This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 190.85 187.77 2395.30 270.98 6493.57 594.06 1177.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
MSP-MVS89.60 290.35 287.33 4295.27 571.25 5893.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
DVP-MVS89.51 389.91 488.30 794.28 2673.46 1692.90 1494.11 680.27 1291.35 1194.16 3678.35 1096.77 2089.59 194.22 5994.67 16
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 3694.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5493.83 293.96 1575.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SMA-MVS89.08 689.23 688.61 394.25 2773.73 892.40 2093.63 2174.77 10192.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3175.89 1696.81 1987.45 1696.44 793.05 86
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5593.00 4380.90 988.06 2494.06 4076.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7172.96 2493.73 393.67 2080.19 1488.10 2394.80 1473.76 3597.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1088.74 1087.64 3592.78 6071.95 4992.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4187.07 1896.01 1394.79 11
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 6969.03 10089.57 8293.39 3177.53 4289.79 1494.12 3878.98 996.58 3285.66 2495.72 2594.58 19
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6171.89 5291.43 4094.70 374.47 10788.86 1894.61 1975.23 2195.84 5386.62 2395.92 1794.78 13
SD-MVS88.06 1388.50 1286.71 5492.60 6772.71 2891.81 3593.19 3677.87 3390.32 1394.00 4274.83 2493.78 13387.63 1494.27 5893.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4592.83 5481.50 685.79 3993.47 5273.02 4197.00 1484.90 3094.94 4094.10 35
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4073.05 2190.86 4893.59 2276.27 7788.14 2295.09 1371.06 5596.67 2487.67 1396.37 1094.09 36
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4272.13 4691.41 4192.35 7274.62 10588.90 1793.85 4575.75 1796.00 4987.80 1294.63 4895.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1876.81 6085.24 4394.32 3071.76 5096.93 1585.53 2695.79 2194.32 28
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3772.35 4290.47 5889.69 15774.31 11089.16 1595.10 1175.65 1896.19 4187.07 1896.01 1394.79 11
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2674.75 10288.33 2194.43 2773.27 3897.02 1384.18 4394.84 4493.82 52
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2573.88 592.71 1992.65 6277.57 3883.84 6994.40 2972.24 4696.28 3785.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4372.04 4889.80 7693.50 2575.17 9686.34 3495.29 1070.86 5696.00 4988.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3376.78 6284.91 4894.44 2570.78 5796.61 2884.53 3694.89 4293.66 57
zzz-MVS87.53 2387.41 2687.90 1994.18 3174.25 390.23 6592.02 8279.45 1985.88 3694.80 1468.07 8096.21 3986.69 2195.34 3293.23 78
ETH3 D test640087.50 2487.44 2587.70 3293.71 3971.75 5390.62 5394.05 1470.80 16587.59 2893.51 4977.57 1196.63 2783.31 4895.77 2294.72 15
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3576.78 6284.66 5594.52 2068.81 7896.65 2584.53 3694.90 4194.00 42
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2872.39 4091.86 3492.83 5473.01 13688.58 1994.52 2073.36 3696.49 3384.26 4095.01 3892.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2294.12 3372.97 2392.39 2293.43 2976.89 5884.68 5493.99 4370.67 6096.82 1884.18 4395.01 3893.90 47
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 5894.52 2069.09 7596.70 2384.37 3994.83 4594.03 39
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7493.82 1773.07 13484.86 5392.89 6476.22 1496.33 3584.89 3295.13 3794.40 24
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3375.23 9384.91 4894.44 2570.78 5796.61 2883.75 4794.89 4293.66 57
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 7872.45 3990.02 7094.37 471.76 15087.28 2994.27 3175.18 2296.08 4585.16 2795.77 2293.80 55
MTAPA87.23 3287.00 3387.90 1994.18 3174.25 386.58 17292.02 8279.45 1985.88 3694.80 1468.07 8096.21 3986.69 2195.34 3293.23 78
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7294.17 3567.45 8796.60 3083.06 5394.50 5194.07 37
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3672.16 4592.19 2993.33 3276.07 8083.81 7093.95 4469.77 6996.01 4885.15 2894.66 4794.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3486.92 3587.68 3494.20 3073.86 693.98 192.82 5776.62 6783.68 7194.46 2467.93 8295.95 5184.20 4294.39 5493.23 78
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8272.32 4490.31 6393.94 1677.12 5282.82 8294.23 3472.13 4897.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4572.37 4191.26 4293.04 3976.62 6784.22 6393.36 5471.44 5396.76 2180.82 7195.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3472.11 4792.37 2492.56 6574.50 10686.84 3294.65 1867.31 8995.77 5684.80 3492.85 6792.84 93
test_prior386.73 3886.86 3886.33 6092.61 6569.59 9188.85 10092.97 4875.41 8984.91 4893.54 4774.28 3195.48 6383.31 4895.86 1893.91 45
PGM-MVS86.68 4086.27 4487.90 1994.22 2973.38 1790.22 6793.04 3975.53 8783.86 6894.42 2867.87 8496.64 2682.70 5894.57 5093.66 57
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 7576.87 5982.81 8394.25 3366.44 9696.24 3882.88 5794.28 5793.38 72
Regformer-286.63 4286.53 4186.95 4889.33 12071.24 6188.43 11492.05 8182.50 186.88 3190.09 11774.45 2695.61 5984.38 3890.63 8894.01 41
CANet86.45 4386.10 4887.51 3790.09 10070.94 6889.70 8092.59 6481.78 481.32 9991.43 9070.34 6297.23 984.26 4093.36 6394.37 25
train_agg86.43 4486.20 4587.13 4693.26 4972.96 2488.75 10491.89 9168.69 21085.00 4693.10 5874.43 2795.41 6784.97 2995.71 2693.02 88
PHI-MVS86.43 4486.17 4787.24 4390.88 8870.96 6692.27 2794.07 1072.45 13985.22 4491.90 7769.47 7196.42 3483.28 5195.94 1694.35 26
Regformer-186.41 4686.33 4286.64 5589.33 12070.93 6988.43 11491.39 11082.14 386.65 3390.09 11774.39 2995.01 8583.97 4590.63 8893.97 43
CSCG86.41 4686.19 4687.07 4792.91 5672.48 3690.81 4993.56 2373.95 11883.16 7791.07 9875.94 1595.19 7679.94 7994.38 5593.55 67
agg_prior186.22 4886.09 4986.62 5692.85 5771.94 5088.59 11191.78 9768.96 20584.41 5993.18 5774.94 2394.93 8684.75 3595.33 3493.01 89
APD-MVS_3200maxsize85.97 4985.88 5086.22 6392.69 6369.53 9391.93 3392.99 4573.54 12885.94 3594.51 2365.80 10595.61 5983.04 5592.51 7293.53 69
canonicalmvs85.91 5085.87 5186.04 6789.84 10669.44 9890.45 6193.00 4376.70 6688.01 2591.23 9273.28 3793.91 12881.50 6588.80 10994.77 14
ACMMPcopyleft85.89 5185.39 5487.38 4193.59 4472.63 3292.74 1793.18 3776.78 6280.73 10893.82 4664.33 11496.29 3682.67 5990.69 8793.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS85.76 5285.29 5887.17 4593.49 4671.08 6288.58 11292.42 7068.32 21584.61 5693.48 5072.32 4596.15 4479.00 8295.43 3094.28 30
TSAR-MVS + GP.85.71 5385.33 5586.84 5091.34 8072.50 3589.07 9487.28 21976.41 7085.80 3890.22 11574.15 3495.37 7281.82 6391.88 7492.65 99
Regformer-485.68 5485.45 5386.35 5988.95 13769.67 9088.29 12491.29 11281.73 585.36 4190.01 11972.62 4395.35 7383.28 5187.57 12194.03 39
alignmvs85.48 5585.32 5685.96 6889.51 11469.47 9589.74 7892.47 6676.17 7887.73 2791.46 8970.32 6393.78 13381.51 6488.95 10694.63 18
3Dnovator+77.84 485.48 5584.47 6888.51 491.08 8373.49 1593.18 993.78 1980.79 1076.66 16993.37 5360.40 17596.75 2277.20 10193.73 6295.29 2
MSLP-MVS++85.43 5785.76 5284.45 10191.93 7470.24 7890.71 5192.86 5277.46 4484.22 6392.81 6867.16 9192.94 17180.36 7594.35 5690.16 171
DELS-MVS85.41 5885.30 5785.77 6988.49 15367.93 12985.52 20293.44 2878.70 2883.63 7489.03 14574.57 2595.71 5880.26 7794.04 6093.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5984.95 6386.57 5893.69 4170.58 7692.15 3191.62 10173.89 12182.67 8594.09 3962.60 13495.54 6280.93 6992.93 6593.57 66
Regformer-385.23 6085.07 6085.70 7088.95 13769.01 10288.29 12489.91 15180.95 885.01 4590.01 11972.45 4494.19 11482.50 6087.57 12193.90 47
abl_685.23 6084.95 6386.07 6692.23 7070.48 7790.80 5092.08 8073.51 12985.26 4294.16 3662.75 13395.92 5282.46 6191.30 8291.81 122
MVS_111021_HR85.14 6284.75 6586.32 6291.65 7772.70 2985.98 18790.33 13976.11 7982.08 8991.61 8471.36 5494.17 11681.02 6892.58 7192.08 115
casdiffmvs85.11 6385.14 5985.01 8487.20 19365.77 16487.75 13992.83 5477.84 3484.36 6292.38 7072.15 4793.93 12781.27 6790.48 9095.33 1
UA-Net85.08 6484.96 6285.45 7292.07 7268.07 12789.78 7790.86 12582.48 284.60 5793.20 5669.35 7295.22 7571.39 15090.88 8693.07 85
DPM-MVS84.93 6584.29 6986.84 5090.20 9873.04 2287.12 15493.04 3969.80 18482.85 8191.22 9373.06 4096.02 4776.72 10894.63 4891.46 131
baseline84.93 6584.98 6184.80 9387.30 19165.39 17187.30 15092.88 5177.62 3684.04 6792.26 7171.81 4993.96 12181.31 6690.30 9295.03 4
ETV-MVS84.90 6784.67 6685.59 7189.39 11868.66 11688.74 10692.64 6379.97 1784.10 6585.71 23169.32 7395.38 6980.82 7191.37 8092.72 94
CS-MVS84.76 6884.61 6785.22 7989.66 10866.43 15190.23 6593.56 2376.52 6982.59 8685.93 22670.41 6195.80 5479.93 8092.68 7093.42 71
EI-MVSNet-Vis-set84.19 6983.81 7085.31 7488.18 16267.85 13087.66 14189.73 15680.05 1682.95 7889.59 12970.74 5994.82 9480.66 7484.72 15693.28 77
nrg03083.88 7083.53 7184.96 8686.77 20169.28 9990.46 6092.67 6074.79 10082.95 7891.33 9172.70 4293.09 16580.79 7379.28 22392.50 102
EI-MVSNet-UG-set83.81 7183.38 7385.09 8287.87 17167.53 13487.44 14789.66 15879.74 1882.23 8889.41 13870.24 6494.74 9779.95 7883.92 16492.99 90
CPTT-MVS83.73 7283.33 7484.92 8993.28 4870.86 7192.09 3290.38 13568.75 20979.57 11592.83 6660.60 17193.04 16980.92 7091.56 7890.86 146
EPNet83.72 7382.92 8086.14 6584.22 23669.48 9491.05 4785.27 24081.30 776.83 16491.65 8166.09 10095.56 6176.00 11393.85 6193.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP_MVS83.64 7483.14 7585.14 8090.08 10168.71 11291.25 4392.44 6779.12 2378.92 12391.00 10260.42 17395.38 6978.71 8586.32 14291.33 133
Effi-MVS+83.62 7583.08 7685.24 7788.38 15867.45 13588.89 9889.15 17375.50 8882.27 8788.28 16469.61 7094.45 10477.81 9587.84 11993.84 51
OPM-MVS83.50 7682.95 7985.14 8088.79 14570.95 6789.13 9391.52 10477.55 4180.96 10691.75 7960.71 16794.50 10379.67 8186.51 14089.97 187
Vis-MVSNetpermissive83.46 7782.80 8285.43 7390.25 9768.74 11090.30 6490.13 14576.33 7680.87 10792.89 6461.00 16494.20 11372.45 14490.97 8493.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 7883.45 7283.28 13892.74 6262.28 22888.17 12989.50 16175.22 9481.49 9892.74 6966.75 9295.11 7972.85 14091.58 7792.45 103
EPP-MVSNet83.40 7983.02 7884.57 9790.13 9964.47 18892.32 2690.73 12674.45 10979.35 11891.10 9669.05 7795.12 7872.78 14187.22 12994.13 34
3Dnovator76.31 583.38 8082.31 8886.59 5787.94 17072.94 2790.64 5292.14 7977.21 4975.47 19392.83 6658.56 18294.72 9873.24 13792.71 6992.13 114
EIA-MVS83.31 8182.80 8284.82 9189.59 11065.59 16688.21 12792.68 5974.66 10478.96 12186.42 21869.06 7695.26 7475.54 11890.09 9693.62 64
MVS_Test83.15 8283.06 7783.41 13586.86 19763.21 21486.11 18592.00 8574.31 11082.87 8089.44 13770.03 6593.21 15677.39 10088.50 11593.81 53
IS-MVSNet83.15 8282.81 8184.18 11289.94 10463.30 21291.59 3688.46 19679.04 2579.49 11692.16 7265.10 11094.28 10767.71 18091.86 7594.95 5
DP-MVS Recon83.11 8482.09 9086.15 6494.44 1970.92 7088.79 10292.20 7670.53 17279.17 11991.03 10164.12 11696.03 4668.39 17790.14 9591.50 128
PAPM_NR83.02 8582.41 8584.82 9192.47 6866.37 15387.93 13691.80 9573.82 12277.32 15590.66 10767.90 8394.90 9070.37 15889.48 10393.19 82
VDD-MVS83.01 8682.36 8784.96 8691.02 8566.40 15288.91 9788.11 19977.57 3884.39 6193.29 5552.19 22893.91 12877.05 10388.70 11194.57 21
MVSFormer82.85 8782.05 9185.24 7787.35 18670.21 7990.50 5690.38 13568.55 21281.32 9989.47 13261.68 14993.46 14978.98 8390.26 9392.05 116
OMC-MVS82.69 8881.97 9484.85 9088.75 14767.42 13687.98 13290.87 12474.92 9979.72 11491.65 8162.19 14493.96 12175.26 11986.42 14193.16 83
PVSNet_Blended_VisFu82.62 8981.83 9684.96 8690.80 9069.76 8888.74 10691.70 10069.39 19178.96 12188.46 15965.47 10794.87 9374.42 12288.57 11290.24 169
MVS_111021_LR82.61 9082.11 8984.11 11388.82 14271.58 5585.15 20586.16 23374.69 10380.47 11091.04 9962.29 14190.55 23780.33 7690.08 9790.20 170
HQP-MVS82.61 9082.02 9284.37 10489.33 12066.98 14489.17 8892.19 7776.41 7077.23 15890.23 11460.17 17695.11 7977.47 9885.99 14791.03 140
CLD-MVS82.31 9281.65 9784.29 10988.47 15467.73 13385.81 19392.35 7275.78 8278.33 13586.58 21364.01 11794.35 10576.05 11287.48 12690.79 147
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 9382.41 8581.62 18690.82 8960.93 24284.47 22189.78 15376.36 7584.07 6691.88 7864.71 11390.26 23970.68 15588.89 10793.66 57
diffmvs82.10 9481.88 9582.76 16983.00 26263.78 20083.68 23889.76 15472.94 13782.02 9089.85 12265.96 10490.79 23382.38 6287.30 12893.71 56
LPG-MVS_test82.08 9581.27 10084.50 9989.23 12868.76 10890.22 6791.94 8975.37 9176.64 17091.51 8654.29 21294.91 8878.44 8883.78 16589.83 192
FIs82.07 9682.42 8481.04 20488.80 14458.34 26688.26 12693.49 2676.93 5778.47 13291.04 9969.92 6792.34 18969.87 16484.97 15392.44 104
PS-MVSNAJss82.07 9681.31 9984.34 10786.51 20467.27 14089.27 8691.51 10571.75 15179.37 11790.22 11563.15 12794.27 10877.69 9682.36 18791.49 129
API-MVS81.99 9881.23 10184.26 11090.94 8670.18 8491.10 4689.32 16571.51 15778.66 12888.28 16465.26 10895.10 8264.74 20891.23 8387.51 249
UniMVSNet_NR-MVSNet81.88 9981.54 9882.92 15788.46 15563.46 20887.13 15392.37 7180.19 1478.38 13389.14 14071.66 5293.05 16770.05 16176.46 24992.25 109
MAR-MVS81.84 10080.70 10785.27 7691.32 8171.53 5689.82 7490.92 12269.77 18578.50 13086.21 22262.36 14094.52 10265.36 20292.05 7389.77 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10181.23 10183.57 13091.89 7563.43 21089.84 7381.85 28277.04 5583.21 7593.10 5852.26 22793.43 15171.98 14589.95 9993.85 49
xiu_mvs_v2_base81.69 10281.05 10483.60 12889.15 13168.03 12884.46 22390.02 14770.67 16981.30 10286.53 21663.17 12694.19 11475.60 11788.54 11388.57 231
PS-MVSNAJ81.69 10281.02 10583.70 12789.51 11468.21 12584.28 22990.09 14670.79 16681.26 10385.62 23563.15 12794.29 10675.62 11688.87 10888.59 230
PAPR81.66 10480.89 10683.99 12290.27 9664.00 19586.76 16891.77 9968.84 20877.13 16289.50 13067.63 8594.88 9267.55 18288.52 11493.09 84
UniMVSNet (Re)81.60 10581.11 10383.09 14888.38 15864.41 18987.60 14293.02 4278.42 3178.56 12988.16 16769.78 6893.26 15569.58 16776.49 24891.60 124
FC-MVSNet-test81.52 10682.02 9280.03 22188.42 15755.97 30287.95 13493.42 3077.10 5377.38 15390.98 10469.96 6691.79 20668.46 17684.50 15892.33 105
VDDNet81.52 10680.67 10884.05 11790.44 9464.13 19489.73 7985.91 23671.11 16183.18 7693.48 5050.54 25193.49 14873.40 13488.25 11794.54 22
ACMP74.13 681.51 10880.57 10984.36 10589.42 11668.69 11589.97 7291.50 10874.46 10875.04 21190.41 11153.82 21794.54 10077.56 9782.91 17989.86 191
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 10980.29 11684.70 9586.63 20369.90 8685.95 18886.77 22463.24 26481.07 10589.47 13261.08 16392.15 19578.33 9190.07 9892.05 116
jason: jason.
lupinMVS81.39 10980.27 11784.76 9487.35 18670.21 7985.55 19886.41 22862.85 27081.32 9988.61 15461.68 14992.24 19278.41 9090.26 9391.83 120
test_yl81.17 11180.47 11283.24 14189.13 13263.62 20186.21 18289.95 14972.43 14281.78 9589.61 12757.50 19093.58 14270.75 15386.90 13392.52 100
DCV-MVSNet81.17 11180.47 11283.24 14189.13 13263.62 20186.21 18289.95 14972.43 14281.78 9589.61 12757.50 19093.58 14270.75 15386.90 13392.52 100
DU-MVS81.12 11380.52 11182.90 15887.80 17463.46 20887.02 15791.87 9379.01 2678.38 13389.07 14365.02 11193.05 16770.05 16176.46 24992.20 111
PVSNet_Blended80.98 11480.34 11482.90 15888.85 13965.40 16984.43 22592.00 8567.62 21878.11 14085.05 24866.02 10294.27 10871.52 14789.50 10289.01 214
mvs-test180.88 11579.40 13285.29 7585.13 22469.75 8989.28 8588.10 20074.99 9776.44 17586.72 20257.27 19394.26 11273.53 13083.18 17691.87 119
QAPM80.88 11579.50 13085.03 8388.01 16968.97 10491.59 3692.00 8566.63 23075.15 20792.16 7257.70 18795.45 6563.52 21288.76 11090.66 152
112180.84 11779.77 12384.05 11793.11 5370.78 7284.66 21585.42 23957.37 31281.76 9792.02 7463.41 12094.12 11767.28 18592.93 6587.26 256
TranMVSNet+NR-MVSNet80.84 11780.31 11582.42 17387.85 17262.33 22687.74 14091.33 11180.55 1177.99 14389.86 12165.23 10992.62 17867.05 19075.24 27392.30 107
UGNet80.83 11979.59 12884.54 9888.04 16768.09 12689.42 8388.16 19876.95 5676.22 17989.46 13449.30 26593.94 12468.48 17590.31 9191.60 124
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 12079.92 12083.47 13188.85 13964.51 18585.53 20089.39 16370.79 16678.49 13185.06 24767.54 8693.58 14267.03 19186.58 13892.32 106
XVG-OURS-SEG-HR80.81 12079.76 12483.96 12485.60 21568.78 10783.54 24490.50 13270.66 17076.71 16891.66 8060.69 16891.26 22076.94 10581.58 19491.83 120
xiu_mvs_v1_base_debu80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
xiu_mvs_v1_base80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
xiu_mvs_v1_base_debi80.80 12279.72 12584.03 11987.35 18670.19 8185.56 19588.77 18769.06 20181.83 9188.16 16750.91 24592.85 17378.29 9287.56 12389.06 209
ACMM73.20 880.78 12579.84 12283.58 12989.31 12568.37 12089.99 7191.60 10270.28 17677.25 15689.66 12553.37 22093.53 14774.24 12582.85 18088.85 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 12679.51 12984.20 11194.09 3567.27 14089.64 8191.11 11958.75 30474.08 22190.72 10658.10 18495.04 8469.70 16589.42 10490.30 167
CANet_DTU80.61 12779.87 12182.83 16185.60 21563.17 21787.36 14888.65 19276.37 7475.88 18788.44 16053.51 21993.07 16673.30 13589.74 10192.25 109
VPA-MVSNet80.60 12880.55 11080.76 20988.07 16660.80 24586.86 16291.58 10375.67 8680.24 11189.45 13663.34 12190.25 24070.51 15779.22 22491.23 136
PVSNet_BlendedMVS80.60 12880.02 11882.36 17588.85 13965.40 16986.16 18492.00 8569.34 19378.11 14086.09 22566.02 10294.27 10871.52 14782.06 18987.39 251
AdaColmapbinary80.58 13079.42 13184.06 11693.09 5468.91 10589.36 8488.97 18269.27 19475.70 19089.69 12457.20 19595.77 5663.06 21888.41 11687.50 250
EI-MVSNet80.52 13179.98 11982.12 17684.28 23463.19 21686.41 17688.95 18374.18 11578.69 12687.54 18166.62 9392.43 18472.57 14380.57 20690.74 150
XVG-OURS80.41 13279.23 13783.97 12385.64 21469.02 10183.03 25190.39 13471.09 16277.63 14991.49 8854.62 21191.35 21875.71 11483.47 17291.54 126
PCF-MVS73.52 780.38 13378.84 14485.01 8487.71 17868.99 10383.65 23991.46 10963.00 26777.77 14790.28 11266.10 9995.09 8361.40 23488.22 11890.94 144
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 13477.83 16788.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7212.47 34767.45 8796.60 3083.06 5394.50 5194.07 37
test_djsdf80.30 13579.32 13583.27 13983.98 24165.37 17290.50 5690.38 13568.55 21276.19 18088.70 15056.44 19993.46 14978.98 8380.14 21390.97 143
v2v48280.23 13679.29 13683.05 15183.62 24664.14 19387.04 15689.97 14873.61 12578.18 13987.22 19061.10 16293.82 13176.11 11176.78 24691.18 137
NR-MVSNet80.23 13679.38 13382.78 16787.80 17463.34 21186.31 17991.09 12079.01 2672.17 23989.07 14367.20 9092.81 17766.08 19775.65 26092.20 111
Anonymous2024052980.19 13878.89 14384.10 11490.60 9164.75 18288.95 9690.90 12365.97 23880.59 10991.17 9549.97 25693.73 13969.16 17182.70 18493.81 53
IterMVS-LS80.06 13979.38 13382.11 17785.89 21063.20 21586.79 16589.34 16474.19 11475.45 19686.72 20266.62 9392.39 18672.58 14276.86 24390.75 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 14078.57 14884.42 10285.13 22468.74 11088.77 10388.10 20074.99 9774.97 21283.49 26757.27 19393.36 15273.53 13080.88 20091.18 137
v114480.03 14079.03 14083.01 15383.78 24464.51 18587.11 15590.57 13071.96 14978.08 14286.20 22361.41 15493.94 12474.93 12077.23 23790.60 155
v879.97 14279.02 14182.80 16484.09 23864.50 18787.96 13390.29 14274.13 11775.24 20586.81 19962.88 13293.89 13074.39 12375.40 26790.00 183
RRT_MVS79.88 14378.38 15384.38 10385.42 21870.60 7588.71 10888.75 19172.30 14478.83 12589.14 14044.44 29492.18 19478.50 8779.33 22290.35 165
OpenMVScopyleft72.83 1079.77 14478.33 15684.09 11585.17 22169.91 8590.57 5490.97 12166.70 22672.17 23991.91 7654.70 20993.96 12161.81 23190.95 8588.41 235
v1079.74 14578.67 14582.97 15684.06 23964.95 17987.88 13890.62 12873.11 13375.11 20886.56 21461.46 15394.05 12073.68 12875.55 26289.90 189
BH-RMVSNet79.61 14678.44 15183.14 14689.38 11965.93 15984.95 21087.15 22073.56 12778.19 13889.79 12356.67 19893.36 15259.53 24886.74 13690.13 173
v119279.59 14778.43 15283.07 15083.55 24864.52 18486.93 16090.58 12970.83 16477.78 14685.90 22759.15 17993.94 12473.96 12777.19 23990.76 148
ab-mvs79.51 14878.97 14281.14 20188.46 15560.91 24383.84 23689.24 17070.36 17479.03 12088.87 14863.23 12590.21 24165.12 20482.57 18592.28 108
WR-MVS79.49 14979.22 13880.27 21888.79 14558.35 26585.06 20788.61 19478.56 2977.65 14888.34 16263.81 11990.66 23664.98 20677.22 23891.80 123
v14419279.47 15078.37 15482.78 16783.35 25063.96 19686.96 15890.36 13869.99 18077.50 15085.67 23360.66 16993.77 13574.27 12476.58 24790.62 153
BH-untuned79.47 15078.60 14782.05 17889.19 13065.91 16086.07 18688.52 19572.18 14575.42 19787.69 17661.15 16193.54 14660.38 24186.83 13586.70 269
mvs_anonymous79.42 15279.11 13980.34 21684.45 23357.97 27282.59 25387.62 21267.40 22176.17 18388.56 15768.47 7989.59 25070.65 15686.05 14693.47 70
thisisatest053079.40 15377.76 17184.31 10887.69 18065.10 17887.36 14884.26 25170.04 17977.42 15288.26 16649.94 25794.79 9670.20 15984.70 15793.03 87
tttt051779.40 15377.91 16483.90 12688.10 16563.84 19888.37 12184.05 25371.45 15876.78 16689.12 14249.93 25994.89 9170.18 16083.18 17692.96 91
V4279.38 15578.24 15882.83 16181.10 29665.50 16885.55 19889.82 15271.57 15678.21 13786.12 22460.66 16993.18 16075.64 11575.46 26589.81 194
jajsoiax79.29 15677.96 16283.27 13984.68 23066.57 15089.25 8790.16 14469.20 19875.46 19589.49 13145.75 28893.13 16376.84 10680.80 20290.11 175
v192192079.22 15778.03 16182.80 16483.30 25263.94 19786.80 16490.33 13969.91 18277.48 15185.53 23658.44 18393.75 13773.60 12976.85 24490.71 151
TAPA-MVS73.13 979.15 15877.94 16382.79 16689.59 11062.99 22188.16 13091.51 10565.77 23977.14 16191.09 9760.91 16593.21 15650.26 29887.05 13192.17 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 15977.77 17083.22 14384.70 22966.37 15389.17 8890.19 14369.38 19275.40 19889.46 13444.17 29693.15 16176.78 10780.70 20490.14 172
UniMVSNet_ETH3D79.10 16078.24 15881.70 18586.85 19860.24 25287.28 15188.79 18674.25 11376.84 16390.53 11049.48 26291.56 21267.98 17882.15 18893.29 76
CDS-MVSNet79.07 16177.70 17383.17 14587.60 18168.23 12484.40 22786.20 23267.49 22076.36 17686.54 21561.54 15290.79 23361.86 23087.33 12790.49 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 16277.88 16682.38 17483.07 25964.80 18184.08 23588.95 18369.01 20478.69 12687.17 19354.70 20992.43 18474.69 12180.57 20689.89 190
v124078.99 16377.78 16982.64 17083.21 25463.54 20586.62 17190.30 14169.74 18877.33 15485.68 23257.04 19693.76 13673.13 13876.92 24190.62 153
Anonymous2023121178.97 16477.69 17482.81 16390.54 9264.29 19190.11 6991.51 10565.01 24976.16 18488.13 17150.56 25093.03 17069.68 16677.56 23591.11 139
v7n78.97 16477.58 17683.14 14683.45 24965.51 16788.32 12291.21 11573.69 12472.41 23686.32 22157.93 18593.81 13269.18 17075.65 26090.11 175
TAMVS78.89 16677.51 17783.03 15287.80 17467.79 13284.72 21485.05 24367.63 21776.75 16787.70 17562.25 14290.82 23258.53 25987.13 13090.49 160
cl_fuxian78.75 16777.91 16481.26 19782.89 26661.56 23784.09 23489.13 17569.97 18175.56 19184.29 25566.36 9792.09 19773.47 13375.48 26490.12 174
v14878.72 16877.80 16881.47 19082.73 26961.96 23286.30 18088.08 20273.26 13276.18 18185.47 23862.46 13892.36 18871.92 14673.82 28690.09 177
VPNet78.69 16978.66 14678.76 24388.31 16055.72 30484.45 22486.63 22676.79 6178.26 13690.55 10959.30 17889.70 24966.63 19277.05 24090.88 145
ET-MVSNet_ETH3D78.63 17076.63 19884.64 9686.73 20269.47 9585.01 20884.61 24669.54 18966.51 29386.59 21150.16 25491.75 20776.26 11084.24 16292.69 97
anonymousdsp78.60 17177.15 18382.98 15580.51 30267.08 14287.24 15289.53 16065.66 24175.16 20687.19 19252.52 22292.25 19177.17 10279.34 22189.61 199
miper_ehance_all_eth78.59 17277.76 17181.08 20382.66 27161.56 23783.65 23989.15 17368.87 20775.55 19283.79 26366.49 9592.03 19873.25 13676.39 25189.64 198
WR-MVS_H78.51 17378.49 14978.56 24688.02 16856.38 29788.43 11492.67 6077.14 5173.89 22287.55 18066.25 9889.24 25658.92 25473.55 28890.06 181
GBi-Net78.40 17477.40 17881.40 19287.60 18163.01 21888.39 11889.28 16671.63 15375.34 20087.28 18654.80 20591.11 22362.72 21979.57 21690.09 177
test178.40 17477.40 17881.40 19287.60 18163.01 21888.39 11889.28 16671.63 15375.34 20087.28 18654.80 20591.11 22362.72 21979.57 21690.09 177
RRT_test8_iter0578.38 17677.40 17881.34 19586.00 20958.86 26186.55 17491.26 11372.13 14875.91 18587.42 18444.97 29193.73 13977.02 10475.30 27091.45 132
Vis-MVSNet (Re-imp)78.36 17778.45 15078.07 25488.64 14951.78 32086.70 16979.63 30374.14 11675.11 20890.83 10561.29 15889.75 24758.10 26391.60 7692.69 97
Anonymous20240521178.25 17877.01 18581.99 18091.03 8460.67 24684.77 21383.90 25570.65 17180.00 11291.20 9441.08 31291.43 21665.21 20385.26 15193.85 49
CP-MVSNet78.22 17978.34 15577.84 25687.83 17354.54 30987.94 13591.17 11777.65 3573.48 22488.49 15862.24 14388.43 26962.19 22574.07 28190.55 158
BH-w/o78.21 18077.33 18180.84 20788.81 14365.13 17784.87 21187.85 20969.75 18674.52 21784.74 25161.34 15693.11 16458.24 26285.84 14984.27 298
FMVSNet278.20 18177.21 18281.20 19987.60 18162.89 22287.47 14689.02 17871.63 15375.29 20487.28 18654.80 20591.10 22662.38 22379.38 22089.61 199
MVS78.19 18276.99 18781.78 18385.66 21366.99 14384.66 21590.47 13355.08 32272.02 24185.27 24163.83 11894.11 11966.10 19689.80 10084.24 299
Baseline_NR-MVSNet78.15 18378.33 15677.61 26185.79 21156.21 30086.78 16685.76 23773.60 12677.93 14487.57 17965.02 11188.99 26067.14 18975.33 26987.63 246
CNLPA78.08 18476.79 19281.97 18190.40 9571.07 6387.59 14384.55 24766.03 23772.38 23789.64 12657.56 18986.04 28959.61 24783.35 17388.79 225
cl-mvsnet278.07 18577.01 18581.23 19882.37 27861.83 23483.55 24387.98 20468.96 20575.06 21083.87 25961.40 15591.88 20573.53 13076.39 25189.98 186
PLCcopyleft70.83 1178.05 18676.37 20283.08 14991.88 7667.80 13188.19 12889.46 16264.33 25769.87 26488.38 16153.66 21893.58 14258.86 25582.73 18287.86 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 18776.49 19982.62 17183.16 25866.96 14686.94 15987.45 21772.45 13971.49 24684.17 25654.79 20891.58 21167.61 18180.31 21089.30 205
PS-CasMVS78.01 18878.09 16077.77 25887.71 17854.39 31188.02 13191.22 11477.50 4373.26 22688.64 15360.73 16688.41 27061.88 22973.88 28590.53 159
HY-MVS69.67 1277.95 18977.15 18380.36 21587.57 18560.21 25383.37 24687.78 21066.11 23475.37 19987.06 19763.27 12390.48 23861.38 23582.43 18690.40 164
eth_miper_zixun_eth77.92 19076.69 19681.61 18883.00 26261.98 23183.15 24789.20 17269.52 19074.86 21484.35 25461.76 14892.56 18171.50 14972.89 29190.28 168
FMVSNet377.88 19176.85 19080.97 20586.84 19962.36 22586.52 17588.77 18771.13 16075.34 20086.66 20954.07 21591.10 22662.72 21979.57 21689.45 202
miper_enhance_ethall77.87 19276.86 18980.92 20681.65 28561.38 23982.68 25288.98 18065.52 24375.47 19382.30 28065.76 10692.00 20072.95 13976.39 25189.39 203
PEN-MVS77.73 19377.69 17477.84 25687.07 19653.91 31387.91 13791.18 11677.56 4073.14 22888.82 14961.23 15989.17 25759.95 24472.37 29390.43 162
cl-mvsnet_77.72 19476.76 19380.58 21182.49 27560.48 24983.09 24887.87 20769.22 19674.38 21985.22 24362.10 14591.53 21371.09 15175.41 26689.73 197
cl-mvsnet177.72 19476.76 19380.58 21182.48 27660.48 24983.09 24887.86 20869.22 19674.38 21985.24 24262.10 14591.53 21371.09 15175.40 26789.74 196
PAPM77.68 19676.40 20181.51 18987.29 19261.85 23383.78 23789.59 15964.74 25171.23 24788.70 15062.59 13593.66 14152.66 28887.03 13289.01 214
CHOSEN 1792x268877.63 19775.69 20583.44 13289.98 10368.58 11878.70 29087.50 21556.38 31775.80 18986.84 19858.67 18191.40 21761.58 23385.75 15090.34 166
HyFIR lowres test77.53 19875.40 21183.94 12589.59 11066.62 14880.36 27288.64 19356.29 31876.45 17285.17 24457.64 18893.28 15461.34 23683.10 17891.91 118
FMVSNet177.44 19976.12 20481.40 19286.81 20063.01 21888.39 11889.28 16670.49 17374.39 21887.28 18649.06 26891.11 22360.91 23878.52 22690.09 177
TR-MVS77.44 19976.18 20381.20 19988.24 16163.24 21384.61 21986.40 22967.55 21977.81 14586.48 21754.10 21493.15 16157.75 26682.72 18387.20 257
1112_ss77.40 20176.43 20080.32 21789.11 13660.41 25183.65 23987.72 21162.13 27873.05 22986.72 20262.58 13689.97 24462.11 22880.80 20290.59 157
thisisatest051577.33 20275.38 21283.18 14485.27 22063.80 19982.11 25883.27 26665.06 24775.91 18583.84 26149.54 26194.27 10867.24 18786.19 14491.48 130
pm-mvs177.25 20376.68 19778.93 24184.22 23658.62 26486.41 17688.36 19771.37 15973.31 22588.01 17261.22 16089.15 25864.24 21073.01 29089.03 213
LCM-MVSNet-Re77.05 20476.94 18877.36 26487.20 19351.60 32180.06 27580.46 29575.20 9567.69 27986.72 20262.48 13788.98 26163.44 21489.25 10591.51 127
DTE-MVSNet76.99 20576.80 19177.54 26386.24 20653.06 31787.52 14490.66 12777.08 5472.50 23488.67 15260.48 17289.52 25157.33 27070.74 30490.05 182
baseline176.98 20676.75 19577.66 25988.13 16355.66 30585.12 20681.89 28073.04 13576.79 16588.90 14662.43 13987.78 27763.30 21671.18 30289.55 201
LS3D76.95 20774.82 21883.37 13690.45 9367.36 13989.15 9286.94 22261.87 28069.52 26790.61 10851.71 23994.53 10146.38 31886.71 13788.21 237
GA-MVS76.87 20875.17 21681.97 18182.75 26862.58 22381.44 26686.35 23172.16 14774.74 21582.89 27246.20 28392.02 19968.85 17481.09 19891.30 135
DP-MVS76.78 20974.57 22083.42 13393.29 4769.46 9788.55 11383.70 25763.98 26170.20 25588.89 14754.01 21694.80 9546.66 31581.88 19286.01 281
cascas76.72 21074.64 21982.99 15485.78 21265.88 16182.33 25689.21 17160.85 28672.74 23181.02 29147.28 27593.75 13767.48 18385.02 15289.34 204
131476.53 21175.30 21580.21 21983.93 24262.32 22784.66 21588.81 18560.23 29070.16 25884.07 25855.30 20390.73 23567.37 18483.21 17587.59 248
thres100view90076.50 21275.55 20879.33 23589.52 11356.99 28685.83 19283.23 26773.94 11976.32 17787.12 19451.89 23691.95 20148.33 30683.75 16789.07 207
thres600view776.50 21275.44 20979.68 22889.40 11757.16 28385.53 20083.23 26773.79 12376.26 17887.09 19551.89 23691.89 20448.05 31183.72 17090.00 183
thres40076.50 21275.37 21379.86 22489.13 13257.65 27885.17 20383.60 25873.41 13076.45 17286.39 21952.12 22991.95 20148.33 30683.75 16790.00 183
tfpn200view976.42 21575.37 21379.55 23489.13 13257.65 27885.17 20383.60 25873.41 13076.45 17286.39 21952.12 22991.95 20148.33 30683.75 16789.07 207
Test_1112_low_res76.40 21675.44 20979.27 23689.28 12658.09 26881.69 26287.07 22159.53 29772.48 23586.67 20861.30 15789.33 25460.81 24080.15 21290.41 163
F-COLMAP76.38 21774.33 22582.50 17289.28 12666.95 14788.41 11789.03 17764.05 25966.83 28988.61 15446.78 27892.89 17257.48 26778.55 22587.67 245
LTVRE_ROB69.57 1376.25 21874.54 22281.41 19188.60 15064.38 19079.24 28389.12 17670.76 16869.79 26687.86 17349.09 26793.20 15856.21 27680.16 21186.65 270
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 21974.46 22481.13 20285.37 21969.79 8784.42 22687.95 20565.03 24867.46 28185.33 24053.28 22191.73 20958.01 26483.27 17481.85 318
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 22074.27 22681.62 18683.20 25564.67 18383.60 24289.75 15569.75 18671.85 24287.09 19532.78 33392.11 19669.99 16380.43 20988.09 238
ACMH+68.96 1476.01 22174.01 22782.03 17988.60 15065.31 17388.86 9987.55 21370.25 17767.75 27887.47 18341.27 31093.19 15958.37 26075.94 25787.60 247
ACMH67.68 1675.89 22273.93 22881.77 18488.71 14866.61 14988.62 11089.01 17969.81 18366.78 29086.70 20741.95 30991.51 21555.64 27778.14 23187.17 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 22373.36 23483.31 13784.76 22866.03 15683.38 24585.06 24270.21 17869.40 26881.05 29045.76 28794.66 9965.10 20575.49 26389.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing_275.73 22473.34 23582.89 16077.37 32365.22 17484.10 23390.54 13169.09 20060.46 31981.15 28940.48 31492.84 17676.36 10980.54 20890.60 155
baseline275.70 22573.83 23181.30 19683.26 25361.79 23582.57 25480.65 29166.81 22366.88 28783.42 26857.86 18692.19 19363.47 21379.57 21689.91 188
WTY-MVS75.65 22675.68 20675.57 28086.40 20556.82 28877.92 29782.40 27665.10 24676.18 18187.72 17463.13 13080.90 31260.31 24281.96 19089.00 216
thres20075.55 22774.47 22378.82 24287.78 17757.85 27583.07 25083.51 26172.44 14175.84 18884.42 25352.08 23191.75 20747.41 31383.64 17186.86 265
EPNet_dtu75.46 22874.86 21777.23 26882.57 27354.60 30886.89 16183.09 27071.64 15266.25 29585.86 22955.99 20088.04 27454.92 27986.55 13989.05 212
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 22973.87 23080.11 22082.69 27064.85 18081.57 26483.47 26369.16 19970.49 25284.15 25751.95 23488.15 27269.23 16972.14 29687.34 253
XXY-MVS75.41 23075.56 20774.96 28583.59 24757.82 27680.59 27183.87 25666.54 23174.93 21388.31 16363.24 12480.09 31562.16 22676.85 24486.97 263
TransMVSNet (Re)75.39 23174.56 22177.86 25585.50 21757.10 28586.78 16686.09 23572.17 14671.53 24587.34 18563.01 13189.31 25556.84 27361.83 32487.17 258
CostFormer75.24 23273.90 22979.27 23682.65 27258.27 26780.80 26782.73 27461.57 28175.33 20383.13 27055.52 20191.07 22964.98 20678.34 23088.45 233
D2MVS74.82 23373.21 23679.64 23179.81 30962.56 22480.34 27387.35 21864.37 25668.86 27182.66 27646.37 28090.10 24367.91 17981.24 19786.25 274
pmmvs674.69 23473.39 23378.61 24581.38 29157.48 28186.64 17087.95 20564.99 25070.18 25686.61 21050.43 25289.52 25162.12 22770.18 30688.83 223
tfpnnormal74.39 23573.16 23778.08 25386.10 20858.05 26984.65 21887.53 21470.32 17571.22 24885.63 23454.97 20489.86 24543.03 32775.02 27486.32 273
IterMVS74.29 23672.94 23978.35 25081.53 28863.49 20781.58 26382.49 27568.06 21669.99 26183.69 26551.66 24085.54 29265.85 19971.64 29986.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 23772.42 24379.80 22683.76 24559.59 25785.92 19086.64 22566.39 23266.96 28687.58 17839.46 31791.60 21065.76 20069.27 30888.22 236
SCA74.22 23872.33 24479.91 22384.05 24062.17 22979.96 27779.29 30566.30 23372.38 23780.13 29951.95 23488.60 26759.25 25077.67 23488.96 218
miper_lstm_enhance74.11 23973.11 23877.13 26980.11 30559.62 25672.23 31986.92 22366.76 22570.40 25382.92 27156.93 19782.92 30669.06 17272.63 29288.87 221
EG-PatchMatch MVS74.04 24071.82 24880.71 21084.92 22767.42 13685.86 19188.08 20266.04 23664.22 30783.85 26035.10 33192.56 18157.44 26880.83 20182.16 317
pmmvs474.03 24171.91 24680.39 21481.96 28268.32 12181.45 26582.14 27859.32 29869.87 26485.13 24552.40 22588.13 27360.21 24374.74 27784.73 295
MS-PatchMatch73.83 24272.67 24077.30 26683.87 24366.02 15781.82 25984.66 24561.37 28468.61 27482.82 27447.29 27488.21 27159.27 24984.32 16177.68 330
DWT-MVSNet_test73.70 24371.86 24779.21 23882.91 26558.94 26082.34 25582.17 27765.21 24471.05 25078.31 31044.21 29590.17 24263.29 21777.28 23688.53 232
sss73.60 24473.64 23273.51 29582.80 26755.01 30776.12 30381.69 28362.47 27574.68 21685.85 23057.32 19278.11 32260.86 23980.93 19987.39 251
SixPastTwentyTwo73.37 24571.26 25479.70 22785.08 22657.89 27485.57 19483.56 26071.03 16365.66 29785.88 22842.10 30792.57 18059.11 25263.34 32388.65 229
CR-MVSNet73.37 24571.27 25379.67 22981.32 29465.19 17575.92 30580.30 29759.92 29372.73 23281.19 28752.50 22386.69 28359.84 24577.71 23287.11 261
MSDG73.36 24770.99 25580.49 21384.51 23265.80 16280.71 26986.13 23465.70 24065.46 29883.74 26444.60 29290.91 23151.13 29376.89 24284.74 294
tpm273.26 24871.46 25078.63 24483.34 25156.71 29180.65 27080.40 29656.63 31673.55 22382.02 28451.80 23891.24 22156.35 27578.42 22987.95 239
RPSCF73.23 24971.46 25078.54 24782.50 27459.85 25482.18 25782.84 27358.96 30171.15 24989.41 13845.48 29084.77 29758.82 25671.83 29891.02 142
PatchmatchNetpermissive73.12 25071.33 25278.49 24983.18 25660.85 24479.63 27978.57 30764.13 25871.73 24379.81 30451.20 24385.97 29057.40 26976.36 25488.66 228
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 25170.41 26080.81 20887.13 19565.63 16588.30 12384.19 25262.96 26863.80 31087.69 17638.04 32392.56 18146.66 31574.91 27584.24 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 25272.58 24174.25 29284.28 23450.85 32686.41 17683.45 26444.56 33373.23 22787.54 18149.38 26385.70 29165.90 19878.44 22886.19 276
test-LLR72.94 25372.43 24274.48 28981.35 29258.04 27078.38 29177.46 31366.66 22769.95 26279.00 30848.06 27179.24 31666.13 19484.83 15486.15 277
test_040272.79 25470.44 25979.84 22588.13 16365.99 15885.93 18984.29 24965.57 24267.40 28385.49 23746.92 27792.61 17935.88 33674.38 28080.94 321
MVS_030472.48 25570.89 25777.24 26782.20 27959.68 25584.11 23283.49 26267.10 22266.87 28880.59 29535.00 33287.40 27959.07 25379.58 21584.63 296
tpmrst72.39 25672.13 24573.18 29780.54 30149.91 32979.91 27879.08 30663.11 26571.69 24479.95 30155.32 20282.77 30765.66 20173.89 28486.87 264
PatchMatch-RL72.38 25770.90 25676.80 27288.60 15067.38 13879.53 28076.17 31962.75 27269.36 26982.00 28545.51 28984.89 29653.62 28480.58 20578.12 329
tpm72.37 25871.71 24974.35 29182.19 28052.00 31879.22 28477.29 31564.56 25372.95 23083.68 26651.35 24183.26 30558.33 26175.80 25887.81 243
PVSNet64.34 1872.08 25970.87 25875.69 27886.21 20756.44 29574.37 31580.73 29062.06 27970.17 25782.23 28242.86 30283.31 30454.77 28084.45 16087.32 254
RPMNet71.62 26068.94 26879.67 22981.32 29465.19 17575.92 30578.30 30957.60 31072.73 23276.45 32152.30 22686.69 28348.14 31077.71 23287.11 261
pmmvs571.55 26170.20 26275.61 27977.83 32056.39 29681.74 26180.89 28757.76 30867.46 28184.49 25249.26 26685.32 29557.08 27275.29 27185.11 291
test-mter71.41 26270.39 26174.48 28981.35 29258.04 27078.38 29177.46 31360.32 28969.95 26279.00 30836.08 32979.24 31666.13 19484.83 15486.15 277
K. test v371.19 26368.51 27079.21 23883.04 26157.78 27784.35 22876.91 31772.90 13862.99 31382.86 27339.27 31891.09 22861.65 23252.66 33688.75 226
tpmvs71.09 26469.29 26576.49 27382.04 28156.04 30178.92 28881.37 28664.05 25967.18 28578.28 31149.74 26089.77 24649.67 30172.37 29383.67 304
AllTest70.96 26568.09 27679.58 23285.15 22263.62 20184.58 22079.83 30162.31 27660.32 32086.73 20032.02 33488.96 26350.28 29671.57 30086.15 277
Patchmtry70.74 26669.16 26675.49 28280.72 29854.07 31274.94 31480.30 29758.34 30570.01 25981.19 28752.50 22386.54 28553.37 28571.09 30385.87 284
MIMVSNet70.69 26769.30 26474.88 28684.52 23156.35 29875.87 30779.42 30464.59 25267.76 27782.41 27841.10 31181.54 31146.64 31781.34 19586.75 268
tpm cat170.57 26868.31 27277.35 26582.41 27757.95 27378.08 29580.22 29952.04 32868.54 27577.66 31652.00 23387.84 27651.77 28972.07 29786.25 274
OpenMVS_ROBcopyleft64.09 1970.56 26968.19 27377.65 26080.26 30359.41 25985.01 20882.96 27258.76 30365.43 29982.33 27937.63 32591.23 22245.34 32376.03 25682.32 315
pmmvs-eth3d70.50 27067.83 28078.52 24877.37 32366.18 15581.82 25981.51 28458.90 30263.90 30980.42 29742.69 30386.28 28858.56 25865.30 32083.11 310
USDC70.33 27168.37 27176.21 27580.60 30056.23 29979.19 28586.49 22760.89 28561.29 31685.47 23831.78 33689.47 25353.37 28576.21 25582.94 314
Patchmatch-RL test70.24 27267.78 28277.61 26177.43 32259.57 25871.16 32170.33 33162.94 26968.65 27372.77 32850.62 24985.49 29369.58 16766.58 31787.77 244
CMPMVSbinary51.72 2170.19 27368.16 27476.28 27473.15 33757.55 28079.47 28183.92 25448.02 33256.48 33184.81 24943.13 30086.42 28762.67 22281.81 19384.89 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 27467.34 28578.14 25279.80 31061.13 24079.19 28580.59 29259.16 30065.27 30079.29 30546.75 27987.29 28049.33 30266.72 31586.00 283
gg-mvs-nofinetune69.95 27567.96 27775.94 27683.07 25954.51 31077.23 30070.29 33263.11 26570.32 25462.33 33443.62 29888.69 26653.88 28387.76 12084.62 297
TESTMET0.1,169.89 27669.00 26772.55 29879.27 31756.85 28778.38 29174.71 32557.64 30968.09 27677.19 31837.75 32476.70 32763.92 21184.09 16384.10 302
FMVSNet569.50 27767.96 27774.15 29382.97 26455.35 30680.01 27682.12 27962.56 27463.02 31181.53 28636.92 32681.92 30948.42 30574.06 28285.17 290
PMMVS69.34 27868.67 26971.35 30475.67 32962.03 23075.17 30973.46 32750.00 33168.68 27279.05 30652.07 23278.13 32161.16 23782.77 18173.90 333
our_test_369.14 27967.00 28675.57 28079.80 31058.80 26277.96 29677.81 31159.55 29662.90 31478.25 31247.43 27383.97 29951.71 29067.58 31483.93 303
EPMVS69.02 28068.16 27471.59 30079.61 31349.80 33177.40 29966.93 33962.82 27170.01 25979.05 30645.79 28677.86 32456.58 27475.26 27287.13 260
Anonymous2023120668.60 28167.80 28171.02 30680.23 30450.75 32778.30 29480.47 29456.79 31566.11 29682.63 27746.35 28178.95 31843.62 32675.70 25983.36 307
MIMVSNet168.58 28266.78 28873.98 29480.07 30651.82 31980.77 26884.37 24864.40 25559.75 32382.16 28336.47 32783.63 30242.73 32870.33 30586.48 272
EU-MVSNet68.53 28367.61 28471.31 30578.51 31947.01 33584.47 22184.27 25042.27 33466.44 29484.79 25040.44 31583.76 30058.76 25768.54 31383.17 308
PatchT68.46 28467.85 27970.29 30880.70 29943.93 33872.47 31874.88 32260.15 29170.55 25176.57 32049.94 25781.59 31050.58 29474.83 27685.34 287
test0.0.03 168.00 28567.69 28368.90 31377.55 32147.43 33375.70 30872.95 32966.66 22766.56 29182.29 28148.06 27175.87 33144.97 32474.51 27983.41 306
TDRefinement67.49 28664.34 29476.92 27073.47 33561.07 24184.86 21282.98 27159.77 29458.30 32685.13 24526.06 33887.89 27547.92 31260.59 32881.81 319
test20.0367.45 28766.95 28768.94 31275.48 33144.84 33777.50 29877.67 31266.66 22763.01 31283.80 26247.02 27678.40 32042.53 32968.86 31283.58 305
UnsupCasMVSNet_eth67.33 28865.99 29071.37 30273.48 33451.47 32375.16 31085.19 24165.20 24560.78 31880.93 29442.35 30477.20 32657.12 27153.69 33585.44 286
TinyColmap67.30 28964.81 29274.76 28881.92 28356.68 29280.29 27481.49 28560.33 28856.27 33283.22 26924.77 33987.66 27845.52 32169.47 30779.95 325
dp66.80 29065.43 29170.90 30779.74 31248.82 33275.12 31274.77 32359.61 29564.08 30877.23 31742.89 30180.72 31348.86 30466.58 31783.16 309
MDA-MVSNet-bldmvs66.68 29163.66 29675.75 27779.28 31660.56 24873.92 31678.35 30864.43 25450.13 33779.87 30344.02 29783.67 30146.10 31956.86 33183.03 312
testgi66.67 29266.53 28967.08 31875.62 33041.69 34175.93 30476.50 31866.11 23465.20 30386.59 21135.72 33074.71 33543.71 32573.38 28984.84 293
CHOSEN 280x42066.51 29364.71 29371.90 29981.45 28963.52 20657.98 34068.95 33853.57 32462.59 31576.70 31946.22 28275.29 33455.25 27879.68 21476.88 332
PM-MVS66.41 29464.14 29573.20 29673.92 33256.45 29478.97 28764.96 34363.88 26364.72 30480.24 29819.84 34383.44 30366.24 19364.52 32279.71 326
JIA-IIPM66.32 29562.82 30276.82 27177.09 32561.72 23665.34 33575.38 32058.04 30764.51 30562.32 33542.05 30886.51 28651.45 29269.22 30982.21 316
ADS-MVSNet266.20 29663.33 29774.82 28779.92 30758.75 26367.55 33275.19 32153.37 32565.25 30175.86 32242.32 30580.53 31441.57 33068.91 31085.18 288
YYNet165.03 29762.91 30071.38 30175.85 32856.60 29369.12 32974.66 32657.28 31354.12 33377.87 31445.85 28574.48 33649.95 29961.52 32683.05 311
MDA-MVSNet_test_wron65.03 29762.92 29971.37 30275.93 32756.73 28969.09 33074.73 32457.28 31354.03 33477.89 31345.88 28474.39 33749.89 30061.55 32582.99 313
Patchmatch-test64.82 29963.24 29869.57 31079.42 31549.82 33063.49 33869.05 33751.98 32959.95 32280.13 29950.91 24570.98 34040.66 33273.57 28787.90 241
ADS-MVSNet64.36 30062.88 30168.78 31579.92 30747.17 33467.55 33271.18 33053.37 32565.25 30175.86 32242.32 30573.99 33841.57 33068.91 31085.18 288
LF4IMVS64.02 30162.19 30369.50 31170.90 33953.29 31676.13 30277.18 31652.65 32758.59 32480.98 29223.55 34076.52 32853.06 28766.66 31678.68 328
UnsupCasMVSNet_bld63.70 30261.53 30570.21 30973.69 33351.39 32472.82 31781.89 28055.63 32057.81 32771.80 33038.67 32078.61 31949.26 30352.21 33780.63 322
new-patchmatchnet61.73 30361.73 30461.70 32172.74 33824.50 35169.16 32878.03 31061.40 28256.72 33075.53 32438.42 32176.48 32945.95 32057.67 33084.13 301
PVSNet_057.27 2061.67 30459.27 30668.85 31479.61 31357.44 28268.01 33173.44 32855.93 31958.54 32570.41 33144.58 29377.55 32547.01 31435.91 34071.55 335
MVS-HIRNet59.14 30557.67 30763.57 32081.65 28543.50 33971.73 32065.06 34239.59 33851.43 33657.73 33838.34 32282.58 30839.53 33373.95 28364.62 338
pmmvs357.79 30654.26 30968.37 31664.02 34356.72 29075.12 31265.17 34140.20 33652.93 33569.86 33220.36 34275.48 33345.45 32255.25 33472.90 334
DSMNet-mixed57.77 30756.90 30860.38 32267.70 34135.61 34469.18 32753.97 34632.30 34357.49 32879.88 30240.39 31668.57 34238.78 33472.37 29376.97 331
LCM-MVSNet54.25 30849.68 31367.97 31753.73 34645.28 33666.85 33480.78 28935.96 34039.45 34062.23 3368.70 35178.06 32348.24 30951.20 33880.57 323
FPMVS53.68 30951.64 31159.81 32365.08 34251.03 32569.48 32669.58 33541.46 33540.67 33972.32 32916.46 34670.00 34124.24 34165.42 31958.40 339
N_pmnet52.79 31053.26 31051.40 32778.99 3187.68 35469.52 3253.89 35451.63 33057.01 32974.98 32540.83 31365.96 34337.78 33564.67 32180.56 324
new_pmnet50.91 31150.29 31252.78 32668.58 34034.94 34663.71 33756.63 34539.73 33744.95 33865.47 33321.93 34158.48 34434.98 33756.62 33264.92 337
ANet_high50.57 31246.10 31463.99 31948.67 34939.13 34270.99 32380.85 28861.39 28331.18 34257.70 33917.02 34573.65 33931.22 33815.89 34679.18 327
Gipumacopyleft45.18 31341.86 31555.16 32577.03 32651.52 32232.50 34680.52 29332.46 34227.12 34335.02 3439.52 35075.50 33222.31 34260.21 32938.45 342
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 31440.28 31655.82 32440.82 35142.54 34065.12 33663.99 34434.43 34124.48 34457.12 3403.92 35376.17 33017.10 34455.52 33348.75 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 31538.86 31746.69 32853.84 34516.45 35248.61 34349.92 34737.49 33931.67 34160.97 3378.14 35256.42 34528.42 33930.72 34167.19 336
E-PMN31.77 31630.64 31835.15 33052.87 34727.67 34857.09 34147.86 34824.64 34416.40 34833.05 34411.23 34854.90 34614.46 34618.15 34422.87 344
EMVS30.81 31729.65 31934.27 33150.96 34825.95 35056.58 34246.80 34924.01 34515.53 34930.68 34512.47 34754.43 34712.81 34717.05 34522.43 345
MVEpermissive26.22 2330.37 31825.89 32143.81 32944.55 35035.46 34528.87 34739.07 35018.20 34618.58 34740.18 3422.68 35447.37 34817.07 34523.78 34348.60 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 31926.61 3200.00 3370.00 3560.00 3570.00 34889.26 1690.00 3520.00 35388.61 15461.62 1510.00 3540.00 3510.00 3510.00 350
tmp_tt18.61 32021.40 32210.23 3344.82 35310.11 35334.70 34530.74 3521.48 34923.91 34626.07 34628.42 33713.41 35127.12 34015.35 3477.17 346
wuyk23d16.82 32115.94 32319.46 33358.74 34431.45 34739.22 3443.74 3556.84 3486.04 3502.70 3501.27 35524.29 35010.54 34814.40 3482.63 347
ab-mvs-re7.23 3229.64 3240.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35386.72 2020.00 3580.00 3540.00 3510.00 3510.00 350
test1236.12 3238.11 3250.14 3350.06 3550.09 35571.05 3220.03 3570.04 3510.25 3521.30 3520.05 3560.03 3530.21 3500.01 3500.29 348
testmvs6.04 3248.02 3260.10 3360.08 3540.03 35669.74 3240.04 3560.05 3500.31 3511.68 3510.02 3570.04 3520.24 3490.02 3490.25 349
pcd_1.5k_mvsjas5.26 3257.02 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35363.15 1270.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS95.30 271.25 5892.95 5066.81 22392.39 588.94 896.63 294.85 10
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4182.45 396.87 1683.77 4696.48 694.88 7
test_241102_TWO94.06 1177.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6494.06 1177.17 5093.10 195.39 982.99 197.27 7
9.1488.26 1492.84 5991.52 3994.75 173.93 12088.57 2094.67 1775.57 2095.79 5586.77 2095.76 24
save fliter93.80 3772.35 4290.47 5891.17 11774.31 110
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test_0728_SECOND87.71 3195.34 171.43 5793.49 794.23 597.49 189.08 496.41 894.21 32
test072695.27 571.25 5893.60 494.11 677.33 4592.81 395.79 380.98 7
GSMVS88.96 218
test_part295.06 772.65 3191.80 10
test_part10.00 3370.00 3570.00 34894.09 90.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs151.32 24288.96 218
sam_mvs50.01 255
ambc75.24 28473.16 33650.51 32863.05 33987.47 21664.28 30677.81 31517.80 34489.73 24857.88 26560.64 32785.49 285
MTGPAbinary92.02 82
test_post178.90 2895.43 34948.81 27085.44 29459.25 250
test_post5.46 34850.36 25384.24 298
patchmatchnet-post74.00 32651.12 24488.60 267
GG-mvs-BLEND75.38 28381.59 28755.80 30379.32 28269.63 33467.19 28473.67 32743.24 29988.90 26550.41 29584.50 15881.45 320
MTMP92.18 3032.83 351
gm-plane-assit81.40 29053.83 31462.72 27380.94 29392.39 18663.40 215
test9_res84.90 3095.70 2792.87 92
TEST993.26 4972.96 2488.75 10491.89 9168.44 21485.00 4693.10 5874.36 3095.41 67
test_893.13 5172.57 3488.68 10991.84 9468.69 21084.87 5293.10 5874.43 2795.16 77
agg_prior282.91 5695.45 2992.70 95
agg_prior92.85 5771.94 5091.78 9784.41 5994.93 86
TestCases79.58 23285.15 22263.62 20179.83 30162.31 27660.32 32086.73 20032.02 33488.96 26350.28 29671.57 30086.15 277
test_prior472.60 3389.01 95
test_prior288.85 10075.41 8984.91 4893.54 4774.28 3183.31 4895.86 18
test_prior86.33 6092.61 6569.59 9192.97 4895.48 6393.91 45
旧先验286.56 17358.10 30687.04 3088.98 26174.07 126
新几何286.29 181
新几何183.42 13393.13 5170.71 7385.48 23857.43 31181.80 9491.98 7563.28 12292.27 19064.60 20992.99 6487.27 255
旧先验191.96 7365.79 16386.37 23093.08 6269.31 7492.74 6888.74 227
无先验87.48 14588.98 18060.00 29294.12 11767.28 18588.97 217
原ACMM286.86 162
原ACMM184.35 10693.01 5568.79 10692.44 6763.96 26281.09 10491.57 8566.06 10195.45 6567.19 18894.82 4688.81 224
test22291.50 7968.26 12384.16 23083.20 26954.63 32379.74 11391.63 8358.97 18091.42 7986.77 267
testdata291.01 23062.37 224
segment_acmp73.08 39
testdata79.97 22290.90 8764.21 19284.71 24459.27 29985.40 4092.91 6362.02 14789.08 25968.95 17391.37 8086.63 271
testdata184.14 23175.71 83
test1286.80 5292.63 6470.70 7491.79 9682.71 8471.67 5196.16 4394.50 5193.54 68
plane_prior790.08 10168.51 119
plane_prior689.84 10668.70 11460.42 173
plane_prior592.44 6795.38 6978.71 8586.32 14291.33 133
plane_prior491.00 102
plane_prior368.60 11778.44 3078.92 123
plane_prior291.25 4379.12 23
plane_prior189.90 105
plane_prior68.71 11290.38 6277.62 3686.16 145
n20.00 358
nn0.00 358
door-mid69.98 333
lessismore_v078.97 24081.01 29757.15 28465.99 34061.16 31782.82 27439.12 31991.34 21959.67 24646.92 33988.43 234
LGP-MVS_train84.50 9989.23 12868.76 10891.94 8975.37 9176.64 17091.51 8654.29 21294.91 8878.44 8883.78 16589.83 192
test1192.23 74
door69.44 336
HQP5-MVS66.98 144
HQP-NCC89.33 12089.17 8876.41 7077.23 158
ACMP_Plane89.33 12089.17 8876.41 7077.23 158
BP-MVS77.47 98
HQP4-MVS77.24 15795.11 7991.03 140
HQP3-MVS92.19 7785.99 147
HQP2-MVS60.17 176
NP-MVS89.62 10968.32 12190.24 113
MDTV_nov1_ep13_2view37.79 34375.16 31055.10 32166.53 29249.34 26453.98 28287.94 240
MDTV_nov1_ep1369.97 26383.18 25653.48 31577.10 30180.18 30060.45 28769.33 27080.44 29648.89 26986.90 28251.60 29178.51 227
ACMMP++_ref81.95 191
ACMMP++81.25 196
Test By Simon64.33 114
ITE_SJBPF78.22 25181.77 28460.57 24783.30 26569.25 19567.54 28087.20 19136.33 32887.28 28154.34 28174.62 27886.80 266
DeepMVS_CXcopyleft27.40 33240.17 35226.90 34924.59 35317.44 34723.95 34548.61 3419.77 34926.48 34918.06 34324.47 34228.83 343