This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13497.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23494.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16889.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14095.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12892.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20794.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 17093.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15693.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23789.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20693.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
CANet93.54 5193.20 5694.55 4495.65 12085.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21197.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22592.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
DELS-MVS93.43 5493.25 5393.97 5995.42 12785.04 7493.06 21897.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13792.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21992.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
canonicalmvs93.27 5892.75 6494.85 2795.70 11987.66 1196.33 3496.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17290.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
alignmvs93.08 6292.50 6994.81 3295.62 12287.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14083.51 11494.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15195.47 11197.45 95
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 25292.77 6396.63 6286.62 3999.04 6387.40 11798.66 4098.17 54
ETV-MVS92.74 6692.66 6592.97 8895.20 13684.04 10095.07 10196.51 9490.73 2192.96 5891.19 24984.06 7298.34 12591.72 6496.54 9796.54 128
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15183.20 12194.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
CS-MVS92.60 6892.56 6792.73 9895.55 12382.35 14896.14 4596.85 6288.71 6591.44 9691.51 24284.13 7198.48 11291.27 7297.47 8097.34 97
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22796.56 9383.44 18891.68 9295.04 11686.60 4298.99 7685.60 13897.92 6996.93 116
casdiffmvs92.51 7092.43 7092.74 9794.41 17181.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21696.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12188.73 497.07 1396.77 7290.84 1684.02 23496.62 6375.95 15699.34 3387.77 11297.68 7598.59 18
baseline92.39 7392.29 7292.69 10294.46 16881.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9993.38 14698.13 58
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22490.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
EIA-MVS91.95 7691.94 7491.98 13195.16 13780.01 20695.36 7896.73 7788.44 7389.34 11992.16 21583.82 7698.45 11889.35 9497.06 8697.48 93
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20590.03 11395.82 9582.30 8999.03 6484.57 15096.48 10096.91 117
EPNet91.79 7891.02 8894.10 5890.10 30685.25 7396.03 5392.05 27692.83 187.39 15195.78 9679.39 12299.01 7088.13 10997.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7991.70 7892.00 13097.08 7580.03 20593.60 19495.18 18887.85 9190.89 10496.47 7082.06 9598.36 12285.07 14297.04 8797.62 86
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4595.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14896.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16286.37 4397.18 797.02 4689.20 5284.31 22996.66 6173.74 18999.17 5086.74 12797.96 6797.79 83
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11280.50 19397.33 395.25 18486.15 13089.76 11495.60 10183.42 7798.32 12887.37 11993.25 14997.56 91
MVSFormer91.68 8391.30 8192.80 9493.86 19183.88 10395.96 5795.90 13684.66 16691.76 8994.91 11977.92 13897.30 20289.64 9197.11 8497.24 101
Effi-MVS+91.59 8491.11 8593.01 8694.35 17583.39 11894.60 13195.10 19287.10 10890.57 10693.10 18781.43 10198.07 14689.29 9594.48 12997.59 89
IS-MVSNet91.43 8591.09 8792.46 11195.87 11481.38 17096.95 1493.69 24589.72 4089.50 11795.98 8978.57 13297.77 16283.02 16896.50 9998.22 52
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11596.66 8583.29 19289.27 12094.46 13780.29 10999.17 5087.57 11595.37 11496.05 146
diffmvs91.37 8791.23 8391.77 14493.09 21480.27 19592.36 23795.52 16587.03 11091.40 9894.93 11880.08 11197.44 18792.13 5194.56 12797.61 87
MVS_Test91.31 8891.11 8591.93 13594.37 17280.14 19893.46 19995.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11594.95 12097.55 92
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19695.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13592.90 15696.83 119
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16794.37 15396.24 11086.39 12687.41 14894.80 12682.06 9598.48 11282.80 17495.37 11497.61 87
PS-MVSNAJ91.18 9190.92 8991.96 13395.26 13482.60 14392.09 24795.70 15186.27 12791.84 8692.46 20579.70 11798.99 7689.08 9795.86 10594.29 212
xiu_mvs_v2_base91.13 9290.89 9191.86 13894.97 14382.42 14492.24 24195.64 15886.11 13391.74 9193.14 18579.67 12098.89 8689.06 9895.46 11294.28 213
nrg03091.08 9390.39 9593.17 7993.07 21586.91 2096.41 3296.26 10788.30 7888.37 13294.85 12482.19 9297.64 17391.09 7482.95 26394.96 180
lupinMVS90.92 9490.21 9893.03 8593.86 19183.88 10392.81 22493.86 24079.84 25591.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
jason90.80 9590.10 10192.90 9193.04 21783.53 11393.08 21694.15 23180.22 24991.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12795.73 6593.86 24088.42 7592.53 7196.84 5062.09 29798.64 10390.95 7992.62 16097.93 74
PVSNet_Blended90.73 9790.32 9791.98 13196.12 10081.25 17292.55 23296.83 6582.04 21789.10 12292.56 20381.04 10498.85 9386.72 12995.91 10495.84 153
test_yl90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18782.39 20889.13 12194.27 14580.32 10898.46 11580.16 22096.71 9294.33 211
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
HQP_MVS90.60 10490.19 9991.82 14194.70 15882.73 13795.85 6196.22 11290.81 1786.91 15994.86 12274.23 17798.12 13688.15 10789.99 18494.63 193
FIs90.51 10590.35 9690.99 17493.99 18780.98 17995.73 6597.54 389.15 5486.72 16394.68 12981.83 9997.24 21085.18 14188.31 21594.76 190
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22895.51 16671.01 33491.20 10196.21 7982.92 8199.05 6080.56 21398.07 6396.10 142
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 21087.85 14092.85 19376.63 15098.80 9780.01 22196.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 10890.18 10090.53 18593.71 19779.85 21195.77 6497.59 289.31 4986.27 17294.67 13081.93 9897.01 22884.26 15388.09 21994.71 191
CANet_DTU90.26 10989.41 11592.81 9393.46 20583.01 12893.48 19794.47 21989.43 4687.76 14494.23 14670.54 22999.03 6484.97 14396.39 10196.38 130
OPM-MVS90.12 11089.56 11191.82 14193.14 21283.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 11090.18 18393.65 247
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32686.79 11692.15 8096.81 5362.60 29498.34 12587.18 12193.90 13598.19 53
PAPR90.02 11289.27 12092.29 12295.78 11580.95 18192.68 22696.22 11281.91 22286.66 16493.75 16982.23 9098.44 11979.40 23194.79 12197.48 93
PVSNet_BlendedMVS89.98 11389.70 10990.82 17896.12 10081.25 17293.92 18196.83 6583.49 18789.10 12292.26 21381.04 10498.85 9386.72 12987.86 22392.35 293
PS-MVSNAJss89.97 11489.62 11091.02 17191.90 24580.85 18495.26 8995.98 12886.26 12886.21 17394.29 14279.70 11797.65 17188.87 10088.10 21794.57 199
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15394.00 18681.21 17591.87 25096.06 12485.78 13688.55 12895.73 9874.67 17397.27 20688.71 10289.64 19395.91 149
UGNet89.95 11588.95 12692.95 8994.51 16583.31 11995.70 6795.23 18589.37 4887.58 14693.94 15664.00 28998.78 9883.92 15796.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14393.39 20683.72 10794.43 14497.12 4089.80 3786.46 16693.32 17683.16 7897.23 21184.92 14481.02 29194.49 206
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12694.42 14595.92 13382.81 20386.34 17194.65 13173.89 18599.02 6880.69 21095.51 10995.05 175
UniMVSNet (Re)89.80 11989.07 12392.01 12893.60 20184.52 8494.78 12197.47 889.26 5086.44 16992.32 21082.10 9397.39 19984.81 14780.84 29594.12 218
HQP-MVS89.80 11989.28 11991.34 15794.17 17781.56 16194.39 14896.04 12688.81 6185.43 19793.97 15573.83 18797.96 15487.11 12489.77 19194.50 204
VPA-MVSNet89.62 12188.96 12591.60 14993.86 19182.89 13295.46 7797.33 2287.91 8888.43 13193.31 17774.17 18097.40 19687.32 12082.86 26894.52 202
WTY-MVS89.60 12288.92 12791.67 14795.47 12681.15 17692.38 23694.78 21383.11 19589.06 12494.32 14078.67 13096.61 24781.57 19790.89 17797.24 101
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20995.74 11675.85 28495.61 7390.80 31187.66 9987.83 14195.40 10676.79 14696.46 26078.37 23796.73 9197.80 82
VDDNet89.56 12488.49 13792.76 9695.07 13982.09 15196.30 3593.19 25181.05 24491.88 8496.86 4961.16 30798.33 12788.43 10592.49 16397.84 80
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33685.81 17895.25 10976.70 14898.63 10482.07 18596.86 9097.00 113
QAPM89.51 12588.15 14693.59 7294.92 14784.58 8096.82 2496.70 8178.43 27583.41 25096.19 8373.18 19799.30 3977.11 25296.54 9796.89 118
CLD-MVS89.47 12788.90 12891.18 16294.22 17682.07 15292.13 24596.09 12087.90 8985.37 20392.45 20674.38 17597.56 17787.15 12290.43 17993.93 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvs-test189.45 12889.14 12190.38 19593.33 20777.63 26294.95 10894.36 22287.70 9587.10 15592.81 19773.45 19298.03 14985.57 13993.04 15395.48 163
LPG-MVS_test89.45 12888.90 12891.12 16394.47 16681.49 16595.30 8496.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
CDS-MVSNet89.45 12888.51 13492.29 12293.62 20083.61 11293.01 21994.68 21681.95 22087.82 14293.24 18178.69 12996.99 22980.34 21793.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 13188.64 13291.71 14694.74 15480.81 18593.54 19595.10 19283.11 19586.82 16290.67 26779.74 11697.75 16680.51 21593.55 14096.57 126
ab-mvs89.41 13188.35 13992.60 10495.15 13882.65 14192.20 24395.60 16083.97 17688.55 12893.70 17174.16 18198.21 13482.46 17989.37 19696.94 115
XVG-OURS89.40 13388.70 13191.52 15094.06 18081.46 16791.27 26396.07 12286.14 13188.89 12695.77 9768.73 25497.26 20887.39 11889.96 18695.83 154
mvs_anonymous89.37 13489.32 11789.51 23193.47 20474.22 29591.65 25894.83 20982.91 20185.45 19493.79 16581.23 10396.36 26686.47 13194.09 13397.94 72
DU-MVS89.34 13588.50 13591.85 14093.04 21783.72 10794.47 14196.59 9089.50 4386.46 16693.29 17977.25 14297.23 21184.92 14481.02 29194.59 197
TAMVS89.21 13688.29 14391.96 13393.71 19782.62 14293.30 20594.19 22982.22 21287.78 14393.94 15678.83 12696.95 23177.70 24592.98 15596.32 131
ACMM84.12 989.14 13788.48 13891.12 16394.65 16181.22 17495.31 8196.12 11985.31 15185.92 17794.34 13870.19 23398.06 14785.65 13788.86 20594.08 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet89.10 13888.86 13089.80 22091.84 24778.30 24393.70 19195.01 19585.73 13887.15 15295.28 10779.87 11497.21 21383.81 15987.36 22893.88 231
CNLPA89.07 13987.98 15092.34 11896.87 7884.78 7794.08 17093.24 25081.41 23584.46 21995.13 11475.57 16296.62 24477.21 25093.84 13795.61 161
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17479.71 25784.01 23594.18 14776.68 14998.75 9977.28 24993.41 14595.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14188.64 13290.21 20090.74 29279.28 22595.96 5795.90 13684.66 16685.33 20592.94 19174.02 18397.30 20289.64 9188.53 20894.05 224
HY-MVS83.01 1289.03 14187.94 15292.29 12294.86 15182.77 13392.08 24894.49 21881.52 23486.93 15792.79 19978.32 13698.23 13179.93 22290.55 17895.88 151
ACMP84.23 889.01 14388.35 13990.99 17494.73 15581.27 17195.07 10195.89 13886.48 12283.67 24394.30 14169.33 24397.99 15287.10 12688.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part189.00 14487.99 14992.04 12795.94 11183.81 10596.14 4596.05 12586.44 12485.69 18193.73 17071.57 21197.66 17085.80 13680.54 29994.66 192
sss88.93 14588.26 14590.94 17794.05 18180.78 18691.71 25595.38 17881.55 23388.63 12793.91 16075.04 16795.47 30282.47 17891.61 16896.57 126
RRT_MVS88.86 14687.68 15692.39 11692.02 24286.09 5394.38 15294.94 19885.45 14787.14 15493.84 16465.88 28197.11 21988.73 10186.77 23593.98 227
TranMVSNet+NR-MVSNet88.84 14787.95 15191.49 15192.68 22783.01 12894.92 11196.31 10489.88 3685.53 18793.85 16376.63 15096.96 23081.91 18979.87 30994.50 204
CHOSEN 1792x268888.84 14787.69 15592.30 12196.14 9981.42 16990.01 28595.86 14074.52 31087.41 14893.94 15675.46 16398.36 12280.36 21695.53 10897.12 108
MVSTER88.84 14788.29 14390.51 18892.95 22280.44 19493.73 18895.01 19584.66 16687.15 15293.12 18672.79 20197.21 21387.86 11187.36 22893.87 232
OpenMVScopyleft83.78 1188.74 15087.29 16593.08 8292.70 22685.39 7196.57 2996.43 9878.74 27180.85 27996.07 8769.64 23999.01 7078.01 24396.65 9494.83 187
thisisatest053088.67 15187.61 15891.86 13894.87 15080.07 20194.63 13089.90 32784.00 17588.46 13093.78 16666.88 26898.46 11583.30 16492.65 15997.06 109
Effi-MVS+-dtu88.65 15288.35 13989.54 22893.33 20776.39 27994.47 14194.36 22287.70 9585.43 19789.56 28973.45 19297.26 20885.57 13991.28 17094.97 177
tttt051788.61 15387.78 15491.11 16694.96 14477.81 25695.35 7989.69 33085.09 15888.05 13794.59 13466.93 26698.48 11283.27 16592.13 16697.03 111
BH-untuned88.60 15488.13 14790.01 21195.24 13578.50 23893.29 20694.15 23184.75 16484.46 21993.40 17375.76 15797.40 19677.59 24694.52 12894.12 218
NR-MVSNet88.58 15587.47 16191.93 13593.04 21784.16 9794.77 12296.25 10989.05 5680.04 29393.29 17979.02 12597.05 22581.71 19680.05 30694.59 197
1112_ss88.42 15687.33 16491.72 14594.92 14780.98 17992.97 22194.54 21778.16 28083.82 23993.88 16178.78 12897.91 15879.45 22789.41 19596.26 134
WR-MVS88.38 15787.67 15790.52 18793.30 20980.18 19693.26 20895.96 13088.57 7185.47 19392.81 19776.12 15296.91 23481.24 20082.29 27194.47 209
BH-RMVSNet88.37 15887.48 16091.02 17195.28 13279.45 21792.89 22393.07 25385.45 14786.91 15994.84 12570.35 23097.76 16373.97 27894.59 12695.85 152
IterMVS-LS88.36 15987.91 15389.70 22493.80 19478.29 24493.73 18895.08 19485.73 13884.75 21291.90 22979.88 11396.92 23383.83 15882.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16086.13 20294.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35785.02 6099.49 2391.99 5398.56 4798.47 28
LCM-MVSNet-Re88.30 16188.32 14288.27 26094.71 15772.41 31593.15 21290.98 30587.77 9379.25 30191.96 22778.35 13595.75 29183.04 16795.62 10796.65 124
jajsoiax88.24 16287.50 15990.48 19090.89 28680.14 19895.31 8195.65 15784.97 16084.24 23194.02 15165.31 28397.42 18988.56 10388.52 20993.89 229
VPNet88.20 16387.47 16190.39 19393.56 20279.46 21694.04 17495.54 16488.67 6786.96 15694.58 13569.33 24397.15 21584.05 15680.53 30194.56 200
TAPA-MVS84.62 688.16 16487.01 17291.62 14896.64 8480.65 18894.39 14896.21 11576.38 29186.19 17495.44 10379.75 11598.08 14562.75 33495.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16587.28 16690.57 18394.96 14480.07 20194.27 15791.29 29886.74 11787.41 14894.00 15376.77 14796.20 27180.77 20879.31 31495.44 165
Anonymous2024052988.09 16686.59 18792.58 10696.53 8981.92 15695.99 5495.84 14174.11 31389.06 12495.21 11161.44 30298.81 9683.67 16287.47 22597.01 112
HyFIR lowres test88.09 16686.81 17691.93 13596.00 10780.63 18990.01 28595.79 14573.42 31887.68 14592.10 22173.86 18697.96 15480.75 20991.70 16797.19 104
mvs_tets88.06 16887.28 16690.38 19590.94 28279.88 20995.22 9195.66 15585.10 15784.21 23293.94 15663.53 29197.40 19688.50 10488.40 21393.87 232
F-COLMAP87.95 16986.80 17791.40 15596.35 9580.88 18394.73 12495.45 17279.65 25882.04 26794.61 13271.13 21698.50 11176.24 26091.05 17594.80 189
LS3D87.89 17086.32 19792.59 10596.07 10582.92 13195.23 9094.92 20375.66 29882.89 25795.98 8972.48 20599.21 4768.43 30895.23 11995.64 160
anonymousdsp87.84 17187.09 16990.12 20589.13 31680.54 19294.67 12895.55 16282.05 21583.82 23992.12 21871.47 21497.15 21587.15 12287.80 22492.67 282
v2v48287.84 17187.06 17090.17 20190.99 27879.23 22894.00 17895.13 18984.87 16185.53 18792.07 22474.45 17497.45 18584.71 14981.75 28093.85 235
WR-MVS_H87.80 17387.37 16389.10 23993.23 21078.12 24795.61 7397.30 2687.90 8983.72 24192.01 22679.65 12196.01 27976.36 25780.54 29993.16 267
AUN-MVS87.78 17486.54 18991.48 15294.82 15381.05 17793.91 18493.93 23783.00 19886.93 15793.53 17269.50 24197.67 16986.14 13277.12 32395.73 158
PCF-MVS84.11 1087.74 17586.08 20692.70 10194.02 18284.43 9289.27 29595.87 13973.62 31784.43 22194.33 13978.48 13498.86 9070.27 29494.45 13094.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 17686.13 20292.31 12096.66 8380.74 18794.87 11591.49 29380.47 24889.46 11895.44 10354.72 33298.23 13182.19 18389.89 18897.97 70
V4287.68 17686.86 17490.15 20390.58 29780.14 19894.24 15995.28 18383.66 18185.67 18291.33 24474.73 17297.41 19484.43 15281.83 27892.89 277
thres600view787.65 17886.67 18290.59 18296.08 10478.72 23194.88 11491.58 28987.06 10988.08 13592.30 21168.91 25198.10 13870.05 30191.10 17194.96 180
XXY-MVS87.65 17886.85 17590.03 20992.14 23680.60 19193.76 18795.23 18582.94 20084.60 21494.02 15174.27 17695.49 30181.04 20283.68 25694.01 226
Test_1112_low_res87.65 17886.51 19091.08 16794.94 14679.28 22591.77 25294.30 22576.04 29683.51 24892.37 20877.86 14097.73 16778.69 23689.13 20296.22 135
thres100view90087.63 18186.71 18090.38 19596.12 10078.55 23595.03 10591.58 28987.15 10688.06 13692.29 21268.91 25198.10 13870.13 29891.10 17194.48 207
CP-MVSNet87.63 18187.26 16888.74 24993.12 21376.59 27695.29 8696.58 9188.43 7483.49 24992.98 19075.28 16495.83 28778.97 23381.15 28793.79 237
thres40087.62 18386.64 18390.57 18395.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.96 180
v114487.61 18486.79 17890.06 20891.01 27779.34 22193.95 18095.42 17783.36 19185.66 18391.31 24774.98 16897.42 18983.37 16382.06 27493.42 256
tfpn200view987.58 18586.64 18390.41 19295.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.48 207
BH-w/o87.57 18687.05 17189.12 23894.90 14977.90 25292.41 23493.51 24782.89 20283.70 24291.34 24375.75 15897.07 22375.49 26593.49 14292.39 291
UniMVSNet_ETH3D87.53 18786.37 19391.00 17392.44 23078.96 23094.74 12395.61 15984.07 17485.36 20494.52 13659.78 31697.34 20182.93 16987.88 22296.71 123
ET-MVSNet_ETH3D87.51 18885.91 21392.32 11993.70 19983.93 10192.33 23890.94 30784.16 17172.09 33692.52 20469.90 23495.85 28689.20 9688.36 21497.17 105
131487.51 18886.57 18890.34 19892.42 23179.74 21392.63 22895.35 18278.35 27680.14 29091.62 23874.05 18297.15 21581.05 20193.53 14194.12 218
v887.50 19086.71 18089.89 21491.37 26479.40 21894.50 13795.38 17884.81 16383.60 24691.33 24476.05 15397.42 18982.84 17280.51 30392.84 279
Fast-Effi-MVS+-dtu87.44 19186.72 17989.63 22692.04 24077.68 26194.03 17593.94 23685.81 13582.42 26191.32 24670.33 23197.06 22480.33 21890.23 18294.14 217
MVS87.44 19186.10 20591.44 15492.61 22883.62 11192.63 22895.66 15567.26 34081.47 27192.15 21677.95 13798.22 13379.71 22495.48 11092.47 288
FMVSNet387.40 19386.11 20491.30 15893.79 19683.64 11094.20 16194.81 21183.89 17784.37 22291.87 23068.45 25796.56 25278.23 24085.36 24193.70 246
thisisatest051587.33 19485.99 20891.37 15693.49 20379.55 21490.63 27389.56 33380.17 25087.56 14790.86 26067.07 26598.28 13081.50 19893.02 15496.29 132
PS-CasMVS87.32 19586.88 17388.63 25292.99 22176.33 28195.33 8096.61 8988.22 8283.30 25493.07 18873.03 19995.79 29078.36 23881.00 29393.75 243
GBi-Net87.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
test187.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
v119287.25 19886.33 19690.00 21290.76 29179.04 22993.80 18595.48 16782.57 20785.48 19291.18 25173.38 19697.42 18982.30 18182.06 27493.53 250
v1087.25 19886.38 19289.85 21591.19 27079.50 21594.48 13895.45 17283.79 17983.62 24591.19 24975.13 16597.42 18981.94 18880.60 29792.63 284
DP-MVS87.25 19885.36 22892.90 9197.65 5683.24 12094.81 11992.00 27874.99 30581.92 26995.00 11772.66 20299.05 6066.92 31992.33 16496.40 129
miper_ehance_all_eth87.22 20186.62 18689.02 24292.13 23777.40 26790.91 26994.81 21181.28 23884.32 22790.08 27879.26 12396.62 24483.81 15982.94 26493.04 272
thres20087.21 20286.24 20090.12 20595.36 12878.53 23693.26 20892.10 27486.42 12588.00 13891.11 25569.24 24798.00 15169.58 30291.04 17693.83 236
v14419287.19 20386.35 19589.74 22190.64 29578.24 24593.92 18195.43 17581.93 22185.51 18991.05 25774.21 17997.45 18582.86 17181.56 28293.53 250
FMVSNet287.19 20385.82 21591.30 15894.01 18383.67 10994.79 12094.94 19883.57 18383.88 23792.05 22566.59 27396.51 25577.56 24785.01 24493.73 244
cl_fuxian87.14 20586.50 19189.04 24192.20 23477.26 26891.22 26594.70 21582.01 21884.34 22690.43 27178.81 12796.61 24783.70 16181.09 28893.25 261
Baseline_NR-MVSNet87.07 20686.63 18588.40 25691.44 25877.87 25494.23 16092.57 26484.12 17385.74 18092.08 22277.25 14296.04 27682.29 18279.94 30791.30 310
v14887.04 20786.32 19789.21 23590.94 28277.26 26893.71 19094.43 22084.84 16284.36 22590.80 26376.04 15497.05 22582.12 18479.60 31193.31 258
v192192086.97 20886.06 20789.69 22590.53 30078.11 24893.80 18595.43 17581.90 22385.33 20591.05 25772.66 20297.41 19482.05 18681.80 27993.53 250
miper_enhance_ethall86.90 20986.18 20189.06 24091.66 25577.58 26490.22 28194.82 21079.16 26384.48 21889.10 29279.19 12496.66 24284.06 15582.94 26492.94 275
RRT_test8_iter0586.90 20986.36 19488.52 25493.00 22073.27 30394.32 15595.96 13085.50 14684.26 23092.86 19260.76 30997.70 16888.32 10682.29 27194.60 196
bset_n11_16_dypcd86.83 21185.55 22190.65 18188.22 32781.70 15988.88 30290.42 31485.26 15285.49 19190.69 26667.11 26497.02 22789.51 9384.39 24893.23 263
v7n86.81 21285.76 21989.95 21390.72 29379.25 22795.07 10195.92 13384.45 16982.29 26290.86 26072.60 20497.53 17979.42 23080.52 30293.08 271
PEN-MVS86.80 21386.27 19988.40 25692.32 23375.71 28695.18 9596.38 10287.97 8682.82 25893.15 18473.39 19595.92 28276.15 26179.03 31693.59 248
cl-mvsnet286.78 21485.98 20989.18 23792.34 23277.62 26390.84 27094.13 23381.33 23783.97 23690.15 27673.96 18496.60 24984.19 15482.94 26493.33 257
v124086.78 21485.85 21489.56 22790.45 30177.79 25793.61 19395.37 18081.65 22985.43 19791.15 25371.50 21397.43 18881.47 19982.05 27693.47 254
TR-MVS86.78 21485.76 21989.82 21794.37 17278.41 24092.47 23392.83 25781.11 24386.36 17092.40 20768.73 25497.48 18273.75 28189.85 19093.57 249
PatchMatch-RL86.77 21785.54 22290.47 19195.88 11282.71 13990.54 27492.31 26979.82 25684.32 22791.57 24168.77 25396.39 26373.16 28393.48 14492.32 294
PAPM86.68 21885.39 22690.53 18593.05 21679.33 22489.79 28894.77 21478.82 26881.95 26893.24 18176.81 14597.30 20266.94 31793.16 15194.95 183
pm-mvs186.61 21985.54 22289.82 21791.44 25880.18 19695.28 8894.85 20783.84 17881.66 27092.62 20272.45 20796.48 25779.67 22578.06 31792.82 280
GA-MVS86.61 21985.27 22990.66 18091.33 26778.71 23290.40 27693.81 24385.34 15085.12 20789.57 28861.25 30497.11 21980.99 20589.59 19496.15 136
Anonymous2023121186.59 22185.13 23190.98 17696.52 9081.50 16396.14 4596.16 11673.78 31583.65 24492.15 21663.26 29297.37 20082.82 17381.74 28194.06 223
cl-mvsnet186.53 22285.78 21688.75 24792.02 24276.45 27890.74 27194.30 22581.83 22783.34 25290.82 26275.75 15896.57 25081.73 19581.52 28493.24 262
cl-mvsnet_86.52 22385.78 21688.75 24792.03 24176.46 27790.74 27194.30 22581.83 22783.34 25290.78 26475.74 16096.57 25081.74 19481.54 28393.22 264
eth_miper_zixun_eth86.50 22485.77 21888.68 25091.94 24475.81 28590.47 27594.89 20482.05 21584.05 23390.46 27075.96 15596.77 23882.76 17579.36 31393.46 255
baseline286.50 22485.39 22689.84 21691.12 27476.70 27491.88 24988.58 33582.35 21179.95 29490.95 25973.42 19497.63 17480.27 21989.95 18795.19 172
EPNet_dtu86.49 22685.94 21288.14 26590.24 30472.82 30794.11 16692.20 27286.66 12179.42 30092.36 20973.52 19095.81 28971.26 28993.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 22784.98 23490.80 17992.10 23980.92 18290.24 27995.91 13573.10 32183.57 24788.39 30365.15 28497.46 18484.90 14691.43 16994.03 225
SCA86.32 22885.18 23089.73 22392.15 23576.60 27591.12 26691.69 28783.53 18685.50 19088.81 29666.79 26996.48 25776.65 25590.35 18196.12 139
LTVRE_ROB82.13 1386.26 22984.90 23790.34 19894.44 17081.50 16392.31 24094.89 20483.03 19779.63 29892.67 20069.69 23897.79 16171.20 29086.26 23691.72 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23085.48 22487.98 26891.65 25674.92 28994.93 11095.75 14887.36 10482.26 26393.04 18972.85 20095.82 28874.04 27777.46 32193.20 265
XVG-ACMP-BASELINE86.00 23184.84 23989.45 23291.20 26978.00 24991.70 25695.55 16285.05 15982.97 25692.25 21454.49 33397.48 18282.93 16987.45 22792.89 277
MVP-Stereo85.97 23284.86 23889.32 23390.92 28482.19 15092.11 24694.19 22978.76 27078.77 30391.63 23768.38 25896.56 25275.01 27293.95 13489.20 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 23385.09 23288.35 25890.79 28977.42 26691.83 25195.70 15180.77 24680.08 29290.02 27966.74 27196.37 26481.88 19087.97 22191.26 311
test-LLR85.87 23485.41 22587.25 28490.95 28071.67 31889.55 28989.88 32883.41 18984.54 21687.95 31067.25 26195.11 30781.82 19193.37 14794.97 177
FMVSNet185.85 23584.11 24891.08 16792.81 22483.10 12395.14 9894.94 19881.64 23082.68 25991.64 23459.01 32096.34 26775.37 26783.78 25393.79 237
PatchmatchNetpermissive85.85 23584.70 24189.29 23491.76 25075.54 28788.49 30791.30 29781.63 23185.05 20888.70 30071.71 20996.24 27074.61 27589.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 23784.94 23688.26 26191.16 27372.58 31389.47 29391.04 30476.26 29486.45 16889.97 28170.74 22396.86 23782.35 18087.07 23395.34 170
PMMVS85.71 23884.96 23587.95 26988.90 31977.09 27088.68 30590.06 32272.32 32786.47 16590.76 26572.15 20894.40 31381.78 19393.49 14292.36 292
PVSNet78.82 1885.55 23984.65 24288.23 26394.72 15671.93 31687.12 32092.75 26078.80 26984.95 21090.53 26964.43 28896.71 24174.74 27393.86 13696.06 145
IterMVS-SCA-FT85.45 24084.53 24588.18 26491.71 25276.87 27390.19 28292.65 26385.40 14981.44 27290.54 26866.79 26995.00 31081.04 20281.05 28992.66 283
pmmvs485.43 24183.86 25290.16 20290.02 30982.97 13090.27 27792.67 26275.93 29780.73 28091.74 23371.05 21795.73 29278.85 23483.46 26091.78 301
ACMH80.38 1785.36 24283.68 25490.39 19394.45 16980.63 18994.73 12494.85 20782.09 21477.24 31192.65 20160.01 31497.58 17572.25 28784.87 24592.96 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 24384.64 24387.49 27890.77 29072.59 31294.01 17794.40 22184.72 16579.62 29993.17 18361.91 29996.72 23981.99 18781.16 28593.16 267
CR-MVSNet85.35 24383.76 25390.12 20590.58 29779.34 22185.24 33091.96 28278.27 27785.55 18587.87 31371.03 21895.61 29373.96 27989.36 19795.40 167
tpmrst85.35 24384.99 23386.43 29890.88 28767.88 33888.71 30491.43 29580.13 25186.08 17688.80 29873.05 19896.02 27882.48 17783.40 26295.40 167
miper_lstm_enhance85.27 24684.59 24487.31 28191.28 26874.63 29087.69 31694.09 23581.20 24281.36 27489.85 28474.97 16994.30 31581.03 20479.84 31093.01 273
IB-MVS80.51 1585.24 24783.26 25991.19 16192.13 23779.86 21091.75 25391.29 29883.28 19380.66 28288.49 30261.28 30398.46 11580.99 20579.46 31295.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 24883.99 25088.65 25192.47 22978.40 24179.68 34792.76 25974.90 30781.41 27389.59 28769.85 23795.51 29879.92 22395.29 11692.03 298
RPSCF85.07 24984.27 24687.48 27992.91 22370.62 32891.69 25792.46 26576.20 29582.67 26095.22 11063.94 29097.29 20577.51 24885.80 23994.53 201
MS-PatchMatch85.05 25084.16 24787.73 27291.42 26278.51 23791.25 26493.53 24677.50 28280.15 28991.58 23961.99 29895.51 29875.69 26494.35 13289.16 333
ACMH+81.04 1485.05 25083.46 25889.82 21794.66 16079.37 21994.44 14394.12 23482.19 21378.04 30692.82 19658.23 32297.54 17873.77 28082.90 26792.54 285
DWT-MVSNet_test84.95 25283.68 25488.77 24591.43 26173.75 29991.74 25490.98 30580.66 24783.84 23887.36 31762.44 29597.11 21978.84 23585.81 23895.46 164
IterMVS84.88 25383.98 25187.60 27491.44 25876.03 28390.18 28392.41 26683.24 19481.06 27890.42 27266.60 27294.28 31679.46 22680.98 29492.48 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25483.09 26190.14 20493.80 19480.05 20389.18 29893.09 25278.89 26678.19 30491.91 22865.86 28297.27 20668.47 30788.45 21193.11 269
tpm84.73 25584.02 24986.87 29590.33 30268.90 33589.06 29989.94 32580.85 24585.75 17989.86 28368.54 25695.97 28077.76 24484.05 25295.75 157
tfpnnormal84.72 25683.23 26089.20 23692.79 22580.05 20394.48 13895.81 14382.38 20981.08 27791.21 24869.01 25096.95 23161.69 33680.59 29890.58 324
CVMVSNet84.69 25784.79 24084.37 31691.84 24764.92 34693.70 19191.47 29466.19 34286.16 17595.28 10767.18 26393.33 32780.89 20790.42 18094.88 185
test-mter84.54 25883.64 25687.25 28490.95 28071.67 31889.55 28989.88 32879.17 26284.54 21687.95 31055.56 32895.11 30781.82 19193.37 14794.97 177
TransMVSNet (Re)84.43 25983.06 26288.54 25391.72 25178.44 23995.18 9592.82 25882.73 20479.67 29792.12 21873.49 19195.96 28171.10 29368.73 34091.21 313
pmmvs584.21 26082.84 26688.34 25988.95 31876.94 27292.41 23491.91 28475.63 29980.28 28791.18 25164.59 28795.57 29477.09 25383.47 25992.53 286
tpm284.08 26182.94 26387.48 27991.39 26371.27 32089.23 29790.37 31671.95 32984.64 21389.33 29067.30 26096.55 25475.17 26987.09 23294.63 193
COLMAP_ROBcopyleft80.39 1683.96 26282.04 26989.74 22195.28 13279.75 21294.25 15892.28 27075.17 30378.02 30793.77 16758.60 32197.84 16065.06 32785.92 23791.63 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 26381.53 27391.21 16090.58 29779.34 22185.24 33096.76 7371.44 33185.55 18582.97 33870.87 22198.91 8561.01 33889.36 19795.40 167
SixPastTwentyTwo83.91 26482.90 26486.92 29290.99 27870.67 32793.48 19791.99 27985.54 14477.62 31092.11 22060.59 31096.87 23676.05 26277.75 31893.20 265
EPMVS83.90 26582.70 26787.51 27690.23 30572.67 30988.62 30681.96 35081.37 23685.01 20988.34 30466.31 27694.45 31275.30 26887.12 23195.43 166
TESTMET0.1,183.74 26682.85 26586.42 29989.96 31071.21 32289.55 28987.88 33777.41 28383.37 25187.31 31856.71 32593.65 32480.62 21292.85 15894.40 210
MVS_030483.46 26781.92 27088.10 26690.63 29677.49 26593.26 20893.75 24480.04 25380.44 28687.24 32047.94 34695.55 29575.79 26388.16 21691.26 311
pmmvs683.42 26881.60 27288.87 24488.01 33077.87 25494.96 10794.24 22874.67 30978.80 30291.09 25660.17 31396.49 25677.06 25475.40 32692.23 296
AllTest83.42 26881.39 27489.52 22995.01 14077.79 25793.12 21390.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
tpmvs83.35 27082.07 26887.20 28891.07 27671.00 32588.31 31091.70 28678.91 26580.49 28587.18 32169.30 24697.08 22268.12 31283.56 25893.51 253
USDC82.76 27181.26 27687.26 28391.17 27174.55 29189.27 29593.39 24978.26 27875.30 32392.08 22254.43 33496.63 24371.64 28885.79 24090.61 321
Patchmtry82.71 27280.93 27888.06 26790.05 30876.37 28084.74 33491.96 28272.28 32881.32 27587.87 31371.03 21895.50 30068.97 30480.15 30592.32 294
PatchT82.68 27381.27 27586.89 29490.09 30770.94 32684.06 33690.15 31974.91 30685.63 18483.57 33569.37 24294.87 31165.19 32488.50 21094.84 186
MIMVSNet82.59 27480.53 27988.76 24691.51 25778.32 24286.57 32390.13 32079.32 25980.70 28188.69 30152.98 33993.07 33166.03 32288.86 20594.90 184
test0.0.03 182.41 27581.69 27184.59 31488.23 32672.89 30690.24 27987.83 33883.41 18979.86 29589.78 28567.25 26188.99 34665.18 32583.42 26191.90 300
EG-PatchMatch MVS82.37 27680.34 28288.46 25590.27 30379.35 22092.80 22594.33 22477.14 28773.26 33390.18 27547.47 34896.72 23970.25 29587.32 23089.30 330
tpm cat181.96 27780.27 28387.01 29091.09 27571.02 32487.38 31991.53 29266.25 34180.17 28886.35 32568.22 25996.15 27469.16 30382.29 27193.86 234
our_test_381.93 27880.46 28186.33 30088.46 32373.48 30188.46 30891.11 30076.46 28976.69 31588.25 30666.89 26794.36 31468.75 30579.08 31591.14 315
ppachtmachnet_test81.84 27980.07 28787.15 28988.46 32374.43 29489.04 30092.16 27375.33 30177.75 30888.99 29366.20 27795.37 30365.12 32677.60 31991.65 303
gg-mvs-nofinetune81.77 28079.37 29388.99 24390.85 28877.73 26086.29 32479.63 35374.88 30883.19 25569.05 34860.34 31196.11 27575.46 26694.64 12593.11 269
CL-MVSNet_2432*160081.74 28180.53 27985.36 30885.96 33872.45 31490.25 27893.07 25381.24 24079.85 29687.29 31970.93 22092.52 33466.95 31669.23 33691.11 317
Patchmatch-RL test81.67 28279.96 28886.81 29685.42 34171.23 32182.17 34387.50 34178.47 27477.19 31282.50 33970.81 22293.48 32582.66 17672.89 33095.71 159
ADS-MVSNet281.66 28379.71 29187.50 27791.35 26574.19 29683.33 33988.48 33672.90 32382.24 26485.77 32964.98 28593.20 32964.57 32883.74 25495.12 173
K. test v381.59 28480.15 28685.91 30589.89 31269.42 33492.57 23187.71 33985.56 14373.44 33289.71 28655.58 32795.52 29777.17 25169.76 33492.78 281
ADS-MVSNet81.56 28579.78 28986.90 29391.35 26571.82 31783.33 33989.16 33472.90 32382.24 26485.77 32964.98 28593.76 32264.57 32883.74 25495.12 173
FMVSNet581.52 28679.60 29287.27 28291.17 27177.95 25091.49 26092.26 27176.87 28876.16 31887.91 31251.67 34092.34 33567.74 31381.16 28591.52 305
dp81.47 28780.23 28485.17 31189.92 31165.49 34486.74 32190.10 32176.30 29381.10 27687.12 32262.81 29395.92 28268.13 31179.88 30894.09 221
Patchmatch-test81.37 28879.30 29487.58 27590.92 28474.16 29780.99 34587.68 34070.52 33576.63 31688.81 29671.21 21592.76 33360.01 34286.93 23495.83 154
EU-MVSNet81.32 28980.95 27782.42 32488.50 32263.67 34793.32 20191.33 29664.02 34480.57 28492.83 19561.21 30692.27 33676.34 25880.38 30491.32 309
test_040281.30 29079.17 29787.67 27393.19 21178.17 24692.98 22091.71 28575.25 30276.02 32190.31 27359.23 31896.37 26450.22 34883.63 25788.47 339
JIA-IIPM81.04 29178.98 30087.25 28488.64 32073.48 30181.75 34489.61 33273.19 32082.05 26673.71 34566.07 28095.87 28571.18 29284.60 24792.41 290
Anonymous2023120681.03 29279.77 29084.82 31387.85 33270.26 33091.42 26192.08 27573.67 31677.75 30889.25 29162.43 29693.08 33061.50 33782.00 27791.12 316
pmmvs-eth3d80.97 29378.72 30187.74 27184.99 34379.97 20890.11 28491.65 28875.36 30073.51 33186.03 32659.45 31793.96 32175.17 26972.21 33189.29 331
testgi80.94 29480.20 28583.18 32087.96 33166.29 34191.28 26290.70 31383.70 18078.12 30592.84 19451.37 34190.82 34363.34 33182.46 27092.43 289
CMPMVSbinary59.16 2180.52 29579.20 29684.48 31583.98 34467.63 34089.95 28793.84 24264.79 34366.81 34491.14 25457.93 32395.17 30576.25 25988.10 21790.65 320
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS80.37 29679.07 29984.27 31886.64 33469.87 33389.39 29491.05 30376.38 29174.97 32590.00 28047.85 34794.25 31774.55 27680.82 29688.69 337
DIV-MVS_2432*160080.20 29779.24 29583.07 32185.64 34065.29 34591.01 26893.93 23778.71 27276.32 31786.40 32459.20 31992.93 33272.59 28569.35 33591.00 319
UnsupCasMVSNet_eth80.07 29878.27 30285.46 30785.24 34272.63 31188.45 30994.87 20682.99 19971.64 33988.07 30956.34 32691.75 34073.48 28263.36 34592.01 299
test20.0379.95 29979.08 29882.55 32385.79 33967.74 33991.09 26791.08 30181.23 24174.48 32889.96 28261.63 30090.15 34460.08 34076.38 32489.76 326
TDRefinement79.81 30077.34 30487.22 28779.24 35175.48 28893.12 21392.03 27776.45 29075.01 32491.58 23949.19 34496.44 26170.22 29769.18 33789.75 327
TinyColmap79.76 30177.69 30385.97 30291.71 25273.12 30489.55 28990.36 31775.03 30472.03 33790.19 27446.22 34996.19 27363.11 33281.03 29088.59 338
OpenMVS_ROBcopyleft74.94 1979.51 30277.03 30886.93 29187.00 33376.23 28292.33 23890.74 31268.93 33874.52 32788.23 30749.58 34396.62 24457.64 34484.29 24987.94 341
MIMVSNet179.38 30377.28 30585.69 30686.35 33573.67 30091.61 25992.75 26078.11 28172.64 33588.12 30848.16 34591.97 33960.32 33977.49 32091.43 308
YYNet179.22 30477.20 30685.28 31088.20 32972.66 31085.87 32690.05 32474.33 31262.70 34687.61 31566.09 27992.03 33766.94 31772.97 32991.15 314
MDA-MVSNet_test_wron79.21 30577.19 30785.29 30988.22 32772.77 30885.87 32690.06 32274.34 31162.62 34787.56 31666.14 27891.99 33866.90 32073.01 32891.10 318
MDA-MVSNet-bldmvs78.85 30676.31 30986.46 29789.76 31373.88 29888.79 30390.42 31479.16 26359.18 34888.33 30560.20 31294.04 31862.00 33568.96 33891.48 307
KD-MVS_2432*160078.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
miper_refine_blended78.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
PM-MVS78.11 30976.12 31184.09 31983.54 34670.08 33188.97 30185.27 34579.93 25474.73 32686.43 32334.70 35393.48 32579.43 22972.06 33288.72 336
PVSNet_073.20 2077.22 31074.83 31584.37 31690.70 29471.10 32383.09 34189.67 33172.81 32573.93 33083.13 33760.79 30893.70 32368.54 30650.84 35188.30 340
DSMNet-mixed76.94 31176.29 31078.89 32783.10 34756.11 35487.78 31479.77 35260.65 34675.64 32288.71 29961.56 30188.34 34760.07 34189.29 19992.21 297
new-patchmatchnet76.41 31275.17 31480.13 32682.65 34959.61 34987.66 31791.08 30178.23 27969.85 34083.22 33654.76 33191.63 34264.14 33064.89 34389.16 333
UnsupCasMVSNet_bld76.23 31373.27 31685.09 31283.79 34572.92 30585.65 32993.47 24871.52 33068.84 34279.08 34349.77 34293.21 32866.81 32160.52 34789.13 335
MVS-HIRNet73.70 31472.20 31778.18 32991.81 24956.42 35382.94 34282.58 34855.24 34868.88 34166.48 34955.32 33095.13 30658.12 34388.42 21283.01 344
new_pmnet72.15 31570.13 31878.20 32882.95 34865.68 34283.91 33782.40 34962.94 34564.47 34579.82 34242.85 35186.26 34957.41 34574.44 32782.65 345
pmmvs371.81 31668.71 31981.11 32575.86 35270.42 32986.74 32183.66 34758.95 34768.64 34380.89 34136.93 35289.52 34563.10 33363.59 34483.39 343
N_pmnet68.89 31768.44 32070.23 33389.07 31728.79 36388.06 31119.50 36369.47 33771.86 33884.93 33161.24 30591.75 34054.70 34677.15 32290.15 325
LCM-MVSNet66.00 31862.16 32277.51 33064.51 35858.29 35083.87 33890.90 30848.17 35154.69 34973.31 34616.83 36286.75 34865.47 32361.67 34687.48 342
FPMVS64.63 31962.55 32170.88 33270.80 35456.71 35184.42 33584.42 34651.78 35049.57 35081.61 34023.49 35681.48 35240.61 35276.25 32574.46 348
PMMVS259.60 32056.40 32369.21 33468.83 35546.58 35873.02 35277.48 35655.07 34949.21 35172.95 34717.43 36180.04 35349.32 34944.33 35280.99 347
ANet_high58.88 32154.22 32572.86 33156.50 36156.67 35280.75 34686.00 34273.09 32237.39 35464.63 35122.17 35779.49 35443.51 35023.96 35582.43 346
Gipumacopyleft57.99 32254.91 32467.24 33588.51 32165.59 34352.21 35590.33 31843.58 35342.84 35351.18 35420.29 35985.07 35034.77 35370.45 33351.05 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32348.46 32663.48 33645.72 36246.20 35973.41 35178.31 35441.03 35430.06 35665.68 3506.05 36383.43 35130.04 35465.86 34160.80 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 32438.59 33057.77 33756.52 36048.77 35755.38 35458.64 36029.33 35728.96 35752.65 3534.68 36464.62 35728.11 35533.07 35359.93 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 32542.29 32746.03 33965.58 35737.41 36073.51 35064.62 35733.99 35528.47 35847.87 35519.90 36067.91 35522.23 35624.45 35432.77 353
EMVS42.07 32641.12 32844.92 34063.45 35935.56 36273.65 34963.48 35833.05 35626.88 35945.45 35621.27 35867.14 35619.80 35723.02 35632.06 354
tmp_tt35.64 32739.24 32924.84 34114.87 36323.90 36462.71 35351.51 3626.58 35936.66 35562.08 35244.37 35030.34 36052.40 34722.00 35720.27 355
cdsmvs_eth3d_5k22.14 32829.52 3310.00 3450.00 3660.00 3670.00 35795.76 1470.00 3620.00 36394.29 14275.66 1610.00 3630.00 3610.00 3610.00 359
wuyk23d21.27 32920.48 33223.63 34268.59 35636.41 36149.57 3566.85 3649.37 3587.89 3604.46 3624.03 36531.37 35917.47 35816.07 3583.12 356
testmvs8.92 33011.52 3331.12 3441.06 3640.46 36686.02 3250.65 3650.62 3602.74 3619.52 3600.31 3670.45 3622.38 3590.39 3592.46 358
test1238.76 33111.22 3341.39 3430.85 3650.97 36585.76 3280.35 3660.54 3612.45 3628.14 3610.60 3660.48 3612.16 3600.17 3602.71 357
ab-mvs-re7.82 33210.43 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36393.88 1610.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas6.64 3338.86 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36379.70 1170.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS98.15 3586.62 3597.07 4483.63 18294.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
IU-MVS98.77 486.00 5496.84 6381.26 23997.26 695.50 799.13 399.03 4
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13295.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 139
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21096.12 139
sam_mvs70.60 224
ambc83.06 32279.99 35063.51 34877.47 34892.86 25674.34 32984.45 33228.74 35495.06 30973.06 28468.89 33990.61 321
MTGPAbinary96.97 49
test_post188.00 3129.81 35969.31 24595.53 29676.65 255
test_post10.29 35870.57 22895.91 284
patchmatchnet-post83.76 33471.53 21296.48 257
GG-mvs-BLEND87.94 27089.73 31477.91 25187.80 31378.23 35580.58 28383.86 33359.88 31595.33 30471.20 29092.22 16590.60 323
MTMP96.16 4360.64 359
gm-plane-assit89.60 31568.00 33777.28 28688.99 29397.57 17679.44 228
test9_res91.91 5898.71 3098.07 63
TEST997.53 5886.49 3994.07 17196.78 7081.61 23292.77 6396.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17696.76 7381.86 22592.70 6796.20 8087.63 2799.02 68
agg_prior290.54 8498.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
TestCases89.52 22995.01 14077.79 25790.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
test_prior485.96 5794.11 166
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
旧先验293.36 20071.25 33294.37 2697.13 21886.74 127
新几何293.11 215
新几何193.10 8197.30 6884.35 9495.56 16171.09 33391.26 10096.24 7782.87 8298.86 9079.19 23298.10 6296.07 144
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
无先验93.28 20796.26 10773.95 31499.05 6080.56 21396.59 125
原ACMM292.94 222
原ACMM192.01 12897.34 6681.05 17796.81 6878.89 26690.45 10795.92 9182.65 8398.84 9580.68 21198.26 5996.14 137
test22296.55 8881.70 15992.22 24295.01 19568.36 33990.20 11096.14 8580.26 11097.80 7296.05 146
testdata298.75 9978.30 239
segment_acmp87.16 35
testdata90.49 18996.40 9277.89 25395.37 18072.51 32693.63 4596.69 5882.08 9497.65 17183.08 16697.39 8195.94 148
testdata192.15 24487.94 87
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
plane_prior794.70 15882.74 136
plane_prior694.52 16482.75 13474.23 177
plane_prior596.22 11298.12 13688.15 10789.99 18494.63 193
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 159
plane_prior295.85 6190.81 17
plane_prior194.59 162
plane_prior82.73 13795.21 9289.66 4189.88 189
n20.00 367
nn0.00 367
door-mid85.49 343
lessismore_v086.04 30188.46 32368.78 33680.59 35173.01 33490.11 27755.39 32996.43 26275.06 27165.06 34292.90 276
LGP-MVS_train91.12 16394.47 16681.49 16596.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
test1196.57 92
door85.33 344
HQP5-MVS81.56 161
HQP-NCC94.17 17794.39 14888.81 6185.43 197
ACMP_Plane94.17 17794.39 14888.81 6185.43 197
BP-MVS87.11 124
HQP4-MVS85.43 19797.96 15494.51 203
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 187
NP-MVS94.37 17282.42 14493.98 154
MDTV_nov1_ep13_2view55.91 35587.62 31873.32 31984.59 21570.33 23174.65 27495.50 162
MDTV_nov1_ep1383.56 25791.69 25469.93 33287.75 31591.54 29178.60 27384.86 21188.90 29569.54 24096.03 27770.25 29588.93 204
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112
ITE_SJBPF88.24 26291.88 24677.05 27192.92 25585.54 14480.13 29193.30 17857.29 32496.20 27172.46 28684.71 24691.49 306
DeepMVS_CXcopyleft56.31 33874.23 35351.81 35656.67 36144.85 35248.54 35275.16 34427.87 35558.74 35840.92 35152.22 35058.39 351