This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12897.63 11
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12591.93 1594.40 2593.56 2897.04 297.27 16
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14797.58 12
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 81
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11596.45 35
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8893.59 87
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9293.95 79
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8694.70 67
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9392.22 5591.85 5093.69 13395.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8887.60 3480.32 7487.07 6190.66 8789.95 8494.62 9496.35 39
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10895.30 6492.57 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 10988.54 11394.72 8895.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9191.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10294.41 10790.45 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9891.75 2373.22 11787.64 5491.49 6489.71 9193.73 13191.82 122
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11294.31 11193.82 82
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11294.20 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8295.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9786.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 71
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12885.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9791.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9592.97 94
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12677.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 85
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 70
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12392.97 4691.53 5495.15 7196.65 33
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 88
EPP-MVSNet86.55 7187.76 6685.15 8290.52 8794.41 6487.24 11282.32 9781.79 8273.60 9978.57 7082.41 6582.07 8791.23 6690.39 7395.14 7295.48 52
diffmvs86.52 7286.76 7586.23 7688.31 11192.63 9189.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10589.06 10594.05 11794.29 72
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10193.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9094.01 78
IS_MVSNet86.18 7488.18 5983.85 10091.02 8094.72 6287.48 10682.46 9581.05 9070.28 11276.98 7782.20 6776.65 13993.97 3193.38 3595.18 6894.97 59
UA-Net86.07 7587.78 6584.06 9792.85 6595.11 5487.73 10384.38 6373.22 14673.18 10179.99 6289.22 3771.47 16793.22 4193.03 3994.76 8590.69 136
MVSTER86.03 7686.12 7885.93 7888.62 10789.93 12389.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9892.13 5990.10 7895.68 4292.80 99
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10571.74 10472.47 11987.45 5789.53 10089.09 10493.20 14389.60 144
UGNet85.90 7888.23 5883.18 10788.96 10594.10 6887.52 10583.60 7481.66 8377.90 8380.76 5983.19 6166.70 18491.13 7590.71 6794.39 10896.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10489.85 12589.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8489.67 9790.30 7493.63 13695.12 56
CANet_DTU85.43 8087.72 6882.76 11190.95 8393.01 8589.99 7175.46 16282.67 7264.91 14283.14 4580.09 7680.68 9792.03 6091.03 5894.57 9792.08 117
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10773.52 9874.03 10886.55 6690.99 7789.98 8294.83 8194.27 76
FC-MVSNet-train85.18 8285.31 8685.03 8390.67 8491.62 10187.66 10483.61 7379.75 10174.37 9578.69 6971.21 12378.91 12491.23 6689.96 8394.96 7794.69 68
thisisatest053085.15 8385.86 8184.33 9089.19 10392.57 9487.22 11380.11 11882.15 7974.41 9478.15 7273.80 11179.90 11190.99 7789.58 9395.13 7393.75 84
tttt051785.11 8485.81 8284.30 9189.24 10192.68 9087.12 11780.11 11881.98 8074.31 9678.08 7373.57 11379.90 11191.01 7689.58 9395.11 7593.77 83
baseline84.89 8586.06 8083.52 10587.25 12289.67 13287.76 10275.68 16184.92 6478.40 7880.10 6080.98 7080.20 10786.69 13487.05 12891.86 15992.99 93
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10474.99 20592.62 9390.29 6880.38 11082.16 7873.01 10483.41 4471.10 12487.05 6287.77 11890.17 7795.62 4691.82 122
baseline184.54 8784.43 9184.67 8590.62 8591.16 10488.63 9583.75 7279.78 10071.16 10875.14 8774.10 10777.84 13291.56 6390.67 6896.04 2288.58 150
GBi-Net84.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
test184.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
FMVSNet384.44 9084.64 9084.21 9384.32 15690.13 11889.85 7480.37 11181.17 8675.50 8869.63 11479.69 8179.62 11889.72 9690.52 7295.59 4991.58 130
Anonymous2023121184.42 9183.02 9786.05 7788.85 10692.70 8988.92 9283.40 8379.99 9878.31 7955.83 18478.92 8683.33 7889.06 10489.76 9093.50 13894.90 61
Vis-MVSNetpermissive84.38 9286.68 7681.70 12187.65 11894.89 5888.14 9980.90 10774.48 13268.23 12477.53 7580.72 7269.98 17192.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet283.87 9383.73 9584.05 9884.20 15789.95 12089.70 7580.21 11679.17 10674.89 9265.91 13377.49 9379.75 11590.87 8091.00 6095.52 5391.71 124
MSDG83.87 9381.02 11587.19 7292.17 7189.80 12789.15 8485.72 5580.61 9579.24 7566.66 13168.75 13582.69 8087.95 11687.44 12294.19 11385.92 173
Fast-Effi-MVS+83.77 9582.98 9884.69 8487.98 11291.87 9988.10 10077.70 14578.10 11273.04 10369.13 12068.51 13686.66 6490.49 8989.85 8794.67 9192.88 96
Vis-MVSNet (Re-imp)83.65 9686.81 7479.96 14190.46 9092.71 8884.84 14282.00 9980.93 9262.44 15776.29 8082.32 6665.54 18792.29 5391.66 5194.49 10291.47 131
RPSCF83.46 9783.36 9683.59 10387.75 11487.35 15984.82 14379.46 12783.84 6978.12 8082.69 4779.87 7782.60 8382.47 17981.13 18288.78 18486.13 171
PatchMatch-RL83.34 9881.36 11085.65 7990.33 9389.52 13584.36 14681.82 10080.87 9479.29 7474.04 9362.85 15686.05 6888.40 11287.04 12992.04 15686.77 166
IterMVS-LS83.28 9982.95 9983.65 10188.39 11088.63 15086.80 12178.64 13676.56 11873.43 10072.52 10375.35 10080.81 9586.43 14088.51 11493.84 12792.66 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part183.23 10080.55 12286.35 7588.60 10890.61 10990.78 6481.13 10670.89 15783.01 5355.72 18574.60 10482.19 8587.79 11789.26 10092.39 15295.01 57
tfpn200view982.86 10181.46 10884.48 8790.30 9493.09 8289.05 8882.71 8875.14 12769.56 11565.72 13563.13 15180.38 10491.15 7289.51 9594.91 7892.50 113
baseline282.80 10282.86 10082.73 11287.68 11790.50 11184.92 14178.93 13278.07 11373.06 10275.08 8869.77 13077.31 13588.90 10686.94 13094.50 10090.74 135
thres20082.77 10381.25 11284.54 8690.38 9193.05 8389.13 8582.67 9074.40 13369.53 11765.69 13763.03 15480.63 9991.15 7289.42 9794.88 7992.04 119
thres40082.68 10481.15 11384.47 8890.52 8792.89 8788.95 9182.71 8874.33 13469.22 12065.31 13962.61 15780.63 9990.96 7989.50 9694.79 8292.45 115
IB-MVS79.09 1282.60 10582.19 10383.07 10891.08 7993.55 7680.90 17381.35 10376.56 11880.87 6664.81 14569.97 12968.87 17485.64 14890.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90082.55 10681.01 11784.34 8990.30 9492.27 9589.04 8982.77 8775.14 12769.56 11565.72 13563.13 15179.62 11889.97 9389.26 10094.73 8791.61 129
thres600view782.53 10781.02 11584.28 9290.61 8693.05 8388.57 9682.67 9074.12 13768.56 12365.09 14262.13 16280.40 10391.15 7289.02 10794.88 7992.59 107
CHOSEN 1792x268882.16 10880.91 11883.61 10291.14 7892.01 9889.55 8079.15 13179.87 9970.29 11152.51 19372.56 11881.39 8988.87 10788.17 11690.15 17792.37 116
Effi-MVS+-dtu82.05 10981.76 10582.38 11587.72 11590.56 11086.90 12078.05 14173.85 14066.85 12971.29 10671.90 12182.00 8886.64 13585.48 15492.76 14992.58 108
EPNet_dtu81.98 11083.82 9479.83 14394.10 5185.97 16887.29 11084.08 6880.61 9559.96 17581.62 5577.19 9562.91 19187.21 12286.38 14190.66 17387.77 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet81.87 11181.33 11182.50 11385.31 14391.30 10285.70 13184.25 6475.89 12264.21 14466.95 13064.65 14780.22 10587.07 12489.18 10395.27 6794.29 72
ACMH78.52 1481.86 11280.45 12383.51 10690.51 8991.22 10385.62 13484.23 6570.29 16362.21 15869.04 12264.05 14984.48 7487.57 12088.45 11594.01 11992.54 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+79.08 1381.84 11380.06 12883.91 9989.92 9890.62 10886.21 12683.48 8073.88 13965.75 13566.38 13265.30 14584.63 7385.90 14587.25 12593.45 13991.13 134
MS-PatchMatch81.79 11481.44 10982.19 11890.35 9289.29 13988.08 10175.36 16377.60 11469.00 12164.37 14878.87 8777.14 13888.03 11585.70 15293.19 14486.24 170
PMMVS81.65 11584.05 9378.86 14878.56 19682.63 19083.10 15467.22 19281.39 8470.11 11484.91 4279.74 8082.12 8687.31 12185.70 15292.03 15786.67 169
FMVSNet181.64 11680.61 12082.84 11082.36 18289.20 14188.67 9379.58 12570.79 15872.63 10658.95 17572.26 12079.34 12190.73 8390.72 6494.47 10391.62 128
CDS-MVSNet81.63 11782.09 10481.09 13087.21 12390.28 11487.46 10880.33 11469.06 16770.66 10971.30 10573.87 10967.99 17789.58 9889.87 8692.87 14890.69 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test81.62 11879.45 13884.14 9691.00 8193.38 7988.27 9878.19 13976.28 12070.18 11348.78 19773.69 11283.52 7787.05 12587.83 12093.68 13489.15 147
UniMVSNet (Re)81.22 11981.08 11481.39 12585.35 14291.76 10084.93 14082.88 8576.13 12165.02 14164.94 14363.09 15375.17 14787.71 11989.04 10694.97 7694.88 62
DU-MVS81.20 12080.30 12482.25 11684.98 15090.94 10685.70 13183.58 7675.74 12364.21 14465.30 14059.60 17580.22 10586.89 12789.31 9894.77 8494.29 72
CostFormer80.94 12180.21 12581.79 12087.69 11688.58 15187.47 10770.66 17880.02 9777.88 8473.03 9971.40 12278.24 12879.96 18879.63 18488.82 18388.84 148
USDC80.69 12279.89 13181.62 12386.48 12989.11 14486.53 12378.86 13381.15 8963.48 15072.98 10059.12 18081.16 9187.10 12385.01 15893.23 14284.77 178
TranMVSNet+NR-MVSNet80.52 12379.84 13281.33 12784.92 15290.39 11285.53 13684.22 6674.27 13560.68 17364.93 14459.96 17077.48 13486.75 13289.28 9995.12 7493.29 89
COLMAP_ROBcopyleft76.78 1580.50 12478.49 14382.85 10990.96 8289.65 13386.20 12783.40 8377.15 11666.54 13062.27 15365.62 14477.89 13185.23 15584.70 16292.11 15584.83 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CHOSEN 280x42080.28 12581.66 10678.67 15282.92 17579.24 20285.36 13766.79 19478.11 11170.32 11075.03 8979.87 7781.09 9289.07 10383.16 17285.54 19987.17 163
NR-MVSNet80.25 12679.98 13080.56 13685.20 14590.94 10685.65 13383.58 7675.74 12361.36 16865.30 14056.75 18872.38 16388.46 11188.80 11095.16 7093.87 80
pmmvs479.99 12778.08 14982.22 11783.04 17287.16 16284.95 13978.80 13578.64 10974.53 9364.61 14659.41 17679.45 12084.13 16884.54 16592.53 15188.08 156
Fast-Effi-MVS+-dtu79.95 12880.69 11979.08 14686.36 13089.14 14385.85 12972.28 17272.85 14959.32 17870.43 11268.42 13777.57 13386.14 14286.44 14093.11 14591.39 132
v879.90 12978.39 14681.66 12283.97 16189.81 12687.16 11577.40 14771.49 15267.71 12561.24 15862.49 15879.83 11485.48 15286.17 14493.89 12492.02 121
v2v48279.84 13078.07 15081.90 11983.75 16290.21 11787.17 11479.85 12370.65 15965.93 13461.93 15560.07 16980.82 9485.25 15486.71 13393.88 12591.70 127
Baseline_NR-MVSNet79.84 13078.37 14781.55 12484.98 15086.66 16485.06 13883.49 7875.57 12563.31 15158.22 17960.97 16578.00 13086.89 12787.13 12694.47 10393.15 91
thisisatest051579.76 13280.59 12178.80 14984.40 15588.91 14879.48 17976.94 15172.29 15067.33 12767.82 12765.99 14270.80 16988.50 11087.84 11893.86 12692.75 102
v1079.62 13378.19 14881.28 12883.73 16389.69 13187.27 11176.86 15270.50 16165.46 13660.58 16560.47 16780.44 10286.91 12686.63 13693.93 12192.55 110
V4279.59 13478.43 14580.94 13182.79 17889.71 13086.66 12276.73 15471.38 15367.42 12661.01 16062.30 16078.39 12785.56 15086.48 13893.65 13592.60 106
GA-MVS79.52 13579.71 13579.30 14585.68 13790.36 11384.55 14478.44 13770.47 16257.87 18368.52 12461.38 16376.21 14189.40 10287.89 11793.04 14689.96 143
SCA79.51 13680.15 12778.75 15086.58 12887.70 15683.07 15568.53 18781.31 8566.40 13173.83 9475.38 9979.30 12280.49 18679.39 18788.63 18682.96 185
test-LLR79.47 13779.84 13279.03 14787.47 11982.40 19381.24 17078.05 14173.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
IterMVS-SCA-FT79.41 13880.20 12678.49 15485.88 13386.26 16683.95 14971.94 17373.55 14461.94 16170.48 11170.50 12675.23 14585.81 14784.61 16491.99 15890.18 142
v114479.38 13977.83 15381.18 12983.62 16490.23 11587.15 11678.35 13869.13 16664.02 14760.20 16759.41 17680.14 10986.78 13086.57 13793.81 12992.53 112
UniMVSNet_ETH3D79.24 14076.47 16682.48 11485.66 13890.97 10586.08 12881.63 10164.48 18768.94 12254.47 18757.65 18378.83 12585.20 15888.91 10993.72 13293.60 86
MDTV_nov1_ep1379.14 14179.49 13778.74 15185.40 14186.89 16384.32 14870.29 18078.85 10769.42 11875.37 8673.29 11675.64 14480.61 18579.48 18687.36 19081.91 187
TDRefinement79.05 14277.05 16181.39 12588.45 10989.00 14686.92 11882.65 9274.21 13664.41 14359.17 17259.16 17874.52 15385.23 15585.09 15791.37 16587.51 162
v119278.94 14377.33 15780.82 13283.25 16889.90 12486.91 11977.72 14468.63 17062.61 15659.17 17257.53 18480.62 10186.89 12786.47 13993.79 13092.75 102
v14419278.81 14477.22 15980.67 13482.95 17389.79 12886.40 12477.42 14668.26 17263.13 15259.50 17058.13 18180.08 11085.93 14486.08 14694.06 11692.83 98
IterMVS78.79 14579.71 13577.71 15885.26 14485.91 16984.54 14569.84 18473.38 14561.25 16970.53 11070.35 12774.43 15485.21 15783.80 16990.95 17188.77 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet78.71 14678.86 14078.55 15385.85 13685.15 17782.30 16268.23 18874.71 13065.37 13864.39 14769.59 13277.18 13685.10 16084.87 15992.34 15488.21 154
PatchmatchNetpermissive78.67 14778.85 14178.46 15586.85 12786.03 16783.77 15168.11 19080.88 9366.19 13272.90 10173.40 11578.06 12979.25 19277.71 19287.75 18981.75 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14878.59 14876.84 16480.62 13583.61 16589.16 14283.65 15279.24 13069.38 16569.34 11959.88 16960.41 16875.19 14683.81 17084.63 16392.70 15090.63 138
v192192078.57 14976.99 16280.41 13982.93 17489.63 13486.38 12577.14 14968.31 17161.80 16458.89 17656.79 18780.19 10886.50 13986.05 14894.02 11892.76 101
pm-mvs178.51 15077.75 15579.40 14484.83 15389.30 13883.55 15379.38 12862.64 19163.68 14958.73 17764.68 14670.78 17089.79 9587.84 11894.17 11491.28 133
v124078.15 15176.53 16580.04 14082.85 17789.48 13785.61 13576.77 15367.05 17461.18 17158.37 17856.16 19179.89 11386.11 14386.08 14693.92 12292.47 114
dps78.02 15275.94 17480.44 13886.06 13286.62 16582.58 15769.98 18275.14 12777.76 8669.08 12159.93 17178.47 12679.47 19077.96 19187.78 18883.40 182
anonymousdsp77.94 15379.00 13976.71 16679.03 19487.83 15579.58 17872.87 17065.80 18258.86 18265.82 13462.48 15975.99 14286.77 13188.66 11193.92 12295.68 49
test-mter77.79 15480.02 12975.18 17781.18 19082.85 18880.52 17662.03 20673.62 14362.16 15973.55 9773.83 11073.81 15684.67 16383.34 17191.37 16588.31 153
TESTMET0.1,177.78 15579.84 13275.38 17680.86 19182.40 19381.24 17062.72 20573.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
tpm cat177.78 15575.28 18180.70 13387.14 12485.84 17085.81 13070.40 17977.44 11578.80 7763.72 14964.01 15076.55 14075.60 20075.21 19885.51 20085.12 175
EPMVS77.53 15778.07 15076.90 16586.89 12684.91 18082.18 16566.64 19581.00 9164.11 14672.75 10269.68 13174.42 15579.36 19178.13 19087.14 19280.68 194
tfpnnormal77.46 15874.86 18380.49 13786.34 13188.92 14784.33 14781.26 10461.39 19561.70 16551.99 19453.66 19974.84 15088.63 10887.38 12494.50 10092.08 117
v7n77.22 15976.23 16978.38 15681.89 18589.10 14582.24 16476.36 15565.96 18161.21 17056.56 18255.79 19275.07 14986.55 13686.68 13493.52 13792.95 95
RPMNet77.07 16077.63 15676.42 16885.56 14085.15 17781.37 16765.27 19974.71 13060.29 17463.71 15066.59 14173.64 15782.71 17782.12 17992.38 15388.39 152
pmmvs576.93 16176.33 16877.62 15981.97 18488.40 15381.32 16974.35 16665.42 18561.42 16763.07 15157.95 18273.23 16185.60 14985.35 15693.41 14088.55 151
TinyColmap76.73 16273.95 18679.96 14185.16 14785.64 17382.34 16178.19 13970.63 16062.06 16060.69 16449.61 20480.81 9585.12 15983.69 17091.22 16982.27 186
CVMVSNet76.70 16378.46 14474.64 18283.34 16784.48 18181.83 16674.58 16468.88 16851.23 19669.77 11370.05 12867.49 18084.27 16783.81 16889.38 18187.96 158
WR-MVS76.63 16478.02 15275.02 17884.14 16089.76 12978.34 18680.64 10969.56 16452.32 19261.26 15761.24 16460.66 19284.45 16687.07 12793.99 12092.77 100
TransMVSNet (Re)76.57 16575.16 18278.22 15785.60 13987.24 16082.46 15881.23 10559.80 19859.05 18157.07 18159.14 17966.60 18588.09 11486.82 13194.37 10987.95 159
tpmrst76.55 16675.99 17377.20 16187.32 12183.05 18682.86 15665.62 19778.61 11067.22 12869.19 11965.71 14375.87 14376.75 19875.33 19784.31 20283.28 183
FC-MVSNet-test76.53 16781.62 10770.58 19284.99 14985.73 17174.81 19478.85 13477.00 11739.13 21075.90 8273.50 11454.08 19986.54 13785.99 14991.65 16186.68 167
PatchT76.42 16877.81 15474.80 18078.46 19784.30 18271.82 20065.03 20173.89 13865.37 13861.58 15666.70 14077.18 13685.10 16084.87 15990.94 17288.21 154
TAMVS76.42 16877.16 16075.56 17483.05 17185.55 17480.58 17571.43 17565.40 18661.04 17267.27 12969.22 13467.99 17784.88 16284.78 16189.28 18283.01 184
EG-PatchMatch MVS76.40 17075.47 17977.48 16085.86 13590.22 11682.45 15973.96 16859.64 19959.60 17752.75 19262.20 16168.44 17688.23 11387.50 12194.55 9887.78 160
CP-MVSNet76.36 17176.41 16776.32 17082.73 17988.64 14979.39 18079.62 12467.21 17353.70 18860.72 16355.22 19467.91 17983.52 17286.34 14294.55 9893.19 90
tpm76.30 17276.05 17276.59 16786.97 12583.01 18783.83 15067.06 19371.83 15163.87 14869.56 11762.88 15573.41 16079.79 18978.59 18884.41 20186.68 167
test0.0.03 176.03 17378.51 14273.12 18887.47 11985.13 17976.32 19178.05 14173.19 14850.98 19770.64 10869.28 13355.53 19585.33 15384.38 16690.39 17581.63 189
PEN-MVS76.02 17476.07 17075.95 17383.17 17087.97 15479.65 17780.07 12166.57 17751.45 19460.94 16155.47 19366.81 18382.72 17686.80 13294.59 9592.03 120
SixPastTwentyTwo76.02 17475.72 17676.36 16983.38 16687.54 15775.50 19376.22 15665.50 18457.05 18470.64 10853.97 19874.54 15280.96 18482.12 17991.44 16389.35 146
PS-CasMVS75.90 17675.86 17575.96 17282.59 18088.46 15279.23 18379.56 12666.00 18052.77 19059.48 17154.35 19767.14 18283.37 17386.23 14394.47 10393.10 92
WR-MVS_H75.84 17776.93 16374.57 18382.86 17689.50 13678.34 18679.36 12966.90 17552.51 19160.20 16759.71 17259.73 19383.61 17185.77 15194.65 9292.84 97
LTVRE_ROB74.41 1675.78 17874.72 18477.02 16485.88 13389.22 14082.44 16077.17 14850.57 20845.45 20365.44 13852.29 20181.25 9085.50 15187.42 12389.94 17992.62 105
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune75.64 17977.26 15873.76 18487.92 11392.20 9687.32 10964.67 20251.92 20735.35 21146.44 20077.05 9671.97 16492.64 5091.02 5995.34 6289.53 145
FMVSNet575.50 18076.07 17074.83 17976.16 20181.19 19681.34 16870.21 18173.20 14761.59 16658.97 17468.33 13868.50 17585.87 14685.85 15091.18 17079.11 197
DTE-MVSNet75.14 18175.44 18074.80 18083.18 16987.19 16178.25 18880.11 11866.05 17948.31 19960.88 16254.67 19564.54 18882.57 17886.17 14494.43 10690.53 140
pmmvs674.83 18272.89 18977.09 16282.11 18387.50 15880.88 17476.97 15052.79 20661.91 16346.66 19960.49 16669.28 17386.74 13385.46 15591.39 16490.56 139
MIMVSNet74.69 18375.60 17873.62 18576.02 20385.31 17681.21 17267.43 19171.02 15559.07 18054.48 18664.07 14866.14 18686.52 13886.64 13591.83 16081.17 191
ADS-MVSNet74.53 18475.69 17773.17 18781.57 18880.71 19879.27 18263.03 20479.27 10559.94 17667.86 12668.32 13971.08 16877.33 19676.83 19484.12 20479.53 195
pmmvs-eth3d74.32 18571.96 19177.08 16377.33 19982.71 18978.41 18576.02 15966.65 17665.98 13354.23 18949.02 20673.14 16282.37 18082.69 17691.61 16286.05 172
PM-MVS74.17 18673.10 18775.41 17576.07 20282.53 19177.56 18971.69 17471.04 15461.92 16261.23 15947.30 20774.82 15181.78 18279.80 18390.42 17488.05 157
CMPMVSbinary56.49 1773.84 18771.73 19376.31 17185.20 14585.67 17275.80 19273.23 16962.26 19265.40 13753.40 19159.70 17371.77 16680.25 18779.56 18586.45 19681.28 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view73.21 18872.91 18873.56 18680.01 19284.28 18378.62 18466.43 19668.64 16959.12 17960.39 16659.69 17469.81 17278.82 19477.43 19387.36 19081.11 192
pmnet_mix0271.95 18971.83 19272.10 18981.40 18980.63 19973.78 19672.85 17170.90 15654.89 18662.17 15457.42 18562.92 19076.80 19773.98 20186.74 19580.87 193
testgi71.92 19074.20 18569.27 19484.58 15483.06 18573.40 19774.39 16564.04 18946.17 20268.90 12357.15 18648.89 20384.07 16983.08 17388.18 18779.09 198
Anonymous2023120670.80 19170.59 19571.04 19181.60 18782.49 19274.64 19575.87 16064.17 18849.27 19844.85 20353.59 20054.68 19883.07 17482.34 17890.17 17683.65 181
gm-plane-assit70.29 19270.65 19469.88 19385.03 14878.50 20358.41 21065.47 19850.39 20940.88 20849.60 19650.11 20375.14 14891.43 6589.78 8894.32 11084.73 179
EU-MVSNet69.98 19372.30 19067.28 19775.67 20479.39 20173.12 19869.94 18363.59 19042.80 20662.93 15256.71 18955.07 19779.13 19378.55 18987.06 19385.82 174
MVS-HIRNet68.83 19466.39 19871.68 19077.58 19875.52 20566.45 20565.05 20062.16 19362.84 15344.76 20456.60 19071.96 16578.04 19575.06 19986.18 19872.56 204
test20.0368.31 19570.05 19666.28 19982.41 18180.84 19767.35 20476.11 15858.44 20140.80 20953.77 19054.54 19642.28 20683.07 17481.96 18188.73 18577.76 200
N_pmnet66.85 19666.63 19767.11 19878.73 19574.66 20670.53 20171.07 17666.46 17846.54 20151.68 19551.91 20255.48 19674.68 20172.38 20280.29 20774.65 203
MDA-MVSNet-bldmvs66.22 19764.49 20068.24 19561.67 20982.11 19570.07 20276.16 15759.14 20047.94 20054.35 18835.82 21467.33 18164.94 20775.68 19686.30 19779.36 196
MIMVSNet165.00 19866.24 19963.55 20158.41 21280.01 20069.00 20374.03 16755.81 20441.88 20736.81 20849.48 20547.89 20481.32 18382.40 17790.08 17877.88 199
new-patchmatchnet63.80 19963.31 20164.37 20076.49 20075.99 20463.73 20770.99 17757.27 20243.08 20545.86 20143.80 20845.13 20573.20 20270.68 20586.80 19476.34 202
FPMVS63.63 20060.08 20567.78 19680.01 19271.50 20872.88 19969.41 18661.82 19453.11 18945.12 20242.11 21150.86 20166.69 20563.84 20680.41 20669.46 206
pmmvs361.89 20161.74 20362.06 20264.30 20870.83 20964.22 20652.14 21048.78 21044.47 20441.67 20641.70 21263.03 18976.06 19976.02 19584.18 20377.14 201
new_pmnet59.28 20261.47 20456.73 20461.66 21068.29 21059.57 20954.91 20760.83 19634.38 21244.66 20543.65 20949.90 20271.66 20371.56 20479.94 20869.67 205
GG-mvs-BLEND57.56 20382.61 10228.34 2100.22 21890.10 11979.37 1810.14 21679.56 1020.40 21971.25 10783.40 600.30 21686.27 14183.87 16789.59 18083.83 180
PMVScopyleft50.48 1855.81 20451.93 20660.33 20372.90 20649.34 21248.78 21169.51 18543.49 21154.25 18736.26 20941.04 21339.71 20865.07 20660.70 20776.85 20967.58 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 20547.05 20751.65 20559.67 21148.39 21341.98 21363.47 20355.64 20533.33 21314.90 21113.78 21841.34 20769.31 20472.30 20370.11 21055.00 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 20644.74 20838.10 20646.97 21552.32 21140.63 21448.08 21135.51 2127.36 21826.86 21024.64 21616.72 21255.24 20959.03 20868.85 21159.59 209
E-PMN31.40 20726.80 21036.78 20751.39 21429.96 21620.20 21654.17 20825.93 21412.75 21614.73 2128.58 22034.10 21027.36 21237.83 21148.07 21443.18 212
MVEpermissive30.17 1930.88 20833.52 20927.80 21123.78 21739.16 21518.69 21846.90 21221.88 21515.39 21514.37 2137.31 22124.41 21141.63 21156.22 20937.64 21654.07 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 20925.44 21136.39 20851.47 21329.89 21720.17 21754.00 20926.49 21312.02 21713.94 2148.84 21934.37 20925.04 21334.37 21246.29 21539.53 213
testmvs1.03 2101.63 2120.34 2120.09 2190.35 2190.61 2200.16 2151.49 2160.10 2203.15 2150.15 2220.86 2151.32 2141.18 2130.20 2173.76 215
test1230.87 2111.40 2130.25 2130.03 2200.25 2200.35 2210.08 2171.21 2170.05 2212.84 2160.03 2230.89 2140.43 2151.16 2140.13 2183.87 214
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def56.08 185
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
Anonymous20240521182.75 10189.58 10092.97 8689.04 8984.13 6778.72 10857.18 18076.64 9783.13 7989.55 9989.92 8593.38 14194.28 75
our_test_381.81 18683.96 18476.61 190
ambc61.92 20270.98 20773.54 20763.64 20860.06 19752.23 19338.44 20719.17 21757.12 19482.33 18175.03 20083.21 20584.89 176
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 219
tmp_tt32.73 20943.96 21621.15 21826.71 2158.99 21465.67 18351.39 19556.01 18342.64 21011.76 21356.60 20850.81 21053.55 213
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17582.30 16268.23 18865.37 138
DeepMVS_CXcopyleft48.31 21448.03 21226.08 21356.42 20325.77 21447.51 19831.31 21551.30 20048.49 21053.61 21261.52 208