This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5697.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5996.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8796.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13597.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23594.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8696.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 8095.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9395.47 16989.44 4595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12195.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6993.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8193.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6097.16 3785.02 6099.49 2391.99 5498.56 4798.47 28
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10797.12 4087.13 10892.51 7496.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7193.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6993.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10694.85 2497.04 4286.99 3799.52 2091.54 6898.33 5698.71 12
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7392.73 6797.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
Regformer-294.33 2794.22 2594.68 3895.54 12586.75 2994.57 13596.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10193.65 4397.21 3286.10 4599.49 2391.68 6698.77 2498.30 41
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5891.98 8397.19 3485.43 5499.56 792.06 5398.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14195.05 2397.18 3587.31 3199.07 5891.90 6298.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8494.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
Regformer-194.22 3294.13 3294.51 4695.54 12586.36 4494.57 13596.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8193.26 5196.83 5185.48 5399.59 491.43 7298.40 5398.30 41
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11997.17 3886.26 12992.83 6297.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11196.52 9080.00 20894.00 17997.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4892.81 6396.97 4585.37 5599.24 4490.87 8298.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11692.62 7196.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6791.83 8997.17 3683.96 7499.55 1291.44 7198.64 4398.43 34
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7794.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8597.78 187.45 10493.26 5197.33 2484.62 6599.51 2190.75 8498.57 4698.32 40
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11297.21 3484.33 17193.89 3897.09 3987.20 3399.29 4191.90 6298.44 5198.12 59
Regformer-493.91 4193.81 4194.19 5795.36 12985.47 7094.68 12796.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15793.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11293.92 3797.47 1683.88 7598.96 8392.71 3797.87 7098.26 49
MSLP-MVS++93.72 4694.08 3392.65 10497.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4898.66 4096.76 120
Regformer-393.68 4793.64 4893.81 6795.36 12984.61 7994.68 12795.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3296.65 9497.96 71
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14793.93 23889.77 3994.21 2995.59 10387.35 3098.61 10792.72 3696.15 10397.83 81
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8297.26 2982.67 20793.81 3996.29 7587.29 3299.27 4289.87 9098.67 3798.65 15
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16596.88 5987.67 9892.63 6996.39 7286.62 3998.87 8891.50 6998.67 3798.11 61
CANet93.54 5193.20 5694.55 4495.65 12185.73 6794.94 11096.69 8391.89 590.69 10695.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21297.24 3088.76 6591.60 9495.85 9486.07 4798.66 10291.91 5998.16 6098.03 67
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17296.78 7081.86 22692.77 6496.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
DELS-MVS93.43 5493.25 5393.97 5995.42 12885.04 7493.06 21997.13 3990.74 2091.84 8795.09 11686.32 4399.21 4791.22 7498.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13892.47 7597.13 3882.38 8699.07 5890.51 8698.40 5397.92 75
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11496.99 4789.02 6089.56 11697.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18296.72 7981.96 22092.16 7996.23 7887.85 2298.97 8091.95 5898.55 4997.90 76
canonicalmvs93.27 5892.75 6494.85 2795.70 12087.66 1196.33 3496.41 9990.00 3494.09 3394.60 13482.33 8898.62 10692.40 4192.86 15798.27 47
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7790.15 11297.03 4481.44 10099.51 2190.85 8395.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17390.05 11395.66 10087.77 2399.15 5389.91 8998.27 5898.07 63
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9293.20 5497.22 3180.35 10799.18 4991.91 5997.21 8397.26 100
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 3994.12 3294.87 12280.56 10698.66 10292.42 4093.10 15298.15 56
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14183.51 11494.48 13995.77 14690.87 1592.52 7396.67 6084.50 6699.00 7591.99 5494.44 13197.36 96
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15295.47 11197.45 95
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17496.66 8580.09 25392.77 6496.63 6286.62 3999.04 6387.40 11898.66 4098.17 54
ETV-MVS92.74 6692.66 6592.97 8895.20 13784.04 10095.07 10296.51 9490.73 2192.96 5991.19 25084.06 7298.34 12691.72 6596.54 9796.54 129
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15283.20 12194.40 14795.74 14990.71 2292.05 8296.60 6484.00 7398.99 7791.55 6793.63 13997.17 105
CS-MVS92.60 6892.56 6792.73 9995.55 12482.35 14996.14 4596.85 6288.71 6691.44 9791.51 24384.13 7198.48 11391.27 7397.47 8097.34 97
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22996.56 9383.44 18991.68 9395.04 11786.60 4298.99 7785.60 13997.92 6996.93 116
casdiffmvs92.51 7092.43 7092.74 9894.41 17281.98 15594.54 13796.23 11189.57 4391.96 8496.17 8482.58 8498.01 15190.95 8095.45 11398.23 51
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21796.09 12088.20 8491.12 10395.72 9981.33 10297.76 16491.74 6497.37 8296.75 121
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7290.84 1684.02 23596.62 6375.95 15699.34 3387.77 11397.68 7598.59 18
baseline92.39 7392.29 7292.69 10394.46 16981.77 15994.14 16496.27 10689.22 5291.88 8596.00 8882.35 8797.99 15391.05 7695.27 11898.30 41
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11896.44 9689.19 5494.08 3495.90 9277.85 14198.17 13688.90 10093.38 14698.13 58
CPTT-MVS91.99 7591.80 7692.55 10898.24 3181.98 15596.76 2596.49 9581.89 22590.24 11096.44 7178.59 13198.61 10789.68 9197.85 7197.06 109
EIA-MVS91.95 7691.94 7491.98 13295.16 13880.01 20795.36 7996.73 7788.44 7489.34 12092.16 21683.82 7698.45 11989.35 9597.06 8697.48 93
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13096.66 8582.69 20690.03 11495.82 9582.30 8999.03 6484.57 15196.48 10096.91 117
EPNet91.79 7891.02 8894.10 5890.10 30785.25 7396.03 5392.05 27892.83 187.39 15295.78 9679.39 12299.01 7088.13 11097.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20693.60 19595.18 18987.85 9290.89 10596.47 7082.06 9598.36 12385.07 14397.04 8797.62 86
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13283.78 10696.14 4595.98 12889.89 3590.45 10896.58 6575.09 16798.31 13084.75 14996.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16386.37 4397.18 797.02 4689.20 5384.31 23096.66 6173.74 19099.17 5086.74 12897.96 6797.79 83
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19497.33 395.25 18586.15 13189.76 11595.60 10283.42 7798.32 12987.37 12093.25 14997.56 91
MVSFormer91.68 8391.30 8192.80 9493.86 19283.88 10395.96 5795.90 13684.66 16791.76 9094.91 12077.92 13897.30 20389.64 9297.11 8497.24 101
Effi-MVS+91.59 8491.11 8593.01 8694.35 17683.39 11894.60 13295.10 19387.10 10990.57 10793.10 18881.43 10198.07 14789.29 9694.48 12997.59 89
IS-MVSNet91.43 8591.09 8792.46 11295.87 11581.38 17196.95 1493.69 24689.72 4189.50 11895.98 8978.57 13297.77 16383.02 16996.50 9998.22 52
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11696.66 8583.29 19389.27 12194.46 13880.29 10999.17 5087.57 11695.37 11496.05 147
diffmvs91.37 8791.23 8391.77 14593.09 21580.27 19692.36 23995.52 16687.03 11191.40 9994.93 11980.08 11197.44 18892.13 5194.56 12797.61 87
MVS_Test91.31 8891.11 8591.93 13694.37 17380.14 19993.46 20095.80 14486.46 12491.35 10093.77 16882.21 9198.09 14587.57 11694.95 12097.55 92
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19795.93 13286.95 11389.51 11796.13 8678.50 13398.35 12585.84 13692.90 15696.83 119
PAPM_NR91.22 9090.78 9392.52 11097.60 5781.46 16894.37 15496.24 11086.39 12787.41 14994.80 12782.06 9598.48 11382.80 17595.37 11497.61 87
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13582.60 14492.09 24995.70 15186.27 12891.84 8792.46 20679.70 11798.99 7789.08 9895.86 10594.29 213
xiu_mvs_v2_base91.13 9290.89 9191.86 13994.97 14482.42 14592.24 24395.64 15886.11 13491.74 9293.14 18679.67 12098.89 8789.06 9995.46 11294.28 214
nrg03091.08 9390.39 9593.17 7993.07 21686.91 2096.41 3296.26 10788.30 7988.37 13394.85 12582.19 9297.64 17491.09 7582.95 26394.96 181
lupinMVS90.92 9490.21 9893.03 8593.86 19283.88 10392.81 22693.86 24179.84 25691.76 9094.29 14377.92 13898.04 14990.48 8797.11 8497.17 105
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7895.53 16589.80 3793.08 5895.64 10175.77 15799.00 7592.07 5278.05 31996.60 125
jason90.80 9590.10 10292.90 9193.04 21883.53 11393.08 21794.15 23280.22 25091.41 9894.91 12076.87 14497.93 15890.28 8896.90 8897.24 101
jason: jason.
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6593.86 24188.42 7692.53 7296.84 5062.09 29898.64 10490.95 8092.62 16097.93 74
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23496.83 6582.04 21889.10 12392.56 20481.04 10498.85 9486.72 13095.91 10495.84 154
test_yl90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
DCV-MVSNet90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
API-MVS90.66 10190.07 10392.45 11396.36 9484.57 8196.06 5295.22 18882.39 20989.13 12294.27 14680.32 10898.46 11680.16 22196.71 9294.33 212
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
HQP_MVS90.60 10590.19 9991.82 14294.70 15982.73 13795.85 6196.22 11290.81 1786.91 16094.86 12374.23 17898.12 13788.15 10889.99 18494.63 194
FIs90.51 10690.35 9690.99 17593.99 18880.98 18095.73 6597.54 389.15 5586.72 16494.68 13081.83 9997.24 21185.18 14288.31 21594.76 191
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23095.51 16771.01 33691.20 10296.21 7982.92 8199.05 6080.56 21498.07 6396.10 143
MAR-MVS90.30 10889.37 11793.07 8496.61 8584.48 8795.68 6895.67 15382.36 21187.85 14192.85 19476.63 15098.80 9880.01 22296.68 9395.91 150
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 10990.18 10090.53 18693.71 19879.85 21295.77 6497.59 289.31 5086.27 17394.67 13181.93 9897.01 22984.26 15488.09 21994.71 192
CANet_DTU90.26 11089.41 11692.81 9393.46 20683.01 12893.48 19894.47 22089.43 4787.76 14594.23 14770.54 23099.03 6484.97 14496.39 10196.38 131
OPM-MVS90.12 11189.56 11291.82 14293.14 21383.90 10294.16 16395.74 14988.96 6187.86 14095.43 10672.48 20697.91 15988.10 11190.18 18393.65 248
LFMVS90.08 11289.13 12392.95 8996.71 8282.32 15096.08 5089.91 32886.79 11792.15 8196.81 5362.60 29598.34 12687.18 12293.90 13598.19 53
PAPR90.02 11389.27 12192.29 12395.78 11680.95 18292.68 22896.22 11281.91 22386.66 16593.75 17082.23 9098.44 12079.40 23294.79 12197.48 93
PVSNet_BlendedMVS89.98 11489.70 11090.82 17996.12 10081.25 17393.92 18296.83 6583.49 18889.10 12392.26 21481.04 10498.85 9486.72 13087.86 22392.35 294
PS-MVSNAJss89.97 11589.62 11191.02 17291.90 24680.85 18595.26 9095.98 12886.26 12986.21 17494.29 14379.70 11797.65 17288.87 10188.10 21794.57 200
XVG-OURS-SEG-HR89.95 11689.45 11491.47 15494.00 18781.21 17691.87 25296.06 12485.78 13788.55 12995.73 9874.67 17497.27 20788.71 10389.64 19395.91 150
UGNet89.95 11688.95 12792.95 8994.51 16683.31 11995.70 6795.23 18689.37 4987.58 14793.94 15764.00 29098.78 9983.92 15896.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11889.29 11991.81 14493.39 20783.72 10794.43 14597.12 4089.80 3786.46 16793.32 17783.16 7897.23 21284.92 14581.02 29294.49 207
AdaColmapbinary89.89 11989.07 12492.37 11897.41 6383.03 12694.42 14695.92 13382.81 20486.34 17294.65 13273.89 18699.02 6880.69 21195.51 10995.05 176
UniMVSNet (Re)89.80 12089.07 12492.01 12993.60 20284.52 8494.78 12297.47 889.26 5186.44 17092.32 21182.10 9397.39 20084.81 14880.84 29694.12 219
HQP-MVS89.80 12089.28 12091.34 15894.17 17881.56 16294.39 14996.04 12688.81 6285.43 19893.97 15673.83 18897.96 15587.11 12589.77 19194.50 205
VPA-MVSNet89.62 12288.96 12691.60 15093.86 19282.89 13295.46 7797.33 2287.91 8988.43 13293.31 17874.17 18197.40 19787.32 12182.86 26894.52 203
WTY-MVS89.60 12388.92 12891.67 14895.47 12781.15 17792.38 23894.78 21483.11 19689.06 12594.32 14178.67 13096.61 24881.57 19890.89 17797.24 101
Vis-MVSNet (Re-imp)89.59 12489.44 11590.03 21095.74 11775.85 28595.61 7390.80 31387.66 10087.83 14295.40 10776.79 14696.46 26178.37 23896.73 9197.80 82
VDDNet89.56 12588.49 13892.76 9695.07 14082.09 15296.30 3593.19 25381.05 24591.88 8596.86 4961.16 30898.33 12888.43 10692.49 16397.84 80
114514_t89.51 12688.50 13692.54 10998.11 3781.99 15495.16 9896.36 10370.19 33885.81 17995.25 11076.70 14898.63 10582.07 18696.86 9097.00 113
QAPM89.51 12688.15 14793.59 7294.92 14884.58 8096.82 2496.70 8178.43 27683.41 25196.19 8373.18 19899.30 3977.11 25396.54 9796.89 118
CLD-MVS89.47 12888.90 12991.18 16394.22 17782.07 15392.13 24796.09 12087.90 9085.37 20492.45 20774.38 17697.56 17887.15 12390.43 17993.93 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvs-test189.45 12989.14 12290.38 19693.33 20877.63 26394.95 10994.36 22387.70 9687.10 15692.81 19873.45 19398.03 15085.57 14093.04 15395.48 164
LPG-MVS_test89.45 12988.90 12991.12 16494.47 16781.49 16695.30 8596.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
CDS-MVSNet89.45 12988.51 13592.29 12393.62 20183.61 11293.01 22094.68 21781.95 22187.82 14393.24 18278.69 12996.99 23080.34 21893.23 15096.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 13288.64 13391.71 14794.74 15580.81 18693.54 19695.10 19383.11 19686.82 16390.67 26879.74 11697.75 16780.51 21693.55 14096.57 127
ab-mvs89.41 13288.35 14092.60 10595.15 13982.65 14292.20 24595.60 16083.97 17788.55 12993.70 17274.16 18298.21 13582.46 18089.37 19696.94 115
XVG-OURS89.40 13488.70 13291.52 15194.06 18181.46 16891.27 26596.07 12286.14 13288.89 12795.77 9768.73 25597.26 20987.39 11989.96 18695.83 155
mvs_anonymous89.37 13589.32 11889.51 23293.47 20574.22 29691.65 26094.83 21082.91 20285.45 19593.79 16681.23 10396.36 26786.47 13294.09 13397.94 72
DU-MVS89.34 13688.50 13691.85 14193.04 21883.72 10794.47 14296.59 9089.50 4486.46 16793.29 18077.25 14297.23 21284.92 14581.02 29294.59 198
TAMVS89.21 13788.29 14491.96 13493.71 19882.62 14393.30 20694.19 23082.22 21387.78 14493.94 15778.83 12696.95 23277.70 24692.98 15596.32 132
ACMM84.12 989.14 13888.48 13991.12 16494.65 16281.22 17595.31 8296.12 11985.31 15285.92 17894.34 13970.19 23498.06 14885.65 13888.86 20594.08 223
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet89.10 13988.86 13189.80 22191.84 24878.30 24493.70 19295.01 19685.73 13987.15 15395.28 10879.87 11497.21 21483.81 16087.36 22893.88 232
CNLPA89.07 14087.98 15192.34 11996.87 7884.78 7794.08 17193.24 25181.41 23684.46 22095.13 11575.57 16396.62 24577.21 25193.84 13795.61 162
PLCcopyleft84.53 789.06 14188.03 14992.15 12697.27 7182.69 14094.29 15795.44 17579.71 25884.01 23694.18 14876.68 14998.75 10077.28 25093.41 14595.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14288.64 13390.21 20190.74 29379.28 22695.96 5795.90 13684.66 16785.33 20692.94 19274.02 18497.30 20389.64 9288.53 20894.05 225
HY-MVS83.01 1289.03 14287.94 15392.29 12394.86 15282.77 13392.08 25094.49 21981.52 23586.93 15892.79 20078.32 13698.23 13279.93 22390.55 17895.88 152
ACMP84.23 889.01 14488.35 14090.99 17594.73 15681.27 17295.07 10295.89 13886.48 12383.67 24494.30 14269.33 24497.99 15387.10 12788.55 20793.72 246
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part189.00 14587.99 15092.04 12895.94 11283.81 10596.14 4596.05 12586.44 12585.69 18293.73 17171.57 21297.66 17185.80 13780.54 30094.66 193
sss88.93 14688.26 14690.94 17894.05 18280.78 18791.71 25795.38 17981.55 23488.63 12893.91 16175.04 16895.47 30382.47 17991.61 16896.57 127
RRT_MVS88.86 14787.68 15792.39 11792.02 24386.09 5394.38 15394.94 19985.45 14887.14 15593.84 16565.88 28297.11 22088.73 10286.77 23593.98 228
TranMVSNet+NR-MVSNet88.84 14887.95 15291.49 15292.68 22883.01 12894.92 11296.31 10489.88 3685.53 18893.85 16476.63 15096.96 23181.91 19079.87 31094.50 205
CHOSEN 1792x268888.84 14887.69 15692.30 12296.14 9981.42 17090.01 28795.86 14074.52 31287.41 14993.94 15775.46 16498.36 12380.36 21795.53 10897.12 108
MVSTER88.84 14888.29 14490.51 18992.95 22380.44 19593.73 18995.01 19684.66 16787.15 15393.12 18772.79 20297.21 21487.86 11287.36 22893.87 233
OpenMVScopyleft83.78 1188.74 15187.29 16693.08 8292.70 22785.39 7196.57 2996.43 9878.74 27280.85 28096.07 8769.64 24099.01 7078.01 24496.65 9494.83 188
thisisatest053088.67 15287.61 15991.86 13994.87 15180.07 20294.63 13189.90 32984.00 17688.46 13193.78 16766.88 26998.46 11683.30 16592.65 15997.06 109
Effi-MVS+-dtu88.65 15388.35 14089.54 22993.33 20876.39 28094.47 14294.36 22387.70 9685.43 19889.56 29073.45 19397.26 20985.57 14091.28 17094.97 178
tttt051788.61 15487.78 15591.11 16794.96 14577.81 25795.35 8089.69 33285.09 15988.05 13894.59 13566.93 26798.48 11383.27 16692.13 16697.03 111
BH-untuned88.60 15588.13 14890.01 21295.24 13678.50 23993.29 20794.15 23284.75 16584.46 22093.40 17475.76 15897.40 19777.59 24794.52 12894.12 219
NR-MVSNet88.58 15687.47 16291.93 13693.04 21884.16 9794.77 12396.25 10989.05 5780.04 29493.29 18079.02 12597.05 22681.71 19780.05 30794.59 198
1112_ss88.42 15787.33 16591.72 14694.92 14880.98 18092.97 22294.54 21878.16 28183.82 24093.88 16278.78 12897.91 15979.45 22889.41 19596.26 135
WR-MVS88.38 15887.67 15890.52 18893.30 21080.18 19793.26 20995.96 13088.57 7285.47 19492.81 19876.12 15296.91 23581.24 20182.29 27194.47 210
BH-RMVSNet88.37 15987.48 16191.02 17295.28 13379.45 21892.89 22493.07 25585.45 14886.91 16094.84 12670.35 23197.76 16473.97 27994.59 12695.85 153
IterMVS-LS88.36 16087.91 15489.70 22593.80 19578.29 24593.73 18995.08 19585.73 13984.75 21391.90 23079.88 11396.92 23483.83 15982.51 26993.89 230
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16186.13 20394.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6023.41 35985.02 6099.49 2391.99 5498.56 4798.47 28
LCM-MVSNet-Re88.30 16288.32 14388.27 26194.71 15872.41 31693.15 21390.98 30787.77 9479.25 30291.96 22878.35 13595.75 29283.04 16895.62 10796.65 124
jajsoiax88.24 16387.50 16090.48 19190.89 28780.14 19995.31 8295.65 15784.97 16184.24 23294.02 15265.31 28497.42 19088.56 10488.52 20993.89 230
VPNet88.20 16487.47 16290.39 19493.56 20379.46 21794.04 17595.54 16488.67 6886.96 15794.58 13669.33 24497.15 21684.05 15780.53 30294.56 201
TAPA-MVS84.62 688.16 16587.01 17391.62 14996.64 8480.65 18994.39 14996.21 11576.38 29286.19 17595.44 10479.75 11598.08 14662.75 33695.29 11696.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16687.28 16790.57 18494.96 14580.07 20294.27 15891.29 30086.74 11887.41 14994.00 15476.77 14796.20 27280.77 20979.31 31595.44 166
Anonymous2024052988.09 16786.59 18892.58 10796.53 8981.92 15795.99 5495.84 14174.11 31589.06 12595.21 11261.44 30398.81 9783.67 16387.47 22597.01 112
HyFIR lowres test88.09 16786.81 17791.93 13696.00 10880.63 19090.01 28795.79 14573.42 32087.68 14692.10 22273.86 18797.96 15580.75 21091.70 16797.19 104
mvs_tets88.06 16987.28 16790.38 19690.94 28379.88 21095.22 9295.66 15585.10 15884.21 23393.94 15763.53 29297.40 19788.50 10588.40 21393.87 233
F-COLMAP87.95 17086.80 17891.40 15696.35 9580.88 18494.73 12595.45 17379.65 25982.04 26894.61 13371.13 21798.50 11276.24 26191.05 17594.80 190
LS3D87.89 17186.32 19892.59 10696.07 10582.92 13195.23 9194.92 20475.66 29982.89 25895.98 8972.48 20699.21 4768.43 31095.23 11995.64 161
anonymousdsp87.84 17287.09 17090.12 20689.13 31780.54 19394.67 12995.55 16282.05 21683.82 24092.12 21971.47 21597.15 21687.15 12387.80 22492.67 283
v2v48287.84 17287.06 17190.17 20290.99 27979.23 22994.00 17995.13 19084.87 16285.53 18892.07 22574.45 17597.45 18684.71 15081.75 28093.85 236
WR-MVS_H87.80 17487.37 16489.10 24093.23 21178.12 24895.61 7397.30 2687.90 9083.72 24292.01 22779.65 12196.01 28076.36 25880.54 30093.16 268
AUN-MVS87.78 17586.54 19091.48 15394.82 15481.05 17893.91 18593.93 23883.00 19986.93 15893.53 17369.50 24297.67 17086.14 13377.12 32595.73 159
PCF-MVS84.11 1087.74 17686.08 20792.70 10294.02 18384.43 9289.27 29795.87 13973.62 31984.43 22294.33 14078.48 13498.86 9170.27 29694.45 13094.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 17786.13 20392.31 12196.66 8380.74 18894.87 11691.49 29580.47 24989.46 11995.44 10454.72 33398.23 13282.19 18489.89 18897.97 70
V4287.68 17786.86 17590.15 20490.58 29880.14 19994.24 16095.28 18483.66 18285.67 18391.33 24574.73 17397.41 19584.43 15381.83 27892.89 278
thres600view787.65 17986.67 18390.59 18396.08 10478.72 23294.88 11591.58 29187.06 11088.08 13692.30 21268.91 25298.10 13970.05 30391.10 17194.96 181
XXY-MVS87.65 17986.85 17690.03 21092.14 23780.60 19293.76 18895.23 18682.94 20184.60 21594.02 15274.27 17795.49 30281.04 20383.68 25694.01 227
Test_1112_low_res87.65 17986.51 19191.08 16894.94 14779.28 22691.77 25494.30 22676.04 29783.51 24992.37 20977.86 14097.73 16878.69 23789.13 20296.22 136
thres100view90087.63 18286.71 18190.38 19696.12 10078.55 23695.03 10691.58 29187.15 10788.06 13792.29 21368.91 25298.10 13970.13 30091.10 17194.48 208
CP-MVSNet87.63 18287.26 16988.74 25093.12 21476.59 27795.29 8796.58 9188.43 7583.49 25092.98 19175.28 16595.83 28878.97 23481.15 28893.79 238
thres40087.62 18486.64 18490.57 18495.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.96 181
v114487.61 18586.79 17990.06 20991.01 27879.34 22293.95 18195.42 17883.36 19285.66 18491.31 24874.98 16997.42 19083.37 16482.06 27493.42 257
tfpn200view987.58 18686.64 18490.41 19395.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.48 208
BH-w/o87.57 18787.05 17289.12 23994.90 15077.90 25392.41 23693.51 24882.89 20383.70 24391.34 24475.75 15997.07 22475.49 26693.49 14292.39 292
UniMVSNet_ETH3D87.53 18886.37 19491.00 17492.44 23178.96 23194.74 12495.61 15984.07 17585.36 20594.52 13759.78 31797.34 20282.93 17087.88 22296.71 123
ET-MVSNet_ETH3D87.51 18985.91 21492.32 12093.70 20083.93 10192.33 24090.94 30984.16 17272.09 33892.52 20569.90 23595.85 28789.20 9788.36 21497.17 105
131487.51 18986.57 18990.34 19992.42 23279.74 21492.63 23095.35 18378.35 27780.14 29191.62 23974.05 18397.15 21681.05 20293.53 14194.12 219
v887.50 19186.71 18189.89 21591.37 26579.40 21994.50 13895.38 17984.81 16483.60 24791.33 24576.05 15397.42 19082.84 17380.51 30492.84 280
Fast-Effi-MVS+-dtu87.44 19286.72 18089.63 22792.04 24177.68 26294.03 17693.94 23785.81 13682.42 26291.32 24770.33 23297.06 22580.33 21990.23 18294.14 218
MVS87.44 19286.10 20691.44 15592.61 22983.62 11192.63 23095.66 15567.26 34281.47 27292.15 21777.95 13798.22 13479.71 22595.48 11092.47 289
FMVSNet387.40 19486.11 20591.30 15993.79 19783.64 11094.20 16294.81 21283.89 17884.37 22391.87 23168.45 25896.56 25378.23 24185.36 24193.70 247
thisisatest051587.33 19585.99 20991.37 15793.49 20479.55 21590.63 27589.56 33580.17 25187.56 14890.86 26167.07 26698.28 13181.50 19993.02 15496.29 133
PS-CasMVS87.32 19686.88 17488.63 25392.99 22276.33 28295.33 8196.61 8988.22 8383.30 25593.07 18973.03 20095.79 29178.36 23981.00 29493.75 244
GBi-Net87.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
test187.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
v119287.25 19986.33 19790.00 21390.76 29279.04 23093.80 18695.48 16882.57 20885.48 19391.18 25273.38 19797.42 19082.30 18282.06 27493.53 251
v1087.25 19986.38 19389.85 21691.19 27179.50 21694.48 13995.45 17383.79 18083.62 24691.19 25075.13 16697.42 19081.94 18980.60 29892.63 285
DP-MVS87.25 19985.36 22992.90 9197.65 5683.24 12094.81 12092.00 28074.99 30781.92 27095.00 11872.66 20399.05 6066.92 32192.33 16496.40 130
miper_ehance_all_eth87.22 20286.62 18789.02 24392.13 23877.40 26890.91 27194.81 21281.28 23984.32 22890.08 27979.26 12396.62 24583.81 16082.94 26493.04 273
thres20087.21 20386.24 20190.12 20695.36 12978.53 23793.26 20992.10 27686.42 12688.00 13991.11 25669.24 24898.00 15269.58 30491.04 17693.83 237
v14419287.19 20486.35 19689.74 22290.64 29678.24 24693.92 18295.43 17681.93 22285.51 19091.05 25874.21 18097.45 18682.86 17281.56 28293.53 251
FMVSNet287.19 20485.82 21691.30 15994.01 18483.67 10994.79 12194.94 19983.57 18483.88 23892.05 22666.59 27496.51 25677.56 24885.01 24493.73 245
cl_fuxian87.14 20686.50 19289.04 24292.20 23577.26 26991.22 26794.70 21682.01 21984.34 22790.43 27278.81 12796.61 24883.70 16281.09 28993.25 262
Baseline_NR-MVSNet87.07 20786.63 18688.40 25791.44 25977.87 25594.23 16192.57 26684.12 17485.74 18192.08 22377.25 14296.04 27782.29 18379.94 30891.30 311
v14887.04 20886.32 19889.21 23690.94 28377.26 26993.71 19194.43 22184.84 16384.36 22690.80 26476.04 15497.05 22682.12 18579.60 31293.31 259
v192192086.97 20986.06 20889.69 22690.53 30178.11 24993.80 18695.43 17681.90 22485.33 20691.05 25872.66 20397.41 19582.05 18781.80 27993.53 251
miper_enhance_ethall86.90 21086.18 20289.06 24191.66 25677.58 26590.22 28394.82 21179.16 26484.48 21989.10 29379.19 12496.66 24384.06 15682.94 26492.94 276
RRT_test8_iter0586.90 21086.36 19588.52 25593.00 22173.27 30494.32 15695.96 13085.50 14784.26 23192.86 19360.76 31097.70 16988.32 10782.29 27194.60 197
bset_n11_16_dypcd86.83 21285.55 22290.65 18288.22 32881.70 16088.88 30490.42 31685.26 15385.49 19290.69 26767.11 26597.02 22889.51 9484.39 24893.23 264
v7n86.81 21385.76 22089.95 21490.72 29479.25 22895.07 10295.92 13384.45 17082.29 26390.86 26172.60 20597.53 18079.42 23180.52 30393.08 272
PEN-MVS86.80 21486.27 20088.40 25792.32 23475.71 28795.18 9696.38 10287.97 8782.82 25993.15 18573.39 19695.92 28376.15 26279.03 31793.59 249
cl-mvsnet286.78 21585.98 21089.18 23892.34 23377.62 26490.84 27294.13 23481.33 23883.97 23790.15 27773.96 18596.60 25084.19 15582.94 26493.33 258
v124086.78 21585.85 21589.56 22890.45 30277.79 25893.61 19495.37 18181.65 23085.43 19891.15 25471.50 21497.43 18981.47 20082.05 27693.47 255
TR-MVS86.78 21585.76 22089.82 21894.37 17378.41 24192.47 23592.83 25981.11 24486.36 17192.40 20868.73 25597.48 18373.75 28289.85 19093.57 250
PatchMatch-RL86.77 21885.54 22390.47 19295.88 11382.71 13990.54 27692.31 27179.82 25784.32 22891.57 24268.77 25496.39 26473.16 28493.48 14492.32 295
PAPM86.68 21985.39 22790.53 18693.05 21779.33 22589.79 29094.77 21578.82 26981.95 26993.24 18276.81 14597.30 20366.94 31993.16 15194.95 184
pm-mvs186.61 22085.54 22389.82 21891.44 25980.18 19795.28 8994.85 20883.84 17981.66 27192.62 20372.45 20896.48 25879.67 22678.06 31892.82 281
GA-MVS86.61 22085.27 23090.66 18191.33 26878.71 23390.40 27893.81 24485.34 15185.12 20889.57 28961.25 30597.11 22080.99 20689.59 19496.15 137
Anonymous2023121186.59 22285.13 23290.98 17796.52 9081.50 16496.14 4596.16 11673.78 31783.65 24592.15 21763.26 29397.37 20182.82 17481.74 28194.06 224
cl-mvsnet186.53 22385.78 21788.75 24892.02 24376.45 27990.74 27394.30 22681.83 22883.34 25390.82 26375.75 15996.57 25181.73 19681.52 28493.24 263
cl-mvsnet_86.52 22485.78 21788.75 24892.03 24276.46 27890.74 27394.30 22681.83 22883.34 25390.78 26575.74 16196.57 25181.74 19581.54 28393.22 265
eth_miper_zixun_eth86.50 22585.77 21988.68 25191.94 24575.81 28690.47 27794.89 20582.05 21684.05 23490.46 27175.96 15596.77 23982.76 17679.36 31493.46 256
baseline286.50 22585.39 22789.84 21791.12 27576.70 27591.88 25188.58 33782.35 21279.95 29590.95 26073.42 19597.63 17580.27 22089.95 18795.19 173
EPNet_dtu86.49 22785.94 21388.14 26690.24 30572.82 30894.11 16792.20 27486.66 12279.42 30192.36 21073.52 19195.81 29071.26 29093.66 13895.80 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 22884.98 23590.80 18092.10 24080.92 18390.24 28195.91 13573.10 32383.57 24888.39 30465.15 28597.46 18584.90 14791.43 16994.03 226
SCA86.32 22985.18 23189.73 22492.15 23676.60 27691.12 26891.69 28983.53 18785.50 19188.81 29766.79 27096.48 25876.65 25690.35 18196.12 140
LTVRE_ROB82.13 1386.26 23084.90 23890.34 19994.44 17181.50 16492.31 24294.89 20583.03 19879.63 29992.67 20169.69 23997.79 16271.20 29186.26 23691.72 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23185.48 22587.98 26991.65 25774.92 29094.93 11195.75 14887.36 10582.26 26493.04 19072.85 20195.82 28974.04 27877.46 32393.20 266
XVG-ACMP-BASELINE86.00 23284.84 24089.45 23391.20 27078.00 25091.70 25895.55 16285.05 16082.97 25792.25 21554.49 33497.48 18382.93 17087.45 22792.89 278
MVP-Stereo85.97 23384.86 23989.32 23490.92 28582.19 15192.11 24894.19 23078.76 27178.77 30491.63 23868.38 25996.56 25375.01 27393.95 13489.20 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 23485.09 23388.35 25990.79 29077.42 26791.83 25395.70 15180.77 24780.08 29390.02 28066.74 27296.37 26581.88 19187.97 22191.26 312
test-LLR85.87 23585.41 22687.25 28590.95 28171.67 31989.55 29189.88 33083.41 19084.54 21787.95 31167.25 26295.11 30881.82 19293.37 14794.97 178
FMVSNet185.85 23684.11 24991.08 16892.81 22583.10 12395.14 9994.94 19981.64 23182.68 26091.64 23559.01 32196.34 26875.37 26883.78 25393.79 238
PatchmatchNetpermissive85.85 23684.70 24289.29 23591.76 25175.54 28888.49 30991.30 29981.63 23285.05 20988.70 30171.71 21096.24 27174.61 27689.05 20396.08 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 23884.94 23788.26 26291.16 27472.58 31489.47 29591.04 30676.26 29586.45 16989.97 28270.74 22496.86 23882.35 18187.07 23395.34 171
PMMVS85.71 23984.96 23687.95 27088.90 32077.09 27188.68 30790.06 32472.32 32986.47 16690.76 26672.15 20994.40 31481.78 19493.49 14292.36 293
PVSNet78.82 1885.55 24084.65 24388.23 26494.72 15771.93 31787.12 32292.75 26278.80 27084.95 21190.53 27064.43 28996.71 24274.74 27493.86 13696.06 146
IterMVS-SCA-FT85.45 24184.53 24688.18 26591.71 25376.87 27490.19 28492.65 26585.40 15081.44 27390.54 26966.79 27095.00 31181.04 20381.05 29092.66 284
pmmvs485.43 24283.86 25390.16 20390.02 31082.97 13090.27 27992.67 26475.93 29880.73 28191.74 23471.05 21895.73 29378.85 23583.46 26091.78 302
ACMH80.38 1785.36 24383.68 25590.39 19494.45 17080.63 19094.73 12594.85 20882.09 21577.24 31292.65 20260.01 31597.58 17672.25 28884.87 24592.96 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 24484.64 24487.49 27990.77 29172.59 31394.01 17894.40 22284.72 16679.62 30093.17 18461.91 30096.72 24081.99 18881.16 28693.16 268
CR-MVSNet85.35 24483.76 25490.12 20690.58 29879.34 22285.24 33291.96 28478.27 27885.55 18687.87 31471.03 21995.61 29473.96 28089.36 19795.40 168
tpmrst85.35 24484.99 23486.43 29990.88 28867.88 34088.71 30691.43 29780.13 25286.08 17788.80 29973.05 19996.02 27982.48 17883.40 26295.40 168
miper_lstm_enhance85.27 24784.59 24587.31 28291.28 26974.63 29187.69 31894.09 23681.20 24381.36 27589.85 28574.97 17094.30 31781.03 20579.84 31193.01 274
IB-MVS80.51 1585.24 24883.26 26091.19 16292.13 23879.86 21191.75 25591.29 30083.28 19480.66 28388.49 30361.28 30498.46 11680.99 20679.46 31395.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 24983.99 25188.65 25292.47 23078.40 24279.68 34992.76 26174.90 30981.41 27489.59 28869.85 23895.51 29979.92 22495.29 11692.03 299
RPSCF85.07 25084.27 24787.48 28092.91 22470.62 32991.69 25992.46 26776.20 29682.67 26195.22 11163.94 29197.29 20677.51 24985.80 23994.53 202
MS-PatchMatch85.05 25184.16 24887.73 27391.42 26378.51 23891.25 26693.53 24777.50 28380.15 29091.58 24061.99 29995.51 29975.69 26594.35 13289.16 335
ACMH+81.04 1485.05 25183.46 25989.82 21894.66 16179.37 22094.44 14494.12 23582.19 21478.04 30792.82 19758.23 32397.54 17973.77 28182.90 26792.54 286
DWT-MVSNet_test84.95 25383.68 25588.77 24691.43 26273.75 30091.74 25690.98 30780.66 24883.84 23987.36 31962.44 29697.11 22078.84 23685.81 23895.46 165
IterMVS84.88 25483.98 25287.60 27591.44 25976.03 28490.18 28592.41 26883.24 19581.06 27990.42 27366.60 27394.28 31879.46 22780.98 29592.48 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25583.09 26290.14 20593.80 19580.05 20489.18 30093.09 25478.89 26778.19 30591.91 22965.86 28397.27 20768.47 30988.45 21193.11 270
tpm84.73 25684.02 25086.87 29690.33 30368.90 33689.06 30189.94 32780.85 24685.75 18089.86 28468.54 25795.97 28177.76 24584.05 25295.75 158
tfpnnormal84.72 25783.23 26189.20 23792.79 22680.05 20494.48 13995.81 14382.38 21081.08 27891.21 24969.01 25196.95 23261.69 33880.59 29990.58 325
CVMVSNet84.69 25884.79 24184.37 31791.84 24864.92 34893.70 19291.47 29666.19 34486.16 17695.28 10867.18 26493.33 32980.89 20890.42 18094.88 186
test-mter84.54 25983.64 25787.25 28590.95 28171.67 31989.55 29189.88 33079.17 26384.54 21787.95 31155.56 32995.11 30881.82 19293.37 14794.97 178
TransMVSNet (Re)84.43 26083.06 26388.54 25491.72 25278.44 24095.18 9692.82 26082.73 20579.67 29892.12 21973.49 19295.96 28271.10 29568.73 34291.21 314
pmmvs584.21 26182.84 26788.34 26088.95 31976.94 27392.41 23691.91 28675.63 30080.28 28891.18 25264.59 28895.57 29577.09 25483.47 25992.53 287
tpm284.08 26282.94 26487.48 28091.39 26471.27 32189.23 29990.37 31871.95 33184.64 21489.33 29167.30 26196.55 25575.17 27087.09 23294.63 194
COLMAP_ROBcopyleft80.39 1683.96 26382.04 27089.74 22295.28 13379.75 21394.25 15992.28 27275.17 30578.02 30893.77 16858.60 32297.84 16165.06 32985.92 23791.63 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 26481.53 27491.21 16190.58 29879.34 22285.24 33296.76 7371.44 33385.55 18682.97 34070.87 22298.91 8661.01 34089.36 19795.40 168
SixPastTwentyTwo83.91 26582.90 26586.92 29390.99 27970.67 32893.48 19891.99 28185.54 14577.62 31192.11 22160.59 31196.87 23776.05 26377.75 32093.20 266
EPMVS83.90 26682.70 26887.51 27790.23 30672.67 31088.62 30881.96 35281.37 23785.01 21088.34 30566.31 27794.45 31375.30 26987.12 23195.43 167
TESTMET0.1,183.74 26782.85 26686.42 30089.96 31171.21 32389.55 29187.88 33977.41 28483.37 25287.31 32056.71 32693.65 32680.62 21392.85 15894.40 211
MVS_030483.46 26881.92 27188.10 26790.63 29777.49 26693.26 20993.75 24580.04 25480.44 28787.24 32247.94 34895.55 29675.79 26488.16 21691.26 312
pmmvs683.42 26981.60 27388.87 24588.01 33177.87 25594.96 10894.24 22974.67 31178.80 30391.09 25760.17 31496.49 25777.06 25575.40 32892.23 297
AllTest83.42 26981.39 27589.52 23095.01 14177.79 25893.12 21490.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
tpmvs83.35 27182.07 26987.20 28991.07 27771.00 32688.31 31291.70 28878.91 26680.49 28687.18 32369.30 24797.08 22368.12 31483.56 25893.51 254
USDC82.76 27281.26 27787.26 28491.17 27274.55 29289.27 29793.39 25078.26 27975.30 32592.08 22354.43 33596.63 24471.64 28985.79 24090.61 322
Patchmtry82.71 27380.93 27988.06 26890.05 30976.37 28184.74 33691.96 28472.28 33081.32 27687.87 31471.03 21995.50 30168.97 30680.15 30692.32 295
PatchT82.68 27481.27 27686.89 29590.09 30870.94 32784.06 33890.15 32174.91 30885.63 18583.57 33769.37 24394.87 31265.19 32688.50 21094.84 187
MIMVSNet82.59 27580.53 28088.76 24791.51 25878.32 24386.57 32590.13 32279.32 26080.70 28288.69 30252.98 34093.07 33366.03 32488.86 20594.90 185
test0.0.03 182.41 27681.69 27284.59 31588.23 32772.89 30790.24 28187.83 34083.41 19079.86 29689.78 28667.25 26288.99 34865.18 32783.42 26191.90 301
EG-PatchMatch MVS82.37 27780.34 28388.46 25690.27 30479.35 22192.80 22794.33 22577.14 28873.26 33590.18 27647.47 35096.72 24070.25 29787.32 23089.30 332
tpm cat181.96 27880.27 28487.01 29191.09 27671.02 32587.38 32191.53 29466.25 34380.17 28986.35 32768.22 26096.15 27569.16 30582.29 27193.86 235
our_test_381.93 27980.46 28286.33 30188.46 32473.48 30288.46 31091.11 30276.46 29076.69 31688.25 30766.89 26894.36 31568.75 30779.08 31691.14 316
ppachtmachnet_test81.84 28080.07 28887.15 29088.46 32474.43 29589.04 30292.16 27575.33 30377.75 30988.99 29466.20 27895.37 30465.12 32877.60 32191.65 304
gg-mvs-nofinetune81.77 28179.37 29488.99 24490.85 28977.73 26186.29 32679.63 35574.88 31083.19 25669.05 35060.34 31296.11 27675.46 26794.64 12593.11 270
CL-MVSNet_2432*160081.74 28280.53 28085.36 30985.96 33972.45 31590.25 28093.07 25581.24 24179.85 29787.29 32170.93 22192.52 33666.95 31869.23 33891.11 318
Patchmatch-RL test81.67 28379.96 28986.81 29785.42 34371.23 32282.17 34587.50 34378.47 27577.19 31382.50 34170.81 22393.48 32782.66 17772.89 33295.71 160
ADS-MVSNet281.66 28479.71 29287.50 27891.35 26674.19 29783.33 34188.48 33872.90 32582.24 26585.77 33164.98 28693.20 33164.57 33083.74 25495.12 174
K. test v381.59 28580.15 28785.91 30689.89 31369.42 33592.57 23387.71 34185.56 14473.44 33489.71 28755.58 32895.52 29877.17 25269.76 33692.78 282
ADS-MVSNet81.56 28679.78 29086.90 29491.35 26671.82 31883.33 34189.16 33672.90 32582.24 26585.77 33164.98 28693.76 32464.57 33083.74 25495.12 174
FMVSNet581.52 28779.60 29387.27 28391.17 27277.95 25191.49 26292.26 27376.87 28976.16 31987.91 31351.67 34192.34 33767.74 31581.16 28691.52 306
dp81.47 28880.23 28585.17 31289.92 31265.49 34686.74 32390.10 32376.30 29481.10 27787.12 32462.81 29495.92 28368.13 31379.88 30994.09 222
Patchmatch-test81.37 28979.30 29587.58 27690.92 28574.16 29880.99 34787.68 34270.52 33776.63 31788.81 29771.21 21692.76 33560.01 34486.93 23495.83 155
EU-MVSNet81.32 29080.95 27882.42 32688.50 32363.67 34993.32 20291.33 29864.02 34680.57 28592.83 19661.21 30792.27 33876.34 25980.38 30591.32 310
test_040281.30 29179.17 29987.67 27493.19 21278.17 24792.98 22191.71 28775.25 30476.02 32290.31 27459.23 31996.37 26550.22 35083.63 25788.47 341
JIA-IIPM81.04 29278.98 30287.25 28588.64 32173.48 30281.75 34689.61 33473.19 32282.05 26773.71 34766.07 28195.87 28671.18 29384.60 24792.41 291
Anonymous2023120681.03 29379.77 29184.82 31487.85 33370.26 33191.42 26392.08 27773.67 31877.75 30989.25 29262.43 29793.08 33261.50 33982.00 27791.12 317
pmmvs-eth3d80.97 29478.72 30387.74 27284.99 34579.97 20990.11 28691.65 29075.36 30273.51 33386.03 32859.45 31893.96 32375.17 27072.21 33389.29 333
testgi80.94 29580.20 28683.18 32287.96 33266.29 34391.28 26490.70 31583.70 18178.12 30692.84 19551.37 34290.82 34563.34 33382.46 27092.43 290
CMPMVSbinary59.16 2180.52 29679.20 29884.48 31683.98 34667.63 34289.95 28993.84 24364.79 34566.81 34691.14 25557.93 32495.17 30676.25 26088.10 21790.65 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 29779.21 29784.11 32085.75 34167.89 33992.86 22593.23 25275.61 30175.59 32487.47 31850.03 34394.33 31671.14 29481.21 28590.12 327
LF4IMVS80.37 29879.07 30184.27 31986.64 33569.87 33489.39 29691.05 30576.38 29274.97 32790.00 28147.85 34994.25 31974.55 27780.82 29788.69 339
DIV-MVS_2432*160080.20 29979.24 29683.07 32385.64 34265.29 34791.01 27093.93 23878.71 27376.32 31886.40 32659.20 32092.93 33472.59 28669.35 33791.00 320
UnsupCasMVSNet_eth80.07 30078.27 30485.46 30885.24 34472.63 31288.45 31194.87 20782.99 20071.64 34188.07 31056.34 32791.75 34273.48 28363.36 34792.01 300
test20.0379.95 30179.08 30082.55 32585.79 34067.74 34191.09 26991.08 30381.23 24274.48 33089.96 28361.63 30190.15 34660.08 34276.38 32689.76 328
TDRefinement79.81 30277.34 30687.22 28879.24 35375.48 28993.12 21492.03 27976.45 29175.01 32691.58 24049.19 34696.44 26270.22 29969.18 33989.75 329
TinyColmap79.76 30377.69 30585.97 30391.71 25373.12 30589.55 29190.36 31975.03 30672.03 33990.19 27546.22 35196.19 27463.11 33481.03 29188.59 340
OpenMVS_ROBcopyleft74.94 1979.51 30477.03 31086.93 29287.00 33476.23 28392.33 24090.74 31468.93 34074.52 32988.23 30849.58 34596.62 24557.64 34684.29 24987.94 343
MIMVSNet179.38 30577.28 30785.69 30786.35 33673.67 30191.61 26192.75 26278.11 28272.64 33788.12 30948.16 34791.97 34160.32 34177.49 32291.43 309
YYNet179.22 30677.20 30885.28 31188.20 33072.66 31185.87 32890.05 32674.33 31462.70 34887.61 31666.09 28092.03 33966.94 31972.97 33191.15 315
MDA-MVSNet_test_wron79.21 30777.19 30985.29 31088.22 32872.77 30985.87 32890.06 32474.34 31362.62 34987.56 31766.14 27991.99 34066.90 32273.01 33091.10 319
MDA-MVSNet-bldmvs78.85 30876.31 31186.46 29889.76 31473.88 29988.79 30590.42 31679.16 26459.18 35088.33 30660.20 31394.04 32062.00 33768.96 34091.48 308
KD-MVS_2432*160078.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
miper_refine_blended78.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
PM-MVS78.11 31176.12 31384.09 32183.54 34870.08 33288.97 30385.27 34779.93 25574.73 32886.43 32534.70 35593.48 32779.43 23072.06 33488.72 338
PVSNet_073.20 2077.22 31274.83 31784.37 31790.70 29571.10 32483.09 34389.67 33372.81 32773.93 33283.13 33960.79 30993.70 32568.54 30850.84 35388.30 342
DSMNet-mixed76.94 31376.29 31278.89 32983.10 34956.11 35687.78 31679.77 35460.65 34875.64 32388.71 30061.56 30288.34 34960.07 34389.29 19992.21 298
new-patchmatchnet76.41 31475.17 31680.13 32882.65 35159.61 35187.66 31991.08 30378.23 28069.85 34283.22 33854.76 33291.63 34464.14 33264.89 34589.16 335
UnsupCasMVSNet_bld76.23 31573.27 31885.09 31383.79 34772.92 30685.65 33193.47 24971.52 33268.84 34479.08 34549.77 34493.21 33066.81 32360.52 34989.13 337
MVS-HIRNet73.70 31672.20 31978.18 33191.81 25056.42 35582.94 34482.58 35055.24 35068.88 34366.48 35155.32 33195.13 30758.12 34588.42 21283.01 346
new_pmnet72.15 31770.13 32078.20 33082.95 35065.68 34483.91 33982.40 35162.94 34764.47 34779.82 34442.85 35386.26 35157.41 34774.44 32982.65 347
pmmvs371.81 31868.71 32181.11 32775.86 35470.42 33086.74 32383.66 34958.95 34968.64 34580.89 34336.93 35489.52 34763.10 33563.59 34683.39 345
N_pmnet68.89 31968.44 32270.23 33589.07 31828.79 36588.06 31319.50 36569.47 33971.86 34084.93 33361.24 30691.75 34254.70 34877.15 32490.15 326
LCM-MVSNet66.00 32062.16 32477.51 33264.51 36058.29 35283.87 34090.90 31048.17 35354.69 35173.31 34816.83 36486.75 35065.47 32561.67 34887.48 344
FPMVS64.63 32162.55 32370.88 33470.80 35656.71 35384.42 33784.42 34851.78 35249.57 35281.61 34223.49 35881.48 35440.61 35476.25 32774.46 350
PMMVS259.60 32256.40 32569.21 33668.83 35746.58 36073.02 35477.48 35855.07 35149.21 35372.95 34917.43 36380.04 35549.32 35144.33 35480.99 349
ANet_high58.88 32354.22 32772.86 33356.50 36356.67 35480.75 34886.00 34473.09 32437.39 35664.63 35322.17 35979.49 35643.51 35223.96 35782.43 348
Gipumacopyleft57.99 32454.91 32667.24 33788.51 32265.59 34552.21 35790.33 32043.58 35542.84 35551.18 35620.29 36185.07 35234.77 35570.45 33551.05 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32548.46 32863.48 33845.72 36446.20 36173.41 35378.31 35641.03 35630.06 35865.68 3526.05 36583.43 35330.04 35665.86 34360.80 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 32638.59 33257.77 33956.52 36248.77 35955.38 35658.64 36229.33 35928.96 35952.65 3554.68 36664.62 35928.11 35733.07 35559.93 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 32742.29 32946.03 34165.58 35937.41 36273.51 35264.62 35933.99 35728.47 36047.87 35719.90 36267.91 35722.23 35824.45 35632.77 355
EMVS42.07 32841.12 33044.92 34263.45 36135.56 36473.65 35163.48 36033.05 35826.88 36145.45 35821.27 36067.14 35819.80 35923.02 35832.06 356
tmp_tt35.64 32939.24 33124.84 34314.87 36523.90 36662.71 35551.51 3646.58 36136.66 35762.08 35444.37 35230.34 36252.40 34922.00 35920.27 357
cdsmvs_eth3d_5k22.14 33029.52 3330.00 3470.00 3680.00 3690.00 35995.76 1470.00 3640.00 36594.29 14375.66 1620.00 3650.00 3630.00 3630.00 361
wuyk23d21.27 33120.48 33423.63 34468.59 35836.41 36349.57 3586.85 3669.37 3607.89 3624.46 3644.03 36731.37 36117.47 36016.07 3603.12 358
testmvs8.92 33211.52 3351.12 3461.06 3660.46 36886.02 3270.65 3670.62 3622.74 3639.52 3620.31 3690.45 3642.38 3610.39 3612.46 360
test1238.76 33311.22 3361.39 3450.85 3670.97 36785.76 3300.35 3680.54 3632.45 3648.14 3630.60 3680.48 3632.16 3620.17 3622.71 359
ab-mvs-re7.82 33410.43 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36593.88 1620.00 3700.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas6.64 3358.86 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36579.70 1170.00 3650.00 3630.00 3630.00 361
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS98.15 3586.62 3597.07 4483.63 18394.19 3096.91 4887.57 2999.26 4391.99 5498.44 51
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
IU-MVS98.77 486.00 5496.84 6381.26 24097.26 695.50 799.13 399.03 4
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4598.99 1098.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13395.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
save fliter97.85 4885.63 6895.21 9396.82 6789.44 45
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 140
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21196.12 140
sam_mvs70.60 225
ambc83.06 32479.99 35263.51 35077.47 35092.86 25874.34 33184.45 33428.74 35695.06 31073.06 28568.89 34190.61 322
MTGPAbinary96.97 49
test_post188.00 3149.81 36169.31 24695.53 29776.65 256
test_post10.29 36070.57 22995.91 285
patchmatchnet-post83.76 33671.53 21396.48 258
GG-mvs-BLEND87.94 27189.73 31577.91 25287.80 31578.23 35780.58 28483.86 33559.88 31695.33 30571.20 29192.22 16590.60 324
MTMP96.16 4360.64 361
gm-plane-assit89.60 31668.00 33877.28 28788.99 29497.57 17779.44 229
test9_res91.91 5998.71 3098.07 63
TEST997.53 5886.49 3994.07 17296.78 7081.61 23392.77 6496.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17796.76 7381.86 22692.70 6896.20 8087.63 2799.02 68
agg_prior290.54 8598.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7992.16 7998.97 80
TestCases89.52 23095.01 14177.79 25890.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
test_prior485.96 5794.11 167
test_prior294.12 16587.67 9892.63 6996.39 7286.62 3991.50 6998.67 37
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
旧先验293.36 20171.25 33494.37 2697.13 21986.74 128
新几何293.11 216
新几何193.10 8197.30 6884.35 9495.56 16171.09 33591.26 10196.24 7782.87 8298.86 9179.19 23398.10 6296.07 145
旧先验196.79 8081.81 15895.67 15396.81 5386.69 3897.66 7696.97 114
无先验93.28 20896.26 10773.95 31699.05 6080.56 21496.59 126
原ACMM292.94 223
原ACMM192.01 12997.34 6681.05 17896.81 6878.89 26790.45 10895.92 9182.65 8398.84 9680.68 21298.26 5996.14 138
test22296.55 8881.70 16092.22 24495.01 19668.36 34190.20 11196.14 8580.26 11097.80 7296.05 147
testdata298.75 10078.30 240
segment_acmp87.16 35
testdata90.49 19096.40 9277.89 25495.37 18172.51 32893.63 4596.69 5882.08 9497.65 17283.08 16797.39 8195.94 149
testdata192.15 24687.94 88
test1294.34 5397.13 7486.15 5196.29 10591.04 10485.08 5899.01 7098.13 6197.86 79
plane_prior794.70 15982.74 136
plane_prior694.52 16582.75 13474.23 178
plane_prior596.22 11298.12 13788.15 10889.99 18494.63 194
plane_prior494.86 123
plane_prior382.75 13490.26 3086.91 160
plane_prior295.85 6190.81 17
plane_prior194.59 163
plane_prior82.73 13795.21 9389.66 4289.88 189
n20.00 369
nn0.00 369
door-mid85.49 345
lessismore_v086.04 30288.46 32468.78 33780.59 35373.01 33690.11 27855.39 33096.43 26375.06 27265.06 34492.90 277
LGP-MVS_train91.12 16494.47 16781.49 16696.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
test1196.57 92
door85.33 346
HQP5-MVS81.56 162
HQP-NCC94.17 17894.39 14988.81 6285.43 198
ACMP_Plane94.17 17894.39 14988.81 6285.43 198
BP-MVS87.11 125
HQP4-MVS85.43 19897.96 15594.51 204
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 188
NP-MVS94.37 17382.42 14593.98 155
MDTV_nov1_ep13_2view55.91 35787.62 32073.32 32184.59 21670.33 23274.65 27595.50 163
MDTV_nov1_ep1383.56 25891.69 25569.93 33387.75 31791.54 29378.60 27484.86 21288.90 29669.54 24196.03 27870.25 29788.93 204
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112
ITE_SJBPF88.24 26391.88 24777.05 27292.92 25785.54 14580.13 29293.30 17957.29 32596.20 27272.46 28784.71 24691.49 307
DeepMVS_CXcopyleft56.31 34074.23 35551.81 35856.67 36344.85 35448.54 35475.16 34627.87 35758.74 36040.92 35352.22 35258.39 353