This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 690.75 1797.62 598.06 692.59 299.61 395.64 799.02 1298.86 10
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1590.31 2697.71 198.07 492.31 499.58 895.66 599.13 398.84 13
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7790.27 2997.04 1198.05 891.47 899.55 1495.62 999.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8397.51 589.13 5997.14 997.91 1191.64 799.62 194.61 1599.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 2089.03 6296.20 1798.10 289.39 1699.34 3295.88 499.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1191.73 896.10 1896.69 5489.90 1299.30 3894.70 1398.04 6499.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9396.96 5192.09 495.32 2397.08 3789.49 1599.33 3595.10 1298.85 1998.66 19
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4597.28 3085.90 13997.67 398.10 288.41 2099.56 1094.66 1499.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2891.38 1095.39 2297.46 1888.98 1999.40 2894.12 1998.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6496.96 5191.75 794.02 3696.83 4988.12 2499.55 1493.41 3098.94 1698.28 48
SF-MVS94.97 1194.90 1495.20 1097.84 4787.76 996.65 3497.48 1087.76 10295.71 2097.70 1488.28 2399.35 3193.89 2398.78 2598.48 28
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4290.42 2596.95 1397.27 2689.53 1496.91 23594.38 1798.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1394.94 1294.58 3998.25 2986.33 3996.11 5496.62 8688.14 9096.10 1896.96 4389.09 1898.94 7394.48 1698.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1494.69 1695.17 1297.83 4887.46 1495.66 7796.93 5592.34 293.94 3796.58 6487.74 2799.44 2792.83 3898.40 5098.62 20
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7597.34 2288.28 8395.30 2497.67 1585.90 4499.54 1893.91 2298.95 1598.60 21
test_fmvsm_n_192094.71 1695.11 1093.50 6295.79 11284.62 7296.15 5197.64 289.85 3897.19 897.89 1286.28 4098.71 8997.11 198.08 6397.17 103
HFP-MVS94.52 1794.40 2094.86 2298.61 1086.81 2296.94 2097.34 2288.63 7293.65 4197.21 3086.10 4299.49 2492.35 4998.77 2798.30 45
ZNCC-MVS94.47 1894.28 2495.03 1498.52 1586.96 1796.85 2897.32 2688.24 8493.15 5197.04 4086.17 4199.62 192.40 4798.81 2298.52 24
XVS94.45 1994.32 2194.85 2398.54 1386.60 3196.93 2297.19 3490.66 2292.85 5897.16 3585.02 5599.49 2491.99 6298.56 4698.47 31
MCST-MVS94.45 1994.20 2995.19 1198.46 1987.50 1395.00 11397.12 4087.13 11292.51 7296.30 7189.24 1799.34 3293.46 2798.62 4298.73 16
region2R94.43 2194.27 2694.92 1898.65 886.67 2796.92 2497.23 3388.60 7493.58 4397.27 2685.22 5199.54 1892.21 5298.74 2998.56 23
ACMMPR94.43 2194.28 2494.91 1998.63 986.69 2596.94 2097.32 2688.63 7293.53 4697.26 2885.04 5499.54 1892.35 4998.78 2598.50 25
MTAPA94.42 2394.22 2795.00 1698.42 2186.95 1894.36 15896.97 4991.07 1193.14 5297.56 1684.30 6399.56 1093.43 2898.75 2898.47 31
CP-MVS94.34 2494.21 2894.74 3498.39 2386.64 2997.60 497.24 3188.53 7692.73 6697.23 2985.20 5299.32 3692.15 5598.83 2198.25 53
MP-MVScopyleft94.25 2594.07 3394.77 3298.47 1886.31 4196.71 3196.98 4889.04 6191.98 8197.19 3285.43 4999.56 1092.06 6198.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2694.07 3394.75 3398.06 3986.90 2095.88 6596.94 5485.68 14595.05 2697.18 3387.31 3399.07 5191.90 6898.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 2794.17 3194.43 4498.21 3285.78 5996.40 3996.90 5888.20 8894.33 3097.40 2184.75 6099.03 5693.35 3197.99 6598.48 28
GST-MVS94.21 2893.97 3694.90 2198.41 2286.82 2196.54 3697.19 3488.24 8493.26 4896.83 4985.48 4899.59 791.43 7598.40 5098.30 45
MP-MVS-pluss94.21 2894.00 3594.85 2398.17 3386.65 2894.82 12497.17 3886.26 13192.83 6097.87 1385.57 4799.56 1094.37 1898.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3094.77 1592.49 10296.52 8780.00 20594.00 18297.08 4390.05 3395.65 2197.29 2589.66 1398.97 7093.95 2198.71 3098.50 25
CS-MVS94.12 3194.44 1993.17 6996.55 8483.08 11697.63 396.95 5391.71 993.50 4796.21 7485.61 4598.24 12493.64 2598.17 5698.19 56
DeepC-MVS_fast89.43 294.04 3293.79 3994.80 3097.48 6186.78 2395.65 7996.89 5989.40 5192.81 6196.97 4285.37 5099.24 4190.87 8598.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3394.29 2393.24 6696.69 7883.24 10997.49 596.92 5692.14 392.90 5695.77 9685.02 5598.33 11993.03 3598.62 4298.13 60
HPM-MVScopyleft94.02 3393.88 3794.43 4498.39 2385.78 5997.25 1097.07 4486.90 12092.62 6996.80 5384.85 5999.17 4592.43 4598.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3593.78 4094.63 3798.50 1685.90 5696.87 2696.91 5788.70 7091.83 9097.17 3483.96 6799.55 1491.44 7498.64 4198.43 36
PGM-MVS93.96 3693.72 4294.68 3598.43 2086.22 4495.30 9197.78 187.45 10893.26 4897.33 2484.62 6199.51 2290.75 8798.57 4598.32 44
PHI-MVS93.89 3793.65 4594.62 3896.84 7586.43 3696.69 3297.49 685.15 15993.56 4596.28 7285.60 4699.31 3792.45 4498.79 2398.12 62
SR-MVS-dyc-post93.82 3893.82 3893.82 5697.92 4384.57 7496.28 4396.76 7387.46 10693.75 3997.43 1984.24 6499.01 6192.73 3997.80 7197.88 75
APD-MVS_3200maxsize93.78 3993.77 4193.80 5897.92 4384.19 8696.30 4196.87 6186.96 11693.92 3897.47 1783.88 6898.96 7292.71 4297.87 6998.26 52
patch_mono-293.74 4094.32 2192.01 11897.54 5778.37 24393.40 20697.19 3488.02 9294.99 2797.21 3088.35 2198.44 11094.07 2098.09 6199.23 1
MSLP-MVS++93.72 4194.08 3292.65 9497.31 6583.43 10495.79 6997.33 2490.03 3493.58 4396.96 4384.87 5897.76 16292.19 5498.66 3896.76 120
TSAR-MVS + GP.93.66 4293.41 4694.41 4696.59 8286.78 2394.40 15193.93 23789.77 4394.21 3195.59 10387.35 3298.61 9692.72 4196.15 9997.83 79
CANet93.54 4393.20 5094.55 4095.65 11885.73 6194.94 11696.69 8291.89 690.69 10695.88 9081.99 9199.54 1893.14 3497.95 6798.39 37
dcpmvs_293.49 4494.19 3091.38 15297.69 5476.78 27594.25 16196.29 10288.33 8094.46 2896.88 4688.07 2598.64 9293.62 2698.09 6198.73 16
MVS_111021_HR93.45 4593.31 4793.84 5596.99 7284.84 6893.24 21897.24 3188.76 6991.60 9595.85 9186.07 4398.66 9091.91 6698.16 5798.03 68
train_agg93.44 4693.08 5194.52 4197.53 5886.49 3494.07 17496.78 7081.86 23092.77 6396.20 7587.63 2999.12 4992.14 5698.69 3397.94 71
EC-MVSNet93.44 4693.71 4392.63 9595.21 13282.43 13797.27 996.71 8090.57 2492.88 5795.80 9483.16 7298.16 13093.68 2498.14 5897.31 96
DELS-MVS93.43 4893.25 4893.97 5195.42 12585.04 6793.06 22597.13 3990.74 1991.84 8895.09 11986.32 3999.21 4391.22 7698.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 4993.22 4993.94 5398.36 2584.83 6997.15 1396.80 6985.77 14292.47 7397.13 3682.38 8099.07 5190.51 9298.40 5097.92 74
DeepC-MVS88.79 393.31 5092.99 5394.26 4996.07 10285.83 5794.89 11996.99 4789.02 6489.56 12097.37 2382.51 7999.38 2992.20 5398.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 5192.75 5794.85 2395.70 11787.66 1196.33 4096.41 9690.00 3594.09 3494.60 14082.33 8298.62 9592.40 4792.86 16198.27 50
ACMMPcopyleft93.24 5292.88 5594.30 4898.09 3885.33 6596.86 2797.45 1488.33 8090.15 11597.03 4181.44 9499.51 2290.85 8695.74 10298.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 5393.05 5293.76 5998.04 4084.07 8896.22 4797.37 2184.15 17590.05 11695.66 10087.77 2699.15 4889.91 9598.27 5498.07 64
alignmvs93.08 5492.50 6194.81 2995.62 12087.61 1295.99 6096.07 12089.77 4394.12 3394.87 12580.56 10098.66 9092.42 4693.10 15798.15 59
EI-MVSNet-Vis-set93.01 5592.92 5493.29 6495.01 13983.51 10394.48 14395.77 14290.87 1392.52 7196.67 5684.50 6299.00 6591.99 6294.44 13297.36 95
casdiffmvs_mvgpermissive92.96 5692.83 5693.35 6394.59 16283.40 10695.00 11396.34 10090.30 2892.05 7996.05 8383.43 7098.15 13192.07 5895.67 10398.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 5792.54 6093.68 6096.10 10084.71 7195.66 7796.39 9791.92 593.22 5096.49 6783.16 7298.87 7784.47 16195.47 10897.45 94
CDPH-MVS92.83 5792.30 6394.44 4297.79 4986.11 4694.06 17696.66 8380.09 25792.77 6396.63 6186.62 3699.04 5587.40 12398.66 3898.17 58
ETV-MVS92.74 5992.66 5892.97 7995.20 13384.04 9095.07 10996.51 9290.73 2092.96 5591.19 25984.06 6598.34 11791.72 7096.54 9396.54 129
EI-MVSNet-UG-set92.74 5992.62 5993.12 7194.86 15083.20 11194.40 15195.74 14590.71 2192.05 7996.60 6384.00 6698.99 6791.55 7293.63 14297.17 103
DPM-MVS92.58 6191.74 6995.08 1396.19 9589.31 592.66 23596.56 9183.44 19391.68 9495.04 12086.60 3898.99 6785.60 14797.92 6896.93 116
casdiffmvspermissive92.51 6292.43 6292.74 8994.41 17481.98 14794.54 14196.23 10989.57 4791.96 8396.17 7982.58 7898.01 14990.95 8395.45 11098.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 6392.29 6492.98 7895.99 10684.43 8393.08 22396.09 11888.20 8891.12 10295.72 9981.33 9697.76 16291.74 6997.37 7896.75 121
3Dnovator+87.14 492.42 6491.37 7295.55 695.63 11988.73 697.07 1896.77 7290.84 1484.02 24496.62 6275.95 15199.34 3287.77 11797.68 7498.59 22
baseline92.39 6592.29 6492.69 9394.46 17181.77 15294.14 16796.27 10489.22 5591.88 8696.00 8482.35 8197.99 15191.05 7895.27 11598.30 45
VNet92.24 6691.91 6793.24 6696.59 8283.43 10494.84 12396.44 9489.19 5794.08 3595.90 8977.85 13598.17 12988.90 10593.38 15198.13 60
CPTT-MVS91.99 6791.80 6892.55 9998.24 3181.98 14796.76 3096.49 9381.89 22990.24 11196.44 6978.59 12498.61 9689.68 9697.85 7097.06 108
EIA-MVS91.95 6891.94 6691.98 12295.16 13480.01 20495.36 8696.73 7788.44 7789.34 12492.16 22583.82 6998.45 10989.35 9997.06 8197.48 92
DP-MVS Recon91.95 6891.28 7493.96 5298.33 2785.92 5494.66 13596.66 8382.69 21190.03 11795.82 9382.30 8399.03 5684.57 15996.48 9696.91 117
EPNet91.79 7091.02 8094.10 5090.10 31385.25 6696.03 5992.05 28492.83 187.39 15995.78 9579.39 11599.01 6188.13 11397.48 7698.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7191.70 7092.00 12197.08 7180.03 20393.60 20095.18 18387.85 10090.89 10496.47 6882.06 8998.36 11485.07 15197.04 8297.62 85
Vis-MVSNetpermissive91.75 7291.23 7593.29 6495.32 12783.78 9596.14 5295.98 12689.89 3690.45 10896.58 6475.09 16398.31 12284.75 15796.90 8597.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 7390.82 8494.44 4294.59 16286.37 3897.18 1297.02 4689.20 5684.31 24096.66 5773.74 18799.17 4586.74 13397.96 6697.79 81
EPP-MVSNet91.70 7491.56 7192.13 11795.88 10980.50 18897.33 795.25 17986.15 13589.76 11995.60 10283.42 7198.32 12187.37 12593.25 15497.56 90
MVSFormer91.68 7591.30 7392.80 8593.86 19583.88 9395.96 6295.90 13384.66 17091.76 9194.91 12377.92 13297.30 20689.64 9797.11 7997.24 99
Effi-MVS+91.59 7691.11 7793.01 7794.35 17883.39 10794.60 13795.10 18787.10 11390.57 10793.10 19781.43 9598.07 14589.29 10194.48 13097.59 88
IS-MVSNet91.43 7791.09 7992.46 10395.87 11181.38 16496.95 1993.69 24889.72 4589.50 12295.98 8678.57 12597.77 16183.02 17996.50 9598.22 55
PVSNet_Blended_VisFu91.38 7890.91 8292.80 8596.39 9083.17 11294.87 12196.66 8383.29 19789.27 12594.46 14480.29 10299.17 4587.57 12195.37 11196.05 147
diffmvspermissive91.37 7991.23 7591.77 13793.09 21780.27 19192.36 24495.52 16287.03 11591.40 9994.93 12280.08 10497.44 19092.13 5794.56 12797.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 8091.11 7791.93 12694.37 17580.14 19693.46 20595.80 14086.46 12791.35 10093.77 17682.21 8598.09 14287.57 12194.95 11897.55 91
OMC-MVS91.23 8190.62 8693.08 7396.27 9384.07 8893.52 20295.93 12986.95 11789.51 12196.13 8178.50 12698.35 11685.84 14592.90 16096.83 119
PAPM_NR91.22 8290.78 8592.52 10197.60 5681.46 16194.37 15796.24 10886.39 12987.41 15694.80 13182.06 8998.48 10382.80 18595.37 11197.61 86
PS-MVSNAJ91.18 8390.92 8191.96 12495.26 13082.60 13692.09 25595.70 14786.27 13091.84 8892.46 21579.70 11098.99 6789.08 10395.86 10194.29 219
xiu_mvs_v2_base91.13 8490.89 8391.86 13194.97 14282.42 13892.24 24995.64 15486.11 13891.74 9393.14 19579.67 11398.89 7689.06 10495.46 10994.28 220
nrg03091.08 8590.39 8793.17 6993.07 21886.91 1996.41 3796.26 10588.30 8288.37 13994.85 12882.19 8697.64 17391.09 7782.95 27294.96 183
lupinMVS90.92 8690.21 9093.03 7693.86 19583.88 9392.81 23293.86 24179.84 26091.76 9194.29 15077.92 13298.04 14790.48 9397.11 7997.17 103
h-mvs3390.80 8790.15 9392.75 8896.01 10482.66 13395.43 8595.53 16189.80 3993.08 5395.64 10175.77 15299.00 6592.07 5878.05 32796.60 125
jason90.80 8790.10 9492.90 8293.04 22083.53 10293.08 22394.15 23080.22 25491.41 9894.91 12376.87 13997.93 15690.28 9496.90 8597.24 99
jason: jason.
VDD-MVS90.74 8989.92 10193.20 6896.27 9383.02 11895.73 7293.86 24188.42 7992.53 7096.84 4862.09 29898.64 9290.95 8392.62 16497.93 73
PVSNet_Blended90.73 9090.32 8991.98 12296.12 9781.25 16692.55 23996.83 6582.04 22389.10 12792.56 21381.04 9898.85 8186.72 13595.91 10095.84 154
test_yl90.69 9190.02 9992.71 9095.72 11582.41 14094.11 16995.12 18585.63 14791.49 9694.70 13474.75 16798.42 11286.13 14092.53 16597.31 96
DCV-MVSNet90.69 9190.02 9992.71 9095.72 11582.41 14094.11 16995.12 18585.63 14791.49 9694.70 13474.75 16798.42 11286.13 14092.53 16597.31 96
API-MVS90.66 9390.07 9592.45 10496.36 9184.57 7496.06 5895.22 18282.39 21489.13 12694.27 15380.32 10198.46 10680.16 23296.71 9094.33 216
xiu_mvs_v1_base_debu90.64 9490.05 9692.40 10593.97 19284.46 8093.32 20895.46 16485.17 15692.25 7494.03 15870.59 22298.57 9990.97 8094.67 12294.18 221
xiu_mvs_v1_base90.64 9490.05 9692.40 10593.97 19284.46 8093.32 20895.46 16485.17 15692.25 7494.03 15870.59 22298.57 9990.97 8094.67 12294.18 221
xiu_mvs_v1_base_debi90.64 9490.05 9692.40 10593.97 19284.46 8093.32 20895.46 16485.17 15692.25 7494.03 15870.59 22298.57 9990.97 8094.67 12294.18 221
HQP_MVS90.60 9790.19 9191.82 13494.70 15882.73 12995.85 6696.22 11090.81 1586.91 16894.86 12674.23 17598.12 13288.15 11189.99 18894.63 195
FIs90.51 9890.35 8890.99 17393.99 19180.98 17495.73 7297.54 489.15 5886.72 17394.68 13681.83 9397.24 21485.18 15088.31 22294.76 193
MAR-MVS90.30 9989.37 11193.07 7596.61 8184.48 7995.68 7595.67 14982.36 21687.85 14792.85 20276.63 14598.80 8580.01 23396.68 9195.91 150
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 10090.18 9290.53 18493.71 20179.85 21095.77 7097.59 389.31 5386.27 18294.67 13781.93 9297.01 22984.26 16388.09 22694.71 194
CANet_DTU90.26 10189.41 11092.81 8493.46 20983.01 11993.48 20394.47 21789.43 5087.76 15194.23 15470.54 22699.03 5684.97 15296.39 9796.38 132
OPM-MVS90.12 10289.56 10591.82 13493.14 21583.90 9294.16 16695.74 14588.96 6587.86 14695.43 10772.48 20397.91 15788.10 11590.18 18793.65 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 10389.13 11792.95 8096.71 7782.32 14296.08 5589.91 33386.79 12192.15 7896.81 5162.60 29698.34 11787.18 12793.90 13898.19 56
GeoE90.05 10489.43 10991.90 13095.16 13480.37 19095.80 6894.65 21483.90 18087.55 15594.75 13378.18 13097.62 17581.28 21293.63 14297.71 83
PAPR90.02 10589.27 11692.29 11395.78 11380.95 17692.68 23496.22 11081.91 22786.66 17493.75 17882.23 8498.44 11079.40 24394.79 12097.48 92
PVSNet_BlendedMVS89.98 10689.70 10390.82 17796.12 9781.25 16693.92 18796.83 6583.49 19289.10 12792.26 22381.04 9898.85 8186.72 13587.86 23092.35 300
PS-MVSNAJss89.97 10789.62 10491.02 17091.90 25080.85 17995.26 9695.98 12686.26 13186.21 18394.29 15079.70 11097.65 17088.87 10688.10 22494.57 200
mvsmamba89.96 10889.50 10691.33 15592.90 22781.82 15096.68 3392.37 27289.03 6287.00 16494.85 12873.05 19597.65 17091.03 7988.63 21394.51 205
XVG-OURS-SEG-HR89.95 10989.45 10791.47 14994.00 19081.21 16991.87 25896.06 12285.78 14188.55 13595.73 9874.67 17197.27 21088.71 10789.64 19795.91 150
UGNet89.95 10988.95 12192.95 8094.51 16883.31 10895.70 7495.23 18089.37 5287.58 15393.94 16664.00 28798.78 8683.92 16896.31 9896.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11189.29 11491.81 13693.39 21083.72 9694.43 14997.12 4089.80 3986.46 17693.32 18683.16 7297.23 21584.92 15381.02 30194.49 210
AdaColmapbinary89.89 11289.07 11892.37 10897.41 6283.03 11794.42 15095.92 13082.81 20986.34 18194.65 13873.89 18399.02 5980.69 22395.51 10695.05 178
hse-mvs289.88 11389.34 11291.51 14694.83 15281.12 17193.94 18593.91 24089.80 3993.08 5393.60 18075.77 15297.66 16992.07 5877.07 33495.74 159
UniMVSNet (Re)89.80 11489.07 11892.01 11893.60 20584.52 7794.78 12797.47 1189.26 5486.44 17992.32 22082.10 8797.39 20284.81 15680.84 30594.12 225
HQP-MVS89.80 11489.28 11591.34 15494.17 18181.56 15594.39 15396.04 12388.81 6685.43 20793.97 16573.83 18597.96 15387.11 13089.77 19594.50 208
FA-MVS(test-final)89.66 11688.91 12391.93 12694.57 16580.27 19191.36 26994.74 21184.87 16489.82 11892.61 21274.72 17098.47 10583.97 16793.53 14597.04 110
VPA-MVSNet89.62 11788.96 12091.60 14293.86 19582.89 12495.46 8497.33 2487.91 9588.43 13893.31 18774.17 17897.40 19987.32 12682.86 27794.52 203
WTY-MVS89.60 11888.92 12291.67 14095.47 12481.15 17092.38 24394.78 20983.11 20189.06 12994.32 14878.67 12396.61 24981.57 20990.89 18197.24 99
Vis-MVSNet (Re-imp)89.59 11989.44 10890.03 21195.74 11475.85 28895.61 8190.80 31987.66 10587.83 14895.40 10876.79 14196.46 26278.37 24896.73 8997.80 80
VDDNet89.56 12088.49 13892.76 8795.07 13882.09 14496.30 4193.19 25581.05 24991.88 8696.86 4761.16 31098.33 11988.43 11092.49 16797.84 78
114514_t89.51 12188.50 13692.54 10098.11 3681.99 14695.16 10496.36 9970.19 34985.81 18895.25 11276.70 14398.63 9482.07 19796.86 8897.00 113
QAPM89.51 12188.15 14793.59 6194.92 14684.58 7396.82 2996.70 8178.43 28283.41 25996.19 7873.18 19499.30 3877.11 26496.54 9396.89 118
CLD-MVS89.47 12388.90 12491.18 16094.22 18082.07 14592.13 25396.09 11887.90 9685.37 21392.45 21674.38 17397.56 17887.15 12890.43 18393.93 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 12488.90 12491.12 16294.47 16981.49 15995.30 9196.14 11586.73 12385.45 20495.16 11669.89 23298.10 13487.70 11989.23 20493.77 248
CDS-MVSNet89.45 12488.51 13592.29 11393.62 20483.61 10193.01 22694.68 21381.95 22587.82 14993.24 19178.69 12296.99 23080.34 22993.23 15596.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 12688.69 12991.60 14295.12 13782.93 12295.75 7192.14 28187.32 11087.12 16394.07 15667.09 26297.55 17990.61 8989.01 20894.32 217
Fast-Effi-MVS+89.41 12788.64 13091.71 13994.74 15480.81 18093.54 20195.10 18783.11 20186.82 17290.67 27679.74 10997.75 16580.51 22793.55 14496.57 127
ab-mvs89.41 12788.35 14092.60 9695.15 13682.65 13492.20 25195.60 15683.97 17988.55 13593.70 17974.16 17998.21 12882.46 19089.37 20096.94 115
XVG-OURS89.40 12988.70 12891.52 14594.06 18481.46 16191.27 27196.07 12086.14 13688.89 13195.77 9668.73 25297.26 21287.39 12489.96 19095.83 155
test_vis1_n_192089.39 13089.84 10288.04 27092.97 22472.64 31894.71 13296.03 12586.18 13491.94 8596.56 6661.63 30195.74 29493.42 2995.11 11795.74 159
mvs_anonymous89.37 13189.32 11389.51 23493.47 20874.22 30191.65 26594.83 20582.91 20785.45 20493.79 17481.23 9796.36 26886.47 13794.09 13597.94 71
DU-MVS89.34 13288.50 13691.85 13393.04 22083.72 9694.47 14696.59 8889.50 4886.46 17693.29 18977.25 13797.23 21584.92 15381.02 30194.59 198
TAMVS89.21 13388.29 14491.96 12493.71 20182.62 13593.30 21294.19 22882.22 21887.78 15093.94 16678.83 11996.95 23277.70 25792.98 15996.32 133
ACMM84.12 989.14 13488.48 13991.12 16294.65 16181.22 16895.31 8996.12 11785.31 15585.92 18794.34 14670.19 23098.06 14685.65 14688.86 21194.08 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 13588.64 13090.48 19095.53 12374.97 29496.08 5584.89 35588.13 9190.16 11496.65 5863.29 29298.10 13486.14 13896.90 8598.39 37
EI-MVSNet89.10 13588.86 12689.80 22391.84 25278.30 24593.70 19795.01 19085.73 14387.15 16195.28 11079.87 10797.21 21783.81 17087.36 23693.88 237
ECVR-MVScopyleft89.09 13788.53 13490.77 17995.62 12075.89 28796.16 4984.22 35787.89 9890.20 11296.65 5863.19 29498.10 13485.90 14396.94 8398.33 41
RRT_MVS89.09 13788.62 13390.49 18892.85 22879.65 21496.41 3794.41 22088.22 8685.50 20094.77 13269.36 24097.31 20589.33 10086.73 24394.51 205
CNLPA89.07 13987.98 15192.34 10996.87 7484.78 7094.08 17393.24 25381.41 24084.46 23095.13 11875.57 15996.62 24677.21 26293.84 14095.61 164
PLCcopyleft84.53 789.06 14088.03 15092.15 11697.27 6882.69 13294.29 15995.44 16979.71 26284.01 24594.18 15576.68 14498.75 8777.28 26193.41 15095.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14188.64 13090.21 20190.74 29879.28 22695.96 6295.90 13384.66 17085.33 21592.94 20174.02 18197.30 20689.64 9788.53 21594.05 231
HY-MVS83.01 1289.03 14187.94 15392.29 11394.86 15082.77 12592.08 25694.49 21681.52 23986.93 16692.79 20878.32 12998.23 12579.93 23490.55 18295.88 152
ACMP84.23 889.01 14388.35 14090.99 17394.73 15581.27 16595.07 10995.89 13586.48 12683.67 25294.30 14969.33 24197.99 15187.10 13288.55 21493.72 252
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 14488.26 14690.94 17694.05 18580.78 18191.71 26295.38 17381.55 23888.63 13493.91 17075.04 16495.47 30582.47 18991.61 17296.57 127
iter_conf0588.85 14588.08 14991.17 16194.27 17981.64 15495.18 10192.15 28086.23 13387.28 16094.07 15663.89 29097.55 17990.63 8889.00 20994.32 217
TranMVSNet+NR-MVSNet88.84 14687.95 15291.49 14792.68 23283.01 11994.92 11896.31 10189.88 3785.53 19793.85 17376.63 14596.96 23181.91 20179.87 31894.50 208
CHOSEN 1792x268888.84 14687.69 15692.30 11296.14 9681.42 16390.01 29595.86 13774.52 32187.41 15693.94 16675.46 16098.36 11480.36 22895.53 10597.12 107
MVSTER88.84 14688.29 14490.51 18792.95 22580.44 18993.73 19495.01 19084.66 17087.15 16193.12 19672.79 19997.21 21787.86 11687.36 23693.87 238
test_cas_vis1_n_192088.83 14988.85 12788.78 24891.15 27976.72 27693.85 19094.93 19783.23 20092.81 6196.00 8461.17 30994.45 31591.67 7194.84 11995.17 175
OpenMVScopyleft83.78 1188.74 15087.29 16693.08 7392.70 23185.39 6496.57 3596.43 9578.74 27780.85 28896.07 8269.64 23699.01 6178.01 25596.65 9294.83 190
thisisatest053088.67 15187.61 15891.86 13194.87 14980.07 19994.63 13689.90 33484.00 17888.46 13793.78 17566.88 26698.46 10683.30 17592.65 16397.06 108
Effi-MVS+-dtu88.65 15288.35 14089.54 23193.33 21176.39 28294.47 14694.36 22287.70 10385.43 20789.56 29873.45 19097.26 21285.57 14891.28 17494.97 180
tttt051788.61 15387.78 15591.11 16594.96 14377.81 25895.35 8789.69 33785.09 16188.05 14494.59 14166.93 26498.48 10383.27 17692.13 17097.03 111
BH-untuned88.60 15488.13 14890.01 21495.24 13178.50 23993.29 21394.15 23084.75 16884.46 23093.40 18375.76 15497.40 19977.59 25894.52 12994.12 225
NR-MVSNet88.58 15587.47 16291.93 12693.04 22084.16 8794.77 12896.25 10789.05 6080.04 30293.29 18979.02 11897.05 22781.71 20880.05 31594.59 198
1112_ss88.42 15687.33 16591.72 13894.92 14680.98 17492.97 22894.54 21578.16 28883.82 24893.88 17178.78 12197.91 15779.45 23989.41 19996.26 136
WR-MVS88.38 15787.67 15790.52 18693.30 21280.18 19493.26 21595.96 12888.57 7585.47 20392.81 20676.12 14796.91 23581.24 21382.29 28194.47 213
BH-RMVSNet88.37 15887.48 16191.02 17095.28 12879.45 21892.89 23093.07 25785.45 15286.91 16894.84 13070.35 22797.76 16273.97 29294.59 12695.85 153
IterMVS-LS88.36 15987.91 15489.70 22793.80 19878.29 24693.73 19495.08 18985.73 14384.75 22291.90 23979.88 10696.92 23483.83 16982.51 27893.89 235
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16086.13 20694.85 2398.54 1386.60 3196.93 2297.19 3490.66 2292.85 5823.41 37685.02 5599.49 2491.99 6298.56 4698.47 31
LCM-MVSNet-Re88.30 16188.32 14388.27 26294.71 15772.41 32393.15 21990.98 31487.77 10179.25 31091.96 23778.35 12895.75 29383.04 17895.62 10496.65 124
jajsoiax88.24 16287.50 16090.48 19090.89 29280.14 19695.31 8995.65 15384.97 16384.24 24194.02 16165.31 28197.42 19288.56 10888.52 21693.89 235
VPNet88.20 16387.47 16290.39 19593.56 20679.46 21794.04 17795.54 16088.67 7186.96 16594.58 14269.33 24197.15 21984.05 16680.53 31094.56 201
TAPA-MVS84.62 688.16 16487.01 17491.62 14196.64 8080.65 18394.39 15396.21 11376.38 30186.19 18495.44 10579.75 10898.08 14462.75 34995.29 11396.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16587.28 16790.57 18294.96 14380.07 19994.27 16091.29 30786.74 12287.41 15694.00 16376.77 14296.20 27380.77 22179.31 32395.44 166
Anonymous2024052988.09 16686.59 19092.58 9896.53 8681.92 14995.99 6095.84 13874.11 32589.06 12995.21 11561.44 30498.81 8483.67 17387.47 23397.01 112
HyFIR lowres test88.09 16686.81 17891.93 12696.00 10580.63 18490.01 29595.79 14173.42 33187.68 15292.10 23173.86 18497.96 15380.75 22291.70 17197.19 102
mvs_tets88.06 16887.28 16790.38 19790.94 28879.88 20895.22 9895.66 15185.10 16084.21 24293.94 16663.53 29197.40 19988.50 10988.40 22093.87 238
F-COLMAP87.95 16986.80 17991.40 15196.35 9280.88 17894.73 13095.45 16779.65 26382.04 27694.61 13971.13 21398.50 10276.24 27391.05 17994.80 192
LS3D87.89 17086.32 20092.59 9796.07 10282.92 12395.23 9794.92 19875.66 30882.89 26695.98 8672.48 20399.21 4368.43 32395.23 11695.64 163
anonymousdsp87.84 17187.09 17090.12 20789.13 32580.54 18794.67 13495.55 15882.05 22183.82 24892.12 22871.47 21197.15 21987.15 12887.80 23292.67 289
v2v48287.84 17187.06 17190.17 20390.99 28479.23 22994.00 18295.13 18484.87 16485.53 19792.07 23474.45 17297.45 18884.71 15881.75 28993.85 241
WR-MVS_H87.80 17387.37 16489.10 24293.23 21378.12 24995.61 8197.30 2887.90 9683.72 25092.01 23679.65 11496.01 28176.36 27080.54 30993.16 274
AUN-MVS87.78 17486.54 19291.48 14894.82 15381.05 17293.91 18993.93 23783.00 20486.93 16693.53 18169.50 23897.67 16786.14 13877.12 33395.73 161
PCF-MVS84.11 1087.74 17586.08 21092.70 9294.02 18684.43 8389.27 30595.87 13673.62 33084.43 23294.33 14778.48 12798.86 7970.27 30994.45 13194.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 17686.13 20692.31 11196.66 7980.74 18294.87 12191.49 30280.47 25389.46 12395.44 10554.72 33798.23 12582.19 19589.89 19297.97 70
V4287.68 17686.86 17690.15 20590.58 30480.14 19694.24 16395.28 17883.66 18685.67 19191.33 25474.73 16997.41 19784.43 16281.83 28792.89 284
thres600view787.65 17886.67 18590.59 18196.08 10178.72 23294.88 12091.58 29887.06 11488.08 14292.30 22168.91 24998.10 13470.05 31691.10 17594.96 183
XXY-MVS87.65 17886.85 17790.03 21192.14 24280.60 18693.76 19395.23 18082.94 20684.60 22594.02 16174.27 17495.49 30481.04 21583.68 26594.01 233
Test_1112_low_res87.65 17886.51 19391.08 16694.94 14579.28 22691.77 26094.30 22476.04 30683.51 25792.37 21877.86 13497.73 16678.69 24789.13 20696.22 137
thres100view90087.63 18186.71 18390.38 19796.12 9778.55 23695.03 11291.58 29887.15 11188.06 14392.29 22268.91 24998.10 13470.13 31391.10 17594.48 211
CP-MVSNet87.63 18187.26 16988.74 25293.12 21676.59 27995.29 9396.58 8988.43 7883.49 25892.98 20075.28 16195.83 28978.97 24581.15 29793.79 243
thres40087.62 18386.64 18690.57 18295.99 10678.64 23494.58 13891.98 28886.94 11888.09 14091.77 24169.18 24698.10 13470.13 31391.10 17594.96 183
v114487.61 18486.79 18090.06 21091.01 28379.34 22293.95 18495.42 17283.36 19685.66 19291.31 25774.98 16597.42 19283.37 17482.06 28393.42 264
bld_raw_dy_0_6487.60 18586.73 18190.21 20191.72 25680.26 19395.09 10888.61 34285.68 14585.55 19494.38 14563.93 28996.66 24387.73 11887.84 23193.72 252
tfpn200view987.58 18686.64 18690.41 19495.99 10678.64 23494.58 13891.98 28886.94 11888.09 14091.77 24169.18 24698.10 13470.13 31391.10 17594.48 211
BH-w/o87.57 18787.05 17289.12 24194.90 14877.90 25492.41 24193.51 25082.89 20883.70 25191.34 25375.75 15597.07 22575.49 27893.49 14792.39 298
UniMVSNet_ETH3D87.53 18886.37 19791.00 17292.44 23578.96 23194.74 12995.61 15584.07 17785.36 21494.52 14359.78 31897.34 20482.93 18087.88 22996.71 123
ET-MVSNet_ETH3D87.51 18985.91 21892.32 11093.70 20383.93 9192.33 24690.94 31584.16 17472.09 34892.52 21469.90 23195.85 28889.20 10288.36 22197.17 103
131487.51 18986.57 19190.34 19992.42 23679.74 21292.63 23695.35 17778.35 28380.14 29991.62 24874.05 18097.15 21981.05 21493.53 14594.12 225
v887.50 19186.71 18389.89 21791.37 26979.40 21994.50 14295.38 17384.81 16783.60 25591.33 25476.05 14897.42 19282.84 18380.51 31292.84 286
Fast-Effi-MVS+-dtu87.44 19286.72 18289.63 22992.04 24677.68 26394.03 17893.94 23685.81 14082.42 27091.32 25670.33 22897.06 22680.33 23090.23 18694.14 224
MVS87.44 19286.10 20991.44 15092.61 23383.62 10092.63 23695.66 15167.26 35381.47 28092.15 22677.95 13198.22 12779.71 23695.48 10792.47 295
FE-MVS87.40 19486.02 21291.57 14494.56 16679.69 21390.27 28593.72 24780.57 25288.80 13291.62 24865.32 28098.59 9874.97 28694.33 13496.44 130
FMVSNet387.40 19486.11 20891.30 15693.79 20083.64 9994.20 16594.81 20783.89 18184.37 23391.87 24068.45 25596.56 25478.23 25285.36 25093.70 254
test_fmvs187.34 19687.56 15986.68 30290.59 30371.80 32794.01 18094.04 23578.30 28491.97 8295.22 11356.28 33093.71 32992.89 3794.71 12194.52 203
thisisatest051587.33 19785.99 21391.37 15393.49 20779.55 21590.63 28189.56 34080.17 25587.56 15490.86 27067.07 26398.28 12381.50 21093.02 15896.29 134
PS-CasMVS87.32 19886.88 17588.63 25592.99 22376.33 28495.33 8896.61 8788.22 8683.30 26393.07 19873.03 19795.79 29278.36 24981.00 30393.75 250
GBi-Net87.26 19985.98 21491.08 16694.01 18783.10 11395.14 10594.94 19383.57 18884.37 23391.64 24466.59 27196.34 26978.23 25285.36 25093.79 243
test187.26 19985.98 21491.08 16694.01 18783.10 11395.14 10594.94 19383.57 18884.37 23391.64 24466.59 27196.34 26978.23 25285.36 25093.79 243
v119287.25 20186.33 19990.00 21590.76 29779.04 23093.80 19195.48 16382.57 21285.48 20291.18 26173.38 19397.42 19282.30 19382.06 28393.53 258
v1087.25 20186.38 19689.85 21891.19 27579.50 21694.48 14395.45 16783.79 18483.62 25491.19 25975.13 16297.42 19281.94 20080.60 30792.63 291
DP-MVS87.25 20185.36 23392.90 8297.65 5583.24 10994.81 12592.00 28674.99 31681.92 27895.00 12172.66 20099.05 5366.92 33492.33 16896.40 131
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24377.40 26890.91 27794.81 20781.28 24384.32 23890.08 28779.26 11696.62 24683.81 17082.94 27393.04 279
test250687.21 20586.28 20290.02 21395.62 12073.64 30696.25 4671.38 37687.89 9890.45 10896.65 5855.29 33598.09 14286.03 14296.94 8398.33 41
thres20087.21 20586.24 20490.12 20795.36 12678.53 23793.26 21592.10 28286.42 12888.00 14591.11 26569.24 24598.00 15069.58 31791.04 18093.83 242
v14419287.19 20786.35 19889.74 22490.64 30178.24 24793.92 18795.43 17081.93 22685.51 19991.05 26774.21 17797.45 18882.86 18281.56 29193.53 258
FMVSNet287.19 20785.82 22091.30 15694.01 18783.67 9894.79 12694.94 19383.57 18883.88 24792.05 23566.59 27196.51 25777.56 25985.01 25393.73 251
c3_l87.14 20986.50 19489.04 24492.20 24077.26 26991.22 27394.70 21282.01 22484.34 23790.43 28078.81 12096.61 24983.70 17281.09 29893.25 269
Baseline_NR-MVSNet87.07 21086.63 18888.40 25891.44 26477.87 25694.23 16492.57 26984.12 17685.74 19092.08 23277.25 13796.04 27882.29 19479.94 31691.30 318
v14887.04 21186.32 20089.21 23890.94 28877.26 26993.71 19694.43 21884.84 16684.36 23690.80 27376.04 14997.05 22782.12 19679.60 32093.31 266
test_fmvs1_n87.03 21287.04 17386.97 29489.74 32171.86 32594.55 14094.43 21878.47 28091.95 8495.50 10451.16 34793.81 32793.02 3694.56 12795.26 172
v192192086.97 21386.06 21189.69 22890.53 30778.11 25093.80 19195.43 17081.90 22885.33 21591.05 26772.66 20097.41 19782.05 19881.80 28893.53 258
tt080586.92 21485.74 22690.48 19092.22 23979.98 20695.63 8094.88 20183.83 18384.74 22392.80 20757.61 32697.67 16785.48 14984.42 25793.79 243
miper_enhance_ethall86.90 21586.18 20589.06 24391.66 26177.58 26590.22 29194.82 20679.16 26984.48 22989.10 30179.19 11796.66 24384.06 16582.94 27392.94 282
v7n86.81 21685.76 22489.95 21690.72 29979.25 22895.07 10995.92 13084.45 17382.29 27190.86 27072.60 20297.53 18279.42 24280.52 31193.08 278
PEN-MVS86.80 21786.27 20388.40 25892.32 23875.71 29095.18 10196.38 9887.97 9382.82 26793.15 19473.39 19295.92 28476.15 27479.03 32593.59 256
cl2286.78 21885.98 21489.18 24092.34 23777.62 26490.84 27894.13 23281.33 24283.97 24690.15 28573.96 18296.60 25184.19 16482.94 27393.33 265
v124086.78 21885.85 21989.56 23090.45 30877.79 25993.61 19995.37 17581.65 23485.43 20791.15 26371.50 21097.43 19181.47 21182.05 28593.47 262
TR-MVS86.78 21885.76 22489.82 22094.37 17578.41 24192.47 24092.83 26281.11 24886.36 18092.40 21768.73 25297.48 18573.75 29589.85 19493.57 257
PatchMatch-RL86.77 22185.54 22790.47 19395.88 10982.71 13190.54 28292.31 27579.82 26184.32 23891.57 25268.77 25196.39 26573.16 29793.48 14992.32 301
PAPM86.68 22285.39 23190.53 18493.05 21979.33 22589.79 29894.77 21078.82 27481.95 27793.24 19176.81 14097.30 20666.94 33293.16 15694.95 186
pm-mvs186.61 22385.54 22789.82 22091.44 26480.18 19495.28 9594.85 20383.84 18281.66 27992.62 21172.45 20596.48 25979.67 23778.06 32692.82 287
GA-MVS86.61 22385.27 23590.66 18091.33 27278.71 23390.40 28493.81 24485.34 15485.12 21789.57 29761.25 30697.11 22380.99 21889.59 19896.15 138
Anonymous2023121186.59 22585.13 23790.98 17596.52 8781.50 15796.14 5296.16 11473.78 32883.65 25392.15 22663.26 29397.37 20382.82 18481.74 29094.06 230
test_vis1_n86.56 22686.49 19586.78 30188.51 33072.69 31594.68 13393.78 24579.55 26490.70 10595.31 10948.75 35293.28 33593.15 3393.99 13694.38 215
DIV-MVS_self_test86.53 22785.78 22188.75 25092.02 24876.45 28190.74 27994.30 22481.83 23283.34 26190.82 27275.75 15596.57 25281.73 20781.52 29393.24 270
cl____86.52 22885.78 22188.75 25092.03 24776.46 28090.74 27994.30 22481.83 23283.34 26190.78 27475.74 15796.57 25281.74 20681.54 29293.22 271
eth_miper_zixun_eth86.50 22985.77 22388.68 25391.94 24975.81 28990.47 28394.89 19982.05 22184.05 24390.46 27975.96 15096.77 23982.76 18679.36 32293.46 263
baseline286.50 22985.39 23189.84 21991.12 28076.70 27791.88 25788.58 34382.35 21779.95 30390.95 26973.42 19197.63 17480.27 23189.95 19195.19 174
EPNet_dtu86.49 23185.94 21788.14 26790.24 31172.82 31394.11 16992.20 27886.66 12579.42 30992.36 21973.52 18895.81 29171.26 30393.66 14195.80 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 23284.98 24090.80 17892.10 24580.92 17790.24 28995.91 13273.10 33483.57 25688.39 31265.15 28297.46 18784.90 15591.43 17394.03 232
SCA86.32 23385.18 23689.73 22692.15 24176.60 27891.12 27491.69 29583.53 19185.50 20088.81 30566.79 26796.48 25976.65 26790.35 18596.12 141
LTVRE_ROB82.13 1386.26 23484.90 24390.34 19994.44 17381.50 15792.31 24894.89 19983.03 20379.63 30792.67 20969.69 23597.79 16071.20 30486.26 24691.72 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23585.48 22987.98 27191.65 26274.92 29594.93 11795.75 14487.36 10982.26 27293.04 19972.85 19895.82 29074.04 29177.46 33193.20 272
XVG-ACMP-BASELINE86.00 23684.84 24589.45 23591.20 27478.00 25191.70 26395.55 15885.05 16282.97 26592.25 22454.49 33897.48 18582.93 18087.45 23592.89 284
MVP-Stereo85.97 23784.86 24489.32 23690.92 29082.19 14392.11 25494.19 22878.76 27678.77 31391.63 24768.38 25696.56 25475.01 28593.95 13789.20 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 23885.09 23888.35 26090.79 29577.42 26791.83 25995.70 14780.77 25180.08 30190.02 28866.74 26996.37 26681.88 20287.97 22891.26 319
test-LLR85.87 23985.41 23087.25 28790.95 28671.67 32989.55 29989.88 33583.41 19484.54 22787.95 31967.25 25995.11 31081.82 20393.37 15294.97 180
FMVSNet185.85 24084.11 25491.08 16692.81 22983.10 11395.14 10594.94 19381.64 23582.68 26891.64 24459.01 32296.34 26975.37 28083.78 26293.79 243
PatchmatchNetpermissive85.85 24084.70 24789.29 23791.76 25575.54 29188.49 31791.30 30681.63 23685.05 21888.70 30971.71 20796.24 27274.61 28989.05 20796.08 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 24284.94 24288.26 26391.16 27872.58 32189.47 30391.04 31376.26 30486.45 17889.97 29070.74 22096.86 23882.35 19287.07 24195.34 171
PMMVS85.71 24384.96 24187.95 27288.90 32877.09 27188.68 31590.06 32972.32 34086.47 17590.76 27572.15 20694.40 31781.78 20593.49 14792.36 299
PVSNet78.82 1885.55 24484.65 24888.23 26594.72 15671.93 32487.12 33292.75 26578.80 27584.95 22090.53 27864.43 28696.71 24274.74 28793.86 13996.06 146
IterMVS-SCA-FT85.45 24584.53 25188.18 26691.71 25876.87 27490.19 29292.65 26885.40 15381.44 28190.54 27766.79 26795.00 31381.04 21581.05 29992.66 290
pmmvs485.43 24683.86 25990.16 20490.02 31682.97 12190.27 28592.67 26775.93 30780.73 28991.74 24371.05 21495.73 29578.85 24683.46 26991.78 309
mvsany_test185.42 24785.30 23485.77 31287.95 34175.41 29387.61 32980.97 36576.82 29888.68 13395.83 9277.44 13690.82 35385.90 14386.51 24491.08 327
ACMH80.38 1785.36 24883.68 26190.39 19594.45 17280.63 18494.73 13094.85 20382.09 22077.24 32192.65 21060.01 31697.58 17672.25 30184.87 25492.96 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 24984.64 24987.49 28190.77 29672.59 32094.01 18094.40 22184.72 16979.62 30893.17 19361.91 30096.72 24081.99 19981.16 29593.16 274
CR-MVSNet85.35 24983.76 26090.12 20790.58 30479.34 22285.24 34491.96 29078.27 28585.55 19487.87 32271.03 21595.61 29673.96 29389.36 20195.40 168
tpmrst85.35 24984.99 23986.43 30490.88 29367.88 35088.71 31491.43 30480.13 25686.08 18688.80 30773.05 19596.02 28082.48 18883.40 27195.40 168
miper_lstm_enhance85.27 25284.59 25087.31 28491.28 27374.63 29687.69 32694.09 23481.20 24781.36 28389.85 29374.97 16694.30 32081.03 21779.84 31993.01 280
IB-MVS80.51 1585.24 25383.26 26591.19 15992.13 24379.86 20991.75 26191.29 30783.28 19880.66 29188.49 31161.28 30598.46 10680.99 21879.46 32195.25 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 25483.99 25788.65 25492.47 23478.40 24279.68 36492.76 26474.90 31881.41 28289.59 29669.85 23495.51 30179.92 23595.29 11392.03 305
RPSCF85.07 25584.27 25287.48 28292.91 22670.62 33991.69 26492.46 27076.20 30582.67 26995.22 11363.94 28897.29 20977.51 26085.80 24894.53 202
MS-PatchMatch85.05 25684.16 25387.73 27591.42 26778.51 23891.25 27293.53 24977.50 29180.15 29891.58 25061.99 29995.51 30175.69 27794.35 13389.16 344
ACMH+81.04 1485.05 25683.46 26489.82 22094.66 16079.37 22094.44 14894.12 23382.19 21978.04 31692.82 20558.23 32497.54 18173.77 29482.90 27692.54 292
IterMVS84.88 25883.98 25887.60 27791.44 26476.03 28690.18 29392.41 27183.24 19981.06 28790.42 28166.60 27094.28 32179.46 23880.98 30492.48 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25983.09 26790.14 20693.80 19880.05 20189.18 30893.09 25678.89 27278.19 31491.91 23865.86 27997.27 21068.47 32288.45 21893.11 276
tpm84.73 26084.02 25686.87 29990.33 30968.90 34689.06 31089.94 33280.85 25085.75 18989.86 29268.54 25495.97 28277.76 25684.05 26195.75 158
tfpnnormal84.72 26183.23 26689.20 23992.79 23080.05 20194.48 14395.81 13982.38 21581.08 28691.21 25869.01 24896.95 23261.69 35180.59 30890.58 333
CVMVSNet84.69 26284.79 24684.37 32391.84 25264.92 35993.70 19791.47 30366.19 35586.16 18595.28 11067.18 26193.33 33480.89 22090.42 18494.88 188
test-mter84.54 26383.64 26287.25 28790.95 28671.67 32989.55 29989.88 33579.17 26884.54 22787.95 31955.56 33295.11 31081.82 20393.37 15294.97 180
TransMVSNet (Re)84.43 26483.06 26888.54 25691.72 25678.44 24095.18 10192.82 26382.73 21079.67 30692.12 22873.49 18995.96 28371.10 30868.73 35591.21 321
pmmvs584.21 26582.84 27288.34 26188.95 32776.94 27392.41 24191.91 29275.63 30980.28 29691.18 26164.59 28595.57 29777.09 26583.47 26892.53 293
tpm284.08 26682.94 26987.48 28291.39 26871.27 33189.23 30790.37 32371.95 34284.64 22489.33 29967.30 25896.55 25675.17 28287.09 24094.63 195
test_fmvs283.98 26784.03 25583.83 32887.16 34367.53 35393.93 18692.89 26077.62 29086.89 17193.53 18147.18 35792.02 34690.54 9086.51 24491.93 307
COLMAP_ROBcopyleft80.39 1683.96 26882.04 27589.74 22495.28 12879.75 21194.25 16192.28 27675.17 31478.02 31793.77 17658.60 32397.84 15965.06 34285.92 24791.63 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 26981.53 27991.21 15890.58 30479.34 22285.24 34496.76 7371.44 34485.55 19482.97 35270.87 21898.91 7561.01 35389.36 20195.40 168
SixPastTwentyTwo83.91 27082.90 27086.92 29690.99 28470.67 33893.48 20391.99 28785.54 15077.62 32092.11 23060.59 31296.87 23776.05 27577.75 32893.20 272
EPMVS83.90 27182.70 27387.51 27990.23 31272.67 31688.62 31681.96 36381.37 24185.01 21988.34 31366.31 27494.45 31575.30 28187.12 23995.43 167
TESTMET0.1,183.74 27282.85 27186.42 30589.96 31771.21 33389.55 29987.88 34577.41 29283.37 26087.31 32756.71 32893.65 33180.62 22592.85 16294.40 214
MVS_030483.46 27381.92 27688.10 26890.63 30277.49 26693.26 21593.75 24680.04 25880.44 29587.24 32947.94 35495.55 29875.79 27688.16 22391.26 319
pmmvs683.42 27481.60 27888.87 24788.01 33977.87 25694.96 11594.24 22774.67 32078.80 31291.09 26660.17 31596.49 25877.06 26675.40 33992.23 303
AllTest83.42 27481.39 28089.52 23295.01 13977.79 25993.12 22090.89 31777.41 29276.12 32993.34 18454.08 34097.51 18368.31 32484.27 25993.26 267
tpmvs83.35 27682.07 27487.20 29191.07 28271.00 33688.31 32091.70 29478.91 27180.49 29487.18 33069.30 24497.08 22468.12 32783.56 26793.51 261
USDC82.76 27781.26 28287.26 28691.17 27674.55 29789.27 30593.39 25278.26 28675.30 33492.08 23254.43 33996.63 24571.64 30285.79 24990.61 330
Patchmtry82.71 27880.93 28488.06 26990.05 31576.37 28384.74 34991.96 29072.28 34181.32 28487.87 32271.03 21595.50 30368.97 31980.15 31492.32 301
PatchT82.68 27981.27 28186.89 29890.09 31470.94 33784.06 35190.15 32674.91 31785.63 19383.57 34869.37 23994.87 31465.19 33988.50 21794.84 189
MIMVSNet82.59 28080.53 28588.76 24991.51 26378.32 24486.57 33590.13 32779.32 26580.70 29088.69 31052.98 34493.07 33966.03 33788.86 21194.90 187
test0.0.03 182.41 28181.69 27784.59 32188.23 33672.89 31290.24 28987.83 34683.41 19479.86 30489.78 29467.25 25988.99 36165.18 34083.42 27091.90 308
EG-PatchMatch MVS82.37 28280.34 28888.46 25790.27 31079.35 22192.80 23394.33 22377.14 29673.26 34590.18 28447.47 35696.72 24070.25 31087.32 23889.30 341
tpm cat181.96 28380.27 28987.01 29391.09 28171.02 33587.38 33091.53 30166.25 35480.17 29786.35 33668.22 25796.15 27669.16 31882.29 28193.86 240
our_test_381.93 28480.46 28786.33 30688.46 33373.48 30888.46 31891.11 30976.46 29976.69 32588.25 31566.89 26594.36 31868.75 32079.08 32491.14 323
ppachtmachnet_test81.84 28580.07 29387.15 29288.46 33374.43 30089.04 31192.16 27975.33 31277.75 31888.99 30266.20 27595.37 30665.12 34177.60 32991.65 311
gg-mvs-nofinetune81.77 28679.37 29988.99 24690.85 29477.73 26286.29 33679.63 36874.88 31983.19 26469.05 36660.34 31396.11 27775.46 27994.64 12593.11 276
CL-MVSNet_self_test81.74 28780.53 28585.36 31585.96 34972.45 32290.25 28793.07 25781.24 24579.85 30587.29 32870.93 21792.52 34266.95 33169.23 35191.11 325
Patchmatch-RL test81.67 28879.96 29486.81 30085.42 35471.23 33282.17 35887.50 34978.47 28077.19 32282.50 35370.81 21993.48 33282.66 18772.89 34395.71 162
ADS-MVSNet281.66 28979.71 29787.50 28091.35 27074.19 30283.33 35488.48 34472.90 33682.24 27385.77 34064.98 28393.20 33764.57 34383.74 26395.12 176
K. test v381.59 29080.15 29285.91 31189.89 31969.42 34592.57 23887.71 34785.56 14973.44 34489.71 29555.58 33195.52 30077.17 26369.76 34992.78 288
ADS-MVSNet81.56 29179.78 29586.90 29791.35 27071.82 32683.33 35489.16 34172.90 33682.24 27385.77 34064.98 28393.76 32864.57 34383.74 26395.12 176
FMVSNet581.52 29279.60 29887.27 28591.17 27677.95 25291.49 26792.26 27776.87 29776.16 32887.91 32151.67 34592.34 34367.74 32881.16 29591.52 313
dp81.47 29380.23 29085.17 31889.92 31865.49 35786.74 33390.10 32876.30 30381.10 28587.12 33162.81 29595.92 28468.13 32679.88 31794.09 228
Patchmatch-test81.37 29479.30 30087.58 27890.92 29074.16 30380.99 36087.68 34870.52 34876.63 32688.81 30571.21 21292.76 34160.01 35786.93 24295.83 155
EU-MVSNet81.32 29580.95 28382.42 33488.50 33263.67 36093.32 20891.33 30564.02 35880.57 29392.83 20461.21 30892.27 34476.34 27180.38 31391.32 317
test_040281.30 29679.17 30487.67 27693.19 21478.17 24892.98 22791.71 29375.25 31376.02 33190.31 28259.23 32096.37 26650.22 36583.63 26688.47 350
JIA-IIPM81.04 29778.98 30787.25 28788.64 32973.48 30881.75 35989.61 33973.19 33382.05 27573.71 36366.07 27895.87 28771.18 30684.60 25692.41 297
Anonymous2023120681.03 29879.77 29684.82 32087.85 34270.26 34191.42 26892.08 28373.67 32977.75 31889.25 30062.43 29793.08 33861.50 35282.00 28691.12 324
pmmvs-eth3d80.97 29978.72 30887.74 27484.99 35679.97 20790.11 29491.65 29675.36 31173.51 34386.03 33759.45 31993.96 32675.17 28272.21 34489.29 342
testgi80.94 30080.20 29183.18 32987.96 34066.29 35491.28 27090.70 32183.70 18578.12 31592.84 20351.37 34690.82 35363.34 34682.46 27992.43 296
CMPMVSbinary59.16 2180.52 30179.20 30384.48 32283.98 35767.63 35289.95 29793.84 24364.79 35766.81 35891.14 26457.93 32595.17 30876.25 27288.10 22490.65 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 30279.21 30284.11 32685.75 35267.89 34992.86 23193.23 25475.61 31075.59 33387.47 32650.03 34894.33 31971.14 30781.21 29490.12 335
LF4IMVS80.37 30379.07 30684.27 32586.64 34569.87 34489.39 30491.05 31276.38 30174.97 33690.00 28947.85 35594.25 32274.55 29080.82 30688.69 348
KD-MVS_self_test80.20 30479.24 30183.07 33085.64 35365.29 35891.01 27693.93 23778.71 27876.32 32786.40 33559.20 32192.93 34072.59 29969.35 35091.00 328
UnsupCasMVSNet_eth80.07 30578.27 30985.46 31485.24 35572.63 31988.45 31994.87 20282.99 20571.64 35188.07 31856.34 32991.75 34973.48 29663.36 36292.01 306
test20.0379.95 30679.08 30582.55 33285.79 35167.74 35191.09 27591.08 31081.23 24674.48 34089.96 29161.63 30190.15 35560.08 35576.38 33589.76 336
TDRefinement79.81 30777.34 31187.22 29079.24 36675.48 29293.12 22092.03 28576.45 30075.01 33591.58 25049.19 35196.44 26370.22 31269.18 35289.75 337
TinyColmap79.76 30877.69 31085.97 30891.71 25873.12 31089.55 29990.36 32475.03 31572.03 34990.19 28346.22 35896.19 27563.11 34781.03 30088.59 349
OpenMVS_ROBcopyleft74.94 1979.51 30977.03 31686.93 29587.00 34476.23 28592.33 24690.74 32068.93 35174.52 33988.23 31649.58 35096.62 24657.64 35984.29 25887.94 352
MIMVSNet179.38 31077.28 31285.69 31386.35 34673.67 30591.61 26692.75 26578.11 28972.64 34788.12 31748.16 35391.97 34860.32 35477.49 33091.43 316
YYNet179.22 31177.20 31385.28 31788.20 33872.66 31785.87 33890.05 33174.33 32362.70 36087.61 32466.09 27792.03 34566.94 33272.97 34291.15 322
MDA-MVSNet_test_wron79.21 31277.19 31485.29 31688.22 33772.77 31485.87 33890.06 32974.34 32262.62 36187.56 32566.14 27691.99 34766.90 33573.01 34191.10 326
MDA-MVSNet-bldmvs78.85 31376.31 31886.46 30389.76 32073.88 30488.79 31390.42 32279.16 26959.18 36288.33 31460.20 31494.04 32362.00 35068.96 35391.48 315
KD-MVS_2432*160078.50 31476.02 32185.93 30986.22 34774.47 29884.80 34792.33 27379.29 26676.98 32385.92 33853.81 34293.97 32467.39 32957.42 36789.36 339
miper_refine_blended78.50 31476.02 32185.93 30986.22 34774.47 29884.80 34792.33 27379.29 26676.98 32385.92 33853.81 34293.97 32467.39 32957.42 36789.36 339
PM-MVS78.11 31676.12 32084.09 32783.54 35970.08 34288.97 31285.27 35479.93 25974.73 33886.43 33434.70 36593.48 33279.43 24172.06 34588.72 347
test_vis1_rt77.96 31776.46 31782.48 33385.89 35071.74 32890.25 28778.89 36971.03 34771.30 35281.35 35542.49 36191.05 35284.55 16082.37 28084.65 355
test_fmvs377.67 31877.16 31579.22 33879.52 36561.14 36492.34 24591.64 29773.98 32678.86 31186.59 33227.38 36987.03 36388.12 11475.97 33789.50 338
PVSNet_073.20 2077.22 31974.83 32484.37 32390.70 30071.10 33483.09 35689.67 33872.81 33873.93 34283.13 35060.79 31193.70 33068.54 32150.84 37088.30 351
DSMNet-mixed76.94 32076.29 31978.89 33983.10 36056.11 37487.78 32479.77 36760.65 36175.64 33288.71 30861.56 30388.34 36260.07 35689.29 20392.21 304
new-patchmatchnet76.41 32175.17 32380.13 33682.65 36259.61 36687.66 32791.08 31078.23 28769.85 35483.22 34954.76 33691.63 35164.14 34564.89 36089.16 344
UnsupCasMVSNet_bld76.23 32273.27 32585.09 31983.79 35872.92 31185.65 34193.47 25171.52 34368.84 35679.08 35849.77 34993.21 33666.81 33660.52 36489.13 346
mvsany_test374.95 32373.26 32680.02 33774.61 36863.16 36285.53 34278.42 37074.16 32474.89 33786.46 33336.02 36489.09 36082.39 19166.91 35687.82 353
MVS-HIRNet73.70 32472.20 32778.18 34291.81 25456.42 37382.94 35782.58 36155.24 36368.88 35566.48 36755.32 33495.13 30958.12 35888.42 21983.01 358
new_pmnet72.15 32570.13 32978.20 34182.95 36165.68 35583.91 35282.40 36262.94 36064.47 35979.82 35742.85 36086.26 36557.41 36074.44 34082.65 360
test_f71.95 32670.87 32875.21 34574.21 37059.37 36785.07 34685.82 35165.25 35670.42 35383.13 35023.62 37082.93 37078.32 25071.94 34683.33 357
pmmvs371.81 32768.71 33081.11 33575.86 36770.42 34086.74 33383.66 35858.95 36268.64 35780.89 35636.93 36389.52 35863.10 34863.59 36183.39 356
APD_test169.04 32866.26 33277.36 34480.51 36362.79 36385.46 34383.51 35954.11 36559.14 36384.79 34423.40 37289.61 35755.22 36170.24 34879.68 363
N_pmnet68.89 32968.44 33170.23 34989.07 32628.79 38388.06 32119.50 38469.47 35071.86 35084.93 34261.24 30791.75 34954.70 36277.15 33290.15 334
LCM-MVSNet66.00 33062.16 33577.51 34364.51 37858.29 36883.87 35390.90 31648.17 36754.69 36473.31 36416.83 37886.75 36465.47 33861.67 36387.48 354
test_vis3_rt65.12 33162.60 33372.69 34771.44 37160.71 36587.17 33165.55 37763.80 35953.22 36565.65 36914.54 37989.44 35976.65 26765.38 35867.91 368
FPMVS64.63 33262.55 33470.88 34870.80 37256.71 36984.42 35084.42 35651.78 36649.57 36681.61 35423.49 37181.48 37140.61 37276.25 33674.46 364
EGC-MVSNET61.97 33356.37 33778.77 34089.63 32373.50 30789.12 30982.79 3600.21 3811.24 38284.80 34339.48 36290.04 35644.13 36775.94 33872.79 365
PMMVS259.60 33456.40 33669.21 35268.83 37546.58 37873.02 36977.48 37355.07 36449.21 36772.95 36517.43 37780.04 37249.32 36644.33 37280.99 362
testf159.54 33556.11 33869.85 35069.28 37356.61 37180.37 36276.55 37442.58 37045.68 36975.61 35911.26 38084.18 36743.20 36960.44 36568.75 366
APD_test259.54 33556.11 33869.85 35069.28 37356.61 37180.37 36276.55 37442.58 37045.68 36975.61 35911.26 38084.18 36743.20 36960.44 36568.75 366
ANet_high58.88 33754.22 34172.86 34656.50 38156.67 37080.75 36186.00 35073.09 33537.39 37364.63 37022.17 37379.49 37343.51 36823.96 37582.43 361
Gipumacopyleft57.99 33854.91 34067.24 35388.51 33065.59 35652.21 37290.33 32543.58 36942.84 37251.18 37320.29 37585.07 36634.77 37370.45 34751.05 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33948.46 34363.48 35445.72 38346.20 37973.41 36878.31 37141.03 37230.06 37565.68 3686.05 38283.43 36930.04 37465.86 35760.80 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 34048.47 34256.66 35652.26 38218.98 38541.51 37481.40 36410.10 37644.59 37175.01 36228.51 36768.16 37453.54 36349.31 37182.83 359
MVEpermissive39.65 2343.39 34138.59 34757.77 35556.52 38048.77 37755.38 37158.64 38129.33 37528.96 37652.65 3724.68 38364.62 37728.11 37533.07 37359.93 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 34242.29 34446.03 35865.58 37737.41 38073.51 36764.62 37833.99 37328.47 37747.87 37419.90 37667.91 37522.23 37624.45 37432.77 373
EMVS42.07 34341.12 34544.92 35963.45 37935.56 38273.65 36663.48 37933.05 37426.88 37845.45 37521.27 37467.14 37619.80 37723.02 37632.06 374
tmp_tt35.64 34439.24 34624.84 36014.87 38423.90 38462.71 37051.51 3836.58 37836.66 37462.08 37144.37 35930.34 38052.40 36422.00 37720.27 375
cdsmvs_eth3d_5k22.14 34529.52 3480.00 3640.00 3870.00 3880.00 37595.76 1430.00 3820.00 38394.29 15075.66 1580.00 3830.00 3810.00 3810.00 379
wuyk23d21.27 34620.48 34923.63 36168.59 37636.41 38149.57 3736.85 3859.37 3777.89 3794.46 3814.03 38431.37 37917.47 37816.07 3783.12 376
testmvs8.92 34711.52 3501.12 3631.06 3850.46 38786.02 3370.65 3860.62 3792.74 3809.52 3790.31 3860.45 3822.38 3790.39 3792.46 378
test1238.76 34811.22 3511.39 3620.85 3860.97 38685.76 3400.35 3870.54 3802.45 3818.14 3800.60 3850.48 3812.16 3800.17 3802.71 377
ab-mvs-re7.82 34910.43 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38393.88 1710.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.64 3508.86 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38279.70 1100.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS198.86 185.54 6398.29 197.49 689.79 4296.29 16
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 299.06 999.07 5
PC_three_145282.47 21397.09 1097.07 3992.72 198.04 14792.70 4399.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 299.06 999.07 5
test_one_060198.58 1185.83 5797.44 1591.05 1296.78 1498.06 691.45 11
eth-test20.00 387
eth-test0.00 387
ZD-MVS98.15 3486.62 3097.07 4483.63 18794.19 3296.91 4587.57 3199.26 4091.99 6298.44 49
RE-MVS-def93.68 4497.92 4384.57 7496.28 4396.76 7387.46 10693.75 3997.43 1982.94 7592.73 3997.80 7197.88 75
IU-MVS98.77 586.00 4796.84 6481.26 24497.26 795.50 1199.13 399.03 7
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3792.59 298.94 7392.25 5198.99 1498.84 13
test_241102_TWO97.44 1590.31 2697.62 598.07 491.46 1099.58 895.66 599.12 698.98 9
test_241102_ONE98.77 585.99 4997.44 1590.26 3197.71 197.96 1092.31 499.38 29
9.1494.47 1897.79 4996.08 5597.44 1586.13 13795.10 2597.40 2188.34 2299.22 4293.25 3298.70 32
save fliter97.85 4685.63 6295.21 9996.82 6789.44 49
test_0728_THIRD90.75 1797.04 1198.05 892.09 699.55 1495.64 799.13 399.13 2
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 699.61 395.62 999.08 798.99 8
test072698.78 385.93 5297.19 1197.47 1190.27 2997.64 498.13 191.47 8
GSMVS96.12 141
test_part298.55 1287.22 1696.40 15
sam_mvs171.70 20896.12 141
sam_mvs70.60 221
ambc83.06 33179.99 36463.51 36177.47 36592.86 26174.34 34184.45 34528.74 36695.06 31273.06 29868.89 35490.61 330
MTGPAbinary96.97 49
test_post188.00 3229.81 37869.31 24395.53 29976.65 267
test_post10.29 37770.57 22595.91 286
patchmatchnet-post83.76 34771.53 20996.48 259
GG-mvs-BLEND87.94 27389.73 32277.91 25387.80 32378.23 37280.58 29283.86 34659.88 31795.33 30771.20 30492.22 16990.60 332
MTMP96.16 4960.64 380
gm-plane-assit89.60 32468.00 34877.28 29588.99 30297.57 17779.44 240
test9_res91.91 6698.71 3098.07 64
TEST997.53 5886.49 3494.07 17496.78 7081.61 23792.77 6396.20 7587.71 2899.12 49
test_897.49 6086.30 4294.02 17996.76 7381.86 23092.70 6796.20 7587.63 2999.02 59
agg_prior290.54 9098.68 3598.27 50
agg_prior97.38 6385.92 5496.72 7992.16 7798.97 70
TestCases89.52 23295.01 13977.79 25990.89 31777.41 29276.12 32993.34 18454.08 34097.51 18368.31 32484.27 25993.26 267
test_prior485.96 5194.11 169
test_prior294.12 16887.67 10492.63 6896.39 7086.62 3691.50 7398.67 37
test_prior93.82 5697.29 6784.49 7896.88 6098.87 7798.11 63
旧先验293.36 20771.25 34594.37 2997.13 22286.74 133
新几何293.11 222
新几何193.10 7297.30 6684.35 8595.56 15771.09 34691.26 10196.24 7382.87 7698.86 7979.19 24498.10 6096.07 145
旧先验196.79 7681.81 15195.67 14996.81 5186.69 3597.66 7596.97 114
无先验93.28 21496.26 10573.95 32799.05 5380.56 22696.59 126
原ACMM292.94 229
原ACMM192.01 11897.34 6481.05 17296.81 6878.89 27290.45 10895.92 8882.65 7798.84 8380.68 22498.26 5596.14 139
test22296.55 8481.70 15392.22 25095.01 19068.36 35290.20 11296.14 8080.26 10397.80 7196.05 147
testdata298.75 8778.30 251
segment_acmp87.16 34
testdata90.49 18896.40 8977.89 25595.37 17572.51 33993.63 4296.69 5482.08 8897.65 17083.08 17797.39 7795.94 149
testdata192.15 25287.94 94
test1294.34 4797.13 7086.15 4596.29 10291.04 10385.08 5399.01 6198.13 5997.86 77
plane_prior794.70 15882.74 128
plane_prior694.52 16782.75 12674.23 175
plane_prior596.22 11098.12 13288.15 11189.99 18894.63 195
plane_prior494.86 126
plane_prior382.75 12690.26 3186.91 168
plane_prior295.85 6690.81 15
plane_prior194.59 162
plane_prior82.73 12995.21 9989.66 4689.88 193
n20.00 388
nn0.00 388
door-mid85.49 352
lessismore_v086.04 30788.46 33368.78 34780.59 36673.01 34690.11 28655.39 33396.43 26475.06 28465.06 35992.90 283
LGP-MVS_train91.12 16294.47 16981.49 15996.14 11586.73 12385.45 20495.16 11669.89 23298.10 13487.70 11989.23 20493.77 248
test1196.57 90
door85.33 353
HQP5-MVS81.56 155
HQP-NCC94.17 18194.39 15388.81 6685.43 207
ACMP_Plane94.17 18194.39 15388.81 6685.43 207
BP-MVS87.11 130
HQP4-MVS85.43 20797.96 15394.51 205
HQP3-MVS96.04 12389.77 195
HQP2-MVS73.83 185
NP-MVS94.37 17582.42 13893.98 164
MDTV_nov1_ep13_2view55.91 37587.62 32873.32 33284.59 22670.33 22874.65 28895.50 165
MDTV_nov1_ep1383.56 26391.69 26069.93 34387.75 32591.54 30078.60 27984.86 22188.90 30469.54 23796.03 27970.25 31088.93 210
ACMMP++_ref87.47 233
ACMMP++88.01 227
Test By Simon80.02 105
ITE_SJBPF88.24 26491.88 25177.05 27292.92 25985.54 15080.13 30093.30 18857.29 32796.20 27372.46 30084.71 25591.49 314
DeepMVS_CXcopyleft56.31 35774.23 36951.81 37656.67 38244.85 36848.54 36875.16 36127.87 36858.74 37840.92 37152.22 36958.39 371