SMA-MVS | | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 27 | 73.73 8 | 92.40 20 | 93.63 21 | 74.77 101 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 64 | 93.57 5 | 94.06 11 | 77.24 47 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 58 | | 92.95 50 | 66.81 223 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_241102_TWO | | | | | | | | | 94.06 11 | 77.24 47 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 41 | 82.45 3 | 96.87 16 | 83.77 46 | 96.48 6 | 94.88 7 |
|
HPM-MVS++ | | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 31 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
MSP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 58 | 93.49 7 | 92.73 58 | 77.33 45 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 57 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 40 | 73.05 21 | 90.86 48 | 93.59 22 | 76.27 77 | 88.14 22 | 95.09 13 | 71.06 55 | 96.67 24 | 87.67 13 | 96.37 10 | 94.09 36 |
|
DPE-MVS | | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 36 | 94.10 8 | 75.90 81 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
|
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 43 | 72.04 48 | 89.80 76 | 93.50 25 | 75.17 96 | 86.34 34 | 95.29 10 | 70.86 56 | 96.00 49 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 37 | 72.35 42 | 90.47 58 | 89.69 157 | 74.31 110 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 41 | 87.07 18 | 96.01 13 | 94.79 11 |
|
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 60 | 71.95 49 | 92.40 20 | 94.74 2 | 75.71 83 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 41 | 87.07 18 | 96.01 13 | 94.79 11 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 55 | 93.00 43 | 80.90 9 | 88.06 24 | 94.06 40 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
PHI-MVS | | | 86.43 44 | 86.17 47 | 87.24 43 | 90.88 88 | 70.96 66 | 92.27 27 | 94.07 10 | 72.45 139 | 85.22 44 | 91.90 77 | 69.47 71 | 96.42 34 | 83.28 51 | 95.94 16 | 94.35 26 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 61 | 71.89 52 | 91.43 40 | 94.70 3 | 74.47 107 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 53 | 86.62 23 | 95.92 17 | 94.78 13 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 65 | 69.59 91 | 88.85 100 | 92.97 48 | 75.41 89 | 84.91 48 | 93.54 47 | 74.28 31 | 95.48 63 | 83.31 48 | 95.86 18 | 93.91 45 |
|
test_prior2 | | | | | | | | 88.85 100 | | 75.41 89 | 84.91 48 | 93.54 47 | 74.28 31 | | 83.31 48 | 95.86 18 | |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 71 | 72.96 24 | 93.73 3 | 93.67 20 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 35 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 18 | 76.81 60 | 85.24 43 | 94.32 30 | 71.76 50 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 78 | 72.45 39 | 90.02 70 | 94.37 4 | 71.76 150 | 87.28 29 | 94.27 31 | 75.18 22 | 96.08 45 | 85.16 27 | 95.77 22 | 93.80 55 |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 39 | 71.75 53 | 90.62 53 | 94.05 14 | 70.80 165 | 87.59 28 | 93.51 49 | 77.57 11 | 96.63 27 | 83.31 48 | 95.77 22 | 94.72 15 |
|
9.14 | | | | 88.26 14 | | 92.84 59 | | 91.52 39 | 94.75 1 | 73.93 120 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 55 | 86.77 20 | 95.76 24 | |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 69 | 69.03 100 | 89.57 82 | 93.39 31 | 77.53 42 | 89.79 14 | 94.12 38 | 78.98 9 | 96.58 32 | 85.66 24 | 95.72 25 | 94.58 19 |
|
train_agg | | | 86.43 44 | 86.20 45 | 87.13 46 | 93.26 49 | 72.96 24 | 88.75 104 | 91.89 91 | 68.69 210 | 85.00 46 | 93.10 58 | 74.43 27 | 95.41 67 | 84.97 29 | 95.71 26 | 93.02 88 |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 92 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 54 | 93.83 2 | 93.96 15 | 75.70 85 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 56 | 95.45 29 | 92.70 95 |
|
CDPH-MVS | | | 85.76 52 | 85.29 58 | 87.17 45 | 93.49 46 | 71.08 62 | 88.58 112 | 92.42 70 | 68.32 215 | 84.61 56 | 93.48 50 | 72.32 45 | 96.15 44 | 79.00 82 | 95.43 30 | 94.28 30 |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 82 | 72.32 44 | 90.31 63 | 93.94 16 | 77.12 52 | 82.82 82 | 94.23 34 | 72.13 48 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 62 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 31 | 74.25 3 | 90.23 65 | 92.02 82 | 79.45 19 | 85.88 36 | 94.80 14 | 68.07 80 | 96.21 39 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 31 | 74.25 3 | 86.58 172 | 92.02 82 | 79.45 19 | 85.88 36 | 94.80 14 | 68.07 80 | 96.21 39 | 86.69 21 | 95.34 32 | 93.23 78 |
|
agg_prior1 | | | 86.22 48 | 86.09 49 | 86.62 56 | 92.85 57 | 71.94 50 | 88.59 111 | 91.78 97 | 68.96 205 | 84.41 59 | 93.18 57 | 74.94 23 | 94.93 86 | 84.75 35 | 95.33 34 | 93.01 89 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 45 | 72.37 41 | 91.26 42 | 93.04 39 | 76.62 67 | 84.22 63 | 93.36 54 | 71.44 53 | 96.76 21 | 80.82 71 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS | | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 25 | 73.88 5 | 92.71 19 | 92.65 62 | 77.57 38 | 83.84 69 | 94.40 29 | 72.24 46 | 96.28 37 | 85.65 25 | 95.30 36 | 93.62 64 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 74 | 93.82 17 | 73.07 134 | 84.86 53 | 92.89 64 | 76.22 14 | 96.33 35 | 84.89 32 | 95.13 37 | 94.40 24 |
|
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 33 | 72.97 23 | 92.39 22 | 93.43 29 | 76.89 58 | 84.68 54 | 93.99 43 | 70.67 60 | 96.82 18 | 84.18 43 | 95.01 38 | 93.90 47 |
|
APD-MVS | | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 28 | 72.39 40 | 91.86 34 | 92.83 54 | 73.01 136 | 88.58 19 | 94.52 20 | 73.36 36 | 96.49 33 | 84.26 40 | 95.01 38 | 92.70 95 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 45 | 92.83 54 | 81.50 6 | 85.79 39 | 93.47 52 | 73.02 41 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 35 | 76.78 62 | 84.66 55 | 94.52 20 | 68.81 78 | 96.65 25 | 84.53 36 | 94.90 41 | 94.00 42 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 33 | 76.78 62 | 84.91 48 | 94.44 25 | 70.78 57 | 96.61 28 | 84.53 36 | 94.89 42 | 93.66 57 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 33 | 75.23 93 | 84.91 48 | 94.44 25 | 70.78 57 | 96.61 28 | 83.75 47 | 94.89 42 | 93.66 57 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 26 | 74.75 102 | 88.33 21 | 94.43 27 | 73.27 38 | 97.02 13 | 84.18 43 | 94.84 44 | 93.82 52 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 38 | 76.73 65 | 84.45 58 | 94.52 20 | 69.09 75 | 96.70 23 | 84.37 39 | 94.83 45 | 94.03 39 |
|
原ACMM1 | | | | | 84.35 106 | 93.01 55 | 68.79 106 | | 92.44 67 | 63.96 262 | 81.09 104 | 91.57 85 | 66.06 101 | 95.45 65 | 67.19 188 | 94.82 46 | 88.81 224 |
|
HPM-MVS | | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 36 | 72.16 45 | 92.19 29 | 93.33 32 | 76.07 80 | 83.81 70 | 93.95 44 | 69.77 69 | 96.01 48 | 85.15 28 | 94.66 47 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DPM-MVS | | | 84.93 65 | 84.29 69 | 86.84 50 | 90.20 98 | 73.04 22 | 87.12 154 | 93.04 39 | 69.80 184 | 82.85 81 | 91.22 93 | 73.06 40 | 96.02 47 | 76.72 108 | 94.63 48 | 91.46 131 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 42 | 72.13 46 | 91.41 41 | 92.35 72 | 74.62 105 | 88.90 17 | 93.85 45 | 75.75 17 | 96.00 49 | 87.80 12 | 94.63 48 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 29 | 73.38 17 | 90.22 67 | 93.04 39 | 75.53 87 | 83.86 68 | 94.42 28 | 67.87 84 | 96.64 26 | 82.70 58 | 94.57 50 | 93.66 57 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 72 | 94.17 35 | 67.45 87 | 96.60 30 | 83.06 53 | 94.50 51 | 94.07 37 |
|
X-MVStestdata | | | 80.37 134 | 77.83 167 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 72 | 12.47 347 | 67.45 87 | 96.60 30 | 83.06 53 | 94.50 51 | 94.07 37 |
|
test12 | | | | | 86.80 52 | 92.63 64 | 70.70 74 | | 91.79 96 | | 82.71 84 | | 71.67 51 | 96.16 43 | | 94.50 51 | 93.54 68 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 30 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 67 | 83.68 71 | 94.46 24 | 67.93 82 | 95.95 51 | 84.20 42 | 94.39 54 | 93.23 78 |
|
CSCG | | | 86.41 46 | 86.19 46 | 87.07 47 | 92.91 56 | 72.48 36 | 90.81 49 | 93.56 23 | 73.95 118 | 83.16 77 | 91.07 98 | 75.94 15 | 95.19 76 | 79.94 79 | 94.38 55 | 93.55 67 |
|
MSLP-MVS++ | | | 85.43 57 | 85.76 52 | 84.45 101 | 91.93 74 | 70.24 78 | 90.71 51 | 92.86 52 | 77.46 44 | 84.22 63 | 92.81 68 | 67.16 91 | 92.94 171 | 80.36 75 | 94.35 56 | 90.16 171 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 75 | 76.87 59 | 82.81 83 | 94.25 33 | 66.44 96 | 96.24 38 | 82.88 57 | 94.28 57 | 93.38 72 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 67 | 72.71 28 | 91.81 35 | 93.19 36 | 77.87 33 | 90.32 13 | 94.00 42 | 74.83 24 | 93.78 133 | 87.63 14 | 94.27 58 | 93.65 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DVP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 26 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 36 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 59 | 94.67 16 |
|
DELS-MVS | | | 85.41 58 | 85.30 57 | 85.77 69 | 88.49 153 | 67.93 129 | 85.52 202 | 93.44 28 | 78.70 28 | 83.63 74 | 89.03 145 | 74.57 25 | 95.71 58 | 80.26 77 | 94.04 60 | 93.66 57 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 83.72 73 | 82.92 80 | 86.14 65 | 84.22 236 | 69.48 94 | 91.05 47 | 85.27 240 | 81.30 7 | 76.83 164 | 91.65 81 | 66.09 100 | 95.56 61 | 76.00 113 | 93.85 61 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
3Dnovator+ | | 77.84 4 | 85.48 55 | 84.47 68 | 88.51 4 | 91.08 83 | 73.49 15 | 93.18 9 | 93.78 19 | 80.79 10 | 76.66 169 | 93.37 53 | 60.40 175 | 96.75 22 | 77.20 101 | 93.73 62 | 95.29 2 |
|
CANet | | | 86.45 43 | 86.10 48 | 87.51 37 | 90.09 100 | 70.94 68 | 89.70 80 | 92.59 64 | 81.78 4 | 81.32 99 | 91.43 90 | 70.34 62 | 97.23 9 | 84.26 40 | 93.36 63 | 94.37 25 |
|
新几何1 | | | | | 83.42 133 | 93.13 51 | 70.71 73 | | 85.48 238 | 57.43 311 | 81.80 94 | 91.98 75 | 63.28 122 | 92.27 190 | 64.60 209 | 92.99 64 | 87.27 255 |
|
1121 | | | 80.84 117 | 79.77 123 | 84.05 117 | 93.11 53 | 70.78 72 | 84.66 215 | 85.42 239 | 57.37 312 | 81.76 97 | 92.02 74 | 63.41 120 | 94.12 117 | 67.28 185 | 92.93 65 | 87.26 256 |
|
HPM-MVS_fast | | | 85.35 59 | 84.95 63 | 86.57 58 | 93.69 41 | 70.58 76 | 92.15 31 | 91.62 101 | 73.89 121 | 82.67 85 | 94.09 39 | 62.60 134 | 95.54 62 | 80.93 69 | 92.93 65 | 93.57 66 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 34 | 72.11 47 | 92.37 24 | 92.56 65 | 74.50 106 | 86.84 32 | 94.65 18 | 67.31 89 | 95.77 56 | 84.80 34 | 92.85 67 | 92.84 93 |
|
旧先验1 | | | | | | 91.96 73 | 65.79 163 | | 86.37 230 | | | 93.08 62 | 69.31 74 | | | 92.74 68 | 88.74 227 |
|
3Dnovator | | 76.31 5 | 83.38 80 | 82.31 88 | 86.59 57 | 87.94 170 | 72.94 27 | 90.64 52 | 92.14 79 | 77.21 49 | 75.47 193 | 92.83 66 | 58.56 182 | 94.72 98 | 73.24 137 | 92.71 69 | 92.13 114 |
|
CS-MVS | | | 84.76 68 | 84.61 67 | 85.22 79 | 89.66 108 | 66.43 151 | 90.23 65 | 93.56 23 | 76.52 69 | 82.59 86 | 85.93 226 | 70.41 61 | 95.80 54 | 79.93 80 | 92.68 70 | 93.42 71 |
|
MVS_111021_HR | | | 85.14 62 | 84.75 65 | 86.32 62 | 91.65 77 | 72.70 29 | 85.98 187 | 90.33 139 | 76.11 79 | 82.08 89 | 91.61 84 | 71.36 54 | 94.17 116 | 81.02 68 | 92.58 71 | 92.08 115 |
|
APD-MVS_3200maxsize | | | 85.97 49 | 85.88 50 | 86.22 63 | 92.69 63 | 69.53 93 | 91.93 33 | 92.99 45 | 73.54 128 | 85.94 35 | 94.51 23 | 65.80 105 | 95.61 59 | 83.04 55 | 92.51 72 | 93.53 69 |
|
MAR-MVS | | | 81.84 100 | 80.70 107 | 85.27 76 | 91.32 81 | 71.53 56 | 89.82 74 | 90.92 122 | 69.77 185 | 78.50 130 | 86.21 222 | 62.36 140 | 94.52 102 | 65.36 202 | 92.05 73 | 89.77 195 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + GP. | | | 85.71 53 | 85.33 55 | 86.84 50 | 91.34 80 | 72.50 35 | 89.07 94 | 87.28 219 | 76.41 70 | 85.80 38 | 90.22 115 | 74.15 34 | 95.37 72 | 81.82 63 | 91.88 74 | 92.65 99 |
|
IS-MVSNet | | | 83.15 82 | 82.81 81 | 84.18 112 | 89.94 104 | 63.30 212 | 91.59 36 | 88.46 196 | 79.04 25 | 79.49 116 | 92.16 72 | 65.10 110 | 94.28 107 | 67.71 180 | 91.86 75 | 94.95 5 |
|
Vis-MVSNet (Re-imp) | | | 78.36 177 | 78.45 150 | 78.07 254 | 88.64 149 | 51.78 320 | 86.70 169 | 79.63 303 | 74.14 116 | 75.11 208 | 90.83 105 | 61.29 158 | 89.75 247 | 58.10 263 | 91.60 76 | 92.69 97 |
|
MG-MVS | | | 83.41 78 | 83.45 72 | 83.28 138 | 92.74 62 | 62.28 228 | 88.17 129 | 89.50 161 | 75.22 94 | 81.49 98 | 92.74 69 | 66.75 92 | 95.11 79 | 72.85 140 | 91.58 77 | 92.45 103 |
|
CPTT-MVS | | | 83.73 72 | 83.33 74 | 84.92 89 | 93.28 48 | 70.86 71 | 92.09 32 | 90.38 135 | 68.75 209 | 79.57 115 | 92.83 66 | 60.60 171 | 93.04 169 | 80.92 70 | 91.56 78 | 90.86 146 |
|
test222 | | | | | | 91.50 79 | 68.26 123 | 84.16 230 | 83.20 269 | 54.63 323 | 79.74 113 | 91.63 83 | 58.97 180 | | | 91.42 79 | 86.77 267 |
|
ETV-MVS | | | 84.90 67 | 84.67 66 | 85.59 71 | 89.39 118 | 68.66 116 | 88.74 106 | 92.64 63 | 79.97 17 | 84.10 65 | 85.71 231 | 69.32 73 | 95.38 69 | 80.82 71 | 91.37 80 | 92.72 94 |
|
testdata | | | | | 79.97 222 | 90.90 87 | 64.21 192 | | 84.71 244 | 59.27 299 | 85.40 40 | 92.91 63 | 62.02 147 | 89.08 259 | 68.95 173 | 91.37 80 | 86.63 271 |
|
abl_6 | | | 85.23 60 | 84.95 63 | 86.07 66 | 92.23 70 | 70.48 77 | 90.80 50 | 92.08 80 | 73.51 129 | 85.26 42 | 94.16 36 | 62.75 133 | 95.92 52 | 82.46 61 | 91.30 82 | 91.81 122 |
|
API-MVS | | | 81.99 98 | 81.23 101 | 84.26 110 | 90.94 86 | 70.18 84 | 91.10 46 | 89.32 165 | 71.51 157 | 78.66 128 | 88.28 164 | 65.26 108 | 95.10 82 | 64.74 208 | 91.23 83 | 87.51 249 |
|
Vis-MVSNet | | | 83.46 77 | 82.80 82 | 85.43 73 | 90.25 97 | 68.74 110 | 90.30 64 | 90.13 145 | 76.33 76 | 80.87 107 | 92.89 64 | 61.00 164 | 94.20 113 | 72.45 144 | 90.97 84 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS | | 72.83 10 | 79.77 144 | 78.33 156 | 84.09 115 | 85.17 221 | 69.91 85 | 90.57 54 | 90.97 121 | 66.70 226 | 72.17 239 | 91.91 76 | 54.70 209 | 93.96 121 | 61.81 231 | 90.95 85 | 88.41 235 |
|
UA-Net | | | 85.08 64 | 84.96 62 | 85.45 72 | 92.07 72 | 68.07 127 | 89.78 77 | 90.86 125 | 82.48 2 | 84.60 57 | 93.20 56 | 69.35 72 | 95.22 75 | 71.39 150 | 90.88 86 | 93.07 85 |
|
ACMMP | | | 85.89 51 | 85.39 54 | 87.38 41 | 93.59 44 | 72.63 32 | 92.74 17 | 93.18 37 | 76.78 62 | 80.73 108 | 93.82 46 | 64.33 114 | 96.29 36 | 82.67 59 | 90.69 87 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 120 | 70.93 69 | 88.43 114 | 91.39 110 | 82.14 3 | 86.65 33 | 90.09 117 | 74.39 29 | 95.01 85 | 83.97 45 | 90.63 88 | 93.97 43 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 120 | 71.24 61 | 88.43 114 | 92.05 81 | 82.50 1 | 86.88 31 | 90.09 117 | 74.45 26 | 95.61 59 | 84.38 38 | 90.63 88 | 94.01 41 |
|
casdiffmvs | | | 85.11 63 | 85.14 59 | 85.01 84 | 87.20 193 | 65.77 164 | 87.75 139 | 92.83 54 | 77.84 34 | 84.36 62 | 92.38 70 | 72.15 47 | 93.93 127 | 81.27 67 | 90.48 90 | 95.33 1 |
|
UGNet | | | 80.83 119 | 79.59 128 | 84.54 98 | 88.04 167 | 68.09 126 | 89.42 83 | 88.16 198 | 76.95 56 | 76.22 179 | 89.46 134 | 49.30 265 | 93.94 124 | 68.48 175 | 90.31 91 | 91.60 124 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
baseline | | | 84.93 65 | 84.98 61 | 84.80 93 | 87.30 191 | 65.39 171 | 87.30 150 | 92.88 51 | 77.62 36 | 84.04 67 | 92.26 71 | 71.81 49 | 93.96 121 | 81.31 66 | 90.30 92 | 95.03 4 |
|
MVSFormer | | | 82.85 87 | 82.05 91 | 85.24 77 | 87.35 186 | 70.21 79 | 90.50 56 | 90.38 135 | 68.55 212 | 81.32 99 | 89.47 132 | 61.68 149 | 93.46 149 | 78.98 83 | 90.26 93 | 92.05 116 |
|
lupinMVS | | | 81.39 109 | 80.27 117 | 84.76 94 | 87.35 186 | 70.21 79 | 85.55 198 | 86.41 228 | 62.85 270 | 81.32 99 | 88.61 154 | 61.68 149 | 92.24 192 | 78.41 90 | 90.26 93 | 91.83 120 |
|
DP-MVS Recon | | | 83.11 84 | 82.09 90 | 86.15 64 | 94.44 19 | 70.92 70 | 88.79 102 | 92.20 76 | 70.53 172 | 79.17 119 | 91.03 101 | 64.12 116 | 96.03 46 | 68.39 177 | 90.14 95 | 91.50 128 |
|
EIA-MVS | | | 83.31 81 | 82.80 82 | 84.82 91 | 89.59 110 | 65.59 166 | 88.21 127 | 92.68 59 | 74.66 104 | 78.96 121 | 86.42 218 | 69.06 76 | 95.26 74 | 75.54 118 | 90.09 96 | 93.62 64 |
|
MVS_111021_LR | | | 82.61 90 | 82.11 89 | 84.11 113 | 88.82 142 | 71.58 55 | 85.15 205 | 86.16 233 | 74.69 103 | 80.47 110 | 91.04 99 | 62.29 141 | 90.55 237 | 80.33 76 | 90.08 97 | 90.20 170 |
|
jason | | | 81.39 109 | 80.29 116 | 84.70 95 | 86.63 203 | 69.90 86 | 85.95 188 | 86.77 224 | 63.24 264 | 81.07 105 | 89.47 132 | 61.08 163 | 92.15 195 | 78.33 91 | 90.07 98 | 92.05 116 |
jason: jason. |
LFMVS | | | 81.82 101 | 81.23 101 | 83.57 130 | 91.89 75 | 63.43 210 | 89.84 73 | 81.85 282 | 77.04 55 | 83.21 75 | 93.10 58 | 52.26 227 | 93.43 151 | 71.98 145 | 89.95 99 | 93.85 49 |
|
MVS | | | 78.19 182 | 76.99 187 | 81.78 183 | 85.66 213 | 66.99 143 | 84.66 215 | 90.47 133 | 55.08 322 | 72.02 241 | 85.27 241 | 63.83 118 | 94.11 119 | 66.10 196 | 89.80 100 | 84.24 299 |
|
CANet_DTU | | | 80.61 127 | 79.87 121 | 82.83 161 | 85.60 215 | 63.17 217 | 87.36 148 | 88.65 192 | 76.37 74 | 75.88 187 | 88.44 160 | 53.51 219 | 93.07 166 | 73.30 135 | 89.74 101 | 92.25 109 |
|
PVSNet_Blended | | | 80.98 114 | 80.34 114 | 82.90 158 | 88.85 139 | 65.40 169 | 84.43 225 | 92.00 85 | 67.62 218 | 78.11 140 | 85.05 248 | 66.02 102 | 94.27 108 | 71.52 147 | 89.50 102 | 89.01 214 |
|
PAPM_NR | | | 83.02 85 | 82.41 85 | 84.82 91 | 92.47 68 | 66.37 153 | 87.93 136 | 91.80 95 | 73.82 122 | 77.32 155 | 90.66 107 | 67.90 83 | 94.90 90 | 70.37 158 | 89.48 103 | 93.19 82 |
|
114514_t | | | 80.68 126 | 79.51 129 | 84.20 111 | 94.09 35 | 67.27 140 | 89.64 81 | 91.11 119 | 58.75 304 | 74.08 221 | 90.72 106 | 58.10 184 | 95.04 84 | 69.70 165 | 89.42 104 | 90.30 167 |
|
LCM-MVSNet-Re | | | 77.05 204 | 76.94 188 | 77.36 264 | 87.20 193 | 51.60 321 | 80.06 275 | 80.46 295 | 75.20 95 | 67.69 279 | 86.72 202 | 62.48 137 | 88.98 261 | 63.44 214 | 89.25 105 | 91.51 127 |
|
alignmvs | | | 85.48 55 | 85.32 56 | 85.96 68 | 89.51 114 | 69.47 95 | 89.74 78 | 92.47 66 | 76.17 78 | 87.73 27 | 91.46 89 | 70.32 63 | 93.78 133 | 81.51 64 | 88.95 106 | 94.63 18 |
|
VNet | | | 82.21 93 | 82.41 85 | 81.62 186 | 90.82 89 | 60.93 242 | 84.47 221 | 89.78 153 | 76.36 75 | 84.07 66 | 91.88 78 | 64.71 113 | 90.26 239 | 70.68 155 | 88.89 107 | 93.66 57 |
|
PS-MVSNAJ | | | 81.69 102 | 81.02 105 | 83.70 127 | 89.51 114 | 68.21 125 | 84.28 229 | 90.09 146 | 70.79 166 | 81.26 103 | 85.62 235 | 63.15 127 | 94.29 106 | 75.62 116 | 88.87 108 | 88.59 230 |
|
canonicalmvs | | | 85.91 50 | 85.87 51 | 86.04 67 | 89.84 106 | 69.44 98 | 90.45 61 | 93.00 43 | 76.70 66 | 88.01 25 | 91.23 92 | 73.28 37 | 93.91 128 | 81.50 65 | 88.80 109 | 94.77 14 |
|
QAPM | | | 80.88 115 | 79.50 130 | 85.03 83 | 88.01 169 | 68.97 104 | 91.59 36 | 92.00 85 | 66.63 230 | 75.15 207 | 92.16 72 | 57.70 187 | 95.45 65 | 63.52 212 | 88.76 110 | 90.66 152 |
|
VDD-MVS | | | 83.01 86 | 82.36 87 | 84.96 86 | 91.02 85 | 66.40 152 | 88.91 97 | 88.11 199 | 77.57 38 | 84.39 61 | 93.29 55 | 52.19 228 | 93.91 128 | 77.05 103 | 88.70 111 | 94.57 21 |
|
PVSNet_Blended_VisFu | | | 82.62 89 | 81.83 96 | 84.96 86 | 90.80 90 | 69.76 88 | 88.74 106 | 91.70 100 | 69.39 191 | 78.96 121 | 88.46 159 | 65.47 107 | 94.87 93 | 74.42 122 | 88.57 112 | 90.24 169 |
|
xiu_mvs_v2_base | | | 81.69 102 | 81.05 104 | 83.60 128 | 89.15 131 | 68.03 128 | 84.46 223 | 90.02 147 | 70.67 169 | 81.30 102 | 86.53 216 | 63.17 126 | 94.19 114 | 75.60 117 | 88.54 113 | 88.57 231 |
|
PAPR | | | 81.66 104 | 80.89 106 | 83.99 122 | 90.27 96 | 64.00 195 | 86.76 168 | 91.77 99 | 68.84 208 | 77.13 162 | 89.50 130 | 67.63 85 | 94.88 92 | 67.55 182 | 88.52 114 | 93.09 84 |
|
MVS_Test | | | 83.15 82 | 83.06 77 | 83.41 135 | 86.86 197 | 63.21 214 | 86.11 185 | 92.00 85 | 74.31 110 | 82.87 80 | 89.44 137 | 70.03 65 | 93.21 156 | 77.39 100 | 88.50 115 | 93.81 53 |
|
AdaColmap | | | 80.58 130 | 79.42 131 | 84.06 116 | 93.09 54 | 68.91 105 | 89.36 84 | 88.97 182 | 69.27 194 | 75.70 190 | 89.69 124 | 57.20 195 | 95.77 56 | 63.06 218 | 88.41 116 | 87.50 250 |
|
VDDNet | | | 81.52 106 | 80.67 108 | 84.05 117 | 90.44 94 | 64.13 194 | 89.73 79 | 85.91 236 | 71.11 161 | 83.18 76 | 93.48 50 | 50.54 251 | 93.49 148 | 73.40 134 | 88.25 117 | 94.54 22 |
|
PCF-MVS | | 73.52 7 | 80.38 133 | 78.84 144 | 85.01 84 | 87.71 178 | 68.99 103 | 83.65 239 | 91.46 109 | 63.00 267 | 77.77 147 | 90.28 112 | 66.10 99 | 95.09 83 | 61.40 234 | 88.22 118 | 90.94 144 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Effi-MVS+ | | | 83.62 75 | 83.08 76 | 85.24 77 | 88.38 158 | 67.45 135 | 88.89 98 | 89.15 173 | 75.50 88 | 82.27 87 | 88.28 164 | 69.61 70 | 94.45 104 | 77.81 95 | 87.84 119 | 93.84 51 |
|
gg-mvs-nofinetune | | | 69.95 275 | 67.96 277 | 75.94 276 | 83.07 259 | 54.51 310 | 77.23 300 | 70.29 332 | 63.11 265 | 70.32 254 | 62.33 334 | 43.62 298 | 88.69 266 | 53.88 283 | 87.76 120 | 84.62 297 |
|
Regformer-3 | | | 85.23 60 | 85.07 60 | 85.70 70 | 88.95 137 | 69.01 102 | 88.29 124 | 89.91 151 | 80.95 8 | 85.01 45 | 90.01 119 | 72.45 44 | 94.19 114 | 82.50 60 | 87.57 121 | 93.90 47 |
|
Regformer-4 | | | 85.68 54 | 85.45 53 | 86.35 59 | 88.95 137 | 69.67 90 | 88.29 124 | 91.29 112 | 81.73 5 | 85.36 41 | 90.01 119 | 72.62 43 | 95.35 73 | 83.28 51 | 87.57 121 | 94.03 39 |
|
xiu_mvs_v1_base_debu | | | 80.80 122 | 79.72 125 | 84.03 119 | 87.35 186 | 70.19 81 | 85.56 195 | 88.77 187 | 69.06 201 | 81.83 91 | 88.16 167 | 50.91 245 | 92.85 173 | 78.29 92 | 87.56 123 | 89.06 209 |
|
xiu_mvs_v1_base | | | 80.80 122 | 79.72 125 | 84.03 119 | 87.35 186 | 70.19 81 | 85.56 195 | 88.77 187 | 69.06 201 | 81.83 91 | 88.16 167 | 50.91 245 | 92.85 173 | 78.29 92 | 87.56 123 | 89.06 209 |
|
xiu_mvs_v1_base_debi | | | 80.80 122 | 79.72 125 | 84.03 119 | 87.35 186 | 70.19 81 | 85.56 195 | 88.77 187 | 69.06 201 | 81.83 91 | 88.16 167 | 50.91 245 | 92.85 173 | 78.29 92 | 87.56 123 | 89.06 209 |
|
CLD-MVS | | | 82.31 92 | 81.65 97 | 84.29 109 | 88.47 154 | 67.73 133 | 85.81 193 | 92.35 72 | 75.78 82 | 78.33 135 | 86.58 213 | 64.01 117 | 94.35 105 | 76.05 112 | 87.48 126 | 90.79 147 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDS-MVSNet | | | 79.07 161 | 77.70 173 | 83.17 145 | 87.60 181 | 68.23 124 | 84.40 227 | 86.20 232 | 67.49 220 | 76.36 176 | 86.54 215 | 61.54 152 | 90.79 233 | 61.86 230 | 87.33 127 | 90.49 160 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
diffmvs | | | 82.10 94 | 81.88 95 | 82.76 169 | 83.00 262 | 63.78 200 | 83.68 238 | 89.76 154 | 72.94 137 | 82.02 90 | 89.85 122 | 65.96 104 | 90.79 233 | 82.38 62 | 87.30 128 | 93.71 56 |
|
EPP-MVSNet | | | 83.40 79 | 83.02 78 | 84.57 97 | 90.13 99 | 64.47 188 | 92.32 26 | 90.73 126 | 74.45 109 | 79.35 118 | 91.10 96 | 69.05 77 | 95.12 78 | 72.78 141 | 87.22 129 | 94.13 34 |
|
TAMVS | | | 78.89 166 | 77.51 177 | 83.03 152 | 87.80 174 | 67.79 132 | 84.72 214 | 85.05 243 | 67.63 217 | 76.75 167 | 87.70 175 | 62.25 142 | 90.82 232 | 58.53 259 | 87.13 130 | 90.49 160 |
|
TAPA-MVS | | 73.13 9 | 79.15 158 | 77.94 163 | 82.79 166 | 89.59 110 | 62.99 221 | 88.16 130 | 91.51 105 | 65.77 239 | 77.14 161 | 91.09 97 | 60.91 165 | 93.21 156 | 50.26 298 | 87.05 131 | 92.17 113 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PAPM | | | 77.68 196 | 76.40 201 | 81.51 189 | 87.29 192 | 61.85 233 | 83.78 237 | 89.59 159 | 64.74 251 | 71.23 247 | 88.70 150 | 62.59 135 | 93.66 141 | 52.66 288 | 87.03 132 | 89.01 214 |
|
test_yl | | | 81.17 111 | 80.47 112 | 83.24 141 | 89.13 132 | 63.62 201 | 86.21 182 | 89.95 149 | 72.43 142 | 81.78 95 | 89.61 127 | 57.50 190 | 93.58 142 | 70.75 153 | 86.90 133 | 92.52 100 |
|
DCV-MVSNet | | | 81.17 111 | 80.47 112 | 83.24 141 | 89.13 132 | 63.62 201 | 86.21 182 | 89.95 149 | 72.43 142 | 81.78 95 | 89.61 127 | 57.50 190 | 93.58 142 | 70.75 153 | 86.90 133 | 92.52 100 |
|
BH-untuned | | | 79.47 150 | 78.60 147 | 82.05 178 | 89.19 130 | 65.91 160 | 86.07 186 | 88.52 195 | 72.18 145 | 75.42 197 | 87.69 176 | 61.15 161 | 93.54 146 | 60.38 241 | 86.83 135 | 86.70 269 |
|
BH-RMVSNet | | | 79.61 146 | 78.44 151 | 83.14 146 | 89.38 119 | 65.93 159 | 84.95 210 | 87.15 220 | 73.56 127 | 78.19 138 | 89.79 123 | 56.67 198 | 93.36 152 | 59.53 248 | 86.74 136 | 90.13 173 |
|
LS3D | | | 76.95 207 | 74.82 218 | 83.37 136 | 90.45 93 | 67.36 139 | 89.15 92 | 86.94 222 | 61.87 280 | 69.52 267 | 90.61 108 | 51.71 239 | 94.53 101 | 46.38 318 | 86.71 137 | 88.21 237 |
|
Fast-Effi-MVS+ | | | 80.81 120 | 79.92 120 | 83.47 131 | 88.85 139 | 64.51 185 | 85.53 200 | 89.39 163 | 70.79 166 | 78.49 131 | 85.06 247 | 67.54 86 | 93.58 142 | 67.03 191 | 86.58 138 | 92.32 106 |
|
EPNet_dtu | | | 75.46 228 | 74.86 217 | 77.23 268 | 82.57 273 | 54.60 308 | 86.89 161 | 83.09 270 | 71.64 152 | 66.25 295 | 85.86 229 | 55.99 200 | 88.04 274 | 54.92 279 | 86.55 139 | 89.05 212 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OPM-MVS | | | 83.50 76 | 82.95 79 | 85.14 80 | 88.79 145 | 70.95 67 | 89.13 93 | 91.52 104 | 77.55 41 | 80.96 106 | 91.75 79 | 60.71 167 | 94.50 103 | 79.67 81 | 86.51 140 | 89.97 187 |
|
OMC-MVS | | | 82.69 88 | 81.97 94 | 84.85 90 | 88.75 147 | 67.42 136 | 87.98 132 | 90.87 124 | 74.92 99 | 79.72 114 | 91.65 81 | 62.19 144 | 93.96 121 | 75.26 119 | 86.42 141 | 93.16 83 |
|
HQP_MVS | | | 83.64 74 | 83.14 75 | 85.14 80 | 90.08 101 | 68.71 112 | 91.25 43 | 92.44 67 | 79.12 23 | 78.92 123 | 91.00 102 | 60.42 173 | 95.38 69 | 78.71 85 | 86.32 142 | 91.33 133 |
|
plane_prior5 | | | | | | | | | 92.44 67 | | | | | 95.38 69 | 78.71 85 | 86.32 142 | 91.33 133 |
|
thisisatest0515 | | | 77.33 202 | 75.38 212 | 83.18 144 | 85.27 220 | 63.80 199 | 82.11 258 | 83.27 266 | 65.06 247 | 75.91 185 | 83.84 261 | 49.54 261 | 94.27 108 | 67.24 187 | 86.19 144 | 91.48 130 |
|
plane_prior | | | | | | | 68.71 112 | 90.38 62 | | 77.62 36 | | | | | | 86.16 145 | |
|
mvs_anonymous | | | 79.42 152 | 79.11 139 | 80.34 216 | 84.45 233 | 57.97 272 | 82.59 253 | 87.62 212 | 67.40 221 | 76.17 183 | 88.56 157 | 68.47 79 | 89.59 250 | 70.65 156 | 86.05 146 | 93.47 70 |
|
HQP3-MVS | | | | | | | | | 92.19 77 | | | | | | | 85.99 147 | |
|
HQP-MVS | | | 82.61 90 | 82.02 92 | 84.37 104 | 89.33 120 | 66.98 144 | 89.17 88 | 92.19 77 | 76.41 70 | 77.23 158 | 90.23 114 | 60.17 176 | 95.11 79 | 77.47 98 | 85.99 147 | 91.03 140 |
|
BH-w/o | | | 78.21 180 | 77.33 181 | 80.84 207 | 88.81 143 | 65.13 177 | 84.87 211 | 87.85 209 | 69.75 186 | 74.52 217 | 84.74 251 | 61.34 156 | 93.11 164 | 58.24 262 | 85.84 149 | 84.27 298 |
|
CHOSEN 1792x2688 | | | 77.63 197 | 75.69 205 | 83.44 132 | 89.98 103 | 68.58 118 | 78.70 290 | 87.50 215 | 56.38 317 | 75.80 189 | 86.84 198 | 58.67 181 | 91.40 217 | 61.58 233 | 85.75 150 | 90.34 166 |
|
Anonymous202405211 | | | 78.25 178 | 77.01 185 | 81.99 180 | 91.03 84 | 60.67 246 | 84.77 213 | 83.90 255 | 70.65 171 | 80.00 112 | 91.20 94 | 41.08 312 | 91.43 216 | 65.21 203 | 85.26 151 | 93.85 49 |
|
cascas | | | 76.72 210 | 74.64 219 | 82.99 154 | 85.78 212 | 65.88 161 | 82.33 256 | 89.21 171 | 60.85 286 | 72.74 231 | 81.02 291 | 47.28 275 | 93.75 137 | 67.48 183 | 85.02 152 | 89.34 204 |
|
FIs | | | 82.07 96 | 82.42 84 | 81.04 204 | 88.80 144 | 58.34 266 | 88.26 126 | 93.49 26 | 76.93 57 | 78.47 132 | 91.04 99 | 69.92 67 | 92.34 189 | 69.87 164 | 84.97 153 | 92.44 104 |
|
test-LLR | | | 72.94 253 | 72.43 242 | 74.48 289 | 81.35 292 | 58.04 270 | 78.38 291 | 77.46 313 | 66.66 227 | 69.95 262 | 79.00 308 | 48.06 271 | 79.24 316 | 66.13 194 | 84.83 154 | 86.15 277 |
|
test-mter | | | 71.41 262 | 70.39 261 | 74.48 289 | 81.35 292 | 58.04 270 | 78.38 291 | 77.46 313 | 60.32 289 | 69.95 262 | 79.00 308 | 36.08 329 | 79.24 316 | 66.13 194 | 84.83 154 | 86.15 277 |
|
EI-MVSNet-Vis-set | | | 84.19 69 | 83.81 70 | 85.31 74 | 88.18 162 | 67.85 130 | 87.66 141 | 89.73 156 | 80.05 16 | 82.95 78 | 89.59 129 | 70.74 59 | 94.82 94 | 80.66 74 | 84.72 156 | 93.28 77 |
|
thisisatest0530 | | | 79.40 153 | 77.76 171 | 84.31 108 | 87.69 180 | 65.10 178 | 87.36 148 | 84.26 251 | 70.04 179 | 77.42 152 | 88.26 166 | 49.94 257 | 94.79 96 | 70.20 159 | 84.70 157 | 93.03 87 |
|
GG-mvs-BLEND | | | | | 75.38 283 | 81.59 287 | 55.80 303 | 79.32 282 | 69.63 334 | | 67.19 284 | 73.67 327 | 43.24 299 | 88.90 265 | 50.41 295 | 84.50 158 | 81.45 320 |
|
FC-MVSNet-test | | | 81.52 106 | 82.02 92 | 80.03 221 | 88.42 157 | 55.97 302 | 87.95 134 | 93.42 30 | 77.10 53 | 77.38 153 | 90.98 104 | 69.96 66 | 91.79 206 | 68.46 176 | 84.50 158 | 92.33 105 |
|
PVSNet | | 64.34 18 | 72.08 259 | 70.87 258 | 75.69 278 | 86.21 207 | 56.44 295 | 74.37 315 | 80.73 290 | 62.06 279 | 70.17 257 | 82.23 282 | 42.86 302 | 83.31 304 | 54.77 280 | 84.45 160 | 87.32 254 |
|
MS-PatchMatch | | | 73.83 242 | 72.67 240 | 77.30 266 | 83.87 243 | 66.02 157 | 81.82 259 | 84.66 245 | 61.37 284 | 68.61 274 | 82.82 274 | 47.29 274 | 88.21 271 | 59.27 249 | 84.32 161 | 77.68 330 |
|
ET-MVSNet_ETH3D | | | 78.63 170 | 76.63 198 | 84.64 96 | 86.73 202 | 69.47 95 | 85.01 208 | 84.61 246 | 69.54 189 | 66.51 293 | 86.59 211 | 50.16 254 | 91.75 207 | 76.26 110 | 84.24 162 | 92.69 97 |
|
TESTMET0.1,1 | | | 69.89 276 | 69.00 267 | 72.55 298 | 79.27 317 | 56.85 287 | 78.38 291 | 74.71 325 | 57.64 309 | 68.09 276 | 77.19 318 | 37.75 324 | 76.70 327 | 63.92 211 | 84.09 163 | 84.10 302 |
|
EI-MVSNet-UG-set | | | 83.81 71 | 83.38 73 | 85.09 82 | 87.87 171 | 67.53 134 | 87.44 147 | 89.66 158 | 79.74 18 | 82.23 88 | 89.41 138 | 70.24 64 | 94.74 97 | 79.95 78 | 83.92 164 | 92.99 90 |
|
LPG-MVS_test | | | 82.08 95 | 81.27 100 | 84.50 99 | 89.23 128 | 68.76 108 | 90.22 67 | 91.94 89 | 75.37 91 | 76.64 170 | 91.51 86 | 54.29 212 | 94.91 88 | 78.44 88 | 83.78 165 | 89.83 192 |
|
LGP-MVS_train | | | | | 84.50 99 | 89.23 128 | 68.76 108 | | 91.94 89 | 75.37 91 | 76.64 170 | 91.51 86 | 54.29 212 | 94.91 88 | 78.44 88 | 83.78 165 | 89.83 192 |
|
thres100view900 | | | 76.50 212 | 75.55 208 | 79.33 235 | 89.52 113 | 56.99 286 | 85.83 192 | 83.23 267 | 73.94 119 | 76.32 177 | 87.12 194 | 51.89 236 | 91.95 201 | 48.33 306 | 83.75 167 | 89.07 207 |
|
tfpn200view9 | | | 76.42 215 | 75.37 213 | 79.55 234 | 89.13 132 | 57.65 278 | 85.17 203 | 83.60 258 | 73.41 130 | 76.45 172 | 86.39 219 | 52.12 229 | 91.95 201 | 48.33 306 | 83.75 167 | 89.07 207 |
|
thres400 | | | 76.50 212 | 75.37 213 | 79.86 224 | 89.13 132 | 57.65 278 | 85.17 203 | 83.60 258 | 73.41 130 | 76.45 172 | 86.39 219 | 52.12 229 | 91.95 201 | 48.33 306 | 83.75 167 | 90.00 183 |
|
thres600view7 | | | 76.50 212 | 75.44 209 | 79.68 228 | 89.40 117 | 57.16 283 | 85.53 200 | 83.23 267 | 73.79 123 | 76.26 178 | 87.09 195 | 51.89 236 | 91.89 204 | 48.05 311 | 83.72 170 | 90.00 183 |
|
thres200 | | | 75.55 227 | 74.47 223 | 78.82 242 | 87.78 177 | 57.85 275 | 83.07 250 | 83.51 261 | 72.44 141 | 75.84 188 | 84.42 253 | 52.08 231 | 91.75 207 | 47.41 313 | 83.64 171 | 86.86 265 |
|
XVG-OURS | | | 80.41 132 | 79.23 137 | 83.97 123 | 85.64 214 | 69.02 101 | 83.03 251 | 90.39 134 | 71.09 162 | 77.63 149 | 91.49 88 | 54.62 211 | 91.35 218 | 75.71 114 | 83.47 172 | 91.54 126 |
|
CNLPA | | | 78.08 184 | 76.79 192 | 81.97 181 | 90.40 95 | 71.07 63 | 87.59 143 | 84.55 247 | 66.03 237 | 72.38 237 | 89.64 126 | 57.56 189 | 86.04 289 | 59.61 247 | 83.35 173 | 88.79 225 |
|
MVP-Stereo | | | 76.12 219 | 74.46 224 | 81.13 202 | 85.37 219 | 69.79 87 | 84.42 226 | 87.95 205 | 65.03 248 | 67.46 281 | 85.33 240 | 53.28 221 | 91.73 209 | 58.01 264 | 83.27 174 | 81.85 318 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 76.53 211 | 75.30 215 | 80.21 219 | 83.93 242 | 62.32 227 | 84.66 215 | 88.81 185 | 60.23 290 | 70.16 258 | 84.07 258 | 55.30 203 | 90.73 235 | 67.37 184 | 83.21 175 | 87.59 248 |
|
tttt0517 | | | 79.40 153 | 77.91 164 | 83.90 126 | 88.10 165 | 63.84 198 | 88.37 121 | 84.05 253 | 71.45 158 | 76.78 166 | 89.12 142 | 49.93 259 | 94.89 91 | 70.18 160 | 83.18 176 | 92.96 91 |
|
mvs-test1 | | | 80.88 115 | 79.40 132 | 85.29 75 | 85.13 224 | 69.75 89 | 89.28 85 | 88.10 200 | 74.99 97 | 76.44 175 | 86.72 202 | 57.27 193 | 94.26 112 | 73.53 130 | 83.18 176 | 91.87 119 |
|
HyFIR lowres test | | | 77.53 198 | 75.40 211 | 83.94 125 | 89.59 110 | 66.62 148 | 80.36 272 | 88.64 193 | 56.29 318 | 76.45 172 | 85.17 244 | 57.64 188 | 93.28 154 | 61.34 236 | 83.10 178 | 91.91 118 |
|
ACMP | | 74.13 6 | 81.51 108 | 80.57 109 | 84.36 105 | 89.42 116 | 68.69 115 | 89.97 72 | 91.50 108 | 74.46 108 | 75.04 211 | 90.41 111 | 53.82 217 | 94.54 100 | 77.56 97 | 82.91 179 | 89.86 191 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 73.20 8 | 80.78 125 | 79.84 122 | 83.58 129 | 89.31 125 | 68.37 120 | 89.99 71 | 91.60 102 | 70.28 176 | 77.25 156 | 89.66 125 | 53.37 220 | 93.53 147 | 74.24 125 | 82.85 180 | 88.85 222 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PMMVS | | | 69.34 278 | 68.67 269 | 71.35 304 | 75.67 329 | 62.03 230 | 75.17 309 | 73.46 327 | 50.00 331 | 68.68 272 | 79.05 306 | 52.07 232 | 78.13 321 | 61.16 237 | 82.77 181 | 73.90 333 |
|
PLC | | 70.83 11 | 78.05 186 | 76.37 202 | 83.08 149 | 91.88 76 | 67.80 131 | 88.19 128 | 89.46 162 | 64.33 257 | 69.87 264 | 88.38 161 | 53.66 218 | 93.58 142 | 58.86 255 | 82.73 182 | 87.86 242 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TR-MVS | | | 77.44 199 | 76.18 203 | 81.20 199 | 88.24 161 | 63.24 213 | 84.61 219 | 86.40 229 | 67.55 219 | 77.81 145 | 86.48 217 | 54.10 214 | 93.15 161 | 57.75 266 | 82.72 183 | 87.20 257 |
|
Anonymous20240529 | | | 80.19 138 | 78.89 143 | 84.10 114 | 90.60 91 | 64.75 182 | 88.95 96 | 90.90 123 | 65.97 238 | 80.59 109 | 91.17 95 | 49.97 256 | 93.73 139 | 69.16 171 | 82.70 184 | 93.81 53 |
|
ab-mvs | | | 79.51 148 | 78.97 142 | 81.14 201 | 88.46 155 | 60.91 243 | 83.84 236 | 89.24 170 | 70.36 174 | 79.03 120 | 88.87 148 | 63.23 125 | 90.21 241 | 65.12 204 | 82.57 185 | 92.28 108 |
|
HY-MVS | | 69.67 12 | 77.95 189 | 77.15 183 | 80.36 215 | 87.57 185 | 60.21 253 | 83.37 246 | 87.78 210 | 66.11 234 | 75.37 199 | 87.06 197 | 63.27 123 | 90.48 238 | 61.38 235 | 82.43 186 | 90.40 164 |
|
PS-MVSNAJss | | | 82.07 96 | 81.31 99 | 84.34 107 | 86.51 204 | 67.27 140 | 89.27 86 | 91.51 105 | 71.75 151 | 79.37 117 | 90.22 115 | 63.15 127 | 94.27 108 | 77.69 96 | 82.36 187 | 91.49 129 |
|
UniMVSNet_ETH3D | | | 79.10 160 | 78.24 158 | 81.70 185 | 86.85 198 | 60.24 252 | 87.28 151 | 88.79 186 | 74.25 113 | 76.84 163 | 90.53 110 | 49.48 262 | 91.56 212 | 67.98 178 | 82.15 188 | 93.29 76 |
|
PVSNet_BlendedMVS | | | 80.60 128 | 80.02 118 | 82.36 175 | 88.85 139 | 65.40 169 | 86.16 184 | 92.00 85 | 69.34 193 | 78.11 140 | 86.09 225 | 66.02 102 | 94.27 108 | 71.52 147 | 82.06 189 | 87.39 251 |
|
WTY-MVS | | | 75.65 226 | 75.68 206 | 75.57 280 | 86.40 205 | 56.82 288 | 77.92 297 | 82.40 276 | 65.10 246 | 76.18 181 | 87.72 174 | 63.13 130 | 80.90 312 | 60.31 242 | 81.96 190 | 89.00 216 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 191 | |
|
DP-MVS | | | 76.78 209 | 74.57 220 | 83.42 133 | 93.29 47 | 69.46 97 | 88.55 113 | 83.70 257 | 63.98 261 | 70.20 255 | 88.89 147 | 54.01 216 | 94.80 95 | 46.66 315 | 81.88 192 | 86.01 281 |
|
CMPMVS | | 51.72 21 | 70.19 273 | 68.16 274 | 76.28 274 | 73.15 337 | 57.55 280 | 79.47 281 | 83.92 254 | 48.02 332 | 56.48 331 | 84.81 249 | 43.13 300 | 86.42 287 | 62.67 222 | 81.81 193 | 84.89 292 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
XVG-OURS-SEG-HR | | | 80.81 120 | 79.76 124 | 83.96 124 | 85.60 215 | 68.78 107 | 83.54 244 | 90.50 132 | 70.66 170 | 76.71 168 | 91.66 80 | 60.69 168 | 91.26 220 | 76.94 105 | 81.58 194 | 91.83 120 |
|
MIMVSNet | | | 70.69 267 | 69.30 264 | 74.88 286 | 84.52 231 | 56.35 298 | 75.87 307 | 79.42 304 | 64.59 252 | 67.76 277 | 82.41 278 | 41.10 311 | 81.54 311 | 46.64 317 | 81.34 195 | 86.75 268 |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 196 | |
|
D2MVS | | | 74.82 233 | 73.21 236 | 79.64 231 | 79.81 309 | 62.56 224 | 80.34 273 | 87.35 218 | 64.37 256 | 68.86 271 | 82.66 276 | 46.37 280 | 90.10 243 | 67.91 179 | 81.24 197 | 86.25 274 |
|
GA-MVS | | | 76.87 208 | 75.17 216 | 81.97 181 | 82.75 268 | 62.58 223 | 81.44 266 | 86.35 231 | 72.16 147 | 74.74 215 | 82.89 272 | 46.20 283 | 92.02 199 | 68.85 174 | 81.09 198 | 91.30 135 |
|
sss | | | 73.60 244 | 73.64 232 | 73.51 295 | 82.80 267 | 55.01 307 | 76.12 303 | 81.69 283 | 62.47 275 | 74.68 216 | 85.85 230 | 57.32 192 | 78.11 322 | 60.86 239 | 80.93 199 | 87.39 251 |
|
Effi-MVS+-dtu | | | 80.03 140 | 78.57 148 | 84.42 102 | 85.13 224 | 68.74 110 | 88.77 103 | 88.10 200 | 74.99 97 | 74.97 212 | 83.49 267 | 57.27 193 | 93.36 152 | 73.53 130 | 80.88 200 | 91.18 137 |
|
EG-PatchMatch MVS | | | 74.04 240 | 71.82 248 | 80.71 210 | 84.92 227 | 67.42 136 | 85.86 191 | 88.08 202 | 66.04 236 | 64.22 307 | 83.85 260 | 35.10 331 | 92.56 181 | 57.44 268 | 80.83 201 | 82.16 317 |
|
jajsoiax | | | 79.29 156 | 77.96 162 | 83.27 139 | 84.68 230 | 66.57 150 | 89.25 87 | 90.16 144 | 69.20 198 | 75.46 195 | 89.49 131 | 45.75 288 | 93.13 163 | 76.84 106 | 80.80 202 | 90.11 175 |
|
1112_ss | | | 77.40 201 | 76.43 200 | 80.32 217 | 89.11 136 | 60.41 251 | 83.65 239 | 87.72 211 | 62.13 278 | 73.05 229 | 86.72 202 | 62.58 136 | 89.97 244 | 62.11 228 | 80.80 202 | 90.59 157 |
|
mvs_tets | | | 79.13 159 | 77.77 170 | 83.22 143 | 84.70 229 | 66.37 153 | 89.17 88 | 90.19 143 | 69.38 192 | 75.40 198 | 89.46 134 | 44.17 296 | 93.15 161 | 76.78 107 | 80.70 204 | 90.14 172 |
|
PatchMatch-RL | | | 72.38 257 | 70.90 256 | 76.80 272 | 88.60 150 | 67.38 138 | 79.53 280 | 76.17 319 | 62.75 272 | 69.36 269 | 82.00 285 | 45.51 289 | 84.89 296 | 53.62 284 | 80.58 205 | 78.12 329 |
|
EI-MVSNet | | | 80.52 131 | 79.98 119 | 82.12 176 | 84.28 234 | 63.19 216 | 86.41 176 | 88.95 183 | 74.18 115 | 78.69 126 | 87.54 181 | 66.62 93 | 92.43 184 | 72.57 143 | 80.57 206 | 90.74 150 |
|
MVSTER | | | 79.01 162 | 77.88 166 | 82.38 174 | 83.07 259 | 64.80 181 | 84.08 235 | 88.95 183 | 69.01 204 | 78.69 126 | 87.17 193 | 54.70 209 | 92.43 184 | 74.69 121 | 80.57 206 | 89.89 190 |
|
testing_2 | | | 75.73 224 | 73.34 235 | 82.89 160 | 77.37 323 | 65.22 174 | 84.10 233 | 90.54 131 | 69.09 200 | 60.46 319 | 81.15 289 | 40.48 314 | 92.84 176 | 76.36 109 | 80.54 208 | 90.60 155 |
|
XVG-ACMP-BASELINE | | | 76.11 220 | 74.27 226 | 81.62 186 | 83.20 255 | 64.67 183 | 83.60 242 | 89.75 155 | 69.75 186 | 71.85 242 | 87.09 195 | 32.78 333 | 92.11 196 | 69.99 163 | 80.43 209 | 88.09 238 |
|
Fast-Effi-MVS+-dtu | | | 78.02 187 | 76.49 199 | 82.62 171 | 83.16 258 | 66.96 146 | 86.94 159 | 87.45 217 | 72.45 139 | 71.49 246 | 84.17 256 | 54.79 208 | 91.58 211 | 67.61 181 | 80.31 210 | 89.30 205 |
|
LTVRE_ROB | | 69.57 13 | 76.25 218 | 74.54 222 | 81.41 191 | 88.60 150 | 64.38 190 | 79.24 283 | 89.12 176 | 70.76 168 | 69.79 266 | 87.86 173 | 49.09 267 | 93.20 158 | 56.21 276 | 80.16 211 | 86.65 270 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Test_1112_low_res | | | 76.40 216 | 75.44 209 | 79.27 236 | 89.28 126 | 58.09 268 | 81.69 262 | 87.07 221 | 59.53 297 | 72.48 235 | 86.67 208 | 61.30 157 | 89.33 254 | 60.81 240 | 80.15 212 | 90.41 163 |
|
test_djsdf | | | 80.30 135 | 79.32 135 | 83.27 139 | 83.98 241 | 65.37 172 | 90.50 56 | 90.38 135 | 68.55 212 | 76.19 180 | 88.70 150 | 56.44 199 | 93.46 149 | 78.98 83 | 80.14 213 | 90.97 143 |
|
CHOSEN 280x420 | | | 66.51 293 | 64.71 293 | 71.90 299 | 81.45 289 | 63.52 206 | 57.98 340 | 68.95 338 | 53.57 324 | 62.59 315 | 76.70 319 | 46.22 282 | 75.29 334 | 55.25 278 | 79.68 214 | 76.88 332 |
|
MVS_0304 | | | 72.48 255 | 70.89 257 | 77.24 267 | 82.20 279 | 59.68 255 | 84.11 232 | 83.49 262 | 67.10 222 | 66.87 288 | 80.59 295 | 35.00 332 | 87.40 279 | 59.07 253 | 79.58 215 | 84.63 296 |
|
baseline2 | | | 75.70 225 | 73.83 231 | 81.30 196 | 83.26 253 | 61.79 235 | 82.57 254 | 80.65 291 | 66.81 223 | 66.88 287 | 83.42 268 | 57.86 186 | 92.19 193 | 63.47 213 | 79.57 216 | 89.91 188 |
|
GBi-Net | | | 78.40 174 | 77.40 178 | 81.40 192 | 87.60 181 | 63.01 218 | 88.39 118 | 89.28 166 | 71.63 153 | 75.34 200 | 87.28 186 | 54.80 205 | 91.11 223 | 62.72 219 | 79.57 216 | 90.09 177 |
|
test1 | | | 78.40 174 | 77.40 178 | 81.40 192 | 87.60 181 | 63.01 218 | 88.39 118 | 89.28 166 | 71.63 153 | 75.34 200 | 87.28 186 | 54.80 205 | 91.11 223 | 62.72 219 | 79.57 216 | 90.09 177 |
|
FMVSNet3 | | | 77.88 191 | 76.85 190 | 80.97 205 | 86.84 199 | 62.36 225 | 86.52 175 | 88.77 187 | 71.13 160 | 75.34 200 | 86.66 209 | 54.07 215 | 91.10 226 | 62.72 219 | 79.57 216 | 89.45 202 |
|
FMVSNet2 | | | 78.20 181 | 77.21 182 | 81.20 199 | 87.60 181 | 62.89 222 | 87.47 146 | 89.02 178 | 71.63 153 | 75.29 204 | 87.28 186 | 54.80 205 | 91.10 226 | 62.38 223 | 79.38 220 | 89.61 199 |
|
anonymousdsp | | | 78.60 171 | 77.15 183 | 82.98 155 | 80.51 302 | 67.08 142 | 87.24 152 | 89.53 160 | 65.66 241 | 75.16 206 | 87.19 192 | 52.52 222 | 92.25 191 | 77.17 102 | 79.34 221 | 89.61 199 |
|
RRT_MVS | | | 79.88 143 | 78.38 153 | 84.38 103 | 85.42 218 | 70.60 75 | 88.71 108 | 88.75 191 | 72.30 144 | 78.83 125 | 89.14 140 | 44.44 294 | 92.18 194 | 78.50 87 | 79.33 222 | 90.35 165 |
|
nrg030 | | | 83.88 70 | 83.53 71 | 84.96 86 | 86.77 201 | 69.28 99 | 90.46 60 | 92.67 60 | 74.79 100 | 82.95 78 | 91.33 91 | 72.70 42 | 93.09 165 | 80.79 73 | 79.28 223 | 92.50 102 |
|
VPA-MVSNet | | | 80.60 128 | 80.55 110 | 80.76 209 | 88.07 166 | 60.80 245 | 86.86 162 | 91.58 103 | 75.67 86 | 80.24 111 | 89.45 136 | 63.34 121 | 90.25 240 | 70.51 157 | 79.22 224 | 91.23 136 |
|
F-COLMAP | | | 76.38 217 | 74.33 225 | 82.50 172 | 89.28 126 | 66.95 147 | 88.41 117 | 89.03 177 | 64.05 259 | 66.83 289 | 88.61 154 | 46.78 278 | 92.89 172 | 57.48 267 | 78.55 225 | 87.67 245 |
|
FMVSNet1 | | | 77.44 199 | 76.12 204 | 81.40 192 | 86.81 200 | 63.01 218 | 88.39 118 | 89.28 166 | 70.49 173 | 74.39 218 | 87.28 186 | 49.06 268 | 91.11 223 | 60.91 238 | 78.52 226 | 90.09 177 |
|
MDTV_nov1_ep13 | | | | 69.97 263 | | 83.18 256 | 53.48 315 | 77.10 301 | 80.18 300 | 60.45 287 | 69.33 270 | 80.44 296 | 48.89 269 | 86.90 282 | 51.60 291 | 78.51 227 | |
|
CVMVSNet | | | 72.99 252 | 72.58 241 | 74.25 292 | 84.28 234 | 50.85 326 | 86.41 176 | 83.45 264 | 44.56 333 | 73.23 227 | 87.54 181 | 49.38 263 | 85.70 291 | 65.90 198 | 78.44 228 | 86.19 276 |
|
tpm2 | | | 73.26 248 | 71.46 250 | 78.63 244 | 83.34 251 | 56.71 291 | 80.65 270 | 80.40 296 | 56.63 316 | 73.55 223 | 82.02 284 | 51.80 238 | 91.24 221 | 56.35 275 | 78.42 229 | 87.95 239 |
|
CostFormer | | | 75.24 232 | 73.90 229 | 79.27 236 | 82.65 272 | 58.27 267 | 80.80 267 | 82.73 274 | 61.57 281 | 75.33 203 | 83.13 270 | 55.52 201 | 91.07 229 | 64.98 206 | 78.34 230 | 88.45 233 |
|
ACMH | | 67.68 16 | 75.89 222 | 73.93 228 | 81.77 184 | 88.71 148 | 66.61 149 | 88.62 110 | 89.01 179 | 69.81 183 | 66.78 290 | 86.70 207 | 41.95 309 | 91.51 215 | 55.64 277 | 78.14 231 | 87.17 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CR-MVSNet | | | 73.37 245 | 71.27 253 | 79.67 229 | 81.32 294 | 65.19 175 | 75.92 305 | 80.30 297 | 59.92 293 | 72.73 232 | 81.19 287 | 52.50 223 | 86.69 283 | 59.84 245 | 77.71 232 | 87.11 261 |
|
RPMNet | | | 71.62 260 | 68.94 268 | 79.67 229 | 81.32 294 | 65.19 175 | 75.92 305 | 78.30 309 | 57.60 310 | 72.73 232 | 76.45 321 | 52.30 226 | 86.69 283 | 48.14 310 | 77.71 232 | 87.11 261 |
|
SCA | | | 74.22 238 | 72.33 244 | 79.91 223 | 84.05 240 | 62.17 229 | 79.96 277 | 79.29 305 | 66.30 233 | 72.38 237 | 80.13 299 | 51.95 234 | 88.60 267 | 59.25 250 | 77.67 234 | 88.96 218 |
|
Anonymous20231211 | | | 78.97 164 | 77.69 174 | 82.81 163 | 90.54 92 | 64.29 191 | 90.11 69 | 91.51 105 | 65.01 249 | 76.16 184 | 88.13 171 | 50.56 250 | 93.03 170 | 69.68 166 | 77.56 235 | 91.11 139 |
|
DWT-MVSNet_test | | | 73.70 243 | 71.86 247 | 79.21 238 | 82.91 265 | 58.94 260 | 82.34 255 | 82.17 277 | 65.21 244 | 71.05 250 | 78.31 310 | 44.21 295 | 90.17 242 | 63.29 217 | 77.28 236 | 88.53 232 |
|
v1144 | | | 80.03 140 | 79.03 140 | 83.01 153 | 83.78 244 | 64.51 185 | 87.11 155 | 90.57 130 | 71.96 149 | 78.08 142 | 86.20 223 | 61.41 154 | 93.94 124 | 74.93 120 | 77.23 237 | 90.60 155 |
|
WR-MVS | | | 79.49 149 | 79.22 138 | 80.27 218 | 88.79 145 | 58.35 265 | 85.06 207 | 88.61 194 | 78.56 29 | 77.65 148 | 88.34 162 | 63.81 119 | 90.66 236 | 64.98 206 | 77.22 238 | 91.80 123 |
|
v1192 | | | 79.59 147 | 78.43 152 | 83.07 150 | 83.55 248 | 64.52 184 | 86.93 160 | 90.58 129 | 70.83 164 | 77.78 146 | 85.90 227 | 59.15 179 | 93.94 124 | 73.96 127 | 77.19 239 | 90.76 148 |
|
VPNet | | | 78.69 169 | 78.66 146 | 78.76 243 | 88.31 160 | 55.72 304 | 84.45 224 | 86.63 226 | 76.79 61 | 78.26 136 | 90.55 109 | 59.30 178 | 89.70 249 | 66.63 192 | 77.05 240 | 90.88 145 |
|
v1240 | | | 78.99 163 | 77.78 169 | 82.64 170 | 83.21 254 | 63.54 205 | 86.62 171 | 90.30 141 | 69.74 188 | 77.33 154 | 85.68 232 | 57.04 196 | 93.76 136 | 73.13 138 | 76.92 241 | 90.62 153 |
|
MSDG | | | 73.36 247 | 70.99 255 | 80.49 213 | 84.51 232 | 65.80 162 | 80.71 269 | 86.13 234 | 65.70 240 | 65.46 298 | 83.74 264 | 44.60 292 | 90.91 231 | 51.13 293 | 76.89 242 | 84.74 294 |
|
IterMVS-LS | | | 80.06 139 | 79.38 133 | 82.11 177 | 85.89 210 | 63.20 215 | 86.79 165 | 89.34 164 | 74.19 114 | 75.45 196 | 86.72 202 | 66.62 93 | 92.39 186 | 72.58 142 | 76.86 243 | 90.75 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 79.22 157 | 78.03 161 | 82.80 164 | 83.30 252 | 63.94 197 | 86.80 164 | 90.33 139 | 69.91 182 | 77.48 151 | 85.53 236 | 58.44 183 | 93.75 137 | 73.60 129 | 76.85 244 | 90.71 151 |
|
XXY-MVS | | | 75.41 230 | 75.56 207 | 74.96 285 | 83.59 247 | 57.82 276 | 80.59 271 | 83.87 256 | 66.54 231 | 74.93 213 | 88.31 163 | 63.24 124 | 80.09 315 | 62.16 226 | 76.85 244 | 86.97 263 |
|
v2v482 | | | 80.23 136 | 79.29 136 | 83.05 151 | 83.62 246 | 64.14 193 | 87.04 156 | 89.97 148 | 73.61 125 | 78.18 139 | 87.22 190 | 61.10 162 | 93.82 131 | 76.11 111 | 76.78 246 | 91.18 137 |
|
v144192 | | | 79.47 150 | 78.37 154 | 82.78 167 | 83.35 250 | 63.96 196 | 86.96 158 | 90.36 138 | 69.99 180 | 77.50 150 | 85.67 233 | 60.66 169 | 93.77 135 | 74.27 124 | 76.58 247 | 90.62 153 |
|
UniMVSNet (Re) | | | 81.60 105 | 81.11 103 | 83.09 148 | 88.38 158 | 64.41 189 | 87.60 142 | 93.02 42 | 78.42 31 | 78.56 129 | 88.16 167 | 69.78 68 | 93.26 155 | 69.58 167 | 76.49 248 | 91.60 124 |
|
UniMVSNet_NR-MVSNet | | | 81.88 99 | 81.54 98 | 82.92 157 | 88.46 155 | 63.46 208 | 87.13 153 | 92.37 71 | 80.19 14 | 78.38 133 | 89.14 140 | 71.66 52 | 93.05 167 | 70.05 161 | 76.46 249 | 92.25 109 |
|
DU-MVS | | | 81.12 113 | 80.52 111 | 82.90 158 | 87.80 174 | 63.46 208 | 87.02 157 | 91.87 93 | 79.01 26 | 78.38 133 | 89.07 143 | 65.02 111 | 93.05 167 | 70.05 161 | 76.46 249 | 92.20 111 |
|
cl-mvsnet2 | | | 78.07 185 | 77.01 185 | 81.23 198 | 82.37 278 | 61.83 234 | 83.55 243 | 87.98 204 | 68.96 205 | 75.06 210 | 83.87 259 | 61.40 155 | 91.88 205 | 73.53 130 | 76.39 251 | 89.98 186 |
|
miper_ehance_all_eth | | | 78.59 172 | 77.76 171 | 81.08 203 | 82.66 271 | 61.56 237 | 83.65 239 | 89.15 173 | 68.87 207 | 75.55 192 | 83.79 263 | 66.49 95 | 92.03 198 | 73.25 136 | 76.39 251 | 89.64 198 |
|
miper_enhance_ethall | | | 77.87 192 | 76.86 189 | 80.92 206 | 81.65 285 | 61.38 239 | 82.68 252 | 88.98 180 | 65.52 243 | 75.47 193 | 82.30 280 | 65.76 106 | 92.00 200 | 72.95 139 | 76.39 251 | 89.39 203 |
|
PatchmatchNet | | | 73.12 250 | 71.33 252 | 78.49 249 | 83.18 256 | 60.85 244 | 79.63 279 | 78.57 307 | 64.13 258 | 71.73 243 | 79.81 304 | 51.20 243 | 85.97 290 | 57.40 269 | 76.36 254 | 88.66 228 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
USDC | | | 70.33 271 | 68.37 271 | 76.21 275 | 80.60 300 | 56.23 299 | 79.19 285 | 86.49 227 | 60.89 285 | 61.29 316 | 85.47 238 | 31.78 336 | 89.47 253 | 53.37 285 | 76.21 255 | 82.94 314 |
|
OpenMVS_ROB | | 64.09 19 | 70.56 269 | 68.19 273 | 77.65 260 | 80.26 303 | 59.41 259 | 85.01 208 | 82.96 272 | 58.76 303 | 65.43 299 | 82.33 279 | 37.63 325 | 91.23 222 | 45.34 323 | 76.03 256 | 82.32 315 |
|
ACMH+ | | 68.96 14 | 76.01 221 | 74.01 227 | 82.03 179 | 88.60 150 | 65.31 173 | 88.86 99 | 87.55 213 | 70.25 177 | 67.75 278 | 87.47 183 | 41.27 310 | 93.19 159 | 58.37 260 | 75.94 257 | 87.60 247 |
|
tpm | | | 72.37 258 | 71.71 249 | 74.35 291 | 82.19 280 | 52.00 318 | 79.22 284 | 77.29 315 | 64.56 253 | 72.95 230 | 83.68 266 | 51.35 241 | 83.26 305 | 58.33 261 | 75.80 258 | 87.81 243 |
|
Anonymous20231206 | | | 68.60 281 | 67.80 281 | 71.02 306 | 80.23 304 | 50.75 327 | 78.30 294 | 80.47 294 | 56.79 315 | 66.11 296 | 82.63 277 | 46.35 281 | 78.95 318 | 43.62 326 | 75.70 259 | 83.36 307 |
|
v7n | | | 78.97 164 | 77.58 176 | 83.14 146 | 83.45 249 | 65.51 167 | 88.32 122 | 91.21 115 | 73.69 124 | 72.41 236 | 86.32 221 | 57.93 185 | 93.81 132 | 69.18 170 | 75.65 260 | 90.11 175 |
|
NR-MVSNet | | | 80.23 136 | 79.38 133 | 82.78 167 | 87.80 174 | 63.34 211 | 86.31 179 | 91.09 120 | 79.01 26 | 72.17 239 | 89.07 143 | 67.20 90 | 92.81 177 | 66.08 197 | 75.65 260 | 92.20 111 |
|
v10 | | | 79.74 145 | 78.67 145 | 82.97 156 | 84.06 239 | 64.95 179 | 87.88 138 | 90.62 128 | 73.11 133 | 75.11 208 | 86.56 214 | 61.46 153 | 94.05 120 | 73.68 128 | 75.55 262 | 89.90 189 |
|
IB-MVS | | 68.01 15 | 75.85 223 | 73.36 234 | 83.31 137 | 84.76 228 | 66.03 156 | 83.38 245 | 85.06 242 | 70.21 178 | 69.40 268 | 81.05 290 | 45.76 287 | 94.66 99 | 65.10 205 | 75.49 263 | 89.25 206 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cl_fuxian | | | 78.75 167 | 77.91 164 | 81.26 197 | 82.89 266 | 61.56 237 | 84.09 234 | 89.13 175 | 69.97 181 | 75.56 191 | 84.29 255 | 66.36 97 | 92.09 197 | 73.47 133 | 75.48 264 | 90.12 174 |
|
V42 | | | 79.38 155 | 78.24 158 | 82.83 161 | 81.10 296 | 65.50 168 | 85.55 198 | 89.82 152 | 71.57 156 | 78.21 137 | 86.12 224 | 60.66 169 | 93.18 160 | 75.64 115 | 75.46 265 | 89.81 194 |
|
cl-mvsnet_ | | | 77.72 194 | 76.76 193 | 80.58 211 | 82.49 275 | 60.48 249 | 83.09 248 | 87.87 207 | 69.22 196 | 74.38 219 | 85.22 243 | 62.10 145 | 91.53 213 | 71.09 151 | 75.41 266 | 89.73 197 |
|
cl-mvsnet1 | | | 77.72 194 | 76.76 193 | 80.58 211 | 82.48 276 | 60.48 249 | 83.09 248 | 87.86 208 | 69.22 196 | 74.38 219 | 85.24 242 | 62.10 145 | 91.53 213 | 71.09 151 | 75.40 267 | 89.74 196 |
|
v8 | | | 79.97 142 | 79.02 141 | 82.80 164 | 84.09 238 | 64.50 187 | 87.96 133 | 90.29 142 | 74.13 117 | 75.24 205 | 86.81 199 | 62.88 132 | 93.89 130 | 74.39 123 | 75.40 267 | 90.00 183 |
|
Baseline_NR-MVSNet | | | 78.15 183 | 78.33 156 | 77.61 261 | 85.79 211 | 56.21 300 | 86.78 166 | 85.76 237 | 73.60 126 | 77.93 144 | 87.57 179 | 65.02 111 | 88.99 260 | 67.14 189 | 75.33 269 | 87.63 246 |
|
RRT_test8_iter05 | | | 78.38 176 | 77.40 178 | 81.34 195 | 86.00 209 | 58.86 261 | 86.55 174 | 91.26 113 | 72.13 148 | 75.91 185 | 87.42 184 | 44.97 291 | 93.73 139 | 77.02 104 | 75.30 270 | 91.45 132 |
|
pmmvs5 | | | 71.55 261 | 70.20 262 | 75.61 279 | 77.83 320 | 56.39 296 | 81.74 261 | 80.89 287 | 57.76 308 | 67.46 281 | 84.49 252 | 49.26 266 | 85.32 295 | 57.08 272 | 75.29 271 | 85.11 291 |
|
EPMVS | | | 69.02 280 | 68.16 274 | 71.59 300 | 79.61 313 | 49.80 331 | 77.40 299 | 66.93 339 | 62.82 271 | 70.01 259 | 79.05 306 | 45.79 286 | 77.86 324 | 56.58 274 | 75.26 272 | 87.13 260 |
|
TranMVSNet+NR-MVSNet | | | 80.84 117 | 80.31 115 | 82.42 173 | 87.85 172 | 62.33 226 | 87.74 140 | 91.33 111 | 80.55 11 | 77.99 143 | 89.86 121 | 65.23 109 | 92.62 178 | 67.05 190 | 75.24 273 | 92.30 107 |
|
tfpnnormal | | | 74.39 235 | 73.16 237 | 78.08 253 | 86.10 208 | 58.05 269 | 84.65 218 | 87.53 214 | 70.32 175 | 71.22 248 | 85.63 234 | 54.97 204 | 89.86 245 | 43.03 327 | 75.02 274 | 86.32 273 |
|
COLMAP_ROB | | 66.92 17 | 73.01 251 | 70.41 260 | 80.81 208 | 87.13 195 | 65.63 165 | 88.30 123 | 84.19 252 | 62.96 268 | 63.80 310 | 87.69 176 | 38.04 323 | 92.56 181 | 46.66 315 | 74.91 275 | 84.24 299 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PatchT | | | 68.46 284 | 67.85 279 | 70.29 308 | 80.70 299 | 43.93 338 | 72.47 318 | 74.88 322 | 60.15 291 | 70.55 251 | 76.57 320 | 49.94 257 | 81.59 310 | 50.58 294 | 74.83 276 | 85.34 287 |
|
pmmvs4 | | | 74.03 241 | 71.91 246 | 80.39 214 | 81.96 282 | 68.32 121 | 81.45 265 | 82.14 278 | 59.32 298 | 69.87 264 | 85.13 245 | 52.40 225 | 88.13 273 | 60.21 243 | 74.74 277 | 84.73 295 |
|
ITE_SJBPF | | | | | 78.22 251 | 81.77 284 | 60.57 247 | | 83.30 265 | 69.25 195 | 67.54 280 | 87.20 191 | 36.33 328 | 87.28 281 | 54.34 281 | 74.62 278 | 86.80 266 |
|
test0.0.03 1 | | | 68.00 285 | 67.69 283 | 68.90 313 | 77.55 321 | 47.43 333 | 75.70 308 | 72.95 329 | 66.66 227 | 66.56 291 | 82.29 281 | 48.06 271 | 75.87 331 | 44.97 324 | 74.51 279 | 83.41 306 |
|
test_0402 | | | 72.79 254 | 70.44 259 | 79.84 225 | 88.13 163 | 65.99 158 | 85.93 189 | 84.29 249 | 65.57 242 | 67.40 283 | 85.49 237 | 46.92 277 | 92.61 179 | 35.88 336 | 74.38 280 | 80.94 321 |
|
CP-MVSNet | | | 78.22 179 | 78.34 155 | 77.84 256 | 87.83 173 | 54.54 309 | 87.94 135 | 91.17 117 | 77.65 35 | 73.48 224 | 88.49 158 | 62.24 143 | 88.43 269 | 62.19 225 | 74.07 281 | 90.55 158 |
|
FMVSNet5 | | | 69.50 277 | 67.96 277 | 74.15 293 | 82.97 264 | 55.35 306 | 80.01 276 | 82.12 279 | 62.56 274 | 63.02 311 | 81.53 286 | 36.92 326 | 81.92 309 | 48.42 305 | 74.06 282 | 85.17 290 |
|
MVS-HIRNet | | | 59.14 305 | 57.67 307 | 63.57 320 | 81.65 285 | 43.50 339 | 71.73 320 | 65.06 342 | 39.59 338 | 51.43 336 | 57.73 338 | 38.34 322 | 82.58 308 | 39.53 333 | 73.95 283 | 64.62 338 |
|
tpmrst | | | 72.39 256 | 72.13 245 | 73.18 297 | 80.54 301 | 49.91 329 | 79.91 278 | 79.08 306 | 63.11 265 | 71.69 244 | 79.95 301 | 55.32 202 | 82.77 307 | 65.66 201 | 73.89 284 | 86.87 264 |
|
PS-CasMVS | | | 78.01 188 | 78.09 160 | 77.77 258 | 87.71 178 | 54.39 311 | 88.02 131 | 91.22 114 | 77.50 43 | 73.26 226 | 88.64 153 | 60.73 166 | 88.41 270 | 61.88 229 | 73.88 285 | 90.53 159 |
|
v148 | | | 78.72 168 | 77.80 168 | 81.47 190 | 82.73 269 | 61.96 232 | 86.30 180 | 88.08 202 | 73.26 132 | 76.18 181 | 85.47 238 | 62.46 138 | 92.36 188 | 71.92 146 | 73.82 286 | 90.09 177 |
|
Patchmatch-test | | | 64.82 299 | 63.24 298 | 69.57 310 | 79.42 315 | 49.82 330 | 63.49 338 | 69.05 337 | 51.98 329 | 59.95 322 | 80.13 299 | 50.91 245 | 70.98 340 | 40.66 332 | 73.57 287 | 87.90 241 |
|
WR-MVS_H | | | 78.51 173 | 78.49 149 | 78.56 246 | 88.02 168 | 56.38 297 | 88.43 114 | 92.67 60 | 77.14 51 | 73.89 222 | 87.55 180 | 66.25 98 | 89.24 256 | 58.92 254 | 73.55 288 | 90.06 181 |
|
testgi | | | 66.67 292 | 66.53 289 | 67.08 318 | 75.62 330 | 41.69 341 | 75.93 304 | 76.50 318 | 66.11 234 | 65.20 303 | 86.59 211 | 35.72 330 | 74.71 335 | 43.71 325 | 73.38 289 | 84.84 293 |
|
pm-mvs1 | | | 77.25 203 | 76.68 197 | 78.93 241 | 84.22 236 | 58.62 264 | 86.41 176 | 88.36 197 | 71.37 159 | 73.31 225 | 88.01 172 | 61.22 160 | 89.15 258 | 64.24 210 | 73.01 290 | 89.03 213 |
|
eth_miper_zixun_eth | | | 77.92 190 | 76.69 196 | 81.61 188 | 83.00 262 | 61.98 231 | 83.15 247 | 89.20 172 | 69.52 190 | 74.86 214 | 84.35 254 | 61.76 148 | 92.56 181 | 71.50 149 | 72.89 291 | 90.28 168 |
|
miper_lstm_enhance | | | 74.11 239 | 73.11 238 | 77.13 269 | 80.11 305 | 59.62 256 | 72.23 319 | 86.92 223 | 66.76 225 | 70.40 253 | 82.92 271 | 56.93 197 | 82.92 306 | 69.06 172 | 72.63 292 | 88.87 221 |
|
tpmvs | | | 71.09 264 | 69.29 265 | 76.49 273 | 82.04 281 | 56.04 301 | 78.92 288 | 81.37 286 | 64.05 259 | 67.18 285 | 78.28 311 | 49.74 260 | 89.77 246 | 49.67 301 | 72.37 293 | 83.67 304 |
|
PEN-MVS | | | 77.73 193 | 77.69 174 | 77.84 256 | 87.07 196 | 53.91 313 | 87.91 137 | 91.18 116 | 77.56 40 | 73.14 228 | 88.82 149 | 61.23 159 | 89.17 257 | 59.95 244 | 72.37 293 | 90.43 162 |
|
DSMNet-mixed | | | 57.77 307 | 56.90 308 | 60.38 322 | 67.70 341 | 35.61 344 | 69.18 327 | 53.97 346 | 32.30 343 | 57.49 328 | 79.88 302 | 40.39 316 | 68.57 342 | 38.78 334 | 72.37 293 | 76.97 331 |
|
IterMVS-SCA-FT | | | 75.43 229 | 73.87 230 | 80.11 220 | 82.69 270 | 64.85 180 | 81.57 264 | 83.47 263 | 69.16 199 | 70.49 252 | 84.15 257 | 51.95 234 | 88.15 272 | 69.23 169 | 72.14 296 | 87.34 253 |
|
tpm cat1 | | | 70.57 268 | 68.31 272 | 77.35 265 | 82.41 277 | 57.95 273 | 78.08 295 | 80.22 299 | 52.04 328 | 68.54 275 | 77.66 316 | 52.00 233 | 87.84 276 | 51.77 289 | 72.07 297 | 86.25 274 |
|
RPSCF | | | 73.23 249 | 71.46 250 | 78.54 247 | 82.50 274 | 59.85 254 | 82.18 257 | 82.84 273 | 58.96 301 | 71.15 249 | 89.41 138 | 45.48 290 | 84.77 297 | 58.82 256 | 71.83 298 | 91.02 142 |
|
IterMVS | | | 74.29 236 | 72.94 239 | 78.35 250 | 81.53 288 | 63.49 207 | 81.58 263 | 82.49 275 | 68.06 216 | 69.99 261 | 83.69 265 | 51.66 240 | 85.54 292 | 65.85 199 | 71.64 299 | 86.01 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AllTest | | | 70.96 265 | 68.09 276 | 79.58 232 | 85.15 222 | 63.62 201 | 84.58 220 | 79.83 301 | 62.31 276 | 60.32 320 | 86.73 200 | 32.02 334 | 88.96 263 | 50.28 296 | 71.57 300 | 86.15 277 |
|
TestCases | | | | | 79.58 232 | 85.15 222 | 63.62 201 | | 79.83 301 | 62.31 276 | 60.32 320 | 86.73 200 | 32.02 334 | 88.96 263 | 50.28 296 | 71.57 300 | 86.15 277 |
|
baseline1 | | | 76.98 206 | 76.75 195 | 77.66 259 | 88.13 163 | 55.66 305 | 85.12 206 | 81.89 280 | 73.04 135 | 76.79 165 | 88.90 146 | 62.43 139 | 87.78 277 | 63.30 216 | 71.18 302 | 89.55 201 |
|
Patchmtry | | | 70.74 266 | 69.16 266 | 75.49 282 | 80.72 298 | 54.07 312 | 74.94 314 | 80.30 297 | 58.34 305 | 70.01 259 | 81.19 287 | 52.50 223 | 86.54 285 | 53.37 285 | 71.09 303 | 85.87 284 |
|
DTE-MVSNet | | | 76.99 205 | 76.80 191 | 77.54 263 | 86.24 206 | 53.06 317 | 87.52 144 | 90.66 127 | 77.08 54 | 72.50 234 | 88.67 152 | 60.48 172 | 89.52 251 | 57.33 270 | 70.74 304 | 90.05 182 |
|
MIMVSNet1 | | | 68.58 282 | 66.78 288 | 73.98 294 | 80.07 306 | 51.82 319 | 80.77 268 | 84.37 248 | 64.40 255 | 59.75 323 | 82.16 283 | 36.47 327 | 83.63 302 | 42.73 328 | 70.33 305 | 86.48 272 |
|
pmmvs6 | | | 74.69 234 | 73.39 233 | 78.61 245 | 81.38 291 | 57.48 281 | 86.64 170 | 87.95 205 | 64.99 250 | 70.18 256 | 86.61 210 | 50.43 252 | 89.52 251 | 62.12 227 | 70.18 306 | 88.83 223 |
|
TinyColmap | | | 67.30 289 | 64.81 292 | 74.76 288 | 81.92 283 | 56.68 292 | 80.29 274 | 81.49 285 | 60.33 288 | 56.27 332 | 83.22 269 | 24.77 339 | 87.66 278 | 45.52 321 | 69.47 307 | 79.95 325 |
|
OurMVSNet-221017-0 | | | 74.26 237 | 72.42 243 | 79.80 226 | 83.76 245 | 59.59 257 | 85.92 190 | 86.64 225 | 66.39 232 | 66.96 286 | 87.58 178 | 39.46 317 | 91.60 210 | 65.76 200 | 69.27 308 | 88.22 236 |
|
JIA-IIPM | | | 66.32 295 | 62.82 302 | 76.82 271 | 77.09 325 | 61.72 236 | 65.34 335 | 75.38 320 | 58.04 307 | 64.51 305 | 62.32 335 | 42.05 308 | 86.51 286 | 51.45 292 | 69.22 309 | 82.21 316 |
|
ADS-MVSNet2 | | | 66.20 296 | 63.33 297 | 74.82 287 | 79.92 307 | 58.75 263 | 67.55 332 | 75.19 321 | 53.37 325 | 65.25 301 | 75.86 322 | 42.32 305 | 80.53 314 | 41.57 330 | 68.91 310 | 85.18 288 |
|
ADS-MVSNet | | | 64.36 300 | 62.88 301 | 68.78 315 | 79.92 307 | 47.17 334 | 67.55 332 | 71.18 330 | 53.37 325 | 65.25 301 | 75.86 322 | 42.32 305 | 73.99 338 | 41.57 330 | 68.91 310 | 85.18 288 |
|
test20.03 | | | 67.45 287 | 66.95 287 | 68.94 312 | 75.48 331 | 44.84 337 | 77.50 298 | 77.67 312 | 66.66 227 | 63.01 312 | 83.80 262 | 47.02 276 | 78.40 320 | 42.53 329 | 68.86 312 | 83.58 305 |
|
EU-MVSNet | | | 68.53 283 | 67.61 284 | 71.31 305 | 78.51 319 | 47.01 335 | 84.47 221 | 84.27 250 | 42.27 334 | 66.44 294 | 84.79 250 | 40.44 315 | 83.76 300 | 58.76 257 | 68.54 313 | 83.17 308 |
|
our_test_3 | | | 69.14 279 | 67.00 286 | 75.57 280 | 79.80 310 | 58.80 262 | 77.96 296 | 77.81 311 | 59.55 296 | 62.90 314 | 78.25 312 | 47.43 273 | 83.97 299 | 51.71 290 | 67.58 314 | 83.93 303 |
|
ppachtmachnet_test | | | 70.04 274 | 67.34 285 | 78.14 252 | 79.80 310 | 61.13 240 | 79.19 285 | 80.59 292 | 59.16 300 | 65.27 300 | 79.29 305 | 46.75 279 | 87.29 280 | 49.33 302 | 66.72 315 | 86.00 283 |
|
LF4IMVS | | | 64.02 301 | 62.19 303 | 69.50 311 | 70.90 339 | 53.29 316 | 76.13 302 | 77.18 316 | 52.65 327 | 58.59 324 | 80.98 292 | 23.55 340 | 76.52 328 | 53.06 287 | 66.66 316 | 78.68 328 |
|
Patchmatch-RL test | | | 70.24 272 | 67.78 282 | 77.61 261 | 77.43 322 | 59.57 258 | 71.16 321 | 70.33 331 | 62.94 269 | 68.65 273 | 72.77 328 | 50.62 249 | 85.49 293 | 69.58 167 | 66.58 317 | 87.77 244 |
|
dp | | | 66.80 290 | 65.43 291 | 70.90 307 | 79.74 312 | 48.82 332 | 75.12 312 | 74.77 323 | 59.61 295 | 64.08 308 | 77.23 317 | 42.89 301 | 80.72 313 | 48.86 304 | 66.58 317 | 83.16 309 |
|
FPMVS | | | 53.68 309 | 51.64 311 | 59.81 323 | 65.08 342 | 51.03 325 | 69.48 326 | 69.58 335 | 41.46 335 | 40.67 339 | 72.32 329 | 16.46 346 | 70.00 341 | 24.24 341 | 65.42 319 | 58.40 339 |
|
pmmvs-eth3d | | | 70.50 270 | 67.83 280 | 78.52 248 | 77.37 323 | 66.18 155 | 81.82 259 | 81.51 284 | 58.90 302 | 63.90 309 | 80.42 297 | 42.69 303 | 86.28 288 | 58.56 258 | 65.30 320 | 83.11 310 |
|
N_pmnet | | | 52.79 310 | 53.26 310 | 51.40 327 | 78.99 318 | 7.68 354 | 69.52 325 | 3.89 354 | 51.63 330 | 57.01 329 | 74.98 325 | 40.83 313 | 65.96 343 | 37.78 335 | 64.67 321 | 80.56 324 |
|
PM-MVS | | | 66.41 294 | 64.14 295 | 73.20 296 | 73.92 332 | 56.45 294 | 78.97 287 | 64.96 343 | 63.88 263 | 64.72 304 | 80.24 298 | 19.84 343 | 83.44 303 | 66.24 193 | 64.52 322 | 79.71 326 |
|
SixPastTwentyTwo | | | 73.37 245 | 71.26 254 | 79.70 227 | 85.08 226 | 57.89 274 | 85.57 194 | 83.56 260 | 71.03 163 | 65.66 297 | 85.88 228 | 42.10 307 | 92.57 180 | 59.11 252 | 63.34 323 | 88.65 229 |
|
TransMVSNet (Re) | | | 75.39 231 | 74.56 221 | 77.86 255 | 85.50 217 | 57.10 285 | 86.78 166 | 86.09 235 | 72.17 146 | 71.53 245 | 87.34 185 | 63.01 131 | 89.31 255 | 56.84 273 | 61.83 324 | 87.17 258 |
|
MDA-MVSNet_test_wron | | | 65.03 297 | 62.92 299 | 71.37 302 | 75.93 327 | 56.73 289 | 69.09 330 | 74.73 324 | 57.28 313 | 54.03 334 | 77.89 313 | 45.88 284 | 74.39 337 | 49.89 300 | 61.55 325 | 82.99 313 |
|
YYNet1 | | | 65.03 297 | 62.91 300 | 71.38 301 | 75.85 328 | 56.60 293 | 69.12 329 | 74.66 326 | 57.28 313 | 54.12 333 | 77.87 314 | 45.85 285 | 74.48 336 | 49.95 299 | 61.52 326 | 83.05 311 |
|
ambc | | | | | 75.24 284 | 73.16 336 | 50.51 328 | 63.05 339 | 87.47 216 | | 64.28 306 | 77.81 315 | 17.80 344 | 89.73 248 | 57.88 265 | 60.64 327 | 85.49 285 |
|
TDRefinement | | | 67.49 286 | 64.34 294 | 76.92 270 | 73.47 335 | 61.07 241 | 84.86 212 | 82.98 271 | 59.77 294 | 58.30 326 | 85.13 245 | 26.06 338 | 87.89 275 | 47.92 312 | 60.59 328 | 81.81 319 |
|
Gipuma | | | 45.18 313 | 41.86 315 | 55.16 325 | 77.03 326 | 51.52 322 | 32.50 346 | 80.52 293 | 32.46 342 | 27.12 343 | 35.02 343 | 9.52 350 | 75.50 332 | 22.31 342 | 60.21 329 | 38.45 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new-patchmatchnet | | | 61.73 303 | 61.73 304 | 61.70 321 | 72.74 338 | 24.50 351 | 69.16 328 | 78.03 310 | 61.40 282 | 56.72 330 | 75.53 324 | 38.42 321 | 76.48 329 | 45.95 320 | 57.67 330 | 84.13 301 |
|
MDA-MVSNet-bldmvs | | | 66.68 291 | 63.66 296 | 75.75 277 | 79.28 316 | 60.56 248 | 73.92 316 | 78.35 308 | 64.43 254 | 50.13 337 | 79.87 303 | 44.02 297 | 83.67 301 | 46.10 319 | 56.86 331 | 83.03 312 |
|
new_pmnet | | | 50.91 311 | 50.29 312 | 52.78 326 | 68.58 340 | 34.94 346 | 63.71 337 | 56.63 345 | 39.73 337 | 44.95 338 | 65.47 333 | 21.93 341 | 58.48 344 | 34.98 337 | 56.62 332 | 64.92 337 |
|
PMVS | | 37.38 22 | 44.16 314 | 40.28 316 | 55.82 324 | 40.82 351 | 42.54 340 | 65.12 336 | 63.99 344 | 34.43 341 | 24.48 344 | 57.12 340 | 3.92 353 | 76.17 330 | 17.10 344 | 55.52 333 | 48.75 340 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pmmvs3 | | | 57.79 306 | 54.26 309 | 68.37 316 | 64.02 343 | 56.72 290 | 75.12 312 | 65.17 341 | 40.20 336 | 52.93 335 | 69.86 332 | 20.36 342 | 75.48 333 | 45.45 322 | 55.25 334 | 72.90 334 |
|
UnsupCasMVSNet_eth | | | 67.33 288 | 65.99 290 | 71.37 302 | 73.48 334 | 51.47 323 | 75.16 310 | 85.19 241 | 65.20 245 | 60.78 318 | 80.93 294 | 42.35 304 | 77.20 326 | 57.12 271 | 53.69 335 | 85.44 286 |
|
K. test v3 | | | 71.19 263 | 68.51 270 | 79.21 238 | 83.04 261 | 57.78 277 | 84.35 228 | 76.91 317 | 72.90 138 | 62.99 313 | 82.86 273 | 39.27 318 | 91.09 228 | 61.65 232 | 52.66 336 | 88.75 226 |
|
UnsupCasMVSNet_bld | | | 63.70 302 | 61.53 305 | 70.21 309 | 73.69 333 | 51.39 324 | 72.82 317 | 81.89 280 | 55.63 320 | 57.81 327 | 71.80 330 | 38.67 320 | 78.61 319 | 49.26 303 | 52.21 337 | 80.63 322 |
|
LCM-MVSNet | | | 54.25 308 | 49.68 313 | 67.97 317 | 53.73 346 | 45.28 336 | 66.85 334 | 80.78 289 | 35.96 340 | 39.45 340 | 62.23 336 | 8.70 351 | 78.06 323 | 48.24 309 | 51.20 338 | 80.57 323 |
|
lessismore_v0 | | | | | 78.97 240 | 81.01 297 | 57.15 284 | | 65.99 340 | | 61.16 317 | 82.82 274 | 39.12 319 | 91.34 219 | 59.67 246 | 46.92 339 | 88.43 234 |
|
PVSNet_0 | | 57.27 20 | 61.67 304 | 59.27 306 | 68.85 314 | 79.61 313 | 57.44 282 | 68.01 331 | 73.44 328 | 55.93 319 | 58.54 325 | 70.41 331 | 44.58 293 | 77.55 325 | 47.01 314 | 35.91 340 | 71.55 335 |
|
PMMVS2 | | | 40.82 315 | 38.86 317 | 46.69 328 | 53.84 345 | 16.45 352 | 48.61 343 | 49.92 347 | 37.49 339 | 31.67 341 | 60.97 337 | 8.14 352 | 56.42 345 | 28.42 339 | 30.72 341 | 67.19 336 |
|
DeepMVS_CX | | | | | 27.40 332 | 40.17 352 | 26.90 349 | | 24.59 353 | 17.44 347 | 23.95 345 | 48.61 341 | 9.77 349 | 26.48 349 | 18.06 343 | 24.47 342 | 28.83 343 |
|
MVE | | 26.22 23 | 30.37 318 | 25.89 321 | 43.81 329 | 44.55 350 | 35.46 345 | 28.87 347 | 39.07 350 | 18.20 346 | 18.58 347 | 40.18 342 | 2.68 354 | 47.37 348 | 17.07 345 | 23.78 343 | 48.60 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 31.77 316 | 30.64 318 | 35.15 330 | 52.87 347 | 27.67 348 | 57.09 341 | 47.86 348 | 24.64 344 | 16.40 348 | 33.05 344 | 11.23 348 | 54.90 346 | 14.46 346 | 18.15 344 | 22.87 344 |
|
EMVS | | | 30.81 317 | 29.65 319 | 34.27 331 | 50.96 348 | 25.95 350 | 56.58 342 | 46.80 349 | 24.01 345 | 15.53 349 | 30.68 345 | 12.47 347 | 54.43 347 | 12.81 347 | 17.05 345 | 22.43 345 |
|
ANet_high | | | 50.57 312 | 46.10 314 | 63.99 319 | 48.67 349 | 39.13 342 | 70.99 323 | 80.85 288 | 61.39 283 | 31.18 342 | 57.70 339 | 17.02 345 | 73.65 339 | 31.22 338 | 15.89 346 | 79.18 327 |
|
tmp_tt | | | 18.61 320 | 21.40 322 | 10.23 334 | 4.82 353 | 10.11 353 | 34.70 345 | 30.74 352 | 1.48 349 | 23.91 346 | 26.07 346 | 28.42 337 | 13.41 351 | 27.12 340 | 15.35 347 | 7.17 346 |
|
wuyk23d | | | 16.82 321 | 15.94 323 | 19.46 333 | 58.74 344 | 31.45 347 | 39.22 344 | 3.74 355 | 6.84 348 | 6.04 350 | 2.70 350 | 1.27 355 | 24.29 350 | 10.54 348 | 14.40 348 | 2.63 347 |
|
testmvs | | | 6.04 324 | 8.02 326 | 0.10 336 | 0.08 354 | 0.03 356 | 69.74 324 | 0.04 356 | 0.05 350 | 0.31 351 | 1.68 351 | 0.02 357 | 0.04 352 | 0.24 349 | 0.02 349 | 0.25 349 |
|
test123 | | | 6.12 323 | 8.11 325 | 0.14 335 | 0.06 355 | 0.09 355 | 71.05 322 | 0.03 357 | 0.04 351 | 0.25 352 | 1.30 352 | 0.05 356 | 0.03 353 | 0.21 350 | 0.01 350 | 0.29 348 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 94.09 9 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 19.96 319 | 26.61 320 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 89.26 169 | 0.00 352 | 0.00 353 | 88.61 154 | 61.62 151 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 5.26 325 | 7.02 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 63.15 127 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 7.23 322 | 9.64 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 86.72 202 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 64 | | 94.06 11 | 77.17 50 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
save fliter | | | | | | 93.80 37 | 72.35 42 | 90.47 58 | 91.17 117 | 74.31 110 | | | | | | | |
|
test0726 | | | | | | 95.27 5 | 71.25 58 | 93.60 4 | 94.11 6 | 77.33 45 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 218 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 242 | | | | 88.96 218 |
|
sam_mvs | | | | | | | | | | | | | 50.01 255 | | | | |
|
MTGPA | | | | | | | | | 92.02 82 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 289 | | | | 5.43 349 | 48.81 270 | 85.44 294 | 59.25 250 | | |
|
test_post | | | | | | | | | | | | 5.46 348 | 50.36 253 | 84.24 298 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 326 | 51.12 244 | 88.60 267 | | | |
|
MTMP | | | | | | | | 92.18 30 | 32.83 351 | | | | | | | | |
|
gm-plane-assit | | | | | | 81.40 290 | 53.83 314 | | | 62.72 273 | | 80.94 293 | | 92.39 186 | 63.40 215 | | |
|
TEST9 | | | | | | 93.26 49 | 72.96 24 | 88.75 104 | 91.89 91 | 68.44 214 | 85.00 46 | 93.10 58 | 74.36 30 | 95.41 67 | | | |
|
test_8 | | | | | | 93.13 51 | 72.57 34 | 88.68 109 | 91.84 94 | 68.69 210 | 84.87 52 | 93.10 58 | 74.43 27 | 95.16 77 | | | |
|
agg_prior | | | | | | 92.85 57 | 71.94 50 | | 91.78 97 | | 84.41 59 | | | 94.93 86 | | | |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 95 | | | | | | | | | |
|
test_prior | | | | | 86.33 60 | 92.61 65 | 69.59 91 | | 92.97 48 | | | | | 95.48 63 | | | 93.91 45 |
|
旧先验2 | | | | | | | | 86.56 173 | | 58.10 306 | 87.04 30 | | | 88.98 261 | 74.07 126 | | |
|
新几何2 | | | | | | | | 86.29 181 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 145 | 88.98 180 | 60.00 292 | | | | 94.12 117 | 67.28 185 | | 88.97 217 |
|
原ACMM2 | | | | | | | | 86.86 162 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 230 | 62.37 224 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 39 | | | | |
|
testdata1 | | | | | | | | 84.14 231 | | 75.71 83 | | | | | | | |
|
plane_prior7 | | | | | | 90.08 101 | 68.51 119 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 106 | 68.70 114 | | | | | | 60.42 173 | | | | |
|
plane_prior4 | | | | | | | | | | | | 91.00 102 | | | | | |
|
plane_prior3 | | | | | | | 68.60 117 | | | 78.44 30 | 78.92 123 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 43 | | 79.12 23 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 105 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 333 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 74 | | | | | | | | |
|
door | | | | | | | | | 69.44 336 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 144 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 120 | | 89.17 88 | | 76.41 70 | 77.23 158 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 120 | | 89.17 88 | | 76.41 70 | 77.23 158 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 98 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 157 | | | 95.11 79 | | | 91.03 140 |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 176 | | | | |
|
NP-MVS | | | | | | 89.62 109 | 68.32 121 | | | | | 90.24 113 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 343 | 75.16 310 | | 55.10 321 | 66.53 292 | | 49.34 264 | | 53.98 282 | | 87.94 240 |
|
Test By Simon | | | | | | | | | | | | | 64.33 114 | | | | |
|