SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 72 | 87.82 5 | 86.78 12 | 64.18 33 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 67 | 87.85 3 | 85.03 35 | 64.26 30 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 105 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 44 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 25 | 62.49 61 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 50 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
HPM-MVS++ |  | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 62 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 51 | 79.00 7 | 90.37 10 | 85.26 114 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 34 | 85.03 35 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 23 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 54 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 28 |
Skip Steuart: Steuart Systems R&D Blog. |
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 84 | 84.65 32 | 87.66 4 | 58.56 135 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 30 | 62.86 53 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 88 | 84.99 30 | 88.13 3 | 61.86 74 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 58 | 77.08 20 | 90.18 11 | 87.87 21 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 21 | 63.32 43 | 75.08 39 | 90.47 25 | 53.96 59 | 88.68 23 | 76.48 23 | 89.63 20 | 87.16 47 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 32 | 62.88 52 | 78.10 24 | 91.26 11 | 52.51 74 | 88.39 26 | 79.34 5 | 90.52 9 | 86.78 58 |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 87 | 84.14 43 | 88.31 1 | 60.37 97 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 61 | 77.16 19 | 89.90 14 | 87.97 18 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 29 | 84.42 44 | 66.73 9 | 74.67 50 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 40 | 86.85 9 | 63.23 45 | 73.84 63 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 29 | 62.12 67 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 86 |
|
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 44 | 83.82 60 | 59.34 122 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 48 | 76.69 22 | 86.74 54 | 87.68 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 46 | 79.95 142 | 59.00 126 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 58 | 77.08 20 | 90.18 11 | 87.87 21 |
|
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 58 | 82.93 61 | 85.39 28 | 62.15 66 | 76.41 32 | 91.51 9 | 52.47 76 | 86.78 67 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 65 | 63.89 38 | 73.60 66 | 90.60 18 | 54.85 50 | 86.72 68 | 77.20 18 | 88.06 37 | 85.74 94 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 31 | 63.56 42 | 74.29 55 | 90.03 41 | 52.56 73 | 88.53 25 | 74.79 31 | 88.34 30 | 86.63 60 |
|
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 77 | 82.72 67 | 87.55 5 | 58.33 140 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 47 | 76.15 25 | 89.86 15 | 86.82 55 |
|
APD-MVS |  | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 45 | 60.61 89 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 29 | 73.48 44 | 87.03 48 | 84.83 125 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 46 | 62.82 54 | 73.96 58 | 90.50 22 | 53.20 70 | 88.35 27 | 74.02 37 | 87.05 46 | 86.13 76 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 46 | 61.61 78 | 73.96 58 | 90.50 22 | 53.20 70 | 88.35 27 | 73.68 40 | 87.05 46 | 86.13 76 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 48 | 62.82 54 | 73.55 67 | 90.56 20 | 49.80 103 | 88.24 30 | 74.02 37 | 87.03 48 | 86.32 71 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 33 | 83.87 58 | 60.37 97 | 79.89 14 | 89.38 53 | 54.97 47 | 85.58 99 | 76.12 26 | 84.94 66 | 86.33 69 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 50 | 62.81 56 | 73.30 69 | 90.58 19 | 49.90 101 | 88.21 31 | 73.78 39 | 87.03 48 | 86.29 74 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 127 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 116 | 86.66 70 | 77.23 16 | 88.17 34 | 84.81 126 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 81 | 83.22 57 | 86.93 8 | 56.91 159 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 46 | 73.67 41 | 87.45 43 | 86.57 61 |
|
HPM-MVS |  | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 33 | 62.57 59 | 73.09 75 | 89.97 44 | 50.90 97 | 87.48 49 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 31 | 84.85 40 | 61.98 73 | 73.06 76 | 88.88 61 | 53.72 64 | 89.06 19 | 68.27 74 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 54 | 64.55 24 | 72.17 87 | 90.01 43 | 47.95 124 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 66 |
|
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 68 | 62.44 63 | 72.68 80 | 90.50 22 | 48.18 122 | 87.34 50 | 73.59 42 | 85.71 62 | 84.76 130 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 87 | 75.27 37 | 84.83 121 | 60.76 12 | 86.56 75 | 67.86 80 | 87.87 42 | 86.06 80 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 203 | 80.97 127 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 116 | 86.66 70 | 77.23 16 | 88.17 34 | 84.81 126 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 96 | 81.75 82 | 84.88 38 | 60.37 97 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 80 | 72.19 49 | 88.96 24 | 86.38 63 |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 71 | 83.74 61 | 61.71 76 | 72.45 86 | 90.34 29 | 48.48 120 | 88.13 32 | 72.32 48 | 86.85 52 | 85.78 88 |
|
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 91 | 62.90 51 | 71.77 91 | 90.26 32 | 46.61 147 | 86.55 76 | 71.71 52 | 85.66 64 | 84.97 122 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 99 | 57.53 93 | 82.35 73 | 83.31 74 | 67.78 3 | 70.09 106 | 86.34 96 | 54.92 48 | 88.90 21 | 72.68 47 | 84.55 68 | 87.76 27 |
|
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 65 | 81.31 91 | 84.02 51 | 56.32 172 | 74.05 56 | 88.98 59 | 53.34 69 | 87.92 40 | 69.23 69 | 88.42 29 | 87.59 33 |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 85 | 81.26 118 | 55.86 182 | 74.93 42 | 88.81 62 | 53.70 65 | 84.68 120 | 75.24 29 | 88.33 31 | 83.65 169 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 92 | 59.99 108 | 75.10 38 | 90.35 27 | 47.66 128 | 86.52 77 | 71.64 53 | 82.99 77 | 84.47 136 |
|
ACMMP |  | | 76.02 46 | 75.33 50 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 28 | 84.44 43 | 63.04 48 | 69.80 116 | 89.74 49 | 45.43 160 | 87.16 55 | 72.01 51 | 82.87 82 | 85.14 115 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 75 | 85.04 52 | 59.96 51 | 81.44 89 | 81.04 124 | 56.14 178 | 74.68 48 | 88.90 60 | 53.91 61 | 84.04 132 | 75.01 30 | 87.92 41 | 83.16 185 |
|
PHI-MVS | | | 75.87 48 | 75.36 49 | 77.41 49 | 80.62 111 | 55.91 122 | 84.28 37 | 85.78 24 | 56.08 180 | 73.41 68 | 86.58 90 | 50.94 96 | 88.54 24 | 70.79 59 | 89.71 17 | 87.79 25 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 58 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 153 | 89.24 55 | 42.03 191 | 89.38 14 | 64.07 111 | 86.50 57 | 89.69 1 |
|
Regformer-2 | | | 75.63 50 | 74.99 52 | 77.54 47 | 80.43 113 | 58.32 82 | 79.50 117 | 82.92 82 | 67.84 1 | 75.94 33 | 80.75 210 | 55.73 40 | 86.80 65 | 71.44 57 | 80.38 107 | 87.50 36 |
|
DPM-MVS | | | 75.47 51 | 75.00 51 | 76.88 56 | 81.38 98 | 59.16 63 | 79.94 107 | 85.71 26 | 56.59 167 | 72.46 84 | 86.76 80 | 56.89 29 | 87.86 42 | 66.36 92 | 88.91 26 | 83.64 170 |
|
Regformer-1 | | | 75.47 51 | 74.93 54 | 77.09 54 | 80.43 113 | 57.70 91 | 79.50 117 | 82.13 93 | 67.84 1 | 75.73 36 | 80.75 210 | 56.50 32 | 86.07 84 | 71.07 58 | 80.38 107 | 87.50 36 |
|
DROMVSNet | | | 75.37 53 | 75.40 48 | 75.28 88 | 78.22 161 | 51.74 177 | 82.78 65 | 85.99 22 | 61.80 75 | 72.09 89 | 86.37 95 | 54.19 56 | 88.01 36 | 71.49 56 | 85.69 63 | 86.08 79 |
|
test1172 | | | 75.36 54 | 74.81 56 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 104 | 59.52 119 | 74.66 51 | 90.18 34 | 44.74 167 | 85.84 93 | 70.63 61 | 82.52 86 | 84.42 137 |
|
APD-MVS_3200maxsize | | | 74.96 55 | 74.39 61 | 76.67 61 | 82.20 83 | 58.24 83 | 83.67 51 | 83.29 75 | 58.41 137 | 73.71 64 | 90.14 35 | 45.62 153 | 85.99 88 | 69.64 65 | 82.85 83 | 85.78 88 |
|
TSAR-MVS + GP. | | | 74.90 56 | 74.15 64 | 77.17 53 | 82.00 86 | 58.77 75 | 81.80 81 | 78.57 167 | 58.58 133 | 74.32 54 | 84.51 130 | 55.94 38 | 87.22 52 | 67.11 87 | 84.48 70 | 85.52 101 |
|
casdiffmvs | | | 74.80 57 | 74.89 55 | 74.53 104 | 75.59 221 | 50.37 195 | 78.17 137 | 85.06 34 | 62.80 57 | 74.40 53 | 87.86 70 | 57.88 24 | 83.61 143 | 69.46 68 | 82.79 84 | 89.59 2 |
|
DELS-MVS | | | 74.76 58 | 74.46 59 | 75.65 79 | 77.84 173 | 52.25 169 | 75.59 188 | 84.17 49 | 63.76 39 | 73.15 71 | 82.79 159 | 59.58 16 | 86.80 65 | 67.24 86 | 86.04 60 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test_part1 | | | 74.74 59 | 74.42 60 | 75.70 77 | 81.69 91 | 51.26 180 | 83.98 46 | 87.05 7 | 65.31 16 | 73.10 74 | 86.20 98 | 53.94 60 | 88.06 34 | 65.32 102 | 73.17 190 | 87.77 26 |
|
OPM-MVS | | | 74.73 60 | 74.25 62 | 76.19 68 | 80.81 107 | 59.01 70 | 82.60 70 | 83.64 63 | 63.74 40 | 72.52 83 | 87.49 73 | 47.18 138 | 85.88 92 | 69.47 67 | 80.78 99 | 83.66 168 |
|
canonicalmvs | | | 74.67 61 | 74.98 53 | 73.71 124 | 78.94 143 | 50.56 193 | 80.23 102 | 83.87 58 | 60.30 103 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 179 | 66.01 95 | 82.12 89 | 88.58 6 |
|
baseline | | | 74.61 62 | 74.70 57 | 74.34 108 | 75.70 217 | 49.99 202 | 77.54 148 | 84.63 42 | 62.73 58 | 73.98 57 | 87.79 72 | 57.67 27 | 83.82 139 | 69.49 66 | 82.74 85 | 89.20 3 |
|
SR-MVS-dyc-post | | | 74.57 63 | 73.90 66 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 111 | 58.07 143 | 73.14 72 | 90.07 36 | 44.74 167 | 85.84 93 | 68.20 75 | 81.76 93 | 84.03 147 |
|
ETV-MVS | | | 74.46 64 | 73.84 68 | 76.33 67 | 79.27 136 | 55.24 134 | 79.22 120 | 85.00 37 | 64.97 22 | 72.65 81 | 79.46 237 | 53.65 68 | 87.87 41 | 67.45 85 | 82.91 80 | 85.89 85 |
|
abl_6 | | | 74.34 65 | 73.50 72 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 98 | 58.81 130 | 73.95 60 | 89.86 46 | 41.87 194 | 86.62 72 | 67.98 79 | 81.23 98 | 83.80 160 |
|
HQP_MVS | | | 74.31 66 | 73.73 70 | 76.06 69 | 81.41 96 | 56.31 111 | 84.22 38 | 84.01 52 | 64.52 26 | 69.27 124 | 86.10 101 | 45.26 164 | 87.21 53 | 68.16 77 | 80.58 103 | 84.65 131 |
|
HPM-MVS_fast | | | 74.30 67 | 73.46 75 | 76.80 58 | 84.45 63 | 59.04 69 | 83.65 52 | 81.05 123 | 60.15 105 | 70.43 100 | 89.84 47 | 41.09 209 | 85.59 98 | 67.61 83 | 82.90 81 | 85.77 91 |
|
Regformer-4 | | | 74.25 68 | 73.48 73 | 76.57 64 | 79.75 126 | 56.54 110 | 78.54 132 | 81.49 108 | 66.93 7 | 73.90 61 | 80.30 218 | 53.84 63 | 85.98 89 | 69.76 64 | 76.84 154 | 87.17 46 |
|
MVS_111021_HR | | | 74.02 69 | 73.46 75 | 75.69 78 | 83.01 77 | 60.63 44 | 77.29 155 | 78.40 178 | 61.18 83 | 70.58 99 | 85.97 105 | 54.18 57 | 84.00 136 | 67.52 84 | 82.98 79 | 82.45 197 |
|
CS-MVS | | | 74.01 70 | 74.24 63 | 73.32 140 | 76.47 206 | 48.51 222 | 79.19 121 | 86.17 20 | 60.56 91 | 71.62 94 | 83.71 146 | 55.16 44 | 87.94 39 | 69.21 70 | 86.11 59 | 83.51 173 |
|
MG-MVS | | | 73.96 71 | 73.89 67 | 74.16 111 | 85.65 42 | 49.69 208 | 81.59 87 | 81.29 117 | 61.45 79 | 71.05 97 | 88.11 67 | 51.77 85 | 87.73 45 | 61.05 139 | 83.09 75 | 85.05 119 |
|
Regformer-3 | | | 73.89 72 | 73.28 77 | 75.71 76 | 79.75 126 | 55.48 131 | 78.54 132 | 79.93 143 | 66.58 11 | 73.62 65 | 80.30 218 | 54.87 49 | 84.54 123 | 69.09 71 | 76.84 154 | 87.10 49 |
|
alignmvs | | | 73.86 73 | 73.99 65 | 73.45 134 | 78.20 162 | 50.50 194 | 78.57 130 | 82.43 89 | 59.40 120 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 195 | 65.84 97 | 81.79 91 | 88.62 4 |
|
CS-MVS-test | | | 73.80 74 | 73.79 69 | 73.85 115 | 77.34 188 | 49.97 203 | 79.08 122 | 86.30 19 | 59.19 124 | 70.26 105 | 82.55 166 | 55.11 45 | 87.79 44 | 68.47 73 | 85.78 61 | 83.79 161 |
|
MSLP-MVS++ | | | 73.77 75 | 73.47 74 | 74.66 97 | 83.02 76 | 59.29 62 | 82.30 78 | 81.88 97 | 59.34 122 | 71.59 95 | 86.83 79 | 45.94 151 | 83.65 142 | 65.09 105 | 85.22 65 | 81.06 221 |
|
HQP-MVS | | | 73.45 76 | 72.80 80 | 75.40 83 | 80.66 108 | 54.94 135 | 82.31 75 | 83.90 56 | 62.10 68 | 67.85 148 | 85.54 115 | 45.46 158 | 86.93 62 | 67.04 88 | 80.35 109 | 84.32 139 |
|
CLD-MVS | | | 73.33 77 | 72.68 81 | 75.29 87 | 78.82 145 | 53.33 153 | 78.23 136 | 84.79 41 | 61.30 82 | 70.41 101 | 81.04 200 | 52.41 77 | 87.12 56 | 64.61 110 | 82.49 88 | 85.41 109 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 73.31 78 | 72.54 82 | 75.62 80 | 77.87 172 | 53.64 146 | 79.62 115 | 79.61 148 | 61.63 77 | 72.02 90 | 82.61 164 | 56.44 33 | 85.97 90 | 63.99 114 | 79.07 129 | 87.25 45 |
|
UA-Net | | | 73.13 79 | 72.93 79 | 73.76 120 | 83.58 68 | 51.66 178 | 78.75 125 | 77.66 188 | 67.75 4 | 72.61 82 | 89.42 51 | 49.82 102 | 83.29 148 | 53.61 190 | 83.14 74 | 86.32 71 |
|
EPNet | | | 73.09 80 | 72.16 84 | 75.90 71 | 75.95 213 | 56.28 113 | 83.05 58 | 72.39 253 | 66.53 12 | 65.27 194 | 87.00 78 | 50.40 99 | 85.47 105 | 62.48 127 | 86.32 58 | 85.94 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
nrg030 | | | 72.96 81 | 73.01 78 | 72.84 148 | 75.41 224 | 50.24 196 | 80.02 105 | 82.89 85 | 58.36 139 | 74.44 52 | 86.73 82 | 58.90 19 | 80.83 204 | 65.84 97 | 74.46 169 | 87.44 39 |
|
CPTT-MVS | | | 72.78 82 | 72.08 86 | 74.87 93 | 84.88 60 | 61.41 29 | 84.15 41 | 77.86 184 | 55.27 195 | 67.51 158 | 88.08 69 | 41.93 193 | 81.85 181 | 69.04 72 | 80.01 113 | 81.35 214 |
|
LPG-MVS_test | | | 72.74 83 | 71.74 88 | 75.76 73 | 80.22 117 | 57.51 94 | 82.55 71 | 83.40 70 | 61.32 80 | 66.67 169 | 87.33 76 | 39.15 222 | 86.59 73 | 67.70 81 | 77.30 149 | 83.19 182 |
|
hse-mvs3 | | | 72.71 84 | 71.49 91 | 76.40 65 | 81.99 87 | 59.58 57 | 76.92 164 | 76.74 204 | 60.40 94 | 74.81 45 | 85.95 106 | 45.54 156 | 85.76 96 | 70.41 62 | 70.61 220 | 83.86 155 |
|
PAPM_NR | | | 72.63 85 | 71.80 87 | 75.13 89 | 81.72 90 | 53.42 152 | 79.91 109 | 83.28 76 | 59.14 125 | 66.31 177 | 85.90 107 | 51.86 84 | 86.06 85 | 57.45 159 | 80.62 101 | 85.91 84 |
|
VDD-MVS | | | 72.50 86 | 72.09 85 | 73.75 122 | 81.58 92 | 49.69 208 | 77.76 143 | 77.63 189 | 63.21 46 | 73.21 70 | 89.02 58 | 42.14 190 | 83.32 147 | 61.72 134 | 82.50 87 | 88.25 9 |
|
3Dnovator | | 64.47 5 | 72.49 87 | 71.39 94 | 75.79 72 | 77.70 175 | 58.99 71 | 80.66 98 | 83.15 79 | 62.24 65 | 65.46 191 | 86.59 89 | 42.38 189 | 85.52 101 | 59.59 151 | 84.72 67 | 82.85 191 |
|
MVS_Test | | | 72.45 88 | 72.46 83 | 72.42 159 | 74.88 229 | 48.50 223 | 76.28 176 | 83.14 80 | 59.40 120 | 72.46 84 | 84.68 123 | 55.66 41 | 81.12 196 | 65.98 96 | 79.66 117 | 87.63 31 |
|
EI-MVSNet-Vis-set | | | 72.42 89 | 71.59 89 | 74.91 91 | 78.47 154 | 54.02 142 | 77.05 160 | 79.33 154 | 65.03 21 | 71.68 93 | 79.35 240 | 52.75 72 | 84.89 116 | 66.46 91 | 74.23 172 | 85.83 87 |
|
ACMP | | 63.53 6 | 72.30 90 | 71.20 99 | 75.59 82 | 80.28 115 | 57.54 92 | 82.74 66 | 82.84 86 | 60.58 90 | 65.24 198 | 86.18 99 | 39.25 220 | 86.03 87 | 66.95 90 | 76.79 156 | 83.22 180 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PS-MVSNAJss | | | 72.24 91 | 71.21 98 | 75.31 85 | 78.50 152 | 55.93 121 | 81.63 84 | 82.12 94 | 56.24 175 | 70.02 110 | 85.68 112 | 47.05 140 | 84.34 127 | 65.27 103 | 74.41 171 | 85.67 95 |
|
Vis-MVSNet |  | | 72.18 92 | 71.37 95 | 74.61 100 | 81.29 99 | 55.41 132 | 80.90 94 | 78.28 180 | 60.73 88 | 69.23 127 | 88.09 68 | 44.36 173 | 82.65 168 | 57.68 158 | 81.75 95 | 85.77 91 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 72.17 93 | 71.41 93 | 74.45 106 | 81.95 88 | 57.22 98 | 84.03 44 | 80.38 137 | 59.89 112 | 68.40 136 | 82.33 172 | 49.64 104 | 87.83 43 | 51.87 201 | 84.16 72 | 78.30 254 |
|
EPP-MVSNet | | | 72.16 94 | 71.31 97 | 74.71 94 | 78.68 149 | 49.70 206 | 82.10 79 | 81.65 103 | 60.40 94 | 65.94 182 | 85.84 108 | 51.74 86 | 86.37 82 | 55.93 167 | 79.55 120 | 88.07 17 |
|
DP-MVS Recon | | | 72.15 95 | 70.73 104 | 76.40 65 | 86.57 22 | 57.99 86 | 81.15 93 | 82.96 81 | 57.03 156 | 66.78 166 | 85.56 113 | 44.50 171 | 88.11 33 | 51.77 203 | 80.23 112 | 83.10 186 |
|
EI-MVSNet-UG-set | | | 71.92 96 | 71.06 100 | 74.52 105 | 77.98 170 | 53.56 148 | 76.62 168 | 79.16 155 | 64.40 28 | 71.18 96 | 78.95 244 | 52.19 80 | 84.66 122 | 65.47 101 | 73.57 180 | 85.32 111 |
|
VDDNet | | | 71.81 97 | 71.33 96 | 73.26 142 | 82.80 80 | 47.60 235 | 78.74 126 | 75.27 221 | 59.59 118 | 72.94 77 | 89.40 52 | 41.51 203 | 83.91 137 | 58.75 155 | 82.99 77 | 88.26 8 |
|
EIA-MVS | | | 71.78 98 | 70.60 105 | 75.30 86 | 79.85 125 | 53.54 149 | 77.27 156 | 83.26 77 | 57.92 147 | 66.49 172 | 79.39 238 | 52.07 82 | 86.69 69 | 60.05 146 | 79.14 128 | 85.66 96 |
|
LFMVS | | | 71.78 98 | 71.59 89 | 72.32 160 | 83.40 71 | 46.38 244 | 79.75 112 | 71.08 260 | 64.18 33 | 72.80 79 | 88.64 65 | 42.58 186 | 83.72 140 | 57.41 160 | 84.49 69 | 86.86 53 |
|
PAPR | | | 71.72 100 | 70.82 103 | 74.41 107 | 81.20 103 | 51.17 181 | 79.55 116 | 83.33 73 | 55.81 185 | 66.93 165 | 84.61 126 | 50.95 95 | 86.06 85 | 55.79 170 | 79.20 126 | 86.00 81 |
|
IS-MVSNet | | | 71.57 101 | 71.00 101 | 73.27 141 | 78.86 144 | 45.63 257 | 80.22 103 | 78.69 164 | 64.14 36 | 66.46 173 | 87.36 75 | 49.30 107 | 85.60 97 | 50.26 212 | 83.71 73 | 88.59 5 |
|
MAR-MVS | | | 71.51 102 | 70.15 113 | 75.60 81 | 81.84 89 | 59.39 60 | 81.38 90 | 82.90 84 | 54.90 206 | 68.08 145 | 78.70 245 | 47.73 126 | 85.51 102 | 51.68 205 | 84.17 71 | 81.88 206 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 71.50 103 | 70.38 110 | 74.88 92 | 78.76 146 | 57.15 103 | 82.79 63 | 78.48 171 | 51.26 244 | 69.49 119 | 83.22 154 | 43.99 176 | 83.24 149 | 66.06 93 | 79.37 121 | 84.23 142 |
|
PVSNet_Blended_VisFu | | | 71.45 104 | 70.39 109 | 74.65 98 | 82.01 85 | 58.82 74 | 79.93 108 | 80.35 138 | 55.09 200 | 65.82 187 | 82.16 178 | 49.17 110 | 82.64 169 | 60.34 144 | 78.62 137 | 82.50 196 |
|
OMC-MVS | | | 71.40 105 | 70.60 105 | 73.78 118 | 76.60 202 | 53.15 155 | 79.74 113 | 79.78 144 | 58.37 138 | 68.75 131 | 86.45 93 | 45.43 160 | 80.60 209 | 62.58 125 | 77.73 143 | 87.58 34 |
|
UniMVSNet_NR-MVSNet | | | 71.11 106 | 71.00 101 | 71.44 174 | 79.20 137 | 44.13 268 | 76.02 184 | 82.60 88 | 66.48 13 | 68.20 139 | 84.60 127 | 56.82 30 | 82.82 164 | 54.62 180 | 70.43 222 | 87.36 43 |
|
hse-mvs2 | | | 71.04 107 | 69.86 116 | 74.60 101 | 79.58 131 | 57.12 105 | 73.96 217 | 75.25 222 | 60.40 94 | 74.81 45 | 81.95 182 | 45.54 156 | 82.90 157 | 70.41 62 | 66.83 270 | 83.77 162 |
|
GeoE | | | 71.01 108 | 70.15 113 | 73.60 130 | 79.57 132 | 52.17 170 | 78.93 124 | 78.12 181 | 58.02 145 | 67.76 156 | 83.87 141 | 52.36 78 | 82.72 166 | 56.90 162 | 75.79 162 | 85.92 83 |
|
PCF-MVS | | 61.88 8 | 70.95 109 | 69.49 122 | 75.35 84 | 77.63 178 | 55.71 124 | 76.04 183 | 81.81 100 | 50.30 252 | 69.66 117 | 85.40 118 | 52.51 74 | 84.89 116 | 51.82 202 | 80.24 111 | 85.45 105 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 70.83 110 | 69.56 120 | 74.64 99 | 86.21 30 | 54.63 139 | 82.34 74 | 81.81 100 | 48.22 271 | 63.01 224 | 85.83 109 | 40.92 210 | 87.10 57 | 57.91 157 | 79.79 114 | 82.18 200 |
|
FIs | | | 70.82 111 | 71.43 92 | 68.98 222 | 78.33 158 | 38.14 313 | 76.96 162 | 83.59 64 | 61.02 84 | 67.33 160 | 86.73 82 | 55.07 46 | 81.64 185 | 54.61 182 | 79.22 125 | 87.14 48 |
|
ACMM | | 61.98 7 | 70.80 112 | 69.73 118 | 74.02 112 | 80.59 112 | 58.59 78 | 82.68 68 | 82.02 96 | 55.46 193 | 67.18 162 | 84.39 132 | 38.51 227 | 83.17 151 | 60.65 141 | 76.10 160 | 80.30 231 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
diffmvs | | | 70.69 113 | 70.43 108 | 71.46 173 | 69.45 304 | 48.95 218 | 72.93 233 | 78.46 173 | 57.27 153 | 71.69 92 | 83.97 140 | 51.48 88 | 77.92 249 | 70.70 60 | 77.95 142 | 87.53 35 |
|
UniMVSNet (Re) | | | 70.63 114 | 70.20 111 | 71.89 163 | 78.55 151 | 45.29 259 | 75.94 185 | 82.92 82 | 63.68 41 | 68.16 142 | 83.59 149 | 53.89 62 | 83.49 146 | 53.97 185 | 71.12 215 | 86.89 52 |
|
xiu_mvs_v2_base | | | 70.52 115 | 69.75 117 | 72.84 148 | 81.21 102 | 55.63 127 | 75.11 197 | 78.92 158 | 54.92 205 | 69.96 113 | 79.68 232 | 47.00 144 | 82.09 178 | 61.60 136 | 79.37 121 | 80.81 225 |
|
PS-MVSNAJ | | | 70.51 116 | 69.70 119 | 72.93 146 | 81.52 93 | 55.79 123 | 74.92 203 | 79.00 157 | 55.04 204 | 69.88 114 | 78.66 246 | 47.05 140 | 82.19 176 | 61.61 135 | 79.58 118 | 80.83 224 |
|
v2v482 | | | 70.50 117 | 69.45 124 | 73.66 126 | 72.62 260 | 50.03 201 | 77.58 145 | 80.51 135 | 59.90 109 | 69.52 118 | 82.14 179 | 47.53 131 | 84.88 118 | 65.07 106 | 70.17 228 | 86.09 78 |
|
mvs-test1 | | | 70.44 118 | 68.19 144 | 77.18 52 | 76.10 210 | 63.22 6 | 80.59 99 | 76.06 211 | 59.83 113 | 66.32 176 | 79.87 226 | 41.56 200 | 85.53 100 | 60.60 142 | 72.77 195 | 82.80 192 |
|
v1144 | | | 70.42 119 | 69.31 125 | 73.76 120 | 73.22 248 | 50.64 190 | 77.83 141 | 81.43 109 | 58.58 133 | 69.40 122 | 81.16 197 | 47.53 131 | 85.29 110 | 64.01 113 | 70.64 218 | 85.34 110 |
|
TranMVSNet+NR-MVSNet | | | 70.36 120 | 70.10 115 | 71.17 185 | 78.64 150 | 42.97 279 | 76.53 170 | 81.16 122 | 66.95 6 | 68.53 135 | 85.42 117 | 51.61 87 | 83.07 152 | 52.32 198 | 69.70 239 | 87.46 38 |
|
v8 | | | 70.33 121 | 69.28 126 | 73.49 132 | 73.15 250 | 50.22 197 | 78.62 129 | 80.78 131 | 60.79 86 | 66.45 174 | 82.11 180 | 49.35 106 | 84.98 113 | 63.58 119 | 68.71 254 | 85.28 112 |
|
Fast-Effi-MVS+ | | | 70.28 122 | 69.12 129 | 73.73 123 | 78.50 152 | 51.50 179 | 75.01 200 | 79.46 152 | 56.16 177 | 68.59 132 | 79.55 235 | 53.97 58 | 84.05 131 | 53.34 192 | 77.53 145 | 85.65 97 |
|
X-MVStestdata | | | 70.21 123 | 67.28 164 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 54 | 64.55 24 | 72.17 87 | 6.49 364 | 47.95 124 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 66 |
|
v10 | | | 70.21 123 | 69.02 130 | 73.81 117 | 73.51 247 | 50.92 185 | 78.74 126 | 81.39 110 | 60.05 107 | 66.39 175 | 81.83 185 | 47.58 130 | 85.41 108 | 62.80 124 | 68.86 253 | 85.09 118 |
|
QAPM | | | 70.05 125 | 68.81 133 | 73.78 118 | 76.54 204 | 53.43 151 | 83.23 56 | 83.48 66 | 52.89 225 | 65.90 184 | 86.29 97 | 41.55 202 | 86.49 79 | 51.01 207 | 78.40 139 | 81.42 210 |
|
DU-MVS | | | 70.01 126 | 69.53 121 | 71.44 174 | 78.05 168 | 44.13 268 | 75.01 200 | 81.51 107 | 64.37 29 | 68.20 139 | 84.52 128 | 49.12 113 | 82.82 164 | 54.62 180 | 70.43 222 | 87.37 41 |
|
AdaColmap |  | | 69.99 127 | 68.66 136 | 73.97 114 | 84.94 57 | 57.83 88 | 82.63 69 | 78.71 163 | 56.28 174 | 64.34 211 | 84.14 134 | 41.57 199 | 87.06 60 | 46.45 239 | 78.88 130 | 77.02 271 |
|
v1192 | | | 69.97 128 | 68.68 135 | 73.85 115 | 73.19 249 | 50.94 183 | 77.68 144 | 81.36 111 | 57.51 151 | 68.95 130 | 80.85 207 | 45.28 163 | 85.33 109 | 62.97 123 | 70.37 224 | 85.27 113 |
|
Anonymous20240529 | | | 69.91 129 | 69.02 130 | 72.56 154 | 80.19 120 | 47.65 233 | 77.56 147 | 80.99 126 | 55.45 194 | 69.88 114 | 86.76 80 | 39.24 221 | 82.18 177 | 54.04 184 | 77.10 151 | 87.85 23 |
|
FC-MVSNet-test | | | 69.80 130 | 70.58 107 | 67.46 236 | 77.61 183 | 34.73 336 | 76.05 182 | 83.19 78 | 60.84 85 | 65.88 185 | 86.46 92 | 54.52 53 | 80.76 208 | 52.52 197 | 78.12 140 | 86.91 51 |
|
v144192 | | | 69.71 131 | 68.51 137 | 73.33 139 | 73.10 251 | 50.13 199 | 77.54 148 | 80.64 132 | 56.65 161 | 68.57 134 | 80.55 212 | 46.87 145 | 84.96 115 | 62.98 122 | 69.66 240 | 84.89 124 |
|
test_yl | | | 69.69 132 | 69.13 127 | 71.36 178 | 78.37 156 | 45.74 253 | 74.71 206 | 80.20 139 | 57.91 148 | 70.01 111 | 83.83 142 | 42.44 187 | 82.87 160 | 54.97 176 | 79.72 115 | 85.48 103 |
|
DCV-MVSNet | | | 69.69 132 | 69.13 127 | 71.36 178 | 78.37 156 | 45.74 253 | 74.71 206 | 80.20 139 | 57.91 148 | 70.01 111 | 83.83 142 | 42.44 187 | 82.87 160 | 54.97 176 | 79.72 115 | 85.48 103 |
|
VNet | | | 69.68 134 | 70.19 112 | 68.16 231 | 79.73 129 | 41.63 292 | 70.53 268 | 77.38 194 | 60.37 97 | 70.69 98 | 86.63 87 | 51.08 93 | 77.09 260 | 53.61 190 | 81.69 97 | 85.75 93 |
|
jason | | | 69.65 135 | 68.39 142 | 73.43 136 | 78.27 160 | 56.88 107 | 77.12 158 | 73.71 244 | 46.53 289 | 69.34 123 | 83.22 154 | 43.37 180 | 79.18 228 | 64.77 107 | 79.20 126 | 84.23 142 |
jason: jason. |
Effi-MVS+-dtu | | | 69.64 136 | 67.53 155 | 75.95 70 | 76.10 210 | 62.29 18 | 80.20 104 | 76.06 211 | 59.83 113 | 65.26 197 | 77.09 266 | 41.56 200 | 84.02 135 | 60.60 142 | 71.09 216 | 81.53 209 |
|
lupinMVS | | | 69.57 137 | 68.28 143 | 73.44 135 | 78.76 146 | 57.15 103 | 76.57 169 | 73.29 247 | 46.19 292 | 69.49 119 | 82.18 175 | 43.99 176 | 79.23 227 | 64.66 108 | 79.37 121 | 83.93 150 |
|
NR-MVSNet | | | 69.54 138 | 68.85 132 | 71.59 172 | 78.05 168 | 43.81 272 | 74.20 213 | 80.86 130 | 65.18 17 | 62.76 226 | 84.52 128 | 52.35 79 | 83.59 144 | 50.96 208 | 70.78 217 | 87.37 41 |
|
MVS_111021_LR | | | 69.50 139 | 68.78 134 | 71.65 170 | 78.38 155 | 59.33 61 | 74.82 205 | 70.11 268 | 58.08 142 | 67.83 152 | 84.68 123 | 41.96 192 | 76.34 268 | 65.62 100 | 77.54 144 | 79.30 248 |
|
v1921920 | | | 69.47 140 | 68.17 145 | 73.36 138 | 73.06 252 | 50.10 200 | 77.39 151 | 80.56 133 | 56.58 168 | 68.59 132 | 80.37 214 | 44.72 169 | 84.98 113 | 62.47 128 | 69.82 235 | 85.00 120 |
|
test_djsdf | | | 69.45 141 | 67.74 148 | 74.58 102 | 74.57 236 | 54.92 137 | 82.79 63 | 78.48 171 | 51.26 244 | 65.41 192 | 83.49 152 | 38.37 229 | 83.24 149 | 66.06 93 | 69.25 246 | 85.56 100 |
|
Anonymous20231211 | | | 69.28 142 | 68.47 139 | 71.73 167 | 80.28 115 | 47.18 239 | 79.98 106 | 82.37 90 | 54.61 208 | 67.24 161 | 84.01 138 | 39.43 218 | 82.41 174 | 55.45 174 | 72.83 194 | 85.62 99 |
|
EI-MVSNet | | | 69.27 143 | 68.44 141 | 71.73 167 | 74.47 237 | 49.39 213 | 75.20 195 | 78.45 174 | 59.60 115 | 69.16 128 | 76.51 276 | 51.29 89 | 82.50 171 | 59.86 150 | 71.45 213 | 83.30 177 |
|
v1240 | | | 69.24 144 | 67.91 147 | 73.25 143 | 73.02 254 | 49.82 204 | 77.21 157 | 80.54 134 | 56.43 170 | 68.34 138 | 80.51 213 | 43.33 181 | 84.99 111 | 62.03 132 | 69.77 238 | 84.95 123 |
|
IterMVS-LS | | | 69.22 145 | 68.48 138 | 71.43 176 | 74.44 239 | 49.40 212 | 76.23 177 | 77.55 190 | 59.60 115 | 65.85 186 | 81.59 191 | 51.28 90 | 81.58 188 | 59.87 149 | 69.90 234 | 83.30 177 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 69.02 146 | 69.47 123 | 67.69 235 | 77.42 186 | 41.00 296 | 74.04 215 | 79.68 146 | 60.06 106 | 69.26 126 | 84.81 122 | 51.06 94 | 77.58 254 | 54.44 183 | 74.43 170 | 84.48 135 |
|
v7n | | | 69.01 147 | 67.36 161 | 73.98 113 | 72.51 263 | 52.65 161 | 78.54 132 | 81.30 116 | 60.26 104 | 62.67 228 | 81.62 188 | 43.61 178 | 84.49 124 | 57.01 161 | 68.70 255 | 84.79 128 |
|
OpenMVS |  | 61.03 9 | 68.85 148 | 67.56 152 | 72.70 152 | 74.26 242 | 53.99 143 | 81.21 92 | 81.34 115 | 52.70 226 | 62.75 227 | 85.55 114 | 38.86 225 | 84.14 130 | 48.41 227 | 83.01 76 | 79.97 237 |
|
XVG-OURS-SEG-HR | | | 68.81 149 | 67.47 157 | 72.82 150 | 74.40 240 | 56.87 108 | 70.59 267 | 79.04 156 | 54.77 207 | 66.99 164 | 86.01 104 | 39.57 217 | 78.21 245 | 62.54 126 | 73.33 185 | 83.37 175 |
|
BH-RMVSNet | | | 68.81 149 | 67.42 158 | 72.97 145 | 80.11 122 | 52.53 164 | 74.26 212 | 76.29 207 | 58.48 136 | 68.38 137 | 84.20 133 | 42.59 185 | 83.83 138 | 46.53 238 | 75.91 161 | 82.56 193 |
|
UGNet | | | 68.81 149 | 67.39 159 | 73.06 144 | 78.33 158 | 54.47 140 | 79.77 111 | 75.40 220 | 60.45 93 | 63.22 221 | 84.40 131 | 32.71 285 | 80.91 203 | 51.71 204 | 80.56 105 | 83.81 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RRT_MVS | | | 68.77 152 | 66.71 174 | 74.95 90 | 75.93 214 | 58.55 79 | 80.50 100 | 75.84 213 | 56.09 179 | 68.17 141 | 83.74 145 | 28.50 313 | 82.98 154 | 65.67 99 | 65.91 276 | 83.33 176 |
|
XVG-OURS | | | 68.76 153 | 67.37 160 | 72.90 147 | 74.32 241 | 57.22 98 | 70.09 273 | 78.81 160 | 55.24 196 | 67.79 154 | 85.81 111 | 36.54 250 | 78.28 244 | 62.04 131 | 75.74 163 | 83.19 182 |
|
V42 | | | 68.65 154 | 67.35 162 | 72.56 154 | 68.93 309 | 50.18 198 | 72.90 234 | 79.47 151 | 56.92 158 | 69.45 121 | 80.26 220 | 46.29 149 | 82.99 153 | 64.07 111 | 67.82 263 | 84.53 133 |
|
PVSNet_Blended | | | 68.59 155 | 67.72 149 | 71.19 183 | 77.03 194 | 50.57 191 | 72.51 240 | 81.52 105 | 51.91 233 | 64.22 216 | 77.77 262 | 49.13 111 | 82.87 160 | 55.82 168 | 79.58 118 | 80.14 234 |
|
xiu_mvs_v1_base_debu | | | 68.58 156 | 67.28 164 | 72.48 156 | 78.19 163 | 57.19 100 | 75.28 192 | 75.09 227 | 51.61 235 | 70.04 107 | 81.41 193 | 32.79 281 | 79.02 235 | 63.81 115 | 77.31 146 | 81.22 216 |
|
xiu_mvs_v1_base | | | 68.58 156 | 67.28 164 | 72.48 156 | 78.19 163 | 57.19 100 | 75.28 192 | 75.09 227 | 51.61 235 | 70.04 107 | 81.41 193 | 32.79 281 | 79.02 235 | 63.81 115 | 77.31 146 | 81.22 216 |
|
xiu_mvs_v1_base_debi | | | 68.58 156 | 67.28 164 | 72.48 156 | 78.19 163 | 57.19 100 | 75.28 192 | 75.09 227 | 51.61 235 | 70.04 107 | 81.41 193 | 32.79 281 | 79.02 235 | 63.81 115 | 77.31 146 | 81.22 216 |
|
PVSNet_BlendedMVS | | | 68.56 159 | 67.72 149 | 71.07 188 | 77.03 194 | 50.57 191 | 74.50 210 | 81.52 105 | 53.66 219 | 64.22 216 | 79.72 231 | 49.13 111 | 82.87 160 | 55.82 168 | 73.92 175 | 79.77 243 |
|
1121 | | | 68.53 160 | 67.16 170 | 72.63 153 | 85.64 43 | 61.14 34 | 73.95 218 | 66.46 293 | 44.61 304 | 70.28 103 | 86.68 85 | 41.42 204 | 80.78 206 | 53.62 188 | 81.79 91 | 75.97 279 |
|
WR-MVS | | | 68.47 161 | 68.47 139 | 68.44 229 | 80.20 119 | 39.84 299 | 73.75 225 | 76.07 210 | 64.68 23 | 68.11 144 | 83.63 148 | 50.39 100 | 79.14 233 | 49.78 213 | 69.66 240 | 86.34 68 |
|
AUN-MVS | | | 68.45 162 | 66.41 182 | 74.57 103 | 79.53 133 | 57.08 106 | 73.93 221 | 75.23 223 | 54.44 213 | 66.69 168 | 81.85 184 | 37.10 245 | 82.89 158 | 62.07 130 | 66.84 269 | 83.75 163 |
|
cl_fuxian | | | 68.33 163 | 67.56 152 | 70.62 195 | 70.87 283 | 46.21 248 | 74.47 211 | 78.80 161 | 56.22 176 | 66.19 178 | 78.53 251 | 51.88 83 | 81.40 190 | 62.08 129 | 69.04 249 | 84.25 141 |
|
BH-untuned | | | 68.27 164 | 67.29 163 | 71.21 182 | 79.74 128 | 53.22 154 | 76.06 181 | 77.46 193 | 57.19 154 | 66.10 179 | 81.61 189 | 45.37 162 | 83.50 145 | 45.42 253 | 76.68 158 | 76.91 275 |
|
jajsoiax | | | 68.25 165 | 66.45 178 | 73.66 126 | 75.62 219 | 55.49 130 | 80.82 95 | 78.51 170 | 52.33 230 | 64.33 212 | 84.11 135 | 28.28 315 | 81.81 183 | 63.48 120 | 70.62 219 | 83.67 166 |
|
v148 | | | 68.24 166 | 67.19 169 | 71.40 177 | 70.43 289 | 47.77 232 | 75.76 187 | 77.03 199 | 58.91 128 | 67.36 159 | 80.10 223 | 48.60 119 | 81.89 180 | 60.01 147 | 66.52 273 | 84.53 133 |
|
CANet_DTU | | | 68.18 167 | 67.71 151 | 69.59 213 | 74.83 230 | 46.24 247 | 78.66 128 | 76.85 201 | 59.60 115 | 63.45 220 | 82.09 181 | 35.25 255 | 77.41 256 | 59.88 148 | 78.76 134 | 85.14 115 |
|
mvs_tets | | | 68.18 167 | 66.36 184 | 73.63 129 | 75.61 220 | 55.35 133 | 80.77 96 | 78.56 168 | 52.48 229 | 64.27 214 | 84.10 136 | 27.45 321 | 81.84 182 | 63.45 121 | 70.56 221 | 83.69 165 |
|
RRT_test8_iter05 | | | 68.17 169 | 66.86 173 | 72.07 162 | 75.81 215 | 46.33 245 | 76.41 173 | 81.81 100 | 56.43 170 | 66.52 171 | 81.30 196 | 31.90 293 | 84.25 128 | 63.77 118 | 67.83 262 | 85.64 98 |
|
miper_ehance_all_eth | | | 68.03 170 | 67.24 168 | 70.40 199 | 70.54 287 | 46.21 248 | 73.98 216 | 78.68 165 | 55.07 202 | 66.05 180 | 77.80 260 | 52.16 81 | 81.31 192 | 61.53 138 | 69.32 243 | 83.67 166 |
|
mvs_anonymous | | | 68.03 170 | 67.51 156 | 69.59 213 | 72.08 268 | 44.57 266 | 71.99 247 | 75.23 223 | 51.67 234 | 67.06 163 | 82.57 165 | 54.68 51 | 77.94 248 | 56.56 163 | 75.71 164 | 86.26 75 |
|
ET-MVSNet_ETH3D | | | 67.96 172 | 65.72 196 | 74.68 96 | 76.67 200 | 55.62 128 | 75.11 197 | 74.74 231 | 52.91 224 | 60.03 253 | 80.12 222 | 33.68 271 | 82.64 169 | 61.86 133 | 76.34 159 | 85.78 88 |
|
thisisatest0530 | | | 67.92 173 | 65.78 195 | 74.33 109 | 76.29 207 | 51.03 182 | 76.89 165 | 74.25 238 | 53.67 218 | 65.59 189 | 81.76 186 | 35.15 256 | 85.50 103 | 55.94 166 | 72.47 200 | 86.47 62 |
|
PAPM | | | 67.92 173 | 66.69 175 | 71.63 171 | 78.09 166 | 49.02 216 | 77.09 159 | 81.24 120 | 51.04 246 | 60.91 248 | 83.98 139 | 47.71 127 | 84.99 111 | 40.81 285 | 79.32 124 | 80.90 223 |
|
tttt0517 | | | 67.83 175 | 65.66 197 | 74.33 109 | 76.69 199 | 50.82 187 | 77.86 140 | 73.99 241 | 54.54 211 | 64.64 209 | 82.53 168 | 35.06 257 | 85.50 103 | 55.71 171 | 69.91 233 | 86.67 59 |
|
eth_miper_zixun_eth | | | 67.63 176 | 66.28 188 | 71.67 169 | 71.60 275 | 48.33 225 | 73.68 226 | 77.88 183 | 55.80 186 | 65.91 183 | 78.62 249 | 47.35 137 | 82.88 159 | 59.45 152 | 66.25 274 | 83.81 156 |
|
UniMVSNet_ETH3D | | | 67.60 177 | 67.07 171 | 69.18 221 | 77.39 187 | 42.29 283 | 74.18 214 | 75.59 217 | 60.37 97 | 66.77 167 | 86.06 103 | 37.64 236 | 78.93 240 | 52.16 200 | 73.49 182 | 86.32 71 |
|
VPNet | | | 67.52 178 | 68.11 146 | 65.74 259 | 79.18 138 | 36.80 324 | 72.17 245 | 72.83 250 | 62.04 71 | 67.79 154 | 85.83 109 | 48.88 115 | 76.60 265 | 51.30 206 | 72.97 193 | 83.81 156 |
|
cl-mvsnet2 | | | 67.47 179 | 66.45 178 | 70.54 197 | 69.85 300 | 46.49 243 | 73.85 223 | 77.35 195 | 55.07 202 | 65.51 190 | 77.92 256 | 47.64 129 | 81.10 197 | 61.58 137 | 69.32 243 | 84.01 149 |
|
Fast-Effi-MVS+-dtu | | | 67.37 180 | 65.33 202 | 73.48 133 | 72.94 255 | 57.78 90 | 77.47 150 | 76.88 200 | 57.60 150 | 61.97 239 | 76.85 270 | 39.31 219 | 80.49 212 | 54.72 179 | 70.28 227 | 82.17 202 |
|
MVS | | | 67.37 180 | 66.33 185 | 70.51 198 | 75.46 223 | 50.94 183 | 73.95 218 | 81.85 99 | 41.57 328 | 62.54 232 | 78.57 250 | 47.98 123 | 85.47 105 | 52.97 195 | 82.05 90 | 75.14 288 |
|
GBi-Net | | | 67.21 182 | 66.55 176 | 69.19 218 | 77.63 178 | 43.33 275 | 77.31 152 | 77.83 185 | 56.62 164 | 65.04 202 | 82.70 160 | 41.85 195 | 80.33 214 | 47.18 233 | 72.76 196 | 83.92 151 |
|
test1 | | | 67.21 182 | 66.55 176 | 69.19 218 | 77.63 178 | 43.33 275 | 77.31 152 | 77.83 185 | 56.62 164 | 65.04 202 | 82.70 160 | 41.85 195 | 80.33 214 | 47.18 233 | 72.76 196 | 83.92 151 |
|
cl-mvsnet____ | | | 67.18 184 | 66.26 189 | 69.94 206 | 70.20 292 | 45.74 253 | 73.30 228 | 76.83 202 | 55.10 198 | 65.27 194 | 79.57 234 | 47.39 135 | 80.53 210 | 59.41 154 | 69.22 247 | 83.53 172 |
|
cl-mvsnet1 | | | 67.18 184 | 66.26 189 | 69.94 206 | 70.20 292 | 45.74 253 | 73.29 229 | 76.83 202 | 55.10 198 | 65.27 194 | 79.58 233 | 47.38 136 | 80.53 210 | 59.43 153 | 69.22 247 | 83.54 171 |
|
MVSTER | | | 67.16 186 | 65.58 199 | 71.88 164 | 70.37 291 | 49.70 206 | 70.25 272 | 78.45 174 | 51.52 238 | 69.16 128 | 80.37 214 | 38.45 228 | 82.50 171 | 60.19 145 | 71.46 212 | 83.44 174 |
|
miper_enhance_ethall | | | 67.11 187 | 66.09 191 | 70.17 203 | 69.21 306 | 45.98 251 | 72.85 235 | 78.41 177 | 51.38 241 | 65.65 188 | 75.98 285 | 51.17 92 | 81.25 193 | 60.82 140 | 69.32 243 | 83.29 179 |
|
Baseline_NR-MVSNet | | | 67.05 188 | 67.56 152 | 65.50 261 | 75.65 218 | 37.70 317 | 75.42 190 | 74.65 233 | 59.90 109 | 68.14 143 | 83.15 157 | 49.12 113 | 77.20 258 | 52.23 199 | 69.78 236 | 81.60 208 |
|
WR-MVS_H | | | 67.02 189 | 66.92 172 | 67.33 239 | 77.95 171 | 37.75 316 | 77.57 146 | 82.11 95 | 62.03 72 | 62.65 229 | 82.48 169 | 50.57 98 | 79.46 223 | 42.91 272 | 64.01 289 | 84.79 128 |
|
anonymousdsp | | | 67.00 190 | 64.82 207 | 73.57 131 | 70.09 295 | 56.13 116 | 76.35 174 | 77.35 195 | 48.43 269 | 64.99 205 | 80.84 208 | 33.01 278 | 80.34 213 | 64.66 108 | 67.64 265 | 84.23 142 |
|
FMVSNet2 | | | 66.93 191 | 66.31 187 | 68.79 225 | 77.63 178 | 42.98 278 | 76.11 179 | 77.47 191 | 56.62 164 | 65.22 200 | 82.17 177 | 41.85 195 | 80.18 217 | 47.05 236 | 72.72 199 | 83.20 181 |
|
BH-w/o | | | 66.85 192 | 65.83 194 | 69.90 209 | 79.29 134 | 52.46 166 | 74.66 208 | 76.65 205 | 54.51 212 | 64.85 206 | 78.12 252 | 45.59 155 | 82.95 156 | 43.26 268 | 75.54 165 | 74.27 301 |
|
Anonymous202405211 | | | 66.84 193 | 65.99 192 | 69.40 217 | 80.19 120 | 42.21 284 | 71.11 261 | 71.31 259 | 58.80 131 | 67.90 146 | 86.39 94 | 29.83 305 | 79.65 220 | 49.60 219 | 78.78 133 | 86.33 69 |
|
CDS-MVSNet | | | 66.80 194 | 65.37 200 | 71.10 187 | 78.98 142 | 53.13 157 | 73.27 230 | 71.07 261 | 52.15 232 | 64.72 207 | 80.23 221 | 43.56 179 | 77.10 259 | 45.48 251 | 78.88 130 | 83.05 187 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 66.78 195 | 65.27 203 | 71.33 181 | 79.16 140 | 53.67 145 | 73.84 224 | 69.59 273 | 52.32 231 | 65.28 193 | 81.72 187 | 44.49 172 | 77.40 257 | 42.32 276 | 78.66 136 | 82.92 188 |
|
FMVSNet1 | | | 66.70 196 | 65.87 193 | 69.19 218 | 77.49 185 | 43.33 275 | 77.31 152 | 77.83 185 | 56.45 169 | 64.60 210 | 82.70 160 | 38.08 234 | 80.33 214 | 46.08 242 | 72.31 204 | 83.92 151 |
|
ab-mvs | | | 66.65 197 | 66.42 181 | 67.37 237 | 76.17 209 | 41.73 289 | 70.41 271 | 76.14 209 | 53.99 215 | 65.98 181 | 83.51 151 | 49.48 105 | 76.24 269 | 48.60 225 | 73.46 183 | 84.14 145 |
|
PEN-MVS | | | 66.60 198 | 66.45 178 | 67.04 240 | 77.11 192 | 36.56 326 | 77.03 161 | 80.42 136 | 62.95 49 | 62.51 234 | 84.03 137 | 46.69 146 | 79.07 234 | 44.22 257 | 63.08 298 | 85.51 102 |
|
TAPA-MVS | | 59.36 10 | 66.60 198 | 65.20 204 | 70.81 191 | 76.63 201 | 48.75 220 | 76.52 171 | 80.04 141 | 50.64 250 | 65.24 198 | 84.93 120 | 39.15 222 | 78.54 241 | 36.77 304 | 76.88 153 | 85.14 115 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 66.59 200 | 65.07 205 | 71.17 185 | 79.18 138 | 49.63 210 | 73.48 227 | 75.20 225 | 52.95 223 | 67.90 146 | 80.33 217 | 39.81 215 | 83.68 141 | 43.20 269 | 73.56 181 | 80.20 232 |
|
CP-MVSNet | | | 66.49 201 | 66.41 182 | 66.72 242 | 77.67 177 | 36.33 329 | 76.83 167 | 79.52 150 | 62.45 62 | 62.54 232 | 83.47 153 | 46.32 148 | 78.37 242 | 45.47 252 | 63.43 295 | 85.45 105 |
|
PS-CasMVS | | | 66.42 202 | 66.32 186 | 66.70 244 | 77.60 184 | 36.30 331 | 76.94 163 | 79.61 148 | 62.36 64 | 62.43 236 | 83.66 147 | 45.69 152 | 78.37 242 | 45.35 254 | 63.26 296 | 85.42 108 |
|
FMVSNet3 | | | 66.32 203 | 65.61 198 | 68.46 228 | 76.48 205 | 42.34 282 | 74.98 202 | 77.15 198 | 55.83 184 | 65.04 202 | 81.16 197 | 39.91 213 | 80.14 218 | 47.18 233 | 72.76 196 | 82.90 190 |
|
ACMH+ | | 57.40 11 | 66.12 204 | 64.06 209 | 72.30 161 | 77.79 174 | 52.83 159 | 80.39 101 | 78.03 182 | 57.30 152 | 57.47 279 | 82.55 166 | 27.68 319 | 84.17 129 | 45.54 249 | 69.78 236 | 79.90 238 |
|
cascas | | | 65.98 205 | 63.42 220 | 73.64 128 | 77.26 190 | 52.58 163 | 72.26 244 | 77.21 197 | 48.56 266 | 61.21 247 | 74.60 297 | 32.57 289 | 85.82 95 | 50.38 211 | 76.75 157 | 82.52 195 |
|
thisisatest0515 | | | 65.83 206 | 63.50 219 | 72.82 150 | 73.75 245 | 49.50 211 | 71.32 255 | 73.12 249 | 49.39 259 | 63.82 218 | 76.50 278 | 34.95 259 | 84.84 119 | 53.20 194 | 75.49 166 | 84.13 146 |
|
DP-MVS | | | 65.68 207 | 63.66 217 | 71.75 166 | 84.93 58 | 56.87 108 | 80.74 97 | 73.16 248 | 53.06 222 | 59.09 265 | 82.35 171 | 36.79 249 | 85.94 91 | 32.82 324 | 69.96 232 | 72.45 316 |
|
HyFIR lowres test | | | 65.67 208 | 63.01 224 | 73.67 125 | 79.97 124 | 55.65 126 | 69.07 281 | 75.52 218 | 42.68 322 | 63.53 219 | 77.95 254 | 40.43 211 | 81.64 185 | 46.01 243 | 71.91 207 | 83.73 164 |
|
DTE-MVSNet | | | 65.58 209 | 65.34 201 | 66.31 247 | 76.06 212 | 34.79 334 | 76.43 172 | 79.38 153 | 62.55 60 | 61.66 243 | 83.83 142 | 45.60 154 | 79.15 232 | 41.64 284 | 60.88 312 | 85.00 120 |
|
bset_n11_16_dypcd | | | 65.57 210 | 63.69 216 | 71.19 183 | 70.84 285 | 51.79 176 | 71.37 253 | 70.48 266 | 53.33 221 | 65.19 201 | 76.41 279 | 31.46 295 | 81.76 184 | 65.12 104 | 69.04 249 | 80.01 236 |
|
GA-MVS | | | 65.53 211 | 63.70 215 | 71.02 189 | 70.87 283 | 48.10 227 | 70.48 269 | 74.40 235 | 56.69 160 | 64.70 208 | 76.77 271 | 33.66 272 | 81.10 197 | 55.42 175 | 70.32 226 | 83.87 154 |
|
CNLPA | | | 65.43 212 | 64.02 210 | 69.68 211 | 78.73 148 | 58.07 85 | 77.82 142 | 70.71 264 | 51.49 239 | 61.57 245 | 83.58 150 | 38.23 232 | 70.82 289 | 43.90 262 | 70.10 230 | 80.16 233 |
|
MVP-Stereo | | | 65.41 213 | 63.80 214 | 70.22 200 | 77.62 182 | 55.53 129 | 76.30 175 | 78.53 169 | 50.59 251 | 56.47 285 | 78.65 247 | 39.84 214 | 82.68 167 | 44.10 261 | 72.12 206 | 72.44 317 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 56.42 12 | 65.40 214 | 62.73 228 | 73.40 137 | 74.89 228 | 52.78 160 | 73.09 232 | 75.13 226 | 55.69 188 | 58.48 273 | 73.73 303 | 32.86 280 | 86.32 83 | 50.63 209 | 70.11 229 | 81.10 220 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pm-mvs1 | | | 65.24 215 | 64.97 206 | 66.04 254 | 72.38 264 | 39.40 304 | 72.62 238 | 75.63 216 | 55.53 192 | 62.35 238 | 83.18 156 | 47.45 133 | 76.47 266 | 49.06 222 | 66.54 272 | 82.24 199 |
|
ACMH | | 55.70 15 | 65.20 216 | 63.57 218 | 70.07 204 | 78.07 167 | 52.01 175 | 79.48 119 | 79.69 145 | 55.75 187 | 56.59 284 | 80.98 202 | 27.12 323 | 80.94 201 | 42.90 273 | 71.58 211 | 77.25 269 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC |  | 56.13 14 | 65.09 217 | 63.21 222 | 70.72 194 | 81.04 105 | 54.87 138 | 78.57 130 | 77.47 191 | 48.51 267 | 55.71 288 | 81.89 183 | 33.71 270 | 79.71 219 | 41.66 282 | 70.37 224 | 77.58 263 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 1792x2688 | | | 65.08 218 | 62.84 226 | 71.82 165 | 81.49 95 | 56.26 114 | 66.32 292 | 74.20 239 | 40.53 333 | 63.16 223 | 78.65 247 | 41.30 205 | 77.80 251 | 45.80 245 | 74.09 173 | 81.40 211 |
|
TransMVSNet (Re) | | | 64.72 219 | 64.33 208 | 65.87 258 | 75.22 226 | 38.56 310 | 74.66 208 | 75.08 230 | 58.90 129 | 61.79 242 | 82.63 163 | 51.18 91 | 78.07 247 | 43.63 265 | 55.87 328 | 80.99 222 |
|
EG-PatchMatch MVS | | | 64.71 220 | 62.87 225 | 70.22 200 | 77.68 176 | 53.48 150 | 77.99 139 | 78.82 159 | 53.37 220 | 56.03 287 | 77.41 265 | 24.75 337 | 84.04 132 | 46.37 240 | 73.42 184 | 73.14 308 |
|
LS3D | | | 64.71 220 | 62.50 230 | 71.34 180 | 79.72 130 | 55.71 124 | 79.82 110 | 74.72 232 | 48.50 268 | 56.62 283 | 84.62 125 | 33.59 273 | 82.34 175 | 29.65 342 | 75.23 167 | 75.97 279 |
|
1314 | | | 64.61 222 | 63.21 222 | 68.80 224 | 71.87 273 | 47.46 236 | 73.95 218 | 78.39 179 | 42.88 321 | 59.97 254 | 76.60 275 | 38.11 233 | 79.39 225 | 54.84 178 | 72.32 203 | 79.55 244 |
|
HY-MVS | | 56.14 13 | 64.55 223 | 63.89 211 | 66.55 245 | 74.73 233 | 41.02 294 | 69.96 274 | 74.43 234 | 49.29 260 | 61.66 243 | 80.92 204 | 47.43 134 | 76.68 264 | 44.91 256 | 71.69 209 | 81.94 204 |
|
XVG-ACMP-BASELINE | | | 64.36 224 | 62.23 233 | 70.74 193 | 72.35 265 | 52.45 167 | 70.80 266 | 78.45 174 | 53.84 217 | 59.87 256 | 81.10 199 | 16.24 351 | 79.32 226 | 55.64 173 | 71.76 208 | 80.47 228 |
|
CostFormer | | | 64.04 225 | 62.51 229 | 68.61 227 | 71.88 272 | 45.77 252 | 71.30 256 | 70.60 265 | 47.55 279 | 64.31 213 | 76.61 274 | 41.63 198 | 79.62 222 | 49.74 215 | 69.00 251 | 80.42 229 |
|
1112_ss | | | 64.00 226 | 63.36 221 | 65.93 256 | 79.28 135 | 42.58 281 | 71.35 254 | 72.36 254 | 46.41 290 | 60.55 250 | 77.89 258 | 46.27 150 | 73.28 279 | 46.18 241 | 69.97 231 | 81.92 205 |
|
baseline1 | | | 63.81 227 | 63.87 213 | 63.62 273 | 76.29 207 | 36.36 327 | 71.78 250 | 67.29 288 | 56.05 181 | 64.23 215 | 82.95 158 | 47.11 139 | 74.41 276 | 47.30 232 | 61.85 306 | 80.10 235 |
|
pmmvs6 | | | 63.69 228 | 62.82 227 | 66.27 249 | 70.63 286 | 39.27 305 | 73.13 231 | 75.47 219 | 52.69 227 | 59.75 259 | 82.30 173 | 39.71 216 | 77.03 261 | 47.40 231 | 64.35 288 | 82.53 194 |
|
Vis-MVSNet (Re-imp) | | | 63.69 228 | 63.88 212 | 63.14 278 | 74.75 232 | 31.04 349 | 71.16 259 | 63.64 309 | 56.32 172 | 59.80 258 | 84.99 119 | 44.51 170 | 75.46 271 | 39.12 293 | 80.62 101 | 82.92 188 |
|
baseline2 | | | 63.42 230 | 61.26 244 | 69.89 210 | 72.55 262 | 47.62 234 | 71.54 251 | 68.38 283 | 50.11 253 | 54.82 299 | 75.55 289 | 43.06 183 | 80.96 200 | 48.13 228 | 67.16 268 | 81.11 219 |
|
thres400 | | | 63.31 231 | 62.18 234 | 66.72 242 | 76.85 197 | 39.62 301 | 71.96 248 | 69.44 275 | 56.63 162 | 62.61 230 | 79.83 227 | 37.18 241 | 79.17 229 | 31.84 328 | 73.25 187 | 81.36 212 |
|
thres600view7 | | | 63.30 232 | 62.27 232 | 66.41 246 | 77.18 191 | 38.87 307 | 72.35 242 | 69.11 279 | 56.98 157 | 62.37 237 | 80.96 203 | 37.01 247 | 79.00 238 | 31.43 335 | 73.05 192 | 81.36 212 |
|
thres100view900 | | | 63.28 233 | 62.41 231 | 65.89 257 | 77.31 189 | 38.66 309 | 72.65 236 | 69.11 279 | 57.07 155 | 62.45 235 | 81.03 201 | 37.01 247 | 79.17 229 | 31.84 328 | 73.25 187 | 79.83 240 |
|
test_0402 | | | 63.25 234 | 61.01 247 | 69.96 205 | 80.00 123 | 54.37 141 | 76.86 166 | 72.02 255 | 54.58 210 | 58.71 268 | 80.79 209 | 35.00 258 | 84.36 126 | 26.41 350 | 64.71 285 | 71.15 328 |
|
tfpn200view9 | | | 63.18 235 | 62.18 234 | 66.21 250 | 76.85 197 | 39.62 301 | 71.96 248 | 69.44 275 | 56.63 162 | 62.61 230 | 79.83 227 | 37.18 241 | 79.17 229 | 31.84 328 | 73.25 187 | 79.83 240 |
|
LTVRE_ROB | | 55.42 16 | 63.15 236 | 61.23 245 | 68.92 223 | 76.57 203 | 47.80 230 | 59.92 323 | 76.39 206 | 54.35 214 | 58.67 269 | 82.46 170 | 29.44 308 | 81.49 189 | 42.12 278 | 71.14 214 | 77.46 264 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 63.05 237 | 60.87 250 | 69.58 215 | 76.99 196 | 53.63 147 | 78.12 138 | 76.16 208 | 47.97 275 | 52.41 318 | 81.61 189 | 27.87 317 | 78.11 246 | 40.07 288 | 66.66 271 | 77.00 272 |
|
IterMVS | | | 62.79 238 | 61.27 243 | 67.35 238 | 69.37 305 | 52.04 174 | 71.17 258 | 68.24 284 | 52.63 228 | 59.82 257 | 76.91 269 | 37.32 240 | 72.36 282 | 52.80 196 | 63.19 297 | 77.66 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 62.49 239 | 61.52 240 | 65.40 263 | 71.99 270 | 50.80 188 | 71.15 260 | 69.63 272 | 45.71 298 | 60.61 249 | 77.93 255 | 37.45 238 | 65.99 313 | 55.67 172 | 63.50 294 | 79.42 246 |
|
tfpnnormal | | | 62.47 240 | 61.63 239 | 64.99 267 | 74.81 231 | 39.01 306 | 71.22 257 | 73.72 243 | 55.22 197 | 60.21 251 | 80.09 224 | 41.26 208 | 76.98 262 | 30.02 340 | 68.09 259 | 78.97 251 |
|
MS-PatchMatch | | | 62.42 241 | 61.46 241 | 65.31 265 | 75.21 227 | 52.10 171 | 72.05 246 | 74.05 240 | 46.41 290 | 57.42 280 | 74.36 298 | 34.35 265 | 77.57 255 | 45.62 248 | 73.67 177 | 66.26 341 |
|
Test_1112_low_res | | | 62.32 242 | 61.77 237 | 64.00 272 | 79.08 141 | 39.53 303 | 68.17 283 | 70.17 267 | 43.25 317 | 59.03 266 | 79.90 225 | 44.08 174 | 71.24 288 | 43.79 264 | 68.42 257 | 81.25 215 |
|
D2MVS | | | 62.30 243 | 60.29 252 | 68.34 230 | 66.46 324 | 48.42 224 | 65.70 295 | 73.42 245 | 47.71 277 | 58.16 275 | 75.02 293 | 30.51 298 | 77.71 252 | 53.96 186 | 71.68 210 | 78.90 252 |
|
thres200 | | | 62.20 244 | 61.16 246 | 65.34 264 | 75.38 225 | 39.99 298 | 69.60 276 | 69.29 277 | 55.64 191 | 61.87 241 | 76.99 267 | 37.07 246 | 78.96 239 | 31.28 336 | 73.28 186 | 77.06 270 |
|
tpm2 | | | 62.07 245 | 60.10 253 | 67.99 232 | 72.79 257 | 43.86 271 | 71.05 263 | 66.85 291 | 43.14 319 | 62.77 225 | 75.39 291 | 38.32 230 | 80.80 205 | 41.69 281 | 68.88 252 | 79.32 247 |
|
miper_lstm_enhance | | | 62.03 246 | 60.88 249 | 65.49 262 | 66.71 322 | 46.25 246 | 56.29 335 | 75.70 215 | 50.68 248 | 61.27 246 | 75.48 290 | 40.21 212 | 68.03 303 | 56.31 165 | 65.25 282 | 82.18 200 |
|
DWT-MVSNet_test | | | 61.90 247 | 59.93 254 | 67.83 233 | 71.98 271 | 46.09 250 | 71.03 264 | 69.71 269 | 50.09 254 | 58.51 272 | 70.62 319 | 30.21 302 | 77.63 253 | 49.28 220 | 67.91 260 | 79.78 242 |
|
EPNet_dtu | | | 61.90 247 | 61.97 236 | 61.68 287 | 72.89 256 | 39.78 300 | 75.85 186 | 65.62 297 | 55.09 200 | 54.56 303 | 79.36 239 | 37.59 237 | 67.02 308 | 39.80 291 | 76.95 152 | 78.25 255 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LCM-MVSNet-Re | | | 61.88 249 | 61.35 242 | 63.46 274 | 74.58 235 | 31.48 348 | 61.42 317 | 58.14 330 | 58.71 132 | 53.02 317 | 79.55 235 | 43.07 182 | 76.80 263 | 45.69 246 | 77.96 141 | 82.11 203 |
|
MSDG | | | 61.81 250 | 59.23 256 | 69.55 216 | 72.64 259 | 52.63 162 | 70.45 270 | 75.81 214 | 51.38 241 | 53.70 310 | 76.11 281 | 29.52 306 | 81.08 199 | 37.70 299 | 65.79 279 | 74.93 293 |
|
SixPastTwentyTwo | | | 61.65 251 | 58.80 259 | 70.20 202 | 75.80 216 | 47.22 238 | 75.59 188 | 69.68 271 | 54.61 208 | 54.11 307 | 79.26 241 | 27.07 324 | 82.96 155 | 43.27 267 | 49.79 342 | 80.41 230 |
|
CL-MVSNet_2432*1600 | | | 61.53 252 | 60.94 248 | 63.30 276 | 68.95 308 | 36.93 323 | 67.60 287 | 72.80 251 | 55.67 189 | 59.95 255 | 76.63 272 | 45.01 166 | 72.22 285 | 39.74 292 | 62.09 305 | 80.74 226 |
|
RPMNet | | | 61.53 252 | 58.42 262 | 70.86 190 | 69.96 298 | 52.07 172 | 65.31 301 | 81.36 111 | 43.20 318 | 59.36 261 | 70.15 325 | 35.37 254 | 85.47 105 | 36.42 311 | 64.65 286 | 75.06 289 |
|
pmmvs4 | | | 61.48 254 | 59.39 255 | 67.76 234 | 71.57 276 | 53.86 144 | 71.42 252 | 65.34 299 | 44.20 309 | 59.46 260 | 77.92 256 | 35.90 251 | 74.71 274 | 43.87 263 | 64.87 284 | 74.71 297 |
|
OurMVSNet-221017-0 | | | 61.37 255 | 58.63 261 | 69.61 212 | 72.05 269 | 48.06 228 | 73.93 221 | 72.51 252 | 47.23 285 | 54.74 300 | 80.92 204 | 21.49 346 | 81.24 194 | 48.57 226 | 56.22 327 | 79.53 245 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 256 | 58.81 258 | 68.64 226 | 74.63 234 | 52.51 165 | 78.42 135 | 73.30 246 | 49.92 257 | 50.96 323 | 81.51 192 | 23.06 339 | 79.40 224 | 31.63 332 | 65.85 277 | 74.01 304 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XXY-MVS | | | 60.68 257 | 61.67 238 | 57.70 309 | 70.43 289 | 38.45 311 | 64.19 307 | 66.47 292 | 48.05 274 | 63.22 221 | 80.86 206 | 49.28 108 | 60.47 328 | 45.25 255 | 67.28 267 | 74.19 302 |
|
SCA | | | 60.49 258 | 58.38 263 | 66.80 241 | 74.14 244 | 48.06 228 | 63.35 309 | 63.23 312 | 49.13 262 | 59.33 264 | 72.10 310 | 37.45 238 | 74.27 277 | 44.17 258 | 62.57 301 | 78.05 258 |
|
K. test v3 | | | 60.47 259 | 57.11 271 | 70.56 196 | 73.74 246 | 48.22 226 | 75.10 199 | 62.55 316 | 58.27 141 | 53.62 312 | 76.31 280 | 27.81 318 | 81.59 187 | 47.42 230 | 39.18 353 | 81.88 206 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 260 | 58.14 266 | 65.69 260 | 70.47 288 | 44.82 261 | 75.33 191 | 70.86 263 | 45.04 300 | 56.06 286 | 76.00 282 | 26.89 326 | 79.65 220 | 35.36 316 | 67.29 266 | 72.60 313 |
|
CR-MVSNet | | | 59.91 261 | 57.90 268 | 65.96 255 | 69.96 298 | 52.07 172 | 65.31 301 | 63.15 313 | 42.48 323 | 59.36 261 | 74.84 294 | 35.83 252 | 70.75 290 | 45.50 250 | 64.65 286 | 75.06 289 |
|
PatchmatchNet |  | | 59.84 262 | 58.24 264 | 64.65 269 | 73.05 253 | 46.70 242 | 69.42 278 | 62.18 318 | 47.55 279 | 58.88 267 | 71.96 312 | 34.49 263 | 69.16 298 | 42.99 271 | 63.60 293 | 78.07 257 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WTY-MVS | | | 59.75 263 | 60.39 251 | 57.85 307 | 72.32 266 | 37.83 315 | 61.05 321 | 64.18 307 | 45.95 297 | 61.91 240 | 79.11 243 | 47.01 143 | 60.88 327 | 42.50 275 | 69.49 242 | 74.83 294 |
|
CVMVSNet | | | 59.63 264 | 59.14 257 | 61.08 292 | 74.47 237 | 38.84 308 | 75.20 195 | 68.74 281 | 31.15 348 | 58.24 274 | 76.51 276 | 32.39 290 | 68.58 301 | 49.77 214 | 65.84 278 | 75.81 282 |
|
tpm cat1 | | | 59.25 265 | 56.95 274 | 66.15 251 | 72.19 267 | 46.96 240 | 68.09 284 | 65.76 296 | 40.03 336 | 57.81 277 | 70.56 320 | 38.32 230 | 74.51 275 | 38.26 297 | 61.50 309 | 77.00 272 |
|
pmmvs-eth3d | | | 58.81 266 | 56.31 279 | 66.30 248 | 67.61 316 | 52.42 168 | 72.30 243 | 64.76 303 | 43.55 315 | 54.94 298 | 74.19 300 | 28.95 310 | 72.60 281 | 43.31 266 | 57.21 323 | 73.88 305 |
|
MVS_0304 | | | 58.51 267 | 57.36 270 | 61.96 286 | 70.04 296 | 41.83 287 | 69.40 279 | 65.46 298 | 50.73 247 | 53.30 316 | 74.06 301 | 22.65 340 | 70.18 296 | 42.16 277 | 68.44 256 | 73.86 306 |
|
tpmvs | | | 58.47 268 | 56.95 274 | 63.03 280 | 70.20 292 | 41.21 293 | 67.90 286 | 67.23 289 | 49.62 258 | 54.73 301 | 70.84 317 | 34.14 266 | 76.24 269 | 36.64 308 | 61.29 310 | 71.64 324 |
|
PVSNet | | 50.76 19 | 58.40 269 | 57.39 269 | 61.42 289 | 75.53 222 | 44.04 270 | 61.43 316 | 63.45 310 | 47.04 287 | 56.91 281 | 73.61 304 | 27.00 325 | 64.76 316 | 39.12 293 | 72.40 201 | 75.47 286 |
|
tpmrst | | | 58.24 270 | 58.70 260 | 56.84 310 | 66.97 319 | 34.32 338 | 69.57 277 | 61.14 322 | 47.17 286 | 58.58 271 | 71.60 313 | 41.28 207 | 60.41 329 | 49.20 221 | 62.84 299 | 75.78 283 |
|
Patchmatch-RL test | | | 58.16 271 | 55.49 283 | 66.15 251 | 67.92 315 | 48.89 219 | 60.66 322 | 51.07 347 | 47.86 276 | 59.36 261 | 62.71 346 | 34.02 268 | 72.27 284 | 56.41 164 | 59.40 317 | 77.30 266 |
|
test-LLR | | | 58.15 272 | 58.13 267 | 58.22 303 | 68.57 310 | 44.80 262 | 65.46 298 | 57.92 331 | 50.08 255 | 55.44 291 | 69.82 327 | 32.62 286 | 57.44 338 | 49.66 217 | 73.62 178 | 72.41 318 |
|
ppachtmachnet_test | | | 58.06 273 | 55.38 284 | 66.10 253 | 69.51 302 | 48.99 217 | 68.01 285 | 66.13 295 | 44.50 306 | 54.05 308 | 70.74 318 | 32.09 292 | 72.34 283 | 36.68 307 | 56.71 326 | 76.99 274 |
|
gg-mvs-nofinetune | | | 57.86 274 | 56.43 278 | 62.18 284 | 72.62 260 | 35.35 333 | 66.57 289 | 56.33 337 | 50.65 249 | 57.64 278 | 57.10 349 | 30.65 297 | 76.36 267 | 37.38 301 | 78.88 130 | 74.82 295 |
|
CMPMVS |  | 42.80 21 | 57.81 275 | 55.97 280 | 63.32 275 | 60.98 348 | 47.38 237 | 64.66 305 | 69.50 274 | 32.06 347 | 46.83 338 | 77.80 260 | 29.50 307 | 71.36 287 | 48.68 224 | 73.75 176 | 71.21 327 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet | | | 57.35 276 | 57.07 272 | 58.22 303 | 74.21 243 | 37.18 318 | 62.46 312 | 60.88 323 | 48.88 264 | 55.29 294 | 75.99 284 | 31.68 294 | 62.04 324 | 31.87 327 | 72.35 202 | 75.43 287 |
|
tpm | | | 57.34 277 | 58.16 265 | 54.86 317 | 71.80 274 | 34.77 335 | 67.47 288 | 56.04 340 | 48.20 272 | 60.10 252 | 76.92 268 | 37.17 243 | 53.41 351 | 40.76 286 | 65.01 283 | 76.40 278 |
|
Patchmtry | | | 57.16 278 | 56.47 277 | 59.23 296 | 69.17 307 | 34.58 337 | 62.98 310 | 63.15 313 | 44.53 305 | 56.83 282 | 74.84 294 | 35.83 252 | 68.71 300 | 40.03 289 | 60.91 311 | 74.39 300 |
|
AllTest | | | 57.08 279 | 54.65 288 | 64.39 270 | 71.44 277 | 49.03 214 | 69.92 275 | 67.30 286 | 45.97 295 | 47.16 336 | 79.77 229 | 17.47 348 | 67.56 305 | 33.65 321 | 59.16 318 | 76.57 276 |
|
our_test_3 | | | 56.49 280 | 54.42 290 | 62.68 282 | 69.51 302 | 45.48 258 | 66.08 293 | 61.49 321 | 44.11 312 | 50.73 327 | 69.60 329 | 33.05 277 | 68.15 302 | 38.38 296 | 56.86 324 | 74.40 299 |
|
pmmvs5 | | | 56.47 281 | 55.68 282 | 58.86 300 | 61.41 345 | 36.71 325 | 66.37 291 | 62.75 315 | 40.38 334 | 53.70 310 | 76.62 273 | 34.56 261 | 67.05 307 | 40.02 290 | 65.27 281 | 72.83 311 |
|
test-mter | | | 56.42 282 | 55.82 281 | 58.22 303 | 68.57 310 | 44.80 262 | 65.46 298 | 57.92 331 | 39.94 337 | 55.44 291 | 69.82 327 | 21.92 343 | 57.44 338 | 49.66 217 | 73.62 178 | 72.41 318 |
|
USDC | | | 56.35 283 | 54.24 294 | 62.69 281 | 64.74 332 | 40.31 297 | 65.05 303 | 73.83 242 | 43.93 313 | 47.58 334 | 77.71 263 | 15.36 353 | 75.05 273 | 38.19 298 | 61.81 307 | 72.70 312 |
|
PatchMatch-RL | | | 56.25 284 | 54.55 289 | 61.32 291 | 77.06 193 | 56.07 118 | 65.57 297 | 54.10 345 | 44.13 311 | 53.49 315 | 71.27 316 | 25.20 334 | 66.78 309 | 36.52 310 | 63.66 292 | 61.12 344 |
|
sss | | | 56.17 285 | 56.57 276 | 54.96 316 | 66.93 320 | 36.32 330 | 57.94 329 | 61.69 320 | 41.67 326 | 58.64 270 | 75.32 292 | 38.72 226 | 56.25 344 | 42.04 279 | 66.19 275 | 72.31 321 |
|
FMVSNet5 | | | 55.86 286 | 54.93 286 | 58.66 302 | 71.05 282 | 36.35 328 | 64.18 308 | 62.48 317 | 46.76 288 | 50.66 328 | 74.73 296 | 25.80 331 | 64.04 318 | 33.11 323 | 65.57 280 | 75.59 285 |
|
RPSCF | | | 55.80 287 | 54.22 295 | 60.53 293 | 65.13 331 | 42.91 280 | 64.30 306 | 57.62 333 | 36.84 342 | 58.05 276 | 82.28 174 | 28.01 316 | 56.24 345 | 37.14 302 | 58.61 320 | 82.44 198 |
|
EU-MVSNet | | | 55.61 288 | 54.41 291 | 59.19 298 | 65.41 330 | 33.42 342 | 72.44 241 | 71.91 256 | 28.81 350 | 51.27 321 | 73.87 302 | 24.76 336 | 69.08 299 | 43.04 270 | 58.20 321 | 75.06 289 |
|
Anonymous20240521 | | | 55.30 289 | 54.41 291 | 57.96 306 | 60.92 350 | 41.73 289 | 71.09 262 | 71.06 262 | 41.18 329 | 48.65 332 | 73.31 305 | 16.93 350 | 59.25 333 | 42.54 274 | 64.01 289 | 72.90 310 |
|
TESTMET0.1,1 | | | 55.28 290 | 54.90 287 | 56.42 311 | 66.56 323 | 43.67 273 | 65.46 298 | 56.27 338 | 39.18 339 | 53.83 309 | 67.44 335 | 24.21 338 | 55.46 348 | 48.04 229 | 73.11 191 | 70.13 333 |
|
DIV-MVS_2432*1600 | | | 55.22 291 | 53.89 297 | 59.21 297 | 57.80 355 | 27.47 355 | 57.75 330 | 74.32 236 | 47.38 281 | 50.90 324 | 70.00 326 | 28.45 314 | 70.30 294 | 40.44 287 | 57.92 322 | 79.87 239 |
|
MIMVSNet1 | | | 55.17 292 | 54.31 293 | 57.77 308 | 70.03 297 | 32.01 346 | 65.68 296 | 64.81 302 | 49.19 261 | 46.75 339 | 76.00 282 | 25.53 333 | 64.04 318 | 28.65 344 | 62.13 304 | 77.26 268 |
|
Anonymous20231206 | | | 55.10 293 | 55.30 285 | 54.48 319 | 69.81 301 | 33.94 340 | 62.91 311 | 62.13 319 | 41.08 330 | 55.18 295 | 75.65 287 | 32.75 284 | 56.59 343 | 30.32 339 | 67.86 261 | 72.91 309 |
|
TinyColmap | | | 54.14 294 | 51.72 304 | 61.40 290 | 66.84 321 | 41.97 285 | 66.52 290 | 68.51 282 | 44.81 301 | 42.69 348 | 75.77 286 | 11.66 356 | 72.94 280 | 31.96 326 | 56.77 325 | 69.27 337 |
|
EPMVS | | | 53.96 295 | 53.69 298 | 54.79 318 | 66.12 327 | 31.96 347 | 62.34 314 | 49.05 350 | 44.42 308 | 55.54 289 | 71.33 315 | 30.22 301 | 56.70 341 | 41.65 283 | 62.54 302 | 75.71 284 |
|
PMMVS | | | 53.96 295 | 53.26 301 | 56.04 312 | 62.60 341 | 50.92 185 | 61.17 320 | 56.09 339 | 32.81 346 | 53.51 314 | 66.84 337 | 34.04 267 | 59.93 331 | 44.14 260 | 68.18 258 | 57.27 349 |
|
test20.03 | | | 53.87 297 | 54.02 296 | 53.41 323 | 61.47 344 | 28.11 354 | 61.30 318 | 59.21 326 | 51.34 243 | 52.09 319 | 77.43 264 | 33.29 276 | 58.55 335 | 29.76 341 | 60.27 315 | 73.58 307 |
|
MDA-MVSNet-bldmvs | | | 53.87 297 | 50.81 308 | 63.05 279 | 66.25 325 | 48.58 221 | 56.93 333 | 63.82 308 | 48.09 273 | 41.22 349 | 70.48 323 | 30.34 300 | 68.00 304 | 34.24 319 | 45.92 347 | 72.57 314 |
|
KD-MVS_2432*1600 | | | 53.45 299 | 51.50 306 | 59.30 294 | 62.82 338 | 37.14 319 | 55.33 336 | 71.79 257 | 47.34 283 | 55.09 296 | 70.52 321 | 21.91 344 | 70.45 292 | 35.72 314 | 42.97 350 | 70.31 331 |
|
miper_refine_blended | | | 53.45 299 | 51.50 306 | 59.30 294 | 62.82 338 | 37.14 319 | 55.33 336 | 71.79 257 | 47.34 283 | 55.09 296 | 70.52 321 | 21.91 344 | 70.45 292 | 35.72 314 | 42.97 350 | 70.31 331 |
|
TDRefinement | | | 53.44 301 | 50.72 309 | 61.60 288 | 64.31 335 | 46.96 240 | 70.89 265 | 65.27 301 | 41.78 324 | 44.61 344 | 77.98 253 | 11.52 357 | 66.36 311 | 28.57 345 | 51.59 338 | 71.49 325 |
|
test0.0.03 1 | | | 53.32 302 | 53.59 299 | 52.50 327 | 62.81 340 | 29.45 352 | 59.51 324 | 54.11 344 | 50.08 255 | 54.40 305 | 74.31 299 | 32.62 286 | 55.92 346 | 30.50 338 | 63.95 291 | 72.15 323 |
|
PatchT | | | 53.17 303 | 53.44 300 | 52.33 328 | 68.29 314 | 25.34 359 | 58.21 328 | 54.41 343 | 44.46 307 | 54.56 303 | 69.05 330 | 33.32 275 | 60.94 326 | 36.93 303 | 61.76 308 | 70.73 330 |
|
UnsupCasMVSNet_eth | | | 53.16 304 | 52.47 302 | 55.23 315 | 59.45 352 | 33.39 343 | 59.43 325 | 69.13 278 | 45.98 294 | 50.35 330 | 72.32 309 | 29.30 309 | 58.26 336 | 42.02 280 | 44.30 348 | 74.05 303 |
|
PM-MVS | | | 52.33 305 | 50.19 310 | 58.75 301 | 62.10 342 | 45.14 260 | 65.75 294 | 40.38 360 | 43.60 314 | 53.52 313 | 72.65 307 | 9.16 362 | 65.87 314 | 50.41 210 | 54.18 333 | 65.24 343 |
|
testgi | | | 51.90 306 | 52.37 303 | 50.51 332 | 60.39 351 | 23.55 361 | 58.42 327 | 58.15 329 | 49.03 263 | 51.83 320 | 79.21 242 | 22.39 341 | 55.59 347 | 29.24 343 | 62.64 300 | 72.40 320 |
|
dp | | | 51.89 307 | 51.60 305 | 52.77 326 | 68.44 313 | 32.45 345 | 62.36 313 | 54.57 342 | 44.16 310 | 49.31 331 | 67.91 332 | 28.87 312 | 56.61 342 | 33.89 320 | 54.89 330 | 69.24 338 |
|
JIA-IIPM | | | 51.56 308 | 47.68 318 | 63.21 277 | 64.61 333 | 50.73 189 | 47.71 349 | 58.77 328 | 42.90 320 | 48.46 333 | 51.72 352 | 24.97 335 | 70.24 295 | 36.06 313 | 53.89 334 | 68.64 339 |
|
ADS-MVSNet2 | | | 51.33 309 | 48.76 314 | 59.07 299 | 66.02 328 | 44.60 265 | 50.90 344 | 59.76 325 | 36.90 340 | 50.74 325 | 66.18 339 | 26.38 327 | 63.11 320 | 27.17 346 | 54.76 331 | 69.50 335 |
|
YYNet1 | | | 50.73 310 | 48.96 311 | 56.03 313 | 61.10 347 | 41.78 288 | 51.94 342 | 56.44 336 | 40.94 332 | 44.84 342 | 67.80 334 | 30.08 303 | 55.08 349 | 36.77 304 | 50.71 340 | 71.22 326 |
|
MDA-MVSNet_test_wron | | | 50.71 311 | 48.95 312 | 56.00 314 | 61.17 346 | 41.84 286 | 51.90 343 | 56.45 335 | 40.96 331 | 44.79 343 | 67.84 333 | 30.04 304 | 55.07 350 | 36.71 306 | 50.69 341 | 71.11 329 |
|
UnsupCasMVSNet_bld | | | 50.07 312 | 48.87 313 | 53.66 321 | 60.97 349 | 33.67 341 | 57.62 331 | 64.56 305 | 39.47 338 | 47.38 335 | 64.02 344 | 27.47 320 | 59.32 332 | 34.69 318 | 43.68 349 | 67.98 340 |
|
Patchmatch-test | | | 49.08 313 | 48.28 315 | 51.50 330 | 64.40 334 | 30.85 350 | 45.68 351 | 48.46 353 | 35.60 343 | 46.10 341 | 72.10 310 | 34.47 264 | 46.37 355 | 27.08 348 | 60.65 314 | 77.27 267 |
|
ADS-MVSNet | | | 48.48 314 | 47.77 316 | 50.63 331 | 66.02 328 | 29.92 351 | 50.90 344 | 50.87 349 | 36.90 340 | 50.74 325 | 66.18 339 | 26.38 327 | 52.47 352 | 27.17 346 | 54.76 331 | 69.50 335 |
|
CHOSEN 280x420 | | | 47.83 315 | 46.36 319 | 52.24 329 | 67.37 318 | 49.78 205 | 38.91 357 | 43.11 358 | 35.00 344 | 43.27 347 | 63.30 345 | 28.95 310 | 49.19 354 | 36.53 309 | 60.80 313 | 57.76 348 |
|
new-patchmatchnet | | | 47.56 316 | 47.73 317 | 47.06 334 | 58.81 353 | 9.37 367 | 48.78 348 | 59.21 326 | 43.28 316 | 44.22 345 | 68.66 331 | 25.67 332 | 57.20 340 | 31.57 334 | 49.35 343 | 74.62 298 |
|
PVSNet_0 | | 43.31 20 | 47.46 317 | 45.64 320 | 52.92 325 | 67.60 317 | 44.65 264 | 54.06 340 | 54.64 341 | 41.59 327 | 46.15 340 | 58.75 348 | 30.99 296 | 58.66 334 | 32.18 325 | 24.81 356 | 55.46 350 |
|
MVS-HIRNet | | | 45.52 318 | 44.48 321 | 48.65 333 | 68.49 312 | 34.05 339 | 59.41 326 | 44.50 357 | 27.03 352 | 37.96 353 | 50.47 355 | 26.16 330 | 64.10 317 | 26.74 349 | 59.52 316 | 47.82 352 |
|
pmmvs3 | | | 44.92 319 | 41.95 323 | 53.86 320 | 52.58 357 | 43.55 274 | 62.11 315 | 46.90 356 | 26.05 354 | 40.63 350 | 60.19 347 | 11.08 359 | 57.91 337 | 31.83 331 | 46.15 346 | 60.11 345 |
|
LF4IMVS | | | 42.95 320 | 42.26 322 | 45.04 336 | 48.30 359 | 32.50 344 | 54.80 338 | 48.49 352 | 28.03 351 | 40.51 351 | 70.16 324 | 9.24 361 | 43.89 357 | 31.63 332 | 49.18 344 | 58.72 346 |
|
FPMVS | | | 42.18 321 | 41.11 324 | 45.39 335 | 58.03 354 | 41.01 295 | 49.50 346 | 53.81 346 | 30.07 349 | 33.71 354 | 64.03 342 | 11.69 355 | 52.08 353 | 14.01 358 | 55.11 329 | 43.09 354 |
|
ANet_high | | | 41.38 322 | 37.47 327 | 53.11 324 | 39.73 364 | 24.45 360 | 56.94 332 | 69.69 270 | 47.65 278 | 26.04 357 | 52.32 351 | 12.44 354 | 62.38 323 | 21.80 353 | 10.61 363 | 72.49 315 |
|
LCM-MVSNet | | | 40.30 323 | 35.88 328 | 53.57 322 | 42.24 361 | 29.15 353 | 45.21 353 | 60.53 324 | 22.23 358 | 28.02 356 | 50.98 354 | 3.72 368 | 61.78 325 | 31.22 337 | 38.76 354 | 69.78 334 |
|
N_pmnet | | | 39.35 324 | 40.28 325 | 36.54 340 | 63.76 336 | 1.62 371 | 49.37 347 | 0.76 371 | 34.62 345 | 43.61 346 | 66.38 338 | 26.25 329 | 42.57 358 | 26.02 351 | 51.77 337 | 65.44 342 |
|
DSMNet-mixed | | | 39.30 325 | 38.72 326 | 41.03 339 | 51.22 358 | 19.66 363 | 45.53 352 | 31.35 364 | 15.83 361 | 39.80 352 | 67.42 336 | 22.19 342 | 45.13 356 | 22.43 352 | 52.69 336 | 58.31 347 |
|
PMVS |  | 28.69 22 | 36.22 326 | 33.29 330 | 45.02 337 | 36.82 366 | 35.98 332 | 54.68 339 | 48.74 351 | 26.31 353 | 21.02 358 | 51.61 353 | 2.88 370 | 60.10 330 | 9.99 362 | 47.58 345 | 38.99 357 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 34.77 327 | 31.91 331 | 43.33 338 | 62.05 343 | 37.87 314 | 20.39 360 | 67.03 290 | 23.23 356 | 18.41 360 | 25.84 360 | 4.24 366 | 62.73 321 | 14.71 357 | 51.32 339 | 29.38 358 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 34.13 328 | 34.29 329 | 33.64 341 | 52.63 356 | 18.23 365 | 44.43 354 | 33.90 363 | 22.81 357 | 30.89 355 | 53.18 350 | 10.48 360 | 35.72 362 | 20.77 354 | 39.51 352 | 46.98 353 |
|
PMMVS2 | | | 27.40 329 | 25.91 332 | 31.87 343 | 39.46 365 | 6.57 368 | 31.17 358 | 28.52 365 | 23.96 355 | 20.45 359 | 48.94 356 | 4.20 367 | 37.94 361 | 16.51 355 | 19.97 358 | 51.09 351 |
|
E-PMN | | | 23.77 330 | 22.73 334 | 26.90 344 | 42.02 362 | 20.67 362 | 42.66 355 | 35.70 361 | 17.43 359 | 10.28 365 | 25.05 361 | 6.42 364 | 42.39 359 | 10.28 361 | 14.71 360 | 17.63 359 |
|
EMVS | | | 22.97 331 | 21.84 335 | 26.36 345 | 40.20 363 | 19.53 364 | 41.95 356 | 34.64 362 | 17.09 360 | 9.73 366 | 22.83 362 | 7.29 363 | 42.22 360 | 9.18 363 | 13.66 361 | 17.32 360 |
|
MVE |  | 17.77 23 | 21.41 332 | 17.77 337 | 32.34 342 | 34.34 367 | 25.44 358 | 16.11 361 | 24.11 366 | 11.19 362 | 13.22 362 | 31.92 358 | 1.58 371 | 30.95 363 | 10.47 360 | 17.03 359 | 40.62 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.68 333 | 18.10 336 | 24.41 346 | 13.68 369 | 3.11 370 | 12.06 363 | 42.37 359 | 2.00 365 | 11.97 363 | 36.38 357 | 5.77 365 | 29.35 364 | 15.06 356 | 23.65 357 | 40.76 355 |
|
cdsmvs_eth3d_5k | | | 17.50 334 | 23.34 333 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 78.63 166 | 0.00 369 | 0.00 370 | 82.18 175 | 49.25 109 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
wuyk23d | | | 13.32 335 | 12.52 338 | 15.71 347 | 47.54 360 | 26.27 356 | 31.06 359 | 1.98 370 | 4.93 364 | 5.18 367 | 1.94 367 | 0.45 372 | 18.54 365 | 6.81 365 | 12.83 362 | 2.33 363 |
|
tmp_tt | | | 9.43 336 | 11.14 339 | 4.30 349 | 2.38 370 | 4.40 369 | 13.62 362 | 16.08 368 | 0.39 366 | 15.89 361 | 13.06 363 | 15.80 352 | 5.54 367 | 12.63 359 | 10.46 364 | 2.95 362 |
|
ab-mvs-re | | | 6.49 337 | 8.65 340 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 77.89 258 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
test123 | | | 4.73 338 | 6.30 341 | 0.02 350 | 0.01 371 | 0.01 372 | 56.36 334 | 0.00 372 | 0.01 367 | 0.04 368 | 0.21 369 | 0.01 373 | 0.00 368 | 0.03 367 | 0.00 366 | 0.04 364 |
|
testmvs | | | 4.52 339 | 6.03 342 | 0.01 351 | 0.01 371 | 0.00 373 | 53.86 341 | 0.00 372 | 0.01 367 | 0.04 368 | 0.27 368 | 0.00 374 | 0.00 368 | 0.04 366 | 0.00 366 | 0.03 365 |
|
pcd_1.5k_mvsjas | | | 3.92 340 | 5.23 343 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 47.05 140 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 374 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 87 | 57.95 146 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 22 | 74.05 36 | 87.00 51 | |
|
RE-MVS-def | | | | 73.71 71 | | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 111 | 58.07 143 | 73.14 72 | 90.07 36 | 43.06 183 | | 68.20 75 | 81.76 93 | 84.03 147 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 64 | | 85.53 27 | 53.93 216 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 33 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 30 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 12 | 64.20 32 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 41 | 88.26 2 | 59.90 109 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 64 | 77.39 15 | 89.52 21 | |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 46 | 79.66 147 | 59.00 126 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 66 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 32 |
|
test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 2 | 86.83 10 | 64.26 30 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 258 |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 260 | | | | 78.05 258 |
|
sam_mvs | | | | | | | | | | | | | 33.43 274 | | | | |
|
ambc | | | | | 65.13 266 | 63.72 337 | 37.07 321 | 47.66 350 | 78.78 162 | | 54.37 306 | 71.42 314 | 11.24 358 | 80.94 201 | 45.64 247 | 53.85 335 | 77.38 265 |
|
MTGPA |  | | | | | | | | 80.97 127 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 282 | | | | 3.64 365 | 32.39 290 | 69.49 297 | 44.17 258 | | |
|
test_post | | | | | | | | | | | | 3.55 366 | 33.90 269 | 66.52 310 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 342 | 34.50 262 | 74.27 277 | | | |
|
GG-mvs-BLEND | | | | | 62.34 283 | 71.36 281 | 37.04 322 | 69.20 280 | 57.33 334 | | 54.73 301 | 65.48 341 | 30.37 299 | 77.82 250 | 34.82 317 | 74.93 168 | 72.17 322 |
|
MTMP | | | | | | | | 86.03 17 | 17.08 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 280 | 41.72 291 | | | 48.85 265 | | 73.31 305 | | 82.48 173 | 48.90 223 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 156 |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 85 | 81.26 118 | 55.65 190 | 74.93 42 | 88.81 62 | 53.70 65 | 84.68 120 | | | |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 88 | 81.18 121 | 55.86 182 | 74.81 45 | 88.80 64 | 53.70 65 | 84.45 125 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 138 |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 124 | | 74.68 48 | | | 84.04 132 | | | |
|
TestCases | | | | | 64.39 270 | 71.44 277 | 49.03 214 | | 67.30 286 | 45.97 295 | 47.16 336 | 79.77 229 | 17.47 348 | 67.56 305 | 33.65 321 | 59.16 318 | 76.57 276 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 80 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 82 | | 60.37 97 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 96 | | 84.88 38 | | | | | 86.43 80 | | | 86.38 63 |
|
旧先验2 | | | | | | | | 76.08 180 | | 45.32 299 | 76.55 31 | | | 65.56 315 | 58.75 155 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 178 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 70.76 192 | 85.66 41 | 61.13 35 | | 66.43 294 | 44.68 303 | 70.29 102 | 86.64 86 | 41.29 206 | 75.23 272 | 49.72 216 | 81.75 95 | 75.93 281 |
|
旧先验1 | | | | | | 83.04 75 | 53.15 155 | | 67.52 285 | | | 87.85 71 | 44.08 174 | | | 80.76 100 | 78.03 261 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 114 | 74.30 237 | 48.40 270 | | | | 80.78 206 | 53.62 188 | | 79.03 250 |
|
原ACMM2 | | | | | | | | 79.02 123 | | | | | | | | | |
|
原ACMM1 | | | | | 74.69 95 | 85.39 49 | 59.40 59 | | 83.42 69 | 51.47 240 | 70.27 104 | 86.61 88 | 48.61 118 | 86.51 78 | 53.85 187 | 87.96 39 | 78.16 256 |
|
test222 | | | | | | 83.14 72 | 58.68 76 | 72.57 239 | 63.45 310 | 41.78 324 | 67.56 157 | 86.12 100 | 37.13 244 | | | 78.73 135 | 74.98 292 |
|
testdata2 | | | | | | | | | | | | | | 72.18 286 | 46.95 237 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 55 | | | | |
|
testdata | | | | | 64.66 268 | 81.52 93 | 52.93 158 | | 65.29 300 | 46.09 293 | 73.88 62 | 87.46 74 | 38.08 234 | 66.26 312 | 53.31 193 | 78.48 138 | 74.78 296 |
|
testdata1 | | | | | | | | 72.65 236 | | 60.50 92 | | | | | | | |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 80 | | 83.36 72 | | 72.93 78 | | 54.61 52 | 88.05 35 | | 88.12 36 | 86.81 56 |
|
plane_prior7 | | | | | | 81.41 96 | 55.96 120 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 103 | 56.24 115 | | | | | | 45.26 164 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 52 | | | | | 87.21 53 | 68.16 77 | 80.58 103 | 84.65 131 |
|
plane_prior4 | | | | | | | | | | | | 86.10 101 | | | | | |
|
plane_prior3 | | | | | | | 56.09 117 | | | 63.92 37 | 69.27 124 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 26 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 101 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 111 | 83.58 53 | | 63.19 47 | | | | | | 80.48 106 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 355 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 208 | 71.42 279 | 47.80 230 | | 50.90 348 | | 50.39 329 | 75.56 288 | 27.43 322 | 81.33 191 | 45.91 244 | 34.10 355 | 80.59 227 |
|
LGP-MVS_train | | | | | 75.76 73 | 80.22 117 | 57.51 94 | | 83.40 70 | 61.32 80 | 66.67 169 | 87.33 76 | 39.15 222 | 86.59 73 | 67.70 81 | 77.30 149 | 83.19 182 |
|
test11 | | | | | | | | | 83.47 67 | | | | | | | | |
|
door | | | | | | | | | 47.60 354 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 135 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 108 | | 82.31 75 | | 62.10 68 | 67.85 148 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 108 | | 82.31 75 | | 62.10 68 | 67.85 148 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 88 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 148 | | | 86.93 62 | | | 84.32 139 |
|
HQP3-MVS | | | | | | | | | 83.90 56 | | | | | | | 80.35 109 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 158 | | | | |
|
NP-MVS | | | | | | 80.98 106 | 56.05 119 | | | | | 85.54 115 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 357 | 61.22 319 | | 40.10 335 | 51.10 322 | | 32.97 279 | | 38.49 295 | | 78.61 253 |
|
MDTV_nov1_ep13 | | | | 57.00 273 | | 72.73 258 | 38.26 312 | 65.02 304 | 64.73 304 | 44.74 302 | 55.46 290 | 72.48 308 | 32.61 288 | 70.47 291 | 37.47 300 | 67.75 264 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 174 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 205 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 121 | | | | |
|
ITE_SJBPF | | | | | 62.09 285 | 66.16 326 | 44.55 267 | | 64.32 306 | 47.36 282 | 55.31 293 | 80.34 216 | 19.27 347 | 62.68 322 | 36.29 312 | 62.39 303 | 79.04 249 |
|
DeepMVS_CX |  | | | | 12.03 348 | 17.97 368 | 10.91 366 | | 10.60 369 | 7.46 363 | 11.07 364 | 28.36 359 | 3.28 369 | 11.29 366 | 8.01 364 | 9.74 365 | 13.89 361 |
|