SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 60 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 4 | 99.94 3 | 98.43 20 | 99.81 10 | 99.70 48 |
|
DVP-MVS | | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 70 | 98.58 147 | 97.62 11 | 99.45 9 | 99.46 9 | 97.42 6 | 99.94 3 | 98.47 17 | 99.81 10 | 99.69 51 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 6 | 99.57 33 | 98.96 12 | 99.39 6 | 98.93 37 | 97.38 26 | 99.41 11 | 99.54 1 | 96.66 13 | 99.84 53 | 98.86 1 | 99.85 3 | 99.87 1 |
|
DPE-MVS |  | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 174 | 98.91 43 | 97.58 14 | 99.54 7 | 99.46 9 | 97.10 9 | 99.94 3 | 97.64 65 | 99.84 8 | 99.83 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 21 | 99.22 94 | 98.43 33 | 99.10 47 | 98.87 55 | 97.38 26 | 99.35 14 | 99.40 13 | 97.78 3 | 99.87 44 | 97.77 54 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 40 | 99.69 25 | 98.28 48 | 99.14 38 | 98.66 132 | 96.84 53 | 99.56 5 | 99.31 35 | 96.34 19 | 99.70 115 | 98.32 27 | 99.73 43 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 14 | 99.32 68 | 98.87 15 | 98.47 166 | 98.81 76 | 97.72 6 | 98.76 52 | 99.16 61 | 97.05 10 | 99.78 96 | 98.06 36 | 99.66 57 | 99.69 51 |
|
MSP-MVS | | | 98.74 8 | 98.55 10 | 99.29 31 | 99.75 3 | 98.23 49 | 99.26 20 | 98.88 49 | 97.52 15 | 99.41 11 | 98.78 113 | 96.00 34 | 99.79 92 | 97.79 53 | 99.59 71 | 99.85 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 30 | 99.46 51 | 98.38 35 | 98.21 201 | 98.52 158 | 97.95 3 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 57 | 99.73 43 | 99.67 61 |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 16 | 98.88 49 | 97.40 23 | 98.46 72 | 99.20 52 | 95.90 40 | 99.89 35 | 97.85 49 | 99.74 41 | 99.78 13 |
|
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 43 | 99.35 60 | 98.01 62 | 98.37 178 | 98.81 76 | 97.48 18 | 99.21 21 | 99.21 48 | 96.13 27 | 99.80 80 | 98.40 24 | 99.73 43 | 99.75 28 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 57 | 99.35 60 | 97.81 74 | 98.37 178 | 98.76 99 | 97.49 17 | 99.20 22 | 99.21 48 | 96.08 29 | 99.79 92 | 98.42 22 | 99.73 43 | 99.75 28 |
|
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 10 | 99.60 31 | 98.87 15 | 98.41 175 | 98.68 121 | 97.04 48 | 98.52 70 | 98.80 111 | 96.78 12 | 99.83 56 | 97.93 42 | 99.61 67 | 99.74 33 |
|
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 63 | 99.43 57 | 97.37 87 | 98.40 176 | 98.79 92 | 97.46 21 | 99.09 30 | 99.31 35 | 95.86 42 | 99.80 80 | 98.64 4 | 99.76 32 | 99.79 10 |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 91 | 99.33 65 | 98.36 42 | 98.90 82 | 98.85 64 | 97.28 31 | 99.72 3 | 99.39 14 | 96.63 15 | 97.60 323 | 98.17 31 | 99.85 3 | 99.64 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 28 | 99.72 12 | 98.29 46 | 99.23 23 | 98.96 32 | 96.10 85 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.62 66 | 99.78 23 | 99.75 28 |
|
ACMMP_NAP | | | 98.61 17 | 98.30 34 | 99.55 6 | 99.62 30 | 98.95 13 | 98.82 101 | 98.81 76 | 95.80 94 | 99.16 26 | 99.47 8 | 95.37 57 | 99.92 21 | 97.89 46 | 99.75 38 | 99.79 10 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 31 | 99.74 7 | 98.16 55 | 99.23 23 | 98.93 37 | 96.15 80 | 98.94 39 | 99.17 56 | 95.91 39 | 99.94 3 | 97.55 73 | 99.79 19 | 99.78 13 |
|
NCCC | | | 98.61 17 | 98.35 24 | 99.38 17 | 99.28 82 | 98.61 24 | 98.45 167 | 98.76 99 | 97.82 5 | 98.45 75 | 98.93 97 | 96.65 14 | 99.83 56 | 97.38 80 | 99.41 99 | 99.71 44 |
|
SF-MVS | | | 98.59 20 | 98.32 33 | 99.41 16 | 99.54 35 | 98.71 18 | 99.04 54 | 98.81 76 | 95.12 131 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 57 | 99.73 43 | 99.67 61 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 73 | 99.43 57 | 97.05 102 | 98.40 176 | 98.68 121 | 97.43 22 | 99.06 31 | 99.31 35 | 95.80 43 | 99.77 101 | 98.62 6 | 99.76 32 | 99.78 13 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 31 | 99.74 7 | 98.15 56 | 99.23 23 | 98.95 34 | 96.10 85 | 98.93 43 | 99.19 55 | 95.70 44 | 99.94 3 | 97.62 66 | 99.79 19 | 99.78 13 |
|
SMA-MVS |  | | 98.58 23 | 98.25 38 | 99.56 5 | 99.51 39 | 99.04 11 | 98.95 74 | 98.80 87 | 93.67 200 | 99.37 13 | 99.52 3 | 96.52 17 | 99.89 35 | 98.06 36 | 99.81 10 | 99.76 26 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 98.58 23 | 98.29 35 | 99.46 12 | 99.76 1 | 98.64 22 | 98.90 82 | 98.74 104 | 97.27 35 | 98.02 94 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 43 | 99.79 19 | 99.77 20 |
|
HPM-MVS++ |  | | 98.58 23 | 98.25 38 | 99.55 6 | 99.50 41 | 99.08 9 | 98.72 125 | 98.66 132 | 97.51 16 | 98.15 85 | 98.83 108 | 95.70 44 | 99.92 21 | 97.53 75 | 99.67 54 | 99.66 65 |
|
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 40 | 99.53 36 | 98.18 53 | 99.09 48 | 98.82 70 | 96.58 63 | 99.10 29 | 99.32 33 | 95.39 55 | 99.82 64 | 97.70 62 | 99.63 64 | 99.72 40 |
|
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 43 | 99.66 27 | 97.86 68 | 99.34 12 | 98.87 55 | 95.96 89 | 98.60 67 | 99.13 64 | 96.05 32 | 99.94 3 | 97.77 54 | 99.86 1 | 99.77 20 |
|
test1172 | | | 98.56 28 | 98.35 24 | 99.16 50 | 99.53 36 | 97.94 66 | 99.09 48 | 98.83 68 | 96.52 67 | 99.05 32 | 99.34 31 | 95.34 59 | 99.82 64 | 97.86 48 | 99.64 62 | 99.73 36 |
|
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 87 | 99.26 85 | 96.80 112 | 98.71 126 | 99.05 24 | 97.28 31 | 98.84 46 | 99.28 40 | 96.47 18 | 99.40 155 | 98.52 15 | 99.70 51 | 99.47 98 |
|
zzz-MVS | | | 98.55 30 | 98.25 38 | 99.46 12 | 99.76 1 | 98.64 22 | 98.55 156 | 98.74 104 | 97.27 35 | 98.02 94 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 43 | 99.79 19 | 99.77 20 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 28 | 99.18 47 | 99.25 86 | 98.04 60 | 98.50 163 | 98.78 95 | 97.72 6 | 98.92 44 | 99.28 40 | 95.27 64 | 99.82 64 | 97.55 73 | 99.77 26 | 99.69 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 98.54 32 | 98.35 24 | 99.13 54 | 99.49 45 | 97.86 68 | 99.11 44 | 98.80 87 | 96.49 68 | 99.17 24 | 99.35 28 | 95.34 59 | 99.82 64 | 97.72 57 | 99.65 58 | 99.71 44 |
|
#test# | | | 98.54 32 | 98.27 36 | 99.32 28 | 99.72 12 | 98.29 46 | 98.98 69 | 98.96 32 | 95.65 102 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.21 85 | 99.78 23 | 99.75 28 |
|
APD-MVS_3200maxsize | | | 98.53 34 | 98.33 32 | 99.15 53 | 99.50 41 | 97.92 67 | 99.15 37 | 98.81 76 | 96.24 76 | 99.20 22 | 99.37 22 | 95.30 62 | 99.80 80 | 97.73 56 | 99.67 54 | 99.72 40 |
|
mPP-MVS | | | 98.51 35 | 98.26 37 | 99.25 39 | 99.75 3 | 98.04 60 | 99.28 18 | 98.81 76 | 96.24 76 | 98.35 81 | 99.23 45 | 95.46 51 | 99.94 3 | 97.42 78 | 99.81 10 | 99.77 20 |
|
ZNCC-MVS | | | 98.49 36 | 98.20 44 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 33 | 98.86 61 | 95.77 95 | 98.31 84 | 99.10 69 | 95.46 51 | 99.93 15 | 97.57 72 | 99.81 10 | 99.74 33 |
|
PGM-MVS | | | 98.49 36 | 98.23 42 | 99.27 38 | 99.72 12 | 98.08 59 | 98.99 66 | 99.49 5 | 95.43 112 | 99.03 33 | 99.32 33 | 95.56 47 | 99.94 3 | 96.80 109 | 99.77 26 | 99.78 13 |
|
EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 19 | 98.69 78 | 99.46 51 | 96.49 127 | 98.30 192 | 98.69 118 | 97.21 38 | 98.84 46 | 99.36 26 | 95.41 54 | 99.78 96 | 98.62 6 | 99.65 58 | 99.80 9 |
|
MVS_111021_HR | | | 98.47 38 | 98.34 28 | 98.88 72 | 99.22 94 | 97.32 88 | 97.91 237 | 99.58 3 | 97.20 39 | 98.33 82 | 99.00 85 | 95.99 35 | 99.64 126 | 98.05 38 | 99.76 32 | 99.69 51 |
|
GST-MVS | | | 98.43 40 | 98.12 47 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 48 | 98.82 70 | 95.71 98 | 98.73 55 | 99.06 78 | 95.27 64 | 99.93 15 | 97.07 89 | 99.63 64 | 99.72 40 |
|
EI-MVSNet-UG-set | | | 98.41 41 | 98.34 28 | 98.61 83 | 99.45 55 | 96.32 135 | 98.28 195 | 98.68 121 | 97.17 41 | 98.74 53 | 99.37 22 | 95.25 66 | 99.79 92 | 98.57 9 | 99.54 84 | 99.73 36 |
|
DELS-MVS | | | 98.40 42 | 98.20 44 | 98.99 63 | 99.00 110 | 97.66 76 | 97.75 253 | 98.89 46 | 97.71 8 | 98.33 82 | 98.97 87 | 94.97 74 | 99.88 43 | 98.42 22 | 99.76 32 | 99.42 108 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + GP. | | | 98.38 43 | 98.24 41 | 98.81 74 | 99.22 94 | 97.25 95 | 98.11 220 | 98.29 207 | 97.19 40 | 98.99 38 | 99.02 80 | 96.22 20 | 99.67 122 | 98.52 15 | 98.56 137 | 99.51 89 |
|
HPM-MVS_fast | | | 98.38 43 | 98.13 46 | 99.12 57 | 99.75 3 | 97.86 68 | 99.44 5 | 98.82 70 | 94.46 162 | 98.94 39 | 99.20 52 | 95.16 69 | 99.74 107 | 97.58 69 | 99.85 3 | 99.77 20 |
|
HPM-MVS |  | | 98.36 45 | 98.10 48 | 99.13 54 | 99.74 7 | 97.82 72 | 99.53 1 | 98.80 87 | 94.63 155 | 98.61 66 | 98.97 87 | 95.13 70 | 99.77 101 | 97.65 64 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ETH3D-3000-0.1 | | | 98.35 46 | 98.00 54 | 99.38 17 | 99.47 48 | 98.68 21 | 98.67 136 | 98.84 65 | 94.66 154 | 99.11 28 | 99.25 43 | 95.46 51 | 99.81 71 | 96.80 109 | 99.73 43 | 99.63 73 |
|
APD-MVS |  | | 98.35 46 | 98.00 54 | 99.42 15 | 99.51 39 | 98.72 17 | 98.80 108 | 98.82 70 | 94.52 159 | 99.23 20 | 99.25 43 | 95.54 49 | 99.80 80 | 96.52 119 | 99.77 26 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_LR | | | 98.34 48 | 98.23 42 | 98.67 80 | 99.27 83 | 96.90 108 | 97.95 233 | 99.58 3 | 97.14 43 | 98.44 76 | 99.01 84 | 95.03 73 | 99.62 131 | 97.91 43 | 99.75 38 | 99.50 91 |
|
PHI-MVS | | | 98.34 48 | 98.06 49 | 99.18 47 | 99.15 101 | 98.12 58 | 99.04 54 | 99.09 20 | 93.32 213 | 98.83 48 | 99.10 69 | 96.54 16 | 99.83 56 | 97.70 62 | 99.76 32 | 99.59 80 |
|
testtj | | | 98.33 50 | 97.95 56 | 99.47 11 | 99.49 45 | 98.70 19 | 98.83 98 | 98.86 61 | 95.48 109 | 98.91 45 | 99.17 56 | 95.48 50 | 99.93 15 | 95.80 144 | 99.53 85 | 99.76 26 |
|
MP-MVS |  | | 98.33 50 | 98.01 53 | 99.28 35 | 99.75 3 | 98.18 53 | 99.22 27 | 98.79 92 | 96.13 82 | 97.92 108 | 99.23 45 | 94.54 84 | 99.94 3 | 96.74 113 | 99.78 23 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 98.31 52 | 97.92 58 | 99.49 9 | 99.72 12 | 98.88 14 | 98.43 172 | 98.78 95 | 94.10 170 | 97.69 120 | 99.42 12 | 95.25 66 | 99.92 21 | 98.09 35 | 99.80 17 | 99.67 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
abl_6 | | | 98.30 53 | 98.03 51 | 99.13 54 | 99.56 34 | 97.76 75 | 99.13 41 | 98.82 70 | 96.14 81 | 99.26 18 | 99.37 22 | 93.33 104 | 99.93 15 | 96.96 94 | 99.67 54 | 99.69 51 |
|
ACMMP |  | | 98.23 54 | 97.95 56 | 99.09 59 | 99.74 7 | 97.62 79 | 99.03 57 | 99.41 6 | 95.98 87 | 97.60 128 | 99.36 26 | 94.45 90 | 99.93 15 | 97.14 86 | 98.85 124 | 99.70 48 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test_prior3 | | | 98.22 55 | 97.90 59 | 99.19 43 | 99.31 70 | 98.22 50 | 97.80 249 | 98.84 65 | 96.12 83 | 97.89 110 | 98.69 122 | 95.96 36 | 99.70 115 | 96.89 99 | 99.60 68 | 99.65 67 |
|
DROMVSNet | | | 98.12 56 | 98.02 52 | 98.42 101 | 98.25 169 | 97.23 96 | 99.49 2 | 98.42 179 | 96.55 66 | 98.68 57 | 98.70 121 | 93.82 101 | 99.01 200 | 98.79 2 | 99.48 90 | 99.03 152 |
|
CANet | | | 98.05 57 | 97.76 63 | 98.90 71 | 98.73 130 | 97.27 91 | 98.35 181 | 98.78 95 | 97.37 28 | 97.72 118 | 98.96 93 | 91.53 140 | 99.92 21 | 98.79 2 | 99.65 58 | 99.51 89 |
|
train_agg | | | 97.97 58 | 97.52 74 | 99.33 27 | 99.31 70 | 98.50 29 | 97.92 235 | 98.73 108 | 92.98 226 | 97.74 116 | 98.68 124 | 96.20 23 | 99.80 80 | 96.59 115 | 99.57 75 | 99.68 57 |
|
ETH3D cwj APD-0.16 | | | 97.96 59 | 97.52 74 | 99.29 31 | 99.05 105 | 98.52 27 | 98.33 184 | 98.68 121 | 93.18 218 | 98.68 57 | 99.13 64 | 94.62 81 | 99.83 56 | 96.45 121 | 99.55 83 | 99.52 85 |
|
ETV-MVS | | | 97.96 59 | 97.81 61 | 98.40 103 | 98.42 154 | 97.27 91 | 98.73 121 | 98.55 152 | 96.84 53 | 98.38 79 | 97.44 242 | 95.39 55 | 99.35 158 | 97.62 66 | 98.89 120 | 98.58 186 |
|
UA-Net | | | 97.96 59 | 97.62 67 | 98.98 65 | 98.86 121 | 97.47 84 | 98.89 86 | 99.08 21 | 96.67 60 | 98.72 56 | 99.54 1 | 93.15 107 | 99.81 71 | 94.87 170 | 98.83 125 | 99.65 67 |
|
agg_prior1 | | | 97.95 62 | 97.51 76 | 99.28 35 | 99.30 75 | 98.38 35 | 97.81 248 | 98.72 110 | 93.16 220 | 97.57 129 | 98.66 127 | 96.14 26 | 99.81 71 | 96.63 114 | 99.56 80 | 99.66 65 |
|
CS-MVS | | | 97.94 63 | 97.90 59 | 98.06 127 | 98.04 189 | 96.85 111 | 99.04 54 | 98.39 185 | 96.17 79 | 98.50 71 | 98.29 167 | 94.60 82 | 99.02 197 | 98.61 8 | 99.43 97 | 98.30 197 |
|
CDPH-MVS | | | 97.94 63 | 97.49 77 | 99.28 35 | 99.47 48 | 98.44 31 | 97.91 237 | 98.67 129 | 92.57 241 | 98.77 51 | 98.85 105 | 95.93 38 | 99.72 109 | 95.56 154 | 99.69 52 | 99.68 57 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 65 | 98.48 17 | 96.30 247 | 99.00 110 | 89.54 317 | 97.43 270 | 98.87 55 | 98.16 2 | 99.26 18 | 99.38 21 | 96.12 28 | 99.64 126 | 98.30 28 | 99.77 26 | 99.72 40 |
|
DeepC-MVS | | 95.98 3 | 97.88 66 | 97.58 69 | 98.77 75 | 99.25 86 | 96.93 106 | 98.83 98 | 98.75 102 | 96.96 51 | 96.89 152 | 99.50 4 | 90.46 161 | 99.87 44 | 97.84 51 | 99.76 32 | 99.52 85 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS Recon | | | 97.86 67 | 97.46 79 | 99.06 61 | 99.53 36 | 98.35 43 | 98.33 184 | 98.89 46 | 92.62 238 | 98.05 90 | 98.94 96 | 95.34 59 | 99.65 124 | 96.04 135 | 99.42 98 | 99.19 133 |
|
CSCG | | | 97.85 68 | 97.74 64 | 98.20 115 | 99.67 26 | 95.16 184 | 99.22 27 | 99.32 7 | 93.04 224 | 97.02 145 | 98.92 99 | 95.36 58 | 99.91 30 | 97.43 77 | 99.64 62 | 99.52 85 |
|
MG-MVS | | | 97.81 69 | 97.60 68 | 98.44 98 | 99.12 103 | 95.97 150 | 97.75 253 | 98.78 95 | 96.89 52 | 98.46 72 | 99.22 47 | 93.90 100 | 99.68 121 | 94.81 174 | 99.52 87 | 99.67 61 |
|
VNet | | | 97.79 70 | 97.40 83 | 98.96 67 | 98.88 119 | 97.55 81 | 98.63 142 | 98.93 37 | 96.74 57 | 99.02 34 | 98.84 107 | 90.33 164 | 99.83 56 | 98.53 11 | 96.66 189 | 99.50 91 |
|
CS-MVS-test | | | 97.78 71 | 97.68 66 | 98.09 124 | 97.94 195 | 97.19 98 | 98.95 74 | 98.37 189 | 95.98 87 | 97.99 101 | 97.84 207 | 94.50 88 | 99.11 182 | 98.30 28 | 99.28 108 | 97.97 207 |
|
EIA-MVS | | | 97.75 72 | 97.58 69 | 98.27 109 | 98.38 156 | 96.44 129 | 99.01 62 | 98.60 140 | 95.88 91 | 97.26 134 | 97.53 235 | 94.97 74 | 99.33 160 | 97.38 80 | 99.20 110 | 99.05 151 |
|
PS-MVSNAJ | | | 97.73 73 | 97.77 62 | 97.62 159 | 98.68 138 | 95.58 168 | 97.34 279 | 98.51 161 | 97.29 30 | 98.66 63 | 97.88 202 | 94.51 85 | 99.90 33 | 97.87 47 | 99.17 112 | 97.39 222 |
|
CPTT-MVS | | | 97.72 74 | 97.32 86 | 98.92 69 | 99.64 28 | 97.10 101 | 99.12 43 | 98.81 76 | 92.34 249 | 98.09 88 | 99.08 76 | 93.01 108 | 99.92 21 | 96.06 134 | 99.77 26 | 99.75 28 |
|
PVSNet_Blended_VisFu | | | 97.70 75 | 97.46 79 | 98.44 98 | 99.27 83 | 95.91 158 | 98.63 142 | 99.16 17 | 94.48 161 | 97.67 121 | 98.88 102 | 92.80 110 | 99.91 30 | 97.11 87 | 99.12 113 | 99.50 91 |
|
canonicalmvs | | | 97.67 76 | 97.23 89 | 98.98 65 | 98.70 135 | 98.38 35 | 99.34 12 | 98.39 185 | 96.76 56 | 97.67 121 | 97.40 245 | 92.26 118 | 99.49 146 | 98.28 30 | 96.28 205 | 99.08 149 |
|
xiu_mvs_v2_base | | | 97.66 77 | 97.70 65 | 97.56 163 | 98.61 144 | 95.46 174 | 97.44 268 | 98.46 171 | 97.15 42 | 98.65 64 | 98.15 179 | 94.33 92 | 99.80 80 | 97.84 51 | 98.66 133 | 97.41 220 |
|
baseline | | | 97.64 78 | 97.44 81 | 98.25 112 | 98.35 158 | 96.20 139 | 99.00 64 | 98.32 197 | 96.33 75 | 98.03 93 | 99.17 56 | 91.35 143 | 99.16 173 | 98.10 34 | 98.29 151 | 99.39 109 |
|
casdiffmvs | | | 97.63 79 | 97.41 82 | 98.28 108 | 98.33 164 | 96.14 142 | 98.82 101 | 98.32 197 | 96.38 73 | 97.95 103 | 99.21 48 | 91.23 147 | 99.23 167 | 98.12 33 | 98.37 146 | 99.48 96 |
|
xiu_mvs_v1_base_debu | | | 97.60 80 | 97.56 71 | 97.72 149 | 98.35 158 | 95.98 145 | 97.86 244 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 136 | 99.80 80 | 98.53 11 | 98.68 129 | 97.37 224 |
|
xiu_mvs_v1_base | | | 97.60 80 | 97.56 71 | 97.72 149 | 98.35 158 | 95.98 145 | 97.86 244 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 136 | 99.80 80 | 98.53 11 | 98.68 129 | 97.37 224 |
|
xiu_mvs_v1_base_debi | | | 97.60 80 | 97.56 71 | 97.72 149 | 98.35 158 | 95.98 145 | 97.86 244 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 136 | 99.80 80 | 98.53 11 | 98.68 129 | 97.37 224 |
|
ETH3 D test6400 | | | 97.59 83 | 97.01 98 | 99.34 23 | 99.40 59 | 98.56 25 | 98.20 204 | 98.81 76 | 91.63 272 | 98.44 76 | 98.85 105 | 93.98 99 | 99.82 64 | 94.11 199 | 99.69 52 | 99.64 70 |
|
diffmvs | | | 97.58 84 | 97.40 83 | 98.13 120 | 98.32 166 | 95.81 163 | 98.06 223 | 98.37 189 | 96.20 78 | 98.74 53 | 98.89 101 | 91.31 145 | 99.25 164 | 98.16 32 | 98.52 138 | 99.34 112 |
|
MVSFormer | | | 97.57 85 | 97.49 77 | 97.84 138 | 98.07 185 | 95.76 164 | 99.47 3 | 98.40 183 | 94.98 138 | 98.79 49 | 98.83 108 | 92.34 115 | 98.41 269 | 96.91 96 | 99.59 71 | 99.34 112 |
|
alignmvs | | | 97.56 86 | 97.07 96 | 99.01 62 | 98.66 139 | 98.37 41 | 98.83 98 | 98.06 252 | 96.74 57 | 98.00 100 | 97.65 224 | 90.80 155 | 99.48 150 | 98.37 25 | 96.56 193 | 99.19 133 |
|
DPM-MVS | | | 97.55 87 | 96.99 100 | 99.23 42 | 99.04 107 | 98.55 26 | 97.17 292 | 98.35 193 | 94.85 145 | 97.93 107 | 98.58 135 | 95.07 72 | 99.71 114 | 92.60 241 | 99.34 104 | 99.43 106 |
|
OMC-MVS | | | 97.55 87 | 97.34 85 | 98.20 115 | 99.33 65 | 95.92 157 | 98.28 195 | 98.59 142 | 95.52 108 | 97.97 102 | 99.10 69 | 93.28 106 | 99.49 146 | 95.09 167 | 98.88 121 | 99.19 133 |
|
PAPM_NR | | | 97.46 89 | 97.11 93 | 98.50 93 | 99.50 41 | 96.41 131 | 98.63 142 | 98.60 140 | 95.18 127 | 97.06 143 | 98.06 185 | 94.26 94 | 99.57 135 | 93.80 208 | 98.87 123 | 99.52 85 |
|
EPP-MVSNet | | | 97.46 89 | 97.28 87 | 97.99 131 | 98.64 141 | 95.38 176 | 99.33 15 | 98.31 199 | 93.61 203 | 97.19 136 | 99.07 77 | 94.05 96 | 99.23 167 | 96.89 99 | 98.43 145 | 99.37 111 |
|
3Dnovator | | 94.51 5 | 97.46 89 | 96.93 102 | 99.07 60 | 97.78 204 | 97.64 77 | 99.35 11 | 99.06 22 | 97.02 49 | 93.75 251 | 99.16 61 | 89.25 182 | 99.92 21 | 97.22 84 | 99.75 38 | 99.64 70 |
|
CNLPA | | | 97.45 92 | 97.03 97 | 98.73 76 | 99.05 105 | 97.44 86 | 98.07 222 | 98.53 156 | 95.32 120 | 96.80 157 | 98.53 139 | 93.32 105 | 99.72 109 | 94.31 192 | 99.31 106 | 99.02 154 |
|
lupinMVS | | | 97.44 93 | 97.22 90 | 98.12 122 | 98.07 185 | 95.76 164 | 97.68 257 | 97.76 268 | 94.50 160 | 98.79 49 | 98.61 130 | 92.34 115 | 99.30 161 | 97.58 69 | 99.59 71 | 99.31 118 |
|
3Dnovator+ | | 94.38 6 | 97.43 94 | 96.78 109 | 99.38 17 | 97.83 202 | 98.52 27 | 99.37 8 | 98.71 114 | 97.09 47 | 92.99 277 | 99.13 64 | 89.36 179 | 99.89 35 | 96.97 92 | 99.57 75 | 99.71 44 |
|
Vis-MVSNet |  | | 97.42 95 | 97.11 93 | 98.34 106 | 98.66 139 | 96.23 138 | 99.22 27 | 99.00 27 | 96.63 62 | 98.04 92 | 99.21 48 | 88.05 216 | 99.35 158 | 96.01 137 | 99.21 109 | 99.45 104 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 97.41 96 | 97.25 88 | 97.91 135 | 98.70 135 | 96.80 112 | 98.82 101 | 98.69 118 | 94.53 157 | 98.11 87 | 98.28 168 | 94.50 88 | 99.57 135 | 94.12 198 | 99.49 88 | 97.37 224 |
|
sss | | | 97.39 97 | 96.98 101 | 98.61 83 | 98.60 145 | 96.61 120 | 98.22 200 | 98.93 37 | 93.97 178 | 98.01 98 | 98.48 144 | 91.98 128 | 99.85 50 | 96.45 121 | 98.15 153 | 99.39 109 |
|
PVSNet_Blended | | | 97.38 98 | 97.12 92 | 98.14 118 | 99.25 86 | 95.35 179 | 97.28 284 | 99.26 8 | 93.13 221 | 97.94 105 | 98.21 175 | 92.74 111 | 99.81 71 | 96.88 102 | 99.40 101 | 99.27 125 |
|
1121 | | | 97.37 99 | 96.77 113 | 99.16 50 | 99.34 62 | 97.99 65 | 98.19 208 | 98.68 121 | 90.14 308 | 98.01 98 | 98.97 87 | 94.80 79 | 99.87 44 | 93.36 220 | 99.46 94 | 99.61 75 |
|
WTY-MVS | | | 97.37 99 | 96.92 103 | 98.72 77 | 98.86 121 | 96.89 110 | 98.31 190 | 98.71 114 | 95.26 123 | 97.67 121 | 98.56 138 | 92.21 121 | 99.78 96 | 95.89 139 | 96.85 184 | 99.48 96 |
|
jason | | | 97.32 101 | 97.08 95 | 98.06 127 | 97.45 233 | 95.59 167 | 97.87 243 | 97.91 263 | 94.79 146 | 98.55 69 | 98.83 108 | 91.12 148 | 99.23 167 | 97.58 69 | 99.60 68 | 99.34 112 |
jason: jason. |
MVS_Test | | | 97.28 102 | 97.00 99 | 98.13 120 | 98.33 164 | 95.97 150 | 98.74 117 | 98.07 247 | 94.27 166 | 98.44 76 | 98.07 184 | 92.48 113 | 99.26 163 | 96.43 123 | 98.19 152 | 99.16 138 |
|
EPNet | | | 97.28 102 | 96.87 105 | 98.51 92 | 94.98 331 | 96.14 142 | 98.90 82 | 97.02 314 | 98.28 1 | 95.99 186 | 99.11 67 | 91.36 142 | 99.89 35 | 96.98 91 | 99.19 111 | 99.50 91 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_yl | | | 97.22 104 | 96.78 109 | 98.54 89 | 98.73 130 | 96.60 121 | 98.45 167 | 98.31 199 | 94.70 148 | 98.02 94 | 98.42 150 | 90.80 155 | 99.70 115 | 96.81 107 | 96.79 186 | 99.34 112 |
|
DCV-MVSNet | | | 97.22 104 | 96.78 109 | 98.54 89 | 98.73 130 | 96.60 121 | 98.45 167 | 98.31 199 | 94.70 148 | 98.02 94 | 98.42 150 | 90.80 155 | 99.70 115 | 96.81 107 | 96.79 186 | 99.34 112 |
|
IS-MVSNet | | | 97.22 104 | 96.88 104 | 98.25 112 | 98.85 123 | 96.36 133 | 99.19 33 | 97.97 257 | 95.39 114 | 97.23 135 | 98.99 86 | 91.11 149 | 98.93 211 | 94.60 180 | 98.59 135 | 99.47 98 |
|
PLC |  | 95.07 4 | 97.20 107 | 96.78 109 | 98.44 98 | 99.29 78 | 96.31 137 | 98.14 215 | 98.76 99 | 92.41 247 | 96.39 176 | 98.31 165 | 94.92 76 | 99.78 96 | 94.06 201 | 98.77 128 | 99.23 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 280x420 | | | 97.18 108 | 97.18 91 | 97.20 177 | 98.81 126 | 93.27 261 | 95.78 336 | 99.15 18 | 95.25 124 | 96.79 158 | 98.11 182 | 92.29 117 | 99.07 189 | 98.56 10 | 99.85 3 | 99.25 127 |
|
LS3D | | | 97.16 109 | 96.66 118 | 98.68 79 | 98.53 149 | 97.19 98 | 98.93 79 | 98.90 44 | 92.83 234 | 95.99 186 | 99.37 22 | 92.12 124 | 99.87 44 | 93.67 212 | 99.57 75 | 98.97 159 |
|
AdaColmap |  | | 97.15 110 | 96.70 114 | 98.48 95 | 99.16 99 | 96.69 117 | 98.01 228 | 98.89 46 | 94.44 163 | 96.83 153 | 98.68 124 | 90.69 158 | 99.76 103 | 94.36 188 | 99.29 107 | 98.98 158 |
|
Effi-MVS+ | | | 97.12 111 | 96.69 115 | 98.39 104 | 98.19 176 | 96.72 116 | 97.37 275 | 98.43 178 | 93.71 193 | 97.65 124 | 98.02 187 | 92.20 122 | 99.25 164 | 96.87 105 | 97.79 165 | 99.19 133 |
|
CHOSEN 1792x2688 | | | 97.12 111 | 96.80 106 | 98.08 125 | 99.30 75 | 94.56 217 | 98.05 224 | 99.71 1 | 93.57 204 | 97.09 139 | 98.91 100 | 88.17 211 | 99.89 35 | 96.87 105 | 99.56 80 | 99.81 8 |
|
F-COLMAP | | | 97.09 113 | 96.80 106 | 97.97 132 | 99.45 55 | 94.95 198 | 98.55 156 | 98.62 139 | 93.02 225 | 96.17 181 | 98.58 135 | 94.01 97 | 99.81 71 | 93.95 203 | 98.90 119 | 99.14 141 |
|
TAMVS | | | 97.02 114 | 96.79 108 | 97.70 152 | 98.06 187 | 95.31 181 | 98.52 158 | 98.31 199 | 93.95 179 | 97.05 144 | 98.61 130 | 93.49 103 | 98.52 252 | 95.33 159 | 97.81 164 | 99.29 123 |
|
CDS-MVSNet | | | 96.99 115 | 96.69 115 | 97.90 136 | 98.05 188 | 95.98 145 | 98.20 204 | 98.33 196 | 93.67 200 | 96.95 146 | 98.49 143 | 93.54 102 | 98.42 262 | 95.24 165 | 97.74 168 | 99.31 118 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CANet_DTU | | | 96.96 116 | 96.55 121 | 98.21 114 | 98.17 180 | 96.07 144 | 97.98 231 | 98.21 215 | 97.24 37 | 97.13 138 | 98.93 97 | 86.88 240 | 99.91 30 | 95.00 169 | 99.37 103 | 98.66 180 |
|
114514_t | | | 96.93 117 | 96.27 130 | 98.92 69 | 99.50 41 | 97.63 78 | 98.85 94 | 98.90 44 | 84.80 344 | 97.77 113 | 99.11 67 | 92.84 109 | 99.66 123 | 94.85 171 | 99.77 26 | 99.47 98 |
|
MAR-MVS | | | 96.91 118 | 96.40 126 | 98.45 97 | 98.69 137 | 96.90 108 | 98.66 139 | 98.68 121 | 92.40 248 | 97.07 142 | 97.96 194 | 91.54 139 | 99.75 105 | 93.68 210 | 98.92 118 | 98.69 176 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HyFIR lowres test | | | 96.90 119 | 96.49 124 | 98.14 118 | 99.33 65 | 95.56 169 | 97.38 273 | 99.65 2 | 92.34 249 | 97.61 127 | 98.20 176 | 89.29 181 | 99.10 186 | 96.97 92 | 97.60 173 | 99.77 20 |
|
Vis-MVSNet (Re-imp) | | | 96.87 120 | 96.55 121 | 97.83 139 | 98.73 130 | 95.46 174 | 99.20 31 | 98.30 205 | 94.96 140 | 96.60 164 | 98.87 103 | 90.05 167 | 98.59 246 | 93.67 212 | 98.60 134 | 99.46 102 |
|
PAPR | | | 96.84 121 | 96.24 132 | 98.65 81 | 98.72 134 | 96.92 107 | 97.36 277 | 98.57 148 | 93.33 212 | 96.67 160 | 97.57 232 | 94.30 93 | 99.56 137 | 91.05 276 | 98.59 135 | 99.47 98 |
|
HY-MVS | | 93.96 8 | 96.82 122 | 96.23 133 | 98.57 85 | 98.46 153 | 97.00 103 | 98.14 215 | 98.21 215 | 93.95 179 | 96.72 159 | 97.99 191 | 91.58 135 | 99.76 103 | 94.51 185 | 96.54 194 | 98.95 162 |
|
UGNet | | | 96.78 123 | 96.30 129 | 98.19 117 | 98.24 170 | 95.89 160 | 98.88 89 | 98.93 37 | 97.39 25 | 96.81 156 | 97.84 207 | 82.60 299 | 99.90 33 | 96.53 118 | 99.49 88 | 98.79 170 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_BlendedMVS | | | 96.73 124 | 96.60 119 | 97.12 183 | 99.25 86 | 95.35 179 | 98.26 198 | 99.26 8 | 94.28 165 | 97.94 105 | 97.46 239 | 92.74 111 | 99.81 71 | 96.88 102 | 93.32 249 | 96.20 315 |
|
mvs_anonymous | | | 96.70 125 | 96.53 123 | 97.18 179 | 98.19 176 | 93.78 239 | 98.31 190 | 98.19 218 | 94.01 175 | 94.47 213 | 98.27 171 | 92.08 126 | 98.46 257 | 97.39 79 | 97.91 160 | 99.31 118 |
|
1112_ss | | | 96.63 126 | 96.00 140 | 98.50 93 | 98.56 146 | 96.37 132 | 98.18 212 | 98.10 238 | 92.92 229 | 94.84 201 | 98.43 148 | 92.14 123 | 99.58 134 | 94.35 189 | 96.51 195 | 99.56 84 |
|
mvs-test1 | | | 96.60 127 | 96.68 117 | 96.37 242 | 97.89 199 | 91.81 281 | 98.56 154 | 98.10 238 | 96.57 64 | 96.52 171 | 97.94 196 | 90.81 153 | 99.45 153 | 95.72 147 | 98.01 157 | 97.86 210 |
|
PMMVS | | | 96.60 127 | 96.33 128 | 97.41 169 | 97.90 198 | 93.93 235 | 97.35 278 | 98.41 181 | 92.84 233 | 97.76 114 | 97.45 241 | 91.10 150 | 99.20 170 | 96.26 127 | 97.91 160 | 99.11 144 |
|
DP-MVS | | | 96.59 129 | 95.93 141 | 98.57 85 | 99.34 62 | 96.19 141 | 98.70 130 | 98.39 185 | 89.45 319 | 94.52 211 | 99.35 28 | 91.85 130 | 99.85 50 | 92.89 237 | 98.88 121 | 99.68 57 |
|
PatchMatch-RL | | | 96.59 129 | 96.03 139 | 98.27 109 | 99.31 70 | 96.51 126 | 97.91 237 | 99.06 22 | 93.72 192 | 96.92 150 | 98.06 185 | 88.50 205 | 99.65 124 | 91.77 265 | 99.00 116 | 98.66 180 |
|
GeoE | | | 96.58 131 | 96.07 136 | 98.10 123 | 98.35 158 | 95.89 160 | 99.34 12 | 98.12 233 | 93.12 222 | 96.09 182 | 98.87 103 | 89.71 173 | 98.97 202 | 92.95 233 | 98.08 156 | 99.43 106 |
|
XVG-OURS | | | 96.55 132 | 96.41 125 | 96.99 189 | 98.75 129 | 93.76 240 | 97.50 267 | 98.52 158 | 95.67 100 | 96.83 153 | 99.30 38 | 88.95 195 | 99.53 143 | 95.88 140 | 96.26 206 | 97.69 216 |
|
FIs | | | 96.51 133 | 96.12 135 | 97.67 155 | 97.13 255 | 97.54 82 | 99.36 9 | 99.22 14 | 95.89 90 | 94.03 239 | 98.35 158 | 91.98 128 | 98.44 260 | 96.40 124 | 92.76 256 | 97.01 233 |
|
XVG-OURS-SEG-HR | | | 96.51 133 | 96.34 127 | 97.02 188 | 98.77 128 | 93.76 240 | 97.79 251 | 98.50 166 | 95.45 111 | 96.94 147 | 99.09 74 | 87.87 221 | 99.55 142 | 96.76 112 | 95.83 215 | 97.74 213 |
|
PS-MVSNAJss | | | 96.43 135 | 96.26 131 | 96.92 198 | 95.84 315 | 95.08 190 | 99.16 36 | 98.50 166 | 95.87 92 | 93.84 247 | 98.34 162 | 94.51 85 | 98.61 242 | 96.88 102 | 93.45 246 | 97.06 231 |
|
FC-MVSNet-test | | | 96.42 136 | 96.05 137 | 97.53 165 | 96.95 264 | 97.27 91 | 99.36 9 | 99.23 12 | 95.83 93 | 93.93 241 | 98.37 156 | 92.00 127 | 98.32 278 | 96.02 136 | 92.72 257 | 97.00 234 |
|
ab-mvs | | | 96.42 136 | 95.71 149 | 98.55 87 | 98.63 142 | 96.75 115 | 97.88 242 | 98.74 104 | 93.84 184 | 96.54 169 | 98.18 178 | 85.34 266 | 99.75 105 | 95.93 138 | 96.35 199 | 99.15 139 |
|
PVSNet | | 91.96 18 | 96.35 138 | 96.15 134 | 96.96 193 | 99.17 98 | 92.05 278 | 96.08 329 | 98.68 121 | 93.69 196 | 97.75 115 | 97.80 214 | 88.86 196 | 99.69 120 | 94.26 194 | 99.01 115 | 99.15 139 |
|
Test_1112_low_res | | | 96.34 139 | 95.66 153 | 98.36 105 | 98.56 146 | 95.94 153 | 97.71 255 | 98.07 247 | 92.10 259 | 94.79 205 | 97.29 250 | 91.75 132 | 99.56 137 | 94.17 196 | 96.50 196 | 99.58 82 |
|
Effi-MVS+-dtu | | | 96.29 140 | 96.56 120 | 95.51 275 | 97.89 199 | 90.22 310 | 98.80 108 | 98.10 238 | 96.57 64 | 96.45 175 | 96.66 298 | 90.81 153 | 98.91 213 | 95.72 147 | 97.99 158 | 97.40 221 |
|
QAPM | | | 96.29 140 | 95.40 158 | 98.96 67 | 97.85 201 | 97.60 80 | 99.23 23 | 98.93 37 | 89.76 314 | 93.11 274 | 99.02 80 | 89.11 187 | 99.93 15 | 91.99 260 | 99.62 66 | 99.34 112 |
|
Fast-Effi-MVS+ | | | 96.28 142 | 95.70 150 | 98.03 129 | 98.29 168 | 95.97 150 | 98.58 148 | 98.25 213 | 91.74 267 | 95.29 194 | 97.23 254 | 91.03 152 | 99.15 176 | 92.90 235 | 97.96 159 | 98.97 159 |
|
nrg030 | | | 96.28 142 | 95.72 146 | 97.96 134 | 96.90 269 | 98.15 56 | 99.39 6 | 98.31 199 | 95.47 110 | 94.42 219 | 98.35 158 | 92.09 125 | 98.69 234 | 97.50 76 | 89.05 302 | 97.04 232 |
|
1314 | | | 96.25 144 | 95.73 145 | 97.79 143 | 97.13 255 | 95.55 171 | 98.19 208 | 98.59 142 | 93.47 207 | 92.03 303 | 97.82 212 | 91.33 144 | 99.49 146 | 94.62 179 | 98.44 143 | 98.32 196 |
|
hse-mvs3 | | | 96.17 145 | 95.62 154 | 97.81 142 | 99.03 108 | 94.45 219 | 98.64 141 | 98.75 102 | 97.48 18 | 98.67 59 | 98.72 120 | 89.76 171 | 99.86 49 | 97.95 40 | 81.59 342 | 99.11 144 |
|
HQP_MVS | | | 96.14 146 | 95.90 142 | 96.85 201 | 97.42 234 | 94.60 215 | 98.80 108 | 98.56 150 | 97.28 31 | 95.34 191 | 98.28 168 | 87.09 235 | 99.03 194 | 96.07 131 | 94.27 222 | 96.92 240 |
|
tttt0517 | | | 96.07 147 | 95.51 157 | 97.78 144 | 98.41 155 | 94.84 201 | 99.28 18 | 94.33 353 | 94.26 167 | 97.64 125 | 98.64 129 | 84.05 288 | 99.47 151 | 95.34 158 | 97.60 173 | 99.03 152 |
|
MVSTER | | | 96.06 148 | 95.72 146 | 97.08 186 | 98.23 171 | 95.93 156 | 98.73 121 | 98.27 208 | 94.86 144 | 95.07 195 | 98.09 183 | 88.21 209 | 98.54 250 | 96.59 115 | 93.46 244 | 96.79 258 |
|
RRT_MVS | | | 96.04 149 | 95.53 155 | 97.56 163 | 97.07 259 | 97.32 88 | 98.57 153 | 98.09 243 | 95.15 129 | 95.02 197 | 98.44 147 | 88.20 210 | 98.58 248 | 96.17 130 | 93.09 253 | 96.79 258 |
|
thisisatest0530 | | | 96.01 150 | 95.36 163 | 97.97 132 | 98.38 156 | 95.52 172 | 98.88 89 | 94.19 355 | 94.04 172 | 97.64 125 | 98.31 165 | 83.82 295 | 99.46 152 | 95.29 162 | 97.70 170 | 98.93 163 |
|
test_djsdf | | | 96.00 151 | 95.69 151 | 96.93 195 | 95.72 317 | 95.49 173 | 99.47 3 | 98.40 183 | 94.98 138 | 94.58 209 | 97.86 204 | 89.16 185 | 98.41 269 | 96.91 96 | 94.12 230 | 96.88 249 |
|
EI-MVSNet | | | 95.96 152 | 95.83 144 | 96.36 243 | 97.93 196 | 93.70 246 | 98.12 218 | 98.27 208 | 93.70 195 | 95.07 195 | 99.02 80 | 92.23 120 | 98.54 250 | 94.68 176 | 93.46 244 | 96.84 254 |
|
BH-untuned | | | 95.95 153 | 95.72 146 | 96.65 213 | 98.55 148 | 92.26 274 | 98.23 199 | 97.79 267 | 93.73 191 | 94.62 208 | 98.01 189 | 88.97 194 | 99.00 201 | 93.04 230 | 98.51 139 | 98.68 177 |
|
MSDG | | | 95.93 154 | 95.30 169 | 97.83 139 | 98.90 117 | 95.36 177 | 96.83 316 | 98.37 189 | 91.32 283 | 94.43 218 | 98.73 119 | 90.27 165 | 99.60 132 | 90.05 290 | 98.82 126 | 98.52 187 |
|
BH-RMVSNet | | | 95.92 155 | 95.32 167 | 97.69 153 | 98.32 166 | 94.64 209 | 98.19 208 | 97.45 293 | 94.56 156 | 96.03 184 | 98.61 130 | 85.02 269 | 99.12 179 | 90.68 281 | 99.06 114 | 99.30 121 |
|
Fast-Effi-MVS+-dtu | | | 95.87 156 | 95.85 143 | 95.91 262 | 97.74 208 | 91.74 285 | 98.69 132 | 98.15 229 | 95.56 105 | 94.92 199 | 97.68 223 | 88.98 193 | 98.79 229 | 93.19 225 | 97.78 166 | 97.20 228 |
|
LFMVS | | | 95.86 157 | 94.98 183 | 98.47 96 | 98.87 120 | 96.32 135 | 98.84 97 | 96.02 334 | 93.40 210 | 98.62 65 | 99.20 52 | 74.99 344 | 99.63 129 | 97.72 57 | 97.20 179 | 99.46 102 |
|
baseline1 | | | 95.84 158 | 95.12 176 | 98.01 130 | 98.49 152 | 95.98 145 | 98.73 121 | 97.03 312 | 95.37 117 | 96.22 179 | 98.19 177 | 89.96 169 | 99.16 173 | 94.60 180 | 87.48 319 | 98.90 165 |
|
OpenMVS |  | 93.04 13 | 95.83 159 | 95.00 181 | 98.32 107 | 97.18 252 | 97.32 88 | 99.21 30 | 98.97 30 | 89.96 310 | 91.14 311 | 99.05 79 | 86.64 243 | 99.92 21 | 93.38 218 | 99.47 91 | 97.73 214 |
|
VDD-MVS | | | 95.82 160 | 95.23 171 | 97.61 160 | 98.84 124 | 93.98 234 | 98.68 133 | 97.40 297 | 95.02 137 | 97.95 103 | 99.34 31 | 74.37 348 | 99.78 96 | 98.64 4 | 96.80 185 | 99.08 149 |
|
UniMVSNet (Re) | | | 95.78 161 | 95.19 173 | 97.58 161 | 96.99 263 | 97.47 84 | 98.79 112 | 99.18 16 | 95.60 103 | 93.92 242 | 97.04 273 | 91.68 133 | 98.48 254 | 95.80 144 | 87.66 318 | 96.79 258 |
|
VPA-MVSNet | | | 95.75 162 | 95.11 177 | 97.69 153 | 97.24 244 | 97.27 91 | 98.94 77 | 99.23 12 | 95.13 130 | 95.51 190 | 97.32 248 | 85.73 258 | 98.91 213 | 97.33 82 | 89.55 294 | 96.89 248 |
|
HQP-MVS | | | 95.72 163 | 95.40 158 | 96.69 211 | 97.20 248 | 94.25 229 | 98.05 224 | 98.46 171 | 96.43 70 | 94.45 214 | 97.73 217 | 86.75 241 | 98.96 206 | 95.30 160 | 94.18 226 | 96.86 253 |
|
hse-mvs2 | | | 95.71 164 | 95.30 169 | 96.93 195 | 98.50 150 | 93.53 251 | 98.36 180 | 98.10 238 | 97.48 18 | 98.67 59 | 97.99 191 | 89.76 171 | 99.02 197 | 97.95 40 | 80.91 346 | 98.22 199 |
|
UniMVSNet_NR-MVSNet | | | 95.71 164 | 95.15 174 | 97.40 171 | 96.84 272 | 96.97 104 | 98.74 117 | 99.24 10 | 95.16 128 | 93.88 244 | 97.72 219 | 91.68 133 | 98.31 280 | 95.81 142 | 87.25 323 | 96.92 240 |
|
PatchmatchNet |  | | 95.71 164 | 95.52 156 | 96.29 248 | 97.58 218 | 90.72 304 | 96.84 315 | 97.52 286 | 94.06 171 | 97.08 140 | 96.96 282 | 89.24 183 | 98.90 216 | 92.03 259 | 98.37 146 | 99.26 126 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
OPM-MVS | | | 95.69 167 | 95.33 166 | 96.76 205 | 96.16 304 | 94.63 210 | 98.43 172 | 98.39 185 | 96.64 61 | 95.02 197 | 98.78 113 | 85.15 268 | 99.05 190 | 95.21 166 | 94.20 225 | 96.60 282 |
|
ACMM | | 93.85 9 | 95.69 167 | 95.38 162 | 96.61 218 | 97.61 215 | 93.84 238 | 98.91 81 | 98.44 175 | 95.25 124 | 94.28 225 | 98.47 145 | 86.04 256 | 99.12 179 | 95.50 156 | 93.95 235 | 96.87 251 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tpmrst | | | 95.63 169 | 95.69 151 | 95.44 279 | 97.54 223 | 88.54 332 | 96.97 301 | 97.56 279 | 93.50 206 | 97.52 131 | 96.93 286 | 89.49 175 | 99.16 173 | 95.25 164 | 96.42 198 | 98.64 182 |
|
LPG-MVS_test | | | 95.62 170 | 95.34 164 | 96.47 234 | 97.46 229 | 93.54 249 | 98.99 66 | 98.54 154 | 94.67 152 | 94.36 221 | 98.77 115 | 85.39 263 | 99.11 182 | 95.71 149 | 94.15 228 | 96.76 262 |
|
CLD-MVS | | | 95.62 170 | 95.34 164 | 96.46 237 | 97.52 226 | 93.75 242 | 97.27 285 | 98.46 171 | 95.53 106 | 94.42 219 | 98.00 190 | 86.21 251 | 98.97 202 | 96.25 128 | 94.37 220 | 96.66 277 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thisisatest0515 | | | 95.61 172 | 94.89 187 | 97.76 146 | 98.15 181 | 95.15 186 | 96.77 317 | 94.41 351 | 92.95 228 | 97.18 137 | 97.43 243 | 84.78 274 | 99.45 153 | 94.63 177 | 97.73 169 | 98.68 177 |
|
thres600view7 | | | 95.49 173 | 94.77 190 | 97.67 155 | 98.98 113 | 95.02 191 | 98.85 94 | 96.90 320 | 95.38 115 | 96.63 162 | 96.90 287 | 84.29 281 | 99.59 133 | 88.65 310 | 96.33 200 | 98.40 191 |
|
SCA | | | 95.46 174 | 95.13 175 | 96.46 237 | 97.67 211 | 91.29 295 | 97.33 280 | 97.60 277 | 94.68 151 | 96.92 150 | 97.10 260 | 83.97 290 | 98.89 217 | 92.59 243 | 98.32 150 | 99.20 130 |
|
IterMVS-LS | | | 95.46 174 | 95.21 172 | 96.22 250 | 98.12 182 | 93.72 245 | 98.32 189 | 98.13 232 | 93.71 193 | 94.26 226 | 97.31 249 | 92.24 119 | 98.10 297 | 94.63 177 | 90.12 285 | 96.84 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
jajsoiax | | | 95.45 176 | 95.03 180 | 96.73 207 | 95.42 328 | 94.63 210 | 99.14 38 | 98.52 158 | 95.74 96 | 93.22 268 | 98.36 157 | 83.87 293 | 98.65 240 | 96.95 95 | 94.04 231 | 96.91 245 |
|
CVMVSNet | | | 95.43 177 | 96.04 138 | 93.57 318 | 97.93 196 | 83.62 350 | 98.12 218 | 98.59 142 | 95.68 99 | 96.56 165 | 99.02 80 | 87.51 227 | 97.51 327 | 93.56 216 | 97.44 175 | 99.60 78 |
|
anonymousdsp | | | 95.42 178 | 94.91 186 | 96.94 194 | 95.10 330 | 95.90 159 | 99.14 38 | 98.41 181 | 93.75 188 | 93.16 270 | 97.46 239 | 87.50 229 | 98.41 269 | 95.63 153 | 94.03 232 | 96.50 301 |
|
DU-MVS | | | 95.42 178 | 94.76 191 | 97.40 171 | 96.53 287 | 96.97 104 | 98.66 139 | 98.99 29 | 95.43 112 | 93.88 244 | 97.69 220 | 88.57 201 | 98.31 280 | 95.81 142 | 87.25 323 | 96.92 240 |
|
mvs_tets | | | 95.41 180 | 95.00 181 | 96.65 213 | 95.58 321 | 94.42 221 | 99.00 64 | 98.55 152 | 95.73 97 | 93.21 269 | 98.38 155 | 83.45 297 | 98.63 241 | 97.09 88 | 94.00 233 | 96.91 245 |
|
thres100view900 | | | 95.38 181 | 94.70 194 | 97.41 169 | 98.98 113 | 94.92 199 | 98.87 91 | 96.90 320 | 95.38 115 | 96.61 163 | 96.88 288 | 84.29 281 | 99.56 137 | 88.11 311 | 96.29 202 | 97.76 211 |
|
thres400 | | | 95.38 181 | 94.62 197 | 97.65 158 | 98.94 115 | 94.98 195 | 98.68 133 | 96.93 318 | 95.33 118 | 96.55 167 | 96.53 304 | 84.23 284 | 99.56 137 | 88.11 311 | 96.29 202 | 98.40 191 |
|
BH-w/o | | | 95.38 181 | 95.08 178 | 96.26 249 | 98.34 163 | 91.79 282 | 97.70 256 | 97.43 295 | 92.87 232 | 94.24 228 | 97.22 255 | 88.66 199 | 98.84 223 | 91.55 269 | 97.70 170 | 98.16 202 |
|
VDDNet | | | 95.36 184 | 94.53 201 | 97.86 137 | 98.10 184 | 95.13 188 | 98.85 94 | 97.75 269 | 90.46 300 | 98.36 80 | 99.39 14 | 73.27 350 | 99.64 126 | 97.98 39 | 96.58 192 | 98.81 169 |
|
TAPA-MVS | | 93.98 7 | 95.35 185 | 94.56 200 | 97.74 148 | 99.13 102 | 94.83 203 | 98.33 184 | 98.64 137 | 86.62 333 | 96.29 178 | 98.61 130 | 94.00 98 | 99.29 162 | 80.00 348 | 99.41 99 | 99.09 146 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMP | | 93.49 10 | 95.34 186 | 94.98 183 | 96.43 239 | 97.67 211 | 93.48 253 | 98.73 121 | 98.44 175 | 94.94 143 | 92.53 290 | 98.53 139 | 84.50 280 | 99.14 177 | 95.48 157 | 94.00 233 | 96.66 277 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
COLMAP_ROB |  | 93.27 12 | 95.33 187 | 94.87 188 | 96.71 208 | 99.29 78 | 93.24 263 | 98.58 148 | 98.11 236 | 89.92 311 | 93.57 255 | 99.10 69 | 86.37 249 | 99.79 92 | 90.78 279 | 98.10 155 | 97.09 229 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tfpn200view9 | | | 95.32 188 | 94.62 197 | 97.43 168 | 98.94 115 | 94.98 195 | 98.68 133 | 96.93 318 | 95.33 118 | 96.55 167 | 96.53 304 | 84.23 284 | 99.56 137 | 88.11 311 | 96.29 202 | 97.76 211 |
|
Anonymous202405211 | | | 95.28 189 | 94.49 203 | 97.67 155 | 99.00 110 | 93.75 242 | 98.70 130 | 97.04 311 | 90.66 296 | 96.49 172 | 98.80 111 | 78.13 328 | 99.83 56 | 96.21 129 | 95.36 218 | 99.44 105 |
|
thres200 | | | 95.25 190 | 94.57 199 | 97.28 174 | 98.81 126 | 94.92 199 | 98.20 204 | 97.11 307 | 95.24 126 | 96.54 169 | 96.22 316 | 84.58 278 | 99.53 143 | 87.93 315 | 96.50 196 | 97.39 222 |
|
AllTest | | | 95.24 191 | 94.65 196 | 96.99 189 | 99.25 86 | 93.21 264 | 98.59 146 | 98.18 221 | 91.36 279 | 93.52 257 | 98.77 115 | 84.67 276 | 99.72 109 | 89.70 297 | 97.87 162 | 98.02 205 |
|
LCM-MVSNet-Re | | | 95.22 192 | 95.32 167 | 94.91 293 | 98.18 178 | 87.85 341 | 98.75 114 | 95.66 340 | 95.11 132 | 88.96 329 | 96.85 291 | 90.26 166 | 97.65 321 | 95.65 152 | 98.44 143 | 99.22 129 |
|
EPNet_dtu | | | 95.21 193 | 94.95 185 | 95.99 257 | 96.17 302 | 90.45 308 | 98.16 214 | 97.27 303 | 96.77 55 | 93.14 273 | 98.33 163 | 90.34 163 | 98.42 262 | 85.57 328 | 98.81 127 | 99.09 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XXY-MVS | | | 95.20 194 | 94.45 208 | 97.46 166 | 96.75 277 | 96.56 124 | 98.86 93 | 98.65 136 | 93.30 215 | 93.27 267 | 98.27 171 | 84.85 273 | 98.87 220 | 94.82 173 | 91.26 273 | 96.96 237 |
|
D2MVS | | | 95.18 195 | 95.08 178 | 95.48 276 | 97.10 257 | 92.07 277 | 98.30 192 | 99.13 19 | 94.02 174 | 92.90 278 | 96.73 295 | 89.48 176 | 98.73 233 | 94.48 186 | 93.60 243 | 95.65 328 |
|
WR-MVS | | | 95.15 196 | 94.46 206 | 97.22 176 | 96.67 282 | 96.45 128 | 98.21 201 | 98.81 76 | 94.15 168 | 93.16 270 | 97.69 220 | 87.51 227 | 98.30 282 | 95.29 162 | 88.62 308 | 96.90 247 |
|
TranMVSNet+NR-MVSNet | | | 95.14 197 | 94.48 204 | 97.11 184 | 96.45 292 | 96.36 133 | 99.03 57 | 99.03 25 | 95.04 136 | 93.58 254 | 97.93 197 | 88.27 208 | 98.03 304 | 94.13 197 | 86.90 328 | 96.95 239 |
|
baseline2 | | | 95.11 198 | 94.52 202 | 96.87 200 | 96.65 283 | 93.56 248 | 98.27 197 | 94.10 357 | 93.45 208 | 92.02 304 | 97.43 243 | 87.45 231 | 99.19 171 | 93.88 205 | 97.41 177 | 97.87 209 |
|
miper_enhance_ethall | | | 95.10 199 | 94.75 192 | 96.12 255 | 97.53 225 | 93.73 244 | 96.61 323 | 98.08 245 | 92.20 258 | 93.89 243 | 96.65 300 | 92.44 114 | 98.30 282 | 94.21 195 | 91.16 274 | 96.34 309 |
|
Anonymous20240529 | | | 95.10 199 | 94.22 218 | 97.75 147 | 99.01 109 | 94.26 228 | 98.87 91 | 98.83 68 | 85.79 341 | 96.64 161 | 98.97 87 | 78.73 323 | 99.85 50 | 96.27 126 | 94.89 219 | 99.12 143 |
|
test-LLR | | | 95.10 199 | 94.87 188 | 95.80 267 | 96.77 274 | 89.70 314 | 96.91 306 | 95.21 343 | 95.11 132 | 94.83 203 | 95.72 326 | 87.71 223 | 98.97 202 | 93.06 228 | 98.50 140 | 98.72 173 |
|
WR-MVS_H | | | 95.05 202 | 94.46 206 | 96.81 203 | 96.86 271 | 95.82 162 | 99.24 22 | 99.24 10 | 93.87 183 | 92.53 290 | 96.84 292 | 90.37 162 | 98.24 289 | 93.24 223 | 87.93 315 | 96.38 308 |
|
miper_ehance_all_eth | | | 95.01 203 | 94.69 195 | 95.97 259 | 97.70 210 | 93.31 260 | 97.02 299 | 98.07 247 | 92.23 255 | 93.51 259 | 96.96 282 | 91.85 130 | 98.15 293 | 93.68 210 | 91.16 274 | 96.44 306 |
|
ADS-MVSNet | | | 95.00 204 | 94.45 208 | 96.63 216 | 98.00 190 | 91.91 280 | 96.04 330 | 97.74 270 | 90.15 306 | 96.47 173 | 96.64 301 | 87.89 219 | 98.96 206 | 90.08 288 | 97.06 180 | 99.02 154 |
|
VPNet | | | 94.99 205 | 94.19 220 | 97.40 171 | 97.16 253 | 96.57 123 | 98.71 126 | 98.97 30 | 95.67 100 | 94.84 201 | 98.24 174 | 80.36 314 | 98.67 238 | 96.46 120 | 87.32 322 | 96.96 237 |
|
EPMVS | | | 94.99 205 | 94.48 204 | 96.52 230 | 97.22 246 | 91.75 284 | 97.23 286 | 91.66 361 | 94.11 169 | 97.28 133 | 96.81 293 | 85.70 259 | 98.84 223 | 93.04 230 | 97.28 178 | 98.97 159 |
|
NR-MVSNet | | | 94.98 207 | 94.16 223 | 97.44 167 | 96.53 287 | 97.22 97 | 98.74 117 | 98.95 34 | 94.96 140 | 89.25 328 | 97.69 220 | 89.32 180 | 98.18 291 | 94.59 182 | 87.40 321 | 96.92 240 |
|
FMVSNet3 | | | 94.97 208 | 94.26 217 | 97.11 184 | 98.18 178 | 96.62 118 | 98.56 154 | 98.26 212 | 93.67 200 | 94.09 235 | 97.10 260 | 84.25 283 | 98.01 305 | 92.08 255 | 92.14 260 | 96.70 271 |
|
CostFormer | | | 94.95 209 | 94.73 193 | 95.60 274 | 97.28 242 | 89.06 324 | 97.53 266 | 96.89 322 | 89.66 316 | 96.82 155 | 96.72 296 | 86.05 254 | 98.95 210 | 95.53 155 | 96.13 211 | 98.79 170 |
|
PAPM | | | 94.95 209 | 94.00 233 | 97.78 144 | 97.04 260 | 95.65 166 | 96.03 332 | 98.25 213 | 91.23 288 | 94.19 231 | 97.80 214 | 91.27 146 | 98.86 222 | 82.61 342 | 97.61 172 | 98.84 168 |
|
CP-MVSNet | | | 94.94 211 | 94.30 215 | 96.83 202 | 96.72 279 | 95.56 169 | 99.11 44 | 98.95 34 | 93.89 181 | 92.42 296 | 97.90 199 | 87.19 233 | 98.12 296 | 94.32 191 | 88.21 312 | 96.82 257 |
|
TR-MVS | | | 94.94 211 | 94.20 219 | 97.17 180 | 97.75 205 | 94.14 231 | 97.59 263 | 97.02 314 | 92.28 254 | 95.75 189 | 97.64 226 | 83.88 292 | 98.96 206 | 89.77 294 | 96.15 210 | 98.40 191 |
|
bset_n11_16_dypcd | | | 94.89 213 | 94.27 216 | 96.76 205 | 94.41 338 | 95.15 186 | 95.67 337 | 95.64 341 | 95.53 106 | 94.65 207 | 97.52 236 | 87.10 234 | 98.29 285 | 96.58 117 | 91.35 269 | 96.83 256 |
|
RPSCF | | | 94.87 214 | 95.40 158 | 93.26 324 | 98.89 118 | 82.06 355 | 98.33 184 | 98.06 252 | 90.30 305 | 96.56 165 | 99.26 42 | 87.09 235 | 99.49 146 | 93.82 207 | 96.32 201 | 98.24 198 |
|
test_part1 | | | 94.82 215 | 93.82 245 | 97.82 141 | 98.84 124 | 97.82 72 | 99.03 57 | 98.81 76 | 92.31 253 | 92.51 292 | 97.89 201 | 81.96 302 | 98.67 238 | 94.80 175 | 88.24 311 | 96.98 235 |
|
DWT-MVSNet_test | | | 94.82 215 | 94.36 213 | 96.20 251 | 97.35 239 | 90.79 302 | 98.34 182 | 96.57 333 | 92.91 230 | 95.33 193 | 96.44 308 | 82.00 301 | 99.12 179 | 94.52 184 | 95.78 216 | 98.70 175 |
|
GA-MVS | | | 94.81 217 | 94.03 229 | 97.14 181 | 97.15 254 | 93.86 237 | 96.76 318 | 97.58 278 | 94.00 176 | 94.76 206 | 97.04 273 | 80.91 309 | 98.48 254 | 91.79 264 | 96.25 207 | 99.09 146 |
|
cl_fuxian | | | 94.79 218 | 94.43 210 | 95.89 264 | 97.75 205 | 93.12 267 | 97.16 293 | 98.03 254 | 92.23 255 | 93.46 262 | 97.05 272 | 91.39 141 | 98.01 305 | 93.58 215 | 89.21 300 | 96.53 293 |
|
V42 | | | 94.78 219 | 94.14 225 | 96.70 210 | 96.33 297 | 95.22 183 | 98.97 70 | 98.09 243 | 92.32 251 | 94.31 224 | 97.06 270 | 88.39 206 | 98.55 249 | 92.90 235 | 88.87 306 | 96.34 309 |
|
CR-MVSNet | | | 94.76 220 | 94.15 224 | 96.59 221 | 97.00 261 | 93.43 254 | 94.96 343 | 97.56 279 | 92.46 242 | 96.93 148 | 96.24 312 | 88.15 212 | 97.88 317 | 87.38 317 | 96.65 190 | 98.46 189 |
|
v2v482 | | | 94.69 221 | 94.03 229 | 96.65 213 | 96.17 302 | 94.79 206 | 98.67 136 | 98.08 245 | 92.72 235 | 94.00 240 | 97.16 258 | 87.69 226 | 98.45 258 | 92.91 234 | 88.87 306 | 96.72 267 |
|
pmmvs4 | | | 94.69 221 | 93.99 235 | 96.81 203 | 95.74 316 | 95.94 153 | 97.40 271 | 97.67 272 | 90.42 302 | 93.37 264 | 97.59 230 | 89.08 188 | 98.20 290 | 92.97 232 | 91.67 266 | 96.30 313 |
|
cl-mvsnet2 | | | 94.68 223 | 94.19 220 | 96.13 254 | 98.11 183 | 93.60 247 | 96.94 303 | 98.31 199 | 92.43 246 | 93.32 266 | 96.87 290 | 86.51 244 | 98.28 287 | 94.10 200 | 91.16 274 | 96.51 299 |
|
eth_miper_zixun_eth | | | 94.68 223 | 94.41 211 | 95.47 277 | 97.64 213 | 91.71 286 | 96.73 320 | 98.07 247 | 92.71 236 | 93.64 252 | 97.21 256 | 90.54 160 | 98.17 292 | 93.38 218 | 89.76 289 | 96.54 291 |
|
PCF-MVS | | 93.45 11 | 94.68 223 | 93.43 267 | 98.42 101 | 98.62 143 | 96.77 114 | 95.48 341 | 98.20 217 | 84.63 345 | 93.34 265 | 98.32 164 | 88.55 203 | 99.81 71 | 84.80 335 | 98.96 117 | 98.68 177 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVS | | | 94.67 226 | 93.54 263 | 98.08 125 | 96.88 270 | 96.56 124 | 98.19 208 | 98.50 166 | 78.05 353 | 92.69 285 | 98.02 187 | 91.07 151 | 99.63 129 | 90.09 287 | 98.36 148 | 98.04 204 |
|
PS-CasMVS | | | 94.67 226 | 93.99 235 | 96.71 208 | 96.68 281 | 95.26 182 | 99.13 41 | 99.03 25 | 93.68 198 | 92.33 297 | 97.95 195 | 85.35 265 | 98.10 297 | 93.59 214 | 88.16 314 | 96.79 258 |
|
cascas | | | 94.63 228 | 93.86 243 | 96.93 195 | 96.91 268 | 94.27 227 | 96.00 333 | 98.51 161 | 85.55 342 | 94.54 210 | 96.23 314 | 84.20 286 | 98.87 220 | 95.80 144 | 96.98 183 | 97.66 217 |
|
tpmvs | | | 94.60 229 | 94.36 213 | 95.33 282 | 97.46 229 | 88.60 331 | 96.88 312 | 97.68 271 | 91.29 285 | 93.80 249 | 96.42 309 | 88.58 200 | 99.24 166 | 91.06 274 | 96.04 213 | 98.17 201 |
|
LTVRE_ROB | | 92.95 15 | 94.60 229 | 93.90 240 | 96.68 212 | 97.41 237 | 94.42 221 | 98.52 158 | 98.59 142 | 91.69 270 | 91.21 310 | 98.35 158 | 84.87 272 | 99.04 193 | 91.06 274 | 93.44 247 | 96.60 282 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v1144 | | | 94.59 231 | 93.92 238 | 96.60 220 | 96.21 299 | 94.78 207 | 98.59 146 | 98.14 231 | 91.86 266 | 94.21 230 | 97.02 275 | 87.97 217 | 98.41 269 | 91.72 266 | 89.57 292 | 96.61 281 |
|
ADS-MVSNet2 | | | 94.58 232 | 94.40 212 | 95.11 288 | 98.00 190 | 88.74 329 | 96.04 330 | 97.30 300 | 90.15 306 | 96.47 173 | 96.64 301 | 87.89 219 | 97.56 325 | 90.08 288 | 97.06 180 | 99.02 154 |
|
RRT_test8_iter05 | | | 94.56 233 | 94.19 220 | 95.67 272 | 97.60 216 | 91.34 291 | 98.93 79 | 98.42 179 | 94.75 147 | 93.39 263 | 97.87 203 | 79.00 322 | 98.61 242 | 96.78 111 | 90.99 277 | 97.07 230 |
|
ACMH | | 92.88 16 | 94.55 234 | 93.95 237 | 96.34 245 | 97.63 214 | 93.26 262 | 98.81 107 | 98.49 170 | 93.43 209 | 89.74 323 | 98.53 139 | 81.91 303 | 99.08 188 | 93.69 209 | 93.30 250 | 96.70 271 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-ACMP-BASELINE | | | 94.54 235 | 94.14 225 | 95.75 270 | 96.55 286 | 91.65 287 | 98.11 220 | 98.44 175 | 94.96 140 | 94.22 229 | 97.90 199 | 79.18 321 | 99.11 182 | 94.05 202 | 93.85 237 | 96.48 303 |
|
AUN-MVS | | | 94.53 236 | 93.73 254 | 96.92 198 | 98.50 150 | 93.52 252 | 98.34 182 | 98.10 238 | 93.83 186 | 95.94 188 | 97.98 193 | 85.59 261 | 99.03 194 | 94.35 189 | 80.94 345 | 98.22 199 |
|
cl-mvsnet1 | | | 94.52 237 | 94.03 229 | 95.99 257 | 97.57 222 | 93.38 258 | 97.05 297 | 97.94 260 | 91.74 267 | 92.81 280 | 97.10 260 | 89.12 186 | 98.07 301 | 92.60 241 | 90.30 283 | 96.53 293 |
|
cl-mvsnet____ | | | 94.51 238 | 94.01 232 | 96.02 256 | 97.58 218 | 93.40 257 | 97.05 297 | 97.96 259 | 91.73 269 | 92.76 282 | 97.08 266 | 89.06 189 | 98.13 295 | 92.61 240 | 90.29 284 | 96.52 296 |
|
GBi-Net | | | 94.49 239 | 93.80 247 | 96.56 225 | 98.21 173 | 95.00 192 | 98.82 101 | 98.18 221 | 92.46 242 | 94.09 235 | 97.07 267 | 81.16 306 | 97.95 309 | 92.08 255 | 92.14 260 | 96.72 267 |
|
test1 | | | 94.49 239 | 93.80 247 | 96.56 225 | 98.21 173 | 95.00 192 | 98.82 101 | 98.18 221 | 92.46 242 | 94.09 235 | 97.07 267 | 81.16 306 | 97.95 309 | 92.08 255 | 92.14 260 | 96.72 267 |
|
v8 | | | 94.47 241 | 93.77 250 | 96.57 224 | 96.36 295 | 94.83 203 | 99.05 53 | 98.19 218 | 91.92 263 | 93.16 270 | 96.97 280 | 88.82 198 | 98.48 254 | 91.69 267 | 87.79 316 | 96.39 307 |
|
FMVSNet2 | | | 94.47 241 | 93.61 260 | 97.04 187 | 98.21 173 | 96.43 130 | 98.79 112 | 98.27 208 | 92.46 242 | 93.50 260 | 97.09 264 | 81.16 306 | 98.00 307 | 91.09 272 | 91.93 263 | 96.70 271 |
|
Patchmatch-test | | | 94.42 243 | 93.68 258 | 96.63 216 | 97.60 216 | 91.76 283 | 94.83 347 | 97.49 290 | 89.45 319 | 94.14 233 | 97.10 260 | 88.99 190 | 98.83 225 | 85.37 331 | 98.13 154 | 99.29 123 |
|
PEN-MVS | | | 94.42 243 | 93.73 254 | 96.49 232 | 96.28 298 | 94.84 201 | 99.17 35 | 99.00 27 | 93.51 205 | 92.23 299 | 97.83 211 | 86.10 253 | 97.90 313 | 92.55 246 | 86.92 327 | 96.74 264 |
|
v144192 | | | 94.39 245 | 93.70 256 | 96.48 233 | 96.06 307 | 94.35 225 | 98.58 148 | 98.16 228 | 91.45 276 | 94.33 223 | 97.02 275 | 87.50 229 | 98.45 258 | 91.08 273 | 89.11 301 | 96.63 279 |
|
Baseline_NR-MVSNet | | | 94.35 246 | 93.81 246 | 95.96 260 | 96.20 300 | 94.05 233 | 98.61 145 | 96.67 331 | 91.44 277 | 93.85 246 | 97.60 229 | 88.57 201 | 98.14 294 | 94.39 187 | 86.93 326 | 95.68 327 |
|
miper_lstm_enhance | | | 94.33 247 | 94.07 228 | 95.11 288 | 97.75 205 | 90.97 299 | 97.22 287 | 98.03 254 | 91.67 271 | 92.76 282 | 96.97 280 | 90.03 168 | 97.78 319 | 92.51 248 | 89.64 291 | 96.56 288 |
|
v1192 | | | 94.32 248 | 93.58 261 | 96.53 229 | 96.10 305 | 94.45 219 | 98.50 163 | 98.17 226 | 91.54 274 | 94.19 231 | 97.06 270 | 86.95 239 | 98.43 261 | 90.14 286 | 89.57 292 | 96.70 271 |
|
ACMH+ | | 92.99 14 | 94.30 249 | 93.77 250 | 95.88 265 | 97.81 203 | 92.04 279 | 98.71 126 | 98.37 189 | 93.99 177 | 90.60 317 | 98.47 145 | 80.86 311 | 99.05 190 | 92.75 239 | 92.40 259 | 96.55 290 |
|
v148 | | | 94.29 250 | 93.76 252 | 95.91 262 | 96.10 305 | 92.93 269 | 98.58 148 | 97.97 257 | 92.59 240 | 93.47 261 | 96.95 284 | 88.53 204 | 98.32 278 | 92.56 245 | 87.06 325 | 96.49 302 |
|
v10 | | | 94.29 250 | 93.55 262 | 96.51 231 | 96.39 294 | 94.80 205 | 98.99 66 | 98.19 218 | 91.35 281 | 93.02 276 | 96.99 278 | 88.09 214 | 98.41 269 | 90.50 283 | 88.41 310 | 96.33 311 |
|
MVP-Stereo | | | 94.28 252 | 93.92 238 | 95.35 281 | 94.95 332 | 92.60 272 | 97.97 232 | 97.65 273 | 91.61 273 | 90.68 316 | 97.09 264 | 86.32 250 | 98.42 262 | 89.70 297 | 99.34 104 | 95.02 339 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UniMVSNet_ETH3D | | | 94.24 253 | 93.33 269 | 96.97 192 | 97.19 251 | 93.38 258 | 98.74 117 | 98.57 148 | 91.21 290 | 93.81 248 | 98.58 135 | 72.85 351 | 98.77 231 | 95.05 168 | 93.93 236 | 98.77 172 |
|
OurMVSNet-221017-0 | | | 94.21 254 | 94.00 233 | 94.85 296 | 95.60 320 | 89.22 322 | 98.89 86 | 97.43 295 | 95.29 121 | 92.18 300 | 98.52 142 | 82.86 298 | 98.59 246 | 93.46 217 | 91.76 265 | 96.74 264 |
|
v1921920 | | | 94.20 255 | 93.47 266 | 96.40 241 | 95.98 310 | 94.08 232 | 98.52 158 | 98.15 229 | 91.33 282 | 94.25 227 | 97.20 257 | 86.41 248 | 98.42 262 | 90.04 291 | 89.39 298 | 96.69 276 |
|
v7n | | | 94.19 256 | 93.43 267 | 96.47 234 | 95.90 312 | 94.38 224 | 99.26 20 | 98.34 195 | 91.99 261 | 92.76 282 | 97.13 259 | 88.31 207 | 98.52 252 | 89.48 302 | 87.70 317 | 96.52 296 |
|
tpm2 | | | 94.19 256 | 93.76 252 | 95.46 278 | 97.23 245 | 89.04 325 | 97.31 282 | 96.85 326 | 87.08 332 | 96.21 180 | 96.79 294 | 83.75 296 | 98.74 232 | 92.43 251 | 96.23 208 | 98.59 184 |
|
TESTMET0.1,1 | | | 94.18 258 | 93.69 257 | 95.63 273 | 96.92 266 | 89.12 323 | 96.91 306 | 94.78 348 | 93.17 219 | 94.88 200 | 96.45 307 | 78.52 324 | 98.92 212 | 93.09 227 | 98.50 140 | 98.85 166 |
|
dp | | | 94.15 259 | 93.90 240 | 94.90 294 | 97.31 241 | 86.82 346 | 96.97 301 | 97.19 306 | 91.22 289 | 96.02 185 | 96.61 303 | 85.51 262 | 99.02 197 | 90.00 292 | 94.30 221 | 98.85 166 |
|
ET-MVSNet_ETH3D | | | 94.13 260 | 92.98 275 | 97.58 161 | 98.22 172 | 96.20 139 | 97.31 282 | 95.37 342 | 94.53 157 | 79.56 353 | 97.63 228 | 86.51 244 | 97.53 326 | 96.91 96 | 90.74 279 | 99.02 154 |
|
tpm | | | 94.13 260 | 93.80 247 | 95.12 287 | 96.50 289 | 87.91 340 | 97.44 268 | 95.89 339 | 92.62 238 | 96.37 177 | 96.30 311 | 84.13 287 | 98.30 282 | 93.24 223 | 91.66 267 | 99.14 141 |
|
IterMVS-SCA-FT | | | 94.11 262 | 93.87 242 | 94.85 296 | 97.98 194 | 90.56 307 | 97.18 290 | 98.11 236 | 93.75 188 | 92.58 288 | 97.48 238 | 83.97 290 | 97.41 328 | 92.48 250 | 91.30 271 | 96.58 284 |
|
Anonymous20231211 | | | 94.10 263 | 93.26 272 | 96.61 218 | 99.11 104 | 94.28 226 | 99.01 62 | 98.88 49 | 86.43 335 | 92.81 280 | 97.57 232 | 81.66 305 | 98.68 237 | 94.83 172 | 89.02 304 | 96.88 249 |
|
IterMVS | | | 94.09 264 | 93.85 244 | 94.80 299 | 97.99 192 | 90.35 309 | 97.18 290 | 98.12 233 | 93.68 198 | 92.46 295 | 97.34 246 | 84.05 288 | 97.41 328 | 92.51 248 | 91.33 270 | 96.62 280 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test-mter | | | 94.08 265 | 93.51 264 | 95.80 267 | 96.77 274 | 89.70 314 | 96.91 306 | 95.21 343 | 92.89 231 | 94.83 203 | 95.72 326 | 77.69 331 | 98.97 202 | 93.06 228 | 98.50 140 | 98.72 173 |
|
test0.0.03 1 | | | 94.08 265 | 93.51 264 | 95.80 267 | 95.53 323 | 92.89 270 | 97.38 273 | 95.97 336 | 95.11 132 | 92.51 292 | 96.66 298 | 87.71 223 | 96.94 335 | 87.03 319 | 93.67 239 | 97.57 218 |
|
v1240 | | | 94.06 267 | 93.29 271 | 96.34 245 | 96.03 309 | 93.90 236 | 98.44 170 | 98.17 226 | 91.18 291 | 94.13 234 | 97.01 277 | 86.05 254 | 98.42 262 | 89.13 307 | 89.50 296 | 96.70 271 |
|
X-MVStestdata | | | 94.06 267 | 92.30 287 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 16 | 98.88 49 | 97.40 23 | 98.46 72 | 43.50 364 | 95.90 40 | 99.89 35 | 97.85 49 | 99.74 41 | 99.78 13 |
|
DTE-MVSNet | | | 93.98 269 | 93.26 272 | 96.14 253 | 96.06 307 | 94.39 223 | 99.20 31 | 98.86 61 | 93.06 223 | 91.78 305 | 97.81 213 | 85.87 257 | 97.58 324 | 90.53 282 | 86.17 332 | 96.46 305 |
|
pm-mvs1 | | | 93.94 270 | 93.06 274 | 96.59 221 | 96.49 290 | 95.16 184 | 98.95 74 | 98.03 254 | 92.32 251 | 91.08 312 | 97.84 207 | 84.54 279 | 98.41 269 | 92.16 253 | 86.13 334 | 96.19 316 |
|
MS-PatchMatch | | | 93.84 271 | 93.63 259 | 94.46 310 | 96.18 301 | 89.45 318 | 97.76 252 | 98.27 208 | 92.23 255 | 92.13 301 | 97.49 237 | 79.50 318 | 98.69 234 | 89.75 295 | 99.38 102 | 95.25 332 |
|
tfpnnormal | | | 93.66 272 | 92.70 281 | 96.55 228 | 96.94 265 | 95.94 153 | 98.97 70 | 99.19 15 | 91.04 293 | 91.38 309 | 97.34 246 | 84.94 271 | 98.61 242 | 85.45 330 | 89.02 304 | 95.11 336 |
|
EU-MVSNet | | | 93.66 272 | 94.14 225 | 92.25 330 | 95.96 311 | 83.38 351 | 98.52 158 | 98.12 233 | 94.69 150 | 92.61 287 | 98.13 181 | 87.36 232 | 96.39 346 | 91.82 263 | 90.00 287 | 96.98 235 |
|
our_test_3 | | | 93.65 274 | 93.30 270 | 94.69 301 | 95.45 326 | 89.68 316 | 96.91 306 | 97.65 273 | 91.97 262 | 91.66 307 | 96.88 288 | 89.67 174 | 97.93 312 | 88.02 314 | 91.49 268 | 96.48 303 |
|
pmmvs5 | | | 93.65 274 | 92.97 276 | 95.68 271 | 95.49 324 | 92.37 273 | 98.20 204 | 97.28 302 | 89.66 316 | 92.58 288 | 97.26 251 | 82.14 300 | 98.09 299 | 93.18 226 | 90.95 278 | 96.58 284 |
|
tpm cat1 | | | 93.36 276 | 92.80 278 | 95.07 290 | 97.58 218 | 87.97 339 | 96.76 318 | 97.86 265 | 82.17 349 | 93.53 256 | 96.04 320 | 86.13 252 | 99.13 178 | 89.24 305 | 95.87 214 | 98.10 203 |
|
JIA-IIPM | | | 93.35 277 | 92.49 284 | 95.92 261 | 96.48 291 | 90.65 305 | 95.01 342 | 96.96 316 | 85.93 339 | 96.08 183 | 87.33 355 | 87.70 225 | 98.78 230 | 91.35 271 | 95.58 217 | 98.34 194 |
|
SixPastTwentyTwo | | | 93.34 278 | 92.86 277 | 94.75 300 | 95.67 318 | 89.41 320 | 98.75 114 | 96.67 331 | 93.89 181 | 90.15 321 | 98.25 173 | 80.87 310 | 98.27 288 | 90.90 277 | 90.64 280 | 96.57 286 |
|
USDC | | | 93.33 279 | 92.71 280 | 95.21 284 | 96.83 273 | 90.83 301 | 96.91 306 | 97.50 288 | 93.84 184 | 90.72 315 | 98.14 180 | 77.69 331 | 98.82 226 | 89.51 301 | 93.21 252 | 95.97 321 |
|
IB-MVS | | 91.98 17 | 93.27 280 | 91.97 291 | 97.19 178 | 97.47 228 | 93.41 256 | 97.09 296 | 95.99 335 | 93.32 213 | 92.47 294 | 95.73 324 | 78.06 329 | 99.53 143 | 94.59 182 | 82.98 337 | 98.62 183 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MIMVSNet | | | 93.26 281 | 92.21 288 | 96.41 240 | 97.73 209 | 93.13 266 | 95.65 338 | 97.03 312 | 91.27 287 | 94.04 238 | 96.06 319 | 75.33 342 | 97.19 331 | 86.56 321 | 96.23 208 | 98.92 164 |
|
ppachtmachnet_test | | | 93.22 282 | 92.63 282 | 94.97 292 | 95.45 326 | 90.84 300 | 96.88 312 | 97.88 264 | 90.60 297 | 92.08 302 | 97.26 251 | 88.08 215 | 97.86 318 | 85.12 332 | 90.33 282 | 96.22 314 |
|
Patchmtry | | | 93.22 282 | 92.35 286 | 95.84 266 | 96.77 274 | 93.09 268 | 94.66 348 | 97.56 279 | 87.37 331 | 92.90 278 | 96.24 312 | 88.15 212 | 97.90 313 | 87.37 318 | 90.10 286 | 96.53 293 |
|
FMVSNet1 | | | 93.19 284 | 92.07 289 | 96.56 225 | 97.54 223 | 95.00 192 | 98.82 101 | 98.18 221 | 90.38 303 | 92.27 298 | 97.07 267 | 73.68 349 | 97.95 309 | 89.36 304 | 91.30 271 | 96.72 267 |
|
LF4IMVS | | | 93.14 285 | 92.79 279 | 94.20 313 | 95.88 313 | 88.67 330 | 97.66 259 | 97.07 309 | 93.81 187 | 91.71 306 | 97.65 224 | 77.96 330 | 98.81 227 | 91.47 270 | 91.92 264 | 95.12 335 |
|
testgi | | | 93.06 286 | 92.45 285 | 94.88 295 | 96.43 293 | 89.90 311 | 98.75 114 | 97.54 285 | 95.60 103 | 91.63 308 | 97.91 198 | 74.46 347 | 97.02 333 | 86.10 324 | 93.67 239 | 97.72 215 |
|
PatchT | | | 93.06 286 | 91.97 291 | 96.35 244 | 96.69 280 | 92.67 271 | 94.48 349 | 97.08 308 | 86.62 333 | 97.08 140 | 92.23 350 | 87.94 218 | 97.90 313 | 78.89 352 | 96.69 188 | 98.49 188 |
|
MVS_0304 | | | 92.81 288 | 92.01 290 | 95.23 283 | 97.46 229 | 91.33 293 | 98.17 213 | 98.81 76 | 91.13 292 | 93.80 249 | 95.68 329 | 66.08 357 | 98.06 302 | 90.79 278 | 96.13 211 | 96.32 312 |
|
RPMNet | | | 92.81 288 | 91.34 296 | 97.24 175 | 97.00 261 | 93.43 254 | 94.96 343 | 98.80 87 | 82.27 348 | 96.93 148 | 92.12 351 | 86.98 238 | 99.82 64 | 76.32 356 | 96.65 190 | 98.46 189 |
|
TransMVSNet (Re) | | | 92.67 290 | 91.51 295 | 96.15 252 | 96.58 285 | 94.65 208 | 98.90 82 | 96.73 327 | 90.86 295 | 89.46 327 | 97.86 204 | 85.62 260 | 98.09 299 | 86.45 322 | 81.12 343 | 95.71 326 |
|
K. test v3 | | | 92.55 291 | 91.91 293 | 94.48 308 | 95.64 319 | 89.24 321 | 99.07 51 | 94.88 347 | 94.04 172 | 86.78 339 | 97.59 230 | 77.64 334 | 97.64 322 | 92.08 255 | 89.43 297 | 96.57 286 |
|
DSMNet-mixed | | | 92.52 292 | 92.58 283 | 92.33 329 | 94.15 340 | 82.65 353 | 98.30 192 | 94.26 354 | 89.08 323 | 92.65 286 | 95.73 324 | 85.01 270 | 95.76 348 | 86.24 323 | 97.76 167 | 98.59 184 |
|
TinyColmap | | | 92.31 293 | 91.53 294 | 94.65 303 | 96.92 266 | 89.75 313 | 96.92 304 | 96.68 330 | 90.45 301 | 89.62 324 | 97.85 206 | 76.06 340 | 98.81 227 | 86.74 320 | 92.51 258 | 95.41 330 |
|
gg-mvs-nofinetune | | | 92.21 294 | 90.58 301 | 97.13 182 | 96.75 277 | 95.09 189 | 95.85 334 | 89.40 364 | 85.43 343 | 94.50 212 | 81.98 358 | 80.80 312 | 98.40 275 | 92.16 253 | 98.33 149 | 97.88 208 |
|
FMVSNet5 | | | 91.81 295 | 90.92 298 | 94.49 307 | 97.21 247 | 92.09 276 | 98.00 230 | 97.55 284 | 89.31 321 | 90.86 314 | 95.61 330 | 74.48 346 | 95.32 351 | 85.57 328 | 89.70 290 | 96.07 319 |
|
pmmvs6 | | | 91.77 296 | 90.63 300 | 95.17 286 | 94.69 337 | 91.24 296 | 98.67 136 | 97.92 262 | 86.14 337 | 89.62 324 | 97.56 234 | 75.79 341 | 98.34 276 | 90.75 280 | 84.56 336 | 95.94 322 |
|
Anonymous20231206 | | | 91.66 297 | 91.10 297 | 93.33 322 | 94.02 344 | 87.35 343 | 98.58 148 | 97.26 304 | 90.48 299 | 90.16 320 | 96.31 310 | 83.83 294 | 96.53 344 | 79.36 350 | 89.90 288 | 96.12 317 |
|
Patchmatch-RL test | | | 91.49 298 | 90.85 299 | 93.41 320 | 91.37 353 | 84.40 348 | 92.81 353 | 95.93 338 | 91.87 265 | 87.25 337 | 94.87 336 | 88.99 190 | 96.53 344 | 92.54 247 | 82.00 339 | 99.30 121 |
|
test_0402 | | | 91.32 299 | 90.27 304 | 94.48 308 | 96.60 284 | 91.12 297 | 98.50 163 | 97.22 305 | 86.10 338 | 88.30 334 | 96.98 279 | 77.65 333 | 97.99 308 | 78.13 354 | 92.94 255 | 94.34 343 |
|
PVSNet_0 | | 88.72 19 | 91.28 300 | 90.03 306 | 95.00 291 | 97.99 192 | 87.29 344 | 94.84 346 | 98.50 166 | 92.06 260 | 89.86 322 | 95.19 332 | 79.81 317 | 99.39 156 | 92.27 252 | 69.79 356 | 98.33 195 |
|
Anonymous20240521 | | | 91.18 301 | 90.44 302 | 93.42 319 | 93.70 345 | 88.47 333 | 98.94 77 | 97.56 279 | 88.46 326 | 89.56 326 | 95.08 335 | 77.15 337 | 96.97 334 | 83.92 338 | 89.55 294 | 94.82 341 |
|
EG-PatchMatch MVS | | | 91.13 302 | 90.12 305 | 94.17 315 | 94.73 336 | 89.00 326 | 98.13 217 | 97.81 266 | 89.22 322 | 85.32 346 | 96.46 306 | 67.71 354 | 98.42 262 | 87.89 316 | 93.82 238 | 95.08 337 |
|
TDRefinement | | | 91.06 303 | 89.68 308 | 95.21 284 | 85.35 360 | 91.49 290 | 98.51 162 | 97.07 309 | 91.47 275 | 88.83 332 | 97.84 207 | 77.31 335 | 99.09 187 | 92.79 238 | 77.98 349 | 95.04 338 |
|
UnsupCasMVSNet_eth | | | 90.99 304 | 89.92 307 | 94.19 314 | 94.08 341 | 89.83 312 | 97.13 295 | 98.67 129 | 93.69 196 | 85.83 344 | 96.19 317 | 75.15 343 | 96.74 338 | 89.14 306 | 79.41 347 | 96.00 320 |
|
test20.03 | | | 90.89 305 | 90.38 303 | 92.43 328 | 93.48 346 | 88.14 338 | 98.33 184 | 97.56 279 | 93.40 210 | 87.96 335 | 96.71 297 | 80.69 313 | 94.13 356 | 79.15 351 | 86.17 332 | 95.01 340 |
|
MDA-MVSNet_test_wron | | | 90.71 306 | 89.38 311 | 94.68 302 | 94.83 334 | 90.78 303 | 97.19 289 | 97.46 291 | 87.60 329 | 72.41 358 | 95.72 326 | 86.51 244 | 96.71 341 | 85.92 326 | 86.80 329 | 96.56 288 |
|
YYNet1 | | | 90.70 307 | 89.39 310 | 94.62 304 | 94.79 335 | 90.65 305 | 97.20 288 | 97.46 291 | 87.54 330 | 72.54 357 | 95.74 323 | 86.51 244 | 96.66 342 | 86.00 325 | 86.76 330 | 96.54 291 |
|
DIV-MVS_2432*1600 | | | 90.38 308 | 89.38 311 | 93.40 321 | 92.85 349 | 88.94 327 | 97.95 233 | 97.94 260 | 90.35 304 | 90.25 319 | 93.96 343 | 79.82 316 | 95.94 347 | 84.62 337 | 76.69 351 | 95.33 331 |
|
pmmvs-eth3d | | | 90.36 309 | 89.05 314 | 94.32 312 | 91.10 354 | 92.12 275 | 97.63 262 | 96.95 317 | 88.86 324 | 84.91 347 | 93.13 346 | 78.32 325 | 96.74 338 | 88.70 309 | 81.81 341 | 94.09 347 |
|
CL-MVSNet_2432*1600 | | | 90.11 310 | 89.14 313 | 93.02 326 | 91.86 352 | 88.23 337 | 96.51 326 | 98.07 247 | 90.49 298 | 90.49 318 | 94.41 338 | 84.75 275 | 95.34 350 | 80.79 346 | 74.95 353 | 95.50 329 |
|
new_pmnet | | | 90.06 311 | 89.00 315 | 93.22 325 | 94.18 339 | 88.32 336 | 96.42 328 | 96.89 322 | 86.19 336 | 85.67 345 | 93.62 344 | 77.18 336 | 97.10 332 | 81.61 344 | 89.29 299 | 94.23 344 |
|
MDA-MVSNet-bldmvs | | | 89.97 312 | 88.35 317 | 94.83 298 | 95.21 329 | 91.34 291 | 97.64 260 | 97.51 287 | 88.36 327 | 71.17 359 | 96.13 318 | 79.22 320 | 96.63 343 | 83.65 339 | 86.27 331 | 96.52 296 |
|
CMPMVS |  | 66.06 21 | 89.70 313 | 89.67 309 | 89.78 334 | 93.19 347 | 76.56 357 | 97.00 300 | 98.35 193 | 80.97 350 | 81.57 351 | 97.75 216 | 74.75 345 | 98.61 242 | 89.85 293 | 93.63 241 | 94.17 345 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet1 | | | 89.67 314 | 88.28 318 | 93.82 316 | 92.81 350 | 91.08 298 | 98.01 228 | 97.45 293 | 87.95 328 | 87.90 336 | 95.87 322 | 67.63 355 | 94.56 355 | 78.73 353 | 88.18 313 | 95.83 324 |
|
KD-MVS_2432*1600 | | | 89.61 315 | 87.96 319 | 94.54 305 | 94.06 342 | 91.59 288 | 95.59 339 | 97.63 275 | 89.87 312 | 88.95 330 | 94.38 340 | 78.28 326 | 96.82 336 | 84.83 333 | 68.05 357 | 95.21 333 |
|
miper_refine_blended | | | 89.61 315 | 87.96 319 | 94.54 305 | 94.06 342 | 91.59 288 | 95.59 339 | 97.63 275 | 89.87 312 | 88.95 330 | 94.38 340 | 78.28 326 | 96.82 336 | 84.83 333 | 68.05 357 | 95.21 333 |
|
MVS-HIRNet | | | 89.46 317 | 88.40 316 | 92.64 327 | 97.58 218 | 82.15 354 | 94.16 352 | 93.05 360 | 75.73 355 | 90.90 313 | 82.52 357 | 79.42 319 | 98.33 277 | 83.53 340 | 98.68 129 | 97.43 219 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 318 | 87.43 323 | 93.69 317 | 93.08 348 | 89.42 319 | 97.91 237 | 96.89 322 | 78.58 352 | 85.86 343 | 94.69 337 | 69.48 353 | 98.29 285 | 77.13 355 | 93.29 251 | 93.36 352 |
|
new-patchmatchnet | | | 88.50 319 | 87.45 322 | 91.67 332 | 90.31 356 | 85.89 347 | 97.16 293 | 97.33 299 | 89.47 318 | 83.63 349 | 92.77 347 | 76.38 338 | 95.06 353 | 82.70 341 | 77.29 350 | 94.06 348 |
|
PM-MVS | | | 87.77 320 | 86.55 324 | 91.40 333 | 91.03 355 | 83.36 352 | 96.92 304 | 95.18 345 | 91.28 286 | 86.48 342 | 93.42 345 | 53.27 361 | 96.74 338 | 89.43 303 | 81.97 340 | 94.11 346 |
|
UnsupCasMVSNet_bld | | | 87.17 321 | 85.12 325 | 93.31 323 | 91.94 351 | 88.77 328 | 94.92 345 | 98.30 205 | 84.30 346 | 82.30 350 | 90.04 352 | 63.96 359 | 97.25 330 | 85.85 327 | 74.47 355 | 93.93 350 |
|
N_pmnet | | | 87.12 322 | 87.77 321 | 85.17 339 | 95.46 325 | 61.92 364 | 97.37 275 | 70.66 370 | 85.83 340 | 88.73 333 | 96.04 320 | 85.33 267 | 97.76 320 | 80.02 347 | 90.48 281 | 95.84 323 |
|
pmmvs3 | | | 86.67 323 | 84.86 326 | 92.11 331 | 88.16 357 | 87.19 345 | 96.63 322 | 94.75 349 | 79.88 351 | 87.22 338 | 92.75 348 | 66.56 356 | 95.20 352 | 81.24 345 | 76.56 352 | 93.96 349 |
|
test_method | | | 79.03 324 | 78.17 327 | 81.63 341 | 86.06 359 | 54.40 369 | 82.75 361 | 96.89 322 | 39.54 364 | 80.98 352 | 95.57 331 | 58.37 360 | 94.73 354 | 84.74 336 | 78.61 348 | 95.75 325 |
|
LCM-MVSNet | | | 78.70 325 | 76.24 330 | 86.08 337 | 77.26 366 | 71.99 361 | 94.34 350 | 96.72 328 | 61.62 359 | 76.53 354 | 89.33 353 | 33.91 368 | 92.78 358 | 81.85 343 | 74.60 354 | 93.46 351 |
|
Gipuma |  | | 78.40 326 | 76.75 329 | 83.38 340 | 95.54 322 | 80.43 356 | 79.42 362 | 97.40 297 | 64.67 358 | 73.46 356 | 80.82 359 | 45.65 363 | 93.14 357 | 66.32 359 | 87.43 320 | 76.56 360 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 77.95 327 | 75.44 331 | 85.46 338 | 82.54 361 | 74.95 359 | 94.23 351 | 93.08 359 | 72.80 356 | 74.68 355 | 87.38 354 | 36.36 367 | 91.56 359 | 73.95 357 | 63.94 359 | 89.87 354 |
|
FPMVS | | | 77.62 328 | 77.14 328 | 79.05 343 | 79.25 364 | 60.97 365 | 95.79 335 | 95.94 337 | 65.96 357 | 67.93 360 | 94.40 339 | 37.73 366 | 88.88 361 | 68.83 358 | 88.46 309 | 87.29 355 |
|
ANet_high | | | 69.08 329 | 65.37 333 | 80.22 342 | 65.99 368 | 71.96 362 | 90.91 357 | 90.09 363 | 82.62 347 | 49.93 365 | 78.39 360 | 29.36 369 | 81.75 362 | 62.49 360 | 38.52 363 | 86.95 357 |
|
tmp_tt | | | 68.90 330 | 66.97 332 | 74.68 345 | 50.78 370 | 59.95 366 | 87.13 358 | 83.47 368 | 38.80 365 | 62.21 361 | 96.23 314 | 64.70 358 | 76.91 366 | 88.91 308 | 30.49 364 | 87.19 356 |
|
PMVS |  | 61.03 23 | 65.95 331 | 63.57 335 | 73.09 346 | 57.90 369 | 51.22 370 | 85.05 360 | 93.93 358 | 54.45 360 | 44.32 366 | 83.57 356 | 13.22 370 | 89.15 360 | 58.68 361 | 81.00 344 | 78.91 359 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 64.94 332 | 64.25 334 | 67.02 347 | 82.28 362 | 59.36 367 | 91.83 356 | 85.63 366 | 52.69 361 | 60.22 362 | 77.28 361 | 41.06 365 | 80.12 364 | 46.15 363 | 41.14 361 | 61.57 362 |
|
EMVS | | | 64.07 333 | 63.26 336 | 66.53 348 | 81.73 363 | 58.81 368 | 91.85 355 | 84.75 367 | 51.93 363 | 59.09 363 | 75.13 362 | 43.32 364 | 79.09 365 | 42.03 364 | 39.47 362 | 61.69 361 |
|
MVE |  | 62.14 22 | 63.28 334 | 59.38 337 | 74.99 344 | 74.33 367 | 65.47 363 | 85.55 359 | 80.50 369 | 52.02 362 | 51.10 364 | 75.00 363 | 10.91 373 | 80.50 363 | 51.60 362 | 53.40 360 | 78.99 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 30.17 335 | 30.18 339 | 30.16 349 | 78.61 365 | 43.29 371 | 66.79 363 | 14.21 371 | 17.31 366 | 14.82 369 | 11.93 369 | 11.55 372 | 41.43 367 | 37.08 365 | 19.30 365 | 5.76 365 |
|
cdsmvs_eth3d_5k | | | 23.98 336 | 31.98 338 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 98.59 142 | 0.00 369 | 0.00 370 | 98.61 130 | 90.60 159 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
testmvs | | | 21.48 337 | 24.95 340 | 11.09 351 | 14.89 371 | 6.47 373 | 96.56 324 | 9.87 372 | 7.55 367 | 17.93 367 | 39.02 365 | 9.43 374 | 5.90 369 | 16.56 367 | 12.72 366 | 20.91 364 |
|
test123 | | | 20.95 338 | 23.72 341 | 12.64 350 | 13.54 372 | 8.19 372 | 96.55 325 | 6.13 373 | 7.48 368 | 16.74 368 | 37.98 366 | 12.97 371 | 6.05 368 | 16.69 366 | 5.43 367 | 23.68 363 |
|
ab-mvs-re | | | 8.20 339 | 10.94 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 98.43 148 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 7.88 340 | 10.50 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 94.51 85 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.46 51 | 98.70 19 | | 98.79 92 | 93.21 217 | 98.67 59 | 98.97 87 | 95.70 44 | 99.83 56 | 96.07 131 | 99.58 74 | |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 68 | 99.11 44 | 98.80 87 | 96.49 68 | 99.17 24 | 99.35 28 | 95.29 63 | | 97.72 57 | 99.65 58 | 99.71 44 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 137 | 95.28 122 | 99.63 4 | | | | 98.35 26 | 99.81 10 | 99.83 5 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 92 | 99.05 10 | 99.02 60 | | | | 99.16 61 | 97.81 2 | 99.37 157 | 97.24 83 | 99.73 43 | 99.70 48 |
|
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 8 | 99.48 6 | 97.34 8 | 99.94 3 | 98.43 20 | 99.80 17 | 99.83 5 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 4 | 99.74 107 | | | |
|
9.14 | | | | 98.06 49 | | 99.47 48 | | 98.71 126 | 98.82 70 | 94.36 164 | 99.16 26 | 99.29 39 | 96.05 32 | 99.81 71 | 97.00 90 | 99.71 50 | |
|
save fliter | | | | | | 99.46 51 | 98.38 35 | 98.21 201 | 98.71 114 | 97.95 3 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 97.32 29 | 99.45 9 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 17 | 99.86 1 | 99.85 2 |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 70 | 98.88 49 | | | | | 99.94 3 | 98.47 17 | 99.81 10 | 99.84 4 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 52 | 98.88 49 | 97.62 11 | 99.56 5 | 99.50 4 | 97.42 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 130 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 177 | | | | 99.20 130 |
|
sam_mvs | | | | | | | | | | | | | 88.99 190 | | | | |
|
ambc | | | | | 89.49 335 | 86.66 358 | 75.78 358 | 92.66 354 | 96.72 328 | | 86.55 341 | 92.50 349 | 46.01 362 | 97.90 313 | 90.32 284 | 82.09 338 | 94.80 342 |
|
MTGPA |  | | | | | | | | 98.74 104 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 321 | | | | 30.43 368 | 87.85 222 | 98.69 234 | 92.59 243 | | |
|
test_post | | | | | | | | | | | | 31.83 367 | 88.83 197 | 98.91 213 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 334 | 89.42 178 | 98.89 217 | | | |
|
GG-mvs-BLEND | | | | | 96.59 221 | 96.34 296 | 94.98 195 | 96.51 326 | 88.58 365 | | 93.10 275 | 94.34 342 | 80.34 315 | 98.05 303 | 89.53 300 | 96.99 182 | 96.74 264 |
|
MTMP | | | | | | | | 98.89 86 | 94.14 356 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 313 | 87.47 342 | | | 89.74 315 | | 96.94 285 | | 99.19 171 | 93.32 222 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 125 | 99.57 75 | 99.69 51 |
|
TEST9 | | | | | | 99.31 70 | 98.50 29 | 97.92 235 | 98.73 108 | 92.63 237 | 97.74 116 | 98.68 124 | 96.20 23 | 99.80 80 | | | |
|
test_8 | | | | | | 99.29 78 | 98.44 31 | 97.89 241 | 98.72 110 | 92.98 226 | 97.70 119 | 98.66 127 | 96.20 23 | 99.80 80 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 141 | 99.57 75 | 99.68 57 |
|
agg_prior | | | | | | 99.30 75 | 98.38 35 | | 98.72 110 | | 97.57 129 | | | 99.81 71 | | | |
|
TestCases | | | | | 96.99 189 | 99.25 86 | 93.21 264 | | 98.18 221 | 91.36 279 | 93.52 257 | 98.77 115 | 84.67 276 | 99.72 109 | 89.70 297 | 97.87 162 | 98.02 205 |
|
test_prior4 | | | | | | | 98.01 62 | 97.86 244 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 249 | | 96.12 83 | 97.89 110 | 98.69 122 | 95.96 36 | | 96.89 99 | 99.60 68 | |
|
test_prior | | | | | 99.19 43 | 99.31 70 | 98.22 50 | | 98.84 65 | | | | | 99.70 115 | | | 99.65 67 |
|
旧先验2 | | | | | | | | 97.57 265 | | 91.30 284 | 98.67 59 | | | 99.80 80 | 95.70 151 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 260 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.16 50 | 99.34 62 | 98.01 62 | | 98.69 118 | 90.06 309 | 98.13 86 | 98.95 95 | 94.60 82 | 99.89 35 | 91.97 261 | 99.47 91 | 99.59 80 |
|
旧先验1 | | | | | | 99.29 78 | 97.48 83 | | 98.70 117 | | | 99.09 74 | 95.56 47 | | | 99.47 91 | 99.61 75 |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 264 | 98.72 110 | 91.38 278 | | | | 99.87 44 | 93.36 220 | | 99.60 78 |
|
原ACMM2 | | | | | | | | 97.67 258 | | | | | | | | | |
|
原ACMM1 | | | | | 98.65 81 | 99.32 68 | 96.62 118 | | 98.67 129 | 93.27 216 | 97.81 112 | 98.97 87 | 95.18 68 | 99.83 56 | 93.84 206 | 99.46 94 | 99.50 91 |
|
test222 | | | | | | 99.23 93 | 97.17 100 | 97.40 271 | 98.66 132 | 88.68 325 | 98.05 90 | 98.96 93 | 94.14 95 | | | 99.53 85 | 99.61 75 |
|
testdata2 | | | | | | | | | | | | | | 99.89 35 | 91.65 268 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 11 | | | | |
|
testdata | | | | | 98.26 111 | 99.20 97 | 95.36 177 | | 98.68 121 | 91.89 264 | 98.60 67 | 99.10 69 | 94.44 91 | 99.82 64 | 94.27 193 | 99.44 96 | 99.58 82 |
|
testdata1 | | | | | | | | 97.32 281 | | 96.34 74 | | | | | | | |
|
test12 | | | | | 99.18 47 | 99.16 99 | 98.19 52 | | 98.53 156 | | 98.07 89 | | 95.13 70 | 99.72 109 | | 99.56 80 | 99.63 73 |
|
plane_prior7 | | | | | | 97.42 234 | 94.63 210 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 239 | 94.61 213 | | | | | | 87.09 235 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 150 | | | | | 99.03 194 | 96.07 131 | 94.27 222 | 96.92 240 |
|
plane_prior4 | | | | | | | | | | | | 98.28 168 | | | | | |
|
plane_prior3 | | | | | | | 94.61 213 | | | 97.02 49 | 95.34 191 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 108 | | 97.28 31 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 238 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 215 | 98.44 170 | | 96.74 57 | | | | | | 94.22 224 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 352 | | | | | | | | |
|
lessismore_v0 | | | | | 94.45 311 | 94.93 333 | 88.44 334 | | 91.03 362 | | 86.77 340 | 97.64 226 | 76.23 339 | 98.42 262 | 90.31 285 | 85.64 335 | 96.51 299 |
|
LGP-MVS_train | | | | | 96.47 234 | 97.46 229 | 93.54 249 | | 98.54 154 | 94.67 152 | 94.36 221 | 98.77 115 | 85.39 263 | 99.11 182 | 95.71 149 | 94.15 228 | 96.76 262 |
|
test11 | | | | | | | | | 98.66 132 | | | | | | | | |
|
door | | | | | | | | | 94.64 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 229 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 248 | | 98.05 224 | | 96.43 70 | 94.45 214 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 248 | | 98.05 224 | | 96.43 70 | 94.45 214 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 160 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 214 | | | 98.96 206 | | | 96.87 251 |
|
HQP3-MVS | | | | | | | | | 98.46 171 | | | | | | | 94.18 226 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 241 | | | | |
|
NP-MVS | | | | | | 97.28 242 | 94.51 218 | | | | | 97.73 217 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 349 | 96.89 311 | | 90.97 294 | 97.90 109 | | 89.89 170 | | 93.91 204 | | 99.18 137 |
|
MDTV_nov1_ep13 | | | | 95.40 158 | | 97.48 227 | 88.34 335 | 96.85 314 | 97.29 301 | 93.74 190 | 97.48 132 | 97.26 251 | 89.18 184 | 99.05 190 | 91.92 262 | 97.43 176 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 254 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 242 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 80 | | | | |
|
ITE_SJBPF | | | | | 95.44 279 | 97.42 234 | 91.32 294 | | 97.50 288 | 95.09 135 | 93.59 253 | 98.35 158 | 81.70 304 | 98.88 219 | 89.71 296 | 93.39 248 | 96.12 317 |
|
DeepMVS_CX |  | | | | 86.78 336 | 97.09 258 | 72.30 360 | | 95.17 346 | 75.92 354 | 84.34 348 | 95.19 332 | 70.58 352 | 95.35 349 | 79.98 349 | 89.04 303 | 92.68 353 |
|