This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7398.87 5897.65 1299.73 499.48 1097.53 799.94 498.43 3099.81 1299.70 46
DVP-MVS++99.08 298.89 399.64 399.17 8999.23 799.69 198.88 5197.32 3199.53 1699.47 1297.81 399.94 498.47 2699.72 4799.74 30
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8398.58 13897.62 1499.45 1899.46 1597.42 999.94 498.47 2699.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 3997.38 2899.41 2099.54 196.66 1799.84 5598.86 999.85 599.87 1
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 18798.91 4597.58 1799.54 1599.46 1597.10 1299.94 497.64 7499.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8498.43 3399.10 5798.87 5897.38 2899.35 2499.40 1997.78 599.87 4697.77 6499.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 799.01 198.45 8699.42 5496.43 11998.96 8799.36 798.63 199.86 299.51 595.91 3799.97 199.72 199.75 3898.94 163
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4898.66 12196.84 5999.56 1399.31 3996.34 2399.70 10798.32 3699.73 4499.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 17998.81 7597.72 898.76 5899.16 6597.05 1399.78 8998.06 4599.66 5599.69 49
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5197.52 1999.41 2098.78 11896.00 3399.79 8697.79 6399.59 6899.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1198.49 1699.34 2399.70 2298.35 4199.29 2298.88 5197.40 2598.46 7599.20 5595.90 3999.89 3797.85 5899.74 4299.78 15
MCST-MVS98.65 1298.37 2299.48 1399.60 3198.87 1998.41 18898.68 11397.04 5198.52 7498.80 11696.78 1699.83 5797.93 5299.61 6599.74 30
SD-MVS98.64 1398.68 898.53 7899.33 5798.36 4098.90 9598.85 6797.28 3499.72 699.39 2096.63 1997.60 32998.17 4099.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1498.40 1999.32 2799.72 1298.29 4499.23 3198.96 3496.10 9298.94 4499.17 6296.06 3099.92 2497.62 7599.78 2699.75 28
ACMMP_NAP98.61 1598.30 3499.55 999.62 3098.95 1798.82 11498.81 7595.80 10499.16 3599.47 1295.37 5499.92 2497.89 5599.75 3899.79 13
region2R98.61 1598.38 2199.29 2899.74 798.16 5199.23 3198.93 3996.15 8998.94 4499.17 6295.91 3799.94 497.55 8299.79 2399.78 15
NCCC98.61 1598.35 2599.38 1899.28 7298.61 2698.45 18098.76 9497.82 798.45 7898.93 10296.65 1899.83 5797.38 9199.41 9599.71 42
SF-MVS98.59 1898.32 3399.41 1799.54 3598.71 2299.04 6798.81 7595.12 13999.32 2599.39 2096.22 2499.84 5597.72 6799.73 4499.67 58
ACMMPR98.59 1898.36 2399.29 2899.74 798.15 5299.23 3198.95 3596.10 9298.93 4899.19 6095.70 4399.94 497.62 7599.79 2399.78 15
SMA-MVScopyleft98.58 2098.25 3799.56 899.51 3999.04 1598.95 8898.80 8393.67 20899.37 2399.52 396.52 2199.89 3798.06 4599.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2098.29 3599.46 1499.76 298.64 2598.90 9598.74 9897.27 3898.02 9999.39 2094.81 7499.96 397.91 5399.79 2399.77 21
HPM-MVS++copyleft98.58 2098.25 3799.55 999.50 4199.08 1198.72 14098.66 12197.51 2098.15 8898.83 11395.70 4399.92 2497.53 8499.67 5399.66 61
SR-MVS98.57 2398.35 2599.24 3599.53 3698.18 4999.09 5898.82 7096.58 7199.10 3799.32 3795.39 5299.82 6497.70 7199.63 6299.72 38
CP-MVS98.57 2398.36 2399.19 3899.66 2697.86 6199.34 1898.87 5895.96 9798.60 7199.13 7096.05 3199.94 497.77 6499.86 199.77 21
MSLP-MVS++98.56 2598.57 1298.55 7499.26 7596.80 9898.71 14199.05 2697.28 3498.84 5299.28 4296.47 2299.40 15598.52 2499.70 5099.47 92
DeepC-MVS_fast96.70 198.55 2698.34 2899.18 4099.25 7698.04 5698.50 17698.78 9097.72 898.92 4999.28 4295.27 6099.82 6497.55 8299.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 2798.35 2599.13 4599.49 4597.86 6199.11 5498.80 8396.49 7499.17 3399.35 3295.34 5699.82 6497.72 6799.65 5799.71 42
APD-MVS_3200maxsize98.53 2898.33 3299.15 4499.50 4197.92 6099.15 4698.81 7596.24 8599.20 3099.37 2695.30 5899.80 7697.73 6699.67 5399.72 38
mPP-MVS98.51 2998.26 3699.25 3499.75 398.04 5699.28 2498.81 7596.24 8598.35 8499.23 5095.46 4999.94 497.42 8999.81 1299.77 21
ZNCC-MVS98.49 3098.20 4299.35 2299.73 1198.39 3499.19 4198.86 6495.77 10598.31 8799.10 7495.46 4999.93 1997.57 8199.81 1299.74 30
CS-MVS-test98.49 3098.50 1598.46 8599.20 8797.05 8999.64 498.50 15897.45 2498.88 5099.14 6995.25 6299.15 17798.83 1099.56 7899.20 128
PGM-MVS98.49 3098.23 4099.27 3399.72 1298.08 5598.99 8099.49 595.43 12199.03 3899.32 3795.56 4699.94 496.80 12099.77 2899.78 15
EI-MVSNet-Vis-set98.47 3398.39 2098.69 6599.46 4996.49 11698.30 19998.69 11097.21 4098.84 5299.36 3095.41 5199.78 8998.62 1499.65 5799.80 12
MVS_111021_HR98.47 3398.34 2898.88 6099.22 8497.32 7797.91 24199.58 397.20 4198.33 8599.00 9195.99 3499.64 11998.05 4799.76 3499.69 49
CS-MVS98.44 3598.49 1698.31 9899.08 10096.73 10299.67 398.47 16497.17 4398.94 4499.10 7495.73 4299.13 18098.71 1299.49 8699.09 146
GST-MVS98.43 3698.12 4599.34 2399.72 1298.38 3599.09 5898.82 7095.71 10998.73 6199.06 8495.27 6099.93 1997.07 10099.63 6299.72 38
EI-MVSNet-UG-set98.41 3798.34 2898.61 7099.45 5296.32 12698.28 20298.68 11397.17 4398.74 5999.37 2695.25 6299.79 8698.57 1599.54 8199.73 35
DELS-MVS98.40 3898.20 4298.99 5299.00 10797.66 6697.75 25798.89 4897.71 1098.33 8598.97 9394.97 7199.88 4598.42 3299.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.98.38 3998.24 3998.81 6199.22 8497.25 8498.11 22498.29 20097.19 4298.99 4399.02 8696.22 2499.67 11498.52 2498.56 13799.51 82
HPM-MVS_fast98.38 3998.13 4499.12 4799.75 397.86 6199.44 1198.82 7094.46 16998.94 4499.20 5595.16 6699.74 9997.58 7899.85 599.77 21
patch_mono-298.36 4198.87 496.82 19899.53 3690.68 30198.64 15599.29 997.88 699.19 3299.52 396.80 1599.97 199.11 499.86 199.82 10
HPM-MVScopyleft98.36 4198.10 4799.13 4599.74 797.82 6599.53 898.80 8394.63 16298.61 7098.97 9395.13 6799.77 9497.65 7399.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 4398.00 5199.42 1699.51 3998.72 2198.80 12198.82 7094.52 16699.23 2999.25 4995.54 4899.80 7696.52 12899.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 4498.23 4098.67 6799.27 7396.90 9597.95 23799.58 397.14 4698.44 7999.01 9095.03 7099.62 12597.91 5399.75 3899.50 84
PHI-MVS98.34 4498.06 4899.18 4099.15 9598.12 5499.04 6799.09 2293.32 22298.83 5499.10 7496.54 2099.83 5797.70 7199.76 3499.59 72
MP-MVScopyleft98.33 4698.01 5099.28 3199.75 398.18 4999.22 3598.79 8896.13 9097.92 11099.23 5094.54 7799.94 496.74 12399.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 4797.92 5399.49 1299.72 1298.88 1898.43 18598.78 9094.10 17797.69 12399.42 1895.25 6299.92 2498.09 4499.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft98.23 4897.95 5299.09 4899.74 797.62 6999.03 7099.41 695.98 9597.60 13199.36 3094.45 8299.93 1997.14 9798.85 12399.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 4998.11 4698.49 8298.34 16697.26 8399.61 598.43 17396.78 6298.87 5198.84 11193.72 9399.01 20198.91 899.50 8499.19 132
dcpmvs_298.08 5098.59 1196.56 22299.57 3390.34 30899.15 4698.38 18296.82 6199.29 2699.49 995.78 4199.57 13098.94 799.86 199.77 21
CANet98.05 5197.76 5698.90 5998.73 12997.27 7998.35 19098.78 9097.37 3097.72 12198.96 9891.53 13299.92 2498.79 1199.65 5799.51 82
train_agg97.97 5297.52 6799.33 2699.31 6298.50 2997.92 23998.73 10192.98 23597.74 11898.68 12896.20 2699.80 7696.59 12499.57 7299.68 54
ETV-MVS97.96 5397.81 5498.40 9398.42 15597.27 7998.73 13698.55 14496.84 5998.38 8197.44 24795.39 5299.35 15897.62 7598.89 11998.58 190
UA-Net97.96 5397.62 6098.98 5398.86 12097.47 7498.89 9999.08 2396.67 6898.72 6299.54 193.15 9899.81 6994.87 17698.83 12499.65 62
CDPH-MVS97.94 5597.49 6899.28 3199.47 4798.44 3197.91 24198.67 11892.57 25098.77 5798.85 11095.93 3699.72 10195.56 16099.69 5199.68 54
DeepPCF-MVS96.37 297.93 5698.48 1896.30 24899.00 10789.54 31997.43 27898.87 5898.16 399.26 2899.38 2596.12 2999.64 11998.30 3799.77 2899.72 38
DeepC-MVS95.98 397.88 5797.58 6298.77 6299.25 7696.93 9398.83 11298.75 9696.96 5596.89 15599.50 790.46 15399.87 4697.84 6099.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon97.86 5897.46 7199.06 5099.53 3698.35 4198.33 19298.89 4892.62 24798.05 9498.94 10195.34 5699.65 11796.04 14399.42 9499.19 132
CSCG97.85 5997.74 5798.20 10699.67 2595.16 17899.22 3599.32 893.04 23397.02 14898.92 10495.36 5599.91 3297.43 8899.64 6199.52 79
MG-MVS97.81 6097.60 6198.44 8899.12 9795.97 14297.75 25798.78 9096.89 5898.46 7599.22 5293.90 9299.68 11394.81 18099.52 8399.67 58
VNet97.79 6197.40 7598.96 5598.88 11897.55 7198.63 15798.93 3996.74 6599.02 3998.84 11190.33 15699.83 5798.53 1896.66 19199.50 84
EIA-MVS97.75 6297.58 6298.27 10098.38 15896.44 11899.01 7598.60 13195.88 10197.26 13797.53 24194.97 7199.33 16097.38 9199.20 10699.05 152
PS-MVSNAJ97.73 6397.77 5597.62 15098.68 13795.58 16197.34 28798.51 15397.29 3398.66 6797.88 20894.51 7899.90 3597.87 5799.17 10897.39 224
casdiffmvs_mvgpermissive97.72 6497.48 7098.44 8898.42 15596.59 11098.92 9398.44 16996.20 8797.76 11599.20 5591.66 12699.23 16798.27 3998.41 14699.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 6497.32 7998.92 5799.64 2897.10 8899.12 5298.81 7592.34 25898.09 9299.08 8293.01 9999.92 2496.06 14299.77 2899.75 28
PVSNet_Blended_VisFu97.70 6697.46 7198.44 8899.27 7395.91 15098.63 15799.16 1994.48 16897.67 12498.88 10792.80 10199.91 3297.11 9899.12 10999.50 84
mvsany_test197.69 6797.70 5897.66 14898.24 17394.18 22697.53 27397.53 28695.52 11799.66 899.51 594.30 8599.56 13398.38 3398.62 13399.23 125
canonicalmvs97.67 6897.23 8298.98 5398.70 13498.38 3599.34 1898.39 17996.76 6497.67 12497.40 25092.26 10999.49 14698.28 3896.28 20799.08 150
xiu_mvs_v2_base97.66 6997.70 5897.56 15498.61 14495.46 16797.44 27698.46 16597.15 4598.65 6898.15 18594.33 8499.80 7697.84 6098.66 13297.41 222
baseline97.64 7097.44 7398.25 10398.35 16196.20 13099.00 7798.32 19096.33 8498.03 9799.17 6291.35 13599.16 17498.10 4398.29 15399.39 104
casdiffmvspermissive97.63 7197.41 7498.28 9998.33 16896.14 13398.82 11498.32 19096.38 8297.95 10599.21 5391.23 13999.23 16798.12 4298.37 14799.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu97.60 7297.56 6497.72 13998.35 16195.98 13797.86 24898.51 15397.13 4799.01 4098.40 15891.56 12899.80 7698.53 1898.68 12897.37 226
xiu_mvs_v1_base97.60 7297.56 6497.72 13998.35 16195.98 13797.86 24898.51 15397.13 4799.01 4098.40 15891.56 12899.80 7698.53 1898.68 12897.37 226
xiu_mvs_v1_base_debi97.60 7297.56 6497.72 13998.35 16195.98 13797.86 24898.51 15397.13 4799.01 4098.40 15891.56 12899.80 7698.53 1898.68 12897.37 226
diffmvspermissive97.58 7597.40 7598.13 11198.32 17095.81 15598.06 22798.37 18396.20 8798.74 5998.89 10691.31 13799.25 16498.16 4198.52 13899.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 7697.49 6897.84 12798.07 19195.76 15699.47 998.40 17794.98 14798.79 5598.83 11392.34 10698.41 27596.91 10699.59 6899.34 107
alignmvs97.56 7797.07 8999.01 5198.66 13998.37 3998.83 11298.06 24696.74 6598.00 10397.65 23090.80 14799.48 15098.37 3496.56 19599.19 132
DPM-MVS97.55 7896.99 9299.23 3799.04 10298.55 2797.17 30198.35 18694.85 15497.93 10998.58 13995.07 6999.71 10692.60 24799.34 10199.43 101
OMC-MVS97.55 7897.34 7898.20 10699.33 5795.92 14998.28 20298.59 13395.52 11797.97 10499.10 7493.28 9799.49 14695.09 17398.88 12099.19 132
PAPM_NR97.46 8097.11 8698.50 8099.50 4196.41 12298.63 15798.60 13195.18 13697.06 14698.06 19194.26 8799.57 13093.80 21598.87 12299.52 79
EPP-MVSNet97.46 8097.28 8097.99 12098.64 14195.38 16999.33 2198.31 19293.61 21297.19 13999.07 8394.05 8999.23 16796.89 11098.43 14599.37 106
3Dnovator94.51 597.46 8096.93 9499.07 4997.78 20897.64 6799.35 1799.06 2497.02 5293.75 25799.16 6589.25 17699.92 2497.22 9699.75 3899.64 64
CNLPA97.45 8397.03 9098.73 6399.05 10197.44 7698.07 22698.53 14895.32 12996.80 16098.53 14393.32 9699.72 10194.31 19899.31 10399.02 154
lupinMVS97.44 8497.22 8398.12 11398.07 19195.76 15697.68 26297.76 26794.50 16798.79 5598.61 13492.34 10699.30 16197.58 7899.59 6899.31 113
3Dnovator+94.38 697.43 8596.78 10299.38 1897.83 20698.52 2899.37 1498.71 10697.09 5092.99 28299.13 7089.36 17299.89 3796.97 10399.57 7299.71 42
Vis-MVSNetpermissive97.42 8697.11 8698.34 9698.66 13996.23 12999.22 3599.00 2996.63 7098.04 9699.21 5388.05 20999.35 15896.01 14599.21 10599.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 8797.25 8197.91 12498.70 13496.80 9898.82 11498.69 11094.53 16498.11 9098.28 17394.50 8199.57 13094.12 20499.49 8697.37 226
sss97.39 8896.98 9398.61 7098.60 14596.61 10798.22 20798.93 3993.97 18598.01 10298.48 14891.98 11999.85 5196.45 13098.15 15599.39 104
test_cas_vis1_n_192097.38 8997.36 7797.45 15798.95 11393.25 25999.00 7798.53 14897.70 1199.77 399.35 3284.71 27299.85 5198.57 1599.66 5599.26 122
PVSNet_Blended97.38 8997.12 8598.14 10999.25 7695.35 17297.28 29299.26 1093.13 23097.94 10798.21 18192.74 10299.81 6996.88 11299.40 9799.27 120
WTY-MVS97.37 9196.92 9598.72 6498.86 12096.89 9798.31 19798.71 10695.26 13297.67 12498.56 14292.21 11299.78 8995.89 14796.85 18699.48 90
jason97.32 9297.08 8898.06 11797.45 23795.59 16097.87 24797.91 26194.79 15598.55 7398.83 11391.12 14099.23 16797.58 7899.60 6699.34 107
jason: jason.
MVS_Test97.28 9397.00 9198.13 11198.33 16895.97 14298.74 13298.07 24194.27 17398.44 7998.07 19092.48 10499.26 16396.43 13198.19 15499.16 138
EPNet97.28 9396.87 9798.51 7994.98 33996.14 13398.90 9597.02 31898.28 295.99 18899.11 7291.36 13499.89 3796.98 10299.19 10799.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 9596.78 10298.54 7698.73 12996.60 10898.45 18098.31 19294.70 15698.02 9998.42 15690.80 14799.70 10796.81 11896.79 18899.34 107
DCV-MVSNet97.22 9596.78 10298.54 7698.73 12996.60 10898.45 18098.31 19294.70 15698.02 9998.42 15690.80 14799.70 10796.81 11896.79 18899.34 107
IS-MVSNet97.22 9596.88 9698.25 10398.85 12296.36 12499.19 4197.97 25495.39 12397.23 13898.99 9291.11 14198.93 21394.60 18798.59 13599.47 92
PLCcopyleft95.07 497.20 9896.78 10298.44 8899.29 6896.31 12898.14 21998.76 9492.41 25696.39 17898.31 17194.92 7399.78 8994.06 20798.77 12799.23 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 9997.18 8497.20 17098.81 12593.27 25795.78 34699.15 2095.25 13396.79 16198.11 18892.29 10899.07 19198.56 1799.85 599.25 124
LS3D97.16 10096.66 11098.68 6698.53 14997.19 8698.93 9298.90 4692.83 24295.99 18899.37 2692.12 11599.87 4693.67 21999.57 7298.97 159
AdaColmapbinary97.15 10196.70 10698.48 8399.16 9396.69 10498.01 23298.89 4894.44 17096.83 15698.68 12890.69 15099.76 9594.36 19499.29 10498.98 158
Effi-MVS+97.12 10296.69 10798.39 9498.19 18196.72 10397.37 28398.43 17393.71 20197.65 12798.02 19492.20 11399.25 16496.87 11597.79 16799.19 132
CHOSEN 1792x268897.12 10296.80 9998.08 11599.30 6694.56 21198.05 22899.71 193.57 21397.09 14298.91 10588.17 20499.89 3796.87 11599.56 7899.81 11
F-COLMAP97.09 10496.80 9997.97 12199.45 5294.95 19198.55 17098.62 13093.02 23496.17 18398.58 13994.01 9099.81 6993.95 20998.90 11899.14 141
TAMVS97.02 10596.79 10197.70 14298.06 19395.31 17498.52 17198.31 19293.95 18697.05 14798.61 13493.49 9598.52 25595.33 16597.81 16699.29 118
CDS-MVSNet96.99 10696.69 10797.90 12598.05 19495.98 13798.20 21098.33 18993.67 20896.95 14998.49 14793.54 9498.42 26795.24 17197.74 17099.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 10796.55 11398.21 10598.17 18596.07 13597.98 23598.21 20997.24 3997.13 14198.93 10286.88 23399.91 3295.00 17599.37 10098.66 184
114514_t96.93 10896.27 12398.92 5799.50 4197.63 6898.85 10898.90 4684.80 35397.77 11499.11 7292.84 10099.66 11694.85 17799.77 2899.47 92
MAR-MVS96.91 10996.40 11898.45 8698.69 13696.90 9598.66 15398.68 11392.40 25797.07 14597.96 20191.54 13199.75 9793.68 21798.92 11798.69 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 11096.49 11698.14 10999.33 5795.56 16297.38 28199.65 292.34 25897.61 13098.20 18289.29 17499.10 18896.97 10397.60 17599.77 21
Vis-MVSNet (Re-imp)96.87 11196.55 11397.83 12898.73 12995.46 16799.20 3998.30 19894.96 14996.60 16798.87 10890.05 15998.59 24793.67 21998.60 13499.46 96
PAPR96.84 11296.24 12598.65 6898.72 13396.92 9497.36 28598.57 14093.33 22196.67 16397.57 23894.30 8599.56 13391.05 28498.59 13599.47 92
HY-MVS93.96 896.82 11396.23 12698.57 7298.46 15397.00 9098.14 21998.21 20993.95 18696.72 16297.99 19891.58 12799.76 9594.51 19196.54 19698.95 162
UGNet96.78 11496.30 12298.19 10898.24 17395.89 15298.88 10298.93 3997.39 2796.81 15997.84 21282.60 29699.90 3596.53 12799.49 8698.79 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 11596.60 11197.12 17799.25 7695.35 17298.26 20599.26 1094.28 17297.94 10797.46 24492.74 10299.81 6996.88 11293.32 25696.20 319
test_vis1_n_192096.71 11696.84 9896.31 24799.11 9889.74 31499.05 6498.58 13898.08 499.87 199.37 2678.48 32299.93 1999.29 299.69 5199.27 120
mvs_anonymous96.70 11796.53 11597.18 17298.19 18193.78 23598.31 19798.19 21394.01 18294.47 21798.27 17692.08 11798.46 26297.39 9097.91 16299.31 113
1112_ss96.63 11896.00 13498.50 8098.56 14696.37 12398.18 21698.10 23492.92 23894.84 20598.43 15492.14 11499.58 12994.35 19596.51 19799.56 78
PMMVS96.60 11996.33 12097.41 16097.90 20393.93 23197.35 28698.41 17592.84 24197.76 11597.45 24691.10 14299.20 17196.26 13597.91 16299.11 144
DP-MVS96.59 12095.93 13798.57 7299.34 5596.19 13298.70 14598.39 17989.45 32694.52 21599.35 3291.85 12199.85 5192.89 24398.88 12099.68 54
PatchMatch-RL96.59 12096.03 13398.27 10099.31 6296.51 11597.91 24199.06 2493.72 20096.92 15398.06 19188.50 19999.65 11791.77 27199.00 11598.66 184
GeoE96.58 12296.07 13098.10 11498.35 16195.89 15299.34 1898.12 22893.12 23196.09 18498.87 10889.71 16598.97 20392.95 23998.08 15899.43 101
mvsmamba96.57 12396.32 12197.32 16696.60 28896.43 11999.54 797.98 25296.49 7495.20 19898.64 13290.82 14598.55 25197.97 4993.65 24696.98 237
XVG-OURS96.55 12496.41 11796.99 18498.75 12893.76 23697.50 27598.52 15195.67 11196.83 15699.30 4088.95 18999.53 14195.88 14896.26 20897.69 218
FIs96.51 12596.12 12897.67 14597.13 25997.54 7299.36 1599.22 1695.89 9994.03 24398.35 16491.98 11998.44 26596.40 13292.76 26497.01 235
XVG-OURS-SEG-HR96.51 12596.34 11997.02 18398.77 12793.76 23697.79 25598.50 15895.45 12096.94 15099.09 8087.87 21499.55 14096.76 12295.83 21797.74 215
PS-MVSNAJss96.43 12796.26 12496.92 19395.84 32395.08 18399.16 4598.50 15895.87 10293.84 25298.34 16894.51 7898.61 24496.88 11293.45 25397.06 232
test_fmvs196.42 12896.67 10995.66 27398.82 12488.53 33698.80 12198.20 21196.39 8199.64 1099.20 5580.35 31299.67 11499.04 599.57 7298.78 175
iter_conf_final96.42 12896.12 12897.34 16598.46 15396.55 11499.08 6098.06 24696.03 9495.63 19298.46 15287.72 21698.59 24797.84 6093.80 24196.87 253
FC-MVSNet-test96.42 12896.05 13197.53 15596.95 26897.27 7999.36 1599.23 1495.83 10393.93 24698.37 16292.00 11898.32 28496.02 14492.72 26597.00 236
ab-mvs96.42 12895.71 14898.55 7498.63 14296.75 10197.88 24698.74 9893.84 19196.54 17298.18 18485.34 26199.75 9795.93 14696.35 20199.15 139
FA-MVS(test-final)96.41 13295.94 13697.82 13098.21 17795.20 17797.80 25397.58 27793.21 22797.36 13597.70 22489.47 16999.56 13394.12 20497.99 15998.71 179
PVSNet91.96 1896.35 13396.15 12796.96 18899.17 8992.05 27696.08 33998.68 11393.69 20497.75 11797.80 21888.86 19099.69 11294.26 20099.01 11499.15 139
Test_1112_low_res96.34 13495.66 15398.36 9598.56 14695.94 14597.71 26098.07 24192.10 26794.79 20997.29 25591.75 12399.56 13394.17 20296.50 19899.58 76
Effi-MVS+-dtu96.29 13596.56 11295.51 27797.89 20490.22 30998.80 12198.10 23496.57 7396.45 17796.66 30390.81 14698.91 21595.72 15497.99 15997.40 223
QAPM96.29 13595.40 15798.96 5597.85 20597.60 7099.23 3198.93 3989.76 32193.11 27999.02 8689.11 18199.93 1991.99 26699.62 6499.34 107
Fast-Effi-MVS+96.28 13795.70 15098.03 11898.29 17295.97 14298.58 16398.25 20691.74 27595.29 19797.23 25991.03 14499.15 17792.90 24197.96 16198.97 159
nrg03096.28 13795.72 14597.96 12396.90 27398.15 5299.39 1298.31 19295.47 11994.42 22398.35 16492.09 11698.69 23797.50 8689.05 31097.04 233
131496.25 13995.73 14497.79 13297.13 25995.55 16498.19 21398.59 13393.47 21692.03 30797.82 21691.33 13699.49 14694.62 18698.44 14398.32 200
h-mvs3396.17 14095.62 15497.81 13199.03 10394.45 21398.64 15598.75 9697.48 2198.67 6398.72 12589.76 16399.86 5097.95 5081.59 35299.11 144
HQP_MVS96.14 14195.90 13896.85 19697.42 23994.60 20998.80 12198.56 14297.28 3495.34 19598.28 17387.09 22899.03 19696.07 13994.27 22496.92 242
iter_conf0596.13 14295.79 14197.15 17498.16 18695.99 13698.88 10297.98 25295.91 9895.58 19398.46 15285.53 25698.59 24797.88 5693.75 24296.86 256
tttt051796.07 14395.51 15697.78 13398.41 15794.84 19599.28 2494.33 36094.26 17497.64 12898.64 13284.05 28599.47 15295.34 16497.60 17599.03 153
MVSTER96.06 14495.72 14597.08 18098.23 17595.93 14898.73 13698.27 20194.86 15395.07 20098.09 18988.21 20398.54 25396.59 12493.46 25196.79 262
thisisatest053096.01 14595.36 16297.97 12198.38 15895.52 16598.88 10294.19 36294.04 17997.64 12898.31 17183.82 29299.46 15395.29 16897.70 17298.93 164
test_djsdf96.00 14695.69 15196.93 19095.72 32595.49 16699.47 998.40 17794.98 14794.58 21397.86 20989.16 17998.41 27596.91 10694.12 23296.88 251
RRT_MVS95.98 14795.78 14296.56 22296.48 29694.22 22599.57 697.92 25995.89 9993.95 24598.70 12689.27 17598.42 26797.23 9593.02 26097.04 233
EI-MVSNet95.96 14895.83 14096.36 24397.93 20193.70 24298.12 22298.27 20193.70 20395.07 20099.02 8692.23 11198.54 25394.68 18293.46 25196.84 258
ECVR-MVScopyleft95.95 14995.71 14896.65 20899.02 10490.86 29699.03 7091.80 37196.96 5598.10 9199.26 4581.31 30299.51 14596.90 10999.04 11199.59 72
BH-untuned95.95 14995.72 14596.65 20898.55 14892.26 27298.23 20697.79 26693.73 19994.62 21298.01 19688.97 18899.00 20293.04 23698.51 13998.68 181
test111195.94 15195.78 14296.41 24098.99 11090.12 31099.04 6792.45 37096.99 5498.03 9799.27 4481.40 30199.48 15096.87 11599.04 11199.63 66
MSDG95.93 15295.30 16997.83 12898.90 11695.36 17096.83 32698.37 18391.32 29094.43 22298.73 12490.27 15799.60 12790.05 29898.82 12598.52 191
BH-RMVSNet95.92 15395.32 16697.69 14398.32 17094.64 20398.19 21397.45 29494.56 16396.03 18698.61 13485.02 26599.12 18290.68 28999.06 11099.30 116
test_fmvs1_n95.90 15495.99 13595.63 27498.67 13888.32 34099.26 2798.22 20896.40 8099.67 799.26 4573.91 34999.70 10799.02 699.50 8498.87 167
Fast-Effi-MVS+-dtu95.87 15595.85 13995.91 26397.74 21391.74 28298.69 14798.15 22495.56 11594.92 20397.68 22988.98 18798.79 23193.19 23197.78 16897.20 230
LFMVS95.86 15694.98 18498.47 8498.87 11996.32 12698.84 11196.02 34193.40 21998.62 6999.20 5574.99 34499.63 12297.72 6797.20 18199.46 96
baseline195.84 15795.12 17798.01 11998.49 15295.98 13798.73 13697.03 31695.37 12696.22 18198.19 18389.96 16199.16 17494.60 18787.48 32698.90 166
OpenMVScopyleft93.04 1395.83 15895.00 18298.32 9797.18 25697.32 7799.21 3898.97 3289.96 31791.14 31599.05 8586.64 23699.92 2493.38 22599.47 8997.73 216
VDD-MVS95.82 15995.23 17197.61 15198.84 12393.98 23098.68 14897.40 29895.02 14697.95 10599.34 3674.37 34899.78 8998.64 1396.80 18799.08 150
UniMVSNet (Re)95.78 16095.19 17397.58 15296.99 26697.47 7498.79 12699.18 1895.60 11393.92 24797.04 27891.68 12498.48 25895.80 15287.66 32596.79 262
VPA-MVSNet95.75 16195.11 17897.69 14397.24 24897.27 7998.94 9099.23 1495.13 13895.51 19497.32 25385.73 25298.91 21597.33 9389.55 30296.89 250
bld_raw_dy_0_6495.74 16295.31 16897.03 18296.35 30295.76 15699.12 5297.37 30195.97 9694.70 21198.48 14885.80 25198.49 25796.55 12693.48 25096.84 258
HQP-MVS95.72 16395.40 15796.69 20697.20 25294.25 22398.05 22898.46 16596.43 7794.45 21897.73 22186.75 23498.96 20795.30 16694.18 22896.86 256
hse-mvs295.71 16495.30 16996.93 19098.50 15093.53 24798.36 18998.10 23497.48 2198.67 6397.99 19889.76 16399.02 19997.95 5080.91 35698.22 202
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 16296.84 27696.97 9198.74 13299.24 1295.16 13793.88 24997.72 22391.68 12498.31 28695.81 15087.25 33096.92 242
PatchmatchNetpermissive95.71 16495.52 15596.29 24997.58 22290.72 30096.84 32597.52 28794.06 17897.08 14396.96 28789.24 17798.90 21892.03 26598.37 14799.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 16795.33 16596.76 20196.16 31194.63 20498.43 18598.39 17996.64 6995.02 20298.78 11885.15 26499.05 19295.21 17294.20 22796.60 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 16795.38 16196.61 21597.61 22093.84 23498.91 9498.44 16995.25 13394.28 22998.47 15086.04 24999.12 18295.50 16293.95 23796.87 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 16995.69 15195.44 28197.54 22788.54 33596.97 31197.56 27993.50 21597.52 13396.93 29189.49 16799.16 17495.25 17096.42 20098.64 186
FE-MVS95.62 17094.90 18897.78 13398.37 16094.92 19297.17 30197.38 30090.95 30297.73 12097.70 22485.32 26399.63 12291.18 27998.33 15098.79 172
LPG-MVS_test95.62 17095.34 16396.47 23497.46 23393.54 24598.99 8098.54 14694.67 16094.36 22598.77 12085.39 25899.11 18495.71 15594.15 23096.76 265
CLD-MVS95.62 17095.34 16396.46 23797.52 23093.75 23897.27 29398.46 16595.53 11694.42 22398.00 19786.21 24498.97 20396.25 13794.37 22296.66 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 17394.89 18997.76 13698.15 18795.15 18096.77 32794.41 35892.95 23797.18 14097.43 24884.78 27099.45 15494.63 18497.73 17198.68 181
thres600view795.49 17494.77 19297.67 14598.98 11195.02 18498.85 10896.90 32495.38 12496.63 16596.90 29284.29 27899.59 12888.65 31996.33 20298.40 195
test_vis1_n95.47 17595.13 17596.49 23197.77 20990.41 30699.27 2698.11 23196.58 7199.66 899.18 6167.00 35999.62 12599.21 399.40 9799.44 99
SCA95.46 17695.13 17596.46 23797.67 21691.29 29197.33 28897.60 27694.68 15996.92 15397.10 26583.97 28798.89 21992.59 24998.32 15299.20 128
IterMVS-LS95.46 17695.21 17296.22 25198.12 18893.72 24198.32 19698.13 22793.71 20194.26 23097.31 25492.24 11098.10 30294.63 18490.12 29396.84 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 17895.03 18196.73 20295.42 33694.63 20499.14 4898.52 15195.74 10693.22 27398.36 16383.87 29098.65 24296.95 10594.04 23396.91 247
CVMVSNet95.43 17996.04 13293.57 32097.93 20183.62 35798.12 22298.59 13395.68 11096.56 16899.02 8687.51 22197.51 33493.56 22397.44 17799.60 70
anonymousdsp95.42 18094.91 18796.94 18995.10 33895.90 15199.14 4898.41 17593.75 19693.16 27597.46 24487.50 22398.41 27595.63 15994.03 23496.50 304
DU-MVS95.42 18094.76 19397.40 16296.53 29296.97 9198.66 15398.99 3195.43 12193.88 24997.69 22688.57 19598.31 28695.81 15087.25 33096.92 242
mvs_tets95.41 18295.00 18296.65 20895.58 32994.42 21599.00 7798.55 14495.73 10893.21 27498.38 16183.45 29498.63 24397.09 9994.00 23596.91 247
thres100view90095.38 18394.70 19697.41 16098.98 11194.92 19298.87 10596.90 32495.38 12496.61 16696.88 29384.29 27899.56 13388.11 32096.29 20497.76 213
thres40095.38 18394.62 19997.65 14998.94 11494.98 18898.68 14896.93 32295.33 12796.55 17096.53 30984.23 28199.56 13388.11 32096.29 20498.40 195
BH-w/o95.38 18395.08 17996.26 25098.34 16691.79 27997.70 26197.43 29692.87 24094.24 23297.22 26088.66 19398.84 22591.55 27597.70 17298.16 205
VDDNet95.36 18694.53 20397.86 12698.10 19095.13 18198.85 10897.75 26890.46 30898.36 8299.39 2073.27 35199.64 11997.98 4896.58 19498.81 171
TAPA-MVS93.98 795.35 18794.56 20297.74 13899.13 9694.83 19798.33 19298.64 12686.62 34196.29 18098.61 13494.00 9199.29 16280.00 35899.41 9599.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 18894.98 18496.43 23997.67 21693.48 24998.73 13698.44 16994.94 15292.53 29598.53 14384.50 27799.14 17995.48 16394.00 23596.66 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 18994.87 19096.71 20399.29 6893.24 26098.58 16398.11 23189.92 31893.57 26199.10 7486.37 24299.79 8690.78 28798.10 15797.09 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 19094.62 19997.43 15998.94 11494.98 18898.68 14896.93 32295.33 12796.55 17096.53 30984.23 28199.56 13388.11 32096.29 20497.76 213
Anonymous20240521195.28 19194.49 20597.67 14599.00 10793.75 23898.70 14597.04 31590.66 30496.49 17498.80 11678.13 32699.83 5796.21 13895.36 22099.44 99
thres20095.25 19294.57 20197.28 16798.81 12594.92 19298.20 21097.11 31195.24 13596.54 17296.22 32084.58 27599.53 14187.93 32496.50 19897.39 224
AllTest95.24 19394.65 19896.99 18499.25 7693.21 26198.59 16198.18 21691.36 28693.52 26398.77 12084.67 27399.72 10189.70 30597.87 16498.02 208
LCM-MVSNet-Re95.22 19495.32 16694.91 29598.18 18387.85 34698.75 12995.66 34795.11 14088.96 33396.85 29690.26 15897.65 32795.65 15898.44 14399.22 127
EPNet_dtu95.21 19594.95 18695.99 25896.17 30990.45 30598.16 21897.27 30696.77 6393.14 27898.33 16990.34 15598.42 26785.57 33798.81 12699.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 19694.45 21097.46 15696.75 28196.56 11298.86 10798.65 12593.30 22493.27 27298.27 17684.85 26998.87 22294.82 17991.26 28196.96 239
D2MVS95.18 19795.08 17995.48 27897.10 26192.07 27598.30 19999.13 2194.02 18192.90 28396.73 30089.48 16898.73 23594.48 19293.60 24995.65 332
WR-MVS95.15 19894.46 20897.22 16996.67 28696.45 11798.21 20898.81 7594.15 17593.16 27597.69 22687.51 22198.30 28895.29 16888.62 31696.90 249
TranMVSNet+NR-MVSNet95.14 19994.48 20697.11 17896.45 29896.36 12499.03 7099.03 2795.04 14593.58 26097.93 20388.27 20298.03 30994.13 20386.90 33596.95 241
baseline295.11 20094.52 20496.87 19596.65 28793.56 24498.27 20494.10 36493.45 21792.02 30897.43 24887.45 22599.19 17293.88 21297.41 17997.87 211
miper_enhance_ethall95.10 20194.75 19496.12 25597.53 22993.73 24096.61 33398.08 23992.20 26693.89 24896.65 30592.44 10598.30 28894.21 20191.16 28296.34 312
Anonymous2024052995.10 20194.22 21897.75 13799.01 10694.26 22298.87 10598.83 6985.79 34996.64 16498.97 9378.73 32099.85 5196.27 13494.89 22199.12 143
test-LLR95.10 20194.87 19095.80 26896.77 27889.70 31596.91 31695.21 35095.11 14094.83 20795.72 33187.71 21798.97 20393.06 23498.50 14098.72 177
WR-MVS_H95.05 20494.46 20896.81 19996.86 27595.82 15499.24 3099.24 1293.87 19092.53 29596.84 29790.37 15498.24 29493.24 22987.93 32296.38 311
miper_ehance_all_eth95.01 20594.69 19795.97 26097.70 21593.31 25697.02 30998.07 24192.23 26393.51 26596.96 28791.85 12198.15 29893.68 21791.16 28296.44 309
ADS-MVSNet95.00 20694.45 21096.63 21298.00 19591.91 27896.04 34097.74 26990.15 31496.47 17596.64 30687.89 21298.96 20790.08 29697.06 18299.02 154
VPNet94.99 20794.19 22097.40 16297.16 25796.57 11198.71 14198.97 3295.67 11194.84 20598.24 18080.36 31198.67 24196.46 12987.32 32996.96 239
EPMVS94.99 20794.48 20696.52 22997.22 25091.75 28197.23 29491.66 37294.11 17697.28 13696.81 29885.70 25398.84 22593.04 23697.28 18098.97 159
NR-MVSNet94.98 20994.16 22297.44 15896.53 29297.22 8598.74 13298.95 3594.96 14989.25 33297.69 22689.32 17398.18 29694.59 18987.40 32896.92 242
FMVSNet394.97 21094.26 21797.11 17898.18 18396.62 10598.56 16998.26 20593.67 20894.09 23997.10 26584.25 28098.01 31092.08 26192.14 26896.70 274
CostFormer94.95 21194.73 19595.60 27697.28 24689.06 32697.53 27396.89 32689.66 32396.82 15896.72 30186.05 24798.95 21295.53 16196.13 21398.79 172
PAPM94.95 21194.00 23297.78 13397.04 26395.65 15996.03 34298.25 20691.23 29594.19 23597.80 21891.27 13898.86 22482.61 35297.61 17498.84 170
CP-MVSNet94.94 21394.30 21696.83 19796.72 28395.56 16299.11 5498.95 3593.89 18892.42 30097.90 20587.19 22798.12 30194.32 19788.21 31996.82 261
TR-MVS94.94 21394.20 21997.17 17397.75 21094.14 22797.59 27097.02 31892.28 26295.75 19197.64 23283.88 28998.96 20789.77 30296.15 21298.40 195
RPSCF94.87 21595.40 15793.26 32698.89 11782.06 36298.33 19298.06 24690.30 31396.56 16899.26 4587.09 22899.49 14693.82 21496.32 20398.24 201
GA-MVS94.81 21694.03 22897.14 17597.15 25893.86 23396.76 32897.58 27794.00 18394.76 21097.04 27880.91 30698.48 25891.79 27096.25 20999.09 146
c3_l94.79 21794.43 21295.89 26597.75 21093.12 26497.16 30398.03 24992.23 26393.46 26897.05 27791.39 13398.01 31093.58 22289.21 30896.53 296
V4294.78 21894.14 22496.70 20596.33 30495.22 17698.97 8398.09 23892.32 26094.31 22897.06 27588.39 20098.55 25192.90 24188.87 31496.34 312
CR-MVSNet94.76 21994.15 22396.59 21897.00 26493.43 25094.96 35297.56 27992.46 25196.93 15196.24 31688.15 20597.88 32287.38 32696.65 19298.46 193
v2v48294.69 22094.03 22896.65 20896.17 30994.79 20098.67 15198.08 23992.72 24494.00 24497.16 26387.69 22098.45 26392.91 24088.87 31496.72 270
pmmvs494.69 22093.99 23496.81 19995.74 32495.94 14597.40 27997.67 27190.42 31093.37 26997.59 23689.08 18298.20 29592.97 23891.67 27596.30 316
cl2294.68 22294.19 22096.13 25498.11 18993.60 24396.94 31398.31 19292.43 25593.32 27196.87 29586.51 23798.28 29294.10 20691.16 28296.51 302
eth_miper_zixun_eth94.68 22294.41 21395.47 27997.64 21891.71 28396.73 33098.07 24192.71 24593.64 25897.21 26190.54 15298.17 29793.38 22589.76 29796.54 294
PCF-MVS93.45 1194.68 22293.43 26898.42 9298.62 14396.77 10095.48 35098.20 21184.63 35493.34 27098.32 17088.55 19799.81 6984.80 34498.96 11698.68 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 22593.54 26498.08 11596.88 27496.56 11298.19 21398.50 15878.05 36392.69 29098.02 19491.07 14399.63 12290.09 29598.36 14998.04 207
PS-CasMVS94.67 22593.99 23496.71 20396.68 28595.26 17599.13 5199.03 2793.68 20692.33 30197.95 20285.35 26098.10 30293.59 22188.16 32196.79 262
cascas94.63 22793.86 24396.93 19096.91 27294.27 22196.00 34398.51 15385.55 35094.54 21496.23 31884.20 28398.87 22295.80 15296.98 18597.66 219
tpmvs94.60 22894.36 21595.33 28497.46 23388.60 33496.88 32297.68 27091.29 29293.80 25496.42 31388.58 19499.24 16691.06 28296.04 21598.17 204
LTVRE_ROB92.95 1594.60 22893.90 24096.68 20797.41 24294.42 21598.52 17198.59 13391.69 27891.21 31498.35 16484.87 26899.04 19591.06 28293.44 25496.60 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 23093.92 23796.60 21796.21 30694.78 20198.59 16198.14 22691.86 27494.21 23497.02 28087.97 21098.41 27591.72 27289.57 30096.61 284
ADS-MVSNet294.58 23194.40 21495.11 29098.00 19588.74 33296.04 34097.30 30390.15 31496.47 17596.64 30687.89 21297.56 33290.08 29697.06 18299.02 154
ACMH92.88 1694.55 23293.95 23696.34 24597.63 21993.26 25898.81 12098.49 16393.43 21889.74 32798.53 14381.91 29899.08 19093.69 21693.30 25796.70 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 23393.85 24496.63 21297.98 19993.06 26698.77 12897.84 26493.67 20893.80 25498.04 19376.88 33798.96 20794.79 18192.86 26397.86 212
XVG-ACMP-BASELINE94.54 23394.14 22495.75 27196.55 29191.65 28498.11 22498.44 16994.96 14994.22 23397.90 20579.18 31999.11 18494.05 20893.85 23996.48 306
AUN-MVS94.53 23593.73 25496.92 19398.50 15093.52 24898.34 19198.10 23493.83 19395.94 19097.98 20085.59 25599.03 19694.35 19580.94 35598.22 202
DIV-MVS_self_test94.52 23694.03 22895.99 25897.57 22693.38 25497.05 30797.94 25791.74 27592.81 28597.10 26589.12 18098.07 30692.60 24790.30 29096.53 296
cl____94.51 23794.01 23196.02 25797.58 22293.40 25397.05 30797.96 25691.73 27792.76 28797.08 27189.06 18398.13 30092.61 24690.29 29196.52 299
GBi-Net94.49 23893.80 24796.56 22298.21 17795.00 18598.82 11498.18 21692.46 25194.09 23997.07 27281.16 30397.95 31492.08 26192.14 26896.72 270
test194.49 23893.80 24796.56 22298.21 17795.00 18598.82 11498.18 21692.46 25194.09 23997.07 27281.16 30397.95 31492.08 26192.14 26896.72 270
v894.47 24093.77 25096.57 22196.36 30194.83 19799.05 6498.19 21391.92 27193.16 27596.97 28588.82 19298.48 25891.69 27387.79 32396.39 310
FMVSNet294.47 24093.61 26097.04 18198.21 17796.43 11998.79 12698.27 20192.46 25193.50 26697.09 26981.16 30398.00 31291.09 28091.93 27196.70 274
test250694.44 24293.91 23996.04 25699.02 10488.99 32999.06 6279.47 38396.96 5598.36 8299.26 4577.21 33499.52 14496.78 12199.04 11199.59 72
Patchmatch-test94.42 24393.68 25896.63 21297.60 22191.76 28094.83 35697.49 29189.45 32694.14 23797.10 26588.99 18498.83 22785.37 34098.13 15699.29 118
PEN-MVS94.42 24393.73 25496.49 23196.28 30594.84 19599.17 4499.00 2993.51 21492.23 30397.83 21586.10 24697.90 31892.55 25286.92 33496.74 267
v14419294.39 24593.70 25696.48 23396.06 31494.35 21998.58 16398.16 22391.45 28394.33 22797.02 28087.50 22398.45 26391.08 28189.11 30996.63 282
Baseline_NR-MVSNet94.35 24693.81 24695.96 26196.20 30794.05 22998.61 16096.67 33591.44 28493.85 25197.60 23588.57 19598.14 29994.39 19386.93 33395.68 331
miper_lstm_enhance94.33 24794.07 22795.11 29097.75 21090.97 29597.22 29598.03 24991.67 27992.76 28796.97 28590.03 16097.78 32592.51 25489.64 29996.56 291
v119294.32 24893.58 26196.53 22896.10 31294.45 21398.50 17698.17 22191.54 28194.19 23597.06 27586.95 23298.43 26690.14 29489.57 30096.70 274
ACMH+92.99 1494.30 24993.77 25095.88 26697.81 20792.04 27798.71 14198.37 18393.99 18490.60 32198.47 15080.86 30899.05 19292.75 24592.40 26796.55 293
v14894.29 25093.76 25295.91 26396.10 31292.93 26798.58 16397.97 25492.59 24993.47 26796.95 28988.53 19898.32 28492.56 25187.06 33296.49 305
v1094.29 25093.55 26396.51 23096.39 30094.80 19998.99 8098.19 21391.35 28893.02 28196.99 28388.09 20798.41 27590.50 29188.41 31896.33 314
MVP-Stereo94.28 25293.92 23795.35 28394.95 34092.60 27097.97 23697.65 27291.61 28090.68 32097.09 26986.32 24398.42 26789.70 30599.34 10195.02 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 25393.33 27096.97 18797.19 25593.38 25498.74 13298.57 14091.21 29793.81 25398.58 13972.85 35298.77 23395.05 17493.93 23898.77 176
OurMVSNet-221017-094.21 25494.00 23294.85 29895.60 32889.22 32498.89 9997.43 29695.29 13092.18 30498.52 14682.86 29598.59 24793.46 22491.76 27396.74 267
v192192094.20 25593.47 26796.40 24295.98 31794.08 22898.52 17198.15 22491.33 28994.25 23197.20 26286.41 24198.42 26790.04 29989.39 30696.69 279
v7n94.19 25693.43 26896.47 23495.90 32094.38 21899.26 2798.34 18891.99 26992.76 28797.13 26488.31 20198.52 25589.48 31087.70 32496.52 299
tpm294.19 25693.76 25295.46 28097.23 24989.04 32797.31 29096.85 33087.08 34096.21 18296.79 29983.75 29398.74 23492.43 25796.23 21098.59 188
TESTMET0.1,194.18 25893.69 25795.63 27496.92 27089.12 32596.91 31694.78 35593.17 22994.88 20496.45 31278.52 32198.92 21493.09 23398.50 14098.85 168
dp94.15 25993.90 24094.90 29697.31 24586.82 35196.97 31197.19 31091.22 29696.02 18796.61 30885.51 25799.02 19990.00 30094.30 22398.85 168
ET-MVSNet_ETH3D94.13 26092.98 27697.58 15298.22 17696.20 13097.31 29095.37 34994.53 16479.56 36297.63 23486.51 23797.53 33396.91 10690.74 28699.02 154
tpm94.13 26093.80 24795.12 28996.50 29487.91 34597.44 27695.89 34692.62 24796.37 17996.30 31584.13 28498.30 28893.24 22991.66 27699.14 141
IterMVS-SCA-FT94.11 26293.87 24294.85 29897.98 19990.56 30497.18 29998.11 23193.75 19692.58 29397.48 24383.97 28797.41 33692.48 25691.30 27996.58 287
Anonymous2023121194.10 26393.26 27396.61 21599.11 9894.28 22099.01 7598.88 5186.43 34392.81 28597.57 23881.66 30098.68 24094.83 17889.02 31296.88 251
IterMVS94.09 26493.85 24494.80 30197.99 19790.35 30797.18 29998.12 22893.68 20692.46 29997.34 25184.05 28597.41 33692.51 25491.33 27896.62 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 26593.51 26595.80 26896.77 27889.70 31596.91 31695.21 35092.89 23994.83 20795.72 33177.69 32998.97 20393.06 23498.50 14098.72 177
test0.0.03 194.08 26593.51 26595.80 26895.53 33192.89 26897.38 28195.97 34395.11 14092.51 29796.66 30387.71 21796.94 34387.03 32893.67 24497.57 220
v124094.06 26793.29 27296.34 24596.03 31693.90 23298.44 18398.17 22191.18 29894.13 23897.01 28286.05 24798.42 26789.13 31589.50 30496.70 274
X-MVStestdata94.06 26792.30 28899.34 2399.70 2298.35 4199.29 2298.88 5197.40 2598.46 7543.50 37695.90 3999.89 3797.85 5899.74 4299.78 15
DTE-MVSNet93.98 26993.26 27396.14 25396.06 31494.39 21799.20 3998.86 6493.06 23291.78 30997.81 21785.87 25097.58 33190.53 29086.17 33996.46 308
pm-mvs193.94 27093.06 27596.59 21896.49 29595.16 17898.95 8898.03 24992.32 26091.08 31697.84 21284.54 27698.41 27592.16 25986.13 34196.19 320
MS-PatchMatch93.84 27193.63 25994.46 31296.18 30889.45 32097.76 25698.27 20192.23 26392.13 30597.49 24279.50 31698.69 23789.75 30399.38 9995.25 336
tfpnnormal93.66 27292.70 28296.55 22796.94 26995.94 14598.97 8399.19 1791.04 30091.38 31397.34 25184.94 26798.61 24485.45 33989.02 31295.11 340
EU-MVSNet93.66 27294.14 22492.25 33595.96 31983.38 35898.52 17198.12 22894.69 15892.61 29298.13 18787.36 22696.39 35491.82 26990.00 29596.98 237
our_test_393.65 27493.30 27194.69 30395.45 33489.68 31796.91 31697.65 27291.97 27091.66 31196.88 29389.67 16697.93 31788.02 32391.49 27796.48 306
pmmvs593.65 27492.97 27795.68 27295.49 33292.37 27198.20 21097.28 30589.66 32392.58 29397.26 25682.14 29798.09 30493.18 23290.95 28596.58 287
test_fmvs293.43 27693.58 26192.95 33096.97 26783.91 35699.19 4197.24 30895.74 10695.20 19898.27 17669.65 35498.72 23696.26 13593.73 24396.24 317
tpm cat193.36 27792.80 27995.07 29297.58 22287.97 34496.76 32897.86 26382.17 35993.53 26296.04 32486.13 24599.13 18089.24 31395.87 21698.10 206
JIA-IIPM93.35 27892.49 28595.92 26296.48 29690.65 30295.01 35196.96 32085.93 34796.08 18587.33 36687.70 21998.78 23291.35 27795.58 21898.34 198
SixPastTwentyTwo93.34 27992.86 27894.75 30295.67 32689.41 32298.75 12996.67 33593.89 18890.15 32598.25 17980.87 30798.27 29390.90 28590.64 28796.57 289
USDC93.33 28092.71 28195.21 28696.83 27790.83 29896.91 31697.50 28993.84 19190.72 31998.14 18677.69 32998.82 22889.51 30993.21 25995.97 325
IB-MVS91.98 1793.27 28191.97 29297.19 17197.47 23293.41 25297.09 30695.99 34293.32 22292.47 29895.73 32978.06 32799.53 14194.59 18982.98 34798.62 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 28292.21 28996.41 24097.73 21493.13 26395.65 34797.03 31691.27 29494.04 24296.06 32375.33 34297.19 33986.56 33096.23 21098.92 165
ppachtmachnet_test93.22 28392.63 28394.97 29495.45 33490.84 29796.88 32297.88 26290.60 30592.08 30697.26 25688.08 20897.86 32385.12 34190.33 28996.22 318
Patchmtry93.22 28392.35 28795.84 26796.77 27893.09 26594.66 35997.56 27987.37 33992.90 28396.24 31688.15 20597.90 31887.37 32790.10 29496.53 296
FMVSNet193.19 28592.07 29096.56 22297.54 22795.00 18598.82 11498.18 21690.38 31192.27 30297.07 27273.68 35097.95 31489.36 31291.30 27996.72 270
LF4IMVS93.14 28692.79 28094.20 31595.88 32188.67 33397.66 26497.07 31393.81 19491.71 31097.65 23077.96 32898.81 22991.47 27691.92 27295.12 339
testgi93.06 28792.45 28694.88 29796.43 29989.90 31198.75 12997.54 28595.60 11391.63 31297.91 20474.46 34797.02 34186.10 33393.67 24497.72 217
PatchT93.06 28791.97 29296.35 24496.69 28492.67 26994.48 36097.08 31286.62 34197.08 14392.23 36087.94 21197.90 31878.89 36296.69 19098.49 192
MVS_030492.81 28992.01 29195.23 28597.46 23391.33 28998.17 21798.81 7591.13 29993.80 25495.68 33466.08 36198.06 30790.79 28696.13 21396.32 315
RPMNet92.81 28991.34 29797.24 16897.00 26493.43 25094.96 35298.80 8382.27 35896.93 15192.12 36186.98 23199.82 6476.32 36696.65 19298.46 193
TransMVSNet (Re)92.67 29191.51 29696.15 25296.58 29094.65 20298.90 9596.73 33190.86 30389.46 33197.86 20985.62 25498.09 30486.45 33181.12 35395.71 330
K. test v392.55 29291.91 29494.48 31095.64 32789.24 32399.07 6194.88 35494.04 17986.78 34697.59 23677.64 33297.64 32892.08 26189.43 30596.57 289
DSMNet-mixed92.52 29392.58 28492.33 33394.15 34882.65 36098.30 19994.26 36189.08 33192.65 29195.73 32985.01 26695.76 35786.24 33297.76 16998.59 188
TinyColmap92.31 29491.53 29594.65 30596.92 27089.75 31396.92 31496.68 33490.45 30989.62 32897.85 21176.06 34098.81 22986.74 32992.51 26695.41 334
gg-mvs-nofinetune92.21 29590.58 30397.13 17696.75 28195.09 18295.85 34489.40 37685.43 35194.50 21681.98 36980.80 30998.40 28192.16 25998.33 15097.88 210
FMVSNet591.81 29690.92 29994.49 30997.21 25192.09 27498.00 23497.55 28489.31 32990.86 31895.61 33574.48 34695.32 36185.57 33789.70 29896.07 323
pmmvs691.77 29790.63 30295.17 28894.69 34691.24 29298.67 15197.92 25986.14 34589.62 32897.56 24075.79 34198.34 28290.75 28884.56 34395.94 326
Anonymous2023120691.66 29891.10 29893.33 32494.02 35287.35 34898.58 16397.26 30790.48 30790.16 32496.31 31483.83 29196.53 35279.36 36089.90 29696.12 321
Patchmatch-RL test91.49 29990.85 30093.41 32291.37 36184.40 35492.81 36495.93 34591.87 27387.25 34394.87 34188.99 18496.53 35292.54 25382.00 34999.30 116
test_040291.32 30090.27 30694.48 31096.60 28891.12 29398.50 17697.22 30986.10 34688.30 33996.98 28477.65 33197.99 31378.13 36492.94 26294.34 347
test_vis1_rt91.29 30190.65 30193.19 32897.45 23786.25 35298.57 16890.90 37493.30 22486.94 34593.59 35162.07 36499.11 18497.48 8795.58 21894.22 350
PVSNet_088.72 1991.28 30290.03 30895.00 29397.99 19787.29 34994.84 35598.50 15892.06 26889.86 32695.19 33779.81 31599.39 15692.27 25869.79 36998.33 199
Anonymous2024052191.18 30390.44 30493.42 32193.70 35388.47 33798.94 9097.56 27988.46 33489.56 33095.08 34077.15 33696.97 34283.92 34789.55 30294.82 345
EG-PatchMatch MVS91.13 30490.12 30794.17 31794.73 34589.00 32898.13 22197.81 26589.22 33085.32 35596.46 31167.71 35798.42 26787.89 32593.82 24095.08 341
TDRefinement91.06 30589.68 31095.21 28685.35 37491.49 28798.51 17597.07 31391.47 28288.83 33797.84 21277.31 33399.09 18992.79 24477.98 36295.04 342
UnsupCasMVSNet_eth90.99 30689.92 30994.19 31694.08 34989.83 31297.13 30598.67 11893.69 20485.83 35296.19 32175.15 34396.74 34689.14 31479.41 35896.00 324
test20.0390.89 30790.38 30592.43 33293.48 35488.14 34398.33 19297.56 27993.40 21987.96 34096.71 30280.69 31094.13 36679.15 36186.17 33995.01 344
MDA-MVSNet_test_wron90.71 30889.38 31394.68 30494.83 34290.78 29997.19 29897.46 29287.60 33772.41 36995.72 33186.51 23796.71 34985.92 33586.80 33696.56 291
YYNet190.70 30989.39 31294.62 30694.79 34490.65 30297.20 29797.46 29287.54 33872.54 36895.74 32786.51 23796.66 35086.00 33486.76 33796.54 294
KD-MVS_self_test90.38 31089.38 31393.40 32392.85 35788.94 33097.95 23797.94 25790.35 31290.25 32393.96 34879.82 31495.94 35684.62 34676.69 36495.33 335
pmmvs-eth3d90.36 31189.05 31694.32 31491.10 36392.12 27397.63 26996.95 32188.86 33284.91 35693.13 35578.32 32396.74 34688.70 31881.81 35194.09 353
CL-MVSNet_self_test90.11 31289.14 31593.02 32991.86 36088.23 34296.51 33698.07 24190.49 30690.49 32294.41 34384.75 27195.34 36080.79 35674.95 36695.50 333
new_pmnet90.06 31389.00 31793.22 32794.18 34788.32 34096.42 33896.89 32686.19 34485.67 35393.62 35077.18 33597.10 34081.61 35489.29 30794.23 349
MDA-MVSNet-bldmvs89.97 31488.35 31994.83 30095.21 33791.34 28897.64 26697.51 28888.36 33571.17 37096.13 32279.22 31896.63 35183.65 34886.27 33896.52 299
CMPMVSbinary66.06 2189.70 31589.67 31189.78 34093.19 35576.56 36597.00 31098.35 18680.97 36081.57 36097.75 22074.75 34598.61 24489.85 30193.63 24794.17 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 31688.28 32093.82 31892.81 35891.08 29498.01 23297.45 29487.95 33687.90 34195.87 32667.63 35894.56 36578.73 36388.18 32095.83 328
KD-MVS_2432*160089.61 31787.96 32394.54 30794.06 35091.59 28595.59 34897.63 27489.87 31988.95 33494.38 34578.28 32496.82 34484.83 34268.05 37095.21 337
miper_refine_blended89.61 31787.96 32394.54 30794.06 35091.59 28595.59 34897.63 27489.87 31988.95 33494.38 34578.28 32496.82 34484.83 34268.05 37095.21 337
MVS-HIRNet89.46 31988.40 31892.64 33197.58 22282.15 36194.16 36393.05 36975.73 36590.90 31782.52 36879.42 31798.33 28383.53 34998.68 12897.43 221
OpenMVS_ROBcopyleft86.42 2089.00 32087.43 32793.69 31993.08 35689.42 32197.91 24196.89 32678.58 36285.86 35194.69 34269.48 35598.29 29177.13 36593.29 25893.36 359
mvsany_test388.80 32188.04 32191.09 33989.78 36681.57 36397.83 25295.49 34893.81 19487.53 34293.95 34956.14 36797.43 33594.68 18283.13 34694.26 348
new-patchmatchnet88.50 32287.45 32691.67 33790.31 36585.89 35397.16 30397.33 30289.47 32583.63 35892.77 35776.38 33895.06 36382.70 35177.29 36394.06 355
APD_test188.22 32388.01 32288.86 34295.98 31774.66 37197.21 29696.44 33983.96 35686.66 34897.90 20560.95 36597.84 32482.73 35090.23 29294.09 353
PM-MVS87.77 32486.55 32991.40 33891.03 36483.36 35996.92 31495.18 35291.28 29386.48 35093.42 35253.27 36896.74 34689.43 31181.97 35094.11 352
test_fmvs387.17 32587.06 32887.50 34491.21 36275.66 36799.05 6496.61 33792.79 24388.85 33692.78 35643.72 37193.49 36793.95 20984.56 34393.34 360
UnsupCasMVSNet_bld87.17 32585.12 33193.31 32591.94 35988.77 33194.92 35498.30 19884.30 35582.30 35990.04 36363.96 36397.25 33885.85 33674.47 36893.93 357
N_pmnet87.12 32787.77 32585.17 34895.46 33361.92 37897.37 28370.66 38485.83 34888.73 33896.04 32485.33 26297.76 32680.02 35790.48 28895.84 327
pmmvs386.67 32884.86 33292.11 33688.16 36887.19 35096.63 33294.75 35679.88 36187.22 34492.75 35866.56 36095.20 36281.24 35576.56 36593.96 356
test_f86.07 32985.39 33088.10 34389.28 36775.57 36897.73 25996.33 34089.41 32885.35 35491.56 36243.31 37395.53 35891.32 27884.23 34593.21 361
test_vis3_rt79.22 33077.40 33684.67 34986.44 37274.85 37097.66 26481.43 38184.98 35267.12 37281.91 37028.09 38197.60 32988.96 31680.04 35781.55 370
test_method79.03 33178.17 33381.63 35386.06 37354.40 38382.75 37296.89 32639.54 37680.98 36195.57 33658.37 36694.73 36484.74 34578.61 35995.75 329
testf179.02 33277.70 33482.99 35188.10 36966.90 37594.67 35793.11 36671.08 36774.02 36593.41 35334.15 37793.25 36872.25 36978.50 36088.82 365
APD_test279.02 33277.70 33482.99 35188.10 36966.90 37594.67 35793.11 36671.08 36774.02 36593.41 35334.15 37793.25 36872.25 36978.50 36088.82 365
LCM-MVSNet78.70 33476.24 33986.08 34677.26 38071.99 37394.34 36196.72 33261.62 37176.53 36389.33 36433.91 37992.78 37181.85 35374.60 36793.46 358
Gipumacopyleft78.40 33576.75 33883.38 35095.54 33080.43 36479.42 37397.40 29864.67 37073.46 36780.82 37145.65 37093.14 37066.32 37287.43 32776.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 33675.44 34085.46 34782.54 37574.95 36994.23 36293.08 36872.80 36674.68 36487.38 36536.36 37691.56 37273.95 36763.94 37289.87 364
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34595.94 34465.96 36967.93 37194.40 34437.73 37588.88 37468.83 37188.46 31787.29 367
EGC-MVSNET75.22 33869.54 34192.28 33494.81 34389.58 31897.64 26696.50 3381.82 3815.57 38295.74 32768.21 35696.26 35573.80 36891.71 27490.99 363
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37490.91 36890.09 37582.62 35749.93 37778.39 37229.36 38081.75 37562.49 37338.52 37686.95 369
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38038.80 37762.21 37396.23 31864.70 36276.91 37988.91 31730.49 37787.19 368
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36554.45 37244.32 37883.57 36713.22 38289.15 37358.68 37481.00 35478.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37852.69 37360.22 37477.28 37341.06 37480.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 37951.93 37559.09 37575.13 37443.32 37279.09 37842.03 37739.47 37561.69 374
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1330.00 3820.00 38398.61 13490.60 1510.00 3830.00 3810.00 3810.00 379
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3349.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3356.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1540.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 780.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2499.69 198.95 3597.46 2399.39 22
MSC_two_6792asdad99.62 699.17 8999.08 1198.63 12899.94 498.53 1899.80 1999.86 2
PC_three_145295.08 14499.60 1299.16 6597.86 298.47 26197.52 8599.72 4799.74 30
No_MVS99.62 699.17 8999.08 1198.63 12899.94 498.53 1899.80 1999.86 2
test_one_060199.66 2699.25 298.86 6497.55 1899.20 3099.47 1297.57 6
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.46 4998.70 2398.79 8893.21 22798.67 6398.97 9395.70 4399.83 5796.07 13999.58 71
RE-MVS-def98.34 2899.49 4597.86 6199.11 5498.80 8396.49 7499.17 3399.35 3295.29 5997.72 6799.65 5799.71 42
IU-MVS99.71 1999.23 798.64 12695.28 13199.63 1198.35 3599.81 1299.83 7
OPU-MVS99.37 2099.24 8299.05 1499.02 7399.16 6597.81 399.37 15797.24 9499.73 4499.70 46
test_241102_TWO98.87 5897.65 1299.53 1699.48 1097.34 1199.94 498.43 3099.80 1999.83 7
test_241102_ONE99.71 1999.24 598.87 5897.62 1499.73 499.39 2097.53 799.74 99
9.1498.06 4899.47 4798.71 14198.82 7094.36 17199.16 3599.29 4196.05 3199.81 6997.00 10199.71 49
save fliter99.46 4998.38 3598.21 20898.71 10697.95 5
test_0728_THIRD97.32 3199.45 1899.46 1597.88 199.94 498.47 2699.86 199.85 4
test_0728_SECOND99.71 199.72 1299.35 198.97 8398.88 5199.94 498.47 2699.81 1299.84 6
test072699.72 1299.25 299.06 6298.88 5197.62 1499.56 1399.50 797.42 9
GSMVS99.20 128
test_part299.63 2999.18 1099.27 27
sam_mvs189.45 17099.20 128
sam_mvs88.99 184
ambc89.49 34186.66 37175.78 36692.66 36596.72 33286.55 34992.50 35946.01 36997.90 31890.32 29282.09 34894.80 346
MTGPAbinary98.74 98
test_post196.68 33130.43 38087.85 21598.69 23792.59 249
test_post31.83 37988.83 19198.91 215
patchmatchnet-post95.10 33989.42 17198.89 219
GG-mvs-BLEND96.59 21896.34 30394.98 18896.51 33688.58 37793.10 28094.34 34780.34 31398.05 30889.53 30896.99 18496.74 267
MTMP98.89 9994.14 363
gm-plane-assit95.88 32187.47 34789.74 32296.94 29099.19 17293.32 228
test9_res96.39 13399.57 7299.69 49
TEST999.31 6298.50 2997.92 23998.73 10192.63 24697.74 11898.68 12896.20 2699.80 76
test_899.29 6898.44 3197.89 24598.72 10392.98 23597.70 12298.66 13196.20 2699.80 76
agg_prior295.87 14999.57 7299.68 54
agg_prior99.30 6698.38 3598.72 10397.57 13299.81 69
TestCases96.99 18499.25 7693.21 26198.18 21691.36 28693.52 26398.77 12084.67 27399.72 10189.70 30597.87 16498.02 208
test_prior498.01 5897.86 248
test_prior297.80 25396.12 9197.89 11298.69 12795.96 3596.89 11099.60 66
test_prior99.19 3899.31 6298.22 4798.84 6899.70 10799.65 62
旧先验297.57 27291.30 29198.67 6399.80 7695.70 157
新几何297.64 266
新几何199.16 4399.34 5598.01 5898.69 11090.06 31698.13 8998.95 10094.60 7699.89 3791.97 26799.47 8999.59 72
旧先验199.29 6897.48 7398.70 10999.09 8095.56 4699.47 8999.61 68
无先验97.58 27198.72 10391.38 28599.87 4693.36 22799.60 70
原ACMM297.67 263
原ACMM198.65 6899.32 6096.62 10598.67 11893.27 22697.81 11398.97 9395.18 6599.83 5793.84 21399.46 9299.50 84
test22299.23 8397.17 8797.40 27998.66 12188.68 33398.05 9498.96 9894.14 8899.53 8299.61 68
testdata299.89 3791.65 274
segment_acmp96.85 14
testdata98.26 10299.20 8795.36 17098.68 11391.89 27298.60 7199.10 7494.44 8399.82 6494.27 19999.44 9399.58 76
testdata197.32 28996.34 83
test1299.18 4099.16 9398.19 4898.53 14898.07 9395.13 6799.72 10199.56 7899.63 66
plane_prior797.42 23994.63 204
plane_prior697.35 24494.61 20787.09 228
plane_prior598.56 14299.03 19696.07 13994.27 22496.92 242
plane_prior498.28 173
plane_prior394.61 20797.02 5295.34 195
plane_prior298.80 12197.28 34
plane_prior197.37 243
plane_prior94.60 20998.44 18396.74 6594.22 226
n20.00 388
nn0.00 388
door-mid94.37 359
lessismore_v094.45 31394.93 34188.44 33891.03 37386.77 34797.64 23276.23 33998.42 26790.31 29385.64 34296.51 302
LGP-MVS_train96.47 23497.46 23393.54 24598.54 14694.67 16094.36 22598.77 12085.39 25899.11 18495.71 15594.15 23096.76 265
test1198.66 121
door94.64 357
HQP5-MVS94.25 223
HQP-NCC97.20 25298.05 22896.43 7794.45 218
ACMP_Plane97.20 25298.05 22896.43 7794.45 218
BP-MVS95.30 166
HQP4-MVS94.45 21898.96 20796.87 253
HQP3-MVS98.46 16594.18 228
HQP2-MVS86.75 234
NP-MVS97.28 24694.51 21297.73 221
MDTV_nov1_ep13_2view84.26 35596.89 32190.97 30197.90 11189.89 16293.91 21199.18 137
MDTV_nov1_ep1395.40 15797.48 23188.34 33996.85 32497.29 30493.74 19897.48 13497.26 25689.18 17899.05 19291.92 26897.43 178
ACMMP++_ref92.97 261
ACMMP++93.61 248
Test By Simon94.64 75
ITE_SJBPF95.44 28197.42 23991.32 29097.50 28995.09 14393.59 25998.35 16481.70 29998.88 22189.71 30493.39 25596.12 321
DeepMVS_CXcopyleft86.78 34597.09 26272.30 37295.17 35375.92 36484.34 35795.19 33770.58 35395.35 35979.98 35989.04 31192.68 362