SED-MVS | | | 99.09 1 | 98.91 2 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 73 | 98.87 58 | 97.65 12 | 99.73 4 | 99.48 10 | 97.53 7 | 99.94 4 | 98.43 30 | 99.81 12 | 99.70 46 |
|
DVP-MVS++ | | | 99.08 2 | 98.89 3 | 99.64 3 | 99.17 89 | 99.23 7 | 99.69 1 | 98.88 51 | 97.32 31 | 99.53 16 | 99.47 12 | 97.81 3 | 99.94 4 | 98.47 26 | 99.72 47 | 99.74 30 |
|
DVP-MVS |  | | 99.03 3 | 98.83 6 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 83 | 98.58 138 | 97.62 14 | 99.45 18 | 99.46 15 | 97.42 9 | 99.94 4 | 98.47 26 | 99.81 12 | 99.69 49 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 99.02 4 | 98.84 5 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 39 | 97.38 28 | 99.41 20 | 99.54 1 | 96.66 17 | 99.84 55 | 98.86 9 | 99.85 5 | 99.87 1 |
|
DPE-MVS |  | | 98.92 5 | 98.67 9 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 187 | 98.91 45 | 97.58 17 | 99.54 15 | 99.46 15 | 97.10 12 | 99.94 4 | 97.64 74 | 99.84 10 | 99.83 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SteuartSystems-ACMMP | | | 98.90 6 | 98.75 7 | 99.36 21 | 99.22 84 | 98.43 33 | 99.10 57 | 98.87 58 | 97.38 28 | 99.35 24 | 99.40 19 | 97.78 5 | 99.87 46 | 97.77 64 | 99.85 5 | 99.78 15 |
Skip Steuart: Steuart Systems R&D Blog. |
test_fmvsm_n_1920 | | | 98.87 7 | 99.01 1 | 98.45 86 | 99.42 54 | 96.43 119 | 98.96 87 | 99.36 7 | 98.63 1 | 99.86 2 | 99.51 5 | 95.91 37 | 99.97 1 | 99.72 1 | 99.75 38 | 98.94 163 |
|
TSAR-MVS + MP. | | | 98.78 8 | 98.62 10 | 99.24 35 | 99.69 24 | 98.28 45 | 99.14 48 | 98.66 121 | 96.84 59 | 99.56 13 | 99.31 39 | 96.34 23 | 99.70 107 | 98.32 36 | 99.73 44 | 99.73 35 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 98.78 8 | 98.56 13 | 99.45 15 | 99.32 60 | 98.87 19 | 98.47 179 | 98.81 75 | 97.72 8 | 98.76 58 | 99.16 65 | 97.05 13 | 99.78 89 | 98.06 45 | 99.66 55 | 99.69 49 |
|
MSP-MVS | | | 98.74 10 | 98.55 14 | 99.29 28 | 99.75 3 | 98.23 46 | 99.26 27 | 98.88 51 | 97.52 19 | 99.41 20 | 98.78 118 | 96.00 33 | 99.79 86 | 97.79 63 | 99.59 68 | 99.85 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
XVS | | | 98.70 11 | 98.49 16 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 51 | 97.40 25 | 98.46 75 | 99.20 55 | 95.90 39 | 99.89 37 | 97.85 58 | 99.74 42 | 99.78 15 |
|
MCST-MVS | | | 98.65 12 | 98.37 22 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 188 | 98.68 113 | 97.04 51 | 98.52 74 | 98.80 116 | 96.78 16 | 99.83 57 | 97.93 52 | 99.61 65 | 99.74 30 |
|
SD-MVS | | | 98.64 13 | 98.68 8 | 98.53 78 | 99.33 57 | 98.36 40 | 98.90 95 | 98.85 67 | 97.28 34 | 99.72 6 | 99.39 20 | 96.63 19 | 97.60 329 | 98.17 40 | 99.85 5 | 99.64 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HFP-MVS | | | 98.63 14 | 98.40 19 | 99.32 27 | 99.72 12 | 98.29 44 | 99.23 31 | 98.96 34 | 96.10 92 | 98.94 44 | 99.17 62 | 96.06 30 | 99.92 24 | 97.62 75 | 99.78 26 | 99.75 28 |
|
ACMMP_NAP | | | 98.61 15 | 98.30 34 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 114 | 98.81 75 | 95.80 104 | 99.16 35 | 99.47 12 | 95.37 54 | 99.92 24 | 97.89 55 | 99.75 38 | 99.79 13 |
|
region2R | | | 98.61 15 | 98.38 21 | 99.29 28 | 99.74 7 | 98.16 51 | 99.23 31 | 98.93 39 | 96.15 89 | 98.94 44 | 99.17 62 | 95.91 37 | 99.94 4 | 97.55 82 | 99.79 23 | 99.78 15 |
|
NCCC | | | 98.61 15 | 98.35 25 | 99.38 18 | 99.28 72 | 98.61 26 | 98.45 180 | 98.76 94 | 97.82 7 | 98.45 78 | 98.93 102 | 96.65 18 | 99.83 57 | 97.38 91 | 99.41 95 | 99.71 42 |
|
SF-MVS | | | 98.59 18 | 98.32 33 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 67 | 98.81 75 | 95.12 139 | 99.32 25 | 99.39 20 | 96.22 24 | 99.84 55 | 97.72 67 | 99.73 44 | 99.67 58 |
|
ACMMPR | | | 98.59 18 | 98.36 23 | 99.29 28 | 99.74 7 | 98.15 52 | 99.23 31 | 98.95 35 | 96.10 92 | 98.93 48 | 99.19 60 | 95.70 43 | 99.94 4 | 97.62 75 | 99.79 23 | 99.78 15 |
|
SMA-MVS |  | | 98.58 20 | 98.25 37 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 88 | 98.80 83 | 93.67 208 | 99.37 23 | 99.52 3 | 96.52 21 | 99.89 37 | 98.06 45 | 99.81 12 | 99.76 27 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 98.58 20 | 98.29 35 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 95 | 98.74 98 | 97.27 38 | 98.02 99 | 99.39 20 | 94.81 74 | 99.96 3 | 97.91 53 | 99.79 23 | 99.77 21 |
|
HPM-MVS++ |  | | 98.58 20 | 98.25 37 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 140 | 98.66 121 | 97.51 20 | 98.15 88 | 98.83 113 | 95.70 43 | 99.92 24 | 97.53 84 | 99.67 53 | 99.66 61 |
|
SR-MVS | | | 98.57 23 | 98.35 25 | 99.24 35 | 99.53 36 | 98.18 49 | 99.09 58 | 98.82 70 | 96.58 71 | 99.10 37 | 99.32 37 | 95.39 52 | 99.82 64 | 97.70 71 | 99.63 62 | 99.72 38 |
|
CP-MVS | | | 98.57 23 | 98.36 23 | 99.19 38 | 99.66 26 | 97.86 61 | 99.34 18 | 98.87 58 | 95.96 97 | 98.60 71 | 99.13 70 | 96.05 31 | 99.94 4 | 97.77 64 | 99.86 1 | 99.77 21 |
|
MSLP-MVS++ | | | 98.56 25 | 98.57 12 | 98.55 74 | 99.26 75 | 96.80 98 | 98.71 141 | 99.05 26 | 97.28 34 | 98.84 52 | 99.28 42 | 96.47 22 | 99.40 155 | 98.52 24 | 99.70 50 | 99.47 92 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 26 | 98.34 28 | 99.18 40 | 99.25 76 | 98.04 56 | 98.50 176 | 98.78 90 | 97.72 8 | 98.92 49 | 99.28 42 | 95.27 60 | 99.82 64 | 97.55 82 | 99.77 28 | 99.69 49 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 98.54 27 | 98.35 25 | 99.13 45 | 99.49 45 | 97.86 61 | 99.11 54 | 98.80 83 | 96.49 74 | 99.17 33 | 99.35 32 | 95.34 56 | 99.82 64 | 97.72 67 | 99.65 57 | 99.71 42 |
|
APD-MVS_3200maxsize | | | 98.53 28 | 98.33 32 | 99.15 44 | 99.50 41 | 97.92 60 | 99.15 46 | 98.81 75 | 96.24 85 | 99.20 30 | 99.37 26 | 95.30 58 | 99.80 76 | 97.73 66 | 99.67 53 | 99.72 38 |
|
mPP-MVS | | | 98.51 29 | 98.26 36 | 99.25 34 | 99.75 3 | 98.04 56 | 99.28 24 | 98.81 75 | 96.24 85 | 98.35 84 | 99.23 50 | 95.46 49 | 99.94 4 | 97.42 89 | 99.81 12 | 99.77 21 |
|
ZNCC-MVS | | | 98.49 30 | 98.20 42 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 41 | 98.86 64 | 95.77 105 | 98.31 87 | 99.10 74 | 95.46 49 | 99.93 19 | 97.57 81 | 99.81 12 | 99.74 30 |
|
CS-MVS-test | | | 98.49 30 | 98.50 15 | 98.46 85 | 99.20 87 | 97.05 89 | 99.64 4 | 98.50 158 | 97.45 24 | 98.88 50 | 99.14 69 | 95.25 62 | 99.15 177 | 98.83 10 | 99.56 78 | 99.20 128 |
|
PGM-MVS | | | 98.49 30 | 98.23 40 | 99.27 33 | 99.72 12 | 98.08 55 | 98.99 80 | 99.49 5 | 95.43 121 | 99.03 38 | 99.32 37 | 95.56 46 | 99.94 4 | 96.80 120 | 99.77 28 | 99.78 15 |
|
EI-MVSNet-Vis-set | | | 98.47 33 | 98.39 20 | 98.69 65 | 99.46 49 | 96.49 116 | 98.30 199 | 98.69 110 | 97.21 40 | 98.84 52 | 99.36 30 | 95.41 51 | 99.78 89 | 98.62 14 | 99.65 57 | 99.80 12 |
|
MVS_111021_HR | | | 98.47 33 | 98.34 28 | 98.88 60 | 99.22 84 | 97.32 77 | 97.91 241 | 99.58 3 | 97.20 41 | 98.33 85 | 99.00 91 | 95.99 34 | 99.64 119 | 98.05 47 | 99.76 34 | 99.69 49 |
|
CS-MVS | | | 98.44 35 | 98.49 16 | 98.31 98 | 99.08 100 | 96.73 102 | 99.67 3 | 98.47 164 | 97.17 43 | 98.94 44 | 99.10 74 | 95.73 42 | 99.13 180 | 98.71 12 | 99.49 86 | 99.09 146 |
|
GST-MVS | | | 98.43 36 | 98.12 45 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 58 | 98.82 70 | 95.71 109 | 98.73 61 | 99.06 84 | 95.27 60 | 99.93 19 | 97.07 100 | 99.63 62 | 99.72 38 |
|
EI-MVSNet-UG-set | | | 98.41 37 | 98.34 28 | 98.61 70 | 99.45 52 | 96.32 126 | 98.28 202 | 98.68 113 | 97.17 43 | 98.74 59 | 99.37 26 | 95.25 62 | 99.79 86 | 98.57 15 | 99.54 81 | 99.73 35 |
|
DELS-MVS | | | 98.40 38 | 98.20 42 | 98.99 52 | 99.00 107 | 97.66 66 | 97.75 257 | 98.89 48 | 97.71 10 | 98.33 85 | 98.97 93 | 94.97 71 | 99.88 45 | 98.42 32 | 99.76 34 | 99.42 103 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + GP. | | | 98.38 39 | 98.24 39 | 98.81 61 | 99.22 84 | 97.25 84 | 98.11 224 | 98.29 200 | 97.19 42 | 98.99 43 | 99.02 86 | 96.22 24 | 99.67 114 | 98.52 24 | 98.56 137 | 99.51 82 |
|
HPM-MVS_fast | | | 98.38 39 | 98.13 44 | 99.12 47 | 99.75 3 | 97.86 61 | 99.44 11 | 98.82 70 | 94.46 169 | 98.94 44 | 99.20 55 | 95.16 66 | 99.74 99 | 97.58 78 | 99.85 5 | 99.77 21 |
|
patch_mono-2 | | | 98.36 41 | 98.87 4 | 96.82 198 | 99.53 36 | 90.68 301 | 98.64 155 | 99.29 9 | 97.88 6 | 99.19 32 | 99.52 3 | 96.80 15 | 99.97 1 | 99.11 4 | 99.86 1 | 99.82 10 |
|
HPM-MVS |  | | 98.36 41 | 98.10 47 | 99.13 45 | 99.74 7 | 97.82 65 | 99.53 8 | 98.80 83 | 94.63 162 | 98.61 70 | 98.97 93 | 95.13 67 | 99.77 94 | 97.65 73 | 99.83 11 | 99.79 13 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS |  | | 98.35 43 | 98.00 51 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 121 | 98.82 70 | 94.52 166 | 99.23 29 | 99.25 49 | 95.54 48 | 99.80 76 | 96.52 128 | 99.77 28 | 99.74 30 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_LR | | | 98.34 44 | 98.23 40 | 98.67 67 | 99.27 73 | 96.90 95 | 97.95 237 | 99.58 3 | 97.14 46 | 98.44 79 | 99.01 90 | 95.03 70 | 99.62 125 | 97.91 53 | 99.75 38 | 99.50 84 |
|
PHI-MVS | | | 98.34 44 | 98.06 48 | 99.18 40 | 99.15 95 | 98.12 54 | 99.04 67 | 99.09 22 | 93.32 222 | 98.83 54 | 99.10 74 | 96.54 20 | 99.83 57 | 97.70 71 | 99.76 34 | 99.59 72 |
|
MP-MVS |  | | 98.33 46 | 98.01 50 | 99.28 31 | 99.75 3 | 98.18 49 | 99.22 35 | 98.79 88 | 96.13 90 | 97.92 110 | 99.23 50 | 94.54 77 | 99.94 4 | 96.74 123 | 99.78 26 | 99.73 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 98.31 47 | 97.92 53 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 185 | 98.78 90 | 94.10 177 | 97.69 123 | 99.42 18 | 95.25 62 | 99.92 24 | 98.09 44 | 99.80 19 | 99.67 58 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP |  | | 98.23 48 | 97.95 52 | 99.09 48 | 99.74 7 | 97.62 69 | 99.03 70 | 99.41 6 | 95.98 95 | 97.60 131 | 99.36 30 | 94.45 82 | 99.93 19 | 97.14 97 | 98.85 123 | 99.70 46 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EC-MVSNet | | | 98.21 49 | 98.11 46 | 98.49 82 | 98.34 166 | 97.26 83 | 99.61 5 | 98.43 173 | 96.78 62 | 98.87 51 | 98.84 111 | 93.72 93 | 99.01 201 | 98.91 8 | 99.50 84 | 99.19 132 |
|
dcpmvs_2 | | | 98.08 50 | 98.59 11 | 96.56 222 | 99.57 33 | 90.34 308 | 99.15 46 | 98.38 182 | 96.82 61 | 99.29 26 | 99.49 9 | 95.78 41 | 99.57 130 | 98.94 7 | 99.86 1 | 99.77 21 |
|
CANet | | | 98.05 51 | 97.76 56 | 98.90 59 | 98.73 129 | 97.27 79 | 98.35 190 | 98.78 90 | 97.37 30 | 97.72 121 | 98.96 98 | 91.53 132 | 99.92 24 | 98.79 11 | 99.65 57 | 99.51 82 |
|
train_agg | | | 97.97 52 | 97.52 67 | 99.33 26 | 99.31 62 | 98.50 29 | 97.92 239 | 98.73 101 | 92.98 235 | 97.74 118 | 98.68 128 | 96.20 26 | 99.80 76 | 96.59 124 | 99.57 72 | 99.68 54 |
|
ETV-MVS | | | 97.96 53 | 97.81 54 | 98.40 93 | 98.42 155 | 97.27 79 | 98.73 136 | 98.55 144 | 96.84 59 | 98.38 81 | 97.44 247 | 95.39 52 | 99.35 158 | 97.62 75 | 98.89 119 | 98.58 190 |
|
UA-Net | | | 97.96 53 | 97.62 60 | 98.98 53 | 98.86 120 | 97.47 74 | 98.89 99 | 99.08 23 | 96.67 68 | 98.72 62 | 99.54 1 | 93.15 98 | 99.81 69 | 94.87 176 | 98.83 124 | 99.65 62 |
|
CDPH-MVS | | | 97.94 55 | 97.49 68 | 99.28 31 | 99.47 47 | 98.44 31 | 97.91 241 | 98.67 118 | 92.57 250 | 98.77 57 | 98.85 110 | 95.93 36 | 99.72 101 | 95.56 160 | 99.69 51 | 99.68 54 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 56 | 98.48 18 | 96.30 248 | 99.00 107 | 89.54 319 | 97.43 278 | 98.87 58 | 98.16 3 | 99.26 28 | 99.38 25 | 96.12 29 | 99.64 119 | 98.30 37 | 99.77 28 | 99.72 38 |
|
DeepC-MVS | | 95.98 3 | 97.88 57 | 97.58 62 | 98.77 62 | 99.25 76 | 96.93 93 | 98.83 112 | 98.75 96 | 96.96 55 | 96.89 155 | 99.50 7 | 90.46 153 | 99.87 46 | 97.84 60 | 99.76 34 | 99.52 79 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS Recon | | | 97.86 58 | 97.46 71 | 99.06 50 | 99.53 36 | 98.35 41 | 98.33 192 | 98.89 48 | 92.62 247 | 98.05 94 | 98.94 101 | 95.34 56 | 99.65 117 | 96.04 143 | 99.42 94 | 99.19 132 |
|
CSCG | | | 97.85 59 | 97.74 57 | 98.20 106 | 99.67 25 | 95.16 178 | 99.22 35 | 99.32 8 | 93.04 233 | 97.02 148 | 98.92 104 | 95.36 55 | 99.91 32 | 97.43 88 | 99.64 61 | 99.52 79 |
|
MG-MVS | | | 97.81 60 | 97.60 61 | 98.44 88 | 99.12 97 | 95.97 142 | 97.75 257 | 98.78 90 | 96.89 58 | 98.46 75 | 99.22 52 | 93.90 92 | 99.68 113 | 94.81 180 | 99.52 83 | 99.67 58 |
|
VNet | | | 97.79 61 | 97.40 75 | 98.96 55 | 98.88 118 | 97.55 71 | 98.63 157 | 98.93 39 | 96.74 65 | 99.02 39 | 98.84 111 | 90.33 156 | 99.83 57 | 98.53 18 | 96.66 191 | 99.50 84 |
|
EIA-MVS | | | 97.75 62 | 97.58 62 | 98.27 100 | 98.38 158 | 96.44 118 | 99.01 75 | 98.60 131 | 95.88 101 | 97.26 137 | 97.53 241 | 94.97 71 | 99.33 160 | 97.38 91 | 99.20 106 | 99.05 152 |
|
PS-MVSNAJ | | | 97.73 63 | 97.77 55 | 97.62 150 | 98.68 137 | 95.58 161 | 97.34 287 | 98.51 153 | 97.29 33 | 98.66 67 | 97.88 208 | 94.51 78 | 99.90 35 | 97.87 57 | 99.17 108 | 97.39 224 |
|
casdiffmvs_mvg |  | | 97.72 64 | 97.48 70 | 98.44 88 | 98.42 155 | 96.59 110 | 98.92 93 | 98.44 169 | 96.20 87 | 97.76 115 | 99.20 55 | 91.66 126 | 99.23 167 | 98.27 39 | 98.41 146 | 99.49 89 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CPTT-MVS | | | 97.72 64 | 97.32 79 | 98.92 57 | 99.64 28 | 97.10 88 | 99.12 52 | 98.81 75 | 92.34 258 | 98.09 92 | 99.08 82 | 93.01 99 | 99.92 24 | 96.06 142 | 99.77 28 | 99.75 28 |
|
PVSNet_Blended_VisFu | | | 97.70 66 | 97.46 71 | 98.44 88 | 99.27 73 | 95.91 150 | 98.63 157 | 99.16 19 | 94.48 168 | 97.67 124 | 98.88 107 | 92.80 101 | 99.91 32 | 97.11 98 | 99.12 109 | 99.50 84 |
|
mvsany_test1 | | | 97.69 67 | 97.70 58 | 97.66 148 | 98.24 173 | 94.18 226 | 97.53 273 | 97.53 286 | 95.52 117 | 99.66 8 | 99.51 5 | 94.30 85 | 99.56 133 | 98.38 33 | 98.62 133 | 99.23 125 |
|
canonicalmvs | | | 97.67 68 | 97.23 82 | 98.98 53 | 98.70 134 | 98.38 35 | 99.34 18 | 98.39 179 | 96.76 64 | 97.67 124 | 97.40 250 | 92.26 109 | 99.49 146 | 98.28 38 | 96.28 207 | 99.08 150 |
|
xiu_mvs_v2_base | | | 97.66 69 | 97.70 58 | 97.56 154 | 98.61 144 | 95.46 167 | 97.44 276 | 98.46 165 | 97.15 45 | 98.65 68 | 98.15 185 | 94.33 84 | 99.80 76 | 97.84 60 | 98.66 132 | 97.41 222 |
|
baseline | | | 97.64 70 | 97.44 73 | 98.25 103 | 98.35 161 | 96.20 130 | 99.00 77 | 98.32 190 | 96.33 84 | 98.03 97 | 99.17 62 | 91.35 135 | 99.16 174 | 98.10 43 | 98.29 153 | 99.39 104 |
|
casdiffmvs |  | | 97.63 71 | 97.41 74 | 98.28 99 | 98.33 168 | 96.14 133 | 98.82 114 | 98.32 190 | 96.38 82 | 97.95 105 | 99.21 53 | 91.23 139 | 99.23 167 | 98.12 42 | 98.37 147 | 99.48 90 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
xiu_mvs_v1_base_debu | | | 97.60 72 | 97.56 64 | 97.72 139 | 98.35 161 | 95.98 137 | 97.86 248 | 98.51 153 | 97.13 47 | 99.01 40 | 98.40 158 | 91.56 128 | 99.80 76 | 98.53 18 | 98.68 128 | 97.37 226 |
|
xiu_mvs_v1_base | | | 97.60 72 | 97.56 64 | 97.72 139 | 98.35 161 | 95.98 137 | 97.86 248 | 98.51 153 | 97.13 47 | 99.01 40 | 98.40 158 | 91.56 128 | 99.80 76 | 98.53 18 | 98.68 128 | 97.37 226 |
|
xiu_mvs_v1_base_debi | | | 97.60 72 | 97.56 64 | 97.72 139 | 98.35 161 | 95.98 137 | 97.86 248 | 98.51 153 | 97.13 47 | 99.01 40 | 98.40 158 | 91.56 128 | 99.80 76 | 98.53 18 | 98.68 128 | 97.37 226 |
|
diffmvs |  | | 97.58 75 | 97.40 75 | 98.13 111 | 98.32 170 | 95.81 155 | 98.06 227 | 98.37 183 | 96.20 87 | 98.74 59 | 98.89 106 | 91.31 137 | 99.25 164 | 98.16 41 | 98.52 138 | 99.34 107 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVSFormer | | | 97.57 76 | 97.49 68 | 97.84 127 | 98.07 191 | 95.76 156 | 99.47 9 | 98.40 177 | 94.98 147 | 98.79 55 | 98.83 113 | 92.34 106 | 98.41 275 | 96.91 106 | 99.59 68 | 99.34 107 |
|
alignmvs | | | 97.56 77 | 97.07 89 | 99.01 51 | 98.66 139 | 98.37 39 | 98.83 112 | 98.06 246 | 96.74 65 | 98.00 103 | 97.65 230 | 90.80 147 | 99.48 150 | 98.37 34 | 96.56 195 | 99.19 132 |
|
DPM-MVS | | | 97.55 78 | 96.99 92 | 99.23 37 | 99.04 102 | 98.55 27 | 97.17 301 | 98.35 186 | 94.85 154 | 97.93 109 | 98.58 139 | 95.07 69 | 99.71 106 | 92.60 247 | 99.34 101 | 99.43 101 |
|
OMC-MVS | | | 97.55 78 | 97.34 78 | 98.20 106 | 99.33 57 | 95.92 149 | 98.28 202 | 98.59 133 | 95.52 117 | 97.97 104 | 99.10 74 | 93.28 97 | 99.49 146 | 95.09 173 | 98.88 120 | 99.19 132 |
|
PAPM_NR | | | 97.46 80 | 97.11 86 | 98.50 80 | 99.50 41 | 96.41 122 | 98.63 157 | 98.60 131 | 95.18 136 | 97.06 146 | 98.06 191 | 94.26 87 | 99.57 130 | 93.80 215 | 98.87 122 | 99.52 79 |
|
EPP-MVSNet | | | 97.46 80 | 97.28 80 | 97.99 120 | 98.64 141 | 95.38 169 | 99.33 21 | 98.31 192 | 93.61 212 | 97.19 139 | 99.07 83 | 94.05 89 | 99.23 167 | 96.89 110 | 98.43 145 | 99.37 106 |
|
3Dnovator | | 94.51 5 | 97.46 80 | 96.93 94 | 99.07 49 | 97.78 208 | 97.64 67 | 99.35 17 | 99.06 24 | 97.02 52 | 93.75 257 | 99.16 65 | 89.25 176 | 99.92 24 | 97.22 96 | 99.75 38 | 99.64 64 |
|
CNLPA | | | 97.45 83 | 97.03 90 | 98.73 63 | 99.05 101 | 97.44 76 | 98.07 226 | 98.53 148 | 95.32 129 | 96.80 160 | 98.53 143 | 93.32 96 | 99.72 101 | 94.31 198 | 99.31 103 | 99.02 154 |
|
lupinMVS | | | 97.44 84 | 97.22 83 | 98.12 113 | 98.07 191 | 95.76 156 | 97.68 262 | 97.76 267 | 94.50 167 | 98.79 55 | 98.61 134 | 92.34 106 | 99.30 161 | 97.58 78 | 99.59 68 | 99.31 113 |
|
3Dnovator+ | | 94.38 6 | 97.43 85 | 96.78 102 | 99.38 18 | 97.83 206 | 98.52 28 | 99.37 14 | 98.71 106 | 97.09 50 | 92.99 282 | 99.13 70 | 89.36 172 | 99.89 37 | 96.97 103 | 99.57 72 | 99.71 42 |
|
Vis-MVSNet |  | | 97.42 86 | 97.11 86 | 98.34 96 | 98.66 139 | 96.23 129 | 99.22 35 | 99.00 29 | 96.63 70 | 98.04 96 | 99.21 53 | 88.05 209 | 99.35 158 | 96.01 145 | 99.21 105 | 99.45 98 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 97.41 87 | 97.25 81 | 97.91 124 | 98.70 134 | 96.80 98 | 98.82 114 | 98.69 110 | 94.53 164 | 98.11 90 | 98.28 173 | 94.50 81 | 99.57 130 | 94.12 204 | 99.49 86 | 97.37 226 |
|
sss | | | 97.39 88 | 96.98 93 | 98.61 70 | 98.60 145 | 96.61 107 | 98.22 207 | 98.93 39 | 93.97 185 | 98.01 102 | 98.48 148 | 91.98 119 | 99.85 51 | 96.45 130 | 98.15 155 | 99.39 104 |
|
test_cas_vis1_n_1920 | | | 97.38 89 | 97.36 77 | 97.45 157 | 98.95 113 | 93.25 259 | 99.00 77 | 98.53 148 | 97.70 11 | 99.77 3 | 99.35 32 | 84.71 272 | 99.85 51 | 98.57 15 | 99.66 55 | 99.26 122 |
|
PVSNet_Blended | | | 97.38 89 | 97.12 85 | 98.14 109 | 99.25 76 | 95.35 172 | 97.28 292 | 99.26 10 | 93.13 230 | 97.94 107 | 98.21 181 | 92.74 102 | 99.81 69 | 96.88 112 | 99.40 97 | 99.27 120 |
|
WTY-MVS | | | 97.37 91 | 96.92 95 | 98.72 64 | 98.86 120 | 96.89 97 | 98.31 197 | 98.71 106 | 95.26 132 | 97.67 124 | 98.56 142 | 92.21 112 | 99.78 89 | 95.89 147 | 96.85 186 | 99.48 90 |
|
jason | | | 97.32 92 | 97.08 88 | 98.06 117 | 97.45 237 | 95.59 160 | 97.87 247 | 97.91 261 | 94.79 155 | 98.55 73 | 98.83 113 | 91.12 140 | 99.23 167 | 97.58 78 | 99.60 66 | 99.34 107 |
jason: jason. |
MVS_Test | | | 97.28 93 | 97.00 91 | 98.13 111 | 98.33 168 | 95.97 142 | 98.74 132 | 98.07 241 | 94.27 173 | 98.44 79 | 98.07 190 | 92.48 104 | 99.26 163 | 96.43 131 | 98.19 154 | 99.16 138 |
|
EPNet | | | 97.28 93 | 96.87 97 | 98.51 79 | 94.98 339 | 96.14 133 | 98.90 95 | 97.02 318 | 98.28 2 | 95.99 188 | 99.11 72 | 91.36 134 | 99.89 37 | 96.98 102 | 99.19 107 | 99.50 84 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_yl | | | 97.22 95 | 96.78 102 | 98.54 76 | 98.73 129 | 96.60 108 | 98.45 180 | 98.31 192 | 94.70 156 | 98.02 99 | 98.42 156 | 90.80 147 | 99.70 107 | 96.81 118 | 96.79 188 | 99.34 107 |
|
DCV-MVSNet | | | 97.22 95 | 96.78 102 | 98.54 76 | 98.73 129 | 96.60 108 | 98.45 180 | 98.31 192 | 94.70 156 | 98.02 99 | 98.42 156 | 90.80 147 | 99.70 107 | 96.81 118 | 96.79 188 | 99.34 107 |
|
IS-MVSNet | | | 97.22 95 | 96.88 96 | 98.25 103 | 98.85 122 | 96.36 124 | 99.19 41 | 97.97 254 | 95.39 123 | 97.23 138 | 98.99 92 | 91.11 141 | 98.93 213 | 94.60 187 | 98.59 135 | 99.47 92 |
|
PLC |  | 95.07 4 | 97.20 98 | 96.78 102 | 98.44 88 | 99.29 68 | 96.31 128 | 98.14 219 | 98.76 94 | 92.41 256 | 96.39 178 | 98.31 171 | 94.92 73 | 99.78 89 | 94.06 207 | 98.77 127 | 99.23 125 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 280x420 | | | 97.18 99 | 97.18 84 | 97.20 170 | 98.81 125 | 93.27 257 | 95.78 346 | 99.15 20 | 95.25 133 | 96.79 161 | 98.11 188 | 92.29 108 | 99.07 191 | 98.56 17 | 99.85 5 | 99.25 124 |
|
LS3D | | | 97.16 100 | 96.66 110 | 98.68 66 | 98.53 149 | 97.19 86 | 98.93 92 | 98.90 46 | 92.83 242 | 95.99 188 | 99.37 26 | 92.12 115 | 99.87 46 | 93.67 219 | 99.57 72 | 98.97 159 |
|
AdaColmap |  | | 97.15 101 | 96.70 106 | 98.48 83 | 99.16 93 | 96.69 104 | 98.01 232 | 98.89 48 | 94.44 170 | 96.83 156 | 98.68 128 | 90.69 150 | 99.76 95 | 94.36 194 | 99.29 104 | 98.98 158 |
|
Effi-MVS+ | | | 97.12 102 | 96.69 107 | 98.39 94 | 98.19 181 | 96.72 103 | 97.37 283 | 98.43 173 | 93.71 201 | 97.65 127 | 98.02 194 | 92.20 113 | 99.25 164 | 96.87 115 | 97.79 167 | 99.19 132 |
|
CHOSEN 1792x2688 | | | 97.12 102 | 96.80 99 | 98.08 115 | 99.30 66 | 94.56 211 | 98.05 228 | 99.71 1 | 93.57 213 | 97.09 142 | 98.91 105 | 88.17 204 | 99.89 37 | 96.87 115 | 99.56 78 | 99.81 11 |
|
F-COLMAP | | | 97.09 104 | 96.80 99 | 97.97 121 | 99.45 52 | 94.95 191 | 98.55 170 | 98.62 130 | 93.02 234 | 96.17 183 | 98.58 139 | 94.01 90 | 99.81 69 | 93.95 209 | 98.90 118 | 99.14 141 |
|
TAMVS | | | 97.02 105 | 96.79 101 | 97.70 142 | 98.06 193 | 95.31 174 | 98.52 171 | 98.31 192 | 93.95 186 | 97.05 147 | 98.61 134 | 93.49 95 | 98.52 255 | 95.33 165 | 97.81 166 | 99.29 118 |
|
CDS-MVSNet | | | 96.99 106 | 96.69 107 | 97.90 125 | 98.05 194 | 95.98 137 | 98.20 210 | 98.33 189 | 93.67 208 | 96.95 149 | 98.49 147 | 93.54 94 | 98.42 267 | 95.24 171 | 97.74 170 | 99.31 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CANet_DTU | | | 96.96 107 | 96.55 113 | 98.21 105 | 98.17 185 | 96.07 135 | 97.98 235 | 98.21 209 | 97.24 39 | 97.13 141 | 98.93 102 | 86.88 233 | 99.91 32 | 95.00 175 | 99.37 100 | 98.66 184 |
|
114514_t | | | 96.93 108 | 96.27 123 | 98.92 57 | 99.50 41 | 97.63 68 | 98.85 108 | 98.90 46 | 84.80 353 | 97.77 114 | 99.11 72 | 92.84 100 | 99.66 116 | 94.85 177 | 99.77 28 | 99.47 92 |
|
MAR-MVS | | | 96.91 109 | 96.40 118 | 98.45 86 | 98.69 136 | 96.90 95 | 98.66 153 | 98.68 113 | 92.40 257 | 97.07 145 | 97.96 201 | 91.54 131 | 99.75 97 | 93.68 217 | 98.92 117 | 98.69 180 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HyFIR lowres test | | | 96.90 110 | 96.49 116 | 98.14 109 | 99.33 57 | 95.56 162 | 97.38 281 | 99.65 2 | 92.34 258 | 97.61 130 | 98.20 182 | 89.29 174 | 99.10 188 | 96.97 103 | 97.60 175 | 99.77 21 |
|
Vis-MVSNet (Re-imp) | | | 96.87 111 | 96.55 113 | 97.83 128 | 98.73 129 | 95.46 167 | 99.20 39 | 98.30 198 | 94.96 149 | 96.60 167 | 98.87 108 | 90.05 159 | 98.59 247 | 93.67 219 | 98.60 134 | 99.46 96 |
|
PAPR | | | 96.84 112 | 96.24 125 | 98.65 68 | 98.72 133 | 96.92 94 | 97.36 285 | 98.57 140 | 93.33 221 | 96.67 163 | 97.57 238 | 94.30 85 | 99.56 133 | 91.05 284 | 98.59 135 | 99.47 92 |
|
HY-MVS | | 93.96 8 | 96.82 113 | 96.23 126 | 98.57 72 | 98.46 153 | 97.00 90 | 98.14 219 | 98.21 209 | 93.95 186 | 96.72 162 | 97.99 198 | 91.58 127 | 99.76 95 | 94.51 191 | 96.54 196 | 98.95 162 |
|
UGNet | | | 96.78 114 | 96.30 122 | 98.19 108 | 98.24 173 | 95.89 152 | 98.88 102 | 98.93 39 | 97.39 27 | 96.81 159 | 97.84 212 | 82.60 296 | 99.90 35 | 96.53 127 | 99.49 86 | 98.79 172 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_BlendedMVS | | | 96.73 115 | 96.60 111 | 97.12 177 | 99.25 76 | 95.35 172 | 98.26 205 | 99.26 10 | 94.28 172 | 97.94 107 | 97.46 244 | 92.74 102 | 99.81 69 | 96.88 112 | 93.32 256 | 96.20 319 |
|
test_vis1_n_1920 | | | 96.71 116 | 96.84 98 | 96.31 247 | 99.11 98 | 89.74 314 | 99.05 64 | 98.58 138 | 98.08 4 | 99.87 1 | 99.37 26 | 78.48 322 | 99.93 19 | 99.29 2 | 99.69 51 | 99.27 120 |
|
mvs_anonymous | | | 96.70 117 | 96.53 115 | 97.18 172 | 98.19 181 | 93.78 235 | 98.31 197 | 98.19 213 | 94.01 182 | 94.47 217 | 98.27 176 | 92.08 117 | 98.46 262 | 97.39 90 | 97.91 162 | 99.31 113 |
|
1112_ss | | | 96.63 118 | 96.00 134 | 98.50 80 | 98.56 146 | 96.37 123 | 98.18 216 | 98.10 234 | 92.92 238 | 94.84 205 | 98.43 154 | 92.14 114 | 99.58 129 | 94.35 195 | 96.51 197 | 99.56 78 |
|
PMMVS | | | 96.60 119 | 96.33 120 | 97.41 160 | 97.90 203 | 93.93 231 | 97.35 286 | 98.41 175 | 92.84 241 | 97.76 115 | 97.45 246 | 91.10 142 | 99.20 171 | 96.26 135 | 97.91 162 | 99.11 144 |
|
DP-MVS | | | 96.59 120 | 95.93 137 | 98.57 72 | 99.34 55 | 96.19 132 | 98.70 145 | 98.39 179 | 89.45 326 | 94.52 215 | 99.35 32 | 91.85 121 | 99.85 51 | 92.89 243 | 98.88 120 | 99.68 54 |
|
PatchMatch-RL | | | 96.59 120 | 96.03 133 | 98.27 100 | 99.31 62 | 96.51 115 | 97.91 241 | 99.06 24 | 93.72 200 | 96.92 153 | 98.06 191 | 88.50 199 | 99.65 117 | 91.77 271 | 99.00 115 | 98.66 184 |
|
GeoE | | | 96.58 122 | 96.07 130 | 98.10 114 | 98.35 161 | 95.89 152 | 99.34 18 | 98.12 228 | 93.12 231 | 96.09 184 | 98.87 108 | 89.71 165 | 98.97 203 | 92.95 239 | 98.08 158 | 99.43 101 |
|
mvsmamba | | | 96.57 123 | 96.32 121 | 97.32 166 | 96.60 288 | 96.43 119 | 99.54 7 | 97.98 252 | 96.49 74 | 95.20 198 | 98.64 132 | 90.82 145 | 98.55 251 | 97.97 49 | 93.65 246 | 96.98 237 |
|
XVG-OURS | | | 96.55 124 | 96.41 117 | 96.99 184 | 98.75 128 | 93.76 236 | 97.50 275 | 98.52 151 | 95.67 111 | 96.83 156 | 99.30 40 | 88.95 189 | 99.53 141 | 95.88 148 | 96.26 208 | 97.69 218 |
|
FIs | | | 96.51 125 | 96.12 128 | 97.67 145 | 97.13 259 | 97.54 72 | 99.36 15 | 99.22 16 | 95.89 99 | 94.03 243 | 98.35 164 | 91.98 119 | 98.44 265 | 96.40 132 | 92.76 264 | 97.01 235 |
|
XVG-OURS-SEG-HR | | | 96.51 125 | 96.34 119 | 97.02 183 | 98.77 127 | 93.76 236 | 97.79 255 | 98.50 158 | 95.45 120 | 96.94 150 | 99.09 80 | 87.87 214 | 99.55 140 | 96.76 122 | 95.83 217 | 97.74 215 |
|
PS-MVSNAJss | | | 96.43 127 | 96.26 124 | 96.92 193 | 95.84 323 | 95.08 183 | 99.16 45 | 98.50 158 | 95.87 102 | 93.84 252 | 98.34 168 | 94.51 78 | 98.61 244 | 96.88 112 | 93.45 253 | 97.06 232 |
|
test_fmvs1 | | | 96.42 128 | 96.67 109 | 95.66 273 | 98.82 124 | 88.53 336 | 98.80 121 | 98.20 211 | 96.39 81 | 99.64 10 | 99.20 55 | 80.35 312 | 99.67 114 | 99.04 5 | 99.57 72 | 98.78 175 |
|
iter_conf_final | | | 96.42 128 | 96.12 128 | 97.34 165 | 98.46 153 | 96.55 114 | 99.08 60 | 98.06 246 | 96.03 94 | 95.63 192 | 98.46 152 | 87.72 216 | 98.59 247 | 97.84 60 | 93.80 241 | 96.87 253 |
|
FC-MVSNet-test | | | 96.42 128 | 96.05 131 | 97.53 155 | 96.95 268 | 97.27 79 | 99.36 15 | 99.23 14 | 95.83 103 | 93.93 246 | 98.37 162 | 92.00 118 | 98.32 284 | 96.02 144 | 92.72 265 | 97.00 236 |
|
ab-mvs | | | 96.42 128 | 95.71 148 | 98.55 74 | 98.63 142 | 96.75 101 | 97.88 246 | 98.74 98 | 93.84 191 | 96.54 172 | 98.18 184 | 85.34 261 | 99.75 97 | 95.93 146 | 96.35 201 | 99.15 139 |
|
FA-MVS(test-final) | | | 96.41 132 | 95.94 136 | 97.82 130 | 98.21 177 | 95.20 177 | 97.80 253 | 97.58 277 | 93.21 227 | 97.36 135 | 97.70 224 | 89.47 169 | 99.56 133 | 94.12 204 | 97.99 159 | 98.71 179 |
|
PVSNet | | 91.96 18 | 96.35 133 | 96.15 127 | 96.96 188 | 99.17 89 | 92.05 276 | 96.08 339 | 98.68 113 | 93.69 204 | 97.75 117 | 97.80 218 | 88.86 190 | 99.69 112 | 94.26 200 | 99.01 114 | 99.15 139 |
|
Test_1112_low_res | | | 96.34 134 | 95.66 153 | 98.36 95 | 98.56 146 | 95.94 145 | 97.71 260 | 98.07 241 | 92.10 267 | 94.79 209 | 97.29 255 | 91.75 123 | 99.56 133 | 94.17 202 | 96.50 198 | 99.58 76 |
|
Effi-MVS+-dtu | | | 96.29 135 | 96.56 112 | 95.51 277 | 97.89 204 | 90.22 309 | 98.80 121 | 98.10 234 | 96.57 73 | 96.45 177 | 96.66 303 | 90.81 146 | 98.91 215 | 95.72 154 | 97.99 159 | 97.40 223 |
|
QAPM | | | 96.29 135 | 95.40 157 | 98.96 55 | 97.85 205 | 97.60 70 | 99.23 31 | 98.93 39 | 89.76 321 | 93.11 279 | 99.02 86 | 89.11 181 | 99.93 19 | 91.99 266 | 99.62 64 | 99.34 107 |
|
Fast-Effi-MVS+ | | | 96.28 137 | 95.70 150 | 98.03 118 | 98.29 172 | 95.97 142 | 98.58 163 | 98.25 206 | 91.74 275 | 95.29 197 | 97.23 259 | 91.03 144 | 99.15 177 | 92.90 241 | 97.96 161 | 98.97 159 |
|
nrg030 | | | 96.28 137 | 95.72 145 | 97.96 123 | 96.90 273 | 98.15 52 | 99.39 12 | 98.31 192 | 95.47 119 | 94.42 223 | 98.35 164 | 92.09 116 | 98.69 237 | 97.50 86 | 89.05 310 | 97.04 233 |
|
1314 | | | 96.25 139 | 95.73 144 | 97.79 132 | 97.13 259 | 95.55 164 | 98.19 213 | 98.59 133 | 93.47 216 | 92.03 307 | 97.82 216 | 91.33 136 | 99.49 146 | 94.62 186 | 98.44 143 | 98.32 200 |
|
h-mvs33 | | | 96.17 140 | 95.62 154 | 97.81 131 | 99.03 103 | 94.45 213 | 98.64 155 | 98.75 96 | 97.48 21 | 98.67 63 | 98.72 125 | 89.76 163 | 99.86 50 | 97.95 50 | 81.59 352 | 99.11 144 |
|
HQP_MVS | | | 96.14 141 | 95.90 138 | 96.85 196 | 97.42 239 | 94.60 209 | 98.80 121 | 98.56 142 | 97.28 34 | 95.34 195 | 98.28 173 | 87.09 228 | 99.03 196 | 96.07 139 | 94.27 224 | 96.92 242 |
|
iter_conf05 | | | 96.13 142 | 95.79 141 | 97.15 174 | 98.16 186 | 95.99 136 | 98.88 102 | 97.98 252 | 95.91 98 | 95.58 193 | 98.46 152 | 85.53 256 | 98.59 247 | 97.88 56 | 93.75 242 | 96.86 256 |
|
tttt0517 | | | 96.07 143 | 95.51 156 | 97.78 133 | 98.41 157 | 94.84 195 | 99.28 24 | 94.33 360 | 94.26 174 | 97.64 128 | 98.64 132 | 84.05 285 | 99.47 152 | 95.34 164 | 97.60 175 | 99.03 153 |
|
MVSTER | | | 96.06 144 | 95.72 145 | 97.08 180 | 98.23 175 | 95.93 148 | 98.73 136 | 98.27 201 | 94.86 153 | 95.07 200 | 98.09 189 | 88.21 203 | 98.54 253 | 96.59 124 | 93.46 251 | 96.79 262 |
|
thisisatest0530 | | | 96.01 145 | 95.36 162 | 97.97 121 | 98.38 158 | 95.52 165 | 98.88 102 | 94.19 362 | 94.04 179 | 97.64 128 | 98.31 171 | 83.82 292 | 99.46 153 | 95.29 168 | 97.70 172 | 98.93 164 |
|
test_djsdf | | | 96.00 146 | 95.69 151 | 96.93 190 | 95.72 325 | 95.49 166 | 99.47 9 | 98.40 177 | 94.98 147 | 94.58 213 | 97.86 209 | 89.16 179 | 98.41 275 | 96.91 106 | 94.12 232 | 96.88 251 |
|
RRT_MVS | | | 95.98 147 | 95.78 142 | 96.56 222 | 96.48 296 | 94.22 225 | 99.57 6 | 97.92 259 | 95.89 99 | 93.95 245 | 98.70 126 | 89.27 175 | 98.42 267 | 97.23 95 | 93.02 260 | 97.04 233 |
|
EI-MVSNet | | | 95.96 148 | 95.83 140 | 96.36 243 | 97.93 201 | 93.70 242 | 98.12 222 | 98.27 201 | 93.70 203 | 95.07 200 | 99.02 86 | 92.23 111 | 98.54 253 | 94.68 182 | 93.46 251 | 96.84 258 |
|
ECVR-MVS |  | | 95.95 149 | 95.71 148 | 96.65 208 | 99.02 104 | 90.86 296 | 99.03 70 | 91.80 371 | 96.96 55 | 98.10 91 | 99.26 45 | 81.31 302 | 99.51 145 | 96.90 109 | 99.04 111 | 99.59 72 |
|
BH-untuned | | | 95.95 149 | 95.72 145 | 96.65 208 | 98.55 148 | 92.26 272 | 98.23 206 | 97.79 266 | 93.73 199 | 94.62 212 | 98.01 196 | 88.97 188 | 99.00 202 | 93.04 236 | 98.51 139 | 98.68 181 |
|
test1111 | | | 95.94 151 | 95.78 142 | 96.41 240 | 98.99 110 | 90.12 310 | 99.04 67 | 92.45 370 | 96.99 54 | 98.03 97 | 99.27 44 | 81.40 301 | 99.48 150 | 96.87 115 | 99.04 111 | 99.63 66 |
|
MSDG | | | 95.93 152 | 95.30 169 | 97.83 128 | 98.90 116 | 95.36 170 | 96.83 326 | 98.37 183 | 91.32 290 | 94.43 222 | 98.73 124 | 90.27 157 | 99.60 127 | 90.05 298 | 98.82 125 | 98.52 191 |
|
BH-RMVSNet | | | 95.92 153 | 95.32 166 | 97.69 143 | 98.32 170 | 94.64 203 | 98.19 213 | 97.45 294 | 94.56 163 | 96.03 186 | 98.61 134 | 85.02 265 | 99.12 182 | 90.68 289 | 99.06 110 | 99.30 116 |
|
test_fmvs1_n | | | 95.90 154 | 95.99 135 | 95.63 274 | 98.67 138 | 88.32 340 | 99.26 27 | 98.22 208 | 96.40 80 | 99.67 7 | 99.26 45 | 73.91 349 | 99.70 107 | 99.02 6 | 99.50 84 | 98.87 167 |
|
Fast-Effi-MVS+-dtu | | | 95.87 155 | 95.85 139 | 95.91 263 | 97.74 213 | 91.74 282 | 98.69 147 | 98.15 224 | 95.56 115 | 94.92 203 | 97.68 229 | 88.98 187 | 98.79 231 | 93.19 231 | 97.78 168 | 97.20 230 |
|
LFMVS | | | 95.86 156 | 94.98 184 | 98.47 84 | 98.87 119 | 96.32 126 | 98.84 111 | 96.02 341 | 93.40 219 | 98.62 69 | 99.20 55 | 74.99 344 | 99.63 122 | 97.72 67 | 97.20 181 | 99.46 96 |
|
baseline1 | | | 95.84 157 | 95.12 177 | 98.01 119 | 98.49 152 | 95.98 137 | 98.73 136 | 97.03 316 | 95.37 126 | 96.22 181 | 98.19 183 | 89.96 161 | 99.16 174 | 94.60 187 | 87.48 326 | 98.90 166 |
|
OpenMVS |  | 93.04 13 | 95.83 158 | 95.00 182 | 98.32 97 | 97.18 256 | 97.32 77 | 99.21 38 | 98.97 32 | 89.96 317 | 91.14 315 | 99.05 85 | 86.64 236 | 99.92 24 | 93.38 225 | 99.47 89 | 97.73 216 |
|
VDD-MVS | | | 95.82 159 | 95.23 171 | 97.61 151 | 98.84 123 | 93.98 230 | 98.68 148 | 97.40 298 | 95.02 146 | 97.95 105 | 99.34 36 | 74.37 348 | 99.78 89 | 98.64 13 | 96.80 187 | 99.08 150 |
|
UniMVSNet (Re) | | | 95.78 160 | 95.19 173 | 97.58 152 | 96.99 266 | 97.47 74 | 98.79 126 | 99.18 18 | 95.60 113 | 93.92 247 | 97.04 278 | 91.68 124 | 98.48 258 | 95.80 152 | 87.66 325 | 96.79 262 |
|
VPA-MVSNet | | | 95.75 161 | 95.11 178 | 97.69 143 | 97.24 248 | 97.27 79 | 98.94 90 | 99.23 14 | 95.13 138 | 95.51 194 | 97.32 253 | 85.73 252 | 98.91 215 | 97.33 93 | 89.55 302 | 96.89 250 |
|
bld_raw_dy_0_64 | | | 95.74 162 | 95.31 168 | 97.03 182 | 96.35 302 | 95.76 156 | 99.12 52 | 97.37 301 | 95.97 96 | 94.70 211 | 98.48 148 | 85.80 251 | 98.49 257 | 96.55 126 | 93.48 250 | 96.84 258 |
|
HQP-MVS | | | 95.72 163 | 95.40 157 | 96.69 206 | 97.20 252 | 94.25 223 | 98.05 228 | 98.46 165 | 96.43 77 | 94.45 218 | 97.73 221 | 86.75 234 | 98.96 207 | 95.30 166 | 94.18 228 | 96.86 256 |
|
hse-mvs2 | | | 95.71 164 | 95.30 169 | 96.93 190 | 98.50 150 | 93.53 247 | 98.36 189 | 98.10 234 | 97.48 21 | 98.67 63 | 97.99 198 | 89.76 163 | 99.02 199 | 97.95 50 | 80.91 356 | 98.22 202 |
|
UniMVSNet_NR-MVSNet | | | 95.71 164 | 95.15 174 | 97.40 162 | 96.84 276 | 96.97 91 | 98.74 132 | 99.24 12 | 95.16 137 | 93.88 249 | 97.72 223 | 91.68 124 | 98.31 286 | 95.81 150 | 87.25 330 | 96.92 242 |
|
PatchmatchNet |  | | 95.71 164 | 95.52 155 | 96.29 249 | 97.58 222 | 90.72 300 | 96.84 325 | 97.52 287 | 94.06 178 | 97.08 143 | 96.96 287 | 89.24 177 | 98.90 218 | 92.03 265 | 98.37 147 | 99.26 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
OPM-MVS | | | 95.69 167 | 95.33 165 | 96.76 201 | 96.16 311 | 94.63 204 | 98.43 185 | 98.39 179 | 96.64 69 | 95.02 202 | 98.78 118 | 85.15 264 | 99.05 192 | 95.21 172 | 94.20 227 | 96.60 285 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMM | | 93.85 9 | 95.69 167 | 95.38 161 | 96.61 215 | 97.61 220 | 93.84 234 | 98.91 94 | 98.44 169 | 95.25 133 | 94.28 229 | 98.47 150 | 86.04 249 | 99.12 182 | 95.50 162 | 93.95 237 | 96.87 253 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tpmrst | | | 95.63 169 | 95.69 151 | 95.44 281 | 97.54 227 | 88.54 335 | 96.97 311 | 97.56 279 | 93.50 215 | 97.52 133 | 96.93 291 | 89.49 167 | 99.16 174 | 95.25 170 | 96.42 200 | 98.64 186 |
|
FE-MVS | | | 95.62 170 | 94.90 188 | 97.78 133 | 98.37 160 | 94.92 192 | 97.17 301 | 97.38 300 | 90.95 302 | 97.73 120 | 97.70 224 | 85.32 263 | 99.63 122 | 91.18 279 | 98.33 150 | 98.79 172 |
|
LPG-MVS_test | | | 95.62 170 | 95.34 163 | 96.47 234 | 97.46 233 | 93.54 245 | 98.99 80 | 98.54 146 | 94.67 160 | 94.36 225 | 98.77 120 | 85.39 258 | 99.11 184 | 95.71 155 | 94.15 230 | 96.76 265 |
|
CLD-MVS | | | 95.62 170 | 95.34 163 | 96.46 237 | 97.52 230 | 93.75 238 | 97.27 293 | 98.46 165 | 95.53 116 | 94.42 223 | 98.00 197 | 86.21 244 | 98.97 203 | 96.25 137 | 94.37 222 | 96.66 280 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thisisatest0515 | | | 95.61 173 | 94.89 189 | 97.76 136 | 98.15 187 | 95.15 180 | 96.77 327 | 94.41 358 | 92.95 237 | 97.18 140 | 97.43 248 | 84.78 270 | 99.45 154 | 94.63 184 | 97.73 171 | 98.68 181 |
|
thres600view7 | | | 95.49 174 | 94.77 192 | 97.67 145 | 98.98 111 | 95.02 184 | 98.85 108 | 96.90 324 | 95.38 124 | 96.63 165 | 96.90 292 | 84.29 278 | 99.59 128 | 88.65 319 | 96.33 202 | 98.40 195 |
|
test_vis1_n | | | 95.47 175 | 95.13 175 | 96.49 231 | 97.77 209 | 90.41 306 | 99.27 26 | 98.11 231 | 96.58 71 | 99.66 8 | 99.18 61 | 67.00 359 | 99.62 125 | 99.21 3 | 99.40 97 | 99.44 99 |
|
SCA | | | 95.46 176 | 95.13 175 | 96.46 237 | 97.67 216 | 91.29 291 | 97.33 288 | 97.60 276 | 94.68 159 | 96.92 153 | 97.10 265 | 83.97 287 | 98.89 219 | 92.59 249 | 98.32 152 | 99.20 128 |
|
IterMVS-LS | | | 95.46 176 | 95.21 172 | 96.22 251 | 98.12 188 | 93.72 241 | 98.32 196 | 98.13 227 | 93.71 201 | 94.26 230 | 97.31 254 | 92.24 110 | 98.10 302 | 94.63 184 | 90.12 293 | 96.84 258 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
jajsoiax | | | 95.45 178 | 95.03 181 | 96.73 202 | 95.42 336 | 94.63 204 | 99.14 48 | 98.52 151 | 95.74 106 | 93.22 273 | 98.36 163 | 83.87 290 | 98.65 242 | 96.95 105 | 94.04 233 | 96.91 247 |
|
CVMVSNet | | | 95.43 179 | 96.04 132 | 93.57 320 | 97.93 201 | 83.62 357 | 98.12 222 | 98.59 133 | 95.68 110 | 96.56 168 | 99.02 86 | 87.51 221 | 97.51 334 | 93.56 223 | 97.44 177 | 99.60 70 |
|
anonymousdsp | | | 95.42 180 | 94.91 187 | 96.94 189 | 95.10 338 | 95.90 151 | 99.14 48 | 98.41 175 | 93.75 196 | 93.16 275 | 97.46 244 | 87.50 223 | 98.41 275 | 95.63 159 | 94.03 234 | 96.50 304 |
|
DU-MVS | | | 95.42 180 | 94.76 193 | 97.40 162 | 96.53 292 | 96.97 91 | 98.66 153 | 98.99 31 | 95.43 121 | 93.88 249 | 97.69 226 | 88.57 195 | 98.31 286 | 95.81 150 | 87.25 330 | 96.92 242 |
|
mvs_tets | | | 95.41 182 | 95.00 182 | 96.65 208 | 95.58 329 | 94.42 215 | 99.00 77 | 98.55 144 | 95.73 108 | 93.21 274 | 98.38 161 | 83.45 294 | 98.63 243 | 97.09 99 | 94.00 235 | 96.91 247 |
|
thres100view900 | | | 95.38 183 | 94.70 196 | 97.41 160 | 98.98 111 | 94.92 192 | 98.87 105 | 96.90 324 | 95.38 124 | 96.61 166 | 96.88 293 | 84.29 278 | 99.56 133 | 88.11 320 | 96.29 204 | 97.76 213 |
|
thres400 | | | 95.38 183 | 94.62 199 | 97.65 149 | 98.94 114 | 94.98 188 | 98.68 148 | 96.93 322 | 95.33 127 | 96.55 170 | 96.53 309 | 84.23 281 | 99.56 133 | 88.11 320 | 96.29 204 | 98.40 195 |
|
BH-w/o | | | 95.38 183 | 95.08 179 | 96.26 250 | 98.34 166 | 91.79 279 | 97.70 261 | 97.43 296 | 92.87 240 | 94.24 232 | 97.22 260 | 88.66 193 | 98.84 225 | 91.55 275 | 97.70 172 | 98.16 205 |
|
VDDNet | | | 95.36 186 | 94.53 203 | 97.86 126 | 98.10 190 | 95.13 181 | 98.85 108 | 97.75 268 | 90.46 308 | 98.36 82 | 99.39 20 | 73.27 351 | 99.64 119 | 97.98 48 | 96.58 194 | 98.81 171 |
|
TAPA-MVS | | 93.98 7 | 95.35 187 | 94.56 202 | 97.74 138 | 99.13 96 | 94.83 197 | 98.33 192 | 98.64 126 | 86.62 341 | 96.29 180 | 98.61 134 | 94.00 91 | 99.29 162 | 80.00 358 | 99.41 95 | 99.09 146 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMP | | 93.49 10 | 95.34 188 | 94.98 184 | 96.43 239 | 97.67 216 | 93.48 249 | 98.73 136 | 98.44 169 | 94.94 152 | 92.53 295 | 98.53 143 | 84.50 277 | 99.14 179 | 95.48 163 | 94.00 235 | 96.66 280 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
COLMAP_ROB |  | 93.27 12 | 95.33 189 | 94.87 190 | 96.71 203 | 99.29 68 | 93.24 260 | 98.58 163 | 98.11 231 | 89.92 318 | 93.57 261 | 99.10 74 | 86.37 242 | 99.79 86 | 90.78 287 | 98.10 157 | 97.09 231 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tfpn200view9 | | | 95.32 190 | 94.62 199 | 97.43 159 | 98.94 114 | 94.98 188 | 98.68 148 | 96.93 322 | 95.33 127 | 96.55 170 | 96.53 309 | 84.23 281 | 99.56 133 | 88.11 320 | 96.29 204 | 97.76 213 |
|
Anonymous202405211 | | | 95.28 191 | 94.49 205 | 97.67 145 | 99.00 107 | 93.75 238 | 98.70 145 | 97.04 315 | 90.66 304 | 96.49 174 | 98.80 116 | 78.13 326 | 99.83 57 | 96.21 138 | 95.36 220 | 99.44 99 |
|
thres200 | | | 95.25 192 | 94.57 201 | 97.28 167 | 98.81 125 | 94.92 192 | 98.20 210 | 97.11 311 | 95.24 135 | 96.54 172 | 96.22 320 | 84.58 275 | 99.53 141 | 87.93 324 | 96.50 198 | 97.39 224 |
|
AllTest | | | 95.24 193 | 94.65 198 | 96.99 184 | 99.25 76 | 93.21 261 | 98.59 161 | 98.18 216 | 91.36 286 | 93.52 263 | 98.77 120 | 84.67 273 | 99.72 101 | 89.70 305 | 97.87 164 | 98.02 208 |
|
LCM-MVSNet-Re | | | 95.22 194 | 95.32 166 | 94.91 295 | 98.18 183 | 87.85 346 | 98.75 129 | 95.66 347 | 95.11 140 | 88.96 333 | 96.85 296 | 90.26 158 | 97.65 327 | 95.65 158 | 98.44 143 | 99.22 127 |
|
EPNet_dtu | | | 95.21 195 | 94.95 186 | 95.99 258 | 96.17 309 | 90.45 305 | 98.16 218 | 97.27 306 | 96.77 63 | 93.14 278 | 98.33 169 | 90.34 155 | 98.42 267 | 85.57 337 | 98.81 126 | 99.09 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XXY-MVS | | | 95.20 196 | 94.45 210 | 97.46 156 | 96.75 281 | 96.56 112 | 98.86 107 | 98.65 125 | 93.30 224 | 93.27 272 | 98.27 176 | 84.85 269 | 98.87 222 | 94.82 179 | 91.26 281 | 96.96 239 |
|
D2MVS | | | 95.18 197 | 95.08 179 | 95.48 278 | 97.10 261 | 92.07 275 | 98.30 199 | 99.13 21 | 94.02 181 | 92.90 283 | 96.73 300 | 89.48 168 | 98.73 235 | 94.48 192 | 93.60 249 | 95.65 332 |
|
WR-MVS | | | 95.15 198 | 94.46 208 | 97.22 169 | 96.67 286 | 96.45 117 | 98.21 208 | 98.81 75 | 94.15 175 | 93.16 275 | 97.69 226 | 87.51 221 | 98.30 288 | 95.29 168 | 88.62 316 | 96.90 249 |
|
TranMVSNet+NR-MVSNet | | | 95.14 199 | 94.48 206 | 97.11 178 | 96.45 298 | 96.36 124 | 99.03 70 | 99.03 27 | 95.04 145 | 93.58 260 | 97.93 203 | 88.27 202 | 98.03 309 | 94.13 203 | 86.90 335 | 96.95 241 |
|
baseline2 | | | 95.11 200 | 94.52 204 | 96.87 195 | 96.65 287 | 93.56 244 | 98.27 204 | 94.10 364 | 93.45 217 | 92.02 308 | 97.43 248 | 87.45 225 | 99.19 172 | 93.88 212 | 97.41 179 | 97.87 211 |
|
miper_enhance_ethall | | | 95.10 201 | 94.75 194 | 96.12 255 | 97.53 229 | 93.73 240 | 96.61 333 | 98.08 239 | 92.20 266 | 93.89 248 | 96.65 305 | 92.44 105 | 98.30 288 | 94.21 201 | 91.16 282 | 96.34 312 |
|
Anonymous20240529 | | | 95.10 201 | 94.22 218 | 97.75 137 | 99.01 106 | 94.26 222 | 98.87 105 | 98.83 69 | 85.79 349 | 96.64 164 | 98.97 93 | 78.73 320 | 99.85 51 | 96.27 134 | 94.89 221 | 99.12 143 |
|
test-LLR | | | 95.10 201 | 94.87 190 | 95.80 268 | 96.77 278 | 89.70 315 | 96.91 316 | 95.21 350 | 95.11 140 | 94.83 207 | 95.72 331 | 87.71 217 | 98.97 203 | 93.06 234 | 98.50 140 | 98.72 177 |
|
WR-MVS_H | | | 95.05 204 | 94.46 208 | 96.81 199 | 96.86 275 | 95.82 154 | 99.24 30 | 99.24 12 | 93.87 190 | 92.53 295 | 96.84 297 | 90.37 154 | 98.24 294 | 93.24 229 | 87.93 322 | 96.38 311 |
|
miper_ehance_all_eth | | | 95.01 205 | 94.69 197 | 95.97 260 | 97.70 215 | 93.31 256 | 97.02 309 | 98.07 241 | 92.23 263 | 93.51 265 | 96.96 287 | 91.85 121 | 98.15 298 | 93.68 217 | 91.16 282 | 96.44 309 |
|
ADS-MVSNet | | | 95.00 206 | 94.45 210 | 96.63 212 | 98.00 195 | 91.91 278 | 96.04 340 | 97.74 269 | 90.15 314 | 96.47 175 | 96.64 306 | 87.89 212 | 98.96 207 | 90.08 296 | 97.06 182 | 99.02 154 |
|
VPNet | | | 94.99 207 | 94.19 220 | 97.40 162 | 97.16 257 | 96.57 111 | 98.71 141 | 98.97 32 | 95.67 111 | 94.84 205 | 98.24 180 | 80.36 311 | 98.67 241 | 96.46 129 | 87.32 329 | 96.96 239 |
|
EPMVS | | | 94.99 207 | 94.48 206 | 96.52 229 | 97.22 250 | 91.75 281 | 97.23 294 | 91.66 372 | 94.11 176 | 97.28 136 | 96.81 298 | 85.70 253 | 98.84 225 | 93.04 236 | 97.28 180 | 98.97 159 |
|
NR-MVSNet | | | 94.98 209 | 94.16 222 | 97.44 158 | 96.53 292 | 97.22 85 | 98.74 132 | 98.95 35 | 94.96 149 | 89.25 332 | 97.69 226 | 89.32 173 | 98.18 296 | 94.59 189 | 87.40 328 | 96.92 242 |
|
FMVSNet3 | | | 94.97 210 | 94.26 217 | 97.11 178 | 98.18 183 | 96.62 105 | 98.56 169 | 98.26 205 | 93.67 208 | 94.09 239 | 97.10 265 | 84.25 280 | 98.01 310 | 92.08 261 | 92.14 268 | 96.70 274 |
|
CostFormer | | | 94.95 211 | 94.73 195 | 95.60 276 | 97.28 246 | 89.06 326 | 97.53 273 | 96.89 326 | 89.66 323 | 96.82 158 | 96.72 301 | 86.05 247 | 98.95 212 | 95.53 161 | 96.13 213 | 98.79 172 |
|
PAPM | | | 94.95 211 | 94.00 232 | 97.78 133 | 97.04 263 | 95.65 159 | 96.03 342 | 98.25 206 | 91.23 295 | 94.19 235 | 97.80 218 | 91.27 138 | 98.86 224 | 82.61 352 | 97.61 174 | 98.84 170 |
|
CP-MVSNet | | | 94.94 213 | 94.30 216 | 96.83 197 | 96.72 283 | 95.56 162 | 99.11 54 | 98.95 35 | 93.89 188 | 92.42 300 | 97.90 205 | 87.19 227 | 98.12 301 | 94.32 197 | 88.21 319 | 96.82 261 |
|
TR-MVS | | | 94.94 213 | 94.20 219 | 97.17 173 | 97.75 210 | 94.14 227 | 97.59 270 | 97.02 318 | 92.28 262 | 95.75 191 | 97.64 232 | 83.88 289 | 98.96 207 | 89.77 302 | 96.15 212 | 98.40 195 |
|
RPSCF | | | 94.87 215 | 95.40 157 | 93.26 326 | 98.89 117 | 82.06 362 | 98.33 192 | 98.06 246 | 90.30 313 | 96.56 168 | 99.26 45 | 87.09 228 | 99.49 146 | 93.82 214 | 96.32 203 | 98.24 201 |
|
GA-MVS | | | 94.81 216 | 94.03 228 | 97.14 175 | 97.15 258 | 93.86 233 | 96.76 328 | 97.58 277 | 94.00 183 | 94.76 210 | 97.04 278 | 80.91 306 | 98.48 258 | 91.79 270 | 96.25 209 | 99.09 146 |
|
c3_l | | | 94.79 217 | 94.43 212 | 95.89 265 | 97.75 210 | 93.12 264 | 97.16 303 | 98.03 249 | 92.23 263 | 93.46 268 | 97.05 277 | 91.39 133 | 98.01 310 | 93.58 222 | 89.21 308 | 96.53 296 |
|
V42 | | | 94.78 218 | 94.14 224 | 96.70 205 | 96.33 304 | 95.22 176 | 98.97 83 | 98.09 238 | 92.32 260 | 94.31 228 | 97.06 275 | 88.39 200 | 98.55 251 | 92.90 241 | 88.87 314 | 96.34 312 |
|
CR-MVSNet | | | 94.76 219 | 94.15 223 | 96.59 218 | 97.00 264 | 93.43 250 | 94.96 352 | 97.56 279 | 92.46 251 | 96.93 151 | 96.24 316 | 88.15 205 | 97.88 322 | 87.38 326 | 96.65 192 | 98.46 193 |
|
v2v482 | | | 94.69 220 | 94.03 228 | 96.65 208 | 96.17 309 | 94.79 200 | 98.67 151 | 98.08 239 | 92.72 244 | 94.00 244 | 97.16 263 | 87.69 220 | 98.45 263 | 92.91 240 | 88.87 314 | 96.72 270 |
|
pmmvs4 | | | 94.69 220 | 93.99 234 | 96.81 199 | 95.74 324 | 95.94 145 | 97.40 279 | 97.67 271 | 90.42 310 | 93.37 269 | 97.59 236 | 89.08 182 | 98.20 295 | 92.97 238 | 91.67 275 | 96.30 316 |
|
cl22 | | | 94.68 222 | 94.19 220 | 96.13 254 | 98.11 189 | 93.60 243 | 96.94 313 | 98.31 192 | 92.43 255 | 93.32 271 | 96.87 295 | 86.51 237 | 98.28 292 | 94.10 206 | 91.16 282 | 96.51 302 |
|
eth_miper_zixun_eth | | | 94.68 222 | 94.41 213 | 95.47 279 | 97.64 218 | 91.71 283 | 96.73 330 | 98.07 241 | 92.71 245 | 93.64 258 | 97.21 261 | 90.54 152 | 98.17 297 | 93.38 225 | 89.76 297 | 96.54 294 |
|
PCF-MVS | | 93.45 11 | 94.68 222 | 93.43 268 | 98.42 92 | 98.62 143 | 96.77 100 | 95.48 350 | 98.20 211 | 84.63 354 | 93.34 270 | 98.32 170 | 88.55 197 | 99.81 69 | 84.80 344 | 98.96 116 | 98.68 181 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVS | | | 94.67 225 | 93.54 264 | 98.08 115 | 96.88 274 | 96.56 112 | 98.19 213 | 98.50 158 | 78.05 363 | 92.69 290 | 98.02 194 | 91.07 143 | 99.63 122 | 90.09 295 | 98.36 149 | 98.04 207 |
|
PS-CasMVS | | | 94.67 225 | 93.99 234 | 96.71 203 | 96.68 285 | 95.26 175 | 99.13 51 | 99.03 27 | 93.68 206 | 92.33 301 | 97.95 202 | 85.35 260 | 98.10 302 | 93.59 221 | 88.16 321 | 96.79 262 |
|
cascas | | | 94.63 227 | 93.86 243 | 96.93 190 | 96.91 272 | 94.27 221 | 96.00 343 | 98.51 153 | 85.55 350 | 94.54 214 | 96.23 318 | 84.20 283 | 98.87 222 | 95.80 152 | 96.98 185 | 97.66 219 |
|
tpmvs | | | 94.60 228 | 94.36 215 | 95.33 284 | 97.46 233 | 88.60 334 | 96.88 322 | 97.68 270 | 91.29 292 | 93.80 254 | 96.42 313 | 88.58 194 | 99.24 166 | 91.06 282 | 96.04 215 | 98.17 204 |
|
LTVRE_ROB | | 92.95 15 | 94.60 228 | 93.90 240 | 96.68 207 | 97.41 242 | 94.42 215 | 98.52 171 | 98.59 133 | 91.69 278 | 91.21 314 | 98.35 164 | 84.87 268 | 99.04 195 | 91.06 282 | 93.44 254 | 96.60 285 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v1144 | | | 94.59 230 | 93.92 237 | 96.60 217 | 96.21 306 | 94.78 201 | 98.59 161 | 98.14 226 | 91.86 274 | 94.21 234 | 97.02 280 | 87.97 210 | 98.41 275 | 91.72 272 | 89.57 300 | 96.61 284 |
|
ADS-MVSNet2 | | | 94.58 231 | 94.40 214 | 95.11 290 | 98.00 195 | 88.74 332 | 96.04 340 | 97.30 303 | 90.15 314 | 96.47 175 | 96.64 306 | 87.89 212 | 97.56 332 | 90.08 296 | 97.06 182 | 99.02 154 |
|
ACMH | | 92.88 16 | 94.55 232 | 93.95 236 | 96.34 245 | 97.63 219 | 93.26 258 | 98.81 120 | 98.49 163 | 93.43 218 | 89.74 327 | 98.53 143 | 81.91 298 | 99.08 190 | 93.69 216 | 93.30 257 | 96.70 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tt0805 | | | 94.54 233 | 93.85 244 | 96.63 212 | 97.98 199 | 93.06 266 | 98.77 128 | 97.84 264 | 93.67 208 | 93.80 254 | 98.04 193 | 76.88 337 | 98.96 207 | 94.79 181 | 92.86 263 | 97.86 212 |
|
XVG-ACMP-BASELINE | | | 94.54 233 | 94.14 224 | 95.75 271 | 96.55 291 | 91.65 284 | 98.11 224 | 98.44 169 | 94.96 149 | 94.22 233 | 97.90 205 | 79.18 319 | 99.11 184 | 94.05 208 | 93.85 239 | 96.48 306 |
|
AUN-MVS | | | 94.53 235 | 93.73 254 | 96.92 193 | 98.50 150 | 93.52 248 | 98.34 191 | 98.10 234 | 93.83 193 | 95.94 190 | 97.98 200 | 85.59 255 | 99.03 196 | 94.35 195 | 80.94 355 | 98.22 202 |
|
DIV-MVS_self_test | | | 94.52 236 | 94.03 228 | 95.99 258 | 97.57 226 | 93.38 254 | 97.05 307 | 97.94 257 | 91.74 275 | 92.81 285 | 97.10 265 | 89.12 180 | 98.07 306 | 92.60 247 | 90.30 290 | 96.53 296 |
|
cl____ | | | 94.51 237 | 94.01 231 | 96.02 257 | 97.58 222 | 93.40 253 | 97.05 307 | 97.96 256 | 91.73 277 | 92.76 287 | 97.08 271 | 89.06 183 | 98.13 300 | 92.61 246 | 90.29 291 | 96.52 299 |
|
GBi-Net | | | 94.49 238 | 93.80 247 | 96.56 222 | 98.21 177 | 95.00 185 | 98.82 114 | 98.18 216 | 92.46 251 | 94.09 239 | 97.07 272 | 81.16 303 | 97.95 314 | 92.08 261 | 92.14 268 | 96.72 270 |
|
test1 | | | 94.49 238 | 93.80 247 | 96.56 222 | 98.21 177 | 95.00 185 | 98.82 114 | 98.18 216 | 92.46 251 | 94.09 239 | 97.07 272 | 81.16 303 | 97.95 314 | 92.08 261 | 92.14 268 | 96.72 270 |
|
v8 | | | 94.47 240 | 93.77 250 | 96.57 221 | 96.36 301 | 94.83 197 | 99.05 64 | 98.19 213 | 91.92 271 | 93.16 275 | 96.97 285 | 88.82 192 | 98.48 258 | 91.69 273 | 87.79 323 | 96.39 310 |
|
FMVSNet2 | | | 94.47 240 | 93.61 260 | 97.04 181 | 98.21 177 | 96.43 119 | 98.79 126 | 98.27 201 | 92.46 251 | 93.50 266 | 97.09 269 | 81.16 303 | 98.00 312 | 91.09 280 | 91.93 271 | 96.70 274 |
|
test2506 | | | 94.44 242 | 93.91 239 | 96.04 256 | 99.02 104 | 88.99 329 | 99.06 62 | 79.47 383 | 96.96 55 | 98.36 82 | 99.26 45 | 77.21 334 | 99.52 144 | 96.78 121 | 99.04 111 | 99.59 72 |
|
Patchmatch-test | | | 94.42 243 | 93.68 258 | 96.63 212 | 97.60 221 | 91.76 280 | 94.83 356 | 97.49 291 | 89.45 326 | 94.14 237 | 97.10 265 | 88.99 184 | 98.83 227 | 85.37 340 | 98.13 156 | 99.29 118 |
|
PEN-MVS | | | 94.42 243 | 93.73 254 | 96.49 231 | 96.28 305 | 94.84 195 | 99.17 44 | 99.00 29 | 93.51 214 | 92.23 303 | 97.83 215 | 86.10 246 | 97.90 318 | 92.55 252 | 86.92 334 | 96.74 267 |
|
v144192 | | | 94.39 245 | 93.70 256 | 96.48 233 | 96.06 314 | 94.35 219 | 98.58 163 | 98.16 223 | 91.45 283 | 94.33 227 | 97.02 280 | 87.50 223 | 98.45 263 | 91.08 281 | 89.11 309 | 96.63 282 |
|
Baseline_NR-MVSNet | | | 94.35 246 | 93.81 246 | 95.96 261 | 96.20 307 | 94.05 229 | 98.61 160 | 96.67 335 | 91.44 284 | 93.85 251 | 97.60 235 | 88.57 195 | 98.14 299 | 94.39 193 | 86.93 333 | 95.68 331 |
|
miper_lstm_enhance | | | 94.33 247 | 94.07 227 | 95.11 290 | 97.75 210 | 90.97 295 | 97.22 295 | 98.03 249 | 91.67 279 | 92.76 287 | 96.97 285 | 90.03 160 | 97.78 325 | 92.51 254 | 89.64 299 | 96.56 291 |
|
v1192 | | | 94.32 248 | 93.58 261 | 96.53 228 | 96.10 312 | 94.45 213 | 98.50 176 | 98.17 221 | 91.54 281 | 94.19 235 | 97.06 275 | 86.95 232 | 98.43 266 | 90.14 294 | 89.57 300 | 96.70 274 |
|
ACMH+ | | 92.99 14 | 94.30 249 | 93.77 250 | 95.88 266 | 97.81 207 | 92.04 277 | 98.71 141 | 98.37 183 | 93.99 184 | 90.60 321 | 98.47 150 | 80.86 308 | 99.05 192 | 92.75 245 | 92.40 267 | 96.55 293 |
|
v148 | | | 94.29 250 | 93.76 252 | 95.91 263 | 96.10 312 | 92.93 267 | 98.58 163 | 97.97 254 | 92.59 249 | 93.47 267 | 96.95 289 | 88.53 198 | 98.32 284 | 92.56 251 | 87.06 332 | 96.49 305 |
|
v10 | | | 94.29 250 | 93.55 263 | 96.51 230 | 96.39 300 | 94.80 199 | 98.99 80 | 98.19 213 | 91.35 288 | 93.02 281 | 96.99 283 | 88.09 207 | 98.41 275 | 90.50 291 | 88.41 318 | 96.33 314 |
|
MVP-Stereo | | | 94.28 252 | 93.92 237 | 95.35 283 | 94.95 340 | 92.60 270 | 97.97 236 | 97.65 272 | 91.61 280 | 90.68 320 | 97.09 269 | 86.32 243 | 98.42 267 | 89.70 305 | 99.34 101 | 95.02 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UniMVSNet_ETH3D | | | 94.24 253 | 93.33 270 | 96.97 187 | 97.19 255 | 93.38 254 | 98.74 132 | 98.57 140 | 91.21 297 | 93.81 253 | 98.58 139 | 72.85 352 | 98.77 233 | 95.05 174 | 93.93 238 | 98.77 176 |
|
OurMVSNet-221017-0 | | | 94.21 254 | 94.00 232 | 94.85 298 | 95.60 328 | 89.22 324 | 98.89 99 | 97.43 296 | 95.29 130 | 92.18 304 | 98.52 146 | 82.86 295 | 98.59 247 | 93.46 224 | 91.76 273 | 96.74 267 |
|
v1921920 | | | 94.20 255 | 93.47 267 | 96.40 242 | 95.98 317 | 94.08 228 | 98.52 171 | 98.15 224 | 91.33 289 | 94.25 231 | 97.20 262 | 86.41 241 | 98.42 267 | 90.04 299 | 89.39 306 | 96.69 279 |
|
v7n | | | 94.19 256 | 93.43 268 | 96.47 234 | 95.90 320 | 94.38 218 | 99.26 27 | 98.34 188 | 91.99 269 | 92.76 287 | 97.13 264 | 88.31 201 | 98.52 255 | 89.48 310 | 87.70 324 | 96.52 299 |
|
tpm2 | | | 94.19 256 | 93.76 252 | 95.46 280 | 97.23 249 | 89.04 327 | 97.31 290 | 96.85 330 | 87.08 340 | 96.21 182 | 96.79 299 | 83.75 293 | 98.74 234 | 92.43 257 | 96.23 210 | 98.59 188 |
|
TESTMET0.1,1 | | | 94.18 258 | 93.69 257 | 95.63 274 | 96.92 270 | 89.12 325 | 96.91 316 | 94.78 355 | 93.17 229 | 94.88 204 | 96.45 312 | 78.52 321 | 98.92 214 | 93.09 233 | 98.50 140 | 98.85 168 |
|
dp | | | 94.15 259 | 93.90 240 | 94.90 296 | 97.31 245 | 86.82 351 | 96.97 311 | 97.19 310 | 91.22 296 | 96.02 187 | 96.61 308 | 85.51 257 | 99.02 199 | 90.00 300 | 94.30 223 | 98.85 168 |
|
ET-MVSNet_ETH3D | | | 94.13 260 | 92.98 276 | 97.58 152 | 98.22 176 | 96.20 130 | 97.31 290 | 95.37 349 | 94.53 164 | 79.56 362 | 97.63 234 | 86.51 237 | 97.53 333 | 96.91 106 | 90.74 286 | 99.02 154 |
|
tpm | | | 94.13 260 | 93.80 247 | 95.12 289 | 96.50 294 | 87.91 345 | 97.44 276 | 95.89 346 | 92.62 247 | 96.37 179 | 96.30 315 | 84.13 284 | 98.30 288 | 93.24 229 | 91.66 276 | 99.14 141 |
|
IterMVS-SCA-FT | | | 94.11 262 | 93.87 242 | 94.85 298 | 97.98 199 | 90.56 304 | 97.18 299 | 98.11 231 | 93.75 196 | 92.58 293 | 97.48 243 | 83.97 287 | 97.41 336 | 92.48 256 | 91.30 279 | 96.58 287 |
|
Anonymous20231211 | | | 94.10 263 | 93.26 273 | 96.61 215 | 99.11 98 | 94.28 220 | 99.01 75 | 98.88 51 | 86.43 343 | 92.81 285 | 97.57 238 | 81.66 300 | 98.68 240 | 94.83 178 | 89.02 312 | 96.88 251 |
|
IterMVS | | | 94.09 264 | 93.85 244 | 94.80 301 | 97.99 197 | 90.35 307 | 97.18 299 | 98.12 228 | 93.68 206 | 92.46 299 | 97.34 251 | 84.05 285 | 97.41 336 | 92.51 254 | 91.33 278 | 96.62 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test-mter | | | 94.08 265 | 93.51 265 | 95.80 268 | 96.77 278 | 89.70 315 | 96.91 316 | 95.21 350 | 92.89 239 | 94.83 207 | 95.72 331 | 77.69 329 | 98.97 203 | 93.06 234 | 98.50 140 | 98.72 177 |
|
test0.0.03 1 | | | 94.08 265 | 93.51 265 | 95.80 268 | 95.53 331 | 92.89 268 | 97.38 281 | 95.97 343 | 95.11 140 | 92.51 297 | 96.66 303 | 87.71 217 | 96.94 343 | 87.03 328 | 93.67 244 | 97.57 220 |
|
v1240 | | | 94.06 267 | 93.29 272 | 96.34 245 | 96.03 316 | 93.90 232 | 98.44 183 | 98.17 221 | 91.18 298 | 94.13 238 | 97.01 282 | 86.05 247 | 98.42 267 | 89.13 315 | 89.50 304 | 96.70 274 |
|
X-MVStestdata | | | 94.06 267 | 92.30 288 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 51 | 97.40 25 | 98.46 75 | 43.50 376 | 95.90 39 | 99.89 37 | 97.85 58 | 99.74 42 | 99.78 15 |
|
DTE-MVSNet | | | 93.98 269 | 93.26 273 | 96.14 253 | 96.06 314 | 94.39 217 | 99.20 39 | 98.86 64 | 93.06 232 | 91.78 309 | 97.81 217 | 85.87 250 | 97.58 331 | 90.53 290 | 86.17 339 | 96.46 308 |
|
pm-mvs1 | | | 93.94 270 | 93.06 275 | 96.59 218 | 96.49 295 | 95.16 178 | 98.95 88 | 98.03 249 | 92.32 260 | 91.08 316 | 97.84 212 | 84.54 276 | 98.41 275 | 92.16 259 | 86.13 341 | 96.19 320 |
|
MS-PatchMatch | | | 93.84 271 | 93.63 259 | 94.46 312 | 96.18 308 | 89.45 320 | 97.76 256 | 98.27 201 | 92.23 263 | 92.13 305 | 97.49 242 | 79.50 316 | 98.69 237 | 89.75 303 | 99.38 99 | 95.25 336 |
|
tfpnnormal | | | 93.66 272 | 92.70 282 | 96.55 227 | 96.94 269 | 95.94 145 | 98.97 83 | 99.19 17 | 91.04 300 | 91.38 313 | 97.34 251 | 84.94 267 | 98.61 244 | 85.45 339 | 89.02 312 | 95.11 340 |
|
EU-MVSNet | | | 93.66 272 | 94.14 224 | 92.25 335 | 95.96 319 | 83.38 358 | 98.52 171 | 98.12 228 | 94.69 158 | 92.61 292 | 98.13 187 | 87.36 226 | 96.39 354 | 91.82 269 | 90.00 295 | 96.98 237 |
|
our_test_3 | | | 93.65 274 | 93.30 271 | 94.69 303 | 95.45 334 | 89.68 317 | 96.91 316 | 97.65 272 | 91.97 270 | 91.66 311 | 96.88 293 | 89.67 166 | 97.93 317 | 88.02 323 | 91.49 277 | 96.48 306 |
|
pmmvs5 | | | 93.65 274 | 92.97 277 | 95.68 272 | 95.49 332 | 92.37 271 | 98.20 210 | 97.28 305 | 89.66 323 | 92.58 293 | 97.26 256 | 82.14 297 | 98.09 304 | 93.18 232 | 90.95 285 | 96.58 287 |
|
test_fmvs2 | | | 93.43 276 | 93.58 261 | 92.95 330 | 96.97 267 | 83.91 356 | 99.19 41 | 97.24 308 | 95.74 106 | 95.20 198 | 98.27 176 | 69.65 354 | 98.72 236 | 96.26 135 | 93.73 243 | 96.24 317 |
|
tpm cat1 | | | 93.36 277 | 92.80 279 | 95.07 292 | 97.58 222 | 87.97 344 | 96.76 328 | 97.86 263 | 82.17 359 | 93.53 262 | 96.04 324 | 86.13 245 | 99.13 180 | 89.24 313 | 95.87 216 | 98.10 206 |
|
JIA-IIPM | | | 93.35 278 | 92.49 285 | 95.92 262 | 96.48 296 | 90.65 302 | 95.01 351 | 96.96 320 | 85.93 347 | 96.08 185 | 87.33 366 | 87.70 219 | 98.78 232 | 91.35 277 | 95.58 218 | 98.34 198 |
|
SixPastTwentyTwo | | | 93.34 279 | 92.86 278 | 94.75 302 | 95.67 326 | 89.41 322 | 98.75 129 | 96.67 335 | 93.89 188 | 90.15 325 | 98.25 179 | 80.87 307 | 98.27 293 | 90.90 285 | 90.64 287 | 96.57 289 |
|
USDC | | | 93.33 280 | 92.71 281 | 95.21 286 | 96.83 277 | 90.83 298 | 96.91 316 | 97.50 289 | 93.84 191 | 90.72 319 | 98.14 186 | 77.69 329 | 98.82 228 | 89.51 309 | 93.21 259 | 95.97 325 |
|
IB-MVS | | 91.98 17 | 93.27 281 | 91.97 292 | 97.19 171 | 97.47 232 | 93.41 252 | 97.09 306 | 95.99 342 | 93.32 222 | 92.47 298 | 95.73 329 | 78.06 327 | 99.53 141 | 94.59 189 | 82.98 347 | 98.62 187 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MIMVSNet | | | 93.26 282 | 92.21 289 | 96.41 240 | 97.73 214 | 93.13 263 | 95.65 347 | 97.03 316 | 91.27 294 | 94.04 242 | 96.06 323 | 75.33 342 | 97.19 339 | 86.56 330 | 96.23 210 | 98.92 165 |
|
ppachtmachnet_test | | | 93.22 283 | 92.63 283 | 94.97 294 | 95.45 334 | 90.84 297 | 96.88 322 | 97.88 262 | 90.60 305 | 92.08 306 | 97.26 256 | 88.08 208 | 97.86 323 | 85.12 341 | 90.33 289 | 96.22 318 |
|
Patchmtry | | | 93.22 283 | 92.35 287 | 95.84 267 | 96.77 278 | 93.09 265 | 94.66 359 | 97.56 279 | 87.37 339 | 92.90 283 | 96.24 316 | 88.15 205 | 97.90 318 | 87.37 327 | 90.10 294 | 96.53 296 |
|
FMVSNet1 | | | 93.19 285 | 92.07 290 | 96.56 222 | 97.54 227 | 95.00 185 | 98.82 114 | 98.18 216 | 90.38 311 | 92.27 302 | 97.07 272 | 73.68 350 | 97.95 314 | 89.36 312 | 91.30 279 | 96.72 270 |
|
LF4IMVS | | | 93.14 286 | 92.79 280 | 94.20 315 | 95.88 321 | 88.67 333 | 97.66 264 | 97.07 313 | 93.81 194 | 91.71 310 | 97.65 230 | 77.96 328 | 98.81 229 | 91.47 276 | 91.92 272 | 95.12 339 |
|
testgi | | | 93.06 287 | 92.45 286 | 94.88 297 | 96.43 299 | 89.90 311 | 98.75 129 | 97.54 285 | 95.60 113 | 91.63 312 | 97.91 204 | 74.46 347 | 97.02 341 | 86.10 333 | 93.67 244 | 97.72 217 |
|
PatchT | | | 93.06 287 | 91.97 292 | 96.35 244 | 96.69 284 | 92.67 269 | 94.48 360 | 97.08 312 | 86.62 341 | 97.08 143 | 92.23 360 | 87.94 211 | 97.90 318 | 78.89 362 | 96.69 190 | 98.49 192 |
|
MVS_0304 | | | 92.81 289 | 92.01 291 | 95.23 285 | 97.46 233 | 91.33 289 | 98.17 217 | 98.81 75 | 91.13 299 | 93.80 254 | 95.68 334 | 66.08 361 | 98.06 307 | 90.79 286 | 96.13 213 | 96.32 315 |
|
RPMNet | | | 92.81 289 | 91.34 297 | 97.24 168 | 97.00 264 | 93.43 250 | 94.96 352 | 98.80 83 | 82.27 358 | 96.93 151 | 92.12 361 | 86.98 231 | 99.82 64 | 76.32 366 | 96.65 192 | 98.46 193 |
|
TransMVSNet (Re) | | | 92.67 291 | 91.51 296 | 96.15 252 | 96.58 290 | 94.65 202 | 98.90 95 | 96.73 331 | 90.86 303 | 89.46 331 | 97.86 209 | 85.62 254 | 98.09 304 | 86.45 331 | 81.12 353 | 95.71 330 |
|
K. test v3 | | | 92.55 292 | 91.91 294 | 94.48 310 | 95.64 327 | 89.24 323 | 99.07 61 | 94.88 354 | 94.04 179 | 86.78 346 | 97.59 236 | 77.64 332 | 97.64 328 | 92.08 261 | 89.43 305 | 96.57 289 |
|
DSMNet-mixed | | | 92.52 293 | 92.58 284 | 92.33 333 | 94.15 348 | 82.65 360 | 98.30 199 | 94.26 361 | 89.08 331 | 92.65 291 | 95.73 329 | 85.01 266 | 95.76 357 | 86.24 332 | 97.76 169 | 98.59 188 |
|
TinyColmap | | | 92.31 294 | 91.53 295 | 94.65 305 | 96.92 270 | 89.75 313 | 96.92 314 | 96.68 334 | 90.45 309 | 89.62 328 | 97.85 211 | 76.06 340 | 98.81 229 | 86.74 329 | 92.51 266 | 95.41 334 |
|
gg-mvs-nofinetune | | | 92.21 295 | 90.58 303 | 97.13 176 | 96.75 281 | 95.09 182 | 95.85 344 | 89.40 376 | 85.43 351 | 94.50 216 | 81.98 369 | 80.80 309 | 98.40 281 | 92.16 259 | 98.33 150 | 97.88 210 |
|
FMVSNet5 | | | 91.81 296 | 90.92 299 | 94.49 309 | 97.21 251 | 92.09 274 | 98.00 234 | 97.55 284 | 89.31 329 | 90.86 318 | 95.61 335 | 74.48 346 | 95.32 361 | 85.57 337 | 89.70 298 | 96.07 323 |
|
pmmvs6 | | | 91.77 297 | 90.63 302 | 95.17 288 | 94.69 346 | 91.24 292 | 98.67 151 | 97.92 259 | 86.14 345 | 89.62 328 | 97.56 240 | 75.79 341 | 98.34 282 | 90.75 288 | 84.56 343 | 95.94 326 |
|
Anonymous20231206 | | | 91.66 298 | 91.10 298 | 93.33 324 | 94.02 352 | 87.35 348 | 98.58 163 | 97.26 307 | 90.48 307 | 90.16 324 | 96.31 314 | 83.83 291 | 96.53 352 | 79.36 360 | 89.90 296 | 96.12 321 |
|
Patchmatch-RL test | | | 91.49 299 | 90.85 300 | 93.41 322 | 91.37 361 | 84.40 354 | 92.81 364 | 95.93 345 | 91.87 273 | 87.25 343 | 94.87 341 | 88.99 184 | 96.53 352 | 92.54 253 | 82.00 349 | 99.30 116 |
|
test_0402 | | | 91.32 300 | 90.27 306 | 94.48 310 | 96.60 288 | 91.12 293 | 98.50 176 | 97.22 309 | 86.10 346 | 88.30 339 | 96.98 284 | 77.65 331 | 97.99 313 | 78.13 364 | 92.94 262 | 94.34 347 |
|
test_vis1_rt | | | 91.29 301 | 90.65 301 | 93.19 328 | 97.45 237 | 86.25 352 | 98.57 168 | 90.90 374 | 93.30 224 | 86.94 345 | 93.59 351 | 62.07 364 | 99.11 184 | 97.48 87 | 95.58 218 | 94.22 350 |
|
PVSNet_0 | | 88.72 19 | 91.28 302 | 90.03 308 | 95.00 293 | 97.99 197 | 87.29 349 | 94.84 355 | 98.50 158 | 92.06 268 | 89.86 326 | 95.19 337 | 79.81 315 | 99.39 156 | 92.27 258 | 69.79 369 | 98.33 199 |
|
Anonymous20240521 | | | 91.18 303 | 90.44 304 | 93.42 321 | 93.70 353 | 88.47 337 | 98.94 90 | 97.56 279 | 88.46 334 | 89.56 330 | 95.08 340 | 77.15 336 | 96.97 342 | 83.92 347 | 89.55 302 | 94.82 345 |
|
EG-PatchMatch MVS | | | 91.13 304 | 90.12 307 | 94.17 317 | 94.73 345 | 89.00 328 | 98.13 221 | 97.81 265 | 89.22 330 | 85.32 355 | 96.46 311 | 67.71 357 | 98.42 267 | 87.89 325 | 93.82 240 | 95.08 341 |
|
TDRefinement | | | 91.06 305 | 89.68 310 | 95.21 286 | 85.35 374 | 91.49 287 | 98.51 175 | 97.07 313 | 91.47 282 | 88.83 337 | 97.84 212 | 77.31 333 | 99.09 189 | 92.79 244 | 77.98 362 | 95.04 342 |
|
UnsupCasMVSNet_eth | | | 90.99 306 | 89.92 309 | 94.19 316 | 94.08 349 | 89.83 312 | 97.13 305 | 98.67 118 | 93.69 204 | 85.83 352 | 96.19 321 | 75.15 343 | 96.74 346 | 89.14 314 | 79.41 358 | 96.00 324 |
|
test20.03 | | | 90.89 307 | 90.38 305 | 92.43 332 | 93.48 354 | 88.14 343 | 98.33 192 | 97.56 279 | 93.40 219 | 87.96 340 | 96.71 302 | 80.69 310 | 94.13 366 | 79.15 361 | 86.17 339 | 95.01 344 |
|
MDA-MVSNet_test_wron | | | 90.71 308 | 89.38 313 | 94.68 304 | 94.83 342 | 90.78 299 | 97.19 298 | 97.46 292 | 87.60 337 | 72.41 369 | 95.72 331 | 86.51 237 | 96.71 349 | 85.92 335 | 86.80 336 | 96.56 291 |
|
YYNet1 | | | 90.70 309 | 89.39 312 | 94.62 306 | 94.79 344 | 90.65 302 | 97.20 297 | 97.46 292 | 87.54 338 | 72.54 368 | 95.74 327 | 86.51 237 | 96.66 350 | 86.00 334 | 86.76 337 | 96.54 294 |
|
KD-MVS_self_test | | | 90.38 310 | 89.38 313 | 93.40 323 | 92.85 357 | 88.94 330 | 97.95 237 | 97.94 257 | 90.35 312 | 90.25 323 | 93.96 348 | 79.82 314 | 95.94 356 | 84.62 346 | 76.69 364 | 95.33 335 |
|
pmmvs-eth3d | | | 90.36 311 | 89.05 316 | 94.32 314 | 91.10 363 | 92.12 273 | 97.63 269 | 96.95 321 | 88.86 332 | 84.91 356 | 93.13 355 | 78.32 323 | 96.74 346 | 88.70 318 | 81.81 351 | 94.09 353 |
|
CL-MVSNet_self_test | | | 90.11 312 | 89.14 315 | 93.02 329 | 91.86 360 | 88.23 342 | 96.51 336 | 98.07 241 | 90.49 306 | 90.49 322 | 94.41 343 | 84.75 271 | 95.34 360 | 80.79 356 | 74.95 366 | 95.50 333 |
|
new_pmnet | | | 90.06 313 | 89.00 317 | 93.22 327 | 94.18 347 | 88.32 340 | 96.42 338 | 96.89 326 | 86.19 344 | 85.67 353 | 93.62 350 | 77.18 335 | 97.10 340 | 81.61 354 | 89.29 307 | 94.23 349 |
|
MDA-MVSNet-bldmvs | | | 89.97 314 | 88.35 319 | 94.83 300 | 95.21 337 | 91.34 288 | 97.64 266 | 97.51 288 | 88.36 335 | 71.17 370 | 96.13 322 | 79.22 318 | 96.63 351 | 83.65 348 | 86.27 338 | 96.52 299 |
|
CMPMVS |  | 66.06 21 | 89.70 315 | 89.67 311 | 89.78 340 | 93.19 355 | 76.56 365 | 97.00 310 | 98.35 186 | 80.97 360 | 81.57 360 | 97.75 220 | 74.75 345 | 98.61 244 | 89.85 301 | 93.63 247 | 94.17 351 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet1 | | | 89.67 316 | 88.28 320 | 93.82 318 | 92.81 358 | 91.08 294 | 98.01 232 | 97.45 294 | 87.95 336 | 87.90 341 | 95.87 326 | 67.63 358 | 94.56 365 | 78.73 363 | 88.18 320 | 95.83 328 |
|
KD-MVS_2432*1600 | | | 89.61 317 | 87.96 323 | 94.54 307 | 94.06 350 | 91.59 285 | 95.59 348 | 97.63 274 | 89.87 319 | 88.95 334 | 94.38 345 | 78.28 324 | 96.82 344 | 84.83 342 | 68.05 370 | 95.21 337 |
|
miper_refine_blended | | | 89.61 317 | 87.96 323 | 94.54 307 | 94.06 350 | 91.59 285 | 95.59 348 | 97.63 274 | 89.87 319 | 88.95 334 | 94.38 345 | 78.28 324 | 96.82 344 | 84.83 342 | 68.05 370 | 95.21 337 |
|
MVS-HIRNet | | | 89.46 319 | 88.40 318 | 92.64 331 | 97.58 222 | 82.15 361 | 94.16 363 | 93.05 369 | 75.73 365 | 90.90 317 | 82.52 368 | 79.42 317 | 98.33 283 | 83.53 349 | 98.68 128 | 97.43 221 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 320 | 87.43 327 | 93.69 319 | 93.08 356 | 89.42 321 | 97.91 241 | 96.89 326 | 78.58 362 | 85.86 351 | 94.69 342 | 69.48 355 | 98.29 291 | 77.13 365 | 93.29 258 | 93.36 359 |
|
mvsany_test3 | | | 88.80 321 | 88.04 321 | 91.09 339 | 89.78 366 | 81.57 363 | 97.83 252 | 95.49 348 | 93.81 194 | 87.53 342 | 93.95 349 | 56.14 367 | 97.43 335 | 94.68 182 | 83.13 346 | 94.26 348 |
|
new-patchmatchnet | | | 88.50 322 | 87.45 326 | 91.67 337 | 90.31 365 | 85.89 353 | 97.16 303 | 97.33 302 | 89.47 325 | 83.63 358 | 92.77 357 | 76.38 338 | 95.06 363 | 82.70 351 | 77.29 363 | 94.06 355 |
|
APD_test1 | | | 88.22 323 | 88.01 322 | 88.86 342 | 95.98 317 | 74.66 371 | 97.21 296 | 96.44 339 | 83.96 356 | 86.66 348 | 97.90 205 | 60.95 365 | 97.84 324 | 82.73 350 | 90.23 292 | 94.09 353 |
|
PM-MVS | | | 87.77 324 | 86.55 329 | 91.40 338 | 91.03 364 | 83.36 359 | 96.92 314 | 95.18 352 | 91.28 293 | 86.48 350 | 93.42 352 | 53.27 368 | 96.74 346 | 89.43 311 | 81.97 350 | 94.11 352 |
|
test_fmvs3 | | | 87.17 325 | 87.06 328 | 87.50 344 | 91.21 362 | 75.66 367 | 99.05 64 | 96.61 337 | 92.79 243 | 88.85 336 | 92.78 356 | 43.72 371 | 93.49 367 | 93.95 209 | 84.56 343 | 93.34 360 |
|
UnsupCasMVSNet_bld | | | 87.17 325 | 85.12 331 | 93.31 325 | 91.94 359 | 88.77 331 | 94.92 354 | 98.30 198 | 84.30 355 | 82.30 359 | 90.04 363 | 63.96 363 | 97.25 338 | 85.85 336 | 74.47 368 | 93.93 357 |
|
N_pmnet | | | 87.12 327 | 87.77 325 | 85.17 348 | 95.46 333 | 61.92 378 | 97.37 283 | 70.66 384 | 85.83 348 | 88.73 338 | 96.04 324 | 85.33 262 | 97.76 326 | 80.02 357 | 90.48 288 | 95.84 327 |
|
pmmvs3 | | | 86.67 328 | 84.86 332 | 92.11 336 | 88.16 368 | 87.19 350 | 96.63 332 | 94.75 356 | 79.88 361 | 87.22 344 | 92.75 358 | 66.56 360 | 95.20 362 | 81.24 355 | 76.56 365 | 93.96 356 |
|
test_f | | | 86.07 329 | 85.39 330 | 88.10 343 | 89.28 367 | 75.57 368 | 97.73 259 | 96.33 340 | 89.41 328 | 85.35 354 | 91.56 362 | 43.31 373 | 95.53 358 | 91.32 278 | 84.23 345 | 93.21 361 |
|
test_vis3_rt | | | 79.22 330 | 77.40 336 | 84.67 349 | 86.44 372 | 74.85 370 | 97.66 264 | 81.43 381 | 84.98 352 | 67.12 372 | 81.91 370 | 28.09 381 | 97.60 329 | 88.96 316 | 80.04 357 | 81.55 370 |
|
test_method | | | 79.03 331 | 78.17 333 | 81.63 353 | 86.06 373 | 54.40 383 | 82.75 372 | 96.89 326 | 39.54 376 | 80.98 361 | 95.57 336 | 58.37 366 | 94.73 364 | 84.74 345 | 78.61 359 | 95.75 329 |
|
testf1 | | | 79.02 332 | 77.70 334 | 82.99 351 | 88.10 369 | 66.90 375 | 94.67 357 | 93.11 366 | 71.08 367 | 74.02 365 | 93.41 353 | 34.15 377 | 93.25 368 | 72.25 369 | 78.50 360 | 88.82 365 |
|
APD_test2 | | | 79.02 332 | 77.70 334 | 82.99 351 | 88.10 369 | 66.90 375 | 94.67 357 | 93.11 366 | 71.08 367 | 74.02 365 | 93.41 353 | 34.15 377 | 93.25 368 | 72.25 369 | 78.50 360 | 88.82 365 |
|
LCM-MVSNet | | | 78.70 334 | 76.24 339 | 86.08 346 | 77.26 380 | 71.99 373 | 94.34 361 | 96.72 332 | 61.62 371 | 76.53 363 | 89.33 364 | 33.91 379 | 92.78 371 | 81.85 353 | 74.60 367 | 93.46 358 |
|
Gipuma |  | | 78.40 335 | 76.75 338 | 83.38 350 | 95.54 330 | 80.43 364 | 79.42 373 | 97.40 298 | 64.67 370 | 73.46 367 | 80.82 371 | 45.65 370 | 93.14 370 | 66.32 372 | 87.43 327 | 76.56 373 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 77.95 336 | 75.44 340 | 85.46 347 | 82.54 375 | 74.95 369 | 94.23 362 | 93.08 368 | 72.80 366 | 74.68 364 | 87.38 365 | 36.36 376 | 91.56 372 | 73.95 367 | 63.94 372 | 89.87 364 |
|
FPMVS | | | 77.62 337 | 77.14 337 | 79.05 355 | 79.25 378 | 60.97 379 | 95.79 345 | 95.94 344 | 65.96 369 | 67.93 371 | 94.40 344 | 37.73 375 | 88.88 374 | 68.83 371 | 88.46 317 | 87.29 367 |
|
EGC-MVSNET | | | 75.22 338 | 69.54 341 | 92.28 334 | 94.81 343 | 89.58 318 | 97.64 266 | 96.50 338 | 1.82 381 | 5.57 382 | 95.74 327 | 68.21 356 | 96.26 355 | 73.80 368 | 91.71 274 | 90.99 363 |
|
ANet_high | | | 69.08 339 | 65.37 343 | 80.22 354 | 65.99 382 | 71.96 374 | 90.91 368 | 90.09 375 | 82.62 357 | 49.93 377 | 78.39 372 | 29.36 380 | 81.75 375 | 62.49 373 | 38.52 376 | 86.95 369 |
|
tmp_tt | | | 68.90 340 | 66.97 342 | 74.68 357 | 50.78 384 | 59.95 380 | 87.13 369 | 83.47 380 | 38.80 377 | 62.21 373 | 96.23 318 | 64.70 362 | 76.91 379 | 88.91 317 | 30.49 377 | 87.19 368 |
|
PMVS |  | 61.03 23 | 65.95 341 | 63.57 345 | 73.09 358 | 57.90 383 | 51.22 384 | 85.05 371 | 93.93 365 | 54.45 372 | 44.32 378 | 83.57 367 | 13.22 382 | 89.15 373 | 58.68 374 | 81.00 354 | 78.91 372 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 64.94 342 | 64.25 344 | 67.02 359 | 82.28 376 | 59.36 381 | 91.83 367 | 85.63 378 | 52.69 373 | 60.22 374 | 77.28 373 | 41.06 374 | 80.12 377 | 46.15 376 | 41.14 374 | 61.57 375 |
|
EMVS | | | 64.07 343 | 63.26 346 | 66.53 360 | 81.73 377 | 58.81 382 | 91.85 366 | 84.75 379 | 51.93 375 | 59.09 375 | 75.13 374 | 43.32 372 | 79.09 378 | 42.03 377 | 39.47 375 | 61.69 374 |
|
MVE |  | 62.14 22 | 63.28 344 | 59.38 347 | 74.99 356 | 74.33 381 | 65.47 377 | 85.55 370 | 80.50 382 | 52.02 374 | 51.10 376 | 75.00 375 | 10.91 385 | 80.50 376 | 51.60 375 | 53.40 373 | 78.99 371 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 30.17 345 | 30.18 349 | 30.16 361 | 78.61 379 | 43.29 385 | 66.79 374 | 14.21 385 | 17.31 378 | 14.82 381 | 11.93 381 | 11.55 384 | 41.43 380 | 37.08 378 | 19.30 378 | 5.76 378 |
|
cdsmvs_eth3d_5k | | | 23.98 346 | 31.98 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 98.59 133 | 0.00 382 | 0.00 383 | 98.61 134 | 90.60 151 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
testmvs | | | 21.48 347 | 24.95 350 | 11.09 363 | 14.89 385 | 6.47 387 | 96.56 334 | 9.87 386 | 7.55 379 | 17.93 379 | 39.02 377 | 9.43 386 | 5.90 382 | 16.56 380 | 12.72 379 | 20.91 377 |
|
test123 | | | 20.95 348 | 23.72 351 | 12.64 362 | 13.54 386 | 8.19 386 | 96.55 335 | 6.13 387 | 7.48 380 | 16.74 380 | 37.98 378 | 12.97 383 | 6.05 381 | 16.69 379 | 5.43 380 | 23.68 376 |
|
ab-mvs-re | | | 8.20 349 | 10.94 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 98.43 154 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 7.88 350 | 10.50 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 94.51 78 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 35 | 97.46 23 | 99.39 22 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.62 6 | 99.17 89 | 99.08 11 | | 98.63 128 | | | | | 99.94 4 | 98.53 18 | 99.80 19 | 99.86 2 |
|
PC_three_1452 | | | | | | | | | | 95.08 144 | 99.60 12 | 99.16 65 | 97.86 2 | 98.47 261 | 97.52 85 | 99.72 47 | 99.74 30 |
|
No_MVS | | | | | 99.62 6 | 99.17 89 | 99.08 11 | | 98.63 128 | | | | | 99.94 4 | 98.53 18 | 99.80 19 | 99.86 2 |
|
test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 64 | 97.55 18 | 99.20 30 | 99.47 12 | 97.57 6 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 88 | 93.21 227 | 98.67 63 | 98.97 93 | 95.70 43 | 99.83 57 | 96.07 139 | 99.58 71 | |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 61 | 99.11 54 | 98.80 83 | 96.49 74 | 99.17 33 | 99.35 32 | 95.29 59 | | 97.72 67 | 99.65 57 | 99.71 42 |
|
IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 126 | 95.28 131 | 99.63 11 | | | | 98.35 35 | 99.81 12 | 99.83 7 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 82 | 99.05 14 | 99.02 73 | | | | 99.16 65 | 97.81 3 | 99.37 157 | 97.24 94 | 99.73 44 | 99.70 46 |
|
test_241102_TWO | | | | | | | | | 98.87 58 | 97.65 12 | 99.53 16 | 99.48 10 | 97.34 11 | 99.94 4 | 98.43 30 | 99.80 19 | 99.83 7 |
|
test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 58 | 97.62 14 | 99.73 4 | 99.39 20 | 97.53 7 | 99.74 99 | | | |
|
9.14 | | | | 98.06 48 | | 99.47 47 | | 98.71 141 | 98.82 70 | 94.36 171 | 99.16 35 | 99.29 41 | 96.05 31 | 99.81 69 | 97.00 101 | 99.71 49 | |
|
save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 208 | 98.71 106 | 97.95 5 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 97.32 31 | 99.45 18 | 99.46 15 | 97.88 1 | 99.94 4 | 98.47 26 | 99.86 1 | 99.85 4 |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 83 | 98.88 51 | | | | | 99.94 4 | 98.47 26 | 99.81 12 | 99.84 6 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 62 | 98.88 51 | 97.62 14 | 99.56 13 | 99.50 7 | 97.42 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 128 |
|
test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 27 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 170 | | | | 99.20 128 |
|
sam_mvs | | | | | | | | | | | | | 88.99 184 | | | | |
|
ambc | | | | | 89.49 341 | 86.66 371 | 75.78 366 | 92.66 365 | 96.72 332 | | 86.55 349 | 92.50 359 | 46.01 369 | 97.90 318 | 90.32 292 | 82.09 348 | 94.80 346 |
|
MTGPA |  | | | | | | | | 98.74 98 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 331 | | | | 30.43 380 | 87.85 215 | 98.69 237 | 92.59 249 | | |
|
test_post | | | | | | | | | | | | 31.83 379 | 88.83 191 | 98.91 215 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 339 | 89.42 171 | 98.89 219 | | | |
|
GG-mvs-BLEND | | | | | 96.59 218 | 96.34 303 | 94.98 188 | 96.51 336 | 88.58 377 | | 93.10 280 | 94.34 347 | 80.34 313 | 98.05 308 | 89.53 308 | 96.99 184 | 96.74 267 |
|
MTMP | | | | | | | | 98.89 99 | 94.14 363 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 321 | 87.47 347 | | | 89.74 322 | | 96.94 290 | | 99.19 172 | 93.32 228 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 133 | 99.57 72 | 99.69 49 |
|
TEST9 | | | | | | 99.31 62 | 98.50 29 | 97.92 239 | 98.73 101 | 92.63 246 | 97.74 118 | 98.68 128 | 96.20 26 | 99.80 76 | | | |
|
test_8 | | | | | | 99.29 68 | 98.44 31 | 97.89 245 | 98.72 103 | 92.98 235 | 97.70 122 | 98.66 131 | 96.20 26 | 99.80 76 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 149 | 99.57 72 | 99.68 54 |
|
agg_prior | | | | | | 99.30 66 | 98.38 35 | | 98.72 103 | | 97.57 132 | | | 99.81 69 | | | |
|
TestCases | | | | | 96.99 184 | 99.25 76 | 93.21 261 | | 98.18 216 | 91.36 286 | 93.52 263 | 98.77 120 | 84.67 273 | 99.72 101 | 89.70 305 | 97.87 164 | 98.02 208 |
|
test_prior4 | | | | | | | 98.01 58 | 97.86 248 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 253 | | 96.12 91 | 97.89 112 | 98.69 127 | 95.96 35 | | 96.89 110 | 99.60 66 | |
|
test_prior | | | | | 99.19 38 | 99.31 62 | 98.22 47 | | 98.84 68 | | | | | 99.70 107 | | | 99.65 62 |
|
旧先验2 | | | | | | | | 97.57 272 | | 91.30 291 | 98.67 63 | | | 99.80 76 | 95.70 157 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 266 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.16 43 | 99.34 55 | 98.01 58 | | 98.69 110 | 90.06 316 | 98.13 89 | 98.95 100 | 94.60 76 | 99.89 37 | 91.97 267 | 99.47 89 | 99.59 72 |
|
旧先验1 | | | | | | 99.29 68 | 97.48 73 | | 98.70 109 | | | 99.09 80 | 95.56 46 | | | 99.47 89 | 99.61 68 |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 271 | 98.72 103 | 91.38 285 | | | | 99.87 46 | 93.36 227 | | 99.60 70 |
|
原ACMM2 | | | | | | | | 97.67 263 | | | | | | | | | |
|
原ACMM1 | | | | | 98.65 68 | 99.32 60 | 96.62 105 | | 98.67 118 | 93.27 226 | 97.81 113 | 98.97 93 | 95.18 65 | 99.83 57 | 93.84 213 | 99.46 92 | 99.50 84 |
|
test222 | | | | | | 99.23 83 | 97.17 87 | 97.40 279 | 98.66 121 | 88.68 333 | 98.05 94 | 98.96 98 | 94.14 88 | | | 99.53 82 | 99.61 68 |
|
testdata2 | | | | | | | | | | | | | | 99.89 37 | 91.65 274 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
testdata | | | | | 98.26 102 | 99.20 87 | 95.36 170 | | 98.68 113 | 91.89 272 | 98.60 71 | 99.10 74 | 94.44 83 | 99.82 64 | 94.27 199 | 99.44 93 | 99.58 76 |
|
testdata1 | | | | | | | | 97.32 289 | | 96.34 83 | | | | | | | |
|
test12 | | | | | 99.18 40 | 99.16 93 | 98.19 48 | | 98.53 148 | | 98.07 93 | | 95.13 67 | 99.72 101 | | 99.56 78 | 99.63 66 |
|
plane_prior7 | | | | | | 97.42 239 | 94.63 204 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 244 | 94.61 207 | | | | | | 87.09 228 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 142 | | | | | 99.03 196 | 96.07 139 | 94.27 224 | 96.92 242 |
|
plane_prior4 | | | | | | | | | | | | 98.28 173 | | | | | |
|
plane_prior3 | | | | | | | 94.61 207 | | | 97.02 52 | 95.34 195 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 121 | | 97.28 34 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 243 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 209 | 98.44 183 | | 96.74 65 | | | | | | 94.22 226 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 359 | | | | | | | | |
|
lessismore_v0 | | | | | 94.45 313 | 94.93 341 | 88.44 338 | | 91.03 373 | | 86.77 347 | 97.64 232 | 76.23 339 | 98.42 267 | 90.31 293 | 85.64 342 | 96.51 302 |
|
LGP-MVS_train | | | | | 96.47 234 | 97.46 233 | 93.54 245 | | 98.54 146 | 94.67 160 | 94.36 225 | 98.77 120 | 85.39 258 | 99.11 184 | 95.71 155 | 94.15 230 | 96.76 265 |
|
test11 | | | | | | | | | 98.66 121 | | | | | | | | |
|
door | | | | | | | | | 94.64 357 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 223 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 252 | | 98.05 228 | | 96.43 77 | 94.45 218 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 252 | | 98.05 228 | | 96.43 77 | 94.45 218 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 166 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 218 | | | 98.96 207 | | | 96.87 253 |
|
HQP3-MVS | | | | | | | | | 98.46 165 | | | | | | | 94.18 228 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 234 | | | | |
|
NP-MVS | | | | | | 97.28 246 | 94.51 212 | | | | | 97.73 221 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 355 | 96.89 321 | | 90.97 301 | 97.90 111 | | 89.89 162 | | 93.91 211 | | 99.18 137 |
|
MDTV_nov1_ep13 | | | | 95.40 157 | | 97.48 231 | 88.34 339 | 96.85 324 | 97.29 304 | 93.74 198 | 97.48 134 | 97.26 256 | 89.18 178 | 99.05 192 | 91.92 268 | 97.43 178 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 261 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 248 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 75 | | | | |
|
ITE_SJBPF | | | | | 95.44 281 | 97.42 239 | 91.32 290 | | 97.50 289 | 95.09 143 | 93.59 259 | 98.35 164 | 81.70 299 | 98.88 221 | 89.71 304 | 93.39 255 | 96.12 321 |
|
DeepMVS_CX |  | | | | 86.78 345 | 97.09 262 | 72.30 372 | | 95.17 353 | 75.92 364 | 84.34 357 | 95.19 337 | 70.58 353 | 95.35 359 | 79.98 359 | 89.04 311 | 92.68 362 |
|