APDe-MVS | | | 99.66 1 | 99.57 1 | 99.92 1 | 99.77 49 | 99.89 3 | 99.75 28 | 99.56 56 | 99.02 15 | 99.88 5 | 99.85 29 | 99.18 8 | 99.96 19 | 99.22 39 | 99.92 11 | 99.90 1 |
|
SED-MVS | | | 99.61 2 | 99.52 6 | 99.88 6 | 99.84 32 | 99.90 1 | 99.60 75 | 99.48 142 | 99.08 11 | 99.91 1 | 99.81 62 | 99.20 5 | 99.96 19 | 98.91 71 | 99.85 58 | 99.79 53 |
|
Regformer-4 | | | 99.59 3 | 99.54 4 | 99.73 58 | 99.76 52 | 99.41 98 | 99.58 88 | 99.49 130 | 99.02 15 | 99.88 5 | 99.80 76 | 99.00 22 | 99.94 54 | 99.45 19 | 99.92 11 | 99.84 18 |
|
TSAR-MVS + MP. | | | 99.58 4 | 99.50 8 | 99.81 38 | 99.91 1 | 99.66 54 | 99.63 62 | 99.39 213 | 98.91 38 | 99.78 31 | 99.85 29 | 99.36 2 | 99.94 54 | 98.84 85 | 99.88 36 | 99.82 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EI-MVSNet-UG-set | | | 99.58 4 | 99.57 1 | 99.64 77 | 99.78 44 | 99.14 128 | 99.60 75 | 99.45 182 | 99.01 18 | 99.90 3 | 99.83 42 | 98.98 23 | 99.93 69 | 99.59 1 | 99.95 6 | 99.86 11 |
|
EI-MVSNet-Vis-set | | | 99.58 4 | 99.56 3 | 99.64 77 | 99.78 44 | 99.15 127 | 99.61 74 | 99.45 182 | 99.01 18 | 99.89 4 | 99.82 49 | 99.01 16 | 99.92 80 | 99.56 5 | 99.95 6 | 99.85 14 |
|
DVP-MVS | | | 99.57 7 | 99.47 9 | 99.88 6 | 99.85 25 | 99.89 3 | 99.57 93 | 99.37 228 | 99.10 8 | 99.81 22 | 99.80 76 | 98.94 31 | 99.96 19 | 98.93 68 | 99.86 51 | 99.81 41 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
Regformer-3 | | | 99.57 7 | 99.53 5 | 99.68 65 | 99.76 52 | 99.29 109 | 99.58 88 | 99.44 191 | 99.01 18 | 99.87 10 | 99.80 76 | 98.97 24 | 99.91 91 | 99.44 21 | 99.92 11 | 99.83 29 |
|
Regformer-2 | | | 99.54 9 | 99.47 9 | 99.75 51 | 99.71 86 | 99.52 84 | 99.49 138 | 99.49 130 | 98.94 33 | 99.83 17 | 99.76 106 | 99.01 16 | 99.94 54 | 99.15 48 | 99.87 40 | 99.80 49 |
|
SteuartSystems-ACMMP | | | 99.54 9 | 99.42 13 | 99.87 11 | 99.82 37 | 99.81 24 | 99.59 81 | 99.51 103 | 98.62 59 | 99.79 26 | 99.83 42 | 99.28 3 | 99.97 11 | 98.48 139 | 99.90 23 | 99.84 18 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-1 | | | 99.53 11 | 99.47 9 | 99.72 61 | 99.71 86 | 99.44 95 | 99.49 138 | 99.46 170 | 98.95 32 | 99.83 17 | 99.76 106 | 99.01 16 | 99.93 69 | 99.17 45 | 99.87 40 | 99.80 49 |
|
XVS | | | 99.53 11 | 99.42 13 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 37 | 99.68 19 | 98.98 27 | 99.37 137 | 99.74 117 | 98.81 45 | 99.94 54 | 98.79 94 | 99.86 51 | 99.84 18 |
|
MTAPA | | | 99.52 13 | 99.39 17 | 99.89 4 | 99.90 3 | 99.86 10 | 99.66 50 | 99.47 160 | 98.79 49 | 99.68 53 | 99.81 62 | 98.43 81 | 99.97 11 | 98.88 74 | 99.90 23 | 99.83 29 |
|
HPM-MVS_fast | | | 99.51 14 | 99.40 16 | 99.85 25 | 99.91 1 | 99.79 30 | 99.76 27 | 99.56 56 | 97.72 156 | 99.76 37 | 99.75 111 | 99.13 10 | 99.92 80 | 99.07 55 | 99.92 11 | 99.85 14 |
|
zzz-MVS | | | 99.49 15 | 99.36 21 | 99.89 4 | 99.90 3 | 99.86 10 | 99.36 196 | 99.47 160 | 98.79 49 | 99.68 53 | 99.81 62 | 98.43 81 | 99.97 11 | 98.88 74 | 99.90 23 | 99.83 29 |
|
HFP-MVS | | | 99.49 15 | 99.37 19 | 99.86 18 | 99.87 15 | 99.80 26 | 99.66 50 | 99.67 22 | 98.15 105 | 99.68 53 | 99.69 140 | 99.06 13 | 99.96 19 | 98.69 108 | 99.87 40 | 99.84 18 |
|
ACMMPR | | | 99.49 15 | 99.36 21 | 99.86 18 | 99.87 15 | 99.79 30 | 99.66 50 | 99.67 22 | 98.15 105 | 99.67 60 | 99.69 140 | 98.95 28 | 99.96 19 | 98.69 108 | 99.87 40 | 99.84 18 |
|
DeepC-MVS_fast | | 98.69 1 | 99.49 15 | 99.39 17 | 99.77 47 | 99.63 120 | 99.59 69 | 99.36 196 | 99.46 170 | 99.07 13 | 99.79 26 | 99.82 49 | 98.85 41 | 99.92 80 | 98.68 110 | 99.87 40 | 99.82 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
region2R | | | 99.48 19 | 99.35 24 | 99.87 11 | 99.88 11 | 99.80 26 | 99.65 57 | 99.66 27 | 98.13 107 | 99.66 65 | 99.68 146 | 98.96 25 | 99.96 19 | 98.62 117 | 99.87 40 | 99.84 18 |
|
APD-MVS_3200maxsize | | | 99.48 19 | 99.35 24 | 99.85 25 | 99.76 52 | 99.83 14 | 99.63 62 | 99.54 73 | 98.36 81 | 99.79 26 | 99.82 49 | 98.86 40 | 99.95 43 | 98.62 117 | 99.81 80 | 99.78 61 |
|
DELS-MVS | | | 99.48 19 | 99.42 13 | 99.65 72 | 99.72 80 | 99.40 100 | 99.05 270 | 99.66 27 | 99.14 6 | 99.57 91 | 99.80 76 | 98.46 79 | 99.94 54 | 99.57 4 | 99.84 65 | 99.60 130 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 99.47 22 | 99.33 29 | 99.87 11 | 99.87 15 | 99.81 24 | 99.64 60 | 99.67 22 | 98.08 118 | 99.55 96 | 99.64 166 | 98.91 36 | 99.96 19 | 98.72 103 | 99.90 23 | 99.82 36 |
|
ACMMP_NAP | | | 99.47 22 | 99.34 27 | 99.88 6 | 99.87 15 | 99.86 10 | 99.47 149 | 99.48 142 | 98.05 124 | 99.76 37 | 99.86 23 | 98.82 44 | 99.93 69 | 98.82 92 | 99.91 16 | 99.84 18 |
|
DPE-MVS |  | | 99.46 24 | 99.32 31 | 99.91 2 | 99.78 44 | 99.88 7 | 99.36 196 | 99.51 103 | 98.73 53 | 99.88 5 | 99.84 38 | 98.72 60 | 99.96 19 | 98.16 168 | 99.87 40 | 99.88 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSLP-MVS++ | | | 99.46 24 | 99.47 9 | 99.44 121 | 99.60 134 | 99.16 123 | 99.41 172 | 99.71 13 | 98.98 27 | 99.45 113 | 99.78 95 | 99.19 7 | 99.54 232 | 99.28 34 | 99.84 65 | 99.63 124 |
|
SR-MVS-dyc-post | | | 99.45 26 | 99.31 38 | 99.85 25 | 99.76 52 | 99.82 20 | 99.63 62 | 99.52 90 | 98.38 78 | 99.76 37 | 99.82 49 | 98.53 72 | 99.95 43 | 98.61 120 | 99.81 80 | 99.77 63 |
|
PGM-MVS | | | 99.45 26 | 99.31 38 | 99.86 18 | 99.87 15 | 99.78 37 | 99.58 88 | 99.65 32 | 97.84 141 | 99.71 46 | 99.80 76 | 99.12 11 | 99.97 11 | 98.33 155 | 99.87 40 | 99.83 29 |
|
CP-MVS | | | 99.45 26 | 99.32 31 | 99.85 25 | 99.83 36 | 99.75 38 | 99.69 37 | 99.52 90 | 98.07 119 | 99.53 99 | 99.63 173 | 98.93 35 | 99.97 11 | 98.74 99 | 99.91 16 | 99.83 29 |
|
ACMMP |  | | 99.45 26 | 99.32 31 | 99.82 35 | 99.89 8 | 99.67 52 | 99.62 68 | 99.69 18 | 98.12 109 | 99.63 73 | 99.84 38 | 98.73 59 | 99.96 19 | 98.55 134 | 99.83 72 | 99.81 41 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SMA-MVS |  | | 99.44 30 | 99.30 42 | 99.85 25 | 99.73 75 | 99.83 14 | 99.56 100 | 99.47 160 | 97.45 185 | 99.78 31 | 99.82 49 | 99.18 8 | 99.91 91 | 98.79 94 | 99.89 33 | 99.81 41 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
abl_6 | | | 99.44 30 | 99.31 38 | 99.83 33 | 99.85 25 | 99.75 38 | 99.66 50 | 99.59 43 | 98.13 107 | 99.82 20 | 99.81 62 | 98.60 69 | 99.96 19 | 98.46 143 | 99.88 36 | 99.79 53 |
|
mPP-MVS | | | 99.44 30 | 99.30 42 | 99.86 18 | 99.88 11 | 99.79 30 | 99.69 37 | 99.48 142 | 98.12 109 | 99.50 104 | 99.75 111 | 98.78 48 | 99.97 11 | 98.57 128 | 99.89 33 | 99.83 29 |
|
test1172 | | | 99.43 33 | 99.29 46 | 99.85 25 | 99.75 62 | 99.82 20 | 99.60 75 | 99.56 56 | 98.28 91 | 99.74 41 | 99.79 88 | 98.53 72 | 99.95 43 | 98.55 134 | 99.78 90 | 99.79 53 |
|
xxxxxxxxxxxxxcwj | | | 99.43 33 | 99.32 31 | 99.75 51 | 99.76 52 | 99.59 69 | 99.14 253 | 99.53 84 | 99.00 22 | 99.71 46 | 99.80 76 | 98.95 28 | 99.93 69 | 98.19 163 | 99.84 65 | 99.74 74 |
|
SR-MVS | | | 99.43 33 | 99.29 46 | 99.86 18 | 99.75 62 | 99.83 14 | 99.59 81 | 99.62 33 | 98.21 100 | 99.73 43 | 99.79 88 | 98.68 63 | 99.96 19 | 98.44 145 | 99.77 93 | 99.79 53 |
|
#test# | | | 99.43 33 | 99.29 46 | 99.86 18 | 99.87 15 | 99.80 26 | 99.55 109 | 99.67 22 | 97.83 142 | 99.68 53 | 99.69 140 | 99.06 13 | 99.96 19 | 98.39 147 | 99.87 40 | 99.84 18 |
|
MCST-MVS | | | 99.43 33 | 99.30 42 | 99.82 35 | 99.79 42 | 99.74 41 | 99.29 215 | 99.40 209 | 98.79 49 | 99.52 101 | 99.62 179 | 98.91 36 | 99.90 106 | 98.64 115 | 99.75 98 | 99.82 36 |
|
MSP-MVS | | | 99.42 38 | 99.27 52 | 99.88 6 | 99.89 8 | 99.80 26 | 99.67 45 | 99.50 122 | 98.70 55 | 99.77 33 | 99.49 224 | 98.21 97 | 99.95 43 | 98.46 143 | 99.77 93 | 99.88 5 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
UA-Net | | | 99.42 38 | 99.29 46 | 99.80 40 | 99.62 126 | 99.55 76 | 99.50 128 | 99.70 15 | 98.79 49 | 99.77 33 | 99.96 1 | 97.45 118 | 99.96 19 | 98.92 70 | 99.90 23 | 99.89 2 |
|
HPM-MVS |  | | 99.42 38 | 99.28 50 | 99.83 33 | 99.90 3 | 99.72 42 | 99.81 13 | 99.54 73 | 97.59 168 | 99.68 53 | 99.63 173 | 98.91 36 | 99.94 54 | 98.58 126 | 99.91 16 | 99.84 18 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CNVR-MVS | | | 99.42 38 | 99.30 42 | 99.78 45 | 99.62 126 | 99.71 44 | 99.26 231 | 99.52 90 | 98.82 44 | 99.39 132 | 99.71 129 | 98.96 25 | 99.85 131 | 98.59 125 | 99.80 84 | 99.77 63 |
|
SD-MVS | | | 99.41 42 | 99.52 6 | 99.05 167 | 99.74 70 | 99.68 49 | 99.46 152 | 99.52 90 | 99.11 7 | 99.88 5 | 99.91 5 | 99.43 1 | 97.70 349 | 98.72 103 | 99.93 10 | 99.77 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MVS_111021_LR | | | 99.41 42 | 99.33 29 | 99.65 72 | 99.77 49 | 99.51 86 | 98.94 300 | 99.85 6 | 98.82 44 | 99.65 70 | 99.74 117 | 98.51 75 | 99.80 161 | 98.83 88 | 99.89 33 | 99.64 120 |
|
MVS_111021_HR | | | 99.41 42 | 99.32 31 | 99.66 68 | 99.72 80 | 99.47 91 | 98.95 298 | 99.85 6 | 98.82 44 | 99.54 97 | 99.73 124 | 98.51 75 | 99.74 179 | 98.91 71 | 99.88 36 | 99.77 63 |
|
GST-MVS | | | 99.40 45 | 99.24 57 | 99.85 25 | 99.86 21 | 99.79 30 | 99.60 75 | 99.67 22 | 97.97 130 | 99.63 73 | 99.68 146 | 98.52 74 | 99.95 43 | 98.38 149 | 99.86 51 | 99.81 41 |
|
DROMVSNet | | | 99.40 45 | 99.35 24 | 99.55 92 | 99.52 149 | 99.50 87 | 99.84 6 | 99.58 49 | 98.35 82 | 99.68 53 | 99.64 166 | 98.19 98 | 99.71 196 | 99.59 1 | 99.80 84 | 99.43 171 |
|
HPM-MVS++ |  | | 99.39 47 | 99.23 59 | 99.87 11 | 99.75 62 | 99.84 13 | 99.43 163 | 99.51 103 | 98.68 57 | 99.27 159 | 99.53 211 | 98.64 68 | 99.96 19 | 98.44 145 | 99.80 84 | 99.79 53 |
|
SF-MVS | | | 99.38 48 | 99.24 57 | 99.79 43 | 99.79 42 | 99.68 49 | 99.57 93 | 99.54 73 | 97.82 147 | 99.71 46 | 99.80 76 | 98.95 28 | 99.93 69 | 98.19 163 | 99.84 65 | 99.74 74 |
|
MP-MVS-pluss | | | 99.37 49 | 99.20 62 | 99.88 6 | 99.90 3 | 99.87 9 | 99.30 211 | 99.52 90 | 97.18 211 | 99.60 84 | 99.79 88 | 98.79 47 | 99.95 43 | 98.83 88 | 99.91 16 | 99.83 29 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + GP. | | | 99.36 50 | 99.36 21 | 99.36 129 | 99.67 101 | 98.61 189 | 99.07 265 | 99.33 245 | 99.00 22 | 99.82 20 | 99.81 62 | 99.06 13 | 99.84 136 | 99.09 53 | 99.42 136 | 99.65 113 |
|
PVSNet_Blended_VisFu | | | 99.36 50 | 99.28 50 | 99.61 82 | 99.86 21 | 99.07 137 | 99.47 149 | 99.93 2 | 97.66 164 | 99.71 46 | 99.86 23 | 97.73 113 | 99.96 19 | 99.47 17 | 99.82 78 | 99.79 53 |
|
CS-MVS | | | 99.34 52 | 99.31 38 | 99.43 122 | 99.44 176 | 99.47 91 | 99.68 42 | 99.56 56 | 98.41 75 | 99.62 77 | 99.41 248 | 98.35 89 | 99.76 175 | 99.52 7 | 99.76 96 | 99.05 204 |
|
NCCC | | | 99.34 52 | 99.19 63 | 99.79 43 | 99.61 130 | 99.65 57 | 99.30 211 | 99.48 142 | 98.86 40 | 99.21 175 | 99.63 173 | 98.72 60 | 99.90 106 | 98.25 159 | 99.63 125 | 99.80 49 |
|
MP-MVS |  | | 99.33 54 | 99.15 66 | 99.87 11 | 99.88 11 | 99.82 20 | 99.66 50 | 99.46 170 | 98.09 114 | 99.48 108 | 99.74 117 | 98.29 93 | 99.96 19 | 97.93 186 | 99.87 40 | 99.82 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PS-MVSNAJ | | | 99.32 55 | 99.32 31 | 99.30 140 | 99.57 140 | 98.94 157 | 98.97 293 | 99.46 170 | 98.92 37 | 99.71 46 | 99.24 290 | 99.01 16 | 99.98 6 | 99.35 24 | 99.66 119 | 98.97 213 |
|
CSCG | | | 99.32 55 | 99.32 31 | 99.32 135 | 99.85 25 | 98.29 212 | 99.71 34 | 99.66 27 | 98.11 111 | 99.41 125 | 99.80 76 | 98.37 88 | 99.96 19 | 98.99 61 | 99.96 5 | 99.72 87 |
|
PHI-MVS | | | 99.30 57 | 99.17 65 | 99.70 64 | 99.56 144 | 99.52 84 | 99.58 88 | 99.80 8 | 97.12 217 | 99.62 77 | 99.73 124 | 98.58 70 | 99.90 106 | 98.61 120 | 99.91 16 | 99.68 103 |
|
DeepC-MVS | | 98.35 2 | 99.30 57 | 99.19 63 | 99.64 77 | 99.82 37 | 99.23 116 | 99.62 68 | 99.55 66 | 98.94 33 | 99.63 73 | 99.95 2 | 95.82 174 | 99.94 54 | 99.37 23 | 99.97 3 | 99.73 81 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xiu_mvs_v1_base_debu | | | 99.29 59 | 99.27 52 | 99.34 130 | 99.63 120 | 98.97 148 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 233 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 143 | 99.08 197 |
|
xiu_mvs_v1_base | | | 99.29 59 | 99.27 52 | 99.34 130 | 99.63 120 | 98.97 148 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 233 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 143 | 99.08 197 |
|
xiu_mvs_v1_base_debi | | | 99.29 59 | 99.27 52 | 99.34 130 | 99.63 120 | 98.97 148 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 233 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 143 | 99.08 197 |
|
CS-MVS-test | | | 99.27 62 | 99.22 60 | 99.40 124 | 99.39 189 | 99.60 65 | 99.67 45 | 99.56 56 | 98.30 89 | 99.47 109 | 99.25 288 | 98.27 95 | 99.79 164 | 99.41 22 | 99.66 119 | 98.81 223 |
|
APD-MVS |  | | 99.27 62 | 99.08 74 | 99.84 32 | 99.75 62 | 99.79 30 | 99.50 128 | 99.50 122 | 97.16 213 | 99.77 33 | 99.82 49 | 98.78 48 | 99.94 54 | 97.56 222 | 99.86 51 | 99.80 49 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
LS3D | | | 99.27 62 | 99.12 69 | 99.74 56 | 99.18 240 | 99.75 38 | 99.56 100 | 99.57 51 | 98.45 71 | 99.49 107 | 99.85 29 | 97.77 112 | 99.94 54 | 98.33 155 | 99.84 65 | 99.52 148 |
|
ETV-MVS | | | 99.26 65 | 99.21 61 | 99.40 124 | 99.46 170 | 99.30 108 | 99.56 100 | 99.52 90 | 98.52 65 | 99.44 117 | 99.27 286 | 98.41 85 | 99.86 125 | 99.10 52 | 99.59 128 | 99.04 205 |
|
xiu_mvs_v2_base | | | 99.26 65 | 99.25 56 | 99.29 143 | 99.53 147 | 98.91 161 | 99.02 279 | 99.45 182 | 98.80 48 | 99.71 46 | 99.26 287 | 98.94 31 | 99.98 6 | 99.34 28 | 99.23 148 | 98.98 212 |
|
CANet | | | 99.25 67 | 99.14 67 | 99.59 84 | 99.41 181 | 99.16 123 | 99.35 202 | 99.57 51 | 98.82 44 | 99.51 103 | 99.61 183 | 96.46 151 | 99.95 43 | 99.59 1 | 99.98 2 | 99.65 113 |
|
3Dnovator | | 97.25 9 | 99.24 68 | 99.05 76 | 99.81 38 | 99.12 253 | 99.66 54 | 99.84 6 | 99.74 10 | 99.09 10 | 98.92 228 | 99.90 7 | 95.94 168 | 99.98 6 | 98.95 65 | 99.92 11 | 99.79 53 |
|
ETH3D-3000-0.1 | | | 99.21 69 | 99.02 84 | 99.77 47 | 99.73 75 | 99.69 47 | 99.38 189 | 99.51 103 | 97.45 185 | 99.61 80 | 99.75 111 | 98.51 75 | 99.91 91 | 97.45 234 | 99.83 72 | 99.71 94 |
|
test_prior3 | | | 99.21 69 | 99.05 76 | 99.68 65 | 99.67 101 | 99.48 89 | 98.96 294 | 99.56 56 | 98.34 84 | 99.01 212 | 99.52 214 | 98.68 63 | 99.83 145 | 97.96 183 | 99.74 101 | 99.74 74 |
|
CHOSEN 1792x2688 | | | 99.19 71 | 99.10 71 | 99.45 117 | 99.89 8 | 98.52 198 | 99.39 184 | 99.94 1 | 98.73 53 | 99.11 193 | 99.89 10 | 95.50 184 | 99.94 54 | 99.50 10 | 99.97 3 | 99.89 2 |
|
F-COLMAP | | | 99.19 71 | 99.04 79 | 99.64 77 | 99.78 44 | 99.27 112 | 99.42 170 | 99.54 73 | 97.29 201 | 99.41 125 | 99.59 189 | 98.42 84 | 99.93 69 | 98.19 163 | 99.69 111 | 99.73 81 |
|
EIA-MVS | | | 99.18 73 | 99.09 73 | 99.45 117 | 99.49 161 | 99.18 120 | 99.67 45 | 99.53 84 | 97.66 164 | 99.40 130 | 99.44 239 | 98.10 103 | 99.81 156 | 98.94 66 | 99.62 126 | 99.35 178 |
|
3Dnovator+ | | 97.12 13 | 99.18 73 | 98.97 93 | 99.82 35 | 99.17 246 | 99.68 49 | 99.81 13 | 99.51 103 | 99.20 4 | 98.72 254 | 99.89 10 | 95.68 179 | 99.97 11 | 98.86 81 | 99.86 51 | 99.81 41 |
|
MVSFormer | | | 99.17 75 | 99.12 69 | 99.29 143 | 99.51 152 | 98.94 157 | 99.88 1 | 99.46 170 | 97.55 173 | 99.80 24 | 99.65 159 | 97.39 119 | 99.28 273 | 99.03 57 | 99.85 58 | 99.65 113 |
|
sss | | | 99.17 75 | 99.05 76 | 99.53 99 | 99.62 126 | 98.97 148 | 99.36 196 | 99.62 33 | 97.83 142 | 99.67 60 | 99.65 159 | 97.37 123 | 99.95 43 | 99.19 42 | 99.19 151 | 99.68 103 |
|
DP-MVS | | | 99.16 77 | 98.95 97 | 99.78 45 | 99.77 49 | 99.53 81 | 99.41 172 | 99.50 122 | 97.03 228 | 99.04 209 | 99.88 15 | 97.39 119 | 99.92 80 | 98.66 113 | 99.90 23 | 99.87 10 |
|
baseline | | | 99.15 78 | 99.02 84 | 99.53 99 | 99.66 110 | 99.14 128 | 99.72 32 | 99.48 142 | 98.35 82 | 99.42 121 | 99.84 38 | 96.07 162 | 99.79 164 | 99.51 9 | 99.14 155 | 99.67 106 |
|
diffmvs | | | 99.14 79 | 99.02 84 | 99.51 107 | 99.61 130 | 98.96 152 | 99.28 217 | 99.49 130 | 98.46 70 | 99.72 45 | 99.71 129 | 96.50 150 | 99.88 119 | 99.31 31 | 99.11 157 | 99.67 106 |
|
CNLPA | | | 99.14 79 | 98.99 89 | 99.59 84 | 99.58 138 | 99.41 98 | 99.16 247 | 99.44 191 | 98.45 71 | 99.19 181 | 99.49 224 | 98.08 104 | 99.89 114 | 97.73 204 | 99.75 98 | 99.48 159 |
|
CDPH-MVS | | | 99.13 81 | 98.91 101 | 99.80 40 | 99.75 62 | 99.71 44 | 99.15 251 | 99.41 203 | 96.60 259 | 99.60 84 | 99.55 202 | 98.83 43 | 99.90 106 | 97.48 229 | 99.83 72 | 99.78 61 |
|
casdiffmvs | | | 99.13 81 | 98.98 92 | 99.56 90 | 99.65 115 | 99.16 123 | 99.56 100 | 99.50 122 | 98.33 87 | 99.41 125 | 99.86 23 | 95.92 169 | 99.83 145 | 99.45 19 | 99.16 152 | 99.70 96 |
|
jason | | | 99.13 81 | 99.03 81 | 99.45 117 | 99.46 170 | 98.87 164 | 99.12 255 | 99.26 268 | 98.03 127 | 99.79 26 | 99.65 159 | 97.02 133 | 99.85 131 | 99.02 59 | 99.90 23 | 99.65 113 |
jason: jason. |
lupinMVS | | | 99.13 81 | 99.01 88 | 99.46 116 | 99.51 152 | 98.94 157 | 99.05 270 | 99.16 283 | 97.86 137 | 99.80 24 | 99.56 199 | 97.39 119 | 99.86 125 | 98.94 66 | 99.85 58 | 99.58 138 |
|
EPP-MVSNet | | | 99.13 81 | 98.99 89 | 99.53 99 | 99.65 115 | 99.06 138 | 99.81 13 | 99.33 245 | 97.43 189 | 99.60 84 | 99.88 15 | 97.14 128 | 99.84 136 | 99.13 49 | 98.94 172 | 99.69 99 |
|
MG-MVS | | | 99.13 81 | 99.02 84 | 99.45 117 | 99.57 140 | 98.63 186 | 99.07 265 | 99.34 238 | 98.99 25 | 99.61 80 | 99.82 49 | 97.98 107 | 99.87 122 | 97.00 259 | 99.80 84 | 99.85 14 |
|
testtj | | | 99.12 87 | 98.87 106 | 99.86 18 | 99.72 80 | 99.79 30 | 99.44 157 | 99.51 103 | 97.29 201 | 99.59 87 | 99.74 117 | 98.15 102 | 99.96 19 | 96.74 274 | 99.69 111 | 99.81 41 |
|
CHOSEN 280x420 | | | 99.12 87 | 99.13 68 | 99.08 163 | 99.66 110 | 97.89 233 | 98.43 339 | 99.71 13 | 98.88 39 | 99.62 77 | 99.76 106 | 96.63 146 | 99.70 203 | 99.46 18 | 99.99 1 | 99.66 109 |
|
DP-MVS Recon | | | 99.12 87 | 98.95 97 | 99.65 72 | 99.74 70 | 99.70 46 | 99.27 222 | 99.57 51 | 96.40 276 | 99.42 121 | 99.68 146 | 98.75 56 | 99.80 161 | 97.98 182 | 99.72 105 | 99.44 169 |
|
Vis-MVSNet |  | | 99.12 87 | 98.97 93 | 99.56 90 | 99.78 44 | 99.10 133 | 99.68 42 | 99.66 27 | 98.49 67 | 99.86 11 | 99.87 20 | 94.77 213 | 99.84 136 | 99.19 42 | 99.41 137 | 99.74 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TAMVS | | | 99.12 87 | 99.08 74 | 99.24 151 | 99.46 170 | 98.55 192 | 99.51 122 | 99.46 170 | 98.09 114 | 99.45 113 | 99.82 49 | 98.34 90 | 99.51 233 | 98.70 105 | 98.93 173 | 99.67 106 |
|
VNet | | | 99.11 92 | 98.90 102 | 99.73 58 | 99.52 149 | 99.56 74 | 99.41 172 | 99.39 213 | 99.01 18 | 99.74 41 | 99.78 95 | 95.56 182 | 99.92 80 | 99.52 7 | 98.18 210 | 99.72 87 |
|
CPTT-MVS | | | 99.11 92 | 98.90 102 | 99.74 56 | 99.80 41 | 99.46 93 | 99.59 81 | 99.49 130 | 97.03 228 | 99.63 73 | 99.69 140 | 97.27 126 | 99.96 19 | 97.82 195 | 99.84 65 | 99.81 41 |
|
HyFIR lowres test | | | 99.11 92 | 98.92 99 | 99.65 72 | 99.90 3 | 99.37 101 | 99.02 279 | 99.91 3 | 97.67 163 | 99.59 87 | 99.75 111 | 95.90 171 | 99.73 186 | 99.53 6 | 99.02 168 | 99.86 11 |
|
MVS_Test | | | 99.10 95 | 98.97 93 | 99.48 111 | 99.49 161 | 99.14 128 | 99.67 45 | 99.34 238 | 97.31 199 | 99.58 89 | 99.76 106 | 97.65 115 | 99.82 152 | 98.87 78 | 99.07 163 | 99.46 166 |
|
1121 | | | 99.09 96 | 98.87 106 | 99.75 51 | 99.74 70 | 99.60 65 | 99.27 222 | 99.48 142 | 96.82 244 | 99.25 166 | 99.65 159 | 98.38 86 | 99.93 69 | 97.53 225 | 99.67 118 | 99.73 81 |
|
CDS-MVSNet | | | 99.09 96 | 99.03 81 | 99.25 149 | 99.42 178 | 98.73 178 | 99.45 153 | 99.46 170 | 98.11 111 | 99.46 112 | 99.77 102 | 98.01 106 | 99.37 255 | 98.70 105 | 98.92 175 | 99.66 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PVSNet_Blended | | | 99.08 98 | 98.97 93 | 99.42 123 | 99.76 52 | 98.79 175 | 98.78 315 | 99.91 3 | 96.74 246 | 99.67 60 | 99.49 224 | 97.53 116 | 99.88 119 | 98.98 62 | 99.85 58 | 99.60 130 |
|
OMC-MVS | | | 99.08 98 | 99.04 79 | 99.20 154 | 99.67 101 | 98.22 216 | 99.28 217 | 99.52 90 | 98.07 119 | 99.66 65 | 99.81 62 | 97.79 111 | 99.78 169 | 97.79 197 | 99.81 80 | 99.60 130 |
|
ETH3D cwj APD-0.16 | | | 99.06 100 | 98.84 112 | 99.72 61 | 99.51 152 | 99.60 65 | 99.23 236 | 99.44 191 | 97.04 226 | 99.39 132 | 99.67 152 | 98.30 92 | 99.92 80 | 97.27 241 | 99.69 111 | 99.64 120 |
|
WTY-MVS | | | 99.06 100 | 98.88 105 | 99.61 82 | 99.62 126 | 99.16 123 | 99.37 192 | 99.56 56 | 98.04 125 | 99.53 99 | 99.62 179 | 96.84 138 | 99.94 54 | 98.85 83 | 98.49 197 | 99.72 87 |
|
IS-MVSNet | | | 99.05 102 | 98.87 106 | 99.57 88 | 99.73 75 | 99.32 104 | 99.75 28 | 99.20 278 | 98.02 128 | 99.56 92 | 99.86 23 | 96.54 149 | 99.67 208 | 98.09 172 | 99.13 156 | 99.73 81 |
|
PAPM_NR | | | 99.04 103 | 98.84 112 | 99.66 68 | 99.74 70 | 99.44 95 | 99.39 184 | 99.38 219 | 97.70 158 | 99.28 156 | 99.28 283 | 98.34 90 | 99.85 131 | 96.96 263 | 99.45 134 | 99.69 99 |
|
API-MVS | | | 99.04 103 | 99.03 81 | 99.06 165 | 99.40 186 | 99.31 107 | 99.55 109 | 99.56 56 | 98.54 63 | 99.33 147 | 99.39 256 | 98.76 53 | 99.78 169 | 96.98 261 | 99.78 90 | 98.07 332 |
|
mvs_anonymous | | | 99.03 105 | 98.99 89 | 99.16 158 | 99.38 191 | 98.52 198 | 99.51 122 | 99.38 219 | 97.79 148 | 99.38 135 | 99.81 62 | 97.30 124 | 99.45 238 | 99.35 24 | 98.99 170 | 99.51 154 |
|
train_agg | | | 99.02 106 | 98.77 120 | 99.77 47 | 99.67 101 | 99.65 57 | 99.05 270 | 99.41 203 | 96.28 280 | 98.95 223 | 99.49 224 | 98.76 53 | 99.91 91 | 97.63 213 | 99.72 105 | 99.75 69 |
|
canonicalmvs | | | 99.02 106 | 98.86 110 | 99.51 107 | 99.42 178 | 99.32 104 | 99.80 17 | 99.48 142 | 98.63 58 | 99.31 149 | 98.81 325 | 97.09 130 | 99.75 178 | 99.27 36 | 97.90 220 | 99.47 164 |
|
PLC |  | 97.94 4 | 99.02 106 | 98.85 111 | 99.53 99 | 99.66 110 | 99.01 143 | 99.24 235 | 99.52 90 | 96.85 240 | 99.27 159 | 99.48 230 | 98.25 96 | 99.91 91 | 97.76 200 | 99.62 126 | 99.65 113 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
agg_prior1 | | | 99.01 109 | 98.76 122 | 99.76 50 | 99.67 101 | 99.62 61 | 98.99 286 | 99.40 209 | 96.26 283 | 98.87 236 | 99.49 224 | 98.77 51 | 99.91 91 | 97.69 210 | 99.72 105 | 99.75 69 |
|
AdaColmap |  | | 99.01 109 | 98.80 117 | 99.66 68 | 99.56 144 | 99.54 78 | 99.18 245 | 99.70 15 | 98.18 104 | 99.35 143 | 99.63 173 | 96.32 156 | 99.90 106 | 97.48 229 | 99.77 93 | 99.55 141 |
|
1112_ss | | | 98.98 111 | 98.77 120 | 99.59 84 | 99.68 100 | 99.02 141 | 99.25 233 | 99.48 142 | 97.23 208 | 99.13 189 | 99.58 192 | 96.93 137 | 99.90 106 | 98.87 78 | 98.78 184 | 99.84 18 |
|
MSDG | | | 98.98 111 | 98.80 117 | 99.53 99 | 99.76 52 | 99.19 118 | 98.75 318 | 99.55 66 | 97.25 205 | 99.47 109 | 99.77 102 | 97.82 110 | 99.87 122 | 96.93 266 | 99.90 23 | 99.54 143 |
|
CANet_DTU | | | 98.97 113 | 98.87 106 | 99.25 149 | 99.33 201 | 98.42 209 | 99.08 264 | 99.30 260 | 99.16 5 | 99.43 118 | 99.75 111 | 95.27 192 | 99.97 11 | 98.56 131 | 99.95 6 | 99.36 177 |
|
DPM-MVS | | | 98.95 114 | 98.71 126 | 99.66 68 | 99.63 120 | 99.55 76 | 98.64 328 | 99.10 289 | 97.93 133 | 99.42 121 | 99.55 202 | 98.67 66 | 99.80 161 | 95.80 296 | 99.68 116 | 99.61 128 |
|
114514_t | | | 98.93 115 | 98.67 130 | 99.72 61 | 99.85 25 | 99.53 81 | 99.62 68 | 99.59 43 | 92.65 340 | 99.71 46 | 99.78 95 | 98.06 105 | 99.90 106 | 98.84 85 | 99.91 16 | 99.74 74 |
|
PS-MVSNAJss | | | 98.92 116 | 98.92 99 | 98.90 192 | 98.78 302 | 98.53 194 | 99.78 22 | 99.54 73 | 98.07 119 | 99.00 217 | 99.76 106 | 99.01 16 | 99.37 255 | 99.13 49 | 97.23 252 | 98.81 223 |
|
Test_1112_low_res | | | 98.89 117 | 98.66 133 | 99.57 88 | 99.69 96 | 98.95 154 | 99.03 276 | 99.47 160 | 96.98 230 | 99.15 187 | 99.23 291 | 96.77 142 | 99.89 114 | 98.83 88 | 98.78 184 | 99.86 11 |
|
AllTest | | | 98.87 118 | 98.72 124 | 99.31 136 | 99.86 21 | 98.48 204 | 99.56 100 | 99.61 35 | 97.85 139 | 99.36 140 | 99.85 29 | 95.95 166 | 99.85 131 | 96.66 280 | 99.83 72 | 99.59 134 |
|
UGNet | | | 98.87 118 | 98.69 128 | 99.40 124 | 99.22 231 | 98.72 179 | 99.44 157 | 99.68 19 | 99.24 3 | 99.18 184 | 99.42 244 | 92.74 267 | 99.96 19 | 99.34 28 | 99.94 9 | 99.53 147 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 98.87 118 | 98.72 124 | 99.31 136 | 99.71 86 | 98.88 163 | 99.80 17 | 99.44 191 | 97.91 135 | 99.36 140 | 99.78 95 | 95.49 185 | 99.43 247 | 97.91 187 | 99.11 157 | 99.62 126 |
|
test_yl | | | 98.86 121 | 98.63 135 | 99.54 93 | 99.49 161 | 99.18 120 | 99.50 128 | 99.07 294 | 98.22 98 | 99.61 80 | 99.51 218 | 95.37 188 | 99.84 136 | 98.60 123 | 98.33 200 | 99.59 134 |
|
DCV-MVSNet | | | 98.86 121 | 98.63 135 | 99.54 93 | 99.49 161 | 99.18 120 | 99.50 128 | 99.07 294 | 98.22 98 | 99.61 80 | 99.51 218 | 95.37 188 | 99.84 136 | 98.60 123 | 98.33 200 | 99.59 134 |
|
mvs-test1 | | | 98.86 121 | 98.84 112 | 98.89 195 | 99.33 201 | 97.77 239 | 99.44 157 | 99.30 260 | 98.47 68 | 99.10 196 | 99.43 241 | 96.78 140 | 99.95 43 | 98.73 101 | 99.02 168 | 98.96 215 |
|
EPNet | | | 98.86 121 | 98.71 126 | 99.30 140 | 97.20 348 | 98.18 217 | 99.62 68 | 98.91 311 | 99.28 2 | 98.63 272 | 99.81 62 | 95.96 165 | 99.99 1 | 99.24 38 | 99.72 105 | 99.73 81 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 98.86 121 | 98.80 117 | 99.03 170 | 99.76 52 | 98.79 175 | 99.28 217 | 99.91 3 | 97.42 191 | 99.67 60 | 99.37 260 | 97.53 116 | 99.88 119 | 98.98 62 | 97.29 251 | 98.42 315 |
|
ab-mvs | | | 98.86 121 | 98.63 135 | 99.54 93 | 99.64 117 | 99.19 118 | 99.44 157 | 99.54 73 | 97.77 150 | 99.30 151 | 99.81 62 | 94.20 235 | 99.93 69 | 99.17 45 | 98.82 181 | 99.49 158 |
|
MAR-MVS | | | 98.86 121 | 98.63 135 | 99.54 93 | 99.37 193 | 99.66 54 | 99.45 153 | 99.54 73 | 96.61 257 | 99.01 212 | 99.40 252 | 97.09 130 | 99.86 125 | 97.68 212 | 99.53 132 | 99.10 192 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
COLMAP_ROB |  | 97.56 6 | 98.86 121 | 98.75 123 | 99.17 157 | 99.88 11 | 98.53 194 | 99.34 205 | 99.59 43 | 97.55 173 | 98.70 261 | 99.89 10 | 95.83 173 | 99.90 106 | 98.10 171 | 99.90 23 | 99.08 197 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GeoE | | | 98.85 129 | 98.62 140 | 99.53 99 | 99.61 130 | 99.08 135 | 99.80 17 | 99.51 103 | 97.10 221 | 99.31 149 | 99.78 95 | 95.23 196 | 99.77 171 | 98.21 161 | 99.03 166 | 99.75 69 |
|
HY-MVS | | 97.30 7 | 98.85 129 | 98.64 134 | 99.47 114 | 99.42 178 | 99.08 135 | 99.62 68 | 99.36 229 | 97.39 194 | 99.28 156 | 99.68 146 | 96.44 153 | 99.92 80 | 98.37 151 | 98.22 206 | 99.40 175 |
|
PVSNet | | 96.02 17 | 98.85 129 | 98.84 112 | 98.89 195 | 99.73 75 | 97.28 252 | 98.32 345 | 99.60 40 | 97.86 137 | 99.50 104 | 99.57 196 | 96.75 143 | 99.86 125 | 98.56 131 | 99.70 110 | 99.54 143 |
|
PatchMatch-RL | | | 98.84 132 | 98.62 140 | 99.52 105 | 99.71 86 | 99.28 110 | 99.06 268 | 99.77 9 | 97.74 155 | 99.50 104 | 99.53 211 | 95.41 186 | 99.84 136 | 97.17 252 | 99.64 123 | 99.44 169 |
|
Effi-MVS+ | | | 98.81 133 | 98.59 146 | 99.48 111 | 99.46 170 | 99.12 132 | 98.08 351 | 99.50 122 | 97.50 181 | 99.38 135 | 99.41 248 | 96.37 155 | 99.81 156 | 99.11 51 | 98.54 194 | 99.51 154 |
|
alignmvs | | | 98.81 133 | 98.56 148 | 99.58 87 | 99.43 177 | 99.42 97 | 99.51 122 | 98.96 304 | 98.61 60 | 99.35 143 | 98.92 322 | 94.78 210 | 99.77 171 | 99.35 24 | 98.11 216 | 99.54 143 |
|
DeepPCF-MVS | | 98.18 3 | 98.81 133 | 99.37 19 | 97.12 317 | 99.60 134 | 91.75 352 | 98.61 329 | 99.44 191 | 99.35 1 | 99.83 17 | 99.85 29 | 98.70 62 | 99.81 156 | 99.02 59 | 99.91 16 | 99.81 41 |
|
PMMVS | | | 98.80 136 | 98.62 140 | 99.34 130 | 99.27 219 | 98.70 180 | 98.76 317 | 99.31 256 | 97.34 196 | 99.21 175 | 99.07 307 | 97.20 127 | 99.82 152 | 98.56 131 | 98.87 178 | 99.52 148 |
|
Effi-MVS+-dtu | | | 98.78 137 | 98.89 104 | 98.47 247 | 99.33 201 | 96.91 279 | 99.57 93 | 99.30 260 | 98.47 68 | 99.41 125 | 98.99 316 | 96.78 140 | 99.74 179 | 98.73 101 | 99.38 138 | 98.74 239 |
|
FIs | | | 98.78 137 | 98.63 135 | 99.23 153 | 99.18 240 | 99.54 78 | 99.83 10 | 99.59 43 | 98.28 91 | 98.79 248 | 99.81 62 | 96.75 143 | 99.37 255 | 99.08 54 | 96.38 270 | 98.78 227 |
|
Fast-Effi-MVS+-dtu | | | 98.77 139 | 98.83 116 | 98.60 228 | 99.41 181 | 96.99 273 | 99.52 118 | 99.49 130 | 98.11 111 | 99.24 167 | 99.34 269 | 96.96 136 | 99.79 164 | 97.95 185 | 99.45 134 | 99.02 208 |
|
FC-MVSNet-test | | | 98.75 140 | 98.62 140 | 99.15 160 | 99.08 262 | 99.45 94 | 99.86 5 | 99.60 40 | 98.23 97 | 98.70 261 | 99.82 49 | 96.80 139 | 99.22 283 | 99.07 55 | 96.38 270 | 98.79 226 |
|
XVG-OURS | | | 98.73 141 | 98.68 129 | 98.88 198 | 99.70 93 | 97.73 241 | 98.92 301 | 99.55 66 | 98.52 65 | 99.45 113 | 99.84 38 | 95.27 192 | 99.91 91 | 98.08 176 | 98.84 180 | 99.00 209 |
|
ETH3 D test6400 | | | 98.70 142 | 98.35 158 | 99.73 58 | 99.69 96 | 99.60 65 | 99.16 247 | 99.45 182 | 95.42 309 | 99.27 159 | 99.60 186 | 97.39 119 | 99.91 91 | 95.36 307 | 99.83 72 | 99.70 96 |
|
Fast-Effi-MVS+ | | | 98.70 142 | 98.43 153 | 99.51 107 | 99.51 152 | 99.28 110 | 99.52 118 | 99.47 160 | 96.11 298 | 99.01 212 | 99.34 269 | 96.20 160 | 99.84 136 | 97.88 189 | 98.82 181 | 99.39 176 |
|
XVG-OURS-SEG-HR | | | 98.69 144 | 98.62 140 | 98.89 195 | 99.71 86 | 97.74 240 | 99.12 255 | 99.54 73 | 98.44 74 | 99.42 121 | 99.71 129 | 94.20 235 | 99.92 80 | 98.54 136 | 98.90 177 | 99.00 209 |
|
1314 | | | 98.68 145 | 98.54 149 | 99.11 162 | 98.89 286 | 98.65 184 | 99.27 222 | 99.49 130 | 96.89 238 | 97.99 309 | 99.56 199 | 97.72 114 | 99.83 145 | 97.74 203 | 99.27 146 | 98.84 222 |
|
EI-MVSNet | | | 98.67 146 | 98.67 130 | 98.68 225 | 99.35 196 | 97.97 227 | 99.50 128 | 99.38 219 | 96.93 237 | 99.20 178 | 99.83 42 | 97.87 108 | 99.36 259 | 98.38 149 | 97.56 232 | 98.71 243 |
|
test_djsdf | | | 98.67 146 | 98.57 147 | 98.98 176 | 98.70 313 | 98.91 161 | 99.88 1 | 99.46 170 | 97.55 173 | 99.22 172 | 99.88 15 | 95.73 177 | 99.28 273 | 99.03 57 | 97.62 227 | 98.75 235 |
|
QAPM | | | 98.67 146 | 98.30 163 | 99.80 40 | 99.20 235 | 99.67 52 | 99.77 24 | 99.72 11 | 94.74 321 | 98.73 253 | 99.90 7 | 95.78 175 | 99.98 6 | 96.96 263 | 99.88 36 | 99.76 68 |
|
nrg030 | | | 98.64 149 | 98.42 154 | 99.28 146 | 99.05 268 | 99.69 47 | 99.81 13 | 99.46 170 | 98.04 125 | 99.01 212 | 99.82 49 | 96.69 145 | 99.38 252 | 99.34 28 | 94.59 310 | 98.78 227 |
|
PAPR | | | 98.63 150 | 98.34 159 | 99.51 107 | 99.40 186 | 99.03 140 | 98.80 313 | 99.36 229 | 96.33 277 | 99.00 217 | 99.12 305 | 98.46 79 | 99.84 136 | 95.23 309 | 99.37 142 | 99.66 109 |
|
RRT_MVS | | | 98.60 151 | 98.44 152 | 99.05 167 | 98.88 287 | 99.14 128 | 99.49 138 | 99.38 219 | 97.76 151 | 99.29 154 | 99.86 23 | 95.38 187 | 99.36 259 | 98.81 93 | 97.16 256 | 98.64 275 |
|
CVMVSNet | | | 98.57 152 | 98.67 130 | 98.30 265 | 99.35 196 | 95.59 312 | 99.50 128 | 99.55 66 | 98.60 61 | 99.39 132 | 99.83 42 | 94.48 227 | 99.45 238 | 98.75 98 | 98.56 193 | 99.85 14 |
|
MVSTER | | | 98.49 153 | 98.32 161 | 99.00 174 | 99.35 196 | 99.02 141 | 99.54 112 | 99.38 219 | 97.41 192 | 99.20 178 | 99.73 124 | 93.86 247 | 99.36 259 | 98.87 78 | 97.56 232 | 98.62 285 |
|
OpenMVS |  | 96.50 16 | 98.47 154 | 98.12 172 | 99.52 105 | 99.04 269 | 99.53 81 | 99.82 11 | 99.72 11 | 94.56 324 | 98.08 304 | 99.88 15 | 94.73 216 | 99.98 6 | 97.47 231 | 99.76 96 | 99.06 203 |
|
IterMVS-LS | | | 98.46 155 | 98.42 154 | 98.58 232 | 99.59 136 | 98.00 225 | 99.37 192 | 99.43 199 | 96.94 236 | 99.07 203 | 99.59 189 | 97.87 108 | 99.03 310 | 98.32 157 | 95.62 290 | 98.71 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
anonymousdsp | | | 98.44 156 | 98.28 164 | 98.94 182 | 98.50 328 | 98.96 152 | 99.77 24 | 99.50 122 | 97.07 223 | 98.87 236 | 99.77 102 | 94.76 214 | 99.28 273 | 98.66 113 | 97.60 228 | 98.57 300 |
|
jajsoiax | | | 98.43 157 | 98.28 164 | 98.88 198 | 98.60 323 | 98.43 207 | 99.82 11 | 99.53 84 | 98.19 101 | 98.63 272 | 99.80 76 | 93.22 257 | 99.44 243 | 99.22 39 | 97.50 238 | 98.77 231 |
|
tttt0517 | | | 98.42 158 | 98.14 170 | 99.28 146 | 99.66 110 | 98.38 210 | 99.74 31 | 96.85 356 | 97.68 160 | 99.79 26 | 99.74 117 | 91.39 303 | 99.89 114 | 98.83 88 | 99.56 129 | 99.57 139 |
|
BH-untuned | | | 98.42 158 | 98.36 156 | 98.59 229 | 99.49 161 | 96.70 285 | 99.27 222 | 99.13 287 | 97.24 207 | 98.80 246 | 99.38 257 | 95.75 176 | 99.74 179 | 97.07 257 | 99.16 152 | 99.33 181 |
|
D2MVS | | | 98.41 160 | 98.50 150 | 98.15 276 | 99.26 221 | 96.62 289 | 99.40 180 | 99.61 35 | 97.71 157 | 98.98 219 | 99.36 263 | 96.04 163 | 99.67 208 | 98.70 105 | 97.41 247 | 98.15 330 |
|
BH-RMVSNet | | | 98.41 160 | 98.08 177 | 99.40 124 | 99.41 181 | 98.83 171 | 99.30 211 | 98.77 321 | 97.70 158 | 98.94 225 | 99.65 159 | 92.91 263 | 99.74 179 | 96.52 282 | 99.55 131 | 99.64 120 |
|
mvs_tets | | | 98.40 162 | 98.23 166 | 98.91 190 | 98.67 316 | 98.51 200 | 99.66 50 | 99.53 84 | 98.19 101 | 98.65 270 | 99.81 62 | 92.75 265 | 99.44 243 | 99.31 31 | 97.48 242 | 98.77 231 |
|
XXY-MVS | | | 98.38 163 | 98.09 176 | 99.24 151 | 99.26 221 | 99.32 104 | 99.56 100 | 99.55 66 | 97.45 185 | 98.71 255 | 99.83 42 | 93.23 255 | 99.63 223 | 98.88 74 | 96.32 272 | 98.76 233 |
|
ACMM | | 97.58 5 | 98.37 164 | 98.34 159 | 98.48 243 | 99.41 181 | 97.10 260 | 99.56 100 | 99.45 182 | 98.53 64 | 99.04 209 | 99.85 29 | 93.00 259 | 99.71 196 | 98.74 99 | 97.45 243 | 98.64 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thisisatest0530 | | | 98.35 165 | 98.03 182 | 99.31 136 | 99.63 120 | 98.56 191 | 99.54 112 | 96.75 358 | 97.53 178 | 99.73 43 | 99.65 159 | 91.25 306 | 99.89 114 | 98.62 117 | 99.56 129 | 99.48 159 |
|
tpmrst | | | 98.33 166 | 98.48 151 | 97.90 292 | 99.16 248 | 94.78 332 | 99.31 209 | 99.11 288 | 97.27 203 | 99.45 113 | 99.59 189 | 95.33 190 | 99.84 136 | 98.48 139 | 98.61 187 | 99.09 196 |
|
baseline1 | | | 98.31 167 | 97.95 192 | 99.38 128 | 99.50 159 | 98.74 177 | 99.59 81 | 98.93 306 | 98.41 75 | 99.14 188 | 99.60 186 | 94.59 222 | 99.79 164 | 98.48 139 | 93.29 327 | 99.61 128 |
|
PatchmatchNet |  | | 98.31 167 | 98.36 156 | 98.19 273 | 99.16 248 | 95.32 321 | 99.27 222 | 98.92 308 | 97.37 195 | 99.37 137 | 99.58 192 | 94.90 204 | 99.70 203 | 97.43 236 | 99.21 149 | 99.54 143 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Anonymous202405211 | | | 98.30 169 | 97.98 187 | 99.26 148 | 99.57 140 | 98.16 218 | 99.41 172 | 98.55 337 | 96.03 303 | 99.19 181 | 99.74 117 | 91.87 290 | 99.92 80 | 99.16 47 | 98.29 205 | 99.70 96 |
|
VPA-MVSNet | | | 98.29 170 | 97.95 192 | 99.30 140 | 99.16 248 | 99.54 78 | 99.50 128 | 99.58 49 | 98.27 93 | 99.35 143 | 99.37 260 | 92.53 277 | 99.65 215 | 99.35 24 | 94.46 311 | 98.72 241 |
|
UniMVSNet (Re) | | | 98.29 170 | 98.00 185 | 99.13 161 | 99.00 274 | 99.36 102 | 99.49 138 | 99.51 103 | 97.95 131 | 98.97 221 | 99.13 302 | 96.30 157 | 99.38 252 | 98.36 153 | 93.34 326 | 98.66 271 |
|
HQP_MVS | | | 98.27 172 | 98.22 167 | 98.44 252 | 99.29 214 | 96.97 275 | 99.39 184 | 99.47 160 | 98.97 30 | 99.11 193 | 99.61 183 | 92.71 270 | 99.69 206 | 97.78 198 | 97.63 225 | 98.67 263 |
|
UniMVSNet_NR-MVSNet | | | 98.22 173 | 97.97 188 | 98.96 179 | 98.92 284 | 98.98 145 | 99.48 144 | 99.53 84 | 97.76 151 | 98.71 255 | 99.46 237 | 96.43 154 | 99.22 283 | 98.57 128 | 92.87 333 | 98.69 251 |
|
LPG-MVS_test | | | 98.22 173 | 98.13 171 | 98.49 241 | 99.33 201 | 97.05 266 | 99.58 88 | 99.55 66 | 97.46 182 | 99.24 167 | 99.83 42 | 92.58 275 | 99.72 190 | 98.09 172 | 97.51 236 | 98.68 256 |
|
RPSCF | | | 98.22 173 | 98.62 140 | 96.99 318 | 99.82 37 | 91.58 353 | 99.72 32 | 99.44 191 | 96.61 257 | 99.66 65 | 99.89 10 | 95.92 169 | 99.82 152 | 97.46 232 | 99.10 160 | 99.57 139 |
|
ADS-MVSNet | | | 98.20 176 | 98.08 177 | 98.56 235 | 99.33 201 | 96.48 293 | 99.23 236 | 99.15 284 | 96.24 285 | 99.10 196 | 99.67 152 | 94.11 239 | 99.71 196 | 96.81 271 | 99.05 164 | 99.48 159 |
|
OPM-MVS | | | 98.19 177 | 98.10 173 | 98.45 249 | 98.88 287 | 97.07 264 | 99.28 217 | 99.38 219 | 98.57 62 | 99.22 172 | 99.81 62 | 92.12 286 | 99.66 211 | 98.08 176 | 97.54 234 | 98.61 294 |
|
SCA | | | 98.19 177 | 98.16 168 | 98.27 270 | 99.30 210 | 95.55 313 | 99.07 265 | 98.97 302 | 97.57 171 | 99.43 118 | 99.57 196 | 92.72 268 | 99.74 179 | 97.58 217 | 99.20 150 | 99.52 148 |
|
miper_ehance_all_eth | | | 98.18 179 | 98.10 173 | 98.41 254 | 99.23 227 | 97.72 242 | 98.72 321 | 99.31 256 | 96.60 259 | 98.88 234 | 99.29 281 | 97.29 125 | 99.13 297 | 97.60 215 | 95.99 279 | 98.38 320 |
|
CR-MVSNet | | | 98.17 180 | 97.93 195 | 98.87 202 | 99.18 240 | 98.49 202 | 99.22 241 | 99.33 245 | 96.96 232 | 99.56 92 | 99.38 257 | 94.33 231 | 99.00 315 | 94.83 315 | 98.58 190 | 99.14 189 |
|
miper_enhance_ethall | | | 98.16 181 | 98.08 177 | 98.41 254 | 98.96 281 | 97.72 242 | 98.45 338 | 99.32 253 | 96.95 234 | 98.97 221 | 99.17 297 | 97.06 132 | 99.22 283 | 97.86 191 | 95.99 279 | 98.29 323 |
|
bset_n11_16_dypcd | | | 98.16 181 | 97.97 188 | 98.73 220 | 98.26 333 | 98.28 214 | 97.99 353 | 98.01 346 | 97.68 160 | 99.10 196 | 99.63 173 | 95.68 179 | 99.15 293 | 98.78 97 | 96.55 265 | 98.75 235 |
|
CLD-MVS | | | 98.16 181 | 98.10 173 | 98.33 261 | 99.29 214 | 96.82 282 | 98.75 318 | 99.44 191 | 97.83 142 | 99.13 189 | 99.55 202 | 92.92 261 | 99.67 208 | 98.32 157 | 97.69 224 | 98.48 306 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thisisatest0515 | | | 98.14 184 | 97.79 206 | 99.19 155 | 99.50 159 | 98.50 201 | 98.61 329 | 96.82 357 | 96.95 234 | 99.54 97 | 99.43 241 | 91.66 299 | 99.86 125 | 98.08 176 | 99.51 133 | 99.22 186 |
|
pmmvs4 | | | 98.13 185 | 97.90 197 | 98.81 213 | 98.61 322 | 98.87 164 | 98.99 286 | 99.21 277 | 96.44 272 | 99.06 207 | 99.58 192 | 95.90 171 | 99.11 302 | 97.18 251 | 96.11 276 | 98.46 312 |
|
WR-MVS_H | | | 98.13 185 | 97.87 202 | 98.90 192 | 99.02 272 | 98.84 168 | 99.70 35 | 99.59 43 | 97.27 203 | 98.40 289 | 99.19 296 | 95.53 183 | 99.23 280 | 98.34 154 | 93.78 322 | 98.61 294 |
|
cl_fuxian | | | 98.12 187 | 98.04 181 | 98.38 258 | 99.30 210 | 97.69 245 | 98.81 312 | 99.33 245 | 96.67 251 | 98.83 242 | 99.34 269 | 97.11 129 | 98.99 316 | 97.58 217 | 95.34 296 | 98.48 306 |
|
ACMH | | 97.28 8 | 98.10 188 | 97.99 186 | 98.44 252 | 99.41 181 | 96.96 277 | 99.60 75 | 99.56 56 | 98.09 114 | 98.15 302 | 99.91 5 | 90.87 310 | 99.70 203 | 98.88 74 | 97.45 243 | 98.67 263 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240529 | | | 98.09 189 | 97.68 221 | 99.34 130 | 99.66 110 | 98.44 206 | 99.40 180 | 99.43 199 | 93.67 331 | 99.22 172 | 99.89 10 | 90.23 316 | 99.93 69 | 99.26 37 | 98.33 200 | 99.66 109 |
|
CP-MVSNet | | | 98.09 189 | 97.78 209 | 99.01 172 | 98.97 280 | 99.24 115 | 99.67 45 | 99.46 170 | 97.25 205 | 98.48 284 | 99.64 166 | 93.79 248 | 99.06 306 | 98.63 116 | 94.10 318 | 98.74 239 |
|
DU-MVS | | | 98.08 191 | 97.79 206 | 98.96 179 | 98.87 291 | 98.98 145 | 99.41 172 | 99.45 182 | 97.87 136 | 98.71 255 | 99.50 221 | 94.82 207 | 99.22 283 | 98.57 128 | 92.87 333 | 98.68 256 |
|
v2v482 | | | 98.06 192 | 97.77 211 | 98.92 186 | 98.90 285 | 98.82 172 | 99.57 93 | 99.36 229 | 96.65 253 | 99.19 181 | 99.35 266 | 94.20 235 | 99.25 278 | 97.72 206 | 94.97 304 | 98.69 251 |
|
V42 | | | 98.06 192 | 97.79 206 | 98.86 205 | 98.98 278 | 98.84 168 | 99.69 37 | 99.34 238 | 96.53 263 | 99.30 151 | 99.37 260 | 94.67 219 | 99.32 268 | 97.57 221 | 94.66 308 | 98.42 315 |
|
test-LLR | | | 98.06 192 | 97.90 197 | 98.55 237 | 98.79 299 | 97.10 260 | 98.67 324 | 97.75 349 | 97.34 196 | 98.61 275 | 98.85 323 | 94.45 228 | 99.45 238 | 97.25 243 | 99.38 138 | 99.10 192 |
|
WR-MVS | | | 98.06 192 | 97.73 217 | 99.06 165 | 98.86 294 | 99.25 114 | 99.19 244 | 99.35 234 | 97.30 200 | 98.66 264 | 99.43 241 | 93.94 244 | 99.21 288 | 98.58 126 | 94.28 315 | 98.71 243 |
|
ACMP | | 97.20 11 | 98.06 192 | 97.94 194 | 98.45 249 | 99.37 193 | 97.01 271 | 99.44 157 | 99.49 130 | 97.54 176 | 98.45 285 | 99.79 88 | 91.95 289 | 99.72 190 | 97.91 187 | 97.49 241 | 98.62 285 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
eth_miper_zixun_eth | | | 98.05 197 | 97.96 190 | 98.33 261 | 99.26 221 | 97.38 250 | 98.56 334 | 99.31 256 | 96.65 253 | 98.88 234 | 99.52 214 | 96.58 147 | 99.12 301 | 97.39 238 | 95.53 293 | 98.47 308 |
|
EPNet_dtu | | | 98.03 198 | 97.96 190 | 98.23 271 | 98.27 332 | 95.54 315 | 99.23 236 | 98.75 322 | 99.02 15 | 97.82 314 | 99.71 129 | 96.11 161 | 99.48 234 | 93.04 334 | 99.65 122 | 99.69 99 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet3 | | | 98.03 198 | 97.76 214 | 98.84 209 | 99.39 189 | 98.98 145 | 99.40 180 | 99.38 219 | 96.67 251 | 99.07 203 | 99.28 283 | 92.93 260 | 98.98 317 | 97.10 254 | 96.65 261 | 98.56 301 |
|
ADS-MVSNet2 | | | 98.02 200 | 98.07 180 | 97.87 293 | 99.33 201 | 95.19 324 | 99.23 236 | 99.08 292 | 96.24 285 | 99.10 196 | 99.67 152 | 94.11 239 | 98.93 327 | 96.81 271 | 99.05 164 | 99.48 159 |
|
HQP-MVS | | | 98.02 200 | 97.90 197 | 98.37 259 | 99.19 237 | 96.83 280 | 98.98 290 | 99.39 213 | 98.24 94 | 98.66 264 | 99.40 252 | 92.47 279 | 99.64 218 | 97.19 249 | 97.58 230 | 98.64 275 |
|
LTVRE_ROB | | 97.16 12 | 98.02 200 | 97.90 197 | 98.40 256 | 99.23 227 | 96.80 283 | 99.70 35 | 99.60 40 | 97.12 217 | 98.18 301 | 99.70 133 | 91.73 295 | 99.72 190 | 98.39 147 | 97.45 243 | 98.68 256 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl-mvsnet____ | | | 98.01 203 | 97.84 204 | 98.55 237 | 99.25 225 | 97.97 227 | 98.71 322 | 99.34 238 | 96.47 271 | 98.59 278 | 99.54 207 | 95.65 181 | 99.21 288 | 97.21 245 | 95.77 285 | 98.46 312 |
|
cl-mvsnet1 | | | 98.01 203 | 97.85 203 | 98.48 243 | 99.24 226 | 97.95 231 | 98.71 322 | 99.35 234 | 96.50 264 | 98.60 277 | 99.54 207 | 95.72 178 | 99.03 310 | 97.21 245 | 95.77 285 | 98.46 312 |
|
miper_lstm_enhance | | | 98.00 205 | 97.91 196 | 98.28 269 | 99.34 200 | 97.43 249 | 98.88 305 | 99.36 229 | 96.48 269 | 98.80 246 | 99.55 202 | 95.98 164 | 98.91 328 | 97.27 241 | 95.50 294 | 98.51 304 |
|
BH-w/o | | | 98.00 205 | 97.89 201 | 98.32 263 | 99.35 196 | 96.20 302 | 99.01 284 | 98.90 313 | 96.42 274 | 98.38 290 | 99.00 315 | 95.26 194 | 99.72 190 | 96.06 290 | 98.61 187 | 99.03 206 |
|
v1144 | | | 97.98 207 | 97.69 220 | 98.85 208 | 98.87 291 | 98.66 183 | 99.54 112 | 99.35 234 | 96.27 282 | 99.23 171 | 99.35 266 | 94.67 219 | 99.23 280 | 96.73 275 | 95.16 300 | 98.68 256 |
|
EU-MVSNet | | | 97.98 207 | 98.03 182 | 97.81 298 | 98.72 310 | 96.65 288 | 99.66 50 | 99.66 27 | 98.09 114 | 98.35 293 | 99.82 49 | 95.25 195 | 98.01 342 | 97.41 237 | 95.30 297 | 98.78 227 |
|
tpmvs | | | 97.98 207 | 98.02 184 | 97.84 295 | 99.04 269 | 94.73 333 | 99.31 209 | 99.20 278 | 96.10 302 | 98.76 251 | 99.42 244 | 94.94 200 | 99.81 156 | 96.97 262 | 98.45 198 | 98.97 213 |
|
NR-MVSNet | | | 97.97 210 | 97.61 228 | 99.02 171 | 98.87 291 | 99.26 113 | 99.47 149 | 99.42 201 | 97.63 166 | 97.08 330 | 99.50 221 | 95.07 199 | 99.13 297 | 97.86 191 | 93.59 324 | 98.68 256 |
|
v8 | | | 97.95 211 | 97.63 227 | 98.93 184 | 98.95 282 | 98.81 174 | 99.80 17 | 99.41 203 | 96.03 303 | 99.10 196 | 99.42 244 | 94.92 203 | 99.30 271 | 96.94 265 | 94.08 319 | 98.66 271 |
|
Patchmatch-test | | | 97.93 212 | 97.65 224 | 98.77 218 | 99.18 240 | 97.07 264 | 99.03 276 | 99.14 286 | 96.16 293 | 98.74 252 | 99.57 196 | 94.56 224 | 99.72 190 | 93.36 330 | 99.11 157 | 99.52 148 |
|
PS-CasMVS | | | 97.93 212 | 97.59 231 | 98.95 181 | 98.99 275 | 99.06 138 | 99.68 42 | 99.52 90 | 97.13 215 | 98.31 295 | 99.68 146 | 92.44 283 | 99.05 307 | 98.51 137 | 94.08 319 | 98.75 235 |
|
TranMVSNet+NR-MVSNet | | | 97.93 212 | 97.66 223 | 98.76 219 | 98.78 302 | 98.62 187 | 99.65 57 | 99.49 130 | 97.76 151 | 98.49 283 | 99.60 186 | 94.23 234 | 98.97 324 | 98.00 181 | 92.90 331 | 98.70 247 |
|
v144192 | | | 97.92 215 | 97.60 229 | 98.87 202 | 98.83 297 | 98.65 184 | 99.55 109 | 99.34 238 | 96.20 288 | 99.32 148 | 99.40 252 | 94.36 230 | 99.26 277 | 96.37 287 | 95.03 303 | 98.70 247 |
|
ACMH+ | | 97.24 10 | 97.92 215 | 97.78 209 | 98.32 263 | 99.46 170 | 96.68 287 | 99.56 100 | 99.54 73 | 98.41 75 | 97.79 316 | 99.87 20 | 90.18 317 | 99.66 211 | 98.05 180 | 97.18 255 | 98.62 285 |
|
LFMVS | | | 97.90 217 | 97.35 262 | 99.54 93 | 99.52 149 | 99.01 143 | 99.39 184 | 98.24 341 | 97.10 221 | 99.65 70 | 99.79 88 | 84.79 351 | 99.91 91 | 99.28 34 | 98.38 199 | 99.69 99 |
|
Anonymous20231211 | | | 97.88 218 | 97.54 235 | 98.90 192 | 99.71 86 | 98.53 194 | 99.48 144 | 99.57 51 | 94.16 327 | 98.81 244 | 99.68 146 | 93.23 255 | 99.42 248 | 98.84 85 | 94.42 313 | 98.76 233 |
|
OurMVSNet-221017-0 | | | 97.88 218 | 97.77 211 | 98.19 273 | 98.71 312 | 96.53 291 | 99.88 1 | 99.00 299 | 97.79 148 | 98.78 249 | 99.94 3 | 91.68 296 | 99.35 263 | 97.21 245 | 96.99 259 | 98.69 251 |
|
v7n | | | 97.87 220 | 97.52 236 | 98.92 186 | 98.76 306 | 98.58 190 | 99.84 6 | 99.46 170 | 96.20 288 | 98.91 229 | 99.70 133 | 94.89 205 | 99.44 243 | 96.03 291 | 93.89 321 | 98.75 235 |
|
baseline2 | | | 97.87 220 | 97.55 232 | 98.82 211 | 99.18 240 | 98.02 224 | 99.41 172 | 96.58 360 | 96.97 231 | 96.51 335 | 99.17 297 | 93.43 252 | 99.57 228 | 97.71 207 | 99.03 166 | 98.86 220 |
|
thres600view7 | | | 97.86 222 | 97.51 238 | 98.92 186 | 99.72 80 | 97.95 231 | 99.59 81 | 98.74 325 | 97.94 132 | 99.27 159 | 98.62 332 | 91.75 293 | 99.86 125 | 93.73 326 | 98.19 209 | 98.96 215 |
|
cl-mvsnet2 | | | 97.85 223 | 97.64 226 | 98.48 243 | 99.09 260 | 97.87 234 | 98.60 331 | 99.33 245 | 97.11 220 | 98.87 236 | 99.22 292 | 92.38 284 | 99.17 292 | 98.21 161 | 95.99 279 | 98.42 315 |
|
v10 | | | 97.85 223 | 97.52 236 | 98.86 205 | 98.99 275 | 98.67 182 | 99.75 28 | 99.41 203 | 95.70 306 | 98.98 219 | 99.41 248 | 94.75 215 | 99.23 280 | 96.01 292 | 94.63 309 | 98.67 263 |
|
GA-MVS | | | 97.85 223 | 97.47 242 | 99.00 174 | 99.38 191 | 97.99 226 | 98.57 332 | 99.15 284 | 97.04 226 | 98.90 231 | 99.30 279 | 89.83 319 | 99.38 252 | 96.70 277 | 98.33 200 | 99.62 126 |
|
tfpnnormal | | | 97.84 226 | 97.47 242 | 98.98 176 | 99.20 235 | 99.22 117 | 99.64 60 | 99.61 35 | 96.32 278 | 98.27 298 | 99.70 133 | 93.35 254 | 99.44 243 | 95.69 298 | 95.40 295 | 98.27 324 |
|
VPNet | | | 97.84 226 | 97.44 250 | 99.01 172 | 99.21 233 | 98.94 157 | 99.48 144 | 99.57 51 | 98.38 78 | 99.28 156 | 99.73 124 | 88.89 329 | 99.39 250 | 99.19 42 | 93.27 328 | 98.71 243 |
|
LCM-MVSNet-Re | | | 97.83 228 | 98.15 169 | 96.87 323 | 99.30 210 | 92.25 351 | 99.59 81 | 98.26 340 | 97.43 189 | 96.20 338 | 99.13 302 | 96.27 158 | 98.73 333 | 98.17 167 | 98.99 170 | 99.64 120 |
|
XVG-ACMP-BASELINE | | | 97.83 228 | 97.71 219 | 98.20 272 | 99.11 255 | 96.33 298 | 99.41 172 | 99.52 90 | 98.06 123 | 99.05 208 | 99.50 221 | 89.64 323 | 99.73 186 | 97.73 204 | 97.38 249 | 98.53 302 |
|
IterMVS | | | 97.83 228 | 97.77 211 | 98.02 283 | 99.58 138 | 96.27 300 | 99.02 279 | 99.48 142 | 97.22 209 | 98.71 255 | 99.70 133 | 92.75 265 | 99.13 297 | 97.46 232 | 96.00 278 | 98.67 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 97.82 231 | 97.75 215 | 98.06 280 | 99.57 140 | 96.36 297 | 99.02 279 | 99.49 130 | 97.18 211 | 98.71 255 | 99.72 128 | 92.72 268 | 99.14 294 | 97.44 235 | 95.86 284 | 98.67 263 |
|
EPMVS | | | 97.82 231 | 97.65 224 | 98.35 260 | 98.88 287 | 95.98 305 | 99.49 138 | 94.71 364 | 97.57 171 | 99.26 164 | 99.48 230 | 92.46 282 | 99.71 196 | 97.87 190 | 99.08 162 | 99.35 178 |
|
MVP-Stereo | | | 97.81 233 | 97.75 215 | 97.99 286 | 97.53 341 | 96.60 290 | 98.96 294 | 98.85 317 | 97.22 209 | 97.23 325 | 99.36 263 | 95.28 191 | 99.46 237 | 95.51 302 | 99.78 90 | 97.92 344 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1192 | | | 97.81 233 | 97.44 250 | 98.91 190 | 98.88 287 | 98.68 181 | 99.51 122 | 99.34 238 | 96.18 290 | 99.20 178 | 99.34 269 | 94.03 242 | 99.36 259 | 95.32 308 | 95.18 299 | 98.69 251 |
|
v1921920 | | | 97.80 235 | 97.45 245 | 98.84 209 | 98.80 298 | 98.53 194 | 99.52 118 | 99.34 238 | 96.15 295 | 99.24 167 | 99.47 233 | 93.98 243 | 99.29 272 | 95.40 305 | 95.13 301 | 98.69 251 |
|
v148 | | | 97.79 236 | 97.55 232 | 98.50 240 | 98.74 307 | 97.72 242 | 99.54 112 | 99.33 245 | 96.26 283 | 98.90 231 | 99.51 218 | 94.68 218 | 99.14 294 | 97.83 194 | 93.15 330 | 98.63 283 |
|
thres400 | | | 97.77 237 | 97.38 258 | 98.92 186 | 99.69 96 | 97.96 229 | 99.50 128 | 98.73 330 | 97.83 142 | 99.17 185 | 98.45 337 | 91.67 297 | 99.83 145 | 93.22 331 | 98.18 210 | 98.96 215 |
|
thres100view900 | | | 97.76 238 | 97.45 245 | 98.69 224 | 99.72 80 | 97.86 236 | 99.59 81 | 98.74 325 | 97.93 133 | 99.26 164 | 98.62 332 | 91.75 293 | 99.83 145 | 93.22 331 | 98.18 210 | 98.37 321 |
|
PEN-MVS | | | 97.76 238 | 97.44 250 | 98.72 222 | 98.77 305 | 98.54 193 | 99.78 22 | 99.51 103 | 97.06 225 | 98.29 297 | 99.64 166 | 92.63 274 | 98.89 330 | 98.09 172 | 93.16 329 | 98.72 241 |
|
Baseline_NR-MVSNet | | | 97.76 238 | 97.45 245 | 98.68 225 | 99.09 260 | 98.29 212 | 99.41 172 | 98.85 317 | 95.65 307 | 98.63 272 | 99.67 152 | 94.82 207 | 99.10 304 | 98.07 179 | 92.89 332 | 98.64 275 |
|
TR-MVS | | | 97.76 238 | 97.41 255 | 98.82 211 | 99.06 265 | 97.87 234 | 98.87 307 | 98.56 336 | 96.63 256 | 98.68 263 | 99.22 292 | 92.49 278 | 99.65 215 | 95.40 305 | 97.79 222 | 98.95 218 |
|
test_part1 | | | 97.75 242 | 97.24 275 | 99.29 143 | 99.59 136 | 99.63 60 | 99.65 57 | 99.49 130 | 96.17 291 | 98.44 286 | 99.69 140 | 89.80 320 | 99.47 235 | 98.68 110 | 93.66 323 | 98.78 227 |
|
Patchmtry | | | 97.75 242 | 97.40 256 | 98.81 213 | 99.10 258 | 98.87 164 | 99.11 261 | 99.33 245 | 94.83 319 | 98.81 244 | 99.38 257 | 94.33 231 | 99.02 312 | 96.10 289 | 95.57 291 | 98.53 302 |
|
dp | | | 97.75 242 | 97.80 205 | 97.59 305 | 99.10 258 | 93.71 342 | 99.32 207 | 98.88 315 | 96.48 269 | 99.08 202 | 99.55 202 | 92.67 273 | 99.82 152 | 96.52 282 | 98.58 190 | 99.24 185 |
|
TAPA-MVS | | 97.07 15 | 97.74 245 | 97.34 265 | 98.94 182 | 99.70 93 | 97.53 246 | 99.25 233 | 99.51 103 | 91.90 342 | 99.30 151 | 99.63 173 | 98.78 48 | 99.64 218 | 88.09 353 | 99.87 40 | 99.65 113 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
VDD-MVS | | | 97.73 246 | 97.35 262 | 98.88 198 | 99.47 169 | 97.12 259 | 99.34 205 | 98.85 317 | 98.19 101 | 99.67 60 | 99.85 29 | 82.98 353 | 99.92 80 | 99.49 14 | 98.32 204 | 99.60 130 |
|
MIMVSNet | | | 97.73 246 | 97.45 245 | 98.57 233 | 99.45 175 | 97.50 247 | 99.02 279 | 98.98 301 | 96.11 298 | 99.41 125 | 99.14 301 | 90.28 312 | 98.74 332 | 95.74 297 | 98.93 173 | 99.47 164 |
|
tfpn200view9 | | | 97.72 248 | 97.38 258 | 98.72 222 | 99.69 96 | 97.96 229 | 99.50 128 | 98.73 330 | 97.83 142 | 99.17 185 | 98.45 337 | 91.67 297 | 99.83 145 | 93.22 331 | 98.18 210 | 98.37 321 |
|
RRT_test8_iter05 | | | 97.72 248 | 97.60 229 | 98.08 278 | 99.23 227 | 96.08 304 | 99.63 62 | 99.49 130 | 97.54 176 | 98.94 225 | 99.81 62 | 87.99 340 | 99.35 263 | 99.21 41 | 96.51 267 | 98.81 223 |
|
CostFormer | | | 97.72 248 | 97.73 217 | 97.71 302 | 99.15 251 | 94.02 339 | 99.54 112 | 99.02 298 | 94.67 322 | 99.04 209 | 99.35 266 | 92.35 285 | 99.77 171 | 98.50 138 | 97.94 219 | 99.34 180 |
|
FMVSNet2 | | | 97.72 248 | 97.36 260 | 98.80 215 | 99.51 152 | 98.84 168 | 99.45 153 | 99.42 201 | 96.49 265 | 98.86 241 | 99.29 281 | 90.26 313 | 98.98 317 | 96.44 284 | 96.56 264 | 98.58 299 |
|
test0.0.03 1 | | | 97.71 252 | 97.42 254 | 98.56 235 | 98.41 331 | 97.82 237 | 98.78 315 | 98.63 334 | 97.34 196 | 98.05 308 | 98.98 319 | 94.45 228 | 98.98 317 | 95.04 312 | 97.15 257 | 98.89 219 |
|
hse-mvs3 | | | 97.70 253 | 97.28 271 | 98.97 178 | 99.70 93 | 97.27 253 | 99.36 196 | 99.45 182 | 98.94 33 | 99.66 65 | 99.64 166 | 94.93 201 | 99.99 1 | 99.48 15 | 84.36 350 | 99.65 113 |
|
v1240 | | | 97.69 254 | 97.32 268 | 98.79 216 | 98.85 295 | 98.43 207 | 99.48 144 | 99.36 229 | 96.11 298 | 99.27 159 | 99.36 263 | 93.76 250 | 99.24 279 | 94.46 318 | 95.23 298 | 98.70 247 |
|
cascas | | | 97.69 254 | 97.43 253 | 98.48 243 | 98.60 323 | 97.30 251 | 98.18 350 | 99.39 213 | 92.96 339 | 98.41 288 | 98.78 328 | 93.77 249 | 99.27 276 | 98.16 168 | 98.61 187 | 98.86 220 |
|
pm-mvs1 | | | 97.68 256 | 97.28 271 | 98.88 198 | 99.06 265 | 98.62 187 | 99.50 128 | 99.45 182 | 96.32 278 | 97.87 312 | 99.79 88 | 92.47 279 | 99.35 263 | 97.54 224 | 93.54 325 | 98.67 263 |
|
GBi-Net | | | 97.68 256 | 97.48 240 | 98.29 266 | 99.51 152 | 97.26 255 | 99.43 163 | 99.48 142 | 96.49 265 | 99.07 203 | 99.32 276 | 90.26 313 | 98.98 317 | 97.10 254 | 96.65 261 | 98.62 285 |
|
test1 | | | 97.68 256 | 97.48 240 | 98.29 266 | 99.51 152 | 97.26 255 | 99.43 163 | 99.48 142 | 96.49 265 | 99.07 203 | 99.32 276 | 90.26 313 | 98.98 317 | 97.10 254 | 96.65 261 | 98.62 285 |
|
tpm | | | 97.67 259 | 97.55 232 | 98.03 281 | 99.02 272 | 95.01 327 | 99.43 163 | 98.54 338 | 96.44 272 | 99.12 191 | 99.34 269 | 91.83 292 | 99.60 226 | 97.75 202 | 96.46 268 | 99.48 159 |
|
PCF-MVS | | 97.08 14 | 97.66 260 | 97.06 281 | 99.47 114 | 99.61 130 | 99.09 134 | 98.04 352 | 99.25 270 | 91.24 345 | 98.51 281 | 99.70 133 | 94.55 225 | 99.91 91 | 92.76 338 | 99.85 58 | 99.42 172 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
our_test_3 | | | 97.65 261 | 97.68 221 | 97.55 307 | 98.62 320 | 94.97 328 | 98.84 309 | 99.30 260 | 96.83 243 | 98.19 300 | 99.34 269 | 97.01 134 | 99.02 312 | 95.00 313 | 96.01 277 | 98.64 275 |
|
testgi | | | 97.65 261 | 97.50 239 | 98.13 277 | 99.36 195 | 96.45 294 | 99.42 170 | 99.48 142 | 97.76 151 | 97.87 312 | 99.45 238 | 91.09 307 | 98.81 331 | 94.53 317 | 98.52 195 | 99.13 191 |
|
thres200 | | | 97.61 263 | 97.28 271 | 98.62 227 | 99.64 117 | 98.03 223 | 99.26 231 | 98.74 325 | 97.68 160 | 99.09 201 | 98.32 341 | 91.66 299 | 99.81 156 | 92.88 335 | 98.22 206 | 98.03 335 |
|
PAPM | | | 97.59 264 | 97.09 280 | 99.07 164 | 99.06 265 | 98.26 215 | 98.30 346 | 99.10 289 | 94.88 318 | 98.08 304 | 99.34 269 | 96.27 158 | 99.64 218 | 89.87 347 | 98.92 175 | 99.31 182 |
|
VDDNet | | | 97.55 265 | 97.02 282 | 99.16 158 | 99.49 161 | 98.12 222 | 99.38 189 | 99.30 260 | 95.35 310 | 99.68 53 | 99.90 7 | 82.62 355 | 99.93 69 | 99.31 31 | 98.13 215 | 99.42 172 |
|
TESTMET0.1,1 | | | 97.55 265 | 97.27 274 | 98.40 256 | 98.93 283 | 96.53 291 | 98.67 324 | 97.61 352 | 96.96 232 | 98.64 271 | 99.28 283 | 88.63 333 | 99.45 238 | 97.30 240 | 99.38 138 | 99.21 187 |
|
DWT-MVSNet_test | | | 97.53 267 | 97.40 256 | 97.93 289 | 99.03 271 | 94.86 331 | 99.57 93 | 98.63 334 | 96.59 261 | 98.36 292 | 98.79 326 | 89.32 325 | 99.74 179 | 98.14 170 | 98.16 214 | 99.20 188 |
|
pmmvs5 | | | 97.52 268 | 97.30 270 | 98.16 275 | 98.57 325 | 96.73 284 | 99.27 222 | 98.90 313 | 96.14 296 | 98.37 291 | 99.53 211 | 91.54 302 | 99.14 294 | 97.51 227 | 95.87 283 | 98.63 283 |
|
LF4IMVS | | | 97.52 268 | 97.46 244 | 97.70 303 | 98.98 278 | 95.55 313 | 99.29 215 | 98.82 320 | 98.07 119 | 98.66 264 | 99.64 166 | 89.97 318 | 99.61 225 | 97.01 258 | 96.68 260 | 97.94 342 |
|
DTE-MVSNet | | | 97.51 270 | 97.19 277 | 98.46 248 | 98.63 319 | 98.13 221 | 99.84 6 | 99.48 142 | 96.68 250 | 97.97 310 | 99.67 152 | 92.92 261 | 98.56 334 | 96.88 270 | 92.60 336 | 98.70 247 |
|
hse-mvs2 | | | 97.50 271 | 97.14 278 | 98.59 229 | 99.49 161 | 97.05 266 | 99.28 217 | 99.22 274 | 98.94 33 | 99.66 65 | 99.42 244 | 94.93 201 | 99.65 215 | 99.48 15 | 83.80 352 | 99.08 197 |
|
SixPastTwentyTwo | | | 97.50 271 | 97.33 267 | 98.03 281 | 98.65 317 | 96.23 301 | 99.77 24 | 98.68 333 | 97.14 214 | 97.90 311 | 99.93 4 | 90.45 311 | 99.18 291 | 97.00 259 | 96.43 269 | 98.67 263 |
|
JIA-IIPM | | | 97.50 271 | 97.02 282 | 98.93 184 | 98.73 308 | 97.80 238 | 99.30 211 | 98.97 302 | 91.73 343 | 98.91 229 | 94.86 356 | 95.10 198 | 99.71 196 | 97.58 217 | 97.98 218 | 99.28 184 |
|
ppachtmachnet_test | | | 97.49 274 | 97.45 245 | 97.61 304 | 98.62 320 | 95.24 322 | 98.80 313 | 99.46 170 | 96.11 298 | 98.22 299 | 99.62 179 | 96.45 152 | 98.97 324 | 93.77 325 | 95.97 282 | 98.61 294 |
|
test-mter | | | 97.49 274 | 97.13 279 | 98.55 237 | 98.79 299 | 97.10 260 | 98.67 324 | 97.75 349 | 96.65 253 | 98.61 275 | 98.85 323 | 88.23 337 | 99.45 238 | 97.25 243 | 99.38 138 | 99.10 192 |
|
tpm2 | | | 97.44 276 | 97.34 265 | 97.74 301 | 99.15 251 | 94.36 336 | 99.45 153 | 98.94 305 | 93.45 336 | 98.90 231 | 99.44 239 | 91.35 304 | 99.59 227 | 97.31 239 | 98.07 217 | 99.29 183 |
|
tpm cat1 | | | 97.39 277 | 97.36 260 | 97.50 309 | 99.17 246 | 93.73 341 | 99.43 163 | 99.31 256 | 91.27 344 | 98.71 255 | 99.08 306 | 94.31 233 | 99.77 171 | 96.41 286 | 98.50 196 | 99.00 209 |
|
USDC | | | 97.34 278 | 97.20 276 | 97.75 300 | 99.07 263 | 95.20 323 | 98.51 336 | 99.04 297 | 97.99 129 | 98.31 295 | 99.86 23 | 89.02 327 | 99.55 231 | 95.67 300 | 97.36 250 | 98.49 305 |
|
UniMVSNet_ETH3D | | | 97.32 279 | 96.81 285 | 98.87 202 | 99.40 186 | 97.46 248 | 99.51 122 | 99.53 84 | 95.86 305 | 98.54 280 | 99.77 102 | 82.44 356 | 99.66 211 | 98.68 110 | 97.52 235 | 99.50 157 |
|
MVS | | | 97.28 280 | 96.55 288 | 99.48 111 | 98.78 302 | 98.95 154 | 99.27 222 | 99.39 213 | 83.53 355 | 98.08 304 | 99.54 207 | 96.97 135 | 99.87 122 | 94.23 321 | 99.16 152 | 99.63 124 |
|
DSMNet-mixed | | | 97.25 281 | 97.35 262 | 96.95 321 | 97.84 338 | 93.61 345 | 99.57 93 | 96.63 359 | 96.13 297 | 98.87 236 | 98.61 334 | 94.59 222 | 97.70 349 | 95.08 311 | 98.86 179 | 99.55 141 |
|
MS-PatchMatch | | | 97.24 282 | 97.32 268 | 96.99 318 | 98.45 330 | 93.51 346 | 98.82 311 | 99.32 253 | 97.41 192 | 98.13 303 | 99.30 279 | 88.99 328 | 99.56 229 | 95.68 299 | 99.80 84 | 97.90 345 |
|
TransMVSNet (Re) | | | 97.15 283 | 96.58 287 | 98.86 205 | 99.12 253 | 98.85 167 | 99.49 138 | 98.91 311 | 95.48 308 | 97.16 328 | 99.80 76 | 93.38 253 | 99.11 302 | 94.16 323 | 91.73 338 | 98.62 285 |
|
TinyColmap | | | 97.12 284 | 96.89 284 | 97.83 296 | 99.07 263 | 95.52 316 | 98.57 332 | 98.74 325 | 97.58 170 | 97.81 315 | 99.79 88 | 88.16 338 | 99.56 229 | 95.10 310 | 97.21 253 | 98.39 319 |
|
K. test v3 | | | 97.10 285 | 96.79 286 | 98.01 284 | 98.72 310 | 96.33 298 | 99.87 4 | 97.05 355 | 97.59 168 | 96.16 339 | 99.80 76 | 88.71 330 | 99.04 308 | 96.69 278 | 96.55 265 | 98.65 273 |
|
PatchT | | | 97.03 286 | 96.44 290 | 98.79 216 | 98.99 275 | 98.34 211 | 99.16 247 | 99.07 294 | 92.13 341 | 99.52 101 | 97.31 351 | 94.54 226 | 98.98 317 | 88.54 351 | 98.73 186 | 99.03 206 |
|
AUN-MVS | | | 96.88 287 | 96.31 292 | 98.59 229 | 99.48 168 | 97.04 269 | 99.27 222 | 99.22 274 | 97.44 188 | 98.51 281 | 99.41 248 | 91.97 288 | 99.66 211 | 97.71 207 | 83.83 351 | 99.07 202 |
|
FMVSNet1 | | | 96.84 288 | 96.36 291 | 98.29 266 | 99.32 208 | 97.26 255 | 99.43 163 | 99.48 142 | 95.11 313 | 98.55 279 | 99.32 276 | 83.95 352 | 98.98 317 | 95.81 295 | 96.26 273 | 98.62 285 |
|
MVS_0304 | | | 96.79 289 | 96.52 289 | 97.59 305 | 99.22 231 | 94.92 330 | 99.04 275 | 99.59 43 | 96.49 265 | 98.43 287 | 98.99 316 | 80.48 359 | 99.39 250 | 97.15 253 | 99.27 146 | 98.47 308 |
|
RPMNet | | | 96.72 290 | 95.90 300 | 99.19 155 | 99.18 240 | 98.49 202 | 99.22 241 | 99.52 90 | 88.72 351 | 99.56 92 | 97.38 348 | 94.08 241 | 99.95 43 | 86.87 357 | 98.58 190 | 99.14 189 |
|
test_0402 | | | 96.64 291 | 96.24 293 | 97.85 294 | 98.85 295 | 96.43 295 | 99.44 157 | 99.26 268 | 93.52 333 | 96.98 332 | 99.52 214 | 88.52 334 | 99.20 290 | 92.58 340 | 97.50 238 | 97.93 343 |
|
X-MVStestdata | | | 96.55 292 | 95.45 307 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 37 | 99.68 19 | 98.98 27 | 99.37 137 | 64.01 368 | 98.81 45 | 99.94 54 | 98.79 94 | 99.86 51 | 99.84 18 |
|
pmmvs6 | | | 96.53 293 | 96.09 296 | 97.82 297 | 98.69 314 | 95.47 317 | 99.37 192 | 99.47 160 | 93.46 335 | 97.41 321 | 99.78 95 | 87.06 345 | 99.33 267 | 96.92 268 | 92.70 335 | 98.65 273 |
|
ET-MVSNet_ETH3D | | | 96.49 294 | 95.64 305 | 99.05 167 | 99.53 147 | 98.82 172 | 98.84 309 | 97.51 353 | 97.63 166 | 84.77 356 | 99.21 295 | 92.09 287 | 98.91 328 | 98.98 62 | 92.21 337 | 99.41 174 |
|
UnsupCasMVSNet_eth | | | 96.44 295 | 96.12 295 | 97.40 311 | 98.65 317 | 95.65 310 | 99.36 196 | 99.51 103 | 97.13 215 | 96.04 341 | 98.99 316 | 88.40 335 | 98.17 338 | 96.71 276 | 90.27 341 | 98.40 318 |
|
FMVSNet5 | | | 96.43 296 | 96.19 294 | 97.15 314 | 99.11 255 | 95.89 307 | 99.32 207 | 99.52 90 | 94.47 326 | 98.34 294 | 99.07 307 | 87.54 344 | 97.07 353 | 92.61 339 | 95.72 288 | 98.47 308 |
|
new_pmnet | | | 96.38 297 | 96.03 297 | 97.41 310 | 98.13 336 | 95.16 326 | 99.05 270 | 99.20 278 | 93.94 328 | 97.39 322 | 98.79 326 | 91.61 301 | 99.04 308 | 90.43 345 | 95.77 285 | 98.05 334 |
|
Anonymous20231206 | | | 96.22 298 | 96.03 297 | 96.79 325 | 97.31 346 | 94.14 338 | 99.63 62 | 99.08 292 | 96.17 291 | 97.04 331 | 99.06 309 | 93.94 244 | 97.76 348 | 86.96 356 | 95.06 302 | 98.47 308 |
|
IB-MVS | | 95.67 18 | 96.22 298 | 95.44 308 | 98.57 233 | 99.21 233 | 96.70 285 | 98.65 327 | 97.74 351 | 96.71 248 | 97.27 324 | 98.54 335 | 86.03 347 | 99.92 80 | 98.47 142 | 86.30 348 | 99.10 192 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Anonymous20240521 | | | 96.20 300 | 95.89 301 | 97.13 316 | 97.72 340 | 94.96 329 | 99.79 21 | 99.29 265 | 93.01 338 | 97.20 327 | 99.03 312 | 89.69 322 | 98.36 336 | 91.16 343 | 96.13 275 | 98.07 332 |
|
gg-mvs-nofinetune | | | 96.17 301 | 95.32 309 | 98.73 220 | 98.79 299 | 98.14 220 | 99.38 189 | 94.09 365 | 91.07 347 | 98.07 307 | 91.04 361 | 89.62 324 | 99.35 263 | 96.75 273 | 99.09 161 | 98.68 256 |
|
test20.03 | | | 96.12 302 | 95.96 299 | 96.63 326 | 97.44 342 | 95.45 318 | 99.51 122 | 99.38 219 | 96.55 262 | 96.16 339 | 99.25 288 | 93.76 250 | 96.17 358 | 87.35 355 | 94.22 316 | 98.27 324 |
|
PVSNet_0 | | 94.43 19 | 96.09 303 | 95.47 306 | 97.94 288 | 99.31 209 | 94.34 337 | 97.81 354 | 99.70 15 | 97.12 217 | 97.46 320 | 98.75 329 | 89.71 321 | 99.79 164 | 97.69 210 | 81.69 354 | 99.68 103 |
|
EG-PatchMatch MVS | | | 95.97 304 | 95.69 304 | 96.81 324 | 97.78 339 | 92.79 349 | 99.16 247 | 98.93 306 | 96.16 293 | 94.08 348 | 99.22 292 | 82.72 354 | 99.47 235 | 95.67 300 | 97.50 238 | 98.17 329 |
|
Patchmatch-RL test | | | 95.84 305 | 95.81 303 | 95.95 331 | 95.61 354 | 90.57 354 | 98.24 347 | 98.39 339 | 95.10 315 | 95.20 344 | 98.67 331 | 94.78 210 | 97.77 347 | 96.28 288 | 90.02 342 | 99.51 154 |
|
MVS-HIRNet | | | 95.75 306 | 95.16 310 | 97.51 308 | 99.30 210 | 93.69 343 | 98.88 305 | 95.78 361 | 85.09 354 | 98.78 249 | 92.65 358 | 91.29 305 | 99.37 255 | 94.85 314 | 99.85 58 | 99.46 166 |
|
MIMVSNet1 | | | 95.51 307 | 95.04 311 | 96.92 322 | 97.38 343 | 95.60 311 | 99.52 118 | 99.50 122 | 93.65 332 | 96.97 333 | 99.17 297 | 85.28 350 | 96.56 357 | 88.36 352 | 95.55 292 | 98.60 297 |
|
MDA-MVSNet_test_wron | | | 95.45 308 | 94.60 314 | 98.01 284 | 98.16 335 | 97.21 258 | 99.11 261 | 99.24 272 | 93.49 334 | 80.73 361 | 98.98 319 | 93.02 258 | 98.18 337 | 94.22 322 | 94.45 312 | 98.64 275 |
|
TDRefinement | | | 95.42 309 | 94.57 315 | 97.97 287 | 89.83 363 | 96.11 303 | 99.48 144 | 98.75 322 | 96.74 246 | 96.68 334 | 99.88 15 | 88.65 332 | 99.71 196 | 98.37 151 | 82.74 353 | 98.09 331 |
|
YYNet1 | | | 95.36 310 | 94.51 316 | 97.92 290 | 97.89 337 | 97.10 260 | 99.10 263 | 99.23 273 | 93.26 337 | 80.77 360 | 99.04 311 | 92.81 264 | 98.02 341 | 94.30 319 | 94.18 317 | 98.64 275 |
|
pmmvs-eth3d | | | 95.34 311 | 94.73 313 | 97.15 314 | 95.53 356 | 95.94 306 | 99.35 202 | 99.10 289 | 95.13 311 | 93.55 349 | 97.54 346 | 88.15 339 | 97.91 344 | 94.58 316 | 89.69 344 | 97.61 347 |
|
DIV-MVS_2432*1600 | | | 95.00 312 | 94.34 317 | 96.96 320 | 97.07 351 | 95.39 320 | 99.56 100 | 99.44 191 | 95.11 313 | 97.13 329 | 97.32 350 | 91.86 291 | 97.27 352 | 90.35 346 | 81.23 355 | 98.23 328 |
|
MDA-MVSNet-bldmvs | | | 94.96 313 | 93.98 319 | 97.92 290 | 98.24 334 | 97.27 253 | 99.15 251 | 99.33 245 | 93.80 330 | 80.09 362 | 99.03 312 | 88.31 336 | 97.86 346 | 93.49 329 | 94.36 314 | 98.62 285 |
|
N_pmnet | | | 94.95 314 | 95.83 302 | 92.31 337 | 98.47 329 | 79.33 362 | 99.12 255 | 92.81 369 | 93.87 329 | 97.68 317 | 99.13 302 | 93.87 246 | 99.01 314 | 91.38 342 | 96.19 274 | 98.59 298 |
|
KD-MVS_2432*1600 | | | 94.62 315 | 93.72 321 | 97.31 312 | 97.19 349 | 95.82 308 | 98.34 342 | 99.20 278 | 95.00 316 | 97.57 318 | 98.35 339 | 87.95 341 | 98.10 339 | 92.87 336 | 77.00 358 | 98.01 336 |
|
miper_refine_blended | | | 94.62 315 | 93.72 321 | 97.31 312 | 97.19 349 | 95.82 308 | 98.34 342 | 99.20 278 | 95.00 316 | 97.57 318 | 98.35 339 | 87.95 341 | 98.10 339 | 92.87 336 | 77.00 358 | 98.01 336 |
|
CL-MVSNet_2432*1600 | | | 94.49 317 | 93.97 320 | 96.08 330 | 96.16 352 | 93.67 344 | 98.33 344 | 99.38 219 | 95.13 311 | 97.33 323 | 98.15 343 | 92.69 272 | 96.57 356 | 88.67 350 | 79.87 356 | 97.99 339 |
|
new-patchmatchnet | | | 94.48 318 | 94.08 318 | 95.67 332 | 95.08 357 | 92.41 350 | 99.18 245 | 99.28 267 | 94.55 325 | 93.49 350 | 97.37 349 | 87.86 343 | 97.01 354 | 91.57 341 | 88.36 345 | 97.61 347 |
|
OpenMVS_ROB |  | 92.34 20 | 94.38 319 | 93.70 323 | 96.41 329 | 97.38 343 | 93.17 347 | 99.06 268 | 98.75 322 | 86.58 352 | 94.84 347 | 98.26 342 | 81.53 357 | 99.32 268 | 89.01 349 | 97.87 221 | 96.76 351 |
|
CMPMVS |  | 69.68 23 | 94.13 320 | 94.90 312 | 91.84 338 | 97.24 347 | 80.01 361 | 98.52 335 | 99.48 142 | 89.01 349 | 91.99 353 | 99.67 152 | 85.67 349 | 99.13 297 | 95.44 303 | 97.03 258 | 96.39 353 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs3 | | | 94.09 321 | 93.25 324 | 96.60 327 | 94.76 358 | 94.49 334 | 98.92 301 | 98.18 344 | 89.66 348 | 96.48 336 | 98.06 344 | 86.28 346 | 97.33 351 | 89.68 348 | 87.20 347 | 97.97 341 |
|
UnsupCasMVSNet_bld | | | 93.53 322 | 92.51 325 | 96.58 328 | 97.38 343 | 93.82 340 | 98.24 347 | 99.48 142 | 91.10 346 | 93.10 351 | 96.66 352 | 74.89 360 | 98.37 335 | 94.03 324 | 87.71 346 | 97.56 349 |
|
PM-MVS | | | 92.96 323 | 92.23 326 | 95.14 333 | 95.61 354 | 89.98 356 | 99.37 192 | 98.21 342 | 94.80 320 | 95.04 346 | 97.69 345 | 65.06 362 | 97.90 345 | 94.30 319 | 89.98 343 | 97.54 350 |
|
test_method | | | 91.10 324 | 91.36 327 | 90.31 341 | 95.85 353 | 73.72 367 | 94.89 359 | 99.25 270 | 68.39 361 | 95.82 342 | 99.02 314 | 80.50 358 | 98.95 326 | 93.64 327 | 94.89 307 | 98.25 326 |
|
Gipuma |  | | 90.99 325 | 90.15 328 | 93.51 334 | 98.73 308 | 90.12 355 | 93.98 360 | 99.45 182 | 79.32 357 | 92.28 352 | 94.91 355 | 69.61 361 | 97.98 343 | 87.42 354 | 95.67 289 | 92.45 357 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 86.87 326 | 85.37 330 | 91.35 340 | 90.21 362 | 83.80 357 | 98.89 304 | 97.45 354 | 83.13 356 | 91.67 354 | 95.03 354 | 48.49 367 | 94.70 360 | 85.86 358 | 77.62 357 | 95.54 354 |
|
LCM-MVSNet | | | 86.80 327 | 85.22 331 | 91.53 339 | 87.81 364 | 80.96 360 | 98.23 349 | 98.99 300 | 71.05 359 | 90.13 355 | 96.51 353 | 48.45 368 | 96.88 355 | 90.51 344 | 85.30 349 | 96.76 351 |
|
FPMVS | | | 84.93 328 | 85.65 329 | 82.75 346 | 86.77 365 | 63.39 369 | 98.35 341 | 98.92 308 | 74.11 358 | 83.39 358 | 98.98 319 | 50.85 366 | 92.40 362 | 84.54 359 | 94.97 304 | 92.46 356 |
|
tmp_tt | | | 82.80 329 | 81.52 332 | 86.66 342 | 66.61 370 | 68.44 368 | 92.79 362 | 97.92 347 | 68.96 360 | 80.04 363 | 99.85 29 | 85.77 348 | 96.15 359 | 97.86 191 | 43.89 364 | 95.39 355 |
|
E-PMN | | | 80.61 330 | 79.88 333 | 82.81 345 | 90.75 361 | 76.38 365 | 97.69 355 | 95.76 362 | 66.44 363 | 83.52 357 | 92.25 359 | 62.54 364 | 87.16 364 | 68.53 363 | 61.40 361 | 84.89 362 |
|
EMVS | | | 80.02 331 | 79.22 334 | 82.43 347 | 91.19 360 | 76.40 364 | 97.55 357 | 92.49 370 | 66.36 364 | 83.01 359 | 91.27 360 | 64.63 363 | 85.79 365 | 65.82 364 | 60.65 362 | 85.08 361 |
|
ANet_high | | | 77.30 332 | 74.86 336 | 84.62 344 | 75.88 368 | 77.61 363 | 97.63 356 | 93.15 368 | 88.81 350 | 64.27 365 | 89.29 362 | 36.51 369 | 83.93 366 | 75.89 361 | 52.31 363 | 92.33 358 |
|
MVE |  | 76.82 21 | 76.91 333 | 74.31 337 | 84.70 343 | 85.38 367 | 76.05 366 | 96.88 358 | 93.17 367 | 67.39 362 | 71.28 364 | 89.01 363 | 21.66 374 | 87.69 363 | 71.74 362 | 72.29 360 | 90.35 359 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 70.75 22 | 75.98 334 | 74.97 335 | 79.01 348 | 70.98 369 | 55.18 370 | 93.37 361 | 98.21 342 | 65.08 365 | 61.78 366 | 93.83 357 | 21.74 373 | 92.53 361 | 78.59 360 | 91.12 340 | 89.34 360 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 40.18 335 | 41.29 340 | 36.84 349 | 86.18 366 | 49.12 371 | 79.73 363 | 22.81 372 | 27.64 366 | 25.46 369 | 28.45 369 | 21.98 372 | 48.89 367 | 55.80 365 | 23.56 367 | 12.51 365 |
|
testmvs | | | 39.17 336 | 43.78 338 | 25.37 351 | 36.04 372 | 16.84 373 | 98.36 340 | 26.56 371 | 20.06 367 | 38.51 368 | 67.32 364 | 29.64 371 | 15.30 369 | 37.59 366 | 39.90 365 | 43.98 364 |
|
test123 | | | 39.01 337 | 42.50 339 | 28.53 350 | 39.17 371 | 20.91 372 | 98.75 318 | 19.17 373 | 19.83 368 | 38.57 367 | 66.67 365 | 33.16 370 | 15.42 368 | 37.50 367 | 29.66 366 | 49.26 363 |
|
cdsmvs_eth3d_5k | | | 24.64 338 | 32.85 341 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 99.51 103 | 0.00 369 | 0.00 370 | 99.56 199 | 96.58 147 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 8.30 339 | 11.06 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 99.58 192 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 8.27 340 | 11.03 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 99.01 16 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet_test | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.02 341 | 0.03 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.27 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.71 86 | 99.79 30 | | 99.61 35 | 96.84 241 | 99.56 92 | 99.54 207 | 98.58 70 | 99.96 19 | 96.93 266 | 99.75 98 | |
|
RE-MVS-def | | | | 99.34 27 | | 99.76 52 | 99.82 20 | 99.63 62 | 99.52 90 | 98.38 78 | 99.76 37 | 99.82 49 | 98.75 56 | | 98.61 120 | 99.81 80 | 99.77 63 |
|
IU-MVS | | | | | | 99.84 32 | 99.88 7 | | 99.32 253 | 98.30 89 | 99.84 13 | | | | 98.86 81 | 99.85 58 | 99.89 2 |
|
OPU-MVS | | | | | 99.64 77 | 99.56 144 | 99.72 42 | 99.60 75 | | | | 99.70 133 | 99.27 4 | 99.42 248 | 98.24 160 | 99.80 84 | 99.79 53 |
|
test_241102_TWO | | | | | | | | | 99.48 142 | 99.08 11 | 99.88 5 | 99.81 62 | 98.94 31 | 99.96 19 | 98.91 71 | 99.84 65 | 99.88 5 |
|
test_241102_ONE | | | | | | 99.84 32 | 99.90 1 | | 99.48 142 | 99.07 13 | 99.91 1 | 99.74 117 | 99.20 5 | 99.76 175 | | | |
|
9.14 | | | | 99.10 71 | | 99.72 80 | | 99.40 180 | 99.51 103 | 97.53 178 | 99.64 72 | 99.78 95 | 98.84 42 | 99.91 91 | 97.63 213 | 99.82 78 | |
|
save fliter | | | | | | 99.76 52 | 99.59 69 | 99.14 253 | 99.40 209 | 99.00 22 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.99 25 | 99.81 22 | 99.80 76 | 99.09 12 | 99.96 19 | 98.85 83 | 99.90 23 | 99.88 5 |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 32 | 99.89 3 | 99.57 93 | 99.51 103 | | | | | 99.96 19 | 98.93 68 | 99.86 51 | 99.88 5 |
|
test0726 | | | | | | 99.85 25 | 99.89 3 | 99.62 68 | 99.50 122 | 99.10 8 | 99.86 11 | 99.82 49 | 98.94 31 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 148 |
|
test_part2 | | | | | | 99.81 40 | 99.83 14 | | | | 99.77 33 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 206 | | | | 99.52 148 |
|
sam_mvs | | | | | | | | | | | | | 94.72 217 | | | | |
|
ambc | | | | | 93.06 336 | 92.68 359 | 82.36 358 | 98.47 337 | 98.73 330 | | 95.09 345 | 97.41 347 | 55.55 365 | 99.10 304 | 96.42 285 | 91.32 339 | 97.71 346 |
|
MTGPA |  | | | | | | | | 99.47 160 | | | | | | | | |
|
test_post1 | | | | | | | | 99.23 236 | | | | 65.14 367 | 94.18 238 | 99.71 196 | 97.58 217 | | |
|
test_post | | | | | | | | | | | | 65.99 366 | 94.65 221 | 99.73 186 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 330 | 94.79 209 | 99.74 179 | | | |
|
GG-mvs-BLEND | | | | | 98.45 249 | 98.55 326 | 98.16 218 | 99.43 163 | 93.68 366 | | 97.23 325 | 98.46 336 | 89.30 326 | 99.22 283 | 95.43 304 | 98.22 206 | 97.98 340 |
|
MTMP | | | | | | | | 99.54 112 | 98.88 315 | | | | | | | | |
|
gm-plane-assit | | | | | | 98.54 327 | 92.96 348 | | | 94.65 323 | | 99.15 300 | | 99.64 218 | 97.56 222 | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 228 | 99.72 105 | 99.75 69 |
|
TEST9 | | | | | | 99.67 101 | 99.65 57 | 99.05 270 | 99.41 203 | 96.22 287 | 98.95 223 | 99.49 224 | 98.77 51 | 99.91 91 | | | |
|
test_8 | | | | | | 99.67 101 | 99.61 63 | 99.03 276 | 99.41 203 | 96.28 280 | 98.93 227 | 99.48 230 | 98.76 53 | 99.91 91 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 245 | 99.73 104 | 99.75 69 |
|
agg_prior | | | | | | 99.67 101 | 99.62 61 | | 99.40 209 | | 98.87 236 | | | 99.91 91 | | | |
|
TestCases | | | | | 99.31 136 | 99.86 21 | 98.48 204 | | 99.61 35 | 97.85 139 | 99.36 140 | 99.85 29 | 95.95 166 | 99.85 131 | 96.66 280 | 99.83 72 | 99.59 134 |
|
test_prior4 | | | | | | | 99.56 74 | 98.99 286 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.96 294 | | 98.34 84 | 99.01 212 | 99.52 214 | 98.68 63 | | 97.96 183 | 99.74 101 | |
|
test_prior | | | | | 99.68 65 | 99.67 101 | 99.48 89 | | 99.56 56 | | | | | 99.83 145 | | | 99.74 74 |
|
旧先验2 | | | | | | | | 98.96 294 | | 96.70 249 | 99.47 109 | | | 99.94 54 | 98.19 163 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 284 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.75 51 | 99.75 62 | 99.59 69 | | 99.54 73 | 96.76 245 | 99.29 154 | 99.64 166 | 98.43 81 | 99.94 54 | 96.92 268 | 99.66 119 | 99.72 87 |
|
旧先验1 | | | | | | 99.74 70 | 99.59 69 | | 99.54 73 | | | 99.69 140 | 98.47 78 | | | 99.68 116 | 99.73 81 |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 286 | 99.51 103 | 96.89 238 | | | | 99.93 69 | 97.53 225 | | 99.72 87 |
|
原ACMM2 | | | | | | | | 98.95 298 | | | | | | | | | |
|
原ACMM1 | | | | | 99.65 72 | 99.73 75 | 99.33 103 | | 99.47 160 | 97.46 182 | 99.12 191 | 99.66 158 | 98.67 66 | 99.91 91 | 97.70 209 | 99.69 111 | 99.71 94 |
|
test222 | | | | | | 99.75 62 | 99.49 88 | 98.91 303 | 99.49 130 | 96.42 274 | 99.34 146 | 99.65 159 | 98.28 94 | | | 99.69 111 | 99.72 87 |
|
testdata2 | | | | | | | | | | | | | | 99.95 43 | 96.67 279 | | |
|
segment_acmp | | | | | | | | | | | | | 98.96 25 | | | | |
|
testdata | | | | | 99.54 93 | 99.75 62 | 98.95 154 | | 99.51 103 | 97.07 223 | 99.43 118 | 99.70 133 | 98.87 39 | 99.94 54 | 97.76 200 | 99.64 123 | 99.72 87 |
|
testdata1 | | | | | | | | 98.85 308 | | 98.32 88 | | | | | | | |
|
test12 | | | | | 99.75 51 | 99.64 117 | 99.61 63 | | 99.29 265 | | 99.21 175 | | 98.38 86 | 99.89 114 | | 99.74 101 | 99.74 74 |
|
plane_prior7 | | | | | | 99.29 214 | 97.03 270 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 219 | 96.98 274 | | | | | | 92.71 270 | | | | |
|
plane_prior5 | | | | | | | | | 99.47 160 | | | | | 99.69 206 | 97.78 198 | 97.63 225 | 98.67 263 |
|
plane_prior4 | | | | | | | | | | | | 99.61 183 | | | | | |
|
plane_prior3 | | | | | | | 97.00 272 | | | 98.69 56 | 99.11 193 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 184 | | 98.97 30 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 221 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 275 | 99.21 243 | | 98.45 71 | | | | | | 97.60 228 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 345 | | | | | | | | |
|
lessismore_v0 | | | | | 97.79 299 | 98.69 314 | 95.44 319 | | 94.75 363 | | 95.71 343 | 99.87 20 | 88.69 331 | 99.32 268 | 95.89 293 | 94.93 306 | 98.62 285 |
|
LGP-MVS_train | | | | | 98.49 241 | 99.33 201 | 97.05 266 | | 99.55 66 | 97.46 182 | 99.24 167 | 99.83 42 | 92.58 275 | 99.72 190 | 98.09 172 | 97.51 236 | 98.68 256 |
|
test11 | | | | | | | | | 99.35 234 | | | | | | | | |
|
door | | | | | | | | | 97.92 347 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 280 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 237 | | 98.98 290 | | 98.24 94 | 98.66 264 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 237 | | 98.98 290 | | 98.24 94 | 98.66 264 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 249 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 264 | | | 99.64 218 | | | 98.64 275 |
|
HQP3-MVS | | | | | | | | | 99.39 213 | | | | | | | 97.58 230 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 279 | | | | |
|
NP-MVS | | | | | | 99.23 227 | 96.92 278 | | | | | 99.40 252 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 325 | 99.35 202 | | 96.84 241 | 99.58 89 | | 95.19 197 | | 97.82 195 | | 99.46 166 |
|
MDTV_nov1_ep13 | | | | 98.32 161 | | 99.11 255 | 94.44 335 | 99.27 222 | 98.74 325 | 97.51 180 | 99.40 130 | 99.62 179 | 94.78 210 | 99.76 175 | 97.59 216 | 98.81 183 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 254 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 246 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 56 | | | | |
|
ITE_SJBPF | | | | | 98.08 278 | 99.29 214 | 96.37 296 | | 98.92 308 | 98.34 84 | 98.83 242 | 99.75 111 | 91.09 307 | 99.62 224 | 95.82 294 | 97.40 248 | 98.25 326 |
|
DeepMVS_CX |  | | | | 93.34 335 | 99.29 214 | 82.27 359 | | 99.22 274 | 85.15 353 | 96.33 337 | 99.05 310 | 90.97 309 | 99.73 186 | 93.57 328 | 97.77 223 | 98.01 336 |
|