This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13498.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2199.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12598.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2599.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 1098.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2299.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 999.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30296.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 11098.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14797.22 18595.35 898.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 17098.85 798.94 193.33 1799.83 2296.72 2099.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9897.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4999.51 2999.40 53
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11798.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5499.17 7299.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9498.19 4492.82 9797.93 2098.74 1191.60 5399.86 896.26 3299.52 2599.67 8
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5799.40 4599.62 13
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14298.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2699.39 4799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16798.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1699.29 5799.56 22
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1198.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6299.59 1599.54 29
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16797.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1899.29 5799.55 26
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12798.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8298.24 3491.57 13297.90 2198.37 3692.61 2999.66 5295.59 6799.51 2999.43 49
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 14098.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1198.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6999.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1198.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6299.59 1599.62 13
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10697.18 3898.29 5092.08 3999.83 2295.12 7599.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8796.45 6898.30 4991.90 4599.85 1495.61 6499.68 499.54 29
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3699.27 6199.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15598.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1598.18 4692.64 10596.39 7098.18 5891.61 5299.88 495.59 6799.55 2199.57 19
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7898.10 6191.50 13498.01 1898.32 4692.33 3599.58 7194.85 8399.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8398.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2399.46 3898.96 92
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3199.30 5699.55 26
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 10097.59 2498.20 5791.96 4499.86 894.21 9799.25 6599.63 11
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10998.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7399.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4599.26 6399.43 49
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1498.09 6393.27 7695.95 8898.33 4491.04 6699.88 495.20 7299.57 2099.60 16
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10196.70 5298.06 6491.35 5999.86 894.83 8599.28 5999.47 44
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15597.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1699.13 7599.48 41
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4499.25 6599.51 34
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8698.98 192.22 11397.14 4198.44 2891.17 6499.85 1494.35 9599.46 3899.57 19
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10598.34 4190.59 7599.88 494.83 8599.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18297.11 4498.01 6892.52 3299.69 4496.03 4899.53 2499.36 58
MP-MVS-pluss96.70 4496.27 5497.98 2199.23 3094.71 2696.96 15598.06 7390.67 16195.55 10398.78 1091.07 6599.86 896.58 2499.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 17196.72 22894.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 12099.08 80
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 15096.40 6997.99 6990.99 6799.58 7195.61 6499.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22698.90 294.30 4695.86 9097.74 8792.33 3599.38 11296.04 4799.42 4399.28 65
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23898.18 4695.23 1295.87 8997.65 9491.45 5599.70 4395.87 5099.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16298.09 10586.63 26696.00 23698.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1999.48 3599.45 45
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15298.05 8089.85 18497.26 3598.22 5691.80 4799.69 4494.84 8499.28 5999.27 66
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 16297.73 11994.74 3596.49 6498.49 2490.88 7099.58 7196.44 2998.32 10499.13 74
HPM-MVS_fast96.51 5196.27 5497.22 6499.32 2392.74 8298.74 498.06 7390.57 17096.77 4998.35 3890.21 7999.53 8994.80 8899.63 1299.38 56
test_prior396.46 5396.20 5797.23 6298.67 6292.99 7696.35 21198.00 9392.80 9896.03 8297.59 10192.01 4199.41 10795.01 7899.38 4899.29 62
abl_696.40 5496.21 5696.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10599.72 3595.10 7699.07 8199.02 83
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14797.96 10095.42 794.86 11497.81 8287.38 11699.82 2596.88 1399.20 7099.29 62
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14796.86 16397.72 12394.67 3696.16 7798.46 2690.43 7699.58 7196.23 3597.96 11498.90 99
train_agg96.30 5795.83 6597.72 3998.70 6094.19 4096.41 20398.02 8888.58 22296.03 8297.56 10592.73 2599.59 6895.04 7799.37 5299.39 54
ACMMPcopyleft96.27 5895.93 6297.28 5999.24 2892.62 8798.25 2998.81 392.99 8794.56 11898.39 3588.96 9199.85 1494.57 9497.63 12199.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DROMVSNet96.25 5996.29 5396.13 11296.87 15991.35 12798.66 697.74 11893.91 5396.29 7297.43 11289.36 8798.59 18397.23 899.07 8198.45 133
MVS_111021_LR96.24 6096.19 5896.39 9898.23 9791.35 12796.24 22498.79 493.99 5195.80 9297.65 9489.92 8599.24 12195.87 5099.20 7098.58 119
agg_prior196.22 6195.77 6697.56 4898.67 6293.79 5596.28 21998.00 9388.76 21995.68 9797.55 10792.70 2799.57 7995.01 7899.32 5399.32 60
ETH3 D test640096.16 6295.52 7098.07 1698.90 5195.06 2297.03 14498.21 4088.16 23696.64 5797.70 8991.18 6399.67 4992.44 12999.47 3699.48 41
DeepC-MVS93.07 396.06 6395.66 6797.29 5897.96 10993.17 7397.30 12398.06 7393.92 5293.38 14398.66 1286.83 12299.73 3295.60 6699.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6495.91 6396.46 9399.24 2890.47 16198.30 2498.57 1189.01 20593.97 13097.57 10392.62 2899.76 3094.66 9199.27 6199.15 72
ETV-MVS96.02 6595.89 6496.40 9697.16 14292.44 9297.47 10697.77 11494.55 3996.48 6594.51 25591.23 6298.92 15195.65 6098.19 10797.82 168
canonicalmvs96.02 6595.45 7397.75 3797.59 13295.15 2198.28 2697.60 13794.52 4096.27 7496.12 18087.65 10999.18 12696.20 4194.82 17998.91 98
CDPH-MVS95.97 6795.38 7697.77 3598.93 4794.44 3196.35 21197.88 10586.98 26696.65 5697.89 7291.99 4399.47 10092.26 13099.46 3899.39 54
UA-Net95.95 6895.53 6997.20 6697.67 12692.98 7897.65 8698.13 5494.81 3196.61 5898.35 3888.87 9299.51 9490.36 16997.35 13199.11 78
VNet95.89 6995.45 7397.21 6598.07 10792.94 7997.50 10198.15 5193.87 5497.52 2597.61 10085.29 14299.53 8995.81 5595.27 17199.16 70
CS-MVS95.88 7095.98 6195.58 14296.44 18490.56 15797.78 6997.73 11993.01 8696.07 8196.77 14090.13 8098.57 18496.83 1599.10 8097.60 179
alignmvs95.87 7195.23 8097.78 3397.56 13495.19 1897.86 6097.17 18894.39 4396.47 6696.40 16885.89 13599.20 12396.21 4095.11 17598.95 94
DPM-MVS95.69 7294.92 8698.01 1998.08 10695.71 795.27 26897.62 13690.43 17395.55 10397.07 12891.72 4899.50 9789.62 18398.94 8898.82 107
DP-MVS Recon95.68 7395.12 8497.37 5499.19 3194.19 4097.03 14498.08 6488.35 22995.09 11297.65 9489.97 8399.48 9992.08 13998.59 9998.44 137
casdiffmvs95.64 7495.49 7196.08 11496.76 16890.45 16297.29 12497.44 16494.00 5095.46 10797.98 7087.52 11398.73 16795.64 6197.33 13299.08 80
CS-MVS-test95.61 7595.62 6895.58 14296.33 19291.02 14297.64 9097.68 12892.69 10295.18 11095.91 19089.95 8498.61 17996.24 3498.92 9097.12 190
MG-MVS95.61 7595.38 7696.31 10398.42 7790.53 15996.04 23297.48 14993.47 7195.67 10098.10 6089.17 8999.25 12091.27 15798.77 9399.13 74
baseline95.58 7795.42 7596.08 11496.78 16590.41 16497.16 13897.45 16093.69 6395.65 10197.85 7887.29 11798.68 17295.66 5797.25 13599.13 74
CPTT-MVS95.57 7895.19 8196.70 7799.27 2691.48 12298.33 2298.11 5987.79 24795.17 11198.03 6687.09 12099.61 6293.51 11399.42 4399.02 83
EIA-MVS95.53 7995.47 7295.71 13597.06 15089.63 18197.82 6597.87 10793.57 6493.92 13195.04 23290.61 7498.95 14994.62 9298.68 9698.54 121
3Dnovator+91.43 495.40 8094.48 10098.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 26198.02 6783.69 16399.71 3893.18 12198.96 8799.44 47
PS-MVSNAJ95.37 8195.33 7895.49 15197.35 13690.66 15695.31 26597.48 14993.85 5596.51 6395.70 20788.65 9699.65 5394.80 8898.27 10596.17 215
MVSFormer95.37 8195.16 8295.99 12196.34 19091.21 13398.22 3497.57 14191.42 13896.22 7597.32 11586.20 13297.92 25594.07 10099.05 8398.85 104
xiu_mvs_v2_base95.32 8395.29 7995.40 15697.22 13890.50 16095.44 25997.44 16493.70 6296.46 6796.18 17688.59 9999.53 8994.79 9097.81 11796.17 215
PVSNet_Blended_VisFu95.27 8494.91 8796.38 9998.20 9890.86 14997.27 12598.25 3390.21 17594.18 12597.27 11787.48 11499.73 3293.53 11297.77 11998.55 120
diffmvs95.25 8595.13 8395.63 13896.43 18689.34 19795.99 23797.35 17692.83 9696.31 7197.37 11486.44 12798.67 17396.26 3297.19 13798.87 103
Vis-MVSNetpermissive95.23 8694.81 8896.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11398.15 5982.28 19698.92 15191.45 15498.58 10099.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8795.04 8595.76 12897.49 13589.56 18598.67 597.00 20790.69 16094.24 12497.62 9989.79 8698.81 16093.39 11896.49 15298.92 97
EPNet95.20 8894.56 9597.14 6892.80 32492.68 8497.85 6394.87 31496.64 192.46 15997.80 8486.23 12999.65 5393.72 11098.62 9899.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 8994.44 10297.44 5296.56 17693.36 6998.65 798.36 1694.12 4889.25 24598.06 6482.20 19899.77 2993.41 11799.32 5399.18 69
OMC-MVS95.09 9094.70 9296.25 10998.46 7491.28 12996.43 20197.57 14192.04 12294.77 11697.96 7187.01 12199.09 13791.31 15696.77 14398.36 144
xiu_mvs_v1_base_debu95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base_debi95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
PAPM_NR95.01 9194.59 9496.26 10898.89 5490.68 15597.24 12797.73 11991.80 12792.93 15696.62 15789.13 9099.14 13189.21 19597.78 11898.97 91
lupinMVS94.99 9594.56 9596.29 10696.34 19091.21 13395.83 24496.27 25488.93 21096.22 7596.88 13786.20 13298.85 15795.27 7199.05 8398.82 107
Effi-MVS+94.93 9694.45 10196.36 10196.61 17091.47 12396.41 20397.41 16991.02 15594.50 11995.92 18987.53 11298.78 16293.89 10696.81 14298.84 106
IS-MVSNet94.90 9794.52 9896.05 11797.67 12690.56 15798.44 1796.22 25793.21 7793.99 12897.74 8785.55 14098.45 19489.98 17297.86 11599.14 73
MVS_Test94.89 9894.62 9395.68 13696.83 16389.55 18696.70 17997.17 18891.17 15095.60 10296.11 18387.87 10698.76 16593.01 12697.17 13898.72 113
PVSNet_Blended94.87 9994.56 9595.81 12798.27 8989.46 19295.47 25898.36 1688.84 21394.36 12196.09 18488.02 10299.58 7193.44 11598.18 10898.40 140
jason94.84 10094.39 10396.18 11195.52 22490.93 14796.09 23096.52 24489.28 19896.01 8697.32 11584.70 14998.77 16495.15 7498.91 9198.85 104
jason: jason.
API-MVS94.84 10094.49 9995.90 12497.90 11592.00 10997.80 6797.48 14989.19 20194.81 11596.71 14388.84 9399.17 12788.91 20198.76 9496.53 206
test_yl94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
DCV-MVSNet94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
112194.71 10493.83 10997.34 5598.57 7293.64 6096.04 23297.73 11981.56 32995.68 9797.85 7890.23 7899.65 5387.68 22499.12 7898.73 112
WTY-MVS94.71 10494.02 10696.79 7697.71 12592.05 10696.59 19497.35 17690.61 16794.64 11796.93 13286.41 12899.39 11091.20 15994.71 18398.94 95
sss94.51 10693.80 11096.64 7897.07 14791.97 11096.32 21598.06 7388.94 20994.50 11996.78 13984.60 15099.27 11991.90 14096.02 15698.68 117
CANet_DTU94.37 10793.65 11596.55 8496.46 18392.13 10496.21 22596.67 23694.38 4493.53 13997.03 13079.34 24599.71 3890.76 16398.45 10297.82 168
AdaColmapbinary94.34 10893.68 11496.31 10398.59 6991.68 11696.59 19497.81 11389.87 18192.15 16997.06 12983.62 16699.54 8689.34 18998.07 11197.70 172
CNLPA94.28 10993.53 11996.52 8598.38 8192.55 8996.59 19496.88 21990.13 17891.91 17597.24 11985.21 14399.09 13787.64 22797.83 11697.92 160
MAR-MVS94.22 11093.46 12396.51 8898.00 10892.19 10397.67 8397.47 15288.13 23893.00 15195.84 19484.86 14899.51 9487.99 21398.17 10997.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11193.42 12796.48 9097.64 12891.42 12695.55 25497.71 12788.99 20692.34 16595.82 19689.19 8899.11 13386.14 25297.38 12998.90 99
hse-mvs394.15 11293.52 12096.04 11897.81 11990.22 16797.62 9397.58 14095.19 1496.74 5097.45 10983.67 16499.61 6295.85 5279.73 33298.29 147
CHOSEN 1792x268894.15 11293.51 12196.06 11698.27 8989.38 19595.18 27298.48 1485.60 28693.76 13497.11 12683.15 17399.61 6291.33 15598.72 9599.19 68
Vis-MVSNet (Re-imp)94.15 11293.88 10894.95 17397.61 13087.92 23798.10 4195.80 27192.22 11393.02 15097.45 10984.53 15297.91 25888.24 20997.97 11399.02 83
CDS-MVSNet94.14 11593.54 11895.93 12296.18 19891.46 12496.33 21497.04 20388.97 20893.56 13696.51 16187.55 11197.89 25989.80 17795.95 15898.44 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 11693.43 12596.13 11298.58 7191.15 14096.69 18197.39 17087.29 26191.37 18396.71 14388.39 10099.52 9387.33 23497.13 13997.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 11793.70 11295.27 15895.70 21892.03 10798.10 4198.68 793.36 7490.39 20396.70 14587.63 11097.94 25292.25 13290.50 24295.84 229
PVSNet_BlendedMVS94.06 11893.92 10794.47 19498.27 8989.46 19296.73 17598.36 1690.17 17694.36 12195.24 22688.02 10299.58 7193.44 11590.72 23894.36 308
nrg03094.05 11993.31 12996.27 10795.22 24694.59 2898.34 2197.46 15492.93 9491.21 19396.64 15087.23 11998.22 20894.99 8185.80 28495.98 224
UGNet94.04 12093.28 13096.31 10396.85 16091.19 13697.88 5997.68 12894.40 4293.00 15196.18 17673.39 30499.61 6291.72 14598.46 10198.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 12193.46 12395.64 13796.16 20090.45 16296.71 17896.89 21889.27 19993.46 14196.92 13587.29 11797.94 25288.70 20595.74 16398.53 122
114514_t93.95 12293.06 13496.63 8099.07 3991.61 11797.46 10897.96 10077.99 34593.00 15197.57 10386.14 13499.33 11489.22 19499.15 7398.94 95
FC-MVSNet-test93.94 12393.57 11695.04 16695.48 22691.45 12598.12 4098.71 593.37 7290.23 20696.70 14587.66 10897.85 26191.49 15290.39 24395.83 230
GeoE93.89 12493.28 13095.72 13496.96 15789.75 18098.24 3296.92 21589.47 19392.12 17197.21 12184.42 15398.39 19987.71 22096.50 15199.01 87
HY-MVS89.66 993.87 12592.95 13796.63 8097.10 14692.49 9195.64 25296.64 23789.05 20493.00 15195.79 20085.77 13899.45 10389.16 19894.35 18597.96 157
XVG-OURS-SEG-HR93.86 12693.55 11794.81 17997.06 15088.53 22195.28 26697.45 16091.68 13094.08 12797.68 9182.41 19498.90 15493.84 10892.47 20896.98 193
VDD-MVS93.82 12793.08 13396.02 11997.88 11689.96 17697.72 7895.85 26992.43 10895.86 9098.44 2868.42 32899.39 11096.31 3094.85 17798.71 115
mvs_anonymous93.82 12793.74 11194.06 20996.44 18485.41 28495.81 24597.05 20189.85 18490.09 21796.36 17087.44 11597.75 27293.97 10296.69 14799.02 83
HQP_MVS93.78 12993.43 12594.82 17796.21 19589.99 17297.74 7397.51 14794.85 2691.34 18496.64 15081.32 21298.60 18093.02 12492.23 21195.86 226
PS-MVSNAJss93.74 13093.51 12194.44 19593.91 29889.28 20297.75 7297.56 14492.50 10789.94 22096.54 16088.65 9698.18 21493.83 10990.90 23695.86 226
XVG-OURS93.72 13193.35 12894.80 18297.07 14788.61 21794.79 27697.46 15491.97 12593.99 12897.86 7781.74 20798.88 15692.64 12892.67 20696.92 197
HyFIR lowres test93.66 13292.92 13895.87 12598.24 9389.88 17794.58 28098.49 1285.06 29593.78 13395.78 20182.86 18298.67 17391.77 14495.71 16599.07 82
mvs-test193.63 13393.69 11393.46 24296.02 20784.61 29697.24 12796.72 22893.85 5592.30 16695.76 20283.08 17598.89 15591.69 14896.54 15096.87 199
LFMVS93.60 13492.63 14796.52 8598.13 10491.27 13097.94 5593.39 33790.57 17096.29 7298.31 4769.00 32499.16 12894.18 9995.87 16099.12 77
F-COLMAP93.58 13592.98 13695.37 15798.40 7888.98 21097.18 13697.29 18187.75 25090.49 20097.10 12785.21 14399.50 9786.70 24396.72 14697.63 174
ab-mvs93.57 13692.55 15196.64 7897.28 13791.96 11195.40 26097.45 16089.81 18693.22 14996.28 17379.62 24299.46 10190.74 16493.11 20098.50 126
LS3D93.57 13692.61 14996.47 9197.59 13291.61 11797.67 8397.72 12385.17 29390.29 20598.34 4184.60 15099.73 3283.85 28498.27 10598.06 156
Fast-Effi-MVS+93.46 13892.75 14395.59 14196.77 16690.03 16996.81 17097.13 19188.19 23291.30 18794.27 27186.21 13198.63 17687.66 22696.46 15498.12 152
hse-mvs293.45 13992.99 13594.81 17997.02 15488.59 21896.69 18196.47 24695.19 1496.74 5096.16 17983.67 16498.48 19395.85 5279.13 33697.35 187
QAPM93.45 13992.27 16196.98 7496.77 16692.62 8798.39 2098.12 5684.50 30388.27 26797.77 8582.39 19599.81 2685.40 26598.81 9298.51 125
UniMVSNet_NR-MVSNet93.37 14192.67 14695.47 15495.34 23592.83 8097.17 13798.58 1092.98 9290.13 21295.80 19788.37 10197.85 26191.71 14683.93 31295.73 239
1112_ss93.37 14192.42 15796.21 11097.05 15290.99 14396.31 21696.72 22886.87 26989.83 22496.69 14786.51 12699.14 13188.12 21193.67 19498.50 126
UniMVSNet (Re)93.31 14392.55 15195.61 14095.39 22993.34 7097.39 11398.71 593.14 8290.10 21694.83 24187.71 10798.03 23891.67 15083.99 31195.46 248
OPM-MVS93.28 14492.76 14194.82 17794.63 27790.77 15396.65 18597.18 18693.72 6091.68 17897.26 11879.33 24698.63 17692.13 13692.28 21095.07 272
VPA-MVSNet93.24 14592.48 15695.51 14895.70 21892.39 9397.86 6098.66 992.30 11192.09 17395.37 22180.49 22498.40 19693.95 10385.86 28395.75 237
RRT_MVS93.21 14692.32 16095.91 12394.92 26194.15 4396.92 15996.86 22291.42 13891.28 19096.43 16579.66 24198.10 22393.29 11990.06 24595.46 248
MVSTER93.20 14792.81 14094.37 19996.56 17689.59 18497.06 14397.12 19291.24 14791.30 18795.96 18782.02 20198.05 23493.48 11490.55 24095.47 247
HQP-MVS93.19 14892.74 14494.54 19395.86 21089.33 19896.65 18597.39 17093.55 6590.14 20895.87 19280.95 21598.50 18992.13 13692.10 21695.78 233
CHOSEN 280x42093.12 14992.72 14594.34 20196.71 16987.27 24890.29 34397.72 12386.61 27391.34 18495.29 22384.29 15798.41 19593.25 12098.94 8897.35 187
Effi-MVS+-dtu93.08 15093.21 13292.68 27096.02 20783.25 31097.14 14196.72 22893.85 5591.20 19493.44 30283.08 17598.30 20491.69 14895.73 16496.50 208
test_djsdf93.07 15192.76 14194.00 21293.49 31188.70 21698.22 3497.57 14191.42 13890.08 21895.55 21582.85 18397.92 25594.07 10091.58 22395.40 254
VDDNet93.05 15292.07 16496.02 11996.84 16190.39 16598.08 4395.85 26986.22 27895.79 9398.46 2667.59 33199.19 12494.92 8294.85 17798.47 131
thisisatest053093.03 15392.21 16295.49 15197.07 14789.11 20897.49 10592.19 34590.16 17794.09 12696.41 16776.43 28499.05 14390.38 16895.68 16698.31 146
EI-MVSNet93.03 15392.88 13993.48 24095.77 21586.98 25796.44 19997.12 19290.66 16391.30 18797.64 9786.56 12498.05 23489.91 17490.55 24095.41 251
CLD-MVS92.98 15592.53 15394.32 20296.12 20489.20 20495.28 26697.47 15292.66 10389.90 22195.62 21080.58 22298.40 19692.73 12792.40 20995.38 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 15692.33 15994.87 17697.11 14587.16 25497.97 5392.09 34690.63 16593.88 13297.01 13176.50 28199.06 14290.29 17195.45 16898.38 142
ACMM89.79 892.96 15692.50 15594.35 20096.30 19388.71 21597.58 9597.36 17591.40 14190.53 19996.65 14979.77 23898.75 16691.24 15891.64 22195.59 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 15892.56 15094.10 20796.16 20088.26 22797.65 8697.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
BH-untuned92.94 15892.62 14893.92 22197.22 13886.16 27596.40 20696.25 25690.06 17989.79 22596.17 17883.19 17198.35 20187.19 23797.27 13497.24 189
DU-MVS92.90 16092.04 16595.49 15194.95 25992.83 8097.16 13898.24 3493.02 8590.13 21295.71 20583.47 16797.85 26191.71 14683.93 31295.78 233
PatchMatch-RL92.90 16092.02 16795.56 14498.19 10090.80 15195.27 26897.18 18687.96 24091.86 17795.68 20880.44 22598.99 14784.01 28097.54 12396.89 198
PMMVS92.86 16292.34 15894.42 19894.92 26186.73 26294.53 28296.38 25084.78 30094.27 12395.12 23183.13 17498.40 19691.47 15396.49 15298.12 152
OpenMVScopyleft89.19 1292.86 16291.68 17896.40 9695.34 23592.73 8398.27 2798.12 5684.86 29885.78 30497.75 8678.89 25699.74 3187.50 23198.65 9796.73 203
Test_1112_low_res92.84 16491.84 17395.85 12697.04 15389.97 17595.53 25696.64 23785.38 28989.65 23095.18 22785.86 13699.10 13487.70 22193.58 19998.49 128
baseline192.82 16591.90 17195.55 14697.20 14090.77 15397.19 13594.58 31992.20 11592.36 16396.34 17184.16 15898.21 20989.20 19683.90 31597.68 173
131492.81 16692.03 16695.14 16395.33 23889.52 18996.04 23297.44 16487.72 25186.25 30195.33 22283.84 16198.79 16189.26 19297.05 14097.11 191
DP-MVS92.76 16791.51 18696.52 8598.77 5790.99 14397.38 11596.08 26282.38 32289.29 24297.87 7583.77 16299.69 4481.37 30496.69 14798.89 101
BH-RMVSNet92.72 16891.97 16994.97 17197.16 14287.99 23696.15 22895.60 27990.62 16691.87 17697.15 12578.41 26398.57 18483.16 28697.60 12298.36 144
ACMP89.59 1092.62 16992.14 16394.05 21096.40 18788.20 23097.36 11697.25 18491.52 13388.30 26596.64 15078.46 26198.72 17091.86 14391.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 17092.52 15492.44 27396.82 16481.89 31996.92 15993.71 33392.41 10984.30 31794.60 25385.08 14597.03 31391.51 15197.36 13098.40 140
TranMVSNet+NR-MVSNet92.50 17091.63 17995.14 16394.76 27092.07 10597.53 9998.11 5992.90 9589.56 23396.12 18083.16 17297.60 28589.30 19083.20 32195.75 237
thres600view792.49 17291.60 18095.18 16197.91 11489.47 19097.65 8694.66 31692.18 11993.33 14494.91 23678.06 27099.10 13481.61 29894.06 19196.98 193
thres100view90092.43 17391.58 18194.98 17097.92 11389.37 19697.71 8094.66 31692.20 11593.31 14594.90 23778.06 27099.08 13981.40 30194.08 18896.48 209
jajsoiax92.42 17491.89 17294.03 21193.33 31688.50 22297.73 7597.53 14592.00 12488.85 25296.50 16275.62 29098.11 22293.88 10791.56 22495.48 245
thres40092.42 17491.52 18495.12 16597.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.98 193
tfpn200view992.38 17691.52 18494.95 17397.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.48 209
WR-MVS92.34 17791.53 18394.77 18495.13 25190.83 15096.40 20697.98 9891.88 12689.29 24295.54 21682.50 19197.80 26689.79 17885.27 29295.69 240
NR-MVSNet92.34 17791.27 19495.53 14794.95 25993.05 7597.39 11398.07 7092.65 10484.46 31595.71 20585.00 14697.77 27189.71 17983.52 31895.78 233
mvs_tets92.31 17991.76 17493.94 21993.41 31388.29 22597.63 9297.53 14592.04 12288.76 25696.45 16474.62 29498.09 22793.91 10591.48 22595.45 250
TAPA-MVS90.10 792.30 18091.22 19795.56 14498.33 8589.60 18396.79 17197.65 13381.83 32691.52 18097.23 12087.94 10498.91 15371.31 34898.37 10398.17 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 18191.30 19295.25 15996.60 17188.90 21294.36 28992.32 34487.92 24193.43 14294.57 25477.28 27799.00 14689.42 18795.86 16197.86 164
Fast-Effi-MVS+-dtu92.29 18191.99 16893.21 25395.27 24285.52 28297.03 14496.63 24092.09 12089.11 24795.14 22980.33 22898.08 22887.54 23094.74 18296.03 223
IterMVS-LS92.29 18191.94 17093.34 24796.25 19486.97 25896.57 19797.05 20190.67 16189.50 23694.80 24386.59 12397.64 28089.91 17486.11 28295.40 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 18491.74 17793.73 22797.77 12283.69 30792.88 32496.72 22887.91 24293.00 15194.86 23978.51 26099.05 14386.53 24497.45 12898.47 131
VPNet92.23 18591.31 19194.99 16895.56 22290.96 14597.22 13397.86 11092.96 9390.96 19596.62 15775.06 29298.20 21191.90 14083.65 31795.80 232
thres20092.23 18591.39 18794.75 18697.61 13089.03 20996.60 19395.09 30292.08 12193.28 14694.00 28378.39 26499.04 14581.26 30594.18 18796.19 214
test_part192.21 18791.10 20195.51 14897.80 12092.66 8598.02 4797.68 12889.79 18788.80 25596.02 18576.85 27998.18 21490.86 16184.11 31095.69 240
anonymousdsp92.16 18891.55 18293.97 21592.58 32889.55 18697.51 10097.42 16889.42 19588.40 26294.84 24080.66 22197.88 26091.87 14291.28 22994.48 304
XXY-MVS92.16 18891.23 19694.95 17394.75 27190.94 14697.47 10697.43 16789.14 20288.90 24996.43 16579.71 23998.24 20689.56 18487.68 26695.67 242
BH-w/o92.14 19091.75 17593.31 24896.99 15685.73 27995.67 24995.69 27588.73 22089.26 24494.82 24282.97 18098.07 23185.26 26796.32 15596.13 219
Anonymous20240521192.07 19190.83 21095.76 12898.19 10088.75 21497.58 9595.00 30586.00 28193.64 13597.45 10966.24 34099.53 8990.68 16692.71 20499.01 87
WR-MVS_H92.00 19291.35 18893.95 21795.09 25389.47 19098.04 4698.68 791.46 13688.34 26394.68 24985.86 13697.56 28785.77 26084.24 30894.82 289
Anonymous2024052991.98 19390.73 21495.73 13398.14 10389.40 19497.99 4897.72 12379.63 33993.54 13897.41 11369.94 32299.56 8191.04 16091.11 23198.22 148
PatchmatchNetpermissive91.91 19491.35 18893.59 23595.38 23084.11 30193.15 32095.39 28589.54 19092.10 17293.68 29582.82 18498.13 21884.81 27195.32 17098.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 19591.24 19593.82 22495.05 25488.57 21997.82 6598.19 4491.70 12988.21 26995.76 20281.96 20297.52 29387.86 21584.65 30195.37 257
SCA91.84 19691.18 19993.83 22395.59 22084.95 29294.72 27795.58 28190.82 15692.25 16793.69 29375.80 28798.10 22386.20 25095.98 15798.45 133
FMVSNet391.78 19790.69 21695.03 16796.53 17892.27 9997.02 14796.93 21189.79 18789.35 23994.65 25177.01 27897.47 29686.12 25388.82 25595.35 258
AUN-MVS91.76 19890.75 21394.81 17997.00 15588.57 21996.65 18596.49 24589.63 18992.15 16996.12 18078.66 25898.50 18990.83 16279.18 33597.36 186
X-MVStestdata91.71 19989.67 25897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6032.69 36491.70 5099.80 2795.66 5799.40 4599.62 13
MVS91.71 19990.44 22495.51 14895.20 24891.59 11996.04 23297.45 16073.44 35287.36 28695.60 21185.42 14199.10 13485.97 25797.46 12495.83 230
EPNet_dtu91.71 19991.28 19392.99 25993.76 30383.71 30596.69 18195.28 29293.15 8187.02 29395.95 18883.37 17097.38 30479.46 31696.84 14197.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20290.86 20693.94 21994.33 28786.32 26995.92 24091.64 35089.37 19686.94 29494.69 24881.62 20998.69 17188.64 20694.57 18496.81 201
miper_ehance_all_eth91.59 20391.13 20092.97 26095.55 22386.57 26794.47 28396.88 21987.77 24888.88 25194.01 28286.22 13097.54 28989.49 18586.93 27394.79 294
v2v48291.59 20390.85 20893.80 22593.87 30088.17 23296.94 15896.88 21989.54 19089.53 23494.90 23781.70 20898.02 23989.25 19385.04 29895.20 269
V4291.58 20590.87 20593.73 22794.05 29588.50 22297.32 12096.97 20888.80 21889.71 22694.33 26682.54 19098.05 23489.01 19985.07 29694.64 302
PCF-MVS89.48 1191.56 20689.95 24696.36 10196.60 17192.52 9092.51 33097.26 18279.41 34088.90 24996.56 15984.04 16099.55 8477.01 33097.30 13397.01 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bset_n11_16_dypcd91.55 20790.59 21994.44 19591.51 33690.25 16692.70 32793.42 33692.27 11290.22 20794.74 24678.42 26297.80 26694.19 9887.86 26595.29 267
PS-CasMVS91.55 20790.84 20993.69 23194.96 25888.28 22697.84 6498.24 3491.46 13688.04 27395.80 19779.67 24097.48 29587.02 24084.54 30595.31 260
miper_enhance_ethall91.54 20991.01 20293.15 25495.35 23487.07 25693.97 30196.90 21686.79 27089.17 24693.43 30486.55 12597.64 28089.97 17386.93 27394.74 298
PAPM91.52 21090.30 23095.20 16095.30 24189.83 17893.38 31696.85 22386.26 27788.59 25995.80 19784.88 14798.15 21775.67 33495.93 15997.63 174
ET-MVSNet_ETH3D91.49 21190.11 24095.63 13896.40 18791.57 12195.34 26293.48 33590.60 16975.58 34995.49 21880.08 23296.79 32294.25 9689.76 24998.52 123
TR-MVS91.48 21290.59 21994.16 20696.40 18787.33 24695.67 24995.34 29187.68 25291.46 18195.52 21776.77 28098.35 20182.85 29093.61 19796.79 202
tpmrst91.44 21391.32 19091.79 29095.15 24979.20 34293.42 31595.37 28788.55 22593.49 14093.67 29682.49 19298.27 20590.41 16789.34 25297.90 161
test-LLR91.42 21491.19 19892.12 28094.59 27880.66 32694.29 29392.98 33991.11 15290.76 19792.37 31679.02 25198.07 23188.81 20296.74 14497.63 174
MSDG91.42 21490.24 23494.96 17297.15 14488.91 21193.69 30996.32 25285.72 28586.93 29596.47 16380.24 22998.98 14880.57 30795.05 17696.98 193
cl_fuxian91.38 21690.89 20492.88 26395.58 22186.30 27094.68 27896.84 22488.17 23488.83 25494.23 27485.65 13997.47 29689.36 18884.63 30294.89 284
GA-MVS91.38 21690.31 22994.59 18894.65 27587.62 24494.34 29096.19 25990.73 15990.35 20493.83 28771.84 30797.96 24987.22 23693.61 19798.21 149
v114491.37 21890.60 21893.68 23293.89 29988.23 22996.84 16697.03 20588.37 22889.69 22894.39 26282.04 20097.98 24287.80 21785.37 28994.84 286
GBi-Net91.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
test191.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
UniMVSNet_ETH3D91.34 22190.22 23794.68 18794.86 26687.86 24097.23 13297.46 15487.99 23989.90 22196.92 13566.35 33898.23 20790.30 17090.99 23497.96 157
FMVSNet291.31 22290.08 24194.99 16896.51 17992.21 10097.41 10996.95 20988.82 21588.62 25894.75 24573.87 29897.42 30185.20 26888.55 26095.35 258
D2MVS91.30 22390.95 20392.35 27694.71 27385.52 28296.18 22798.21 4088.89 21186.60 29893.82 28979.92 23697.95 25189.29 19190.95 23593.56 322
v891.29 22490.53 22393.57 23794.15 29188.12 23497.34 11797.06 20088.99 20688.32 26494.26 27383.08 17598.01 24087.62 22883.92 31494.57 303
CVMVSNet91.23 22591.75 17589.67 32395.77 21574.69 35196.44 19994.88 31185.81 28392.18 16897.64 9779.07 24895.58 33988.06 21295.86 16198.74 111
cl-mvsnet291.21 22690.56 22293.14 25596.09 20686.80 26094.41 28796.58 24387.80 24688.58 26093.99 28480.85 22097.62 28389.87 17686.93 27394.99 275
PEN-MVS91.20 22790.44 22493.48 24094.49 28187.91 23997.76 7198.18 4691.29 14387.78 27895.74 20480.35 22797.33 30685.46 26482.96 32295.19 270
Baseline_NR-MVSNet91.20 22790.62 21792.95 26193.83 30188.03 23597.01 15195.12 30188.42 22789.70 22795.13 23083.47 16797.44 29989.66 18283.24 32093.37 326
cascas91.20 22790.08 24194.58 19294.97 25789.16 20793.65 31197.59 13979.90 33889.40 23792.92 30875.36 29198.36 20092.14 13594.75 18196.23 212
RRT_test8_iter0591.19 23090.78 21192.41 27595.76 21783.14 31197.32 12097.46 15491.37 14289.07 24895.57 21270.33 31798.21 20993.56 11186.62 27895.89 225
CostFormer91.18 23190.70 21592.62 27194.84 26781.76 32094.09 29994.43 32184.15 30692.72 15893.77 29179.43 24498.20 21190.70 16592.18 21497.90 161
v119291.07 23290.23 23593.58 23693.70 30487.82 24196.73 17597.07 19887.77 24889.58 23194.32 26880.90 21997.97 24586.52 24585.48 28794.95 276
v14419291.06 23390.28 23193.39 24493.66 30687.23 25196.83 16797.07 19887.43 25789.69 22894.28 27081.48 21098.00 24187.18 23884.92 30094.93 280
v1091.04 23490.23 23593.49 23994.12 29288.16 23397.32 12097.08 19788.26 23188.29 26694.22 27682.17 19997.97 24586.45 24784.12 30994.33 309
eth_miper_zixun_eth91.02 23590.59 21992.34 27795.33 23884.35 29794.10 29896.90 21688.56 22488.84 25394.33 26684.08 15997.60 28588.77 20484.37 30795.06 273
v14890.99 23690.38 22692.81 26693.83 30185.80 27896.78 17396.68 23489.45 19488.75 25793.93 28682.96 18197.82 26587.83 21683.25 31994.80 292
LTVRE_ROB88.41 1390.99 23689.92 24794.19 20496.18 19889.55 18696.31 21697.09 19687.88 24385.67 30595.91 19078.79 25798.57 18481.50 29989.98 24694.44 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet190.97 23890.33 22792.88 26395.36 23386.19 27494.46 28596.63 24087.82 24488.18 27094.23 27482.99 17897.53 29187.72 21885.57 28694.93 280
cl-mvsnet____90.96 23990.32 22892.89 26295.37 23286.21 27394.46 28596.64 23787.82 24488.15 27194.18 27782.98 17997.54 28987.70 22185.59 28594.92 282
pmmvs490.93 24089.85 25094.17 20593.34 31590.79 15294.60 27996.02 26384.62 30187.45 28295.15 22881.88 20597.45 29887.70 22187.87 26494.27 313
XVG-ACMP-BASELINE90.93 24090.21 23893.09 25694.31 28985.89 27795.33 26397.26 18291.06 15489.38 23895.44 22068.61 32698.60 18089.46 18691.05 23294.79 294
v192192090.85 24290.03 24593.29 24993.55 30786.96 25996.74 17497.04 20387.36 25989.52 23594.34 26580.23 23097.97 24586.27 24885.21 29394.94 278
CR-MVSNet90.82 24389.77 25493.95 21794.45 28387.19 25290.23 34495.68 27786.89 26892.40 16092.36 31980.91 21797.05 31281.09 30693.95 19297.60 179
v7n90.76 24489.86 24993.45 24393.54 30887.60 24597.70 8197.37 17388.85 21287.65 28094.08 28181.08 21498.10 22384.68 27383.79 31694.66 301
DWT-MVSNet_test90.76 24489.89 24893.38 24595.04 25583.70 30695.85 24394.30 32788.19 23290.46 20192.80 30973.61 30298.50 18988.16 21090.58 23997.95 159
RPSCF90.75 24690.86 20690.42 31696.84 16176.29 34995.61 25396.34 25183.89 30991.38 18297.87 7576.45 28298.78 16287.16 23992.23 21196.20 213
MVP-Stereo90.74 24790.08 24192.71 26893.19 31888.20 23095.86 24296.27 25486.07 28084.86 31394.76 24477.84 27397.75 27283.88 28398.01 11292.17 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 24889.65 26093.96 21694.29 29089.63 18197.79 6896.82 22589.07 20386.12 30395.48 21978.61 25997.78 26986.97 24181.67 32694.46 305
v124090.70 24989.85 25093.23 25193.51 31086.80 26096.61 19197.02 20687.16 26489.58 23194.31 26979.55 24397.98 24285.52 26385.44 28894.90 283
EPMVS90.70 24989.81 25293.37 24694.73 27284.21 29993.67 31088.02 35789.50 19292.38 16293.49 30077.82 27497.78 26986.03 25692.68 20598.11 155
Anonymous2023121190.63 25189.42 26294.27 20398.24 9389.19 20698.05 4597.89 10379.95 33788.25 26894.96 23372.56 30598.13 21889.70 18085.14 29495.49 244
DTE-MVSNet90.56 25289.75 25693.01 25893.95 29687.25 24997.64 9097.65 13390.74 15887.12 28995.68 20879.97 23597.00 31783.33 28581.66 32794.78 296
ACMH87.59 1690.53 25389.42 26293.87 22296.21 19587.92 23797.24 12796.94 21088.45 22683.91 32496.27 17471.92 30698.62 17884.43 27789.43 25195.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-090.51 25490.19 23991.44 29993.41 31381.25 32396.98 15496.28 25391.68 13086.55 29996.30 17274.20 29797.98 24288.96 20087.40 27195.09 271
miper_lstm_enhance90.50 25590.06 24491.83 28795.33 23883.74 30393.86 30496.70 23387.56 25587.79 27793.81 29083.45 16996.92 31987.39 23284.62 30394.82 289
COLMAP_ROBcopyleft87.81 1590.40 25689.28 26593.79 22697.95 11087.13 25596.92 15995.89 26882.83 32086.88 29797.18 12273.77 30199.29 11878.44 32193.62 19694.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT90.31 25789.81 25291.82 28895.52 22484.20 30094.30 29296.15 26090.61 16787.39 28594.27 27175.80 28796.44 32587.34 23386.88 27794.82 289
MS-PatchMatch90.27 25889.77 25491.78 29194.33 28784.72 29595.55 25496.73 22786.17 27986.36 30095.28 22571.28 31197.80 26684.09 27998.14 11092.81 331
tpm90.25 25989.74 25791.76 29393.92 29779.73 33893.98 30093.54 33488.28 23091.99 17493.25 30577.51 27697.44 29987.30 23587.94 26398.12 152
AllTest90.23 26088.98 26993.98 21397.94 11186.64 26396.51 19895.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
ACMH+87.92 1490.20 26189.18 26793.25 25096.48 18286.45 26896.99 15296.68 23488.83 21484.79 31496.22 17570.16 32098.53 18784.42 27888.04 26294.77 297
test-mter90.19 26289.54 26192.12 28094.59 27880.66 32694.29 29392.98 33987.68 25290.76 19792.37 31667.67 33098.07 23188.81 20296.74 14497.63 174
IterMVS90.15 26389.67 25891.61 29595.48 22683.72 30494.33 29196.12 26189.99 18087.31 28894.15 27975.78 28996.27 32886.97 24186.89 27694.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 26489.42 26291.97 28394.41 28580.62 32894.29 29391.97 34887.28 26290.44 20292.47 31568.79 32597.67 27788.50 20896.60 14997.61 178
tpm289.96 26589.21 26692.23 27994.91 26481.25 32393.78 30694.42 32280.62 33591.56 17993.44 30276.44 28397.94 25285.60 26292.08 21897.49 184
IB-MVS87.33 1789.91 26688.28 27894.79 18395.26 24587.70 24395.12 27493.95 33289.35 19787.03 29292.49 31470.74 31599.19 12489.18 19781.37 32897.49 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 26788.68 27393.53 23895.86 21084.89 29390.93 33995.07 30383.23 31891.28 19091.81 32679.01 25397.85 26179.52 31391.39 22797.84 165
FMVSNet189.88 26888.31 27794.59 18895.41 22891.18 13797.50 10196.93 21186.62 27287.41 28494.51 25565.94 34297.29 30883.04 28887.43 26995.31 260
pmmvs589.86 26988.87 27192.82 26592.86 32286.23 27296.26 22095.39 28584.24 30587.12 28994.51 25574.27 29697.36 30587.61 22987.57 26794.86 285
tpmvs89.83 27089.15 26891.89 28594.92 26180.30 33293.11 32195.46 28486.28 27688.08 27292.65 31180.44 22598.52 18881.47 30089.92 24796.84 200
tfpnnormal89.70 27188.40 27693.60 23495.15 24990.10 16897.56 9798.16 5087.28 26286.16 30294.63 25277.57 27598.05 23474.48 33684.59 30492.65 334
ADS-MVSNet289.45 27288.59 27492.03 28295.86 21082.26 31890.93 33994.32 32683.23 31891.28 19091.81 32679.01 25395.99 33079.52 31391.39 22797.84 165
Patchmatch-test89.42 27387.99 28093.70 23095.27 24285.11 28888.98 35094.37 32481.11 33087.10 29193.69 29382.28 19697.50 29474.37 33894.76 18098.48 130
test0.0.03 189.37 27488.70 27291.41 30092.47 32985.63 28095.22 27192.70 34291.11 15286.91 29693.65 29779.02 25193.19 35378.00 32389.18 25395.41 251
SixPastTwentyTwo89.15 27588.54 27590.98 30693.49 31180.28 33396.70 17994.70 31590.78 15784.15 32095.57 21271.78 30897.71 27584.63 27485.07 29694.94 278
RPMNet88.98 27687.05 29194.77 18494.45 28387.19 25290.23 34498.03 8477.87 34792.40 16087.55 34980.17 23199.51 9468.84 35293.95 19297.60 179
TransMVSNet (Re)88.94 27787.56 28493.08 25794.35 28688.45 22497.73 7595.23 29687.47 25684.26 31895.29 22379.86 23797.33 30679.44 31774.44 34593.45 325
USDC88.94 27787.83 28292.27 27894.66 27484.96 29193.86 30495.90 26787.34 26083.40 32695.56 21467.43 33298.19 21382.64 29489.67 25093.66 321
dp88.90 27988.26 27990.81 30994.58 28076.62 34892.85 32594.93 30985.12 29490.07 21993.07 30675.81 28698.12 22180.53 30887.42 27097.71 171
PatchT88.87 28087.42 28593.22 25294.08 29485.10 28989.51 34894.64 31881.92 32592.36 16388.15 34680.05 23397.01 31672.43 34493.65 19597.54 183
MVS_030488.79 28187.57 28392.46 27294.65 27586.15 27696.40 20697.17 18886.44 27488.02 27491.71 32856.68 35597.03 31384.47 27692.58 20794.19 314
our_test_388.78 28287.98 28191.20 30492.45 33082.53 31493.61 31395.69 27585.77 28484.88 31293.71 29279.99 23496.78 32379.47 31586.24 27994.28 312
EU-MVSNet88.72 28388.90 27088.20 32893.15 31974.21 35296.63 19094.22 32885.18 29287.32 28795.97 18676.16 28594.98 34385.27 26686.17 28095.41 251
Patchmtry88.64 28487.25 28792.78 26794.09 29386.64 26389.82 34795.68 27780.81 33487.63 28192.36 31980.91 21797.03 31378.86 31985.12 29594.67 300
MIMVSNet88.50 28586.76 29393.72 22994.84 26787.77 24291.39 33494.05 32986.41 27587.99 27592.59 31363.27 34795.82 33577.44 32492.84 20397.57 182
tpm cat188.36 28687.21 28991.81 28995.13 25180.55 32992.58 32995.70 27474.97 34987.45 28291.96 32478.01 27298.17 21680.39 30988.74 25896.72 204
ppachtmachnet_test88.35 28787.29 28691.53 29692.45 33083.57 30893.75 30795.97 26484.28 30485.32 31094.18 27779.00 25596.93 31875.71 33384.99 29994.10 315
JIA-IIPM88.26 28887.04 29291.91 28493.52 30981.42 32289.38 34994.38 32380.84 33390.93 19680.74 35479.22 24797.92 25582.76 29191.62 22296.38 211
testgi87.97 28987.21 28990.24 31892.86 32280.76 32596.67 18494.97 30791.74 12885.52 30695.83 19562.66 34994.47 34776.25 33188.36 26195.48 245
LF4IMVS87.94 29087.25 28789.98 32092.38 33280.05 33694.38 28895.25 29587.59 25484.34 31694.74 24664.31 34597.66 27984.83 27087.45 26892.23 339
gg-mvs-nofinetune87.82 29185.61 30094.44 19594.46 28289.27 20391.21 33884.61 36280.88 33289.89 22374.98 35671.50 30997.53 29185.75 26197.21 13696.51 207
pmmvs687.81 29286.19 29692.69 26991.32 33786.30 27097.34 11796.41 24980.59 33684.05 32394.37 26467.37 33397.67 27784.75 27279.51 33494.09 317
K. test v387.64 29386.75 29490.32 31793.02 32179.48 34096.61 19192.08 34790.66 16380.25 34194.09 28067.21 33496.65 32485.96 25880.83 33094.83 287
Patchmatch-RL test87.38 29486.24 29590.81 30988.74 35278.40 34688.12 35293.17 33887.11 26582.17 33289.29 34181.95 20395.60 33888.64 20677.02 33998.41 139
FMVSNet587.29 29585.79 29991.78 29194.80 26987.28 24795.49 25795.28 29284.09 30783.85 32591.82 32562.95 34894.17 34878.48 32085.34 29193.91 319
Anonymous2023120687.09 29686.14 29789.93 32191.22 33880.35 33096.11 22995.35 28883.57 31584.16 31993.02 30773.54 30395.61 33772.16 34586.14 28193.84 320
EG-PatchMatch MVS87.02 29785.44 30191.76 29392.67 32685.00 29096.08 23196.45 24783.41 31779.52 34393.49 30057.10 35497.72 27479.34 31890.87 23792.56 335
TinyColmap86.82 29885.35 30491.21 30394.91 26482.99 31293.94 30294.02 33183.58 31481.56 33394.68 24962.34 35098.13 21875.78 33287.35 27292.52 336
TDRefinement86.53 29984.76 30991.85 28682.23 35984.25 29896.38 20995.35 28884.97 29784.09 32194.94 23465.76 34398.34 20384.60 27574.52 34492.97 328
test_040286.46 30084.79 30891.45 29895.02 25685.55 28196.29 21894.89 31080.90 33182.21 33193.97 28568.21 32997.29 30862.98 35688.68 25991.51 345
Anonymous2024052186.42 30185.44 30189.34 32490.33 34279.79 33796.73 17595.92 26583.71 31383.25 32791.36 33163.92 34696.01 32978.39 32285.36 29092.22 340
DSMNet-mixed86.34 30286.12 29887.00 33389.88 34670.43 35594.93 27590.08 35577.97 34685.42 30992.78 31074.44 29593.96 34974.43 33795.14 17296.62 205
CL-MVSNet_2432*160086.31 30385.15 30589.80 32288.83 35181.74 32193.93 30396.22 25786.67 27185.03 31190.80 33278.09 26994.50 34574.92 33571.86 34993.15 327
pmmvs-eth3d86.22 30484.45 31091.53 29688.34 35387.25 24994.47 28395.01 30483.47 31679.51 34489.61 34069.75 32395.71 33683.13 28776.73 34191.64 343
test20.0386.14 30585.40 30388.35 32690.12 34380.06 33595.90 24195.20 29788.59 22181.29 33493.62 29871.43 31092.65 35471.26 34981.17 32992.34 338
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 34582.40 31793.62 31297.37 17389.86 18278.59 34692.37 31665.25 34495.35 34282.27 29670.75 35094.10 315
DIV-MVS_2432*160085.95 30784.95 30688.96 32589.55 34979.11 34395.13 27396.42 24885.91 28284.07 32290.48 33370.03 32194.82 34480.04 31072.94 34892.94 329
YYNet185.87 30884.23 31290.78 31292.38 33282.46 31693.17 31895.14 30082.12 32467.69 35292.36 31978.16 26895.50 34177.31 32679.73 33294.39 307
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33282.57 31393.17 31895.15 29982.15 32367.65 35392.33 32278.20 26595.51 34077.33 32579.74 33194.31 311
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33089.14 35073.12 35494.17 29696.80 22673.98 35073.65 35194.93 23566.36 33797.61 28483.95 28291.28 22992.48 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 33990.55 34295.60 27983.76 31283.00 33089.95 33771.09 31297.97 24582.75 29260.79 35895.31 260
MDA-MVSNet-bldmvs85.00 31282.95 31691.17 30593.13 32083.33 30994.56 28195.00 30584.57 30265.13 35792.65 31170.45 31695.85 33373.57 34177.49 33894.33 309
MIMVSNet184.93 31383.05 31590.56 31489.56 34884.84 29495.40 26095.35 28883.91 30880.38 33992.21 32357.23 35393.34 35270.69 35182.75 32593.50 323
KD-MVS_2432*160084.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
miper_refine_blended84.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 31990.83 30890.06 34484.05 30295.73 24894.04 33073.89 35180.17 34291.53 33059.15 35297.64 28066.92 35489.05 25490.80 349
PM-MVS83.48 31781.86 32188.31 32787.83 35577.59 34793.43 31491.75 34986.91 26780.63 33789.91 33844.42 36095.84 33485.17 26976.73 34191.50 346
new-patchmatchnet83.18 31881.87 32087.11 33286.88 35675.99 35093.70 30895.18 29885.02 29677.30 34788.40 34365.99 34193.88 35074.19 34070.18 35191.47 347
new_pmnet82.89 31981.12 32388.18 32989.63 34780.18 33491.77 33392.57 34376.79 34875.56 35088.23 34561.22 35194.48 34671.43 34782.92 32389.87 351
MVS-HIRNet82.47 32081.21 32286.26 33595.38 23069.21 35888.96 35189.49 35666.28 35480.79 33674.08 35868.48 32797.39 30371.93 34695.47 16792.18 341
UnsupCasMVSNet_bld82.13 32179.46 32490.14 31988.00 35482.47 31590.89 34196.62 24278.94 34275.61 34884.40 35256.63 35696.31 32777.30 32766.77 35491.63 344
pmmvs379.97 32277.50 32687.39 33182.80 35879.38 34192.70 32790.75 35470.69 35378.66 34587.47 35051.34 35893.40 35173.39 34269.65 35289.38 352
N_pmnet78.73 32378.71 32578.79 33892.80 32446.50 36794.14 29743.71 37078.61 34380.83 33591.66 32974.94 29396.36 32667.24 35384.45 30693.50 323
LCM-MVSNet72.55 32469.39 32882.03 33670.81 36665.42 36190.12 34694.36 32555.02 35865.88 35581.72 35324.16 36989.96 35574.32 33968.10 35390.71 350
FPMVS71.27 32569.85 32775.50 34074.64 36159.03 36391.30 33591.50 35158.80 35757.92 35988.28 34429.98 36585.53 35953.43 35882.84 32481.95 355
PMMVS270.19 32666.92 32980.01 33776.35 36065.67 36086.22 35387.58 35964.83 35662.38 35880.29 35526.78 36788.49 35763.79 35554.07 35985.88 353
Gipumacopyleft67.86 32765.41 33075.18 34192.66 32773.45 35366.50 36194.52 32053.33 35957.80 36066.07 36030.81 36389.20 35648.15 36078.88 33762.90 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 32864.89 33169.79 34372.62 36435.23 37165.19 36292.83 34120.35 36465.20 35688.08 34743.14 36182.70 36073.12 34363.46 35591.45 348
ANet_high63.94 32959.58 33277.02 33961.24 36866.06 35985.66 35587.93 35878.53 34442.94 36271.04 35925.42 36880.71 36152.60 35930.83 36284.28 354
PMVScopyleft53.92 2258.58 33055.40 33368.12 34451.00 36948.64 36578.86 35887.10 36146.77 36035.84 36674.28 3578.76 37086.34 35842.07 36173.91 34669.38 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 33152.56 33555.43 34674.43 36247.13 36683.63 35776.30 36642.23 36142.59 36362.22 36228.57 36674.40 36331.53 36331.51 36144.78 360
MVEpermissive50.73 2353.25 33248.81 33766.58 34565.34 36757.50 36472.49 36070.94 36840.15 36339.28 36563.51 3616.89 37273.48 36538.29 36242.38 36068.76 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 33351.31 33654.39 34772.62 36445.39 36883.84 35675.51 36741.13 36240.77 36459.65 36330.08 36473.60 36428.31 36429.90 36344.18 361
tmp_tt51.94 33453.82 33446.29 34833.73 37045.30 36978.32 35967.24 36918.02 36550.93 36187.05 35152.99 35753.11 36670.76 35025.29 36440.46 362
wuyk23d25.11 33524.57 33926.74 34973.98 36339.89 37057.88 3639.80 37112.27 36610.39 3676.97 3697.03 37136.44 36725.43 36517.39 3653.89 365
cdsmvs_eth3d_5k23.24 33630.99 3380.00 3520.00 3730.00 3740.00 36497.63 1350.00 3690.00 37096.88 13784.38 1540.00 3700.00 3680.00 3680.00 366
testmvs13.36 33716.33 3404.48 3515.04 3712.26 37393.18 3173.28 3722.70 3678.24 36821.66 3652.29 3742.19 3687.58 3662.96 3669.00 364
test12313.04 33815.66 3415.18 3504.51 3723.45 37292.50 3311.81 3732.50 3687.58 36920.15 3663.67 3732.18 3697.13 3671.07 3679.90 363
ab-mvs-re8.06 33910.74 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37096.69 1470.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.39 3409.85 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37088.65 960.00 3700.00 3680.00 3680.00 366
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.05 4194.59 2898.08 6489.22 20097.03 4798.10 6092.52 3299.65 5394.58 9399.31 55
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4599.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17498.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 7099.59 1599.56 22
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7598.23 3891.28 14697.88 2298.44 2893.00 2199.65 5395.76 5699.47 36
save fliter98.91 4994.28 3597.02 14798.02 8895.35 8
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18598.45 133
sam_mvs81.94 204
ambc86.56 33483.60 35770.00 35785.69 35494.97 30780.60 33888.45 34237.42 36296.84 32182.69 29375.44 34392.86 330
MTGPAbinary98.08 64
test_post192.81 32616.58 36880.53 22397.68 27686.20 250
test_post17.58 36781.76 20698.08 228
patchmatchnet-post90.45 33482.65 18998.10 223
GG-mvs-BLEND93.62 23393.69 30589.20 20492.39 33283.33 36387.98 27689.84 33971.00 31396.87 32082.08 29795.40 16994.80 292
MTMP97.86 6082.03 364
gm-plane-assit93.22 31778.89 34584.82 29993.52 29998.64 17587.72 218
test9_res94.81 8799.38 4899.45 45
TEST998.70 6094.19 4096.41 20398.02 8888.17 23496.03 8297.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 21098.01 9188.58 22295.98 8797.55 10792.73 2599.58 71
agg_prior293.94 10499.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9799.57 79
TestCases93.98 21397.94 11186.64 26395.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
test_prior493.66 5996.42 202
test_prior296.35 21192.80 9896.03 8297.59 10192.01 4195.01 7899.38 48
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
旧先验295.94 23981.66 32797.34 3498.82 15992.26 130
新几何295.79 246
新几何197.32 5698.60 6893.59 6197.75 11681.58 32895.75 9497.85 7890.04 8299.67 4986.50 24699.13 7598.69 116
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8599.16 70
无先验95.79 24697.87 10783.87 31199.65 5387.68 22498.89 101
原ACMM295.67 249
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25895.22 10997.68 9190.25 7799.54 8687.95 21499.12 7898.49 128
test22298.24 9392.21 10095.33 26397.60 13779.22 34195.25 10897.84 8188.80 9499.15 7398.72 113
testdata299.67 4985.96 258
segment_acmp92.89 22
testdata95.46 15598.18 10288.90 21297.66 13182.73 32197.03 4798.07 6390.06 8198.85 15789.67 18198.98 8698.64 118
testdata195.26 27093.10 84
test1297.65 4498.46 7494.26 3797.66 13195.52 10690.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19589.98 174
plane_prior696.10 20590.00 17081.32 212
plane_prior597.51 14798.60 18093.02 12492.23 21195.86 226
plane_prior496.64 150
plane_prior390.00 17094.46 4191.34 184
plane_prior297.74 7394.85 26
plane_prior196.14 203
plane_prior89.99 17297.24 12794.06 4992.16 215
n20.00 374
nn0.00 374
door-mid91.06 353
lessismore_v090.45 31591.96 33579.09 34487.19 36080.32 34094.39 26266.31 33997.55 28884.00 28176.84 34094.70 299
LGP-MVS_train94.10 20796.16 20088.26 22797.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
test1197.88 105
door91.13 352
HQP5-MVS89.33 198
HQP-NCC95.86 21096.65 18593.55 6590.14 208
ACMP_Plane95.86 21096.65 18593.55 6590.14 208
BP-MVS92.13 136
HQP4-MVS90.14 20898.50 18995.78 233
HQP3-MVS97.39 17092.10 216
HQP2-MVS80.95 215
NP-MVS95.99 20989.81 17995.87 192
MDTV_nov1_ep13_2view70.35 35693.10 32283.88 31093.55 13782.47 19386.25 24998.38 142
MDTV_nov1_ep1390.76 21295.22 24680.33 33193.03 32395.28 29288.14 23792.84 15793.83 28781.34 21198.08 22882.86 28994.34 186
ACMMP++_ref90.30 244
ACMMP++91.02 233
Test By Simon88.73 95
ITE_SJBPF92.43 27495.34 23585.37 28595.92 26591.47 13587.75 27996.39 16971.00 31397.96 24982.36 29589.86 24893.97 318
DeepMVS_CXcopyleft74.68 34290.84 34164.34 36281.61 36565.34 35567.47 35488.01 34848.60 35980.13 36262.33 35773.68 34779.58 356