.42 26952.08 24691.75 22447.41 33583.64 18486.86 283
test_yl81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
RRT_MVS79.88 15278.38 16584.38 11185.42 23670.60 8488.71 11788.75 20372.30 15778.83 14089.14 15544.44 31292.18 21178.50 10079.33 23490.35 180
BH-untuned79.47 16078.60 15982.05 19189.19 14565.91 17486.07 19888.52 20872.18 15875.42 21587.69 19361.15 17493.54 15860.38 25886.83 14786.70 287
TransMVSNet (Re)75.39 24374.56 23577.86 26985.50 23557.10 30186.78 17886.09 25172.17 15971.53 26387.34 20263.01 14289.31 27256.84 29161.83 34487.17 275
GA-MVS76.87 22175.17 23081.97 19482.75 28662.58 23981.44 28086.35 24772.16 16074.74 23382.89 28946.20 30192.02 21668.85 19081.09 21191.30 148
RRT_test8_iter0578.38 18877.40 19181.34 20886.00 22758.86 27786.55 18691.26 12572.13 16175.91 20387.42 20144.97 30993.73 15177.02 11775.30 28591.45 145
v114480.03 14979.03 15283.01 16583.78 26264.51 19987.11 16790.57 14271.96 16278.08 15886.20 24061.41 16793.94 13674.93 13477.23 25090.60 171
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16387.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 61
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22267.27 15289.27 9391.51 11771.75 16479.37 13290.22 12663.15 13894.27 12077.69 10982.36 20091.49 142
EPNet_dtu75.46 24074.86 23177.23 28282.57 29154.60 32586.89 17383.09 29171.64 16566.25 31685.86 24555.99 21488.04 29154.92 29886.55 15189.05 227
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
test178.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
FMVSNet278.20 19377.21 19581.20 21287.60 19862.89 23887.47 15789.02 19071.63 16675.29 22287.28 20354.80 21991.10 24362.38 24079.38 23289.61 214
V4279.38 16678.24 17082.83 17281.10 31565.50 18385.55 21289.82 16371.57 16978.21 15386.12 24160.66 18293.18 17575.64 12875.46 28089.81 209
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 17078.66 14388.28 17965.26 11595.10 9464.74 22591.23 9587.51 266
tttt051779.40 16477.91 17683.90 13688.10 18263.84 21388.37 13084.05 27371.45 17176.78 18389.12 15749.93 27494.89 10370.18 17483.18 18992.96 98
pm-mvs177.25 21576.68 21078.93 25584.22 25458.62 28086.41 18888.36 21071.37 17273.31 24388.01 18961.22 17389.15 27564.24 22773.01 30889.03 228
GeoE81.71 11081.01 11483.80 13789.51 12664.45 20388.97 10388.73 20471.27 17378.63 14489.76 13766.32 10493.20 17269.89 17886.02 15993.74 62
FMVSNet377.88 20376.85 20380.97 21886.84 21762.36 24186.52 18788.77 19971.13 17475.34 21886.66 22654.07 22991.10 24362.72 23679.57 22889.45 217
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17583.18 8793.48 5750.54 26693.49 16073.40 14888.25 12994.54 26
XVG-OURS80.41 14179.23 14883.97 13385.64 23269.02 11183.03 26590.39 14571.09 17677.63 16591.49 9854.62 22591.35 23575.71 12783.47 18591.54 139
SixPastTwentyTwo73.37 25871.26 26879.70 24285.08 24457.89 29085.57 20883.56 28071.03 17765.66 31885.88 24442.10 32692.57 19459.11 26963.34 34388.65 244
ZD-MVS94.38 2772.22 4892.67 6770.98 17887.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
v119279.59 15778.43 16483.07 16283.55 26664.52 19886.93 17290.58 14170.83 17977.78 16285.90 24359.15 19293.94 13673.96 14177.19 25290.76 164
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 18087.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 19
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15464.51 19985.53 21489.39 17470.79 18178.49 14785.06 26367.54 9293.58 15467.03 20886.58 15092.32 116
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12668.21 13584.28 24390.09 15770.79 18181.26 11585.62 25163.15 13894.29 11875.62 12988.87 12088.59 245
LTVRE_ROB69.57 1376.25 23174.54 23681.41 20488.60 16764.38 20579.24 29989.12 18870.76 18369.79 28587.86 19049.09 28293.20 17256.21 29580.16 22386.65 288
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14668.03 13884.46 23790.02 15870.67 18481.30 11486.53 23363.17 13794.19 12675.60 13088.54 12588.57 246
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23368.78 11783.54 25790.50 14370.66 18576.71 18591.66 9060.69 18191.26 23776.94 11881.58 20791.83 132
Anonymous20240521178.25 19077.01 19881.99 19391.03 9360.67 26284.77 22783.90 27570.65 18680.00 12791.20 10541.08 33191.43 23365.21 22085.26 16493.85 55
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18779.17 13491.03 11264.12 12596.03 5068.39 19490.14 10791.50 141
FMVSNet177.44 21176.12 21781.40 20586.81 21863.01 23488.39 12789.28 17770.49 18874.39 23687.28 20349.06 28391.11 24060.91 25578.52 23890.09 192
ab-mvs79.51 15878.97 15481.14 21488.46 17260.91 25983.84 24989.24 18170.36 18979.03 13588.87 16363.23 13690.21 25865.12 22182.57 19892.28 119
tfpnnormal74.39 24773.16 25078.08 26786.10 22658.05 28584.65 23287.53 22770.32 19071.22 26685.63 25054.97 21889.86 26243.03 34975.02 28986.32 291
ACMM73.20 880.78 13479.84 13283.58 14089.31 13868.37 13089.99 7891.60 11470.28 19177.25 17289.66 14053.37 23493.53 15974.24 13982.85 19388.85 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23474.01 24182.03 19288.60 16765.31 18888.86 10787.55 22670.25 19267.75 29787.47 20041.27 32993.19 17458.37 27775.94 27187.60 263
IB-MVS68.01 1575.85 23673.36 24883.31 14884.76 24666.03 16983.38 25885.06 25970.21 19369.40 28781.05 30745.76 30594.66 11165.10 22275.49 27789.25 221
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 16477.76 18384.31 11687.69 19765.10 19287.36 15984.26 27170.04 19477.42 16888.26 18149.94 27294.79 10870.20 17384.70 17093.03 93
v14419279.47 16078.37 16682.78 17883.35 26863.96 21186.96 17090.36 14969.99 19577.50 16685.67 24960.66 18293.77 14774.27 13876.58 26190.62 169
c3_l78.75 17977.91 17681.26 21082.89 28461.56 25384.09 24789.13 18769.97 19675.56 20984.29 27166.36 10392.09 21473.47 14775.48 27890.12 189
bset_n11_16_dypcd77.12 21675.47 22282.06 19081.12 31465.99 17181.37 28183.20 28969.94 19776.09 20283.38 28547.75 29092.26 20778.51 9977.91 24487.95 254
v192192079.22 16878.03 17382.80 17583.30 27063.94 21286.80 17690.33 15069.91 19877.48 16785.53 25258.44 19693.75 14973.60 14376.85 25890.71 167
ACMH67.68 1675.89 23573.93 24281.77 19788.71 16466.61 16288.62 11989.01 19169.81 19966.78 30986.70 22441.95 32891.51 23255.64 29678.14 24387.17 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16693.04 4369.80 20082.85 9391.22 10473.06 4496.02 5176.72 12194.63 5391.46 144
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 20178.50 14686.21 23962.36 15194.52 11465.36 21992.05 8389.77 210
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 23374.27 24081.62 19983.20 27364.67 19783.60 25589.75 16669.75 20271.85 26087.09 21232.78 35392.11 21369.99 17780.43 22188.09 253
BH-w/o78.21 19277.33 19480.84 22088.81 15865.13 19184.87 22587.85 22269.75 20274.52 23584.74 26761.34 16993.11 17958.24 27985.84 16284.27 317
v124078.99 17577.78 18182.64 18183.21 27263.54 22086.62 18390.30 15269.74 20477.33 17085.68 24857.04 21093.76 14873.13 15276.92 25490.62 169
ET-MVSNet_ETH3D78.63 18276.63 21184.64 10386.73 22069.47 10585.01 22284.61 26469.54 20566.51 31486.59 22850.16 26991.75 22476.26 12284.24 17592.69 105
eth_miper_zixun_eth77.92 20276.69 20981.61 20183.00 28061.98 24783.15 26189.20 18369.52 20674.86 23284.35 27061.76 15992.56 19571.50 16372.89 30990.28 183
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20778.96 13688.46 17465.47 11494.87 10574.42 13688.57 12490.24 184
mvs_tets79.13 17177.77 18283.22 15584.70 24766.37 16589.17 9590.19 15469.38 20875.40 21689.46 14944.17 31493.15 17676.78 12080.70 21790.14 187
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15465.40 18486.16 19692.00 9769.34 20978.11 15686.09 24266.02 10994.27 12071.52 16182.06 20287.39 268
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 21075.70 20889.69 13957.20 20995.77 6063.06 23588.41 12887.50 267
ITE_SJBPF78.22 26581.77 30260.57 26383.30 28569.25 21167.54 29987.20 20836.33 34687.28 29854.34 30074.62 29386.80 284
cl____77.72 20676.76 20680.58 22582.49 29360.48 26583.09 26287.87 22069.22 21274.38 23785.22 25962.10 15691.53 23071.09 16575.41 28189.73 212
DIV-MVS_self_test77.72 20676.76 20680.58 22582.48 29460.48 26583.09 26287.86 22169.22 21274.38 23785.24 25862.10 15691.53 23071.09 16575.40 28289.74 211
jajsoiax79.29 16777.96 17483.27 15084.68 24866.57 16389.25 9490.16 15569.20 21475.46 21389.49 14645.75 30693.13 17876.84 11980.80 21590.11 190
IterMVS-SCA-FT75.43 24173.87 24480.11 23582.69 28864.85 19481.57 27883.47 28369.16 21570.49 27184.15 27351.95 24988.15 28969.23 18472.14 31487.34 270
CL-MVSNet_self_test72.37 27171.46 26375.09 29979.49 33453.53 33380.76 28485.01 26169.12 21670.51 27082.05 30157.92 19984.13 31852.27 30866.00 33787.60 263
AUN-MVS79.21 16977.60 18884.05 12688.71 16467.61 14585.84 20587.26 23369.08 21777.23 17488.14 18753.20 23693.47 16275.50 13273.45 30491.06 154
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
MVSTER79.01 17477.88 17882.38 18683.07 27764.80 19584.08 24888.95 19569.01 22178.69 14187.17 21054.70 22392.43 19974.69 13580.57 21989.89 205
cl2278.07 19777.01 19881.23 21182.37 29661.83 25083.55 25687.98 21768.96 22275.06 22883.87 27561.40 16891.88 22273.53 14476.39 26589.98 201
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22284.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 95
miper_ehance_all_eth78.59 18477.76 18381.08 21682.66 28961.56 25383.65 25289.15 18568.87 22475.55 21083.79 27966.49 10192.03 21573.25 15076.39 26589.64 213
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 18091.77 11168.84 22577.13 17989.50 14567.63 9194.88 10467.55 19988.52 12693.09 90
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22679.57 13092.83 7360.60 18493.04 18480.92 8291.56 9090.86 162
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22785.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 94
test_893.13 5872.57 3688.68 11891.84 10668.69 22784.87 6093.10 6574.43 3095.16 89
MVSFormer82.85 9382.05 9985.24 8387.35 20470.21 8890.50 6490.38 14668.55 22981.32 11189.47 14761.68 16093.46 16378.98 9590.26 10592.05 128
test_djsdf80.30 14479.32 14583.27 15083.98 25965.37 18790.50 6490.38 14668.55 22976.19 19788.70 16556.44 21393.46 16378.98 9580.14 22590.97 159
TEST993.26 5672.96 2688.75 11391.89 10368.44 23185.00 5493.10 6574.36 3395.41 77
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23284.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 36
PC_three_145268.21 23392.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
IterMVS74.29 24872.94 25278.35 26481.53 30663.49 22281.58 27782.49 29668.06 23469.99 28083.69 28151.66 25585.54 30865.85 21671.64 31786.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS78.89 17877.51 19083.03 16487.80 19167.79 14284.72 22885.05 26067.63 23576.75 18487.70 19262.25 15390.82 24958.53 27687.13 14290.49 175
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15465.40 18484.43 23992.00 9767.62 23678.11 15685.05 26466.02 10994.27 12071.52 16189.50 11489.01 229
TR-MVS77.44 21176.18 21681.20 21288.24 17863.24 22984.61 23386.40 24567.55 23777.81 16186.48 23454.10 22893.15 17657.75 28382.72 19687.20 274
CDS-MVSNet79.07 17377.70 18583.17 15787.60 19868.23 13484.40 24186.20 24867.49 23876.36 19386.54 23261.54 16390.79 25061.86 24787.33 13990.49 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous79.42 16379.11 15180.34 23084.45 25157.97 28882.59 26787.62 22567.40 23976.17 20088.56 17268.47 8589.59 26770.65 17086.05 15893.47 77
MVS_030472.48 26870.89 27177.24 28182.20 29759.68 27184.11 24683.49 28267.10 24066.87 30780.59 31335.00 35087.40 29659.07 27079.58 22784.63 315
IU-MVS95.30 271.25 6392.95 5666.81 24192.39 688.94 1196.63 494.85 13
baseline275.70 23773.83 24581.30 20983.26 27161.79 25182.57 26880.65 31266.81 24166.88 30683.42 28457.86 20092.19 21063.47 23079.57 22889.91 203
miper_lstm_enhance74.11 25173.11 25177.13 28380.11 32459.62 27272.23 33686.92 23966.76 24370.40 27282.92 28856.93 21182.92 32669.06 18772.63 31088.87 236
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12385.17 23969.91 9490.57 6290.97 13366.70 24472.17 25791.91 8554.70 22393.96 13361.81 24890.95 9788.41 250
test-LLR72.94 26672.43 25574.48 30481.35 31058.04 28678.38 30777.46 33366.66 24569.95 28179.00 32648.06 28879.24 33766.13 21184.83 16786.15 295
test20.0367.45 30266.95 30368.94 33175.48 35044.84 36077.50 31577.67 33266.66 24563.01 33483.80 27847.02 29478.40 34142.53 35168.86 33083.58 324
test0.0.03 168.00 30067.69 29768.90 33277.55 34147.43 35575.70 32572.95 35166.66 24566.56 31082.29 29848.06 28875.87 35244.97 34674.51 29483.41 325
QAPM80.88 12479.50 14085.03 8888.01 18668.97 11491.59 4292.00 9766.63 24875.15 22592.16 8157.70 20195.45 7363.52 22988.76 12290.66 168
XXY-MVS75.41 24275.56 22074.96 30083.59 26557.82 29280.59 28783.87 27666.54 24974.93 23188.31 17863.24 13580.09 33662.16 24376.85 25886.97 281
OurMVSNet-221017-074.26 24972.42 25679.80 24183.76 26359.59 27385.92 20286.64 24166.39 25066.96 30587.58 19539.46 33591.60 22765.76 21769.27 32688.22 251
SCA74.22 25072.33 25779.91 23884.05 25862.17 24579.96 29379.29 32666.30 25172.38 25580.13 31751.95 24988.60 28459.25 26777.67 24788.96 233
testgi66.67 30766.53 30567.08 33775.62 34941.69 36475.93 32176.50 34066.11 25265.20 32486.59 22835.72 34874.71 35643.71 34773.38 30684.84 312
HY-MVS69.67 1277.95 20177.15 19680.36 22987.57 20260.21 26983.37 25987.78 22366.11 25275.37 21787.06 21463.27 13490.48 25561.38 25282.43 19990.40 179
EG-PatchMatch MVS74.04 25271.82 26180.71 22384.92 24567.42 14885.86 20488.08 21566.04 25464.22 32883.85 27635.10 34992.56 19557.44 28580.83 21482.16 336
CNLPA78.08 19676.79 20581.97 19490.40 10671.07 6987.59 15484.55 26566.03 25572.38 25589.64 14157.56 20386.04 30559.61 26483.35 18688.79 240
Anonymous2024052980.19 14778.89 15584.10 12290.60 10164.75 19688.95 10490.90 13565.97 25680.59 12191.17 10649.97 27193.73 15169.16 18682.70 19793.81 59
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 12262.99 23788.16 13991.51 11765.77 25777.14 17891.09 10860.91 17893.21 17050.26 32087.05 14392.17 124
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 26070.99 26980.49 22784.51 25065.80 17680.71 28586.13 25065.70 25865.46 31983.74 28044.60 31090.91 24851.13 31376.89 25684.74 313
anonymousdsp78.60 18377.15 19682.98 16780.51 32167.08 15487.24 16489.53 17165.66 25975.16 22487.19 20952.52 23792.25 20877.17 11579.34 23389.61 214
test_040272.79 26770.44 27479.84 24088.13 18065.99 17185.93 20184.29 26965.57 26067.40 30285.49 25346.92 29592.61 19335.88 35874.38 29580.94 342
miper_enhance_ethall77.87 20476.86 20280.92 21981.65 30361.38 25582.68 26688.98 19265.52 26175.47 21182.30 29765.76 11392.00 21772.95 15376.39 26589.39 218
DWT-MVSNet_test73.70 25571.86 26079.21 25282.91 28358.94 27682.34 26982.17 29865.21 26271.05 26878.31 33144.21 31390.17 25963.29 23477.28 24988.53 247
UnsupCasMVSNet_eth67.33 30365.99 30671.37 32173.48 35751.47 34575.16 32785.19 25865.20 26360.78 34180.93 31242.35 32277.20 34757.12 28853.69 35585.44 304
WTY-MVS75.65 23875.68 21975.57 29486.40 22356.82 30477.92 31482.40 29765.10 26476.18 19887.72 19163.13 14180.90 33360.31 25981.96 20389.00 231
thisisatest051577.33 21475.38 22683.18 15685.27 23863.80 21482.11 27283.27 28665.06 26575.91 20383.84 27749.54 27694.27 12067.24 20486.19 15691.48 143
MVP-Stereo76.12 23274.46 23881.13 21585.37 23769.79 9784.42 24087.95 21865.03 26667.46 30085.33 25653.28 23591.73 22658.01 28183.27 18781.85 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 17677.69 18682.81 17490.54 10364.29 20690.11 7691.51 11765.01 26776.16 20188.13 18850.56 26593.03 18569.68 18177.56 24891.11 153
pmmvs674.69 24673.39 24778.61 25981.38 30957.48 29786.64 18287.95 21864.99 26870.18 27586.61 22750.43 26789.52 26862.12 24470.18 32488.83 238
PAPM77.68 20876.40 21481.51 20287.29 21061.85 24983.78 25089.59 17064.74 26971.23 26588.70 16562.59 14693.66 15352.66 30787.03 14489.01 229
MIMVSNet70.69 28069.30 27974.88 30184.52 24956.35 31475.87 32479.42 32564.59 27067.76 29682.41 29541.10 33081.54 33146.64 33981.34 20886.75 286
tpm72.37 27171.71 26274.35 30682.19 29852.00 34079.22 30077.29 33664.56 27172.95 24883.68 28251.35 25683.26 32558.33 27875.80 27287.81 259
MDA-MVSNet-bldmvs66.68 30663.66 31475.75 29179.28 33660.56 26473.92 33378.35 32964.43 27250.13 35979.87 32144.02 31583.67 32146.10 34156.86 35183.03 331
MIMVSNet168.58 29766.78 30473.98 30980.07 32551.82 34180.77 28384.37 26664.40 27359.75 34582.16 30036.47 34583.63 32242.73 35070.33 32386.48 290
D2MVS74.82 24573.21 24979.64 24579.81 32862.56 24080.34 28987.35 23164.37 27468.86 29082.66 29346.37 29890.10 26067.91 19681.24 21086.25 292
PLCcopyleft70.83 1178.05 19876.37 21583.08 16191.88 8567.80 14188.19 13789.46 17364.33 27569.87 28388.38 17653.66 23293.58 15458.86 27282.73 19587.86 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 26371.33 26678.49 26383.18 27460.85 26079.63 29578.57 32864.13 27671.73 26179.81 32251.20 25885.97 30657.40 28676.36 26888.66 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160066.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
miper_refine_blended66.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
tpmvs71.09 27769.29 28076.49 28782.04 29956.04 31778.92 30481.37 30764.05 27967.18 30478.28 33249.74 27589.77 26349.67 32372.37 31183.67 323
F-COLMAP76.38 23074.33 23982.50 18489.28 14066.95 16088.41 12689.03 18964.05 27966.83 30888.61 16946.78 29692.89 18757.48 28478.55 23787.67 261
DP-MVS76.78 22274.57 23483.42 14493.29 5469.46 10788.55 12283.70 27763.98 28170.20 27488.89 16254.01 23094.80 10746.66 33781.88 20586.01 299
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28281.09 11691.57 9566.06 10895.45 7367.19 20594.82 5188.81 239
PM-MVS66.41 30964.14 31173.20 31473.92 35556.45 31078.97 30364.96 36563.88 28364.72 32580.24 31619.84 36483.44 32366.24 21064.52 34179.71 347
jason81.39 11880.29 12684.70 10286.63 22169.90 9585.95 20086.77 24063.24 28481.07 11789.47 14761.08 17692.15 21278.33 10490.07 11092.05 128
jason: jason.
KD-MVS_self_test68.81 29467.59 29972.46 31774.29 35445.45 35877.93 31387.00 23763.12 28563.99 33078.99 32842.32 32384.77 31556.55 29364.09 34287.16 277
gg-mvs-nofinetune69.95 28867.96 29175.94 29083.07 27754.51 32777.23 31770.29 35463.11 28670.32 27362.33 35543.62 31688.69 28353.88 30287.76 13284.62 316
tpmrst72.39 26972.13 25873.18 31580.54 32049.91 35179.91 29479.08 32763.11 28671.69 26279.95 31955.32 21682.77 32765.66 21873.89 29986.87 282
PCF-MVS73.52 780.38 14278.84 15685.01 8987.71 19568.99 11383.65 25291.46 12163.00 28877.77 16390.28 12366.10 10695.09 9561.40 25188.22 13090.94 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 26470.41 27580.81 22187.13 21365.63 18088.30 13284.19 27262.96 28963.80 33287.69 19338.04 34192.56 19546.66 33774.91 29084.24 318
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 28567.78 29677.61 27577.43 34259.57 27471.16 33870.33 35362.94 29068.65 29272.77 34950.62 26485.49 30969.58 18266.58 33587.77 260
lupinMVS81.39 11880.27 12784.76 10187.35 20470.21 8885.55 21286.41 24462.85 29181.32 11188.61 16961.68 16092.24 20978.41 10390.26 10591.83 132
EPMVS69.02 29368.16 28871.59 31979.61 33249.80 35377.40 31666.93 36162.82 29270.01 27879.05 32445.79 30477.86 34556.58 29275.26 28787.13 278
PatchMatch-RL72.38 27070.90 27076.80 28688.60 16767.38 15079.53 29676.17 34162.75 29369.36 28882.00 30345.51 30784.89 31453.62 30380.58 21878.12 350
gm-plane-assit81.40 30853.83 33262.72 29480.94 31092.39 20163.40 232
FMVSNet569.50 29067.96 29174.15 30882.97 28255.35 32280.01 29282.12 30062.56 29563.02 33381.53 30436.92 34481.92 32948.42 32774.06 29785.17 309
sss73.60 25673.64 24673.51 31182.80 28555.01 32376.12 32081.69 30462.47 29674.68 23485.85 24657.32 20678.11 34360.86 25680.93 21287.39 268
AllTest70.96 27868.09 29079.58 24685.15 24063.62 21684.58 23479.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
TestCases79.58 24685.15 24063.62 21679.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
1112_ss77.40 21376.43 21380.32 23189.11 15160.41 26783.65 25287.72 22462.13 29973.05 24786.72 21962.58 14789.97 26162.11 24580.80 21590.59 172
PVSNet64.34 1872.08 27370.87 27275.69 29286.21 22556.44 31174.37 33280.73 31162.06 30070.17 27682.23 29942.86 32083.31 32454.77 29984.45 17387.32 271
LS3D76.95 22074.82 23283.37 14790.45 10467.36 15189.15 9986.94 23861.87 30169.52 28690.61 11951.71 25494.53 11346.38 34086.71 14988.21 252
CostFormer75.24 24473.90 24379.27 25082.65 29058.27 28380.80 28282.73 29561.57 30275.33 22183.13 28755.52 21591.07 24664.98 22378.34 24288.45 248
new-patchmatchnet61.73 32061.73 32261.70 34072.74 36124.50 37469.16 34778.03 33061.40 30356.72 35275.53 34538.42 33976.48 35045.95 34257.67 35084.13 320
ANet_high50.57 32946.10 33263.99 33848.67 37239.13 36570.99 34080.85 30961.39 30431.18 36457.70 36017.02 36673.65 36031.22 36015.89 36979.18 348
MS-PatchMatch73.83 25472.67 25377.30 28083.87 26166.02 17081.82 27384.66 26361.37 30568.61 29382.82 29147.29 29288.21 28859.27 26684.32 17477.68 351
USDC70.33 28468.37 28576.21 28980.60 31956.23 31579.19 30186.49 24360.89 30661.29 33985.47 25431.78 35689.47 27053.37 30476.21 26982.94 333
cascas76.72 22374.64 23382.99 16685.78 23065.88 17582.33 27089.21 18260.85 30772.74 24981.02 30847.28 29393.75 14967.48 20085.02 16589.34 219
MDTV_nov1_ep1369.97 27883.18 27453.48 33477.10 31880.18 32160.45 30869.33 28980.44 31448.89 28686.90 29951.60 31178.51 239
TinyColmap67.30 30464.81 30874.76 30381.92 30156.68 30880.29 29081.49 30660.33 30956.27 35483.22 28624.77 36087.66 29545.52 34369.47 32579.95 346
test-mter71.41 27570.39 27674.48 30481.35 31058.04 28678.38 30777.46 33360.32 31069.95 28179.00 32636.08 34779.24 33766.13 21184.83 16786.15 295
131476.53 22475.30 22980.21 23383.93 26062.32 24384.66 22988.81 19760.23 31170.16 27784.07 27455.30 21790.73 25267.37 20183.21 18887.59 265
PatchT68.46 29967.85 29370.29 32780.70 31843.93 36172.47 33574.88 34460.15 31270.55 26976.57 34149.94 27281.59 33050.58 31474.83 29185.34 305
无先验87.48 15688.98 19260.00 31394.12 12967.28 20288.97 232
CR-MVSNet73.37 25871.27 26779.67 24481.32 31265.19 18975.92 32280.30 31859.92 31472.73 25081.19 30552.50 23886.69 30059.84 26277.71 24587.11 279
TDRefinement67.49 30164.34 31076.92 28473.47 35861.07 25784.86 22682.98 29259.77 31558.30 34885.13 26126.06 35987.89 29247.92 33460.59 34881.81 338
dp66.80 30565.43 30770.90 32679.74 33148.82 35475.12 32974.77 34559.61 31664.08 32977.23 33842.89 31980.72 33448.86 32666.58 33583.16 328
our_test_369.14 29267.00 30275.57 29479.80 32958.80 27877.96 31277.81 33159.55 31762.90 33678.25 33347.43 29183.97 31951.71 31067.58 33283.93 322
Test_1112_low_res76.40 22975.44 22379.27 25089.28 14058.09 28481.69 27687.07 23659.53 31872.48 25386.67 22561.30 17089.33 27160.81 25780.15 22490.41 178
pmmvs474.03 25371.91 25980.39 22881.96 30068.32 13181.45 27982.14 29959.32 31969.87 28385.13 26152.40 24088.13 29060.21 26074.74 29284.73 314
testdata79.97 23790.90 9664.21 20784.71 26259.27 32085.40 4892.91 7062.02 15889.08 27668.95 18891.37 9286.63 289
ppachtmachnet_test70.04 28767.34 30078.14 26679.80 32961.13 25679.19 30180.59 31359.16 32165.27 32179.29 32346.75 29787.29 29749.33 32466.72 33386.00 301
RPSCF73.23 26271.46 26378.54 26182.50 29259.85 27082.18 27182.84 29458.96 32271.15 26789.41 15345.48 30884.77 31558.82 27371.83 31691.02 158
pmmvs-eth3d70.50 28367.83 29478.52 26277.37 34366.18 16881.82 27381.51 30558.90 32363.90 33180.42 31542.69 32186.28 30458.56 27565.30 33983.11 329
OpenMVS_ROBcopyleft64.09 1970.56 28268.19 28777.65 27480.26 32259.41 27585.01 22282.96 29358.76 32465.43 32082.33 29637.63 34391.23 23945.34 34576.03 27082.32 334
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32574.08 23990.72 11758.10 19795.04 9669.70 18089.42 11690.30 182
Patchmtry70.74 27969.16 28175.49 29680.72 31754.07 33074.94 33180.30 31858.34 32670.01 27881.19 30552.50 23886.54 30153.37 30471.09 32185.87 302
Anonymous2024052168.80 29567.22 30173.55 31074.33 35354.11 32983.18 26085.61 25458.15 32761.68 33880.94 31030.71 35781.27 33257.00 29073.34 30785.28 306
旧先验286.56 18558.10 32887.04 3588.98 27874.07 140
JIA-IIPM66.32 31062.82 32076.82 28577.09 34461.72 25265.34 35475.38 34258.04 32964.51 32662.32 35642.05 32786.51 30251.45 31269.22 32782.21 335
pmmvs571.55 27470.20 27775.61 29377.83 34056.39 31281.74 27580.89 30857.76 33067.46 30084.49 26849.26 28185.32 31157.08 28975.29 28685.11 310
TESTMET0.1,169.89 28969.00 28272.55 31679.27 33756.85 30378.38 30774.71 34757.64 33168.09 29577.19 33937.75 34276.70 34863.92 22884.09 17684.10 321
RPMNet73.51 25770.49 27382.58 18381.32 31265.19 18975.92 32292.27 8357.60 33272.73 25076.45 34252.30 24195.43 7548.14 33277.71 24587.11 279
新几何183.42 14493.13 5870.71 8085.48 25557.43 33381.80 10591.98 8463.28 13392.27 20664.60 22692.99 7187.27 272
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 22985.42 25657.37 33481.76 10992.02 8363.41 13194.12 12967.28 20292.93 7287.26 273
YYNet165.03 31462.91 31871.38 32075.85 34756.60 30969.12 34874.66 34857.28 33554.12 35577.87 33545.85 30374.48 35749.95 32161.52 34683.05 330
MDA-MVSNet_test_wron65.03 31462.92 31771.37 32175.93 34656.73 30569.09 34974.73 34657.28 33554.03 35677.89 33445.88 30274.39 35849.89 32261.55 34582.99 332
Anonymous2023120668.60 29667.80 29571.02 32580.23 32350.75 34978.30 31080.47 31556.79 33766.11 31782.63 29446.35 29978.95 33943.62 34875.70 27383.36 326
tpm273.26 26171.46 26378.63 25883.34 26956.71 30780.65 28680.40 31756.63 33873.55 24182.02 30251.80 25391.24 23856.35 29478.42 24187.95 254
CHOSEN 1792x268877.63 20975.69 21883.44 14389.98 11668.58 12878.70 30687.50 22856.38 33975.80 20786.84 21558.67 19491.40 23461.58 25085.75 16390.34 181
HyFIR lowres test77.53 21075.40 22583.94 13589.59 12266.62 16180.36 28888.64 20656.29 34076.45 18985.17 26057.64 20293.28 16861.34 25383.10 19191.91 130
PVSNet_057.27 2061.67 32159.27 32468.85 33379.61 33257.44 29868.01 35073.44 35055.93 34158.54 34770.41 35244.58 31177.55 34647.01 33635.91 36271.55 356
UnsupCasMVSNet_bld63.70 31961.53 32370.21 32873.69 35651.39 34672.82 33481.89 30155.63 34257.81 34971.80 35138.67 33878.61 34049.26 32552.21 35780.63 343
MDTV_nov1_ep13_2view37.79 36675.16 32755.10 34366.53 31149.34 27953.98 30187.94 256
MVS78.19 19476.99 20081.78 19685.66 23166.99 15584.66 22990.47 14455.08 34472.02 25985.27 25763.83 12894.11 13166.10 21389.80 11284.24 318
test22291.50 8868.26 13384.16 24483.20 28954.63 34579.74 12891.63 9358.97 19391.42 9186.77 285
CHOSEN 280x42066.51 30864.71 30971.90 31881.45 30763.52 22157.98 35968.95 36053.57 34662.59 33776.70 34046.22 30075.29 35555.25 29779.68 22676.88 353
ADS-MVSNet266.20 31363.33 31574.82 30279.92 32658.75 27967.55 35175.19 34353.37 34765.25 32275.86 34342.32 32380.53 33541.57 35268.91 32885.18 307
ADS-MVSNet64.36 31762.88 31968.78 33479.92 32647.17 35667.55 35171.18 35253.37 34765.25 32275.86 34342.32 32373.99 35941.57 35268.91 32885.18 307
LF4IMVS64.02 31862.19 32169.50 33070.90 36253.29 33876.13 31977.18 33752.65 34958.59 34680.98 30923.55 36176.52 34953.06 30666.66 33478.68 349
tpm cat170.57 28168.31 28677.35 27982.41 29557.95 28978.08 31180.22 32052.04 35068.54 29477.66 33752.00 24887.84 29351.77 30972.07 31586.25 292
Patchmatch-test64.82 31663.24 31669.57 32979.42 33549.82 35263.49 35769.05 35951.98 35159.95 34480.13 31750.91 26070.98 36140.66 35473.57 30287.90 257
N_pmnet52.79 32753.26 32851.40 34678.99 3387.68 37769.52 3443.89 37751.63 35257.01 35174.98 34640.83 33265.96 36437.78 35764.67 34080.56 345
PMMVS69.34 29168.67 28371.35 32375.67 34862.03 24675.17 32673.46 34950.00 35368.68 29179.05 32452.07 24778.13 34261.16 25482.77 19473.90 354
CMPMVSbinary51.72 2170.19 28668.16 28876.28 28873.15 36057.55 29679.47 29783.92 27448.02 35456.48 35384.81 26543.13 31886.42 30362.67 23981.81 20684.89 311
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet72.99 26572.58 25474.25 30784.28 25250.85 34886.41 18883.45 28444.56 35573.23 24587.54 19849.38 27885.70 30765.90 21578.44 24086.19 294
EU-MVSNet68.53 29867.61 29871.31 32478.51 33947.01 35784.47 23584.27 27042.27 35666.44 31584.79 26640.44 33383.76 32058.76 27468.54 33183.17 327
FPMVS53.68 32651.64 32959.81 34265.08 36551.03 34769.48 34569.58 35741.46 35740.67 36172.32 35016.46 36770.00 36224.24 36465.42 33858.40 361
pmmvs357.79 32354.26 32768.37 33564.02 36656.72 30675.12 32965.17 36340.20 35852.93 35769.86 35320.36 36375.48 35445.45 34455.25 35472.90 355
new_pmnet50.91 32850.29 33052.78 34568.58 36334.94 36963.71 35656.63 36839.73 35944.95 36065.47 35421.93 36258.48 36534.98 35956.62 35264.92 358
MVS-HIRNet59.14 32257.67 32563.57 33981.65 30343.50 36271.73 33765.06 36439.59 36051.43 35857.73 35938.34 34082.58 32839.53 35573.95 29864.62 359
PMMVS240.82 33238.86 33546.69 34753.84 36816.45 37548.61 36249.92 37037.49 36131.67 36360.97 3588.14 37456.42 36628.42 36130.72 36467.19 357
LCM-MVSNet54.25 32549.68 33167.97 33653.73 36945.28 35966.85 35380.78 31035.96 36239.45 36262.23 3578.70 37378.06 34448.24 33151.20 35880.57 344
PMVScopyleft37.38 2244.16 33140.28 33455.82 34340.82 37442.54 36365.12 35563.99 36634.43 36324.48 36657.12 3613.92 37576.17 35117.10 36755.52 35348.75 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 33041.86 33355.16 34477.03 34551.52 34432.50 36580.52 31432.46 36427.12 36535.02 3659.52 37275.50 35322.31 36560.21 34938.45 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 32456.90 32660.38 34167.70 36435.61 36769.18 34653.97 36932.30 36557.49 35079.88 32040.39 33468.57 36338.78 35672.37 31176.97 352
E-PMN31.77 33330.64 33635.15 35052.87 37027.67 37157.09 36047.86 37124.64 36616.40 37133.05 36611.23 37054.90 36714.46 36918.15 36722.87 366
EMVS30.81 33529.65 33734.27 35150.96 37125.95 37356.58 36146.80 37224.01 36715.53 37230.68 36712.47 36954.43 36812.81 37017.05 36822.43 367
MVEpermissive26.22 2330.37 33625.89 34043.81 34844.55 37335.46 36828.87 36639.07 37318.20 36818.58 37040.18 3642.68 37647.37 37017.07 36823.78 36648.60 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 35240.17 37526.90 37224.59 37617.44 36923.95 36748.61 3639.77 37126.48 37118.06 36624.47 36528.83 365
wuyk23d16.82 33915.94 34219.46 35358.74 36731.45 37039.22 3633.74 3786.84 3706.04 3732.70 3721.27 37724.29 37210.54 37114.40 3712.63 369
test_method31.52 33429.28 33838.23 34927.03 3766.50 37820.94 36762.21 3674.05 37122.35 36952.50 36213.33 36847.58 36927.04 36334.04 36360.62 360
tmp_tt18.61 33821.40 34110.23 3544.82 37710.11 37634.70 36430.74 3751.48 37223.91 36826.07 36828.42 35813.41 37327.12 36215.35 3707.17 368
testmvs6.04 3428.02 3450.10 3560.08 3780.03 38069.74 3430.04 3790.05 3730.31 3741.68 3730.02 3790.04 3740.24 3720.02 3720.25 371
test1236.12 3418.11 3440.14 3550.06 3790.09 37971.05 3390.03 3800.04 3740.25 3751.30 3740.05 3780.03 3750.21 3730.01 3730.29 370
test_blank0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet_test0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
cdsmvs_eth3d_5k19.96 33726.61 3390.00 3570.00 3800.00 3810.00 36889.26 1800.00 3750.00 37688.61 16961.62 1620.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas5.26 3437.02 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 37563.15 1380.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
ab-mvs-re7.23 3409.64 3430.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37686.72 2190.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
eth-test20.00 380
eth-test0.00 380
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 38
GSMVS88.96 233
test_part295.06 872.65 3391.80 13
sam_mvs151.32 25788.96 233
sam_mvs50.01 270
ambc75.24 29873.16 35950.51 35063.05 35887.47 22964.28 32777.81 33617.80 36589.73 26557.88 28260.64 34785.49 303
MTGPAbinary92.02 94
test_post178.90 3055.43 37148.81 28785.44 31059.25 267
test_post5.46 37050.36 26884.24 317
patchmatchnet-post74.00 34751.12 25988.60 284
GG-mvs-BLEND75.38 29781.59 30555.80 31979.32 29869.63 35667.19 30373.67 34843.24 31788.90 28250.41 31584.50 17181.45 339
MTMP92.18 3332.83 374
test9_res84.90 3395.70 3192.87 100
agg_prior282.91 6395.45 3392.70 103
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
test_prior472.60 3589.01 102
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 51
新几何286.29 193
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 242
原ACMM286.86 174
testdata291.01 24762.37 241
segment_acmp73.08 43
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 75
plane_prior790.08 11268.51 129
plane_prior689.84 11968.70 12460.42 186
plane_prior592.44 7595.38 8078.71 9786.32 15491.33 146
plane_prior491.00 113
plane_prior189.90 118
n20.00 381
nn0.00 381
door-mid69.98 355
lessismore_v078.97 25481.01 31657.15 30065.99 36261.16 34082.82 29139.12 33791.34 23659.67 26346.92 36188.43 249
test1192.23 86
door69.44 358
HQP5-MVS66.98 156
BP-MVS77.47 111
HQP4-MVS77.24 17395.11 9191.03 156
HQP3-MVS92.19 8985.99 160
HQP2-MVS60.17 189
NP-MVS89.62 12168.32 13190.24 124
ACMMP++_ref81.95 204
ACMMP++81.25 209
Test By Simon64.33 123