DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 28 | 97.78 51 | 86.00 47 | 98.29 1 | 97.49 6 | 90.75 17 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 7 | 99.02 12 | 98.86 10 |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 30 | 98.77 5 | 85.99 49 | 97.13 14 | 97.44 15 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 5 | 99.13 3 | 98.84 13 |
|
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 36 | 98.78 3 | 85.93 52 | 97.09 16 | 96.73 77 | 90.27 29 | 97.04 11 | 98.05 8 | 91.47 8 | 99.55 14 | 95.62 9 | 99.08 7 | 98.45 34 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 25 | 87.28 15 | 95.56 83 | 97.51 5 | 89.13 59 | 97.14 9 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 15 | 99.17 2 | 98.86 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 19 | 98.26 28 | 86.29 43 | 97.46 6 | 97.40 20 | 89.03 62 | 96.20 17 | 98.10 2 | 89.39 16 | 99.34 32 | 95.88 4 | 99.03 11 | 99.10 4 |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 17 | 98.49 17 | 86.52 33 | 96.91 25 | 97.47 11 | 91.73 8 | 96.10 18 | 96.69 54 | 89.90 12 | 99.30 38 | 94.70 13 | 98.04 64 | 99.13 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 36 | 88.51 7 | 95.29 93 | 96.96 51 | 92.09 4 | 95.32 23 | 97.08 37 | 89.49 15 | 99.33 35 | 95.10 12 | 98.85 19 | 98.66 19 |
|
SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 5 | 98.14 35 | 88.48 8 | 96.26 45 | 97.28 30 | 85.90 139 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 14 | 99.19 1 | 98.71 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 23 | 96.99 72 | 86.33 39 | 97.33 7 | 97.30 28 | 91.38 10 | 95.39 22 | 97.46 18 | 88.98 19 | 99.40 28 | 94.12 19 | 98.89 18 | 98.82 15 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 64 | 96.96 51 | 91.75 7 | 94.02 36 | 96.83 49 | 88.12 24 | 99.55 14 | 93.41 30 | 98.94 16 | 98.28 48 |
|
SF-MVS | | | 94.97 11 | 94.90 14 | 95.20 10 | 97.84 47 | 87.76 9 | 96.65 34 | 97.48 10 | 87.76 102 | 95.71 20 | 97.70 14 | 88.28 23 | 99.35 31 | 93.89 23 | 98.78 25 | 98.48 28 |
|
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 54 | 97.25 69 | 86.69 25 | 96.19 48 | 97.11 42 | 90.42 25 | 96.95 13 | 97.27 26 | 89.53 14 | 96.91 235 | 94.38 17 | 98.85 19 | 98.03 68 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.85 13 | 94.94 12 | 94.58 39 | 98.25 29 | 86.33 39 | 96.11 54 | 96.62 86 | 88.14 90 | 96.10 18 | 96.96 43 | 89.09 18 | 98.94 73 | 94.48 16 | 98.68 35 | 98.48 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
NCCC | | | 94.81 14 | 94.69 16 | 95.17 12 | 97.83 48 | 87.46 14 | 95.66 77 | 96.93 55 | 92.34 2 | 93.94 37 | 96.58 64 | 87.74 27 | 99.44 27 | 92.83 38 | 98.40 50 | 98.62 20 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 41 | 87.70 10 | 95.68 75 | 97.34 22 | 88.28 83 | 95.30 24 | 97.67 15 | 85.90 44 | 99.54 18 | 93.91 22 | 98.95 15 | 98.60 21 |
|
test_fmvsm_n_1920 | | | 94.71 16 | 95.11 10 | 93.50 62 | 95.79 112 | 84.62 72 | 96.15 51 | 97.64 2 | 89.85 38 | 97.19 8 | 97.89 12 | 86.28 40 | 98.71 89 | 97.11 1 | 98.08 63 | 97.17 103 |
|
HFP-MVS | | | 94.52 17 | 94.40 20 | 94.86 22 | 98.61 10 | 86.81 22 | 96.94 20 | 97.34 22 | 88.63 72 | 93.65 41 | 97.21 30 | 86.10 42 | 99.49 24 | 92.35 49 | 98.77 27 | 98.30 45 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 24 | 95.03 14 | 98.52 15 | 86.96 17 | 96.85 28 | 97.32 26 | 88.24 84 | 93.15 51 | 97.04 40 | 86.17 41 | 99.62 1 | 92.40 47 | 98.81 22 | 98.52 24 |
|
XVS | | | 94.45 19 | 94.32 21 | 94.85 23 | 98.54 13 | 86.60 31 | 96.93 22 | 97.19 34 | 90.66 22 | 92.85 58 | 97.16 35 | 85.02 55 | 99.49 24 | 91.99 62 | 98.56 46 | 98.47 31 |
|
MCST-MVS | | | 94.45 19 | 94.20 29 | 95.19 11 | 98.46 19 | 87.50 13 | 95.00 113 | 97.12 40 | 87.13 112 | 92.51 72 | 96.30 71 | 89.24 17 | 99.34 32 | 93.46 27 | 98.62 42 | 98.73 16 |
|
region2R | | | 94.43 21 | 94.27 26 | 94.92 18 | 98.65 8 | 86.67 27 | 96.92 24 | 97.23 33 | 88.60 74 | 93.58 43 | 97.27 26 | 85.22 51 | 99.54 18 | 92.21 52 | 98.74 29 | 98.56 23 |
|
ACMMPR | | | 94.43 21 | 94.28 24 | 94.91 19 | 98.63 9 | 86.69 25 | 96.94 20 | 97.32 26 | 88.63 72 | 93.53 46 | 97.26 28 | 85.04 54 | 99.54 18 | 92.35 49 | 98.78 25 | 98.50 25 |
|
MTAPA | | | 94.42 23 | 94.22 27 | 95.00 16 | 98.42 21 | 86.95 18 | 94.36 158 | 96.97 49 | 91.07 11 | 93.14 52 | 97.56 16 | 84.30 63 | 99.56 10 | 93.43 28 | 98.75 28 | 98.47 31 |
|
CP-MVS | | | 94.34 24 | 94.21 28 | 94.74 34 | 98.39 23 | 86.64 29 | 97.60 4 | 97.24 31 | 88.53 76 | 92.73 66 | 97.23 29 | 85.20 52 | 99.32 36 | 92.15 55 | 98.83 21 | 98.25 53 |
|
MP-MVS |  | | 94.25 25 | 94.07 33 | 94.77 32 | 98.47 18 | 86.31 41 | 96.71 31 | 96.98 48 | 89.04 61 | 91.98 81 | 97.19 32 | 85.43 49 | 99.56 10 | 92.06 61 | 98.79 23 | 98.44 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS |  | | 94.24 26 | 94.07 33 | 94.75 33 | 98.06 39 | 86.90 20 | 95.88 65 | 96.94 54 | 85.68 145 | 95.05 26 | 97.18 33 | 87.31 33 | 99.07 51 | 91.90 68 | 98.61 44 | 98.28 48 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS | | | 94.23 27 | 94.17 31 | 94.43 44 | 98.21 32 | 85.78 59 | 96.40 39 | 96.90 58 | 88.20 88 | 94.33 30 | 97.40 21 | 84.75 60 | 99.03 56 | 93.35 31 | 97.99 65 | 98.48 28 |
|
GST-MVS | | | 94.21 28 | 93.97 36 | 94.90 21 | 98.41 22 | 86.82 21 | 96.54 36 | 97.19 34 | 88.24 84 | 93.26 48 | 96.83 49 | 85.48 48 | 99.59 7 | 91.43 75 | 98.40 50 | 98.30 45 |
|
MP-MVS-pluss | | | 94.21 28 | 94.00 35 | 94.85 23 | 98.17 33 | 86.65 28 | 94.82 124 | 97.17 38 | 86.26 131 | 92.83 60 | 97.87 13 | 85.57 47 | 99.56 10 | 94.37 18 | 98.92 17 | 98.34 40 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DeepPCF-MVS | | 89.96 1 | 94.20 30 | 94.77 15 | 92.49 102 | 96.52 87 | 80.00 205 | 94.00 182 | 97.08 43 | 90.05 33 | 95.65 21 | 97.29 25 | 89.66 13 | 98.97 70 | 93.95 21 | 98.71 30 | 98.50 25 |
|
CS-MVS | | | 94.12 31 | 94.44 19 | 93.17 69 | 96.55 84 | 83.08 116 | 97.63 3 | 96.95 53 | 91.71 9 | 93.50 47 | 96.21 74 | 85.61 45 | 98.24 124 | 93.64 25 | 98.17 56 | 98.19 56 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 32 | 93.79 39 | 94.80 30 | 97.48 61 | 86.78 23 | 95.65 79 | 96.89 59 | 89.40 51 | 92.81 61 | 96.97 42 | 85.37 50 | 99.24 41 | 90.87 85 | 98.69 33 | 98.38 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS-test | | | 94.02 33 | 94.29 23 | 93.24 66 | 96.69 78 | 83.24 109 | 97.49 5 | 96.92 56 | 92.14 3 | 92.90 56 | 95.77 96 | 85.02 55 | 98.33 119 | 93.03 35 | 98.62 42 | 98.13 60 |
|
HPM-MVS |  | | 94.02 33 | 93.88 37 | 94.43 44 | 98.39 23 | 85.78 59 | 97.25 10 | 97.07 44 | 86.90 120 | 92.62 69 | 96.80 53 | 84.85 59 | 99.17 45 | 92.43 45 | 98.65 40 | 98.33 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 93.99 35 | 93.78 40 | 94.63 37 | 98.50 16 | 85.90 56 | 96.87 26 | 96.91 57 | 88.70 70 | 91.83 90 | 97.17 34 | 83.96 67 | 99.55 14 | 91.44 74 | 98.64 41 | 98.43 36 |
|
PGM-MVS | | | 93.96 36 | 93.72 42 | 94.68 35 | 98.43 20 | 86.22 44 | 95.30 91 | 97.78 1 | 87.45 108 | 93.26 48 | 97.33 24 | 84.62 61 | 99.51 22 | 90.75 87 | 98.57 45 | 98.32 44 |
|
PHI-MVS | | | 93.89 37 | 93.65 45 | 94.62 38 | 96.84 75 | 86.43 36 | 96.69 32 | 97.49 6 | 85.15 159 | 93.56 45 | 96.28 72 | 85.60 46 | 99.31 37 | 92.45 44 | 98.79 23 | 98.12 62 |
|
SR-MVS-dyc-post | | | 93.82 38 | 93.82 38 | 93.82 56 | 97.92 43 | 84.57 74 | 96.28 43 | 96.76 73 | 87.46 106 | 93.75 39 | 97.43 19 | 84.24 64 | 99.01 61 | 92.73 39 | 97.80 71 | 97.88 75 |
|
APD-MVS_3200maxsize | | | 93.78 39 | 93.77 41 | 93.80 58 | 97.92 43 | 84.19 86 | 96.30 41 | 96.87 61 | 86.96 116 | 93.92 38 | 97.47 17 | 83.88 68 | 98.96 72 | 92.71 42 | 97.87 69 | 98.26 52 |
|
patch_mono-2 | | | 93.74 40 | 94.32 21 | 92.01 118 | 97.54 57 | 78.37 243 | 93.40 206 | 97.19 34 | 88.02 92 | 94.99 27 | 97.21 30 | 88.35 21 | 98.44 110 | 94.07 20 | 98.09 61 | 99.23 1 |
|
MSLP-MVS++ | | | 93.72 41 | 94.08 32 | 92.65 94 | 97.31 65 | 83.43 104 | 95.79 69 | 97.33 24 | 90.03 34 | 93.58 43 | 96.96 43 | 84.87 58 | 97.76 162 | 92.19 54 | 98.66 38 | 96.76 120 |
|
TSAR-MVS + GP. | | | 93.66 42 | 93.41 46 | 94.41 46 | 96.59 82 | 86.78 23 | 94.40 151 | 93.93 237 | 89.77 43 | 94.21 31 | 95.59 103 | 87.35 32 | 98.61 96 | 92.72 41 | 96.15 99 | 97.83 79 |
|
CANet | | | 93.54 43 | 93.20 50 | 94.55 40 | 95.65 118 | 85.73 61 | 94.94 116 | 96.69 82 | 91.89 6 | 90.69 106 | 95.88 90 | 81.99 91 | 99.54 18 | 93.14 34 | 97.95 67 | 98.39 37 |
|
dcpmvs_2 | | | 93.49 44 | 94.19 30 | 91.38 152 | 97.69 54 | 76.78 275 | 94.25 161 | 96.29 102 | 88.33 80 | 94.46 28 | 96.88 46 | 88.07 25 | 98.64 92 | 93.62 26 | 98.09 61 | 98.73 16 |
|
MVS_111021_HR | | | 93.45 45 | 93.31 47 | 93.84 55 | 96.99 72 | 84.84 68 | 93.24 218 | 97.24 31 | 88.76 69 | 91.60 95 | 95.85 91 | 86.07 43 | 98.66 90 | 91.91 66 | 98.16 57 | 98.03 68 |
|
train_agg | | | 93.44 46 | 93.08 51 | 94.52 41 | 97.53 58 | 86.49 34 | 94.07 174 | 96.78 70 | 81.86 230 | 92.77 63 | 96.20 75 | 87.63 29 | 99.12 49 | 92.14 56 | 98.69 33 | 97.94 71 |
|
EC-MVSNet | | | 93.44 46 | 93.71 43 | 92.63 95 | 95.21 132 | 82.43 137 | 97.27 9 | 96.71 80 | 90.57 24 | 92.88 57 | 95.80 94 | 83.16 72 | 98.16 130 | 93.68 24 | 98.14 58 | 97.31 96 |
|
DELS-MVS | | | 93.43 48 | 93.25 48 | 93.97 51 | 95.42 125 | 85.04 67 | 93.06 225 | 97.13 39 | 90.74 19 | 91.84 88 | 95.09 119 | 86.32 39 | 99.21 43 | 91.22 76 | 98.45 48 | 97.65 84 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 93.40 49 | 93.22 49 | 93.94 53 | 98.36 25 | 84.83 69 | 97.15 13 | 96.80 69 | 85.77 142 | 92.47 73 | 97.13 36 | 82.38 80 | 99.07 51 | 90.51 92 | 98.40 50 | 97.92 74 |
|
DeepC-MVS | | 88.79 3 | 93.31 50 | 92.99 53 | 94.26 49 | 96.07 102 | 85.83 57 | 94.89 119 | 96.99 47 | 89.02 64 | 89.56 120 | 97.37 23 | 82.51 79 | 99.38 29 | 92.20 53 | 98.30 53 | 97.57 89 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 93.27 51 | 92.75 57 | 94.85 23 | 95.70 117 | 87.66 11 | 96.33 40 | 96.41 96 | 90.00 35 | 94.09 34 | 94.60 140 | 82.33 82 | 98.62 95 | 92.40 47 | 92.86 161 | 98.27 50 |
|
ACMMP |  | | 93.24 52 | 92.88 55 | 94.30 48 | 98.09 38 | 85.33 65 | 96.86 27 | 97.45 14 | 88.33 80 | 90.15 115 | 97.03 41 | 81.44 94 | 99.51 22 | 90.85 86 | 95.74 102 | 98.04 67 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 93.23 53 | 93.05 52 | 93.76 59 | 98.04 40 | 84.07 88 | 96.22 47 | 97.37 21 | 84.15 175 | 90.05 116 | 95.66 100 | 87.77 26 | 99.15 48 | 89.91 95 | 98.27 54 | 98.07 64 |
|
alignmvs | | | 93.08 54 | 92.50 61 | 94.81 29 | 95.62 120 | 87.61 12 | 95.99 60 | 96.07 120 | 89.77 43 | 94.12 33 | 94.87 125 | 80.56 100 | 98.66 90 | 92.42 46 | 93.10 157 | 98.15 59 |
|
EI-MVSNet-Vis-set | | | 93.01 55 | 92.92 54 | 93.29 64 | 95.01 139 | 83.51 103 | 94.48 143 | 95.77 142 | 90.87 13 | 92.52 71 | 96.67 56 | 84.50 62 | 99.00 65 | 91.99 62 | 94.44 132 | 97.36 95 |
|
casdiffmvs_mvg |  | | 92.96 56 | 92.83 56 | 93.35 63 | 94.59 162 | 83.40 106 | 95.00 113 | 96.34 100 | 90.30 28 | 92.05 79 | 96.05 83 | 83.43 70 | 98.15 131 | 92.07 58 | 95.67 103 | 98.49 27 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 92.83 57 | 92.54 60 | 93.68 60 | 96.10 100 | 84.71 71 | 95.66 77 | 96.39 97 | 91.92 5 | 93.22 50 | 96.49 67 | 83.16 72 | 98.87 77 | 84.47 161 | 95.47 108 | 97.45 94 |
|
CDPH-MVS | | | 92.83 57 | 92.30 63 | 94.44 42 | 97.79 49 | 86.11 46 | 94.06 176 | 96.66 83 | 80.09 257 | 92.77 63 | 96.63 61 | 86.62 36 | 99.04 55 | 87.40 123 | 98.66 38 | 98.17 58 |
|
ETV-MVS | | | 92.74 59 | 92.66 58 | 92.97 79 | 95.20 133 | 84.04 90 | 95.07 109 | 96.51 92 | 90.73 20 | 92.96 55 | 91.19 259 | 84.06 65 | 98.34 117 | 91.72 70 | 96.54 93 | 96.54 129 |
|
EI-MVSNet-UG-set | | | 92.74 59 | 92.62 59 | 93.12 71 | 94.86 150 | 83.20 111 | 94.40 151 | 95.74 145 | 90.71 21 | 92.05 79 | 96.60 63 | 84.00 66 | 98.99 67 | 91.55 72 | 93.63 142 | 97.17 103 |
|
DPM-MVS | | | 92.58 61 | 91.74 69 | 95.08 13 | 96.19 95 | 89.31 5 | 92.66 235 | 96.56 91 | 83.44 193 | 91.68 94 | 95.04 120 | 86.60 38 | 98.99 67 | 85.60 147 | 97.92 68 | 96.93 116 |
|
casdiffmvs |  | | 92.51 62 | 92.43 62 | 92.74 89 | 94.41 174 | 81.98 147 | 94.54 141 | 96.23 109 | 89.57 47 | 91.96 83 | 96.17 79 | 82.58 78 | 98.01 149 | 90.95 83 | 95.45 110 | 98.23 54 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_111021_LR | | | 92.47 63 | 92.29 64 | 92.98 78 | 95.99 106 | 84.43 83 | 93.08 223 | 96.09 118 | 88.20 88 | 91.12 102 | 95.72 99 | 81.33 96 | 97.76 162 | 91.74 69 | 97.37 78 | 96.75 121 |
|
3Dnovator+ | | 87.14 4 | 92.42 64 | 91.37 72 | 95.55 6 | 95.63 119 | 88.73 6 | 97.07 18 | 96.77 72 | 90.84 14 | 84.02 244 | 96.62 62 | 75.95 151 | 99.34 32 | 87.77 117 | 97.68 74 | 98.59 22 |
|
baseline | | | 92.39 65 | 92.29 64 | 92.69 93 | 94.46 171 | 81.77 152 | 94.14 167 | 96.27 104 | 89.22 55 | 91.88 86 | 96.00 84 | 82.35 81 | 97.99 151 | 91.05 78 | 95.27 115 | 98.30 45 |
|
VNet | | | 92.24 66 | 91.91 67 | 93.24 66 | 96.59 82 | 83.43 104 | 94.84 123 | 96.44 94 | 89.19 57 | 94.08 35 | 95.90 89 | 77.85 135 | 98.17 129 | 88.90 105 | 93.38 151 | 98.13 60 |
|
CPTT-MVS | | | 91.99 67 | 91.80 68 | 92.55 99 | 98.24 31 | 81.98 147 | 96.76 30 | 96.49 93 | 81.89 229 | 90.24 111 | 96.44 69 | 78.59 124 | 98.61 96 | 89.68 96 | 97.85 70 | 97.06 108 |
|
EIA-MVS | | | 91.95 68 | 91.94 66 | 91.98 122 | 95.16 134 | 80.01 204 | 95.36 86 | 96.73 77 | 88.44 77 | 89.34 124 | 92.16 225 | 83.82 69 | 98.45 109 | 89.35 99 | 97.06 81 | 97.48 92 |
|
DP-MVS Recon | | | 91.95 68 | 91.28 74 | 93.96 52 | 98.33 27 | 85.92 54 | 94.66 135 | 96.66 83 | 82.69 211 | 90.03 117 | 95.82 93 | 82.30 83 | 99.03 56 | 84.57 159 | 96.48 96 | 96.91 117 |
|
EPNet | | | 91.79 70 | 91.02 80 | 94.10 50 | 90.10 313 | 85.25 66 | 96.03 59 | 92.05 284 | 92.83 1 | 87.39 159 | 95.78 95 | 79.39 115 | 99.01 61 | 88.13 113 | 97.48 76 | 98.05 66 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 91.77 71 | 91.70 70 | 92.00 121 | 97.08 71 | 80.03 203 | 93.60 200 | 95.18 183 | 87.85 100 | 90.89 104 | 96.47 68 | 82.06 89 | 98.36 114 | 85.07 151 | 97.04 82 | 97.62 85 |
|
Vis-MVSNet |  | | 91.75 72 | 91.23 75 | 93.29 64 | 95.32 127 | 83.78 95 | 96.14 52 | 95.98 126 | 89.89 36 | 90.45 108 | 96.58 64 | 75.09 163 | 98.31 122 | 84.75 157 | 96.90 85 | 97.78 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 86.66 5 | 91.73 73 | 90.82 84 | 94.44 42 | 94.59 162 | 86.37 38 | 97.18 12 | 97.02 46 | 89.20 56 | 84.31 240 | 96.66 57 | 73.74 187 | 99.17 45 | 86.74 133 | 97.96 66 | 97.79 81 |
|
EPP-MVSNet | | | 91.70 74 | 91.56 71 | 92.13 117 | 95.88 109 | 80.50 188 | 97.33 7 | 95.25 179 | 86.15 135 | 89.76 119 | 95.60 102 | 83.42 71 | 98.32 121 | 87.37 125 | 93.25 154 | 97.56 90 |
|
MVSFormer | | | 91.68 75 | 91.30 73 | 92.80 85 | 93.86 195 | 83.88 93 | 95.96 62 | 95.90 133 | 84.66 170 | 91.76 91 | 94.91 123 | 77.92 132 | 97.30 206 | 89.64 97 | 97.11 79 | 97.24 99 |
|
Effi-MVS+ | | | 91.59 76 | 91.11 77 | 93.01 77 | 94.35 178 | 83.39 107 | 94.60 137 | 95.10 187 | 87.10 113 | 90.57 107 | 93.10 197 | 81.43 95 | 98.07 145 | 89.29 101 | 94.48 130 | 97.59 88 |
|
IS-MVSNet | | | 91.43 77 | 91.09 79 | 92.46 103 | 95.87 111 | 81.38 164 | 96.95 19 | 93.69 248 | 89.72 45 | 89.50 122 | 95.98 86 | 78.57 125 | 97.77 161 | 83.02 179 | 96.50 95 | 98.22 55 |
|
PVSNet_Blended_VisFu | | | 91.38 78 | 90.91 82 | 92.80 85 | 96.39 90 | 83.17 112 | 94.87 121 | 96.66 83 | 83.29 197 | 89.27 125 | 94.46 144 | 80.29 102 | 99.17 45 | 87.57 121 | 95.37 111 | 96.05 147 |
|
diffmvs |  | | 91.37 79 | 91.23 75 | 91.77 137 | 93.09 217 | 80.27 191 | 92.36 244 | 95.52 162 | 87.03 115 | 91.40 99 | 94.93 122 | 80.08 104 | 97.44 190 | 92.13 57 | 94.56 127 | 97.61 86 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_Test | | | 91.31 80 | 91.11 77 | 91.93 126 | 94.37 175 | 80.14 196 | 93.46 205 | 95.80 140 | 86.46 127 | 91.35 100 | 93.77 176 | 82.21 85 | 98.09 142 | 87.57 121 | 94.95 118 | 97.55 91 |
|
OMC-MVS | | | 91.23 81 | 90.62 86 | 93.08 73 | 96.27 93 | 84.07 88 | 93.52 202 | 95.93 129 | 86.95 117 | 89.51 121 | 96.13 81 | 78.50 126 | 98.35 116 | 85.84 145 | 92.90 160 | 96.83 119 |
|
PAPM_NR | | | 91.22 82 | 90.78 85 | 92.52 101 | 97.60 56 | 81.46 161 | 94.37 157 | 96.24 108 | 86.39 129 | 87.41 156 | 94.80 131 | 82.06 89 | 98.48 103 | 82.80 185 | 95.37 111 | 97.61 86 |
|
PS-MVSNAJ | | | 91.18 83 | 90.92 81 | 91.96 124 | 95.26 130 | 82.60 136 | 92.09 255 | 95.70 147 | 86.27 130 | 91.84 88 | 92.46 215 | 79.70 110 | 98.99 67 | 89.08 103 | 95.86 101 | 94.29 219 |
|
xiu_mvs_v2_base | | | 91.13 84 | 90.89 83 | 91.86 131 | 94.97 142 | 82.42 138 | 92.24 249 | 95.64 154 | 86.11 138 | 91.74 93 | 93.14 195 | 79.67 113 | 98.89 76 | 89.06 104 | 95.46 109 | 94.28 220 |
|
nrg030 | | | 91.08 85 | 90.39 87 | 93.17 69 | 93.07 218 | 86.91 19 | 96.41 37 | 96.26 105 | 88.30 82 | 88.37 139 | 94.85 128 | 82.19 86 | 97.64 173 | 91.09 77 | 82.95 272 | 94.96 183 |
|
lupinMVS | | | 90.92 86 | 90.21 90 | 93.03 76 | 93.86 195 | 83.88 93 | 92.81 232 | 93.86 241 | 79.84 260 | 91.76 91 | 94.29 150 | 77.92 132 | 98.04 147 | 90.48 93 | 97.11 79 | 97.17 103 |
|
h-mvs33 | | | 90.80 87 | 90.15 93 | 92.75 88 | 96.01 104 | 82.66 133 | 95.43 85 | 95.53 161 | 89.80 39 | 93.08 53 | 95.64 101 | 75.77 152 | 99.00 65 | 92.07 58 | 78.05 327 | 96.60 125 |
|
jason | | | 90.80 87 | 90.10 94 | 92.90 82 | 93.04 220 | 83.53 102 | 93.08 223 | 94.15 230 | 80.22 254 | 91.41 98 | 94.91 123 | 76.87 139 | 97.93 156 | 90.28 94 | 96.90 85 | 97.24 99 |
jason: jason. |
VDD-MVS | | | 90.74 89 | 89.92 101 | 93.20 68 | 96.27 93 | 83.02 118 | 95.73 72 | 93.86 241 | 88.42 79 | 92.53 70 | 96.84 48 | 62.09 298 | 98.64 92 | 90.95 83 | 92.62 164 | 97.93 73 |
|
PVSNet_Blended | | | 90.73 90 | 90.32 89 | 91.98 122 | 96.12 97 | 81.25 166 | 92.55 239 | 96.83 65 | 82.04 223 | 89.10 127 | 92.56 213 | 81.04 98 | 98.85 81 | 86.72 135 | 95.91 100 | 95.84 154 |
|
test_yl | | | 90.69 91 | 90.02 99 | 92.71 90 | 95.72 115 | 82.41 140 | 94.11 169 | 95.12 185 | 85.63 147 | 91.49 96 | 94.70 134 | 74.75 167 | 98.42 112 | 86.13 140 | 92.53 165 | 97.31 96 |
|
DCV-MVSNet | | | 90.69 91 | 90.02 99 | 92.71 90 | 95.72 115 | 82.41 140 | 94.11 169 | 95.12 185 | 85.63 147 | 91.49 96 | 94.70 134 | 74.75 167 | 98.42 112 | 86.13 140 | 92.53 165 | 97.31 96 |
|
API-MVS | | | 90.66 93 | 90.07 95 | 92.45 104 | 96.36 91 | 84.57 74 | 96.06 58 | 95.22 182 | 82.39 214 | 89.13 126 | 94.27 153 | 80.32 101 | 98.46 106 | 80.16 232 | 96.71 90 | 94.33 216 |
|
xiu_mvs_v1_base_debu | | | 90.64 94 | 90.05 96 | 92.40 105 | 93.97 192 | 84.46 80 | 93.32 208 | 95.46 164 | 85.17 156 | 92.25 74 | 94.03 158 | 70.59 222 | 98.57 99 | 90.97 80 | 94.67 122 | 94.18 221 |
|
xiu_mvs_v1_base | | | 90.64 94 | 90.05 96 | 92.40 105 | 93.97 192 | 84.46 80 | 93.32 208 | 95.46 164 | 85.17 156 | 92.25 74 | 94.03 158 | 70.59 222 | 98.57 99 | 90.97 80 | 94.67 122 | 94.18 221 |
|
xiu_mvs_v1_base_debi | | | 90.64 94 | 90.05 96 | 92.40 105 | 93.97 192 | 84.46 80 | 93.32 208 | 95.46 164 | 85.17 156 | 92.25 74 | 94.03 158 | 70.59 222 | 98.57 99 | 90.97 80 | 94.67 122 | 94.18 221 |
|
HQP_MVS | | | 90.60 97 | 90.19 91 | 91.82 134 | 94.70 158 | 82.73 129 | 95.85 66 | 96.22 110 | 90.81 15 | 86.91 168 | 94.86 126 | 74.23 175 | 98.12 132 | 88.15 111 | 89.99 188 | 94.63 195 |
|
FIs | | | 90.51 98 | 90.35 88 | 90.99 173 | 93.99 191 | 80.98 174 | 95.73 72 | 97.54 4 | 89.15 58 | 86.72 173 | 94.68 136 | 81.83 93 | 97.24 214 | 85.18 150 | 88.31 222 | 94.76 193 |
|
MAR-MVS | | | 90.30 99 | 89.37 111 | 93.07 75 | 96.61 81 | 84.48 79 | 95.68 75 | 95.67 149 | 82.36 216 | 87.85 147 | 92.85 202 | 76.63 145 | 98.80 85 | 80.01 233 | 96.68 91 | 95.91 150 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FC-MVSNet-test | | | 90.27 100 | 90.18 92 | 90.53 184 | 93.71 201 | 79.85 210 | 95.77 70 | 97.59 3 | 89.31 53 | 86.27 182 | 94.67 137 | 81.93 92 | 97.01 229 | 84.26 163 | 88.09 226 | 94.71 194 |
|
CANet_DTU | | | 90.26 101 | 89.41 110 | 92.81 84 | 93.46 209 | 83.01 119 | 93.48 203 | 94.47 217 | 89.43 50 | 87.76 151 | 94.23 154 | 70.54 226 | 99.03 56 | 84.97 152 | 96.39 97 | 96.38 132 |
|
OPM-MVS | | | 90.12 102 | 89.56 105 | 91.82 134 | 93.14 215 | 83.90 92 | 94.16 166 | 95.74 145 | 88.96 65 | 87.86 146 | 95.43 107 | 72.48 203 | 97.91 157 | 88.10 115 | 90.18 187 | 93.65 255 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LFMVS | | | 90.08 103 | 89.13 117 | 92.95 80 | 96.71 77 | 82.32 142 | 96.08 55 | 89.91 333 | 86.79 121 | 92.15 78 | 96.81 51 | 62.60 296 | 98.34 117 | 87.18 127 | 93.90 138 | 98.19 56 |
|
GeoE | | | 90.05 104 | 89.43 109 | 91.90 130 | 95.16 134 | 80.37 190 | 95.80 68 | 94.65 214 | 83.90 180 | 87.55 155 | 94.75 133 | 78.18 130 | 97.62 175 | 81.28 212 | 93.63 142 | 97.71 83 |
|
PAPR | | | 90.02 105 | 89.27 116 | 92.29 113 | 95.78 113 | 80.95 176 | 92.68 234 | 96.22 110 | 81.91 227 | 86.66 174 | 93.75 178 | 82.23 84 | 98.44 110 | 79.40 243 | 94.79 120 | 97.48 92 |
|
PVSNet_BlendedMVS | | | 89.98 106 | 89.70 103 | 90.82 177 | 96.12 97 | 81.25 166 | 93.92 187 | 96.83 65 | 83.49 192 | 89.10 127 | 92.26 223 | 81.04 98 | 98.85 81 | 86.72 135 | 87.86 230 | 92.35 300 |
|
PS-MVSNAJss | | | 89.97 107 | 89.62 104 | 91.02 170 | 91.90 250 | 80.85 179 | 95.26 96 | 95.98 126 | 86.26 131 | 86.21 183 | 94.29 150 | 79.70 110 | 97.65 170 | 88.87 106 | 88.10 224 | 94.57 200 |
|
mvsmamba | | | 89.96 108 | 89.50 106 | 91.33 155 | 92.90 227 | 81.82 150 | 96.68 33 | 92.37 272 | 89.03 62 | 87.00 164 | 94.85 128 | 73.05 195 | 97.65 170 | 91.03 79 | 88.63 213 | 94.51 205 |
|
XVG-OURS-SEG-HR | | | 89.95 109 | 89.45 107 | 91.47 149 | 94.00 190 | 81.21 169 | 91.87 258 | 96.06 122 | 85.78 141 | 88.55 135 | 95.73 98 | 74.67 171 | 97.27 210 | 88.71 107 | 89.64 197 | 95.91 150 |
|
UGNet | | | 89.95 109 | 88.95 121 | 92.95 80 | 94.51 168 | 83.31 108 | 95.70 74 | 95.23 180 | 89.37 52 | 87.58 153 | 93.94 166 | 64.00 287 | 98.78 86 | 83.92 168 | 96.31 98 | 96.74 122 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UniMVSNet_NR-MVSNet | | | 89.92 111 | 89.29 114 | 91.81 136 | 93.39 210 | 83.72 96 | 94.43 149 | 97.12 40 | 89.80 39 | 86.46 176 | 93.32 186 | 83.16 72 | 97.23 215 | 84.92 153 | 81.02 301 | 94.49 210 |
|
AdaColmap |  | | 89.89 112 | 89.07 118 | 92.37 108 | 97.41 62 | 83.03 117 | 94.42 150 | 95.92 130 | 82.81 209 | 86.34 181 | 94.65 138 | 73.89 183 | 99.02 59 | 80.69 223 | 95.51 106 | 95.05 178 |
|
hse-mvs2 | | | 89.88 113 | 89.34 112 | 91.51 146 | 94.83 152 | 81.12 171 | 93.94 185 | 93.91 240 | 89.80 39 | 93.08 53 | 93.60 180 | 75.77 152 | 97.66 169 | 92.07 58 | 77.07 334 | 95.74 159 |
|
UniMVSNet (Re) | | | 89.80 114 | 89.07 118 | 92.01 118 | 93.60 205 | 84.52 77 | 94.78 127 | 97.47 11 | 89.26 54 | 86.44 179 | 92.32 220 | 82.10 87 | 97.39 202 | 84.81 156 | 80.84 305 | 94.12 225 |
|
HQP-MVS | | | 89.80 114 | 89.28 115 | 91.34 154 | 94.17 181 | 81.56 155 | 94.39 153 | 96.04 123 | 88.81 66 | 85.43 207 | 93.97 165 | 73.83 185 | 97.96 153 | 87.11 130 | 89.77 195 | 94.50 208 |
|
FA-MVS(test-final) | | | 89.66 116 | 88.91 123 | 91.93 126 | 94.57 165 | 80.27 191 | 91.36 269 | 94.74 211 | 84.87 164 | 89.82 118 | 92.61 212 | 74.72 170 | 98.47 105 | 83.97 167 | 93.53 145 | 97.04 110 |
|
VPA-MVSNet | | | 89.62 117 | 88.96 120 | 91.60 142 | 93.86 195 | 82.89 124 | 95.46 84 | 97.33 24 | 87.91 95 | 88.43 138 | 93.31 187 | 74.17 178 | 97.40 199 | 87.32 126 | 82.86 277 | 94.52 203 |
|
WTY-MVS | | | 89.60 118 | 88.92 122 | 91.67 140 | 95.47 124 | 81.15 170 | 92.38 243 | 94.78 209 | 83.11 201 | 89.06 129 | 94.32 148 | 78.67 123 | 96.61 249 | 81.57 209 | 90.89 181 | 97.24 99 |
|
Vis-MVSNet (Re-imp) | | | 89.59 119 | 89.44 108 | 90.03 211 | 95.74 114 | 75.85 288 | 95.61 81 | 90.80 319 | 87.66 105 | 87.83 148 | 95.40 108 | 76.79 141 | 96.46 262 | 78.37 248 | 96.73 89 | 97.80 80 |
|
VDDNet | | | 89.56 120 | 88.49 138 | 92.76 87 | 95.07 138 | 82.09 144 | 96.30 41 | 93.19 255 | 81.05 249 | 91.88 86 | 96.86 47 | 61.16 310 | 98.33 119 | 88.43 110 | 92.49 167 | 97.84 78 |
|
114514_t | | | 89.51 121 | 88.50 136 | 92.54 100 | 98.11 36 | 81.99 146 | 95.16 104 | 96.36 99 | 70.19 349 | 85.81 188 | 95.25 112 | 76.70 143 | 98.63 94 | 82.07 197 | 96.86 88 | 97.00 113 |
|
QAPM | | | 89.51 121 | 88.15 147 | 93.59 61 | 94.92 146 | 84.58 73 | 96.82 29 | 96.70 81 | 78.43 282 | 83.41 259 | 96.19 78 | 73.18 194 | 99.30 38 | 77.11 264 | 96.54 93 | 96.89 118 |
|
CLD-MVS | | | 89.47 123 | 88.90 124 | 91.18 160 | 94.22 180 | 82.07 145 | 92.13 253 | 96.09 118 | 87.90 96 | 85.37 213 | 92.45 216 | 74.38 173 | 97.56 178 | 87.15 128 | 90.43 183 | 93.93 234 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 89.45 124 | 88.90 124 | 91.12 162 | 94.47 169 | 81.49 159 | 95.30 91 | 96.14 115 | 86.73 123 | 85.45 204 | 95.16 116 | 69.89 232 | 98.10 134 | 87.70 119 | 89.23 204 | 93.77 248 |
|
CDS-MVSNet | | | 89.45 124 | 88.51 135 | 92.29 113 | 93.62 204 | 83.61 101 | 93.01 226 | 94.68 213 | 81.95 225 | 87.82 149 | 93.24 191 | 78.69 122 | 96.99 230 | 80.34 229 | 93.23 155 | 96.28 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
iter_conf_final | | | 89.42 126 | 88.69 129 | 91.60 142 | 95.12 137 | 82.93 122 | 95.75 71 | 92.14 281 | 87.32 110 | 87.12 163 | 94.07 156 | 67.09 262 | 97.55 179 | 90.61 89 | 89.01 208 | 94.32 217 |
|
Fast-Effi-MVS+ | | | 89.41 127 | 88.64 130 | 91.71 139 | 94.74 154 | 80.81 180 | 93.54 201 | 95.10 187 | 83.11 201 | 86.82 172 | 90.67 276 | 79.74 109 | 97.75 165 | 80.51 227 | 93.55 144 | 96.57 127 |
|
ab-mvs | | | 89.41 127 | 88.35 140 | 92.60 96 | 95.15 136 | 82.65 134 | 92.20 251 | 95.60 156 | 83.97 179 | 88.55 135 | 93.70 179 | 74.16 179 | 98.21 128 | 82.46 190 | 89.37 200 | 96.94 115 |
|
XVG-OURS | | | 89.40 129 | 88.70 128 | 91.52 145 | 94.06 184 | 81.46 161 | 91.27 271 | 96.07 120 | 86.14 136 | 88.89 131 | 95.77 96 | 68.73 252 | 97.26 212 | 87.39 124 | 89.96 190 | 95.83 155 |
|
test_vis1_n_1920 | | | 89.39 130 | 89.84 102 | 88.04 270 | 92.97 224 | 72.64 318 | 94.71 132 | 96.03 125 | 86.18 134 | 91.94 85 | 96.56 66 | 61.63 301 | 95.74 294 | 93.42 29 | 95.11 117 | 95.74 159 |
|
mvs_anonymous | | | 89.37 131 | 89.32 113 | 89.51 234 | 93.47 208 | 74.22 301 | 91.65 265 | 94.83 205 | 82.91 207 | 85.45 204 | 93.79 174 | 81.23 97 | 96.36 268 | 86.47 137 | 94.09 135 | 97.94 71 |
|
DU-MVS | | | 89.34 132 | 88.50 136 | 91.85 133 | 93.04 220 | 83.72 96 | 94.47 146 | 96.59 88 | 89.50 48 | 86.46 176 | 93.29 189 | 77.25 137 | 97.23 215 | 84.92 153 | 81.02 301 | 94.59 198 |
|
TAMVS | | | 89.21 133 | 88.29 144 | 91.96 124 | 93.71 201 | 82.62 135 | 93.30 212 | 94.19 228 | 82.22 218 | 87.78 150 | 93.94 166 | 78.83 119 | 96.95 232 | 77.70 257 | 92.98 159 | 96.32 133 |
|
ACMM | | 84.12 9 | 89.14 134 | 88.48 139 | 91.12 162 | 94.65 161 | 81.22 168 | 95.31 89 | 96.12 117 | 85.31 155 | 85.92 187 | 94.34 146 | 70.19 230 | 98.06 146 | 85.65 146 | 88.86 211 | 94.08 229 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test1111 | | | 89.10 135 | 88.64 130 | 90.48 190 | 95.53 123 | 74.97 294 | 96.08 55 | 84.89 355 | 88.13 91 | 90.16 114 | 96.65 58 | 63.29 292 | 98.10 134 | 86.14 138 | 96.90 85 | 98.39 37 |
|
EI-MVSNet | | | 89.10 135 | 88.86 126 | 89.80 223 | 91.84 252 | 78.30 245 | 93.70 197 | 95.01 190 | 85.73 143 | 87.15 161 | 95.28 110 | 79.87 107 | 97.21 217 | 83.81 170 | 87.36 236 | 93.88 237 |
|
ECVR-MVS |  | | 89.09 137 | 88.53 134 | 90.77 179 | 95.62 120 | 75.89 287 | 96.16 49 | 84.22 357 | 87.89 98 | 90.20 112 | 96.65 58 | 63.19 294 | 98.10 134 | 85.90 143 | 96.94 83 | 98.33 41 |
|
RRT_MVS | | | 89.09 137 | 88.62 133 | 90.49 188 | 92.85 228 | 79.65 214 | 96.41 37 | 94.41 220 | 88.22 86 | 85.50 200 | 94.77 132 | 69.36 240 | 97.31 205 | 89.33 100 | 86.73 243 | 94.51 205 |
|
CNLPA | | | 89.07 139 | 87.98 151 | 92.34 109 | 96.87 74 | 84.78 70 | 94.08 173 | 93.24 253 | 81.41 240 | 84.46 230 | 95.13 118 | 75.57 159 | 96.62 246 | 77.21 262 | 93.84 140 | 95.61 164 |
|
PLC |  | 84.53 7 | 89.06 140 | 88.03 150 | 92.15 116 | 97.27 68 | 82.69 132 | 94.29 159 | 95.44 169 | 79.71 262 | 84.01 245 | 94.18 155 | 76.68 144 | 98.75 87 | 77.28 261 | 93.41 150 | 95.02 179 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_djsdf | | | 89.03 141 | 88.64 130 | 90.21 201 | 90.74 298 | 79.28 226 | 95.96 62 | 95.90 133 | 84.66 170 | 85.33 215 | 92.94 201 | 74.02 181 | 97.30 206 | 89.64 97 | 88.53 215 | 94.05 231 |
|
HY-MVS | | 83.01 12 | 89.03 141 | 87.94 153 | 92.29 113 | 94.86 150 | 82.77 125 | 92.08 256 | 94.49 216 | 81.52 239 | 86.93 166 | 92.79 208 | 78.32 129 | 98.23 125 | 79.93 234 | 90.55 182 | 95.88 152 |
|
ACMP | | 84.23 8 | 89.01 143 | 88.35 140 | 90.99 173 | 94.73 155 | 81.27 165 | 95.07 109 | 95.89 135 | 86.48 126 | 83.67 252 | 94.30 149 | 69.33 241 | 97.99 151 | 87.10 132 | 88.55 214 | 93.72 252 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
sss | | | 88.93 144 | 88.26 146 | 90.94 176 | 94.05 185 | 80.78 181 | 91.71 262 | 95.38 173 | 81.55 238 | 88.63 134 | 93.91 170 | 75.04 164 | 95.47 305 | 82.47 189 | 91.61 172 | 96.57 127 |
|
iter_conf05 | | | 88.85 145 | 88.08 149 | 91.17 161 | 94.27 179 | 81.64 154 | 95.18 101 | 92.15 280 | 86.23 133 | 87.28 160 | 94.07 156 | 63.89 290 | 97.55 179 | 90.63 88 | 89.00 209 | 94.32 217 |
|
TranMVSNet+NR-MVSNet | | | 88.84 146 | 87.95 152 | 91.49 147 | 92.68 232 | 83.01 119 | 94.92 118 | 96.31 101 | 89.88 37 | 85.53 197 | 93.85 173 | 76.63 145 | 96.96 231 | 81.91 201 | 79.87 318 | 94.50 208 |
|
CHOSEN 1792x2688 | | | 88.84 146 | 87.69 156 | 92.30 112 | 96.14 96 | 81.42 163 | 90.01 295 | 95.86 137 | 74.52 321 | 87.41 156 | 93.94 166 | 75.46 160 | 98.36 114 | 80.36 228 | 95.53 105 | 97.12 107 |
|
MVSTER | | | 88.84 146 | 88.29 144 | 90.51 187 | 92.95 225 | 80.44 189 | 93.73 194 | 95.01 190 | 84.66 170 | 87.15 161 | 93.12 196 | 72.79 199 | 97.21 217 | 87.86 116 | 87.36 236 | 93.87 238 |
|
test_cas_vis1_n_1920 | | | 88.83 149 | 88.85 127 | 88.78 248 | 91.15 279 | 76.72 276 | 93.85 190 | 94.93 197 | 83.23 200 | 92.81 61 | 96.00 84 | 61.17 309 | 94.45 315 | 91.67 71 | 94.84 119 | 95.17 175 |
|
OpenMVS |  | 83.78 11 | 88.74 150 | 87.29 166 | 93.08 73 | 92.70 231 | 85.39 64 | 96.57 35 | 96.43 95 | 78.74 277 | 80.85 288 | 96.07 82 | 69.64 236 | 99.01 61 | 78.01 255 | 96.65 92 | 94.83 190 |
|
thisisatest0530 | | | 88.67 151 | 87.61 158 | 91.86 131 | 94.87 149 | 80.07 199 | 94.63 136 | 89.90 334 | 84.00 178 | 88.46 137 | 93.78 175 | 66.88 266 | 98.46 106 | 83.30 175 | 92.65 163 | 97.06 108 |
|
Effi-MVS+-dtu | | | 88.65 152 | 88.35 140 | 89.54 231 | 93.33 211 | 76.39 282 | 94.47 146 | 94.36 222 | 87.70 103 | 85.43 207 | 89.56 298 | 73.45 190 | 97.26 212 | 85.57 148 | 91.28 174 | 94.97 180 |
|
tttt0517 | | | 88.61 153 | 87.78 155 | 91.11 165 | 94.96 143 | 77.81 258 | 95.35 87 | 89.69 337 | 85.09 161 | 88.05 144 | 94.59 141 | 66.93 264 | 98.48 103 | 83.27 176 | 92.13 170 | 97.03 111 |
|
BH-untuned | | | 88.60 154 | 88.13 148 | 90.01 214 | 95.24 131 | 78.50 239 | 93.29 213 | 94.15 230 | 84.75 168 | 84.46 230 | 93.40 183 | 75.76 154 | 97.40 199 | 77.59 258 | 94.52 129 | 94.12 225 |
|
NR-MVSNet | | | 88.58 155 | 87.47 162 | 91.93 126 | 93.04 220 | 84.16 87 | 94.77 128 | 96.25 107 | 89.05 60 | 80.04 302 | 93.29 189 | 79.02 118 | 97.05 227 | 81.71 208 | 80.05 315 | 94.59 198 |
|
1112_ss | | | 88.42 156 | 87.33 165 | 91.72 138 | 94.92 146 | 80.98 174 | 92.97 228 | 94.54 215 | 78.16 288 | 83.82 248 | 93.88 171 | 78.78 121 | 97.91 157 | 79.45 239 | 89.41 199 | 96.26 136 |
|
WR-MVS | | | 88.38 157 | 87.67 157 | 90.52 186 | 93.30 212 | 80.18 194 | 93.26 215 | 95.96 128 | 88.57 75 | 85.47 203 | 92.81 206 | 76.12 147 | 96.91 235 | 81.24 213 | 82.29 281 | 94.47 213 |
|
BH-RMVSNet | | | 88.37 158 | 87.48 161 | 91.02 170 | 95.28 128 | 79.45 218 | 92.89 230 | 93.07 257 | 85.45 152 | 86.91 168 | 94.84 130 | 70.35 227 | 97.76 162 | 73.97 292 | 94.59 126 | 95.85 153 |
|
IterMVS-LS | | | 88.36 159 | 87.91 154 | 89.70 227 | 93.80 198 | 78.29 246 | 93.73 194 | 95.08 189 | 85.73 143 | 84.75 222 | 91.90 239 | 79.88 106 | 96.92 234 | 83.83 169 | 82.51 278 | 93.89 235 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
X-MVStestdata | | | 88.31 160 | 86.13 206 | 94.85 23 | 98.54 13 | 86.60 31 | 96.93 22 | 97.19 34 | 90.66 22 | 92.85 58 | 23.41 376 | 85.02 55 | 99.49 24 | 91.99 62 | 98.56 46 | 98.47 31 |
|
LCM-MVSNet-Re | | | 88.30 161 | 88.32 143 | 88.27 262 | 94.71 157 | 72.41 323 | 93.15 219 | 90.98 314 | 87.77 101 | 79.25 310 | 91.96 237 | 78.35 128 | 95.75 293 | 83.04 178 | 95.62 104 | 96.65 124 |
|
jajsoiax | | | 88.24 162 | 87.50 160 | 90.48 190 | 90.89 292 | 80.14 196 | 95.31 89 | 95.65 153 | 84.97 163 | 84.24 241 | 94.02 161 | 65.31 281 | 97.42 192 | 88.56 108 | 88.52 216 | 93.89 235 |
|
VPNet | | | 88.20 163 | 87.47 162 | 90.39 195 | 93.56 206 | 79.46 217 | 94.04 177 | 95.54 160 | 88.67 71 | 86.96 165 | 94.58 142 | 69.33 241 | 97.15 219 | 84.05 166 | 80.53 310 | 94.56 201 |
|
TAPA-MVS | | 84.62 6 | 88.16 164 | 87.01 174 | 91.62 141 | 96.64 80 | 80.65 183 | 94.39 153 | 96.21 113 | 76.38 301 | 86.19 184 | 95.44 105 | 79.75 108 | 98.08 144 | 62.75 349 | 95.29 113 | 96.13 140 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
baseline1 | | | 88.10 165 | 87.28 167 | 90.57 182 | 94.96 143 | 80.07 199 | 94.27 160 | 91.29 307 | 86.74 122 | 87.41 156 | 94.00 163 | 76.77 142 | 96.20 273 | 80.77 221 | 79.31 323 | 95.44 166 |
|
Anonymous20240529 | | | 88.09 166 | 86.59 190 | 92.58 98 | 96.53 86 | 81.92 149 | 95.99 60 | 95.84 138 | 74.11 325 | 89.06 129 | 95.21 115 | 61.44 304 | 98.81 84 | 83.67 173 | 87.47 233 | 97.01 112 |
|
HyFIR lowres test | | | 88.09 166 | 86.81 178 | 91.93 126 | 96.00 105 | 80.63 184 | 90.01 295 | 95.79 141 | 73.42 331 | 87.68 152 | 92.10 231 | 73.86 184 | 97.96 153 | 80.75 222 | 91.70 171 | 97.19 102 |
|
mvs_tets | | | 88.06 168 | 87.28 167 | 90.38 197 | 90.94 288 | 79.88 208 | 95.22 98 | 95.66 151 | 85.10 160 | 84.21 242 | 93.94 166 | 63.53 291 | 97.40 199 | 88.50 109 | 88.40 220 | 93.87 238 |
|
F-COLMAP | | | 87.95 169 | 86.80 179 | 91.40 151 | 96.35 92 | 80.88 178 | 94.73 130 | 95.45 167 | 79.65 263 | 82.04 276 | 94.61 139 | 71.13 213 | 98.50 102 | 76.24 273 | 91.05 179 | 94.80 192 |
|
LS3D | | | 87.89 170 | 86.32 200 | 92.59 97 | 96.07 102 | 82.92 123 | 95.23 97 | 94.92 198 | 75.66 308 | 82.89 266 | 95.98 86 | 72.48 203 | 99.21 43 | 68.43 323 | 95.23 116 | 95.64 163 |
|
anonymousdsp | | | 87.84 171 | 87.09 170 | 90.12 207 | 89.13 325 | 80.54 187 | 94.67 134 | 95.55 158 | 82.05 221 | 83.82 248 | 92.12 228 | 71.47 211 | 97.15 219 | 87.15 128 | 87.80 232 | 92.67 289 |
|
v2v482 | | | 87.84 171 | 87.06 171 | 90.17 203 | 90.99 284 | 79.23 229 | 94.00 182 | 95.13 184 | 84.87 164 | 85.53 197 | 92.07 234 | 74.45 172 | 97.45 188 | 84.71 158 | 81.75 289 | 93.85 241 |
|
WR-MVS_H | | | 87.80 173 | 87.37 164 | 89.10 242 | 93.23 213 | 78.12 249 | 95.61 81 | 97.30 28 | 87.90 96 | 83.72 250 | 92.01 236 | 79.65 114 | 96.01 281 | 76.36 270 | 80.54 309 | 93.16 274 |
|
AUN-MVS | | | 87.78 174 | 86.54 192 | 91.48 148 | 94.82 153 | 81.05 172 | 93.91 189 | 93.93 237 | 83.00 204 | 86.93 166 | 93.53 181 | 69.50 238 | 97.67 167 | 86.14 138 | 77.12 333 | 95.73 161 |
|
PCF-MVS | | 84.11 10 | 87.74 175 | 86.08 210 | 92.70 92 | 94.02 186 | 84.43 83 | 89.27 305 | 95.87 136 | 73.62 330 | 84.43 232 | 94.33 147 | 78.48 127 | 98.86 79 | 70.27 309 | 94.45 131 | 94.81 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Anonymous202405211 | | | 87.68 176 | 86.13 206 | 92.31 111 | 96.66 79 | 80.74 182 | 94.87 121 | 91.49 302 | 80.47 253 | 89.46 123 | 95.44 105 | 54.72 337 | 98.23 125 | 82.19 195 | 89.89 192 | 97.97 70 |
|
V42 | | | 87.68 176 | 86.86 176 | 90.15 205 | 90.58 304 | 80.14 196 | 94.24 163 | 95.28 178 | 83.66 186 | 85.67 191 | 91.33 254 | 74.73 169 | 97.41 197 | 84.43 162 | 81.83 287 | 92.89 284 |
|
thres600view7 | | | 87.65 178 | 86.67 185 | 90.59 181 | 96.08 101 | 78.72 232 | 94.88 120 | 91.58 298 | 87.06 114 | 88.08 142 | 92.30 221 | 68.91 249 | 98.10 134 | 70.05 316 | 91.10 175 | 94.96 183 |
|
XXY-MVS | | | 87.65 178 | 86.85 177 | 90.03 211 | 92.14 242 | 80.60 186 | 93.76 193 | 95.23 180 | 82.94 206 | 84.60 225 | 94.02 161 | 74.27 174 | 95.49 304 | 81.04 215 | 83.68 265 | 94.01 233 |
|
Test_1112_low_res | | | 87.65 178 | 86.51 193 | 91.08 166 | 94.94 145 | 79.28 226 | 91.77 260 | 94.30 224 | 76.04 306 | 83.51 257 | 92.37 218 | 77.86 134 | 97.73 166 | 78.69 247 | 89.13 206 | 96.22 137 |
|
thres100view900 | | | 87.63 181 | 86.71 183 | 90.38 197 | 96.12 97 | 78.55 236 | 95.03 112 | 91.58 298 | 87.15 111 | 88.06 143 | 92.29 222 | 68.91 249 | 98.10 134 | 70.13 313 | 91.10 175 | 94.48 211 |
|
CP-MVSNet | | | 87.63 181 | 87.26 169 | 88.74 252 | 93.12 216 | 76.59 279 | 95.29 93 | 96.58 89 | 88.43 78 | 83.49 258 | 92.98 200 | 75.28 161 | 95.83 289 | 78.97 245 | 81.15 297 | 93.79 243 |
|
thres400 | | | 87.62 183 | 86.64 186 | 90.57 182 | 95.99 106 | 78.64 234 | 94.58 138 | 91.98 288 | 86.94 118 | 88.09 140 | 91.77 241 | 69.18 246 | 98.10 134 | 70.13 313 | 91.10 175 | 94.96 183 |
|
v1144 | | | 87.61 184 | 86.79 180 | 90.06 210 | 91.01 283 | 79.34 222 | 93.95 184 | 95.42 172 | 83.36 196 | 85.66 192 | 91.31 257 | 74.98 165 | 97.42 192 | 83.37 174 | 82.06 283 | 93.42 264 |
|
bld_raw_dy_0_64 | | | 87.60 185 | 86.73 181 | 90.21 201 | 91.72 256 | 80.26 193 | 95.09 108 | 88.61 342 | 85.68 145 | 85.55 194 | 94.38 145 | 63.93 289 | 96.66 243 | 87.73 118 | 87.84 231 | 93.72 252 |
|
tfpn200view9 | | | 87.58 186 | 86.64 186 | 90.41 194 | 95.99 106 | 78.64 234 | 94.58 138 | 91.98 288 | 86.94 118 | 88.09 140 | 91.77 241 | 69.18 246 | 98.10 134 | 70.13 313 | 91.10 175 | 94.48 211 |
|
BH-w/o | | | 87.57 187 | 87.05 172 | 89.12 241 | 94.90 148 | 77.90 254 | 92.41 241 | 93.51 250 | 82.89 208 | 83.70 251 | 91.34 253 | 75.75 155 | 97.07 225 | 75.49 278 | 93.49 147 | 92.39 298 |
|
UniMVSNet_ETH3D | | | 87.53 188 | 86.37 197 | 91.00 172 | 92.44 235 | 78.96 231 | 94.74 129 | 95.61 155 | 84.07 177 | 85.36 214 | 94.52 143 | 59.78 318 | 97.34 204 | 82.93 180 | 87.88 229 | 96.71 123 |
|
ET-MVSNet_ETH3D | | | 87.51 189 | 85.91 218 | 92.32 110 | 93.70 203 | 83.93 91 | 92.33 246 | 90.94 315 | 84.16 174 | 72.09 348 | 92.52 214 | 69.90 231 | 95.85 288 | 89.20 102 | 88.36 221 | 97.17 103 |
|
1314 | | | 87.51 189 | 86.57 191 | 90.34 199 | 92.42 236 | 79.74 212 | 92.63 236 | 95.35 177 | 78.35 283 | 80.14 299 | 91.62 248 | 74.05 180 | 97.15 219 | 81.05 214 | 93.53 145 | 94.12 225 |
|
v8 | | | 87.50 191 | 86.71 183 | 89.89 217 | 91.37 269 | 79.40 219 | 94.50 142 | 95.38 173 | 84.81 167 | 83.60 255 | 91.33 254 | 76.05 148 | 97.42 192 | 82.84 183 | 80.51 312 | 92.84 286 |
|
Fast-Effi-MVS+-dtu | | | 87.44 192 | 86.72 182 | 89.63 229 | 92.04 246 | 77.68 263 | 94.03 178 | 93.94 236 | 85.81 140 | 82.42 270 | 91.32 256 | 70.33 228 | 97.06 226 | 80.33 230 | 90.23 186 | 94.14 224 |
|
MVS | | | 87.44 192 | 86.10 209 | 91.44 150 | 92.61 233 | 83.62 100 | 92.63 236 | 95.66 151 | 67.26 353 | 81.47 280 | 92.15 226 | 77.95 131 | 98.22 127 | 79.71 236 | 95.48 107 | 92.47 295 |
|
FE-MVS | | | 87.40 194 | 86.02 212 | 91.57 144 | 94.56 166 | 79.69 213 | 90.27 285 | 93.72 247 | 80.57 252 | 88.80 132 | 91.62 248 | 65.32 280 | 98.59 98 | 74.97 286 | 94.33 134 | 96.44 130 |
|
FMVSNet3 | | | 87.40 194 | 86.11 208 | 91.30 156 | 93.79 200 | 83.64 99 | 94.20 165 | 94.81 207 | 83.89 181 | 84.37 233 | 91.87 240 | 68.45 255 | 96.56 254 | 78.23 252 | 85.36 250 | 93.70 254 |
|
test_fmvs1 | | | 87.34 196 | 87.56 159 | 86.68 302 | 90.59 303 | 71.80 327 | 94.01 180 | 94.04 235 | 78.30 284 | 91.97 82 | 95.22 113 | 56.28 330 | 93.71 329 | 92.89 37 | 94.71 121 | 94.52 203 |
|
thisisatest0515 | | | 87.33 197 | 85.99 213 | 91.37 153 | 93.49 207 | 79.55 215 | 90.63 281 | 89.56 340 | 80.17 255 | 87.56 154 | 90.86 270 | 67.07 263 | 98.28 123 | 81.50 210 | 93.02 158 | 96.29 134 |
|
PS-CasMVS | | | 87.32 198 | 86.88 175 | 88.63 255 | 92.99 223 | 76.33 284 | 95.33 88 | 96.61 87 | 88.22 86 | 83.30 263 | 93.07 198 | 73.03 197 | 95.79 292 | 78.36 249 | 81.00 303 | 93.75 250 |
|
GBi-Net | | | 87.26 199 | 85.98 214 | 91.08 166 | 94.01 187 | 83.10 113 | 95.14 105 | 94.94 193 | 83.57 188 | 84.37 233 | 91.64 244 | 66.59 271 | 96.34 269 | 78.23 252 | 85.36 250 | 93.79 243 |
|
test1 | | | 87.26 199 | 85.98 214 | 91.08 166 | 94.01 187 | 83.10 113 | 95.14 105 | 94.94 193 | 83.57 188 | 84.37 233 | 91.64 244 | 66.59 271 | 96.34 269 | 78.23 252 | 85.36 250 | 93.79 243 |
|
v1192 | | | 87.25 201 | 86.33 199 | 90.00 215 | 90.76 297 | 79.04 230 | 93.80 191 | 95.48 163 | 82.57 212 | 85.48 202 | 91.18 261 | 73.38 193 | 97.42 192 | 82.30 193 | 82.06 283 | 93.53 258 |
|
v10 | | | 87.25 201 | 86.38 196 | 89.85 218 | 91.19 275 | 79.50 216 | 94.48 143 | 95.45 167 | 83.79 184 | 83.62 254 | 91.19 259 | 75.13 162 | 97.42 192 | 81.94 200 | 80.60 307 | 92.63 291 |
|
DP-MVS | | | 87.25 201 | 85.36 233 | 92.90 82 | 97.65 55 | 83.24 109 | 94.81 125 | 92.00 286 | 74.99 316 | 81.92 278 | 95.00 121 | 72.66 200 | 99.05 53 | 66.92 334 | 92.33 168 | 96.40 131 |
|
miper_ehance_all_eth | | | 87.22 204 | 86.62 189 | 89.02 245 | 92.13 243 | 77.40 268 | 90.91 277 | 94.81 207 | 81.28 243 | 84.32 238 | 90.08 287 | 79.26 116 | 96.62 246 | 83.81 170 | 82.94 273 | 93.04 279 |
|
test2506 | | | 87.21 205 | 86.28 202 | 90.02 213 | 95.62 120 | 73.64 306 | 96.25 46 | 71.38 376 | 87.89 98 | 90.45 108 | 96.65 58 | 55.29 335 | 98.09 142 | 86.03 142 | 96.94 83 | 98.33 41 |
|
thres200 | | | 87.21 205 | 86.24 204 | 90.12 207 | 95.36 126 | 78.53 237 | 93.26 215 | 92.10 282 | 86.42 128 | 88.00 145 | 91.11 265 | 69.24 245 | 98.00 150 | 69.58 317 | 91.04 180 | 93.83 242 |
|
v144192 | | | 87.19 207 | 86.35 198 | 89.74 224 | 90.64 301 | 78.24 247 | 93.92 187 | 95.43 170 | 81.93 226 | 85.51 199 | 91.05 267 | 74.21 177 | 97.45 188 | 82.86 182 | 81.56 291 | 93.53 258 |
|
FMVSNet2 | | | 87.19 207 | 85.82 220 | 91.30 156 | 94.01 187 | 83.67 98 | 94.79 126 | 94.94 193 | 83.57 188 | 83.88 247 | 92.05 235 | 66.59 271 | 96.51 257 | 77.56 259 | 85.01 253 | 93.73 251 |
|
c3_l | | | 87.14 209 | 86.50 194 | 89.04 244 | 92.20 240 | 77.26 269 | 91.22 273 | 94.70 212 | 82.01 224 | 84.34 237 | 90.43 280 | 78.81 120 | 96.61 249 | 83.70 172 | 81.09 298 | 93.25 269 |
|
Baseline_NR-MVSNet | | | 87.07 210 | 86.63 188 | 88.40 258 | 91.44 264 | 77.87 256 | 94.23 164 | 92.57 269 | 84.12 176 | 85.74 190 | 92.08 232 | 77.25 137 | 96.04 278 | 82.29 194 | 79.94 316 | 91.30 318 |
|
v148 | | | 87.04 211 | 86.32 200 | 89.21 238 | 90.94 288 | 77.26 269 | 93.71 196 | 94.43 218 | 84.84 166 | 84.36 236 | 90.80 273 | 76.04 149 | 97.05 227 | 82.12 196 | 79.60 320 | 93.31 266 |
|
test_fmvs1_n | | | 87.03 212 | 87.04 173 | 86.97 294 | 89.74 321 | 71.86 325 | 94.55 140 | 94.43 218 | 78.47 280 | 91.95 84 | 95.50 104 | 51.16 347 | 93.81 327 | 93.02 36 | 94.56 127 | 95.26 172 |
|
v1921920 | | | 86.97 213 | 86.06 211 | 89.69 228 | 90.53 307 | 78.11 250 | 93.80 191 | 95.43 170 | 81.90 228 | 85.33 215 | 91.05 267 | 72.66 200 | 97.41 197 | 82.05 198 | 81.80 288 | 93.53 258 |
|
tt0805 | | | 86.92 214 | 85.74 226 | 90.48 190 | 92.22 239 | 79.98 206 | 95.63 80 | 94.88 201 | 83.83 183 | 84.74 223 | 92.80 207 | 57.61 326 | 97.67 167 | 85.48 149 | 84.42 257 | 93.79 243 |
|
miper_enhance_ethall | | | 86.90 215 | 86.18 205 | 89.06 243 | 91.66 261 | 77.58 265 | 90.22 291 | 94.82 206 | 79.16 269 | 84.48 229 | 89.10 301 | 79.19 117 | 96.66 243 | 84.06 165 | 82.94 273 | 92.94 282 |
|
v7n | | | 86.81 216 | 85.76 224 | 89.95 216 | 90.72 299 | 79.25 228 | 95.07 109 | 95.92 130 | 84.45 173 | 82.29 271 | 90.86 270 | 72.60 202 | 97.53 182 | 79.42 242 | 80.52 311 | 93.08 278 |
|
PEN-MVS | | | 86.80 217 | 86.27 203 | 88.40 258 | 92.32 238 | 75.71 290 | 95.18 101 | 96.38 98 | 87.97 93 | 82.82 267 | 93.15 194 | 73.39 192 | 95.92 284 | 76.15 274 | 79.03 325 | 93.59 256 |
|
cl22 | | | 86.78 218 | 85.98 214 | 89.18 240 | 92.34 237 | 77.62 264 | 90.84 278 | 94.13 232 | 81.33 242 | 83.97 246 | 90.15 285 | 73.96 182 | 96.60 251 | 84.19 164 | 82.94 273 | 93.33 265 |
|
v1240 | | | 86.78 218 | 85.85 219 | 89.56 230 | 90.45 308 | 77.79 259 | 93.61 199 | 95.37 175 | 81.65 234 | 85.43 207 | 91.15 263 | 71.50 210 | 97.43 191 | 81.47 211 | 82.05 285 | 93.47 262 |
|
TR-MVS | | | 86.78 218 | 85.76 224 | 89.82 220 | 94.37 175 | 78.41 241 | 92.47 240 | 92.83 262 | 81.11 248 | 86.36 180 | 92.40 217 | 68.73 252 | 97.48 185 | 73.75 295 | 89.85 194 | 93.57 257 |
|
PatchMatch-RL | | | 86.77 221 | 85.54 227 | 90.47 193 | 95.88 109 | 82.71 131 | 90.54 282 | 92.31 275 | 79.82 261 | 84.32 238 | 91.57 252 | 68.77 251 | 96.39 265 | 73.16 297 | 93.48 149 | 92.32 301 |
|
PAPM | | | 86.68 222 | 85.39 231 | 90.53 184 | 93.05 219 | 79.33 225 | 89.79 298 | 94.77 210 | 78.82 274 | 81.95 277 | 93.24 191 | 76.81 140 | 97.30 206 | 66.94 332 | 93.16 156 | 94.95 186 |
|
pm-mvs1 | | | 86.61 223 | 85.54 227 | 89.82 220 | 91.44 264 | 80.18 194 | 95.28 95 | 94.85 203 | 83.84 182 | 81.66 279 | 92.62 211 | 72.45 205 | 96.48 259 | 79.67 237 | 78.06 326 | 92.82 287 |
|
GA-MVS | | | 86.61 223 | 85.27 235 | 90.66 180 | 91.33 272 | 78.71 233 | 90.40 284 | 93.81 244 | 85.34 154 | 85.12 217 | 89.57 297 | 61.25 306 | 97.11 223 | 80.99 218 | 89.59 198 | 96.15 138 |
|
Anonymous20231211 | | | 86.59 225 | 85.13 237 | 90.98 175 | 96.52 87 | 81.50 157 | 96.14 52 | 96.16 114 | 73.78 328 | 83.65 253 | 92.15 226 | 63.26 293 | 97.37 203 | 82.82 184 | 81.74 290 | 94.06 230 |
|
test_vis1_n | | | 86.56 226 | 86.49 195 | 86.78 301 | 88.51 330 | 72.69 315 | 94.68 133 | 93.78 245 | 79.55 264 | 90.70 105 | 95.31 109 | 48.75 352 | 93.28 335 | 93.15 33 | 93.99 136 | 94.38 215 |
|
DIV-MVS_self_test | | | 86.53 227 | 85.78 221 | 88.75 250 | 92.02 248 | 76.45 281 | 90.74 279 | 94.30 224 | 81.83 232 | 83.34 261 | 90.82 272 | 75.75 155 | 96.57 252 | 81.73 207 | 81.52 293 | 93.24 270 |
|
cl____ | | | 86.52 228 | 85.78 221 | 88.75 250 | 92.03 247 | 76.46 280 | 90.74 279 | 94.30 224 | 81.83 232 | 83.34 261 | 90.78 274 | 75.74 157 | 96.57 252 | 81.74 206 | 81.54 292 | 93.22 271 |
|
eth_miper_zixun_eth | | | 86.50 229 | 85.77 223 | 88.68 253 | 91.94 249 | 75.81 289 | 90.47 283 | 94.89 199 | 82.05 221 | 84.05 243 | 90.46 279 | 75.96 150 | 96.77 239 | 82.76 186 | 79.36 322 | 93.46 263 |
|
baseline2 | | | 86.50 229 | 85.39 231 | 89.84 219 | 91.12 280 | 76.70 277 | 91.88 257 | 88.58 343 | 82.35 217 | 79.95 303 | 90.95 269 | 73.42 191 | 97.63 174 | 80.27 231 | 89.95 191 | 95.19 174 |
|
EPNet_dtu | | | 86.49 231 | 85.94 217 | 88.14 267 | 90.24 311 | 72.82 313 | 94.11 169 | 92.20 278 | 86.66 125 | 79.42 309 | 92.36 219 | 73.52 188 | 95.81 291 | 71.26 303 | 93.66 141 | 95.80 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 86.43 232 | 84.98 240 | 90.80 178 | 92.10 245 | 80.92 177 | 90.24 289 | 95.91 132 | 73.10 334 | 83.57 256 | 88.39 312 | 65.15 282 | 97.46 187 | 84.90 155 | 91.43 173 | 94.03 232 |
|
SCA | | | 86.32 233 | 85.18 236 | 89.73 226 | 92.15 241 | 76.60 278 | 91.12 274 | 91.69 295 | 83.53 191 | 85.50 200 | 88.81 305 | 66.79 267 | 96.48 259 | 76.65 267 | 90.35 185 | 96.12 141 |
|
LTVRE_ROB | | 82.13 13 | 86.26 234 | 84.90 243 | 90.34 199 | 94.44 173 | 81.50 157 | 92.31 248 | 94.89 199 | 83.03 203 | 79.63 307 | 92.67 209 | 69.69 235 | 97.79 160 | 71.20 304 | 86.26 246 | 91.72 310 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DTE-MVSNet | | | 86.11 235 | 85.48 229 | 87.98 271 | 91.65 262 | 74.92 295 | 94.93 117 | 95.75 144 | 87.36 109 | 82.26 272 | 93.04 199 | 72.85 198 | 95.82 290 | 74.04 291 | 77.46 331 | 93.20 272 |
|
XVG-ACMP-BASELINE | | | 86.00 236 | 84.84 245 | 89.45 235 | 91.20 274 | 78.00 251 | 91.70 263 | 95.55 158 | 85.05 162 | 82.97 265 | 92.25 224 | 54.49 338 | 97.48 185 | 82.93 180 | 87.45 235 | 92.89 284 |
|
MVP-Stereo | | | 85.97 237 | 84.86 244 | 89.32 236 | 90.92 290 | 82.19 143 | 92.11 254 | 94.19 228 | 78.76 276 | 78.77 313 | 91.63 247 | 68.38 256 | 96.56 254 | 75.01 285 | 93.95 137 | 89.20 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
D2MVS | | | 85.90 238 | 85.09 238 | 88.35 260 | 90.79 295 | 77.42 267 | 91.83 259 | 95.70 147 | 80.77 251 | 80.08 301 | 90.02 288 | 66.74 269 | 96.37 266 | 81.88 202 | 87.97 228 | 91.26 319 |
|
test-LLR | | | 85.87 239 | 85.41 230 | 87.25 287 | 90.95 286 | 71.67 329 | 89.55 299 | 89.88 335 | 83.41 194 | 84.54 227 | 87.95 319 | 67.25 259 | 95.11 310 | 81.82 203 | 93.37 152 | 94.97 180 |
|
FMVSNet1 | | | 85.85 240 | 84.11 254 | 91.08 166 | 92.81 229 | 83.10 113 | 95.14 105 | 94.94 193 | 81.64 235 | 82.68 268 | 91.64 244 | 59.01 322 | 96.34 269 | 75.37 280 | 83.78 262 | 93.79 243 |
|
PatchmatchNet |  | | 85.85 240 | 84.70 247 | 89.29 237 | 91.76 255 | 75.54 291 | 88.49 317 | 91.30 306 | 81.63 236 | 85.05 218 | 88.70 309 | 71.71 207 | 96.24 272 | 74.61 289 | 89.05 207 | 96.08 144 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CostFormer | | | 85.77 242 | 84.94 242 | 88.26 263 | 91.16 278 | 72.58 321 | 89.47 303 | 91.04 313 | 76.26 304 | 86.45 178 | 89.97 290 | 70.74 220 | 96.86 238 | 82.35 192 | 87.07 241 | 95.34 171 |
|
PMMVS | | | 85.71 243 | 84.96 241 | 87.95 272 | 88.90 328 | 77.09 271 | 88.68 315 | 90.06 329 | 72.32 340 | 86.47 175 | 90.76 275 | 72.15 206 | 94.40 317 | 81.78 205 | 93.49 147 | 92.36 299 |
|
PVSNet | | 78.82 18 | 85.55 244 | 84.65 248 | 88.23 265 | 94.72 156 | 71.93 324 | 87.12 332 | 92.75 265 | 78.80 275 | 84.95 220 | 90.53 278 | 64.43 286 | 96.71 242 | 74.74 287 | 93.86 139 | 96.06 146 |
|
IterMVS-SCA-FT | | | 85.45 245 | 84.53 251 | 88.18 266 | 91.71 258 | 76.87 274 | 90.19 292 | 92.65 268 | 85.40 153 | 81.44 281 | 90.54 277 | 66.79 267 | 95.00 313 | 81.04 215 | 81.05 299 | 92.66 290 |
|
pmmvs4 | | | 85.43 246 | 83.86 259 | 90.16 204 | 90.02 316 | 82.97 121 | 90.27 285 | 92.67 267 | 75.93 307 | 80.73 289 | 91.74 243 | 71.05 214 | 95.73 295 | 78.85 246 | 83.46 269 | 91.78 309 |
|
mvsany_test1 | | | 85.42 247 | 85.30 234 | 85.77 312 | 87.95 341 | 75.41 293 | 87.61 329 | 80.97 365 | 76.82 298 | 88.68 133 | 95.83 92 | 77.44 136 | 90.82 353 | 85.90 143 | 86.51 244 | 91.08 327 |
|
ACMH | | 80.38 17 | 85.36 248 | 83.68 261 | 90.39 195 | 94.45 172 | 80.63 184 | 94.73 130 | 94.85 203 | 82.09 220 | 77.24 321 | 92.65 210 | 60.01 316 | 97.58 176 | 72.25 301 | 84.87 254 | 92.96 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 85.35 249 | 84.64 249 | 87.49 281 | 90.77 296 | 72.59 320 | 94.01 180 | 94.40 221 | 84.72 169 | 79.62 308 | 93.17 193 | 61.91 300 | 96.72 240 | 81.99 199 | 81.16 295 | 93.16 274 |
|
CR-MVSNet | | | 85.35 249 | 83.76 260 | 90.12 207 | 90.58 304 | 79.34 222 | 85.24 344 | 91.96 290 | 78.27 285 | 85.55 194 | 87.87 322 | 71.03 215 | 95.61 296 | 73.96 293 | 89.36 201 | 95.40 168 |
|
tpmrst | | | 85.35 249 | 84.99 239 | 86.43 304 | 90.88 293 | 67.88 350 | 88.71 314 | 91.43 304 | 80.13 256 | 86.08 186 | 88.80 307 | 73.05 195 | 96.02 280 | 82.48 188 | 83.40 271 | 95.40 168 |
|
miper_lstm_enhance | | | 85.27 252 | 84.59 250 | 87.31 284 | 91.28 273 | 74.63 296 | 87.69 326 | 94.09 234 | 81.20 247 | 81.36 283 | 89.85 293 | 74.97 166 | 94.30 320 | 81.03 217 | 79.84 319 | 93.01 280 |
|
IB-MVS | | 80.51 15 | 85.24 253 | 83.26 265 | 91.19 159 | 92.13 243 | 79.86 209 | 91.75 261 | 91.29 307 | 83.28 198 | 80.66 291 | 88.49 311 | 61.28 305 | 98.46 106 | 80.99 218 | 79.46 321 | 95.25 173 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CHOSEN 280x420 | | | 85.15 254 | 83.99 257 | 88.65 254 | 92.47 234 | 78.40 242 | 79.68 364 | 92.76 264 | 74.90 318 | 81.41 282 | 89.59 296 | 69.85 234 | 95.51 301 | 79.92 235 | 95.29 113 | 92.03 305 |
|
RPSCF | | | 85.07 255 | 84.27 252 | 87.48 282 | 92.91 226 | 70.62 339 | 91.69 264 | 92.46 270 | 76.20 305 | 82.67 269 | 95.22 113 | 63.94 288 | 97.29 209 | 77.51 260 | 85.80 248 | 94.53 202 |
|
MS-PatchMatch | | | 85.05 256 | 84.16 253 | 87.73 275 | 91.42 267 | 78.51 238 | 91.25 272 | 93.53 249 | 77.50 291 | 80.15 298 | 91.58 250 | 61.99 299 | 95.51 301 | 75.69 277 | 94.35 133 | 89.16 344 |
|
ACMH+ | | 81.04 14 | 85.05 256 | 83.46 264 | 89.82 220 | 94.66 160 | 79.37 220 | 94.44 148 | 94.12 233 | 82.19 219 | 78.04 316 | 92.82 205 | 58.23 324 | 97.54 181 | 73.77 294 | 82.90 276 | 92.54 292 |
|
IterMVS | | | 84.88 258 | 83.98 258 | 87.60 277 | 91.44 264 | 76.03 286 | 90.18 293 | 92.41 271 | 83.24 199 | 81.06 287 | 90.42 281 | 66.60 270 | 94.28 321 | 79.46 238 | 80.98 304 | 92.48 294 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 259 | 83.09 267 | 90.14 206 | 93.80 198 | 80.05 201 | 89.18 308 | 93.09 256 | 78.89 272 | 78.19 314 | 91.91 238 | 65.86 279 | 97.27 210 | 68.47 322 | 88.45 218 | 93.11 276 |
|
tpm | | | 84.73 260 | 84.02 256 | 86.87 299 | 90.33 309 | 68.90 346 | 89.06 310 | 89.94 332 | 80.85 250 | 85.75 189 | 89.86 292 | 68.54 254 | 95.97 282 | 77.76 256 | 84.05 261 | 95.75 158 |
|
tfpnnormal | | | 84.72 261 | 83.23 266 | 89.20 239 | 92.79 230 | 80.05 201 | 94.48 143 | 95.81 139 | 82.38 215 | 81.08 286 | 91.21 258 | 69.01 248 | 96.95 232 | 61.69 351 | 80.59 308 | 90.58 333 |
|
CVMVSNet | | | 84.69 262 | 84.79 246 | 84.37 323 | 91.84 252 | 64.92 359 | 93.70 197 | 91.47 303 | 66.19 355 | 86.16 185 | 95.28 110 | 67.18 261 | 93.33 334 | 80.89 220 | 90.42 184 | 94.88 188 |
|
test-mter | | | 84.54 263 | 83.64 262 | 87.25 287 | 90.95 286 | 71.67 329 | 89.55 299 | 89.88 335 | 79.17 268 | 84.54 227 | 87.95 319 | 55.56 332 | 95.11 310 | 81.82 203 | 93.37 152 | 94.97 180 |
|
TransMVSNet (Re) | | | 84.43 264 | 83.06 268 | 88.54 256 | 91.72 256 | 78.44 240 | 95.18 101 | 92.82 263 | 82.73 210 | 79.67 306 | 92.12 228 | 73.49 189 | 95.96 283 | 71.10 308 | 68.73 355 | 91.21 321 |
|
pmmvs5 | | | 84.21 265 | 82.84 272 | 88.34 261 | 88.95 327 | 76.94 273 | 92.41 241 | 91.91 292 | 75.63 309 | 80.28 296 | 91.18 261 | 64.59 285 | 95.57 297 | 77.09 265 | 83.47 268 | 92.53 293 |
|
tpm2 | | | 84.08 266 | 82.94 269 | 87.48 282 | 91.39 268 | 71.27 331 | 89.23 307 | 90.37 323 | 71.95 342 | 84.64 224 | 89.33 299 | 67.30 258 | 96.55 256 | 75.17 282 | 87.09 240 | 94.63 195 |
|
test_fmvs2 | | | 83.98 267 | 84.03 255 | 83.83 328 | 87.16 343 | 67.53 353 | 93.93 186 | 92.89 260 | 77.62 290 | 86.89 171 | 93.53 181 | 47.18 357 | 92.02 346 | 90.54 90 | 86.51 244 | 91.93 307 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 268 | 82.04 275 | 89.74 224 | 95.28 128 | 79.75 211 | 94.25 161 | 92.28 276 | 75.17 314 | 78.02 317 | 93.77 176 | 58.60 323 | 97.84 159 | 65.06 342 | 85.92 247 | 91.63 312 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
RPMNet | | | 83.95 269 | 81.53 279 | 91.21 158 | 90.58 304 | 79.34 222 | 85.24 344 | 96.76 73 | 71.44 344 | 85.55 194 | 82.97 352 | 70.87 218 | 98.91 75 | 61.01 353 | 89.36 201 | 95.40 168 |
|
SixPastTwentyTwo | | | 83.91 270 | 82.90 270 | 86.92 296 | 90.99 284 | 70.67 338 | 93.48 203 | 91.99 287 | 85.54 150 | 77.62 320 | 92.11 230 | 60.59 312 | 96.87 237 | 76.05 275 | 77.75 328 | 93.20 272 |
|
EPMVS | | | 83.90 271 | 82.70 273 | 87.51 279 | 90.23 312 | 72.67 316 | 88.62 316 | 81.96 363 | 81.37 241 | 85.01 219 | 88.34 313 | 66.31 274 | 94.45 315 | 75.30 281 | 87.12 239 | 95.43 167 |
|
TESTMET0.1,1 | | | 83.74 272 | 82.85 271 | 86.42 305 | 89.96 317 | 71.21 333 | 89.55 299 | 87.88 345 | 77.41 292 | 83.37 260 | 87.31 327 | 56.71 328 | 93.65 331 | 80.62 225 | 92.85 162 | 94.40 214 |
|
MVS_0304 | | | 83.46 273 | 81.92 276 | 88.10 268 | 90.63 302 | 77.49 266 | 93.26 215 | 93.75 246 | 80.04 258 | 80.44 295 | 87.24 329 | 47.94 354 | 95.55 298 | 75.79 276 | 88.16 223 | 91.26 319 |
|
pmmvs6 | | | 83.42 274 | 81.60 278 | 88.87 247 | 88.01 339 | 77.87 256 | 94.96 115 | 94.24 227 | 74.67 320 | 78.80 312 | 91.09 266 | 60.17 315 | 96.49 258 | 77.06 266 | 75.40 339 | 92.23 303 |
|
AllTest | | | 83.42 274 | 81.39 280 | 89.52 232 | 95.01 139 | 77.79 259 | 93.12 220 | 90.89 317 | 77.41 292 | 76.12 329 | 93.34 184 | 54.08 340 | 97.51 183 | 68.31 324 | 84.27 259 | 93.26 267 |
|
tpmvs | | | 83.35 276 | 82.07 274 | 87.20 291 | 91.07 282 | 71.00 336 | 88.31 320 | 91.70 294 | 78.91 271 | 80.49 294 | 87.18 330 | 69.30 244 | 97.08 224 | 68.12 327 | 83.56 267 | 93.51 261 |
|
USDC | | | 82.76 277 | 81.26 282 | 87.26 286 | 91.17 276 | 74.55 297 | 89.27 305 | 93.39 252 | 78.26 286 | 75.30 334 | 92.08 232 | 54.43 339 | 96.63 245 | 71.64 302 | 85.79 249 | 90.61 330 |
|
Patchmtry | | | 82.71 278 | 80.93 284 | 88.06 269 | 90.05 315 | 76.37 283 | 84.74 349 | 91.96 290 | 72.28 341 | 81.32 284 | 87.87 322 | 71.03 215 | 95.50 303 | 68.97 319 | 80.15 314 | 92.32 301 |
|
PatchT | | | 82.68 279 | 81.27 281 | 86.89 298 | 90.09 314 | 70.94 337 | 84.06 351 | 90.15 326 | 74.91 317 | 85.63 193 | 83.57 348 | 69.37 239 | 94.87 314 | 65.19 339 | 88.50 217 | 94.84 189 |
|
MIMVSNet | | | 82.59 280 | 80.53 285 | 88.76 249 | 91.51 263 | 78.32 244 | 86.57 335 | 90.13 327 | 79.32 265 | 80.70 290 | 88.69 310 | 52.98 344 | 93.07 339 | 66.03 337 | 88.86 211 | 94.90 187 |
|
test0.0.03 1 | | | 82.41 281 | 81.69 277 | 84.59 321 | 88.23 336 | 72.89 312 | 90.24 289 | 87.83 346 | 83.41 194 | 79.86 304 | 89.78 294 | 67.25 259 | 88.99 361 | 65.18 340 | 83.42 270 | 91.90 308 |
|
EG-PatchMatch MVS | | | 82.37 282 | 80.34 288 | 88.46 257 | 90.27 310 | 79.35 221 | 92.80 233 | 94.33 223 | 77.14 296 | 73.26 345 | 90.18 284 | 47.47 356 | 96.72 240 | 70.25 310 | 87.32 238 | 89.30 341 |
|
tpm cat1 | | | 81.96 283 | 80.27 289 | 87.01 293 | 91.09 281 | 71.02 335 | 87.38 330 | 91.53 301 | 66.25 354 | 80.17 297 | 86.35 336 | 68.22 257 | 96.15 276 | 69.16 318 | 82.29 281 | 93.86 240 |
|
our_test_3 | | | 81.93 284 | 80.46 287 | 86.33 306 | 88.46 333 | 73.48 308 | 88.46 318 | 91.11 309 | 76.46 299 | 76.69 325 | 88.25 315 | 66.89 265 | 94.36 318 | 68.75 320 | 79.08 324 | 91.14 323 |
|
ppachtmachnet_test | | | 81.84 285 | 80.07 293 | 87.15 292 | 88.46 333 | 74.43 300 | 89.04 311 | 92.16 279 | 75.33 312 | 77.75 318 | 88.99 302 | 66.20 275 | 95.37 306 | 65.12 341 | 77.60 329 | 91.65 311 |
|
gg-mvs-nofinetune | | | 81.77 286 | 79.37 299 | 88.99 246 | 90.85 294 | 77.73 262 | 86.29 336 | 79.63 368 | 74.88 319 | 83.19 264 | 69.05 366 | 60.34 313 | 96.11 277 | 75.46 279 | 94.64 125 | 93.11 276 |
|
CL-MVSNet_self_test | | | 81.74 287 | 80.53 285 | 85.36 315 | 85.96 349 | 72.45 322 | 90.25 287 | 93.07 257 | 81.24 245 | 79.85 305 | 87.29 328 | 70.93 217 | 92.52 342 | 66.95 331 | 69.23 351 | 91.11 325 |
|
Patchmatch-RL test | | | 81.67 288 | 79.96 294 | 86.81 300 | 85.42 354 | 71.23 332 | 82.17 358 | 87.50 349 | 78.47 280 | 77.19 322 | 82.50 353 | 70.81 219 | 93.48 332 | 82.66 187 | 72.89 343 | 95.71 162 |
|
ADS-MVSNet2 | | | 81.66 289 | 79.71 297 | 87.50 280 | 91.35 270 | 74.19 302 | 83.33 354 | 88.48 344 | 72.90 336 | 82.24 273 | 85.77 340 | 64.98 283 | 93.20 337 | 64.57 343 | 83.74 263 | 95.12 176 |
|
K. test v3 | | | 81.59 290 | 80.15 292 | 85.91 311 | 89.89 319 | 69.42 345 | 92.57 238 | 87.71 347 | 85.56 149 | 73.44 344 | 89.71 295 | 55.58 331 | 95.52 300 | 77.17 263 | 69.76 349 | 92.78 288 |
|
ADS-MVSNet | | | 81.56 291 | 79.78 295 | 86.90 297 | 91.35 270 | 71.82 326 | 83.33 354 | 89.16 341 | 72.90 336 | 82.24 273 | 85.77 340 | 64.98 283 | 93.76 328 | 64.57 343 | 83.74 263 | 95.12 176 |
|
FMVSNet5 | | | 81.52 292 | 79.60 298 | 87.27 285 | 91.17 276 | 77.95 252 | 91.49 267 | 92.26 277 | 76.87 297 | 76.16 328 | 87.91 321 | 51.67 345 | 92.34 343 | 67.74 328 | 81.16 295 | 91.52 313 |
|
dp | | | 81.47 293 | 80.23 290 | 85.17 318 | 89.92 318 | 65.49 357 | 86.74 333 | 90.10 328 | 76.30 303 | 81.10 285 | 87.12 331 | 62.81 295 | 95.92 284 | 68.13 326 | 79.88 317 | 94.09 228 |
|
Patchmatch-test | | | 81.37 294 | 79.30 300 | 87.58 278 | 90.92 290 | 74.16 303 | 80.99 360 | 87.68 348 | 70.52 348 | 76.63 326 | 88.81 305 | 71.21 212 | 92.76 341 | 60.01 357 | 86.93 242 | 95.83 155 |
|
EU-MVSNet | | | 81.32 295 | 80.95 283 | 82.42 334 | 88.50 332 | 63.67 360 | 93.32 208 | 91.33 305 | 64.02 358 | 80.57 293 | 92.83 204 | 61.21 308 | 92.27 344 | 76.34 271 | 80.38 313 | 91.32 317 |
|
test_0402 | | | 81.30 296 | 79.17 304 | 87.67 276 | 93.19 214 | 78.17 248 | 92.98 227 | 91.71 293 | 75.25 313 | 76.02 331 | 90.31 282 | 59.23 320 | 96.37 266 | 50.22 365 | 83.63 266 | 88.47 350 |
|
JIA-IIPM | | | 81.04 297 | 78.98 307 | 87.25 287 | 88.64 329 | 73.48 308 | 81.75 359 | 89.61 339 | 73.19 333 | 82.05 275 | 73.71 363 | 66.07 278 | 95.87 287 | 71.18 306 | 84.60 256 | 92.41 297 |
|
Anonymous20231206 | | | 81.03 298 | 79.77 296 | 84.82 320 | 87.85 342 | 70.26 341 | 91.42 268 | 92.08 283 | 73.67 329 | 77.75 318 | 89.25 300 | 62.43 297 | 93.08 338 | 61.50 352 | 82.00 286 | 91.12 324 |
|
pmmvs-eth3d | | | 80.97 299 | 78.72 308 | 87.74 274 | 84.99 356 | 79.97 207 | 90.11 294 | 91.65 296 | 75.36 311 | 73.51 343 | 86.03 337 | 59.45 319 | 93.96 326 | 75.17 282 | 72.21 344 | 89.29 342 |
|
testgi | | | 80.94 300 | 80.20 291 | 83.18 329 | 87.96 340 | 66.29 354 | 91.28 270 | 90.70 321 | 83.70 185 | 78.12 315 | 92.84 203 | 51.37 346 | 90.82 353 | 63.34 346 | 82.46 279 | 92.43 296 |
|
CMPMVS |  | 59.16 21 | 80.52 301 | 79.20 303 | 84.48 322 | 83.98 357 | 67.63 352 | 89.95 297 | 93.84 243 | 64.79 357 | 66.81 358 | 91.14 264 | 57.93 325 | 95.17 308 | 76.25 272 | 88.10 224 | 90.65 329 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240521 | | | 80.44 302 | 79.21 302 | 84.11 326 | 85.75 352 | 67.89 349 | 92.86 231 | 93.23 254 | 75.61 310 | 75.59 333 | 87.47 326 | 50.03 348 | 94.33 319 | 71.14 307 | 81.21 294 | 90.12 335 |
|
LF4IMVS | | | 80.37 303 | 79.07 306 | 84.27 325 | 86.64 345 | 69.87 344 | 89.39 304 | 91.05 312 | 76.38 301 | 74.97 336 | 90.00 289 | 47.85 355 | 94.25 322 | 74.55 290 | 80.82 306 | 88.69 348 |
|
KD-MVS_self_test | | | 80.20 304 | 79.24 301 | 83.07 330 | 85.64 353 | 65.29 358 | 91.01 276 | 93.93 237 | 78.71 278 | 76.32 327 | 86.40 335 | 59.20 321 | 92.93 340 | 72.59 299 | 69.35 350 | 91.00 328 |
|
UnsupCasMVSNet_eth | | | 80.07 305 | 78.27 309 | 85.46 314 | 85.24 355 | 72.63 319 | 88.45 319 | 94.87 202 | 82.99 205 | 71.64 351 | 88.07 318 | 56.34 329 | 91.75 349 | 73.48 296 | 63.36 362 | 92.01 306 |
|
test20.03 | | | 79.95 306 | 79.08 305 | 82.55 332 | 85.79 351 | 67.74 351 | 91.09 275 | 91.08 310 | 81.23 246 | 74.48 340 | 89.96 291 | 61.63 301 | 90.15 355 | 60.08 355 | 76.38 335 | 89.76 336 |
|
TDRefinement | | | 79.81 307 | 77.34 311 | 87.22 290 | 79.24 366 | 75.48 292 | 93.12 220 | 92.03 285 | 76.45 300 | 75.01 335 | 91.58 250 | 49.19 351 | 96.44 263 | 70.22 312 | 69.18 352 | 89.75 337 |
|
TinyColmap | | | 79.76 308 | 77.69 310 | 85.97 308 | 91.71 258 | 73.12 310 | 89.55 299 | 90.36 324 | 75.03 315 | 72.03 349 | 90.19 283 | 46.22 358 | 96.19 275 | 63.11 347 | 81.03 300 | 88.59 349 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 309 | 77.03 316 | 86.93 295 | 87.00 344 | 76.23 285 | 92.33 246 | 90.74 320 | 68.93 351 | 74.52 339 | 88.23 316 | 49.58 350 | 96.62 246 | 57.64 359 | 84.29 258 | 87.94 352 |
|
MIMVSNet1 | | | 79.38 310 | 77.28 312 | 85.69 313 | 86.35 346 | 73.67 305 | 91.61 266 | 92.75 265 | 78.11 289 | 72.64 347 | 88.12 317 | 48.16 353 | 91.97 348 | 60.32 354 | 77.49 330 | 91.43 316 |
|
YYNet1 | | | 79.22 311 | 77.20 313 | 85.28 317 | 88.20 338 | 72.66 317 | 85.87 338 | 90.05 331 | 74.33 323 | 62.70 360 | 87.61 324 | 66.09 277 | 92.03 345 | 66.94 332 | 72.97 342 | 91.15 322 |
|
MDA-MVSNet_test_wron | | | 79.21 312 | 77.19 314 | 85.29 316 | 88.22 337 | 72.77 314 | 85.87 338 | 90.06 329 | 74.34 322 | 62.62 361 | 87.56 325 | 66.14 276 | 91.99 347 | 66.90 335 | 73.01 341 | 91.10 326 |
|
MDA-MVSNet-bldmvs | | | 78.85 313 | 76.31 318 | 86.46 303 | 89.76 320 | 73.88 304 | 88.79 313 | 90.42 322 | 79.16 269 | 59.18 362 | 88.33 314 | 60.20 314 | 94.04 323 | 62.00 350 | 68.96 353 | 91.48 315 |
|
KD-MVS_2432*1600 | | | 78.50 314 | 76.02 321 | 85.93 309 | 86.22 347 | 74.47 298 | 84.80 347 | 92.33 273 | 79.29 266 | 76.98 323 | 85.92 338 | 53.81 342 | 93.97 324 | 67.39 329 | 57.42 367 | 89.36 339 |
|
miper_refine_blended | | | 78.50 314 | 76.02 321 | 85.93 309 | 86.22 347 | 74.47 298 | 84.80 347 | 92.33 273 | 79.29 266 | 76.98 323 | 85.92 338 | 53.81 342 | 93.97 324 | 67.39 329 | 57.42 367 | 89.36 339 |
|
PM-MVS | | | 78.11 316 | 76.12 320 | 84.09 327 | 83.54 359 | 70.08 342 | 88.97 312 | 85.27 354 | 79.93 259 | 74.73 338 | 86.43 334 | 34.70 365 | 93.48 332 | 79.43 241 | 72.06 345 | 88.72 347 |
|
test_vis1_rt | | | 77.96 317 | 76.46 317 | 82.48 333 | 85.89 350 | 71.74 328 | 90.25 287 | 78.89 369 | 71.03 347 | 71.30 352 | 81.35 355 | 42.49 361 | 91.05 352 | 84.55 160 | 82.37 280 | 84.65 355 |
|
test_fmvs3 | | | 77.67 318 | 77.16 315 | 79.22 338 | 79.52 365 | 61.14 364 | 92.34 245 | 91.64 297 | 73.98 326 | 78.86 311 | 86.59 332 | 27.38 369 | 87.03 363 | 88.12 114 | 75.97 337 | 89.50 338 |
|
PVSNet_0 | | 73.20 20 | 77.22 319 | 74.83 324 | 84.37 323 | 90.70 300 | 71.10 334 | 83.09 356 | 89.67 338 | 72.81 338 | 73.93 342 | 83.13 350 | 60.79 311 | 93.70 330 | 68.54 321 | 50.84 370 | 88.30 351 |
|
DSMNet-mixed | | | 76.94 320 | 76.29 319 | 78.89 339 | 83.10 360 | 56.11 374 | 87.78 324 | 79.77 367 | 60.65 361 | 75.64 332 | 88.71 308 | 61.56 303 | 88.34 362 | 60.07 356 | 89.29 203 | 92.21 304 |
|
new-patchmatchnet | | | 76.41 321 | 75.17 323 | 80.13 336 | 82.65 362 | 59.61 366 | 87.66 327 | 91.08 310 | 78.23 287 | 69.85 354 | 83.22 349 | 54.76 336 | 91.63 351 | 64.14 345 | 64.89 360 | 89.16 344 |
|
UnsupCasMVSNet_bld | | | 76.23 322 | 73.27 325 | 85.09 319 | 83.79 358 | 72.92 311 | 85.65 341 | 93.47 251 | 71.52 343 | 68.84 356 | 79.08 358 | 49.77 349 | 93.21 336 | 66.81 336 | 60.52 364 | 89.13 346 |
|
mvsany_test3 | | | 74.95 323 | 73.26 326 | 80.02 337 | 74.61 368 | 63.16 362 | 85.53 342 | 78.42 370 | 74.16 324 | 74.89 337 | 86.46 333 | 36.02 364 | 89.09 360 | 82.39 191 | 66.91 356 | 87.82 353 |
|
MVS-HIRNet | | | 73.70 324 | 72.20 327 | 78.18 342 | 91.81 254 | 56.42 373 | 82.94 357 | 82.58 361 | 55.24 363 | 68.88 355 | 66.48 367 | 55.32 334 | 95.13 309 | 58.12 358 | 88.42 219 | 83.01 358 |
|
new_pmnet | | | 72.15 325 | 70.13 329 | 78.20 341 | 82.95 361 | 65.68 355 | 83.91 352 | 82.40 362 | 62.94 360 | 64.47 359 | 79.82 357 | 42.85 360 | 86.26 365 | 57.41 360 | 74.44 340 | 82.65 360 |
|
test_f | | | 71.95 326 | 70.87 328 | 75.21 345 | 74.21 370 | 59.37 367 | 85.07 346 | 85.82 351 | 65.25 356 | 70.42 353 | 83.13 350 | 23.62 370 | 82.93 370 | 78.32 250 | 71.94 346 | 83.33 357 |
|
pmmvs3 | | | 71.81 327 | 68.71 330 | 81.11 335 | 75.86 367 | 70.42 340 | 86.74 333 | 83.66 358 | 58.95 362 | 68.64 357 | 80.89 356 | 36.93 363 | 89.52 358 | 63.10 348 | 63.59 361 | 83.39 356 |
|
APD_test1 | | | 69.04 328 | 66.26 332 | 77.36 344 | 80.51 363 | 62.79 363 | 85.46 343 | 83.51 359 | 54.11 365 | 59.14 363 | 84.79 344 | 23.40 372 | 89.61 357 | 55.22 361 | 70.24 348 | 79.68 363 |
|
N_pmnet | | | 68.89 329 | 68.44 331 | 70.23 349 | 89.07 326 | 28.79 383 | 88.06 321 | 19.50 384 | 69.47 350 | 71.86 350 | 84.93 342 | 61.24 307 | 91.75 349 | 54.70 362 | 77.15 332 | 90.15 334 |
|
LCM-MVSNet | | | 66.00 330 | 62.16 335 | 77.51 343 | 64.51 378 | 58.29 368 | 83.87 353 | 90.90 316 | 48.17 367 | 54.69 364 | 73.31 364 | 16.83 378 | 86.75 364 | 65.47 338 | 61.67 363 | 87.48 354 |
|
test_vis3_rt | | | 65.12 331 | 62.60 333 | 72.69 347 | 71.44 371 | 60.71 365 | 87.17 331 | 65.55 377 | 63.80 359 | 53.22 365 | 65.65 369 | 14.54 379 | 89.44 359 | 76.65 267 | 65.38 358 | 67.91 368 |
|
FPMVS | | | 64.63 332 | 62.55 334 | 70.88 348 | 70.80 372 | 56.71 369 | 84.42 350 | 84.42 356 | 51.78 366 | 49.57 366 | 81.61 354 | 23.49 371 | 81.48 371 | 40.61 372 | 76.25 336 | 74.46 364 |
|
EGC-MVSNET | | | 61.97 333 | 56.37 337 | 78.77 340 | 89.63 323 | 73.50 307 | 89.12 309 | 82.79 360 | 0.21 381 | 1.24 382 | 84.80 343 | 39.48 362 | 90.04 356 | 44.13 367 | 75.94 338 | 72.79 365 |
|
PMMVS2 | | | 59.60 334 | 56.40 336 | 69.21 352 | 68.83 375 | 46.58 378 | 73.02 369 | 77.48 373 | 55.07 364 | 49.21 367 | 72.95 365 | 17.43 377 | 80.04 372 | 49.32 366 | 44.33 372 | 80.99 362 |
|
testf1 | | | 59.54 335 | 56.11 338 | 69.85 350 | 69.28 373 | 56.61 371 | 80.37 362 | 76.55 374 | 42.58 370 | 45.68 369 | 75.61 359 | 11.26 380 | 84.18 367 | 43.20 369 | 60.44 365 | 68.75 366 |
|
APD_test2 | | | 59.54 335 | 56.11 338 | 69.85 350 | 69.28 373 | 56.61 371 | 80.37 362 | 76.55 374 | 42.58 370 | 45.68 369 | 75.61 359 | 11.26 380 | 84.18 367 | 43.20 369 | 60.44 365 | 68.75 366 |
|
ANet_high | | | 58.88 337 | 54.22 341 | 72.86 346 | 56.50 381 | 56.67 370 | 80.75 361 | 86.00 350 | 73.09 335 | 37.39 373 | 64.63 370 | 22.17 373 | 79.49 373 | 43.51 368 | 23.96 375 | 82.43 361 |
|
Gipuma |  | | 57.99 338 | 54.91 340 | 67.24 353 | 88.51 330 | 65.59 356 | 52.21 372 | 90.33 325 | 43.58 369 | 42.84 372 | 51.18 373 | 20.29 375 | 85.07 366 | 34.77 373 | 70.45 347 | 51.05 372 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 47.18 22 | 52.22 339 | 48.46 343 | 63.48 354 | 45.72 383 | 46.20 379 | 73.41 368 | 78.31 371 | 41.03 372 | 30.06 375 | 65.68 368 | 6.05 382 | 83.43 369 | 30.04 374 | 65.86 357 | 60.80 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 50.52 340 | 48.47 342 | 56.66 356 | 52.26 382 | 18.98 385 | 41.51 374 | 81.40 364 | 10.10 376 | 44.59 371 | 75.01 362 | 28.51 367 | 68.16 374 | 53.54 363 | 49.31 371 | 82.83 359 |
|
MVE |  | 39.65 23 | 43.39 341 | 38.59 347 | 57.77 355 | 56.52 380 | 48.77 377 | 55.38 371 | 58.64 381 | 29.33 375 | 28.96 376 | 52.65 372 | 4.68 383 | 64.62 377 | 28.11 375 | 33.07 373 | 59.93 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 43.23 342 | 42.29 344 | 46.03 358 | 65.58 377 | 37.41 380 | 73.51 367 | 64.62 378 | 33.99 373 | 28.47 377 | 47.87 374 | 19.90 376 | 67.91 375 | 22.23 376 | 24.45 374 | 32.77 373 |
|
EMVS | | | 42.07 343 | 41.12 345 | 44.92 359 | 63.45 379 | 35.56 382 | 73.65 366 | 63.48 379 | 33.05 374 | 26.88 378 | 45.45 375 | 21.27 374 | 67.14 376 | 19.80 377 | 23.02 376 | 32.06 374 |
|
tmp_tt | | | 35.64 344 | 39.24 346 | 24.84 360 | 14.87 384 | 23.90 384 | 62.71 370 | 51.51 383 | 6.58 378 | 36.66 374 | 62.08 371 | 44.37 359 | 30.34 380 | 52.40 364 | 22.00 377 | 20.27 375 |
|
cdsmvs_eth3d_5k | | | 22.14 345 | 29.52 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 95.76 143 | 0.00 382 | 0.00 383 | 94.29 150 | 75.66 158 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
wuyk23d | | | 21.27 346 | 20.48 349 | 23.63 361 | 68.59 376 | 36.41 381 | 49.57 373 | 6.85 385 | 9.37 377 | 7.89 379 | 4.46 381 | 4.03 384 | 31.37 379 | 17.47 378 | 16.07 378 | 3.12 376 |
|
testmvs | | | 8.92 347 | 11.52 350 | 1.12 363 | 1.06 385 | 0.46 387 | 86.02 337 | 0.65 386 | 0.62 379 | 2.74 380 | 9.52 379 | 0.31 386 | 0.45 382 | 2.38 379 | 0.39 379 | 2.46 378 |
|
test123 | | | 8.76 348 | 11.22 351 | 1.39 362 | 0.85 386 | 0.97 386 | 85.76 340 | 0.35 387 | 0.54 380 | 2.45 381 | 8.14 380 | 0.60 385 | 0.48 381 | 2.16 380 | 0.17 380 | 2.71 377 |
|
ab-mvs-re | | | 7.82 349 | 10.43 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 93.88 171 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 6.64 350 | 8.86 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 79.70 110 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 98.86 1 | 85.54 63 | 98.29 1 | 97.49 6 | 89.79 42 | 96.29 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 62 | | | | | 99.61 3 | 96.03 2 | 99.06 9 | 99.07 5 |
|
PC_three_1452 | | | | | | | | | | 82.47 213 | 97.09 10 | 97.07 39 | 92.72 1 | 98.04 147 | 92.70 43 | 99.02 12 | 98.86 10 |
|
No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 62 | | | | | 99.61 3 | 96.03 2 | 99.06 9 | 99.07 5 |
|
test_one_0601 | | | | | | 98.58 11 | 85.83 57 | | 97.44 15 | 91.05 12 | 96.78 14 | 98.06 6 | 91.45 11 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.15 34 | 86.62 30 | | 97.07 44 | 83.63 187 | 94.19 32 | 96.91 45 | 87.57 31 | 99.26 40 | 91.99 62 | 98.44 49 | |
|
RE-MVS-def | | | | 93.68 44 | | 97.92 43 | 84.57 74 | 96.28 43 | 96.76 73 | 87.46 106 | 93.75 39 | 97.43 19 | 82.94 75 | | 92.73 39 | 97.80 71 | 97.88 75 |
|
IU-MVS | | | | | | 98.77 5 | 86.00 47 | | 96.84 64 | 81.26 244 | 97.26 7 | | | | 95.50 11 | 99.13 3 | 99.03 7 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 37 | 92.59 2 | 98.94 73 | 92.25 51 | 98.99 14 | 98.84 13 |
|
test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 5 | 99.12 6 | 98.98 9 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 49 | | 97.44 15 | 90.26 31 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 29 | | | |
|
9.14 | | | | 94.47 18 | | 97.79 49 | | 96.08 55 | 97.44 15 | 86.13 137 | 95.10 25 | 97.40 21 | 88.34 22 | 99.22 42 | 93.25 32 | 98.70 32 | |
|
save fliter | | | | | | 97.85 46 | 85.63 62 | 95.21 99 | 96.82 67 | 89.44 49 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 17 | 97.04 11 | 98.05 8 | 92.09 6 | 99.55 14 | 95.64 7 | 99.13 3 | 99.13 2 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 2 | 86.43 36 | 97.09 16 | 97.49 6 | | | | | 99.61 3 | 95.62 9 | 99.08 7 | 98.99 8 |
|
test0726 | | | | | | 98.78 3 | 85.93 52 | 97.19 11 | 97.47 11 | 90.27 29 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 141 |
|
test_part2 | | | | | | 98.55 12 | 87.22 16 | | | | 96.40 15 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 208 | | | | 96.12 141 |
|
sam_mvs | | | | | | | | | | | | | 70.60 221 | | | | |
|
ambc | | | | | 83.06 331 | 79.99 364 | 63.51 361 | 77.47 365 | 92.86 261 | | 74.34 341 | 84.45 345 | 28.74 366 | 95.06 312 | 73.06 298 | 68.89 354 | 90.61 330 |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 322 | | | | 9.81 378 | 69.31 243 | 95.53 299 | 76.65 267 | | |
|
test_post | | | | | | | | | | | | 10.29 377 | 70.57 225 | 95.91 286 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 347 | 71.53 209 | 96.48 259 | | | |
|
GG-mvs-BLEND | | | | | 87.94 273 | 89.73 322 | 77.91 253 | 87.80 323 | 78.23 372 | | 80.58 292 | 83.86 346 | 59.88 317 | 95.33 307 | 71.20 304 | 92.22 169 | 90.60 332 |
|
MTMP | | | | | | | | 96.16 49 | 60.64 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 324 | 68.00 348 | | | 77.28 295 | | 88.99 302 | | 97.57 177 | 79.44 240 | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 66 | 98.71 30 | 98.07 64 |
|
TEST9 | | | | | | 97.53 58 | 86.49 34 | 94.07 174 | 96.78 70 | 81.61 237 | 92.77 63 | 96.20 75 | 87.71 28 | 99.12 49 | | | |
|
test_8 | | | | | | 97.49 60 | 86.30 42 | 94.02 179 | 96.76 73 | 81.86 230 | 92.70 67 | 96.20 75 | 87.63 29 | 99.02 59 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 90 | 98.68 35 | 98.27 50 |
|
agg_prior | | | | | | 97.38 63 | 85.92 54 | | 96.72 79 | | 92.16 77 | | | 98.97 70 | | | |
|
TestCases | | | | | 89.52 232 | 95.01 139 | 77.79 259 | | 90.89 317 | 77.41 292 | 76.12 329 | 93.34 184 | 54.08 340 | 97.51 183 | 68.31 324 | 84.27 259 | 93.26 267 |
|
test_prior4 | | | | | | | 85.96 51 | 94.11 169 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 168 | | 87.67 104 | 92.63 68 | 96.39 70 | 86.62 36 | | 91.50 73 | 98.67 37 | |
|
test_prior | | | | | 93.82 56 | 97.29 67 | 84.49 78 | | 96.88 60 | | | | | 98.87 77 | | | 98.11 63 |
|
旧先验2 | | | | | | | | 93.36 207 | | 71.25 345 | 94.37 29 | | | 97.13 222 | 86.74 133 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 222 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 93.10 72 | 97.30 66 | 84.35 85 | | 95.56 157 | 71.09 346 | 91.26 101 | 96.24 73 | 82.87 76 | 98.86 79 | 79.19 244 | 98.10 60 | 96.07 145 |
|
旧先验1 | | | | | | 96.79 76 | 81.81 151 | | 95.67 149 | | | 96.81 51 | 86.69 35 | | | 97.66 75 | 96.97 114 |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 214 | 96.26 105 | 73.95 327 | | | | 99.05 53 | 80.56 226 | | 96.59 126 |
|
原ACMM2 | | | | | | | | 92.94 229 | | | | | | | | | |
|
原ACMM1 | | | | | 92.01 118 | 97.34 64 | 81.05 172 | | 96.81 68 | 78.89 272 | 90.45 108 | 95.92 88 | 82.65 77 | 98.84 83 | 80.68 224 | 98.26 55 | 96.14 139 |
|
test222 | | | | | | 96.55 84 | 81.70 153 | 92.22 250 | 95.01 190 | 68.36 352 | 90.20 112 | 96.14 80 | 80.26 103 | | | 97.80 71 | 96.05 147 |
|
testdata2 | | | | | | | | | | | | | | 98.75 87 | 78.30 251 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 34 | | | | |
|
testdata | | | | | 90.49 188 | 96.40 89 | 77.89 255 | | 95.37 175 | 72.51 339 | 93.63 42 | 96.69 54 | 82.08 88 | 97.65 170 | 83.08 177 | 97.39 77 | 95.94 149 |
|
testdata1 | | | | | | | | 92.15 252 | | 87.94 94 | | | | | | | |
|
test12 | | | | | 94.34 47 | 97.13 70 | 86.15 45 | | 96.29 102 | | 91.04 103 | | 85.08 53 | 99.01 61 | | 98.13 59 | 97.86 77 |
|
plane_prior7 | | | | | | 94.70 158 | 82.74 128 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 167 | 82.75 126 | | | | | | 74.23 175 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 110 | | | | | 98.12 132 | 88.15 111 | 89.99 188 | 94.63 195 |
|
plane_prior4 | | | | | | | | | | | | 94.86 126 | | | | | |
|
plane_prior3 | | | | | | | 82.75 126 | | | 90.26 31 | 86.91 168 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 66 | | 90.81 15 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 162 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 129 | 95.21 99 | | 89.66 46 | | | | | | 89.88 193 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 352 | | | | | | | | |
|
lessismore_v0 | | | | | 86.04 307 | 88.46 333 | 68.78 347 | | 80.59 366 | | 73.01 346 | 90.11 286 | 55.39 333 | 96.43 264 | 75.06 284 | 65.06 359 | 92.90 283 |
|
LGP-MVS_train | | | | | 91.12 162 | 94.47 169 | 81.49 159 | | 96.14 115 | 86.73 123 | 85.45 204 | 95.16 116 | 69.89 232 | 98.10 134 | 87.70 119 | 89.23 204 | 93.77 248 |
|
test11 | | | | | | | | | 96.57 90 | | | | | | | | |
|
door | | | | | | | | | 85.33 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 155 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 181 | | 94.39 153 | | 88.81 66 | 85.43 207 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 181 | | 94.39 153 | | 88.81 66 | 85.43 207 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 130 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 207 | | | 97.96 153 | | | 94.51 205 |
|
HQP3-MVS | | | | | | | | | 96.04 123 | | | | | | | 89.77 195 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 185 | | | | |
|
NP-MVS | | | | | | 94.37 175 | 82.42 138 | | | | | 93.98 164 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 375 | 87.62 328 | | 73.32 332 | 84.59 226 | | 70.33 228 | | 74.65 288 | | 95.50 165 |
|
MDTV_nov1_ep13 | | | | 83.56 263 | | 91.69 260 | 69.93 343 | 87.75 325 | 91.54 300 | 78.60 279 | 84.86 221 | 88.90 304 | 69.54 237 | 96.03 279 | 70.25 310 | 88.93 210 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 233 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 227 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 105 | | | | |
|
ITE_SJBPF | | | | | 88.24 264 | 91.88 251 | 77.05 272 | | 92.92 259 | 85.54 150 | 80.13 300 | 93.30 188 | 57.29 327 | 96.20 273 | 72.46 300 | 84.71 255 | 91.49 314 |
|
DeepMVS_CX |  | | | | 56.31 357 | 74.23 369 | 51.81 376 | | 56.67 382 | 44.85 368 | 48.54 368 | 75.16 361 | 27.87 368 | 58.74 378 | 40.92 371 | 52.22 369 | 58.39 371 |
|