DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 59 | 88.18 1 | 87.15 3 | 65.04 14 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 9 |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 68 | 87.82 7 | 86.78 10 | 64.18 30 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 14 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 17 | 86.83 8 | 65.51 10 | 83.81 10 | 90.51 21 | 63.71 12 | 89.23 18 | 81.51 1 | 88.44 27 | 88.09 19 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 32 | 87.75 7 | 59.07 63 | 87.85 5 | 85.03 34 | 64.26 27 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 109 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 41 | 85.71 25 | 86.42 14 | 63.28 42 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 24 | 89.67 18 | 86.84 57 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 60 | 82.20 15 | 92.28 1 | 56.53 33 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 27 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 49 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 11 | 88.32 31 | 86.79 59 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 60 | 65.37 11 | 78.78 22 | 90.64 17 | 58.63 24 | 87.24 49 | 79.00 10 | 90.37 14 | 85.26 119 |
|
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 17 | 84.37 34 | 85.03 34 | 66.96 3 | 77.58 27 | 90.06 34 | 59.47 20 | 89.13 20 | 78.67 12 | 89.73 16 | 87.03 51 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 10 | 79.98 2 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 7 | 78.03 26 | 90.98 14 | 54.26 50 | 90.06 12 | 78.42 17 | 89.02 23 | 87.69 31 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 18 | 84.92 56 | 60.32 44 | 83.03 55 | 85.33 27 | 62.86 52 | 80.17 17 | 90.03 36 | 61.76 14 | 88.95 22 | 74.21 33 | 88.67 26 | 88.12 18 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 42 | 82.88 74 | 57.83 79 | 84.99 30 | 88.13 2 | 61.86 73 | 79.16 20 | 90.75 16 | 57.96 25 | 87.09 58 | 77.08 21 | 90.18 15 | 87.87 24 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 15 | 79.30 13 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 41 | 75.08 38 | 90.47 24 | 53.96 54 | 88.68 25 | 76.48 23 | 89.63 20 | 87.16 49 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 13 | 78.74 28 | 85.44 45 | 61.04 31 | 83.84 47 | 85.16 30 | 62.88 51 | 78.10 24 | 91.26 13 | 52.51 68 | 88.39 28 | 79.34 6 | 90.52 13 | 86.78 60 |
|
NCCC | | | 78.58 15 | 78.31 17 | 79.39 11 | 87.51 12 | 62.61 13 | 85.20 29 | 84.42 42 | 66.73 6 | 74.67 47 | 89.38 47 | 55.30 41 | 89.18 19 | 74.19 34 | 87.34 41 | 86.38 67 |
|
DeepC-MVS | | 69.38 2 | 78.56 16 | 78.14 20 | 79.83 6 | 83.60 63 | 61.62 23 | 84.17 40 | 86.85 6 | 63.23 44 | 73.84 56 | 90.25 30 | 57.68 27 | 89.96 13 | 74.62 31 | 89.03 22 | 87.89 22 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 78.44 17 | 78.28 18 | 78.90 25 | 84.96 52 | 61.41 26 | 84.03 43 | 83.82 58 | 59.34 115 | 79.37 19 | 89.76 43 | 59.84 16 | 87.62 45 | 76.69 22 | 86.74 50 | 87.68 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS-pluss | | | 78.35 18 | 78.46 16 | 78.03 38 | 84.96 52 | 59.52 52 | 82.93 57 | 85.39 26 | 62.15 65 | 76.41 32 | 91.51 11 | 52.47 70 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 28 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 78.35 18 | 78.26 19 | 78.64 29 | 86.54 25 | 63.47 4 | 86.02 19 | 83.55 64 | 63.89 35 | 73.60 58 | 90.60 18 | 54.85 46 | 86.72 66 | 77.20 20 | 88.06 35 | 85.74 98 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 20 | 77.85 22 | 78.99 24 | 86.05 38 | 61.82 22 | 85.84 20 | 85.21 29 | 63.56 39 | 74.29 51 | 90.03 36 | 52.56 67 | 88.53 27 | 74.79 30 | 88.34 29 | 86.63 63 |
|
APD-MVS |  | | 78.02 21 | 78.04 21 | 77.98 39 | 86.44 27 | 60.81 38 | 85.52 26 | 84.36 43 | 60.61 87 | 79.05 21 | 90.30 28 | 55.54 40 | 88.32 30 | 73.48 41 | 87.03 43 | 84.83 130 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 22 | 77.65 23 | 79.10 20 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 44 | 62.82 53 | 73.96 54 | 90.50 22 | 53.20 63 | 88.35 29 | 74.02 36 | 87.05 42 | 86.13 81 |
|
ACMMPR | | | 77.71 23 | 77.23 26 | 79.16 16 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 45 | 62.82 53 | 73.55 59 | 90.56 20 | 49.80 97 | 88.24 31 | 74.02 36 | 87.03 43 | 86.32 75 |
|
SD-MVS | | | 77.70 24 | 77.62 24 | 77.93 40 | 84.47 59 | 61.88 21 | 84.55 32 | 83.87 56 | 60.37 94 | 79.89 18 | 89.38 47 | 54.97 44 | 85.58 95 | 76.12 25 | 84.94 60 | 86.33 73 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
region2R | | | 77.67 25 | 77.18 27 | 79.15 17 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 47 | 62.81 55 | 73.30 61 | 90.58 19 | 49.90 95 | 88.21 32 | 73.78 38 | 87.03 43 | 86.29 78 |
|
MCST-MVS | | | 77.48 26 | 77.45 25 | 77.54 43 | 86.67 20 | 58.36 75 | 83.22 53 | 86.93 5 | 56.91 153 | 74.91 42 | 88.19 59 | 59.15 22 | 87.68 44 | 73.67 39 | 87.45 40 | 86.57 64 |
|
HPM-MVS |  | | 77.28 27 | 76.85 28 | 78.54 30 | 85.00 51 | 60.81 38 | 82.91 58 | 85.08 31 | 62.57 58 | 73.09 67 | 89.97 39 | 50.90 91 | 87.48 47 | 75.30 26 | 86.85 48 | 87.33 47 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DeepC-MVS_fast | | 68.24 3 | 77.25 28 | 76.63 31 | 79.12 19 | 86.15 34 | 60.86 36 | 84.71 31 | 84.85 38 | 61.98 72 | 73.06 68 | 88.88 53 | 53.72 57 | 89.06 21 | 68.27 66 | 88.04 36 | 87.42 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 77.17 29 | 76.56 32 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 21 | 72.17 80 | 90.01 38 | 47.95 117 | 88.01 36 | 71.55 53 | 86.74 50 | 86.37 69 |
|
CP-MVS | | | 77.12 30 | 76.68 30 | 78.43 31 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 67 | 62.44 62 | 72.68 73 | 90.50 22 | 48.18 115 | 87.34 48 | 73.59 40 | 85.71 56 | 84.76 134 |
|
CSCG | | | 76.92 31 | 76.75 29 | 77.41 44 | 83.96 62 | 59.60 50 | 82.95 56 | 86.50 13 | 60.78 85 | 75.27 36 | 84.83 121 | 60.76 15 | 86.56 71 | 67.86 72 | 87.87 39 | 86.06 83 |
|
MTAPA | | | 76.90 32 | 76.42 33 | 78.35 33 | 86.08 37 | 63.57 2 | 74.92 196 | 80.97 121 | 65.13 13 | 75.77 34 | 90.88 15 | 48.63 110 | 86.66 68 | 77.23 19 | 88.17 33 | 84.81 131 |
|
PGM-MVS | | | 76.77 33 | 76.06 36 | 78.88 26 | 86.14 35 | 62.73 9 | 82.55 65 | 83.74 59 | 61.71 74 | 72.45 79 | 90.34 27 | 48.48 113 | 88.13 33 | 72.32 46 | 86.85 48 | 85.78 92 |
|
mPP-MVS | | | 76.54 34 | 75.93 38 | 78.34 34 | 86.47 26 | 63.50 3 | 85.74 24 | 82.28 89 | 62.90 50 | 71.77 83 | 90.26 29 | 46.61 140 | 86.55 72 | 71.71 51 | 85.66 57 | 84.97 127 |
|
CANet | | | 76.46 35 | 75.93 38 | 78.06 37 | 81.29 92 | 57.53 83 | 82.35 67 | 83.31 73 | 67.78 1 | 70.09 97 | 86.34 93 | 54.92 45 | 88.90 23 | 72.68 45 | 84.55 63 | 87.76 30 |
|
CDPH-MVS | | | 76.31 36 | 75.67 42 | 78.22 35 | 85.35 48 | 59.14 61 | 81.31 85 | 84.02 48 | 56.32 165 | 74.05 52 | 88.98 52 | 53.34 62 | 87.92 39 | 69.23 64 | 88.42 28 | 87.59 36 |
|
train_agg | | | 76.27 37 | 76.15 35 | 76.64 53 | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 113 | 55.86 173 | 74.93 40 | 88.81 54 | 53.70 58 | 84.68 116 | 75.24 28 | 88.33 30 | 83.65 170 |
|
CS-MVS | | | 76.25 38 | 75.98 37 | 77.06 48 | 80.15 114 | 55.63 116 | 84.51 33 | 83.90 53 | 63.24 43 | 73.30 61 | 87.27 74 | 55.06 43 | 86.30 81 | 71.78 50 | 84.58 62 | 89.25 4 |
|
casdiffmvs_mvg |  | | 76.14 39 | 76.30 34 | 75.66 69 | 76.46 206 | 51.83 174 | 79.67 107 | 85.08 31 | 65.02 17 | 75.84 33 | 88.58 58 | 59.42 21 | 85.08 106 | 72.75 44 | 83.93 70 | 90.08 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
SR-MVS | | | 76.13 40 | 75.70 41 | 77.40 46 | 85.87 40 | 61.20 29 | 85.52 26 | 82.19 90 | 59.99 103 | 75.10 37 | 90.35 26 | 47.66 121 | 86.52 73 | 71.64 52 | 82.99 76 | 84.47 140 |
|
ACMMP |  | | 76.02 41 | 75.33 44 | 78.07 36 | 85.20 49 | 61.91 20 | 85.49 28 | 84.44 41 | 63.04 47 | 69.80 107 | 89.74 44 | 45.43 153 | 87.16 53 | 72.01 48 | 82.87 81 | 85.14 120 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PHI-MVS | | | 75.87 42 | 75.36 43 | 77.41 44 | 80.62 105 | 55.91 111 | 84.28 37 | 85.78 20 | 56.08 171 | 73.41 60 | 86.58 88 | 50.94 90 | 88.54 26 | 70.79 56 | 89.71 17 | 87.79 29 |
|
EC-MVSNet | | | 75.84 43 | 75.87 40 | 75.74 67 | 78.86 140 | 52.65 156 | 83.73 48 | 86.08 17 | 63.47 40 | 72.77 72 | 87.25 75 | 53.13 64 | 87.93 38 | 71.97 49 | 85.57 58 | 86.66 62 |
|
3Dnovator+ | | 66.72 4 | 75.84 43 | 74.57 51 | 79.66 8 | 82.40 76 | 59.92 47 | 85.83 21 | 86.32 16 | 66.92 5 | 67.80 145 | 89.24 49 | 42.03 184 | 89.38 17 | 64.07 104 | 86.50 53 | 89.69 2 |
|
CS-MVS-test | | | 75.62 45 | 75.31 45 | 76.56 55 | 80.63 104 | 55.13 124 | 83.88 46 | 85.22 28 | 62.05 69 | 71.49 87 | 86.03 100 | 53.83 56 | 86.36 79 | 67.74 73 | 86.91 47 | 88.19 16 |
|
DPM-MVS | | | 75.47 46 | 75.00 47 | 76.88 49 | 81.38 91 | 59.16 58 | 79.94 100 | 85.71 22 | 56.59 161 | 72.46 77 | 86.76 79 | 56.89 31 | 87.86 41 | 66.36 85 | 88.91 25 | 83.64 171 |
|
APD-MVS_3200maxsize | | | 74.96 47 | 74.39 53 | 76.67 52 | 82.20 78 | 58.24 76 | 83.67 49 | 83.29 74 | 58.41 129 | 73.71 57 | 90.14 31 | 45.62 146 | 85.99 85 | 69.64 60 | 82.85 82 | 85.78 92 |
|
TSAR-MVS + GP. | | | 74.90 48 | 74.15 55 | 77.17 47 | 82.00 80 | 58.77 71 | 81.80 77 | 78.57 159 | 58.58 126 | 74.32 50 | 84.51 131 | 55.94 38 | 87.22 50 | 67.11 80 | 84.48 65 | 85.52 105 |
|
casdiffmvs |  | | 74.80 49 | 74.89 49 | 74.53 96 | 75.59 218 | 50.37 192 | 78.17 126 | 85.06 33 | 62.80 56 | 74.40 49 | 87.86 66 | 57.88 26 | 83.61 136 | 69.46 63 | 82.79 83 | 89.59 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DELS-MVS | | | 74.76 50 | 74.46 52 | 75.65 70 | 77.84 171 | 52.25 166 | 75.59 180 | 84.17 46 | 63.76 36 | 73.15 64 | 82.79 162 | 59.58 19 | 86.80 64 | 67.24 79 | 86.04 55 | 87.89 22 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OPM-MVS | | | 74.73 51 | 74.25 54 | 76.19 59 | 80.81 100 | 59.01 66 | 82.60 64 | 83.64 61 | 63.74 37 | 72.52 76 | 87.49 69 | 47.18 131 | 85.88 88 | 69.47 62 | 80.78 97 | 83.66 169 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
canonicalmvs | | | 74.67 52 | 74.98 48 | 73.71 116 | 78.94 139 | 50.56 190 | 80.23 94 | 83.87 56 | 60.30 98 | 77.15 29 | 86.56 89 | 59.65 17 | 82.00 172 | 66.01 89 | 82.12 87 | 88.58 8 |
|
baseline | | | 74.61 53 | 74.70 50 | 74.34 100 | 75.70 214 | 49.99 200 | 77.54 139 | 84.63 40 | 62.73 57 | 73.98 53 | 87.79 68 | 57.67 28 | 83.82 132 | 69.49 61 | 82.74 84 | 89.20 5 |
|
SR-MVS-dyc-post | | | 74.57 54 | 73.90 57 | 76.58 54 | 83.49 65 | 59.87 48 | 84.29 35 | 81.36 106 | 58.07 135 | 73.14 65 | 90.07 32 | 44.74 160 | 85.84 89 | 68.20 67 | 81.76 92 | 84.03 150 |
|
dcpmvs_2 | | | 74.55 55 | 75.23 46 | 72.48 148 | 82.34 77 | 53.34 145 | 77.87 130 | 81.46 102 | 57.80 142 | 75.49 35 | 86.81 78 | 62.22 13 | 77.75 246 | 71.09 55 | 82.02 89 | 86.34 71 |
|
ETV-MVS | | | 74.46 56 | 73.84 59 | 76.33 58 | 79.27 130 | 55.24 123 | 79.22 113 | 85.00 36 | 64.97 19 | 72.65 74 | 79.46 234 | 53.65 61 | 87.87 40 | 67.45 78 | 82.91 79 | 85.89 89 |
|
HQP_MVS | | | 74.31 57 | 73.73 60 | 76.06 60 | 81.41 89 | 56.31 100 | 84.22 38 | 84.01 49 | 64.52 23 | 69.27 115 | 86.10 97 | 45.26 157 | 87.21 51 | 68.16 69 | 80.58 101 | 84.65 135 |
|
HPM-MVS_fast | | | 74.30 58 | 73.46 63 | 76.80 50 | 84.45 60 | 59.04 65 | 83.65 50 | 81.05 118 | 60.15 100 | 70.43 93 | 89.84 41 | 41.09 199 | 85.59 94 | 67.61 76 | 82.90 80 | 85.77 95 |
|
MVS_111021_HR | | | 74.02 59 | 73.46 63 | 75.69 68 | 83.01 72 | 60.63 40 | 77.29 147 | 78.40 170 | 61.18 80 | 70.58 92 | 85.97 102 | 54.18 52 | 84.00 129 | 67.52 77 | 82.98 78 | 82.45 195 |
|
MG-MVS | | | 73.96 60 | 73.89 58 | 74.16 103 | 85.65 42 | 49.69 205 | 81.59 82 | 81.29 112 | 61.45 76 | 71.05 89 | 88.11 60 | 51.77 79 | 87.73 43 | 61.05 133 | 83.09 74 | 85.05 124 |
|
alignmvs | | | 73.86 61 | 73.99 56 | 73.45 128 | 78.20 159 | 50.50 191 | 78.57 121 | 82.43 87 | 59.40 113 | 76.57 30 | 86.71 83 | 56.42 35 | 81.23 188 | 65.84 91 | 81.79 91 | 88.62 6 |
|
MSLP-MVS++ | | | 73.77 62 | 73.47 62 | 74.66 89 | 83.02 71 | 59.29 57 | 82.30 72 | 81.88 94 | 59.34 115 | 71.59 86 | 86.83 77 | 45.94 144 | 83.65 135 | 65.09 98 | 85.22 59 | 81.06 220 |
|
HQP-MVS | | | 73.45 63 | 72.80 67 | 75.40 74 | 80.66 101 | 54.94 125 | 82.31 69 | 83.90 53 | 62.10 66 | 67.85 140 | 85.54 114 | 45.46 151 | 86.93 60 | 67.04 81 | 80.35 105 | 84.32 142 |
|
CLD-MVS | | | 73.33 64 | 72.68 68 | 75.29 78 | 78.82 142 | 53.33 146 | 78.23 125 | 84.79 39 | 61.30 79 | 70.41 94 | 81.04 202 | 52.41 71 | 87.12 56 | 64.61 103 | 82.49 86 | 85.41 113 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 73.31 65 | 72.54 69 | 75.62 71 | 77.87 170 | 53.64 137 | 79.62 109 | 79.61 139 | 61.63 75 | 72.02 82 | 82.61 167 | 56.44 34 | 85.97 86 | 63.99 107 | 79.07 125 | 87.25 48 |
|
UA-Net | | | 73.13 66 | 72.93 66 | 73.76 112 | 83.58 64 | 51.66 175 | 78.75 116 | 77.66 181 | 67.75 2 | 72.61 75 | 89.42 45 | 49.82 96 | 83.29 141 | 53.61 186 | 83.14 73 | 86.32 75 |
|
EPNet | | | 73.09 67 | 72.16 71 | 75.90 63 | 75.95 212 | 56.28 102 | 83.05 54 | 72.39 250 | 66.53 8 | 65.27 194 | 87.00 76 | 50.40 93 | 85.47 100 | 62.48 120 | 86.32 54 | 85.94 85 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
nrg030 | | | 72.96 68 | 73.01 65 | 72.84 141 | 75.41 221 | 50.24 193 | 80.02 98 | 82.89 83 | 58.36 131 | 74.44 48 | 86.73 81 | 58.90 23 | 80.83 198 | 65.84 91 | 74.46 168 | 87.44 40 |
|
CPTT-MVS | | | 72.78 69 | 72.08 73 | 74.87 84 | 84.88 57 | 61.41 26 | 84.15 41 | 77.86 177 | 55.27 188 | 67.51 151 | 88.08 62 | 41.93 186 | 81.85 174 | 69.04 65 | 80.01 109 | 81.35 213 |
|
LPG-MVS_test | | | 72.74 70 | 71.74 75 | 75.76 65 | 80.22 109 | 57.51 84 | 82.55 65 | 83.40 69 | 61.32 77 | 66.67 167 | 87.33 72 | 39.15 212 | 86.59 69 | 67.70 74 | 77.30 146 | 83.19 181 |
|
h-mvs33 | | | 72.71 71 | 71.49 78 | 76.40 56 | 81.99 81 | 59.58 51 | 76.92 156 | 76.74 197 | 60.40 91 | 74.81 43 | 85.95 104 | 45.54 149 | 85.76 91 | 70.41 58 | 70.61 220 | 83.86 158 |
|
PAPM_NR | | | 72.63 72 | 71.80 74 | 75.13 81 | 81.72 84 | 53.42 144 | 79.91 102 | 83.28 75 | 59.14 117 | 66.31 174 | 85.90 105 | 51.86 78 | 86.06 82 | 57.45 154 | 80.62 99 | 85.91 87 |
|
VDD-MVS | | | 72.50 73 | 72.09 72 | 73.75 114 | 81.58 85 | 49.69 205 | 77.76 134 | 77.63 182 | 63.21 45 | 73.21 63 | 89.02 51 | 42.14 183 | 83.32 140 | 61.72 127 | 82.50 85 | 88.25 13 |
|
3Dnovator | | 64.47 5 | 72.49 74 | 71.39 81 | 75.79 64 | 77.70 174 | 58.99 67 | 80.66 92 | 83.15 78 | 62.24 64 | 65.46 190 | 86.59 87 | 42.38 182 | 85.52 96 | 59.59 145 | 84.72 61 | 82.85 189 |
|
MVS_Test | | | 72.45 75 | 72.46 70 | 72.42 152 | 74.88 226 | 48.50 220 | 76.28 167 | 83.14 79 | 59.40 113 | 72.46 77 | 84.68 123 | 55.66 39 | 81.12 189 | 65.98 90 | 79.66 113 | 87.63 34 |
|
EI-MVSNet-Vis-set | | | 72.42 76 | 71.59 76 | 74.91 82 | 78.47 151 | 54.02 133 | 77.05 152 | 79.33 145 | 65.03 16 | 71.68 85 | 79.35 237 | 52.75 66 | 84.89 112 | 66.46 84 | 74.23 171 | 85.83 91 |
|
ACMP | | 63.53 6 | 72.30 77 | 71.20 86 | 75.59 73 | 80.28 107 | 57.54 82 | 82.74 61 | 82.84 84 | 60.58 88 | 65.24 198 | 86.18 95 | 39.25 210 | 86.03 84 | 66.95 83 | 76.79 153 | 83.22 179 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PS-MVSNAJss | | | 72.24 78 | 71.21 85 | 75.31 76 | 78.50 149 | 55.93 110 | 81.63 79 | 82.12 91 | 56.24 168 | 70.02 101 | 85.68 110 | 47.05 133 | 84.34 122 | 65.27 97 | 74.41 170 | 85.67 99 |
|
Vis-MVSNet |  | | 72.18 79 | 71.37 82 | 74.61 92 | 81.29 92 | 55.41 121 | 80.90 88 | 78.28 172 | 60.73 86 | 69.23 118 | 88.09 61 | 44.36 165 | 82.65 160 | 57.68 152 | 81.75 94 | 85.77 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 72.17 80 | 71.41 80 | 74.45 98 | 81.95 82 | 57.22 87 | 84.03 43 | 80.38 130 | 59.89 107 | 68.40 127 | 82.33 174 | 49.64 98 | 87.83 42 | 51.87 200 | 84.16 69 | 78.30 252 |
|
EPP-MVSNet | | | 72.16 81 | 71.31 84 | 74.71 86 | 78.68 146 | 49.70 203 | 82.10 74 | 81.65 98 | 60.40 91 | 65.94 179 | 85.84 106 | 51.74 80 | 86.37 78 | 55.93 163 | 79.55 116 | 88.07 21 |
|
DP-MVS Recon | | | 72.15 82 | 70.73 93 | 76.40 56 | 86.57 24 | 57.99 78 | 81.15 87 | 82.96 80 | 57.03 150 | 66.78 163 | 85.56 111 | 44.50 163 | 88.11 34 | 51.77 202 | 80.23 108 | 83.10 184 |
|
EI-MVSNet-UG-set | | | 71.92 83 | 71.06 89 | 74.52 97 | 77.98 168 | 53.56 139 | 76.62 160 | 79.16 146 | 64.40 25 | 71.18 88 | 78.95 242 | 52.19 74 | 84.66 118 | 65.47 95 | 73.57 179 | 85.32 116 |
|
VDDNet | | | 71.81 84 | 71.33 83 | 73.26 135 | 82.80 75 | 47.60 232 | 78.74 117 | 75.27 214 | 59.59 112 | 72.94 69 | 89.40 46 | 41.51 194 | 83.91 130 | 58.75 149 | 82.99 76 | 88.26 12 |
|
EIA-MVS | | | 71.78 85 | 70.60 94 | 75.30 77 | 79.85 118 | 53.54 140 | 77.27 148 | 83.26 76 | 57.92 139 | 66.49 169 | 79.39 235 | 52.07 76 | 86.69 67 | 60.05 139 | 79.14 124 | 85.66 100 |
|
LFMVS | | | 71.78 85 | 71.59 76 | 72.32 153 | 83.40 67 | 46.38 241 | 79.75 105 | 71.08 257 | 64.18 30 | 72.80 71 | 88.64 57 | 42.58 179 | 83.72 133 | 57.41 155 | 84.49 64 | 86.86 56 |
|
test_fmvsm_n_1920 | | | 71.73 87 | 71.14 87 | 73.50 125 | 72.52 263 | 56.53 99 | 75.60 179 | 76.16 201 | 48.11 270 | 77.22 28 | 85.56 111 | 53.10 65 | 77.43 250 | 74.86 29 | 77.14 148 | 86.55 65 |
|
PAPR | | | 71.72 88 | 70.82 92 | 74.41 99 | 81.20 96 | 51.17 177 | 79.55 110 | 83.33 72 | 55.81 177 | 66.93 162 | 84.61 127 | 50.95 89 | 86.06 82 | 55.79 166 | 79.20 122 | 86.00 84 |
|
IS-MVSNet | | | 71.57 89 | 71.00 90 | 73.27 134 | 78.86 140 | 45.63 252 | 80.22 95 | 78.69 156 | 64.14 33 | 66.46 170 | 87.36 71 | 49.30 101 | 85.60 93 | 50.26 213 | 83.71 72 | 88.59 7 |
|
MAR-MVS | | | 71.51 90 | 70.15 102 | 75.60 72 | 81.84 83 | 59.39 54 | 81.38 84 | 82.90 82 | 54.90 201 | 68.08 136 | 78.70 243 | 47.73 119 | 85.51 97 | 51.68 204 | 84.17 68 | 81.88 205 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 71.50 91 | 70.38 99 | 74.88 83 | 78.76 143 | 57.15 92 | 82.79 59 | 78.48 163 | 51.26 241 | 69.49 110 | 83.22 156 | 43.99 168 | 83.24 142 | 66.06 87 | 79.37 117 | 84.23 145 |
|
PVSNet_Blended_VisFu | | | 71.45 92 | 70.39 98 | 74.65 90 | 82.01 79 | 58.82 70 | 79.93 101 | 80.35 131 | 55.09 193 | 65.82 185 | 82.16 180 | 49.17 104 | 82.64 161 | 60.34 137 | 78.62 133 | 82.50 194 |
|
OMC-MVS | | | 71.40 93 | 70.60 94 | 73.78 110 | 76.60 202 | 53.15 149 | 79.74 106 | 79.78 135 | 58.37 130 | 68.75 122 | 86.45 91 | 45.43 153 | 80.60 202 | 62.58 118 | 77.73 139 | 87.58 37 |
|
mvsmamba | | | 71.15 94 | 69.54 110 | 75.99 61 | 77.61 182 | 53.46 142 | 81.95 76 | 75.11 220 | 57.73 143 | 66.95 161 | 85.96 103 | 37.14 235 | 87.56 46 | 67.94 71 | 75.49 164 | 86.97 52 |
|
UniMVSNet_NR-MVSNet | | | 71.11 95 | 71.00 90 | 71.44 166 | 79.20 132 | 44.13 264 | 76.02 175 | 82.60 86 | 66.48 9 | 68.20 130 | 84.60 128 | 56.82 32 | 82.82 156 | 54.62 177 | 70.43 222 | 87.36 46 |
|
hse-mvs2 | | | 71.04 96 | 69.86 105 | 74.60 93 | 79.58 122 | 57.12 94 | 73.96 212 | 75.25 215 | 60.40 91 | 74.81 43 | 81.95 185 | 45.54 149 | 82.90 149 | 70.41 58 | 66.83 268 | 83.77 163 |
|
GeoE | | | 71.01 97 | 70.15 102 | 73.60 123 | 79.57 123 | 52.17 167 | 78.93 115 | 78.12 174 | 58.02 137 | 67.76 148 | 83.87 143 | 52.36 72 | 82.72 158 | 56.90 157 | 75.79 160 | 85.92 86 |
|
PCF-MVS | | 61.88 8 | 70.95 98 | 69.49 112 | 75.35 75 | 77.63 177 | 55.71 113 | 76.04 174 | 81.81 96 | 50.30 250 | 69.66 108 | 85.40 117 | 52.51 68 | 84.89 112 | 51.82 201 | 80.24 107 | 85.45 109 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 70.83 99 | 69.56 109 | 74.64 91 | 86.21 31 | 54.63 130 | 82.34 68 | 81.81 96 | 48.22 268 | 63.01 225 | 85.83 107 | 40.92 200 | 87.10 57 | 57.91 151 | 79.79 110 | 82.18 198 |
|
FIs | | | 70.82 100 | 71.43 79 | 68.98 215 | 78.33 156 | 38.14 311 | 76.96 154 | 83.59 63 | 61.02 81 | 67.33 153 | 86.73 81 | 55.07 42 | 81.64 177 | 54.61 179 | 79.22 121 | 87.14 50 |
|
ACMM | | 61.98 7 | 70.80 101 | 69.73 107 | 74.02 104 | 80.59 106 | 58.59 73 | 82.68 62 | 82.02 93 | 55.46 185 | 67.18 156 | 84.39 133 | 38.51 217 | 83.17 144 | 60.65 135 | 76.10 158 | 80.30 231 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
diffmvs |  | | 70.69 102 | 70.43 97 | 71.46 165 | 69.45 303 | 48.95 215 | 72.93 228 | 78.46 165 | 57.27 147 | 71.69 84 | 83.97 142 | 51.48 82 | 77.92 243 | 70.70 57 | 77.95 138 | 87.53 38 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UniMVSNet (Re) | | | 70.63 103 | 70.20 100 | 71.89 155 | 78.55 148 | 45.29 255 | 75.94 176 | 82.92 81 | 63.68 38 | 68.16 133 | 83.59 149 | 53.89 55 | 83.49 139 | 53.97 182 | 71.12 215 | 86.89 55 |
|
xiu_mvs_v2_base | | | 70.52 104 | 69.75 106 | 72.84 141 | 81.21 95 | 55.63 116 | 75.11 190 | 78.92 150 | 54.92 200 | 69.96 104 | 79.68 229 | 47.00 137 | 82.09 171 | 61.60 129 | 79.37 117 | 80.81 224 |
|
PS-MVSNAJ | | | 70.51 105 | 69.70 108 | 72.93 139 | 81.52 86 | 55.79 112 | 74.92 196 | 79.00 148 | 55.04 198 | 69.88 105 | 78.66 244 | 47.05 133 | 82.19 169 | 61.61 128 | 79.58 114 | 80.83 223 |
|
v2v482 | | | 70.50 106 | 69.45 114 | 73.66 118 | 72.62 260 | 50.03 199 | 77.58 136 | 80.51 128 | 59.90 104 | 69.52 109 | 82.14 181 | 47.53 124 | 84.88 114 | 65.07 99 | 70.17 228 | 86.09 82 |
|
v1144 | | | 70.42 107 | 69.31 115 | 73.76 112 | 73.22 248 | 50.64 187 | 77.83 132 | 81.43 103 | 58.58 126 | 69.40 113 | 81.16 199 | 47.53 124 | 85.29 105 | 64.01 106 | 70.64 218 | 85.34 115 |
|
TranMVSNet+NR-MVSNet | | | 70.36 108 | 70.10 104 | 71.17 176 | 78.64 147 | 42.97 276 | 76.53 162 | 81.16 117 | 66.95 4 | 68.53 126 | 85.42 116 | 51.61 81 | 83.07 145 | 52.32 194 | 69.70 240 | 87.46 39 |
|
v8 | | | 70.33 109 | 69.28 116 | 73.49 126 | 73.15 250 | 50.22 194 | 78.62 120 | 80.78 124 | 60.79 84 | 66.45 171 | 82.11 183 | 49.35 100 | 84.98 109 | 63.58 111 | 68.71 254 | 85.28 117 |
|
Fast-Effi-MVS+ | | | 70.28 110 | 69.12 119 | 73.73 115 | 78.50 149 | 51.50 176 | 75.01 193 | 79.46 143 | 56.16 170 | 68.59 123 | 79.55 232 | 53.97 53 | 84.05 125 | 53.34 188 | 77.53 142 | 85.65 101 |
|
X-MVStestdata | | | 70.21 111 | 67.28 158 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 21 | 72.17 80 | 6.49 376 | 47.95 117 | 88.01 36 | 71.55 53 | 86.74 50 | 86.37 69 |
|
v10 | | | 70.21 111 | 69.02 120 | 73.81 109 | 73.51 247 | 50.92 182 | 78.74 117 | 81.39 104 | 60.05 102 | 66.39 172 | 81.83 188 | 47.58 123 | 85.41 103 | 62.80 117 | 68.86 253 | 85.09 123 |
|
QAPM | | | 70.05 113 | 68.81 123 | 73.78 110 | 76.54 204 | 53.43 143 | 83.23 52 | 83.48 65 | 52.89 222 | 65.90 181 | 86.29 94 | 41.55 193 | 86.49 75 | 51.01 207 | 78.40 135 | 81.42 209 |
|
DU-MVS | | | 70.01 114 | 69.53 111 | 71.44 166 | 78.05 165 | 44.13 264 | 75.01 193 | 81.51 101 | 64.37 26 | 68.20 130 | 84.52 129 | 49.12 107 | 82.82 156 | 54.62 177 | 70.43 222 | 87.37 44 |
|
AdaColmap |  | | 69.99 115 | 68.66 126 | 73.97 106 | 84.94 54 | 57.83 79 | 82.63 63 | 78.71 155 | 56.28 167 | 64.34 210 | 84.14 136 | 41.57 191 | 87.06 59 | 46.45 242 | 78.88 126 | 77.02 269 |
|
v1192 | | | 69.97 116 | 68.68 125 | 73.85 107 | 73.19 249 | 50.94 180 | 77.68 135 | 81.36 106 | 57.51 145 | 68.95 121 | 80.85 209 | 45.28 156 | 85.33 104 | 62.97 116 | 70.37 224 | 85.27 118 |
|
Anonymous20240529 | | | 69.91 117 | 69.02 120 | 72.56 146 | 80.19 112 | 47.65 230 | 77.56 138 | 80.99 120 | 55.45 186 | 69.88 105 | 86.76 79 | 39.24 211 | 82.18 170 | 54.04 181 | 77.10 149 | 87.85 25 |
|
patch_mono-2 | | | 69.85 118 | 71.09 88 | 66.16 246 | 79.11 136 | 54.80 129 | 71.97 244 | 74.31 231 | 53.50 217 | 70.90 90 | 84.17 135 | 57.63 29 | 63.31 317 | 66.17 86 | 82.02 89 | 80.38 230 |
|
FA-MVS(test-final) | | | 69.82 119 | 68.48 128 | 73.84 108 | 78.44 152 | 50.04 198 | 75.58 182 | 78.99 149 | 58.16 133 | 67.59 149 | 82.14 181 | 42.66 177 | 85.63 92 | 56.60 158 | 76.19 157 | 85.84 90 |
|
iter_conf_final | | | 69.82 119 | 68.02 137 | 75.23 79 | 79.38 127 | 52.91 153 | 80.11 97 | 73.96 237 | 54.99 199 | 68.04 137 | 83.59 149 | 29.05 304 | 87.16 53 | 65.41 96 | 77.62 140 | 85.63 102 |
|
FC-MVSNet-test | | | 69.80 121 | 70.58 96 | 67.46 230 | 77.61 182 | 34.73 340 | 76.05 173 | 83.19 77 | 60.84 83 | 65.88 183 | 86.46 90 | 54.52 49 | 80.76 201 | 52.52 193 | 78.12 136 | 86.91 54 |
|
v144192 | | | 69.71 122 | 68.51 127 | 73.33 133 | 73.10 251 | 50.13 196 | 77.54 139 | 80.64 125 | 56.65 155 | 68.57 125 | 80.55 212 | 46.87 138 | 84.96 111 | 62.98 115 | 69.66 241 | 84.89 129 |
|
test_yl | | | 69.69 123 | 69.13 117 | 71.36 170 | 78.37 154 | 45.74 248 | 74.71 200 | 80.20 132 | 57.91 140 | 70.01 102 | 83.83 144 | 42.44 180 | 82.87 152 | 54.97 173 | 79.72 111 | 85.48 107 |
|
DCV-MVSNet | | | 69.69 123 | 69.13 117 | 71.36 170 | 78.37 154 | 45.74 248 | 74.71 200 | 80.20 132 | 57.91 140 | 70.01 102 | 83.83 144 | 42.44 180 | 82.87 152 | 54.97 173 | 79.72 111 | 85.48 107 |
|
VNet | | | 69.68 125 | 70.19 101 | 68.16 225 | 79.73 120 | 41.63 289 | 70.53 263 | 77.38 187 | 60.37 94 | 70.69 91 | 86.63 85 | 51.08 87 | 77.09 255 | 53.61 186 | 81.69 96 | 85.75 97 |
|
jason | | | 69.65 126 | 68.39 133 | 73.43 130 | 78.27 158 | 56.88 96 | 77.12 150 | 73.71 240 | 46.53 287 | 69.34 114 | 83.22 156 | 43.37 172 | 79.18 222 | 64.77 100 | 79.20 122 | 84.23 145 |
jason: jason. |
Effi-MVS+-dtu | | | 69.64 127 | 67.53 147 | 75.95 62 | 76.10 210 | 62.29 15 | 80.20 96 | 76.06 205 | 59.83 108 | 65.26 197 | 77.09 264 | 41.56 192 | 84.02 128 | 60.60 136 | 71.09 216 | 81.53 208 |
|
lupinMVS | | | 69.57 128 | 68.28 134 | 73.44 129 | 78.76 143 | 57.15 92 | 76.57 161 | 73.29 244 | 46.19 290 | 69.49 110 | 82.18 177 | 43.99 168 | 79.23 221 | 64.66 101 | 79.37 117 | 83.93 153 |
|
NR-MVSNet | | | 69.54 129 | 68.85 122 | 71.59 164 | 78.05 165 | 43.81 268 | 74.20 208 | 80.86 123 | 65.18 12 | 62.76 227 | 84.52 129 | 52.35 73 | 83.59 137 | 50.96 209 | 70.78 217 | 87.37 44 |
|
MVS_111021_LR | | | 69.50 130 | 68.78 124 | 71.65 162 | 78.38 153 | 59.33 55 | 74.82 198 | 70.11 264 | 58.08 134 | 67.83 144 | 84.68 123 | 41.96 185 | 76.34 263 | 65.62 94 | 77.54 141 | 79.30 246 |
|
v1921920 | | | 69.47 131 | 68.17 135 | 73.36 132 | 73.06 252 | 50.10 197 | 77.39 142 | 80.56 126 | 56.58 162 | 68.59 123 | 80.37 214 | 44.72 161 | 84.98 109 | 62.47 121 | 69.82 236 | 85.00 125 |
|
test_djsdf | | | 69.45 132 | 67.74 139 | 74.58 94 | 74.57 235 | 54.92 127 | 82.79 59 | 78.48 163 | 51.26 241 | 65.41 191 | 83.49 154 | 38.37 219 | 83.24 142 | 66.06 87 | 69.25 247 | 85.56 104 |
|
RRT_MVS | | | 69.42 133 | 67.49 150 | 75.21 80 | 78.01 167 | 52.56 160 | 82.23 73 | 78.15 173 | 55.84 175 | 65.65 186 | 85.07 118 | 30.86 290 | 86.83 63 | 61.56 131 | 70.00 231 | 86.24 80 |
|
iter_conf05 | | | 69.40 134 | 67.62 143 | 74.73 85 | 77.84 171 | 51.13 178 | 79.28 112 | 73.71 240 | 54.62 203 | 68.17 132 | 83.59 149 | 28.68 309 | 87.16 53 | 65.74 93 | 76.95 150 | 85.91 87 |
|
Anonymous20231211 | | | 69.28 135 | 68.47 130 | 71.73 159 | 80.28 107 | 47.18 236 | 79.98 99 | 82.37 88 | 54.61 204 | 67.24 154 | 84.01 140 | 39.43 208 | 82.41 167 | 55.45 171 | 72.83 193 | 85.62 103 |
|
EI-MVSNet | | | 69.27 136 | 68.44 132 | 71.73 159 | 74.47 236 | 49.39 210 | 75.20 188 | 78.45 166 | 59.60 109 | 69.16 119 | 76.51 274 | 51.29 83 | 82.50 164 | 59.86 144 | 71.45 213 | 83.30 176 |
|
v1240 | | | 69.24 137 | 67.91 138 | 73.25 136 | 73.02 254 | 49.82 201 | 77.21 149 | 80.54 127 | 56.43 164 | 68.34 129 | 80.51 213 | 43.33 173 | 84.99 107 | 62.03 125 | 69.77 239 | 84.95 128 |
|
IterMVS-LS | | | 69.22 138 | 68.48 128 | 71.43 168 | 74.44 238 | 49.40 209 | 76.23 168 | 77.55 183 | 59.60 109 | 65.85 184 | 81.59 194 | 51.28 84 | 81.58 180 | 59.87 143 | 69.90 235 | 83.30 176 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 69.02 139 | 69.47 113 | 67.69 228 | 77.42 186 | 41.00 293 | 74.04 210 | 79.68 137 | 60.06 101 | 69.26 117 | 84.81 122 | 51.06 88 | 77.58 248 | 54.44 180 | 74.43 169 | 84.48 139 |
|
v7n | | | 69.01 140 | 67.36 155 | 73.98 105 | 72.51 264 | 52.65 156 | 78.54 123 | 81.30 111 | 60.26 99 | 62.67 229 | 81.62 191 | 43.61 170 | 84.49 119 | 57.01 156 | 68.70 255 | 84.79 132 |
|
OpenMVS |  | 61.03 9 | 68.85 141 | 67.56 144 | 72.70 145 | 74.26 242 | 53.99 134 | 81.21 86 | 81.34 110 | 52.70 223 | 62.75 228 | 85.55 113 | 38.86 215 | 84.14 124 | 48.41 229 | 83.01 75 | 79.97 236 |
|
XVG-OURS-SEG-HR | | | 68.81 142 | 67.47 151 | 72.82 143 | 74.40 239 | 56.87 97 | 70.59 262 | 79.04 147 | 54.77 202 | 66.99 159 | 86.01 101 | 39.57 207 | 78.21 239 | 62.54 119 | 73.33 185 | 83.37 175 |
|
BH-RMVSNet | | | 68.81 142 | 67.42 152 | 72.97 138 | 80.11 115 | 52.53 161 | 74.26 207 | 76.29 200 | 58.48 128 | 68.38 128 | 84.20 134 | 42.59 178 | 83.83 131 | 46.53 241 | 75.91 159 | 82.56 190 |
|
UGNet | | | 68.81 142 | 67.39 153 | 73.06 137 | 78.33 156 | 54.47 131 | 79.77 104 | 75.40 213 | 60.45 90 | 63.22 222 | 84.40 132 | 32.71 279 | 80.91 197 | 51.71 203 | 80.56 103 | 83.81 159 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
XVG-OURS | | | 68.76 145 | 67.37 154 | 72.90 140 | 74.32 241 | 57.22 87 | 70.09 269 | 78.81 152 | 55.24 189 | 67.79 146 | 85.81 109 | 36.54 242 | 78.28 238 | 62.04 124 | 75.74 161 | 83.19 181 |
|
V42 | | | 68.65 146 | 67.35 156 | 72.56 146 | 68.93 308 | 50.18 195 | 72.90 229 | 79.47 142 | 56.92 152 | 69.45 112 | 80.26 218 | 46.29 142 | 82.99 146 | 64.07 104 | 67.82 261 | 84.53 137 |
|
PVSNet_Blended | | | 68.59 147 | 67.72 140 | 71.19 175 | 77.03 194 | 50.57 188 | 72.51 236 | 81.52 99 | 51.91 230 | 64.22 215 | 77.77 260 | 49.13 105 | 82.87 152 | 55.82 164 | 79.58 114 | 80.14 234 |
|
xiu_mvs_v1_base_debu | | | 68.58 148 | 67.28 158 | 72.48 148 | 78.19 160 | 57.19 89 | 75.28 185 | 75.09 221 | 51.61 232 | 70.04 98 | 81.41 196 | 32.79 275 | 79.02 229 | 63.81 108 | 77.31 143 | 81.22 215 |
|
xiu_mvs_v1_base | | | 68.58 148 | 67.28 158 | 72.48 148 | 78.19 160 | 57.19 89 | 75.28 185 | 75.09 221 | 51.61 232 | 70.04 98 | 81.41 196 | 32.79 275 | 79.02 229 | 63.81 108 | 77.31 143 | 81.22 215 |
|
xiu_mvs_v1_base_debi | | | 68.58 148 | 67.28 158 | 72.48 148 | 78.19 160 | 57.19 89 | 75.28 185 | 75.09 221 | 51.61 232 | 70.04 98 | 81.41 196 | 32.79 275 | 79.02 229 | 63.81 108 | 77.31 143 | 81.22 215 |
|
PVSNet_BlendedMVS | | | 68.56 151 | 67.72 140 | 71.07 179 | 77.03 194 | 50.57 188 | 74.50 204 | 81.52 99 | 53.66 216 | 64.22 215 | 79.72 228 | 49.13 105 | 82.87 152 | 55.82 164 | 73.92 174 | 79.77 241 |
|
WR-MVS | | | 68.47 152 | 68.47 130 | 68.44 222 | 80.20 111 | 39.84 297 | 73.75 220 | 76.07 204 | 64.68 20 | 68.11 135 | 83.63 148 | 50.39 94 | 79.14 227 | 49.78 214 | 69.66 241 | 86.34 71 |
|
AUN-MVS | | | 68.45 153 | 66.41 175 | 74.57 95 | 79.53 124 | 57.08 95 | 73.93 215 | 75.23 216 | 54.44 209 | 66.69 166 | 81.85 187 | 37.10 237 | 82.89 150 | 62.07 123 | 66.84 267 | 83.75 164 |
|
c3_l | | | 68.33 154 | 67.56 144 | 70.62 186 | 70.87 283 | 46.21 244 | 74.47 205 | 78.80 153 | 56.22 169 | 66.19 175 | 78.53 249 | 51.88 77 | 81.40 182 | 62.08 122 | 69.04 250 | 84.25 144 |
|
BH-untuned | | | 68.27 155 | 67.29 157 | 71.21 174 | 79.74 119 | 53.22 148 | 76.06 172 | 77.46 186 | 57.19 148 | 66.10 176 | 81.61 192 | 45.37 155 | 83.50 138 | 45.42 256 | 76.68 155 | 76.91 273 |
|
jajsoiax | | | 68.25 156 | 66.45 171 | 73.66 118 | 75.62 216 | 55.49 120 | 80.82 89 | 78.51 162 | 52.33 227 | 64.33 211 | 84.11 137 | 28.28 311 | 81.81 176 | 63.48 112 | 70.62 219 | 83.67 167 |
|
v148 | | | 68.24 157 | 67.19 164 | 71.40 169 | 70.43 288 | 47.77 229 | 75.76 178 | 77.03 192 | 58.91 119 | 67.36 152 | 80.10 221 | 48.60 112 | 81.89 173 | 60.01 140 | 66.52 271 | 84.53 137 |
|
CANet_DTU | | | 68.18 158 | 67.71 142 | 69.59 205 | 74.83 228 | 46.24 243 | 78.66 119 | 76.85 194 | 59.60 109 | 63.45 221 | 82.09 184 | 35.25 249 | 77.41 251 | 59.88 142 | 78.76 130 | 85.14 120 |
|
mvs_tets | | | 68.18 158 | 66.36 177 | 73.63 121 | 75.61 217 | 55.35 122 | 80.77 90 | 78.56 160 | 52.48 226 | 64.27 213 | 84.10 138 | 27.45 317 | 81.84 175 | 63.45 113 | 70.56 221 | 83.69 166 |
|
miper_ehance_all_eth | | | 68.03 160 | 67.24 162 | 70.40 190 | 70.54 286 | 46.21 244 | 73.98 211 | 78.68 157 | 55.07 196 | 66.05 177 | 77.80 258 | 52.16 75 | 81.31 185 | 61.53 132 | 69.32 244 | 83.67 167 |
|
mvs_anonymous | | | 68.03 160 | 67.51 148 | 69.59 205 | 72.08 269 | 44.57 262 | 71.99 243 | 75.23 216 | 51.67 231 | 67.06 158 | 82.57 168 | 54.68 47 | 77.94 242 | 56.56 159 | 75.71 162 | 86.26 79 |
|
ET-MVSNet_ETH3D | | | 67.96 162 | 65.72 189 | 74.68 88 | 76.67 200 | 55.62 118 | 75.11 190 | 74.74 225 | 52.91 221 | 60.03 255 | 80.12 220 | 33.68 265 | 82.64 161 | 61.86 126 | 76.34 156 | 85.78 92 |
|
thisisatest0530 | | | 67.92 163 | 65.78 188 | 74.33 101 | 76.29 207 | 51.03 179 | 76.89 157 | 74.25 233 | 53.67 215 | 65.59 188 | 81.76 189 | 35.15 250 | 85.50 98 | 55.94 162 | 72.47 198 | 86.47 66 |
|
PAPM | | | 67.92 163 | 66.69 168 | 71.63 163 | 78.09 163 | 49.02 213 | 77.09 151 | 81.24 115 | 51.04 244 | 60.91 249 | 83.98 141 | 47.71 120 | 84.99 107 | 40.81 289 | 79.32 120 | 80.90 222 |
|
tttt0517 | | | 67.83 165 | 65.66 190 | 74.33 101 | 76.69 199 | 50.82 184 | 77.86 131 | 73.99 236 | 54.54 207 | 64.64 208 | 82.53 170 | 35.06 251 | 85.50 98 | 55.71 167 | 69.91 234 | 86.67 61 |
|
tt0805 | | | 67.77 166 | 67.24 162 | 69.34 210 | 74.87 227 | 40.08 295 | 77.36 143 | 81.37 105 | 55.31 187 | 66.33 173 | 84.65 125 | 37.35 230 | 82.55 163 | 55.65 169 | 72.28 204 | 85.39 114 |
|
ECVR-MVS |  | | 67.72 167 | 67.51 148 | 68.35 223 | 79.46 125 | 36.29 334 | 74.79 199 | 66.93 286 | 58.72 122 | 67.19 155 | 88.05 63 | 36.10 243 | 81.38 183 | 52.07 197 | 84.25 66 | 87.39 42 |
|
eth_miper_zixun_eth | | | 67.63 168 | 66.28 181 | 71.67 161 | 71.60 275 | 48.33 222 | 73.68 221 | 77.88 176 | 55.80 178 | 65.91 180 | 78.62 247 | 47.35 130 | 82.88 151 | 59.45 146 | 66.25 272 | 83.81 159 |
|
UniMVSNet_ETH3D | | | 67.60 169 | 67.07 166 | 69.18 214 | 77.39 187 | 42.29 280 | 74.18 209 | 75.59 210 | 60.37 94 | 66.77 164 | 86.06 99 | 37.64 226 | 78.93 234 | 52.16 196 | 73.49 181 | 86.32 75 |
|
VPNet | | | 67.52 170 | 68.11 136 | 65.74 255 | 79.18 133 | 36.80 326 | 72.17 241 | 72.83 247 | 62.04 70 | 67.79 146 | 85.83 107 | 48.88 109 | 76.60 260 | 51.30 205 | 72.97 192 | 83.81 159 |
|
cl22 | | | 67.47 171 | 66.45 171 | 70.54 188 | 69.85 299 | 46.49 240 | 73.85 218 | 77.35 188 | 55.07 196 | 65.51 189 | 77.92 254 | 47.64 122 | 81.10 190 | 61.58 130 | 69.32 244 | 84.01 152 |
|
Fast-Effi-MVS+-dtu | | | 67.37 172 | 65.33 195 | 73.48 127 | 72.94 255 | 57.78 81 | 77.47 141 | 76.88 193 | 57.60 144 | 61.97 240 | 76.85 268 | 39.31 209 | 80.49 206 | 54.72 176 | 70.28 227 | 82.17 200 |
|
MVS | | | 67.37 172 | 66.33 178 | 70.51 189 | 75.46 220 | 50.94 180 | 73.95 213 | 81.85 95 | 41.57 325 | 62.54 233 | 78.57 248 | 47.98 116 | 85.47 100 | 52.97 191 | 82.05 88 | 75.14 285 |
|
test1111 | | | 67.21 174 | 67.14 165 | 67.42 231 | 79.24 131 | 34.76 339 | 73.89 217 | 65.65 293 | 58.71 124 | 66.96 160 | 87.95 65 | 36.09 244 | 80.53 203 | 52.03 198 | 83.79 71 | 86.97 52 |
|
GBi-Net | | | 67.21 174 | 66.55 169 | 69.19 211 | 77.63 177 | 43.33 271 | 77.31 144 | 77.83 178 | 56.62 158 | 65.04 201 | 82.70 163 | 41.85 187 | 80.33 208 | 47.18 236 | 72.76 194 | 83.92 154 |
|
test1 | | | 67.21 174 | 66.55 169 | 69.19 211 | 77.63 177 | 43.33 271 | 77.31 144 | 77.83 178 | 56.62 158 | 65.04 201 | 82.70 163 | 41.85 187 | 80.33 208 | 47.18 236 | 72.76 194 | 83.92 154 |
|
cl____ | | | 67.18 177 | 66.26 182 | 69.94 197 | 70.20 291 | 45.74 248 | 73.30 223 | 76.83 195 | 55.10 191 | 65.27 194 | 79.57 231 | 47.39 128 | 80.53 203 | 59.41 148 | 69.22 248 | 83.53 173 |
|
DIV-MVS_self_test | | | 67.18 177 | 66.26 182 | 69.94 197 | 70.20 291 | 45.74 248 | 73.29 224 | 76.83 195 | 55.10 191 | 65.27 194 | 79.58 230 | 47.38 129 | 80.53 203 | 59.43 147 | 69.22 248 | 83.54 172 |
|
MVSTER | | | 67.16 179 | 65.58 192 | 71.88 156 | 70.37 290 | 49.70 203 | 70.25 268 | 78.45 166 | 51.52 235 | 69.16 119 | 80.37 214 | 38.45 218 | 82.50 164 | 60.19 138 | 71.46 212 | 83.44 174 |
|
miper_enhance_ethall | | | 67.11 180 | 66.09 184 | 70.17 194 | 69.21 305 | 45.98 246 | 72.85 230 | 78.41 169 | 51.38 238 | 65.65 186 | 75.98 282 | 51.17 86 | 81.25 186 | 60.82 134 | 69.32 244 | 83.29 178 |
|
Baseline_NR-MVSNet | | | 67.05 181 | 67.56 144 | 65.50 257 | 75.65 215 | 37.70 317 | 75.42 183 | 74.65 227 | 59.90 104 | 68.14 134 | 83.15 159 | 49.12 107 | 77.20 253 | 52.23 195 | 69.78 237 | 81.60 207 |
|
WR-MVS_H | | | 67.02 182 | 66.92 167 | 67.33 234 | 77.95 169 | 37.75 315 | 77.57 137 | 82.11 92 | 62.03 71 | 62.65 230 | 82.48 171 | 50.57 92 | 79.46 217 | 42.91 276 | 64.01 287 | 84.79 132 |
|
anonymousdsp | | | 67.00 183 | 64.82 200 | 73.57 124 | 70.09 294 | 56.13 105 | 76.35 165 | 77.35 188 | 48.43 266 | 64.99 204 | 80.84 210 | 33.01 272 | 80.34 207 | 64.66 101 | 67.64 263 | 84.23 145 |
|
FMVSNet2 | | | 66.93 184 | 66.31 180 | 68.79 218 | 77.63 177 | 42.98 275 | 76.11 170 | 77.47 184 | 56.62 158 | 65.22 200 | 82.17 179 | 41.85 187 | 80.18 211 | 47.05 239 | 72.72 197 | 83.20 180 |
|
BH-w/o | | | 66.85 185 | 65.83 187 | 69.90 200 | 79.29 128 | 52.46 163 | 74.66 202 | 76.65 198 | 54.51 208 | 64.85 205 | 78.12 250 | 45.59 148 | 82.95 148 | 43.26 272 | 75.54 163 | 74.27 298 |
|
Anonymous202405211 | | | 66.84 186 | 65.99 185 | 69.40 209 | 80.19 112 | 42.21 281 | 71.11 257 | 71.31 256 | 58.80 121 | 67.90 138 | 86.39 92 | 29.83 299 | 79.65 214 | 49.60 220 | 78.78 129 | 86.33 73 |
|
CDS-MVSNet | | | 66.80 187 | 65.37 193 | 71.10 178 | 78.98 138 | 53.13 151 | 73.27 225 | 71.07 258 | 52.15 229 | 64.72 206 | 80.23 219 | 43.56 171 | 77.10 254 | 45.48 254 | 78.88 126 | 83.05 185 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 66.78 188 | 65.27 196 | 71.33 173 | 79.16 135 | 53.67 136 | 73.84 219 | 69.59 268 | 52.32 228 | 65.28 193 | 81.72 190 | 44.49 164 | 77.40 252 | 42.32 280 | 78.66 132 | 82.92 186 |
|
FMVSNet1 | | | 66.70 189 | 65.87 186 | 69.19 211 | 77.49 185 | 43.33 271 | 77.31 144 | 77.83 178 | 56.45 163 | 64.60 209 | 82.70 163 | 38.08 224 | 80.33 208 | 46.08 245 | 72.31 203 | 83.92 154 |
|
ab-mvs | | | 66.65 190 | 66.42 174 | 67.37 232 | 76.17 209 | 41.73 286 | 70.41 266 | 76.14 203 | 53.99 211 | 65.98 178 | 83.51 153 | 49.48 99 | 76.24 264 | 48.60 227 | 73.46 183 | 84.14 148 |
|
PEN-MVS | | | 66.60 191 | 66.45 171 | 67.04 235 | 77.11 192 | 36.56 328 | 77.03 153 | 80.42 129 | 62.95 48 | 62.51 235 | 84.03 139 | 46.69 139 | 79.07 228 | 44.22 260 | 63.08 297 | 85.51 106 |
|
TAPA-MVS | | 59.36 10 | 66.60 191 | 65.20 197 | 70.81 182 | 76.63 201 | 48.75 217 | 76.52 163 | 80.04 134 | 50.64 248 | 65.24 198 | 84.93 120 | 39.15 212 | 78.54 235 | 36.77 309 | 76.88 152 | 85.14 120 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 66.59 193 | 65.07 198 | 71.17 176 | 79.18 133 | 49.63 207 | 73.48 222 | 75.20 218 | 52.95 220 | 67.90 138 | 80.33 217 | 39.81 205 | 83.68 134 | 43.20 273 | 73.56 180 | 80.20 232 |
|
CP-MVSNet | | | 66.49 194 | 66.41 175 | 66.72 237 | 77.67 176 | 36.33 331 | 76.83 159 | 79.52 141 | 62.45 61 | 62.54 233 | 83.47 155 | 46.32 141 | 78.37 236 | 45.47 255 | 63.43 294 | 85.45 109 |
|
PS-CasMVS | | | 66.42 195 | 66.32 179 | 66.70 239 | 77.60 184 | 36.30 333 | 76.94 155 | 79.61 139 | 62.36 63 | 62.43 237 | 83.66 147 | 45.69 145 | 78.37 236 | 45.35 257 | 63.26 295 | 85.42 112 |
|
FMVSNet3 | | | 66.32 196 | 65.61 191 | 68.46 221 | 76.48 205 | 42.34 279 | 74.98 195 | 77.15 191 | 55.83 176 | 65.04 201 | 81.16 199 | 39.91 203 | 80.14 212 | 47.18 236 | 72.76 194 | 82.90 188 |
|
ACMH+ | | 57.40 11 | 66.12 197 | 64.06 203 | 72.30 154 | 77.79 173 | 52.83 154 | 80.39 93 | 78.03 175 | 57.30 146 | 57.47 282 | 82.55 169 | 27.68 315 | 84.17 123 | 45.54 252 | 69.78 237 | 79.90 237 |
|
cascas | | | 65.98 198 | 63.42 213 | 73.64 120 | 77.26 190 | 52.58 159 | 72.26 240 | 77.21 190 | 48.56 263 | 61.21 248 | 74.60 294 | 32.57 283 | 85.82 90 | 50.38 212 | 76.75 154 | 82.52 193 |
|
FE-MVS | | | 65.91 199 | 63.33 215 | 73.63 121 | 77.36 188 | 51.95 173 | 72.62 233 | 75.81 206 | 53.70 214 | 65.31 192 | 78.96 241 | 28.81 308 | 86.39 77 | 43.93 265 | 73.48 182 | 82.55 191 |
|
thisisatest0515 | | | 65.83 200 | 63.50 212 | 72.82 143 | 73.75 245 | 49.50 208 | 71.32 251 | 73.12 246 | 49.39 256 | 63.82 217 | 76.50 276 | 34.95 253 | 84.84 115 | 53.20 190 | 75.49 164 | 84.13 149 |
|
DP-MVS | | | 65.68 201 | 63.66 210 | 71.75 158 | 84.93 55 | 56.87 97 | 80.74 91 | 73.16 245 | 53.06 219 | 59.09 269 | 82.35 173 | 36.79 241 | 85.94 87 | 32.82 331 | 69.96 233 | 72.45 313 |
|
HyFIR lowres test | | | 65.67 202 | 63.01 219 | 73.67 117 | 79.97 117 | 55.65 115 | 69.07 277 | 75.52 211 | 42.68 319 | 63.53 220 | 77.95 252 | 40.43 201 | 81.64 177 | 46.01 246 | 71.91 207 | 83.73 165 |
|
DTE-MVSNet | | | 65.58 203 | 65.34 194 | 66.31 242 | 76.06 211 | 34.79 337 | 76.43 164 | 79.38 144 | 62.55 59 | 61.66 244 | 83.83 144 | 45.60 147 | 79.15 226 | 41.64 288 | 60.88 311 | 85.00 125 |
|
GA-MVS | | | 65.53 204 | 63.70 209 | 71.02 180 | 70.87 283 | 48.10 224 | 70.48 264 | 74.40 229 | 56.69 154 | 64.70 207 | 76.77 269 | 33.66 266 | 81.10 190 | 55.42 172 | 70.32 226 | 83.87 157 |
|
CNLPA | | | 65.43 205 | 64.02 204 | 69.68 203 | 78.73 145 | 58.07 77 | 77.82 133 | 70.71 261 | 51.49 236 | 61.57 246 | 83.58 152 | 38.23 222 | 70.82 285 | 43.90 266 | 70.10 230 | 80.16 233 |
|
MVP-Stereo | | | 65.41 206 | 63.80 208 | 70.22 191 | 77.62 181 | 55.53 119 | 76.30 166 | 78.53 161 | 50.59 249 | 56.47 288 | 78.65 245 | 39.84 204 | 82.68 159 | 44.10 264 | 72.12 206 | 72.44 314 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 56.42 12 | 65.40 207 | 62.73 223 | 73.40 131 | 74.89 225 | 52.78 155 | 73.09 227 | 75.13 219 | 55.69 180 | 58.48 276 | 73.73 300 | 32.86 274 | 86.32 80 | 50.63 210 | 70.11 229 | 81.10 219 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test2506 | | | 65.33 208 | 64.61 201 | 67.50 229 | 79.46 125 | 34.19 344 | 74.43 206 | 51.92 347 | 58.72 122 | 66.75 165 | 88.05 63 | 25.99 327 | 80.92 196 | 51.94 199 | 84.25 66 | 87.39 42 |
|
pm-mvs1 | | | 65.24 209 | 64.97 199 | 66.04 250 | 72.38 265 | 39.40 302 | 72.62 233 | 75.63 209 | 55.53 184 | 62.35 239 | 83.18 158 | 47.45 126 | 76.47 261 | 49.06 224 | 66.54 270 | 82.24 197 |
|
ACMH | | 55.70 15 | 65.20 210 | 63.57 211 | 70.07 195 | 78.07 164 | 52.01 172 | 79.48 111 | 79.69 136 | 55.75 179 | 56.59 287 | 80.98 204 | 27.12 319 | 80.94 194 | 42.90 277 | 71.58 211 | 77.25 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC |  | 56.13 14 | 65.09 211 | 63.21 217 | 70.72 185 | 81.04 98 | 54.87 128 | 78.57 121 | 77.47 184 | 48.51 264 | 55.71 291 | 81.89 186 | 33.71 264 | 79.71 213 | 41.66 286 | 70.37 224 | 77.58 261 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 1792x2688 | | | 65.08 212 | 62.84 221 | 71.82 157 | 81.49 88 | 56.26 103 | 66.32 289 | 74.20 234 | 40.53 330 | 63.16 224 | 78.65 245 | 41.30 195 | 77.80 245 | 45.80 248 | 74.09 172 | 81.40 210 |
|
bld_raw_dy_0_64 | | | 64.87 213 | 63.22 216 | 69.83 202 | 74.79 230 | 53.32 147 | 78.15 127 | 62.02 317 | 51.20 243 | 60.17 253 | 83.12 160 | 24.15 336 | 74.20 274 | 63.08 114 | 72.33 201 | 81.96 202 |
|
TransMVSNet (Re) | | | 64.72 214 | 64.33 202 | 65.87 254 | 75.22 223 | 38.56 308 | 74.66 202 | 75.08 224 | 58.90 120 | 61.79 243 | 82.63 166 | 51.18 85 | 78.07 241 | 43.63 269 | 55.87 331 | 80.99 221 |
|
EG-PatchMatch MVS | | | 64.71 215 | 62.87 220 | 70.22 191 | 77.68 175 | 53.48 141 | 77.99 129 | 78.82 151 | 53.37 218 | 56.03 290 | 77.41 263 | 24.75 334 | 84.04 126 | 46.37 243 | 73.42 184 | 73.14 305 |
|
LS3D | | | 64.71 215 | 62.50 225 | 71.34 172 | 79.72 121 | 55.71 113 | 79.82 103 | 74.72 226 | 48.50 265 | 56.62 286 | 84.62 126 | 33.59 267 | 82.34 168 | 29.65 350 | 75.23 166 | 75.97 277 |
|
1314 | | | 64.61 217 | 63.21 217 | 68.80 217 | 71.87 273 | 47.46 233 | 73.95 213 | 78.39 171 | 42.88 318 | 59.97 256 | 76.60 273 | 38.11 223 | 79.39 219 | 54.84 175 | 72.32 202 | 79.55 242 |
|
HY-MVS | | 56.14 13 | 64.55 218 | 63.89 205 | 66.55 240 | 74.73 232 | 41.02 291 | 69.96 270 | 74.43 228 | 49.29 257 | 61.66 244 | 80.92 206 | 47.43 127 | 76.68 259 | 44.91 259 | 71.69 209 | 81.94 203 |
|
XVG-ACMP-BASELINE | | | 64.36 219 | 62.23 228 | 70.74 184 | 72.35 266 | 52.45 164 | 70.80 261 | 78.45 166 | 53.84 213 | 59.87 258 | 81.10 201 | 16.24 351 | 79.32 220 | 55.64 170 | 71.76 208 | 80.47 227 |
|
CostFormer | | | 64.04 220 | 62.51 224 | 68.61 220 | 71.88 272 | 45.77 247 | 71.30 252 | 70.60 262 | 47.55 277 | 64.31 212 | 76.61 272 | 41.63 190 | 79.62 216 | 49.74 216 | 69.00 251 | 80.42 228 |
|
1112_ss | | | 64.00 221 | 63.36 214 | 65.93 252 | 79.28 129 | 42.58 278 | 71.35 250 | 72.36 251 | 46.41 288 | 60.55 251 | 77.89 256 | 46.27 143 | 73.28 275 | 46.18 244 | 69.97 232 | 81.92 204 |
|
baseline1 | | | 63.81 222 | 63.87 207 | 63.62 269 | 76.29 207 | 36.36 329 | 71.78 247 | 67.29 283 | 56.05 172 | 64.23 214 | 82.95 161 | 47.11 132 | 74.41 271 | 47.30 235 | 61.85 305 | 80.10 235 |
|
pmmvs6 | | | 63.69 223 | 62.82 222 | 66.27 244 | 70.63 285 | 39.27 303 | 73.13 226 | 75.47 212 | 52.69 224 | 59.75 262 | 82.30 175 | 39.71 206 | 77.03 256 | 47.40 234 | 64.35 286 | 82.53 192 |
|
Vis-MVSNet (Re-imp) | | | 63.69 223 | 63.88 206 | 63.14 274 | 74.75 231 | 31.04 357 | 71.16 255 | 63.64 306 | 56.32 165 | 59.80 260 | 84.99 119 | 44.51 162 | 75.46 266 | 39.12 298 | 80.62 99 | 82.92 186 |
|
baseline2 | | | 63.42 225 | 61.26 239 | 69.89 201 | 72.55 262 | 47.62 231 | 71.54 248 | 68.38 278 | 50.11 251 | 54.82 302 | 75.55 286 | 43.06 175 | 80.96 193 | 48.13 230 | 67.16 266 | 81.11 218 |
|
thres400 | | | 63.31 226 | 62.18 229 | 66.72 237 | 76.85 197 | 39.62 299 | 71.96 245 | 69.44 270 | 56.63 156 | 62.61 231 | 79.83 224 | 37.18 232 | 79.17 223 | 31.84 335 | 73.25 187 | 81.36 211 |
|
thres600view7 | | | 63.30 227 | 62.27 227 | 66.41 241 | 77.18 191 | 38.87 305 | 72.35 238 | 69.11 274 | 56.98 151 | 62.37 238 | 80.96 205 | 37.01 239 | 79.00 232 | 31.43 342 | 73.05 191 | 81.36 211 |
|
thres100view900 | | | 63.28 228 | 62.41 226 | 65.89 253 | 77.31 189 | 38.66 307 | 72.65 231 | 69.11 274 | 57.07 149 | 62.45 236 | 81.03 203 | 37.01 239 | 79.17 223 | 31.84 335 | 73.25 187 | 79.83 239 |
|
test_0402 | | | 63.25 229 | 61.01 242 | 69.96 196 | 80.00 116 | 54.37 132 | 76.86 158 | 72.02 252 | 54.58 206 | 58.71 272 | 80.79 211 | 35.00 252 | 84.36 121 | 26.41 359 | 64.71 283 | 71.15 329 |
|
tfpn200view9 | | | 63.18 230 | 62.18 229 | 66.21 245 | 76.85 197 | 39.62 299 | 71.96 245 | 69.44 270 | 56.63 156 | 62.61 231 | 79.83 224 | 37.18 232 | 79.17 223 | 31.84 335 | 73.25 187 | 79.83 239 |
|
LTVRE_ROB | | 55.42 16 | 63.15 231 | 61.23 240 | 68.92 216 | 76.57 203 | 47.80 227 | 59.92 324 | 76.39 199 | 54.35 210 | 58.67 273 | 82.46 172 | 29.44 302 | 81.49 181 | 42.12 282 | 71.14 214 | 77.46 262 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 63.05 232 | 60.87 245 | 69.58 207 | 76.99 196 | 53.63 138 | 78.12 128 | 76.16 201 | 47.97 273 | 52.41 322 | 81.61 192 | 27.87 313 | 78.11 240 | 40.07 292 | 66.66 269 | 77.00 270 |
|
IterMVS | | | 62.79 233 | 61.27 238 | 67.35 233 | 69.37 304 | 52.04 171 | 71.17 254 | 68.24 279 | 52.63 225 | 59.82 259 | 76.91 267 | 37.32 231 | 72.36 278 | 52.80 192 | 63.19 296 | 77.66 260 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 62.49 234 | 61.52 235 | 65.40 259 | 71.99 271 | 50.80 185 | 71.15 256 | 69.63 267 | 45.71 296 | 60.61 250 | 77.93 253 | 37.45 228 | 65.99 310 | 55.67 168 | 63.50 293 | 79.42 244 |
|
tfpnnormal | | | 62.47 235 | 61.63 234 | 64.99 263 | 74.81 229 | 39.01 304 | 71.22 253 | 73.72 239 | 55.22 190 | 60.21 252 | 80.09 222 | 41.26 198 | 76.98 257 | 30.02 348 | 68.09 259 | 78.97 249 |
|
MS-PatchMatch | | | 62.42 236 | 61.46 236 | 65.31 261 | 75.21 224 | 52.10 168 | 72.05 242 | 74.05 235 | 46.41 288 | 57.42 283 | 74.36 295 | 34.35 259 | 77.57 249 | 45.62 251 | 73.67 176 | 66.26 345 |
|
Test_1112_low_res | | | 62.32 237 | 61.77 232 | 64.00 268 | 79.08 137 | 39.53 301 | 68.17 279 | 70.17 263 | 43.25 314 | 59.03 270 | 79.90 223 | 44.08 166 | 71.24 284 | 43.79 268 | 68.42 257 | 81.25 214 |
|
D2MVS | | | 62.30 238 | 60.29 247 | 68.34 224 | 66.46 323 | 48.42 221 | 65.70 292 | 73.42 242 | 47.71 275 | 58.16 278 | 75.02 290 | 30.51 292 | 77.71 247 | 53.96 183 | 71.68 210 | 78.90 250 |
|
thres200 | | | 62.20 239 | 61.16 241 | 65.34 260 | 75.38 222 | 39.99 296 | 69.60 272 | 69.29 272 | 55.64 183 | 61.87 242 | 76.99 265 | 37.07 238 | 78.96 233 | 31.28 343 | 73.28 186 | 77.06 268 |
|
tpm2 | | | 62.07 240 | 60.10 248 | 67.99 226 | 72.79 257 | 43.86 267 | 71.05 259 | 66.85 287 | 43.14 316 | 62.77 226 | 75.39 288 | 38.32 220 | 80.80 199 | 41.69 285 | 68.88 252 | 79.32 245 |
|
miper_lstm_enhance | | | 62.03 241 | 60.88 244 | 65.49 258 | 66.71 321 | 46.25 242 | 56.29 337 | 75.70 208 | 50.68 246 | 61.27 247 | 75.48 287 | 40.21 202 | 68.03 299 | 56.31 161 | 65.25 279 | 82.18 198 |
|
EPNet_dtu | | | 61.90 242 | 61.97 231 | 61.68 283 | 72.89 256 | 39.78 298 | 75.85 177 | 65.62 294 | 55.09 193 | 54.56 306 | 79.36 236 | 37.59 227 | 67.02 304 | 39.80 295 | 76.95 150 | 78.25 253 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LCM-MVSNet-Re | | | 61.88 243 | 61.35 237 | 63.46 270 | 74.58 234 | 31.48 356 | 61.42 316 | 58.14 329 | 58.71 124 | 53.02 321 | 79.55 232 | 43.07 174 | 76.80 258 | 45.69 249 | 77.96 137 | 82.11 201 |
|
MSDG | | | 61.81 244 | 59.23 250 | 69.55 208 | 72.64 259 | 52.63 158 | 70.45 265 | 75.81 206 | 51.38 238 | 53.70 313 | 76.11 278 | 29.52 300 | 81.08 192 | 37.70 304 | 65.79 276 | 74.93 290 |
|
SixPastTwentyTwo | | | 61.65 245 | 58.80 254 | 70.20 193 | 75.80 213 | 47.22 235 | 75.59 180 | 69.68 266 | 54.61 204 | 54.11 310 | 79.26 238 | 27.07 320 | 82.96 147 | 43.27 271 | 49.79 348 | 80.41 229 |
|
CL-MVSNet_self_test | | | 61.53 246 | 60.94 243 | 63.30 272 | 68.95 307 | 36.93 325 | 67.60 283 | 72.80 248 | 55.67 181 | 59.95 257 | 76.63 270 | 45.01 159 | 72.22 281 | 39.74 296 | 62.09 304 | 80.74 225 |
|
RPMNet | | | 61.53 246 | 58.42 257 | 70.86 181 | 69.96 297 | 52.07 169 | 65.31 298 | 81.36 106 | 43.20 315 | 59.36 265 | 70.15 323 | 35.37 248 | 85.47 100 | 36.42 316 | 64.65 284 | 75.06 286 |
|
pmmvs4 | | | 61.48 248 | 59.39 249 | 67.76 227 | 71.57 276 | 53.86 135 | 71.42 249 | 65.34 296 | 44.20 306 | 59.46 264 | 77.92 254 | 35.90 245 | 74.71 269 | 43.87 267 | 64.87 282 | 74.71 294 |
|
OurMVSNet-221017-0 | | | 61.37 249 | 58.63 256 | 69.61 204 | 72.05 270 | 48.06 225 | 73.93 215 | 72.51 249 | 47.23 283 | 54.74 303 | 80.92 206 | 21.49 345 | 81.24 187 | 48.57 228 | 56.22 330 | 79.53 243 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 250 | 58.81 253 | 68.64 219 | 74.63 233 | 52.51 162 | 78.42 124 | 73.30 243 | 49.92 254 | 50.96 327 | 81.51 195 | 23.06 338 | 79.40 218 | 31.63 339 | 65.85 274 | 74.01 301 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XXY-MVS | | | 60.68 251 | 61.67 233 | 57.70 306 | 70.43 288 | 38.45 309 | 64.19 304 | 66.47 288 | 48.05 272 | 63.22 222 | 80.86 208 | 49.28 102 | 60.47 326 | 45.25 258 | 67.28 265 | 74.19 299 |
|
SCA | | | 60.49 252 | 58.38 258 | 66.80 236 | 74.14 244 | 48.06 225 | 63.35 307 | 63.23 309 | 49.13 259 | 59.33 268 | 72.10 307 | 37.45 228 | 74.27 272 | 44.17 261 | 62.57 300 | 78.05 256 |
|
K. test v3 | | | 60.47 253 | 57.11 266 | 70.56 187 | 73.74 246 | 48.22 223 | 75.10 192 | 62.55 313 | 58.27 132 | 53.62 316 | 76.31 277 | 27.81 314 | 81.59 179 | 47.42 233 | 39.18 361 | 81.88 205 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 254 | 58.14 261 | 65.69 256 | 70.47 287 | 44.82 257 | 75.33 184 | 70.86 260 | 45.04 298 | 56.06 289 | 76.00 279 | 26.89 322 | 79.65 214 | 35.36 321 | 67.29 264 | 72.60 310 |
|
CR-MVSNet | | | 59.91 255 | 57.90 263 | 65.96 251 | 69.96 297 | 52.07 169 | 65.31 298 | 63.15 310 | 42.48 320 | 59.36 265 | 74.84 291 | 35.83 246 | 70.75 286 | 45.50 253 | 64.65 284 | 75.06 286 |
|
PatchmatchNet |  | | 59.84 256 | 58.24 259 | 64.65 265 | 73.05 253 | 46.70 239 | 69.42 274 | 62.18 315 | 47.55 277 | 58.88 271 | 71.96 309 | 34.49 257 | 69.16 294 | 42.99 275 | 63.60 291 | 78.07 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WTY-MVS | | | 59.75 257 | 60.39 246 | 57.85 304 | 72.32 267 | 37.83 314 | 61.05 321 | 64.18 304 | 45.95 295 | 61.91 241 | 79.11 240 | 47.01 136 | 60.88 325 | 42.50 279 | 69.49 243 | 74.83 291 |
|
CVMVSNet | | | 59.63 258 | 59.14 251 | 61.08 288 | 74.47 236 | 38.84 306 | 75.20 188 | 68.74 276 | 31.15 347 | 58.24 277 | 76.51 274 | 32.39 284 | 68.58 297 | 49.77 215 | 65.84 275 | 75.81 279 |
|
tpm cat1 | | | 59.25 259 | 56.95 269 | 66.15 247 | 72.19 268 | 46.96 237 | 68.09 280 | 65.76 292 | 40.03 334 | 57.81 280 | 70.56 318 | 38.32 220 | 74.51 270 | 38.26 302 | 61.50 308 | 77.00 270 |
|
test_vis1_n_1920 | | | 58.86 260 | 59.06 252 | 58.25 299 | 63.76 335 | 43.14 274 | 67.49 284 | 66.36 290 | 40.22 332 | 65.89 182 | 71.95 310 | 31.04 288 | 59.75 330 | 59.94 141 | 64.90 281 | 71.85 322 |
|
pmmvs-eth3d | | | 58.81 261 | 56.31 275 | 66.30 243 | 67.61 315 | 52.42 165 | 72.30 239 | 64.76 300 | 43.55 312 | 54.94 301 | 74.19 297 | 28.95 305 | 72.60 277 | 43.31 270 | 57.21 325 | 73.88 302 |
|
MVS_0304 | | | 58.51 262 | 57.36 265 | 61.96 282 | 70.04 295 | 41.83 284 | 69.40 275 | 65.46 295 | 50.73 245 | 53.30 320 | 74.06 298 | 22.65 339 | 70.18 292 | 42.16 281 | 68.44 256 | 73.86 303 |
|
tpmvs | | | 58.47 263 | 56.95 269 | 63.03 276 | 70.20 291 | 41.21 290 | 67.90 282 | 67.23 284 | 49.62 255 | 54.73 304 | 70.84 316 | 34.14 260 | 76.24 264 | 36.64 313 | 61.29 309 | 71.64 323 |
|
PVSNet | | 50.76 19 | 58.40 264 | 57.39 264 | 61.42 285 | 75.53 219 | 44.04 266 | 61.43 315 | 63.45 307 | 47.04 285 | 56.91 284 | 73.61 301 | 27.00 321 | 64.76 313 | 39.12 298 | 72.40 199 | 75.47 283 |
|
tpmrst | | | 58.24 265 | 58.70 255 | 56.84 308 | 66.97 318 | 34.32 342 | 69.57 273 | 61.14 321 | 47.17 284 | 58.58 275 | 71.60 312 | 41.28 197 | 60.41 327 | 49.20 222 | 62.84 298 | 75.78 280 |
|
Patchmatch-RL test | | | 58.16 266 | 55.49 279 | 66.15 247 | 67.92 314 | 48.89 216 | 60.66 322 | 51.07 350 | 47.86 274 | 59.36 265 | 62.71 350 | 34.02 262 | 72.27 280 | 56.41 160 | 59.40 318 | 77.30 264 |
|
test-LLR | | | 58.15 267 | 58.13 262 | 58.22 300 | 68.57 309 | 44.80 258 | 65.46 295 | 57.92 330 | 50.08 252 | 55.44 294 | 69.82 325 | 32.62 280 | 57.44 337 | 49.66 218 | 73.62 177 | 72.41 315 |
|
ppachtmachnet_test | | | 58.06 268 | 55.38 280 | 66.10 249 | 69.51 301 | 48.99 214 | 68.01 281 | 66.13 291 | 44.50 303 | 54.05 311 | 70.74 317 | 32.09 286 | 72.34 279 | 36.68 312 | 56.71 329 | 76.99 272 |
|
gg-mvs-nofinetune | | | 57.86 269 | 56.43 274 | 62.18 280 | 72.62 260 | 35.35 336 | 66.57 286 | 56.33 336 | 50.65 247 | 57.64 281 | 57.10 356 | 30.65 291 | 76.36 262 | 37.38 306 | 78.88 126 | 74.82 292 |
|
CMPMVS |  | 42.80 21 | 57.81 270 | 55.97 276 | 63.32 271 | 60.98 348 | 47.38 234 | 64.66 302 | 69.50 269 | 32.06 346 | 46.83 342 | 77.80 258 | 29.50 301 | 71.36 283 | 48.68 226 | 73.75 175 | 71.21 328 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet | | | 57.35 271 | 57.07 267 | 58.22 300 | 74.21 243 | 37.18 320 | 62.46 310 | 60.88 322 | 48.88 261 | 55.29 297 | 75.99 281 | 31.68 287 | 62.04 322 | 31.87 334 | 72.35 200 | 75.43 284 |
|
tpm | | | 57.34 272 | 58.16 260 | 54.86 315 | 71.80 274 | 34.77 338 | 67.47 285 | 56.04 339 | 48.20 269 | 60.10 254 | 76.92 266 | 37.17 234 | 53.41 353 | 40.76 290 | 65.01 280 | 76.40 276 |
|
Patchmtry | | | 57.16 273 | 56.47 273 | 59.23 292 | 69.17 306 | 34.58 341 | 62.98 308 | 63.15 310 | 44.53 302 | 56.83 285 | 74.84 291 | 35.83 246 | 68.71 296 | 40.03 293 | 60.91 310 | 74.39 297 |
|
AllTest | | | 57.08 274 | 54.65 284 | 64.39 266 | 71.44 277 | 49.03 211 | 69.92 271 | 67.30 281 | 45.97 293 | 47.16 340 | 79.77 226 | 17.47 347 | 67.56 301 | 33.65 326 | 59.16 319 | 76.57 274 |
|
test_cas_vis1_n_1920 | | | 56.91 275 | 56.71 271 | 57.51 307 | 59.13 353 | 45.40 254 | 63.58 306 | 61.29 320 | 36.24 341 | 67.14 157 | 71.85 311 | 29.89 298 | 56.69 341 | 57.65 153 | 63.58 292 | 70.46 333 |
|
our_test_3 | | | 56.49 276 | 54.42 286 | 62.68 278 | 69.51 301 | 45.48 253 | 66.08 290 | 61.49 319 | 44.11 309 | 50.73 331 | 69.60 328 | 33.05 271 | 68.15 298 | 38.38 301 | 56.86 326 | 74.40 296 |
|
pmmvs5 | | | 56.47 277 | 55.68 278 | 58.86 296 | 61.41 345 | 36.71 327 | 66.37 288 | 62.75 312 | 40.38 331 | 53.70 313 | 76.62 271 | 34.56 255 | 67.05 303 | 40.02 294 | 65.27 278 | 72.83 308 |
|
test-mter | | | 56.42 278 | 55.82 277 | 58.22 300 | 68.57 309 | 44.80 258 | 65.46 295 | 57.92 330 | 39.94 335 | 55.44 294 | 69.82 325 | 21.92 342 | 57.44 337 | 49.66 218 | 73.62 177 | 72.41 315 |
|
USDC | | | 56.35 279 | 54.24 290 | 62.69 277 | 64.74 331 | 40.31 294 | 65.05 300 | 73.83 238 | 43.93 310 | 47.58 338 | 77.71 261 | 15.36 353 | 75.05 268 | 38.19 303 | 61.81 306 | 72.70 309 |
|
PatchMatch-RL | | | 56.25 280 | 54.55 285 | 61.32 287 | 77.06 193 | 56.07 107 | 65.57 294 | 54.10 344 | 44.13 308 | 53.49 319 | 71.27 315 | 25.20 331 | 66.78 305 | 36.52 315 | 63.66 290 | 61.12 348 |
|
sss | | | 56.17 281 | 56.57 272 | 54.96 314 | 66.93 319 | 36.32 332 | 57.94 330 | 61.69 318 | 41.67 323 | 58.64 274 | 75.32 289 | 38.72 216 | 56.25 344 | 42.04 283 | 66.19 273 | 72.31 318 |
|
FMVSNet5 | | | 55.86 282 | 54.93 282 | 58.66 298 | 71.05 282 | 36.35 330 | 64.18 305 | 62.48 314 | 46.76 286 | 50.66 332 | 74.73 293 | 25.80 328 | 64.04 315 | 33.11 329 | 65.57 277 | 75.59 282 |
|
RPSCF | | | 55.80 283 | 54.22 291 | 60.53 289 | 65.13 330 | 42.91 277 | 64.30 303 | 57.62 332 | 36.84 340 | 58.05 279 | 82.28 176 | 28.01 312 | 56.24 345 | 37.14 307 | 58.61 321 | 82.44 196 |
|
EU-MVSNet | | | 55.61 284 | 54.41 287 | 59.19 294 | 65.41 329 | 33.42 348 | 72.44 237 | 71.91 253 | 28.81 349 | 51.27 325 | 73.87 299 | 24.76 333 | 69.08 295 | 43.04 274 | 58.20 322 | 75.06 286 |
|
Anonymous20240521 | | | 55.30 285 | 54.41 287 | 57.96 303 | 60.92 350 | 41.73 286 | 71.09 258 | 71.06 259 | 41.18 326 | 48.65 336 | 73.31 302 | 16.93 349 | 59.25 332 | 42.54 278 | 64.01 287 | 72.90 307 |
|
TESTMET0.1,1 | | | 55.28 286 | 54.90 283 | 56.42 309 | 66.56 322 | 43.67 269 | 65.46 295 | 56.27 337 | 39.18 337 | 53.83 312 | 67.44 337 | 24.21 335 | 55.46 348 | 48.04 231 | 73.11 190 | 70.13 336 |
|
KD-MVS_self_test | | | 55.22 287 | 53.89 293 | 59.21 293 | 57.80 356 | 27.47 366 | 57.75 332 | 74.32 230 | 47.38 279 | 50.90 328 | 70.00 324 | 28.45 310 | 70.30 290 | 40.44 291 | 57.92 323 | 79.87 238 |
|
MIMVSNet1 | | | 55.17 288 | 54.31 289 | 57.77 305 | 70.03 296 | 32.01 354 | 65.68 293 | 64.81 299 | 49.19 258 | 46.75 343 | 76.00 279 | 25.53 330 | 64.04 315 | 28.65 353 | 62.13 303 | 77.26 266 |
|
Anonymous20231206 | | | 55.10 289 | 55.30 281 | 54.48 317 | 69.81 300 | 33.94 346 | 62.91 309 | 62.13 316 | 41.08 327 | 55.18 298 | 75.65 284 | 32.75 278 | 56.59 343 | 30.32 347 | 67.86 260 | 72.91 306 |
|
TinyColmap | | | 54.14 290 | 51.72 300 | 61.40 286 | 66.84 320 | 41.97 282 | 66.52 287 | 68.51 277 | 44.81 299 | 42.69 354 | 75.77 283 | 11.66 359 | 72.94 276 | 31.96 333 | 56.77 328 | 69.27 341 |
|
EPMVS | | | 53.96 291 | 53.69 294 | 54.79 316 | 66.12 326 | 31.96 355 | 62.34 312 | 49.05 353 | 44.42 305 | 55.54 292 | 71.33 314 | 30.22 295 | 56.70 340 | 41.65 287 | 62.54 301 | 75.71 281 |
|
PMMVS | | | 53.96 291 | 53.26 297 | 56.04 310 | 62.60 341 | 50.92 182 | 61.17 319 | 56.09 338 | 32.81 345 | 53.51 318 | 66.84 340 | 34.04 261 | 59.93 329 | 44.14 263 | 68.18 258 | 57.27 354 |
|
test20.03 | | | 53.87 293 | 54.02 292 | 53.41 325 | 61.47 344 | 28.11 364 | 61.30 317 | 59.21 325 | 51.34 240 | 52.09 323 | 77.43 262 | 33.29 270 | 58.55 334 | 29.76 349 | 60.27 316 | 73.58 304 |
|
MDA-MVSNet-bldmvs | | | 53.87 293 | 50.81 304 | 63.05 275 | 66.25 324 | 48.58 219 | 56.93 335 | 63.82 305 | 48.09 271 | 41.22 355 | 70.48 321 | 30.34 294 | 68.00 300 | 34.24 324 | 45.92 353 | 72.57 311 |
|
KD-MVS_2432*1600 | | | 53.45 295 | 51.50 302 | 59.30 290 | 62.82 338 | 37.14 321 | 55.33 338 | 71.79 254 | 47.34 281 | 55.09 299 | 70.52 319 | 21.91 343 | 70.45 288 | 35.72 319 | 42.97 356 | 70.31 334 |
|
miper_refine_blended | | | 53.45 295 | 51.50 302 | 59.30 290 | 62.82 338 | 37.14 321 | 55.33 338 | 71.79 254 | 47.34 281 | 55.09 299 | 70.52 319 | 21.91 343 | 70.45 288 | 35.72 319 | 42.97 356 | 70.31 334 |
|
TDRefinement | | | 53.44 297 | 50.72 305 | 61.60 284 | 64.31 334 | 46.96 237 | 70.89 260 | 65.27 298 | 41.78 321 | 44.61 349 | 77.98 251 | 11.52 361 | 66.36 308 | 28.57 354 | 51.59 342 | 71.49 326 |
|
test0.0.03 1 | | | 53.32 298 | 53.59 295 | 52.50 329 | 62.81 340 | 29.45 360 | 59.51 325 | 54.11 343 | 50.08 252 | 54.40 308 | 74.31 296 | 32.62 280 | 55.92 346 | 30.50 346 | 63.95 289 | 72.15 320 |
|
PatchT | | | 53.17 299 | 53.44 296 | 52.33 330 | 68.29 313 | 25.34 371 | 58.21 329 | 54.41 342 | 44.46 304 | 54.56 306 | 69.05 331 | 33.32 269 | 60.94 324 | 36.93 308 | 61.76 307 | 70.73 332 |
|
UnsupCasMVSNet_eth | | | 53.16 300 | 52.47 298 | 55.23 313 | 59.45 352 | 33.39 349 | 59.43 326 | 69.13 273 | 45.98 292 | 50.35 334 | 72.32 306 | 29.30 303 | 58.26 335 | 42.02 284 | 44.30 354 | 74.05 300 |
|
PM-MVS | | | 52.33 301 | 50.19 308 | 58.75 297 | 62.10 342 | 45.14 256 | 65.75 291 | 40.38 367 | 43.60 311 | 53.52 317 | 72.65 304 | 9.16 367 | 65.87 311 | 50.41 211 | 54.18 336 | 65.24 347 |
|
testgi | | | 51.90 302 | 52.37 299 | 50.51 335 | 60.39 351 | 23.55 374 | 58.42 328 | 58.15 328 | 49.03 260 | 51.83 324 | 79.21 239 | 22.39 340 | 55.59 347 | 29.24 352 | 62.64 299 | 72.40 317 |
|
dp | | | 51.89 303 | 51.60 301 | 52.77 328 | 68.44 312 | 32.45 353 | 62.36 311 | 54.57 341 | 44.16 307 | 49.31 335 | 67.91 333 | 28.87 307 | 56.61 342 | 33.89 325 | 54.89 333 | 69.24 342 |
|
JIA-IIPM | | | 51.56 304 | 47.68 317 | 63.21 273 | 64.61 332 | 50.73 186 | 47.71 354 | 58.77 327 | 42.90 317 | 48.46 337 | 51.72 360 | 24.97 332 | 70.24 291 | 36.06 318 | 53.89 337 | 68.64 343 |
|
test_fmvs1_n | | | 51.37 305 | 50.35 307 | 54.42 319 | 52.85 359 | 37.71 316 | 61.16 320 | 51.93 346 | 28.15 351 | 63.81 218 | 69.73 327 | 13.72 354 | 53.95 351 | 51.16 206 | 60.65 314 | 71.59 324 |
|
ADS-MVSNet2 | | | 51.33 306 | 48.76 312 | 59.07 295 | 66.02 327 | 44.60 261 | 50.90 348 | 59.76 324 | 36.90 338 | 50.74 329 | 66.18 342 | 26.38 323 | 63.11 318 | 27.17 355 | 54.76 334 | 69.50 339 |
|
test_fmvs1 | | | 51.32 307 | 50.48 306 | 53.81 321 | 53.57 358 | 37.51 318 | 60.63 323 | 51.16 348 | 28.02 353 | 63.62 219 | 69.23 330 | 16.41 350 | 53.93 352 | 51.01 207 | 60.70 313 | 69.99 337 |
|
YYNet1 | | | 50.73 308 | 48.96 309 | 56.03 311 | 61.10 347 | 41.78 285 | 51.94 346 | 56.44 335 | 40.94 329 | 44.84 347 | 67.80 335 | 30.08 296 | 55.08 349 | 36.77 309 | 50.71 344 | 71.22 327 |
|
MDA-MVSNet_test_wron | | | 50.71 309 | 48.95 310 | 56.00 312 | 61.17 346 | 41.84 283 | 51.90 347 | 56.45 334 | 40.96 328 | 44.79 348 | 67.84 334 | 30.04 297 | 55.07 350 | 36.71 311 | 50.69 345 | 71.11 330 |
|
UnsupCasMVSNet_bld | | | 50.07 310 | 48.87 311 | 53.66 322 | 60.97 349 | 33.67 347 | 57.62 333 | 64.56 302 | 39.47 336 | 47.38 339 | 64.02 348 | 27.47 316 | 59.32 331 | 34.69 323 | 43.68 355 | 67.98 344 |
|
test_vis1_n | | | 49.89 311 | 48.69 313 | 53.50 324 | 53.97 357 | 37.38 319 | 61.53 314 | 47.33 359 | 28.54 350 | 59.62 263 | 67.10 339 | 13.52 355 | 52.27 356 | 49.07 223 | 57.52 324 | 70.84 331 |
|
Patchmatch-test | | | 49.08 312 | 48.28 314 | 51.50 333 | 64.40 333 | 30.85 358 | 45.68 358 | 48.46 356 | 35.60 342 | 46.10 346 | 72.10 307 | 34.47 258 | 46.37 363 | 27.08 357 | 60.65 314 | 77.27 265 |
|
test_fmvs2 | | | 48.69 313 | 47.49 318 | 52.29 331 | 48.63 365 | 33.06 351 | 57.76 331 | 48.05 357 | 25.71 357 | 59.76 261 | 69.60 328 | 11.57 360 | 52.23 357 | 49.45 221 | 56.86 326 | 71.58 325 |
|
ADS-MVSNet | | | 48.48 314 | 47.77 315 | 50.63 334 | 66.02 327 | 29.92 359 | 50.90 348 | 50.87 352 | 36.90 338 | 50.74 329 | 66.18 342 | 26.38 323 | 52.47 355 | 27.17 355 | 54.76 334 | 69.50 339 |
|
CHOSEN 280x420 | | | 47.83 315 | 46.36 319 | 52.24 332 | 67.37 317 | 49.78 202 | 38.91 366 | 43.11 365 | 35.00 343 | 43.27 353 | 63.30 349 | 28.95 305 | 49.19 360 | 36.53 314 | 60.80 312 | 57.76 353 |
|
new-patchmatchnet | | | 47.56 316 | 47.73 316 | 47.06 338 | 58.81 354 | 9.37 381 | 48.78 352 | 59.21 325 | 43.28 313 | 44.22 350 | 68.66 332 | 25.67 329 | 57.20 339 | 31.57 341 | 49.35 349 | 74.62 295 |
|
PVSNet_0 | | 43.31 20 | 47.46 317 | 45.64 320 | 52.92 327 | 67.60 316 | 44.65 260 | 54.06 342 | 54.64 340 | 41.59 324 | 46.15 345 | 58.75 353 | 30.99 289 | 58.66 333 | 32.18 332 | 24.81 369 | 55.46 356 |
|
MVS-HIRNet | | | 45.52 318 | 44.48 321 | 48.65 337 | 68.49 311 | 34.05 345 | 59.41 327 | 44.50 363 | 27.03 354 | 37.96 361 | 50.47 364 | 26.16 326 | 64.10 314 | 26.74 358 | 59.52 317 | 47.82 363 |
|
pmmvs3 | | | 44.92 319 | 41.95 324 | 53.86 320 | 52.58 361 | 43.55 270 | 62.11 313 | 46.90 361 | 26.05 356 | 40.63 356 | 60.19 352 | 11.08 364 | 57.91 336 | 31.83 338 | 46.15 352 | 60.11 349 |
|
test_fmvs3 | | | 44.30 320 | 42.55 322 | 49.55 336 | 42.83 369 | 27.15 367 | 53.03 344 | 44.93 362 | 22.03 364 | 53.69 315 | 64.94 345 | 4.21 374 | 49.63 359 | 47.47 232 | 49.82 347 | 71.88 321 |
|
LF4IMVS | | | 42.95 321 | 42.26 323 | 45.04 341 | 48.30 366 | 32.50 352 | 54.80 340 | 48.49 355 | 28.03 352 | 40.51 357 | 70.16 322 | 9.24 366 | 43.89 366 | 31.63 339 | 49.18 350 | 58.72 351 |
|
EGC-MVSNET | | | 42.47 322 | 38.48 329 | 54.46 318 | 74.33 240 | 48.73 218 | 70.33 267 | 51.10 349 | 0.03 379 | 0.18 380 | 67.78 336 | 13.28 356 | 66.49 307 | 18.91 365 | 50.36 346 | 48.15 361 |
|
FPMVS | | | 42.18 323 | 41.11 325 | 45.39 340 | 58.03 355 | 41.01 292 | 49.50 350 | 53.81 345 | 30.07 348 | 33.71 362 | 64.03 346 | 11.69 358 | 52.08 358 | 14.01 369 | 55.11 332 | 43.09 365 |
|
ANet_high | | | 41.38 324 | 37.47 331 | 53.11 326 | 39.73 375 | 24.45 372 | 56.94 334 | 69.69 265 | 47.65 276 | 26.04 367 | 52.32 359 | 12.44 357 | 62.38 321 | 21.80 362 | 10.61 376 | 72.49 312 |
|
test_vis1_rt | | | 41.35 325 | 39.45 327 | 47.03 339 | 46.65 368 | 37.86 313 | 47.76 353 | 38.65 368 | 23.10 360 | 44.21 351 | 51.22 362 | 11.20 363 | 44.08 365 | 39.27 297 | 53.02 339 | 59.14 350 |
|
LCM-MVSNet | | | 40.30 326 | 35.88 332 | 53.57 323 | 42.24 370 | 29.15 361 | 45.21 360 | 60.53 323 | 22.23 363 | 28.02 365 | 50.98 363 | 3.72 376 | 61.78 323 | 31.22 344 | 38.76 362 | 69.78 338 |
|
mvsany_test1 | | | 39.38 327 | 38.16 330 | 43.02 345 | 49.05 363 | 34.28 343 | 44.16 362 | 25.94 378 | 22.74 362 | 46.57 344 | 62.21 351 | 23.85 337 | 41.16 370 | 33.01 330 | 35.91 364 | 53.63 357 |
|
N_pmnet | | | 39.35 328 | 40.28 326 | 36.54 351 | 63.76 335 | 1.62 385 | 49.37 351 | 0.76 385 | 34.62 344 | 43.61 352 | 66.38 341 | 26.25 325 | 42.57 367 | 26.02 360 | 51.77 341 | 65.44 346 |
|
DSMNet-mixed | | | 39.30 329 | 38.72 328 | 41.03 346 | 51.22 362 | 19.66 377 | 45.53 359 | 31.35 374 | 15.83 371 | 39.80 359 | 67.42 338 | 22.19 341 | 45.13 364 | 22.43 361 | 52.69 340 | 58.31 352 |
|
APD_test1 | | | 37.39 330 | 34.94 333 | 44.72 343 | 48.88 364 | 33.19 350 | 52.95 345 | 44.00 364 | 19.49 365 | 27.28 366 | 58.59 354 | 3.18 378 | 52.84 354 | 18.92 364 | 41.17 359 | 48.14 362 |
|
PMVS |  | 28.69 22 | 36.22 331 | 33.29 335 | 45.02 342 | 36.82 377 | 35.98 335 | 54.68 341 | 48.74 354 | 26.31 355 | 21.02 370 | 51.61 361 | 2.88 379 | 60.10 328 | 9.99 375 | 47.58 351 | 38.99 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 34.77 332 | 31.91 336 | 43.33 344 | 62.05 343 | 37.87 312 | 20.39 371 | 67.03 285 | 23.23 359 | 18.41 372 | 25.84 372 | 4.24 373 | 62.73 319 | 14.71 368 | 51.32 343 | 29.38 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 34.13 333 | 34.29 334 | 33.64 353 | 52.63 360 | 18.23 379 | 44.43 361 | 33.90 373 | 22.81 361 | 30.89 364 | 53.18 358 | 10.48 365 | 35.72 374 | 20.77 363 | 39.51 360 | 46.98 364 |
|
mvsany_test3 | | | 32.62 334 | 30.57 338 | 38.77 349 | 36.16 378 | 24.20 373 | 38.10 367 | 20.63 380 | 19.14 366 | 40.36 358 | 57.43 355 | 5.06 371 | 36.63 373 | 29.59 351 | 28.66 368 | 55.49 355 |
|
test_vis3_rt | | | 32.09 335 | 30.20 339 | 37.76 350 | 35.36 379 | 27.48 365 | 40.60 365 | 28.29 377 | 16.69 369 | 32.52 363 | 40.53 368 | 1.96 380 | 37.40 372 | 33.64 328 | 42.21 358 | 48.39 360 |
|
test_f | | | 31.86 336 | 31.05 337 | 34.28 352 | 32.33 381 | 21.86 375 | 32.34 368 | 30.46 375 | 16.02 370 | 39.78 360 | 55.45 357 | 4.80 372 | 32.36 375 | 30.61 345 | 37.66 363 | 48.64 359 |
|
testf1 | | | 31.46 337 | 28.89 340 | 39.16 347 | 41.99 372 | 28.78 362 | 46.45 356 | 37.56 369 | 14.28 372 | 21.10 368 | 48.96 365 | 1.48 382 | 47.11 361 | 13.63 370 | 34.56 365 | 41.60 366 |
|
APD_test2 | | | 31.46 337 | 28.89 340 | 39.16 347 | 41.99 372 | 28.78 362 | 46.45 356 | 37.56 369 | 14.28 372 | 21.10 368 | 48.96 365 | 1.48 382 | 47.11 361 | 13.63 370 | 34.56 365 | 41.60 366 |
|
PMMVS2 | | | 27.40 339 | 25.91 342 | 31.87 355 | 39.46 376 | 6.57 382 | 31.17 369 | 28.52 376 | 23.96 358 | 20.45 371 | 48.94 367 | 4.20 375 | 37.94 371 | 16.51 366 | 19.97 371 | 51.09 358 |
|
E-PMN | | | 23.77 340 | 22.73 344 | 26.90 356 | 42.02 371 | 20.67 376 | 42.66 363 | 35.70 371 | 17.43 367 | 10.28 377 | 25.05 373 | 6.42 369 | 42.39 368 | 10.28 374 | 14.71 373 | 17.63 372 |
|
EMVS | | | 22.97 341 | 21.84 345 | 26.36 357 | 40.20 374 | 19.53 378 | 41.95 364 | 34.64 372 | 17.09 368 | 9.73 378 | 22.83 374 | 7.29 368 | 42.22 369 | 9.18 376 | 13.66 374 | 17.32 373 |
|
MVE |  | 17.77 23 | 21.41 342 | 17.77 347 | 32.34 354 | 34.34 380 | 25.44 370 | 16.11 372 | 24.11 379 | 11.19 374 | 13.22 374 | 31.92 370 | 1.58 381 | 30.95 376 | 10.47 373 | 17.03 372 | 40.62 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.68 343 | 18.10 346 | 24.41 358 | 13.68 383 | 3.11 384 | 12.06 374 | 42.37 366 | 2.00 377 | 11.97 375 | 36.38 369 | 5.77 370 | 29.35 377 | 15.06 367 | 23.65 370 | 40.76 368 |
|
cdsmvs_eth3d_5k | | | 17.50 344 | 23.34 343 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 78.63 158 | 0.00 382 | 0.00 383 | 82.18 177 | 49.25 103 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
wuyk23d | | | 13.32 345 | 12.52 348 | 15.71 359 | 47.54 367 | 26.27 368 | 31.06 370 | 1.98 384 | 4.93 376 | 5.18 379 | 1.94 379 | 0.45 384 | 18.54 378 | 6.81 378 | 12.83 375 | 2.33 376 |
|
tmp_tt | | | 9.43 346 | 11.14 349 | 4.30 361 | 2.38 384 | 4.40 383 | 13.62 373 | 16.08 382 | 0.39 378 | 15.89 373 | 13.06 375 | 15.80 352 | 5.54 380 | 12.63 372 | 10.46 377 | 2.95 375 |
|
ab-mvs-re | | | 6.49 347 | 8.65 350 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 77.89 256 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
test123 | | | 4.73 348 | 6.30 351 | 0.02 362 | 0.01 385 | 0.01 386 | 56.36 336 | 0.00 386 | 0.01 380 | 0.04 381 | 0.21 381 | 0.01 385 | 0.00 381 | 0.03 380 | 0.00 379 | 0.04 377 |
|
testmvs | | | 4.52 349 | 6.03 352 | 0.01 363 | 0.01 385 | 0.00 387 | 53.86 343 | 0.00 386 | 0.01 380 | 0.04 381 | 0.27 380 | 0.00 386 | 0.00 381 | 0.04 379 | 0.00 379 | 0.03 378 |
|
pcd_1.5k_mvsjas | | | 3.92 350 | 5.23 353 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 47.05 133 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 387 | 0.00 375 | 0.00 386 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 386 | 0.00 381 | 0.00 381 | 0.00 379 | 0.00 379 |
|
FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 62 | 60.87 82 | 81.50 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
PC_three_1452 | | | | | | | | | | 55.09 193 | 84.46 4 | 89.84 41 | 66.68 5 | 89.41 16 | 74.24 32 | 91.38 2 | 88.42 9 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 56 | | 86.84 7 | 65.01 18 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 85 | 57.95 138 | 78.10 24 | 90.06 34 | 56.12 37 | 88.84 24 | 74.05 35 | 87.00 46 | |
|
RE-MVS-def | | | | 73.71 61 | | 83.49 65 | 59.87 48 | 84.29 35 | 81.36 106 | 58.07 135 | 73.14 65 | 90.07 32 | 43.06 175 | | 68.20 67 | 81.76 92 | 84.03 150 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 59 | | 85.53 25 | 53.93 212 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 11 |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 40 | 67.01 1 | 90.33 11 | 73.16 42 | 91.15 4 | 88.23 14 |
|
test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 30 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 33 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 68 | | 86.78 10 | 64.20 29 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
9.14 | | | | 78.75 14 | | 83.10 69 | | 84.15 41 | 88.26 1 | 59.90 104 | 78.57 23 | 90.36 25 | 57.51 30 | 86.86 62 | 77.39 18 | 89.52 21 | |
|
save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 45 | 79.66 138 | 59.00 118 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 14 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 19 |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 62 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 35 |
|
test0726 | | | | | | 87.75 7 | 59.07 63 | 87.86 4 | 86.83 8 | 64.26 27 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 256 |
|
test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 254 | | | | 78.05 256 |
|
sam_mvs | | | | | | | | | | | | | 33.43 268 | | | | |
|
ambc | | | | | 65.13 262 | 63.72 337 | 37.07 323 | 47.66 355 | 78.78 154 | | 54.37 309 | 71.42 313 | 11.24 362 | 80.94 194 | 45.64 250 | 53.85 338 | 77.38 263 |
|
MTGPA |  | | | | | | | | 80.97 121 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 278 | | | | 3.64 377 | 32.39 284 | 69.49 293 | 44.17 261 | | |
|
test_post | | | | | | | | | | | | 3.55 378 | 33.90 263 | 66.52 306 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 346 | 34.50 256 | 74.27 272 | | | |
|
GG-mvs-BLEND | | | | | 62.34 279 | 71.36 281 | 37.04 324 | 69.20 276 | 57.33 333 | | 54.73 304 | 65.48 344 | 30.37 293 | 77.82 244 | 34.82 322 | 74.93 167 | 72.17 319 |
|
MTMP | | | | | | | | 86.03 18 | 17.08 381 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 280 | 41.72 288 | | | 48.85 262 | | 73.31 302 | | 82.48 166 | 48.90 225 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 27 | 88.31 32 | 83.81 159 |
|
TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 113 | 55.65 182 | 74.93 40 | 88.81 54 | 53.70 58 | 84.68 116 | | | |
|
test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 83 | 81.18 116 | 55.86 173 | 74.81 43 | 88.80 56 | 53.70 58 | 84.45 120 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 43 | 87.93 38 | 84.33 141 |
|
agg_prior | | | | | | 85.04 50 | 59.96 46 | | 81.04 119 | | 74.68 46 | | | 84.04 126 | | | |
|
TestCases | | | | | 64.39 266 | 71.44 277 | 49.03 211 | | 67.30 281 | 45.97 293 | 47.16 340 | 79.77 226 | 17.47 347 | 67.56 301 | 33.65 326 | 59.16 319 | 76.57 274 |
|
test_prior4 | | | | | | | 62.51 14 | 82.08 75 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 78 | | 60.37 94 | 75.01 39 | 89.06 50 | 56.22 36 | | 72.19 47 | 88.96 24 | |
|
test_prior | | | | | 76.69 51 | 84.20 61 | 57.27 86 | | 84.88 37 | | | | | 86.43 76 | | | 86.38 67 |
|
旧先验2 | | | | | | | | 76.08 171 | | 45.32 297 | 76.55 31 | | | 65.56 312 | 58.75 149 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 169 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 70.76 183 | 85.66 41 | 61.13 30 | | 66.43 289 | 44.68 301 | 70.29 95 | 86.64 84 | 41.29 196 | 75.23 267 | 49.72 217 | 81.75 94 | 75.93 278 |
|
旧先验1 | | | | | | 83.04 70 | 53.15 149 | | 67.52 280 | | | 87.85 67 | 44.08 166 | | | 80.76 98 | 78.03 259 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 108 | 74.30 232 | 48.40 267 | | | | 80.78 200 | 53.62 185 | | 79.03 248 |
|
原ACMM2 | | | | | | | | 79.02 114 | | | | | | | | | |
|
原ACMM1 | | | | | 74.69 87 | 85.39 47 | 59.40 53 | | 83.42 68 | 51.47 237 | 70.27 96 | 86.61 86 | 48.61 111 | 86.51 74 | 53.85 184 | 87.96 37 | 78.16 254 |
|
test222 | | | | | | 83.14 68 | 58.68 72 | 72.57 235 | 63.45 307 | 41.78 321 | 67.56 150 | 86.12 96 | 37.13 236 | | | 78.73 131 | 74.98 289 |
|
testdata2 | | | | | | | | | | | | | | 72.18 282 | 46.95 240 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 51 | | | | |
|
testdata | | | | | 64.66 264 | 81.52 86 | 52.93 152 | | 65.29 297 | 46.09 291 | 73.88 55 | 87.46 70 | 38.08 224 | 66.26 309 | 53.31 189 | 78.48 134 | 74.78 293 |
|
testdata1 | | | | | | | | 72.65 231 | | 60.50 89 | | | | | | | |
|
test12 | | | | | 77.76 41 | 84.52 58 | 58.41 74 | | 83.36 71 | | 72.93 70 | | 54.61 48 | 88.05 35 | | 88.12 34 | 86.81 58 |
|
plane_prior7 | | | | | | 81.41 89 | 55.96 109 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 96 | 56.24 104 | | | | | | 45.26 157 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 51 | 68.16 69 | 80.58 101 | 84.65 135 |
|
plane_prior4 | | | | | | | | | | | | 86.10 97 | | | | | |
|
plane_prior3 | | | | | | | 56.09 106 | | | 63.92 34 | 69.27 115 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 23 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 94 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 100 | 83.58 51 | | 63.19 46 | | | | | | 80.48 104 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 360 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 199 | 71.42 279 | 47.80 227 | | 50.90 351 | | 50.39 333 | 75.56 285 | 27.43 318 | 81.33 184 | 45.91 247 | 34.10 367 | 80.59 226 |
|
LGP-MVS_train | | | | | 75.76 65 | 80.22 109 | 57.51 84 | | 83.40 69 | 61.32 77 | 66.67 167 | 87.33 72 | 39.15 212 | 86.59 69 | 67.70 74 | 77.30 146 | 83.19 181 |
|
test11 | | | | | | | | | 83.47 66 | | | | | | | | |
|
door | | | | | | | | | 47.60 358 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 125 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 140 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 140 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 81 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 140 | | | 86.93 60 | | | 84.32 142 |
|
HQP3-MVS | | | | | | | | | 83.90 53 | | | | | | | 80.35 105 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 151 | | | | |
|
NP-MVS | | | | | | 80.98 99 | 56.05 108 | | | | | 85.54 114 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 369 | 61.22 318 | | 40.10 333 | 51.10 326 | | 32.97 273 | | 38.49 300 | | 78.61 251 |
|
MDTV_nov1_ep13 | | | | 57.00 268 | | 72.73 258 | 38.26 310 | 65.02 301 | 64.73 301 | 44.74 300 | 55.46 293 | 72.48 305 | 32.61 282 | 70.47 287 | 37.47 305 | 67.75 262 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 173 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 205 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 114 | | | | |
|
ITE_SJBPF | | | | | 62.09 281 | 66.16 325 | 44.55 263 | | 64.32 303 | 47.36 280 | 55.31 296 | 80.34 216 | 19.27 346 | 62.68 320 | 36.29 317 | 62.39 302 | 79.04 247 |
|
DeepMVS_CX |  | | | | 12.03 360 | 17.97 382 | 10.91 380 | | 10.60 383 | 7.46 375 | 11.07 376 | 28.36 371 | 3.28 377 | 11.29 379 | 8.01 377 | 9.74 378 | 13.89 374 |
|